1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/seq_file.h> 99 #include <linux/notifier.h> 100 #include <linux/kallsyms.h> 101 #include <linux/cpu.h> 102 #include <linux/sysctl.h> 103 #include <linux/module.h> 104 #include <linux/rcupdate.h> 105 #include <linux/string.h> 106 #include <linux/uaccess.h> 107 #include <linux/nodemask.h> 108 #include <linux/mempolicy.h> 109 #include <linux/mutex.h> 110 #include <linux/fault-inject.h> 111 #include <linux/rtmutex.h> 112 #include <linux/reciprocal_div.h> 113 #include <linux/debugobjects.h> 114 115 #include <asm/cacheflush.h> 116 #include <asm/tlbflush.h> 117 #include <asm/page.h> 118 119 /* 120 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 121 * 0 for faster, smaller code (especially in the critical paths). 122 * 123 * STATS - 1 to collect stats for /proc/slabinfo. 124 * 0 for faster, smaller code (especially in the critical paths). 125 * 126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 127 */ 128 129 #ifdef CONFIG_DEBUG_SLAB 130 #define DEBUG 1 131 #define STATS 1 132 #define FORCED_DEBUG 1 133 #else 134 #define DEBUG 0 135 #define STATS 0 136 #define FORCED_DEBUG 0 137 #endif 138 139 /* Shouldn't this be in a header file somewhere? */ 140 #define BYTES_PER_WORD sizeof(void *) 141 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 142 143 #ifndef ARCH_KMALLOC_MINALIGN 144 /* 145 * Enforce a minimum alignment for the kmalloc caches. 146 * Usually, the kmalloc caches are cache_line_size() aligned, except when 147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. 148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 149 * alignment larger than the alignment of a 64-bit integer. 150 * ARCH_KMALLOC_MINALIGN allows that. 151 * Note that increasing this value may disable some debug features. 152 */ 153 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 154 #endif 155 156 #ifndef ARCH_SLAB_MINALIGN 157 /* 158 * Enforce a minimum alignment for all caches. 159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD 160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. 161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables 162 * some debug features. 163 */ 164 #define ARCH_SLAB_MINALIGN 0 165 #endif 166 167 #ifndef ARCH_KMALLOC_FLAGS 168 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 169 #endif 170 171 /* Legal flag mask for kmem_cache_create(). */ 172 #if DEBUG 173 # define CREATE_MASK (SLAB_RED_ZONE | \ 174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \ 175 SLAB_CACHE_DMA | \ 176 SLAB_STORE_USER | \ 177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ 179 SLAB_DEBUG_OBJECTS) 180 #else 181 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ 182 SLAB_CACHE_DMA | \ 183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ 185 SLAB_DEBUG_OBJECTS) 186 #endif 187 188 /* 189 * kmem_bufctl_t: 190 * 191 * Bufctl's are used for linking objs within a slab 192 * linked offsets. 193 * 194 * This implementation relies on "struct page" for locating the cache & 195 * slab an object belongs to. 196 * This allows the bufctl structure to be small (one int), but limits 197 * the number of objects a slab (not a cache) can contain when off-slab 198 * bufctls are used. The limit is the size of the largest general cache 199 * that does not use off-slab slabs. 200 * For 32bit archs with 4 kB pages, is this 56. 201 * This is not serious, as it is only for large objects, when it is unwise 202 * to have too many per slab. 203 * Note: This limit can be raised by introducing a general cache whose size 204 * is less than 512 (PAGE_SIZE<<3), but greater than 256. 205 */ 206 207 typedef unsigned int kmem_bufctl_t; 208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) 209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) 210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) 211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) 212 213 /* 214 * struct slab 215 * 216 * Manages the objs in a slab. Placed either at the beginning of mem allocated 217 * for a slab, or allocated from an general cache. 218 * Slabs are chained into three list: fully used, partial, fully free slabs. 219 */ 220 struct slab { 221 struct list_head list; 222 unsigned long colouroff; 223 void *s_mem; /* including colour offset */ 224 unsigned int inuse; /* num of objs active in slab */ 225 kmem_bufctl_t free; 226 unsigned short nodeid; 227 }; 228 229 /* 230 * struct slab_rcu 231 * 232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to 233 * arrange for kmem_freepages to be called via RCU. This is useful if 234 * we need to approach a kernel structure obliquely, from its address 235 * obtained without the usual locking. We can lock the structure to 236 * stabilize it and check it's still at the given address, only if we 237 * can be sure that the memory has not been meanwhile reused for some 238 * other kind of object (which our subsystem's lock might corrupt). 239 * 240 * rcu_read_lock before reading the address, then rcu_read_unlock after 241 * taking the spinlock within the structure expected at that address. 242 * 243 * We assume struct slab_rcu can overlay struct slab when destroying. 244 */ 245 struct slab_rcu { 246 struct rcu_head head; 247 struct kmem_cache *cachep; 248 void *addr; 249 }; 250 251 /* 252 * struct array_cache 253 * 254 * Purpose: 255 * - LIFO ordering, to hand out cache-warm objects from _alloc 256 * - reduce the number of linked list operations 257 * - reduce spinlock operations 258 * 259 * The limit is stored in the per-cpu structure to reduce the data cache 260 * footprint. 261 * 262 */ 263 struct array_cache { 264 unsigned int avail; 265 unsigned int limit; 266 unsigned int batchcount; 267 unsigned int touched; 268 spinlock_t lock; 269 void *entry[]; /* 270 * Must have this definition in here for the proper 271 * alignment of array_cache. Also simplifies accessing 272 * the entries. 273 */ 274 }; 275 276 /* 277 * bootstrap: The caches do not work without cpuarrays anymore, but the 278 * cpuarrays are allocated from the generic caches... 279 */ 280 #define BOOT_CPUCACHE_ENTRIES 1 281 struct arraycache_init { 282 struct array_cache cache; 283 void *entries[BOOT_CPUCACHE_ENTRIES]; 284 }; 285 286 /* 287 * The slab lists for all objects. 288 */ 289 struct kmem_list3 { 290 struct list_head slabs_partial; /* partial list first, better asm code */ 291 struct list_head slabs_full; 292 struct list_head slabs_free; 293 unsigned long free_objects; 294 unsigned int free_limit; 295 unsigned int colour_next; /* Per-node cache coloring */ 296 spinlock_t list_lock; 297 struct array_cache *shared; /* shared per node */ 298 struct array_cache **alien; /* on other nodes */ 299 unsigned long next_reap; /* updated without locking */ 300 int free_touched; /* updated without locking */ 301 }; 302 303 /* 304 * Need this for bootstrapping a per node allocator. 305 */ 306 #define NUM_INIT_LISTS (3 * MAX_NUMNODES) 307 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; 308 #define CACHE_CACHE 0 309 #define SIZE_AC MAX_NUMNODES 310 #define SIZE_L3 (2 * MAX_NUMNODES) 311 312 static int drain_freelist(struct kmem_cache *cache, 313 struct kmem_list3 *l3, int tofree); 314 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 315 int node); 316 static int enable_cpucache(struct kmem_cache *cachep); 317 static void cache_reap(struct work_struct *unused); 318 319 /* 320 * This function must be completely optimized away if a constant is passed to 321 * it. Mostly the same as what is in linux/slab.h except it returns an index. 322 */ 323 static __always_inline int index_of(const size_t size) 324 { 325 extern void __bad_size(void); 326 327 if (__builtin_constant_p(size)) { 328 int i = 0; 329 330 #define CACHE(x) \ 331 if (size <=x) \ 332 return i; \ 333 else \ 334 i++; 335 #include <linux/kmalloc_sizes.h> 336 #undef CACHE 337 __bad_size(); 338 } else 339 __bad_size(); 340 return 0; 341 } 342 343 static int slab_early_init = 1; 344 345 #define INDEX_AC index_of(sizeof(struct arraycache_init)) 346 #define INDEX_L3 index_of(sizeof(struct kmem_list3)) 347 348 static void kmem_list3_init(struct kmem_list3 *parent) 349 { 350 INIT_LIST_HEAD(&parent->slabs_full); 351 INIT_LIST_HEAD(&parent->slabs_partial); 352 INIT_LIST_HEAD(&parent->slabs_free); 353 parent->shared = NULL; 354 parent->alien = NULL; 355 parent->colour_next = 0; 356 spin_lock_init(&parent->list_lock); 357 parent->free_objects = 0; 358 parent->free_touched = 0; 359 } 360 361 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 362 do { \ 363 INIT_LIST_HEAD(listp); \ 364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ 365 } while (0) 366 367 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 368 do { \ 369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 372 } while (0) 373 374 /* 375 * struct kmem_cache 376 * 377 * manages a cache. 378 */ 379 380 struct kmem_cache { 381 /* 1) per-cpu data, touched during every alloc/free */ 382 struct array_cache *array[NR_CPUS]; 383 /* 2) Cache tunables. Protected by cache_chain_mutex */ 384 unsigned int batchcount; 385 unsigned int limit; 386 unsigned int shared; 387 388 unsigned int buffer_size; 389 u32 reciprocal_buffer_size; 390 /* 3) touched by every alloc & free from the backend */ 391 392 unsigned int flags; /* constant flags */ 393 unsigned int num; /* # of objs per slab */ 394 395 /* 4) cache_grow/shrink */ 396 /* order of pgs per slab (2^n) */ 397 unsigned int gfporder; 398 399 /* force GFP flags, e.g. GFP_DMA */ 400 gfp_t gfpflags; 401 402 size_t colour; /* cache colouring range */ 403 unsigned int colour_off; /* colour offset */ 404 struct kmem_cache *slabp_cache; 405 unsigned int slab_size; 406 unsigned int dflags; /* dynamic flags */ 407 408 /* constructor func */ 409 void (*ctor)(void *obj); 410 411 /* 5) cache creation/removal */ 412 const char *name; 413 struct list_head next; 414 415 /* 6) statistics */ 416 #if STATS 417 unsigned long num_active; 418 unsigned long num_allocations; 419 unsigned long high_mark; 420 unsigned long grown; 421 unsigned long reaped; 422 unsigned long errors; 423 unsigned long max_freeable; 424 unsigned long node_allocs; 425 unsigned long node_frees; 426 unsigned long node_overflow; 427 atomic_t allochit; 428 atomic_t allocmiss; 429 atomic_t freehit; 430 atomic_t freemiss; 431 #endif 432 #if DEBUG 433 /* 434 * If debugging is enabled, then the allocator can add additional 435 * fields and/or padding to every object. buffer_size contains the total 436 * object size including these internal fields, the following two 437 * variables contain the offset to the user object and its size. 438 */ 439 int obj_offset; 440 int obj_size; 441 #endif 442 /* 443 * We put nodelists[] at the end of kmem_cache, because we want to size 444 * this array to nr_node_ids slots instead of MAX_NUMNODES 445 * (see kmem_cache_init()) 446 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache 447 * is statically defined, so we reserve the max number of nodes. 448 */ 449 struct kmem_list3 *nodelists[MAX_NUMNODES]; 450 /* 451 * Do not add fields after nodelists[] 452 */ 453 }; 454 455 #define CFLGS_OFF_SLAB (0x80000000UL) 456 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 457 458 #define BATCHREFILL_LIMIT 16 459 /* 460 * Optimization question: fewer reaps means less probability for unnessary 461 * cpucache drain/refill cycles. 462 * 463 * OTOH the cpuarrays can contain lots of objects, 464 * which could lock up otherwise freeable slabs. 465 */ 466 #define REAPTIMEOUT_CPUC (2*HZ) 467 #define REAPTIMEOUT_LIST3 (4*HZ) 468 469 #if STATS 470 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 471 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 472 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 473 #define STATS_INC_GROWN(x) ((x)->grown++) 474 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 475 #define STATS_SET_HIGH(x) \ 476 do { \ 477 if ((x)->num_active > (x)->high_mark) \ 478 (x)->high_mark = (x)->num_active; \ 479 } while (0) 480 #define STATS_INC_ERR(x) ((x)->errors++) 481 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 482 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 483 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 484 #define STATS_SET_FREEABLE(x, i) \ 485 do { \ 486 if ((x)->max_freeable < i) \ 487 (x)->max_freeable = i; \ 488 } while (0) 489 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 490 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 491 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 492 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 493 #else 494 #define STATS_INC_ACTIVE(x) do { } while (0) 495 #define STATS_DEC_ACTIVE(x) do { } while (0) 496 #define STATS_INC_ALLOCED(x) do { } while (0) 497 #define STATS_INC_GROWN(x) do { } while (0) 498 #define STATS_ADD_REAPED(x,y) do { } while (0) 499 #define STATS_SET_HIGH(x) do { } while (0) 500 #define STATS_INC_ERR(x) do { } while (0) 501 #define STATS_INC_NODEALLOCS(x) do { } while (0) 502 #define STATS_INC_NODEFREES(x) do { } while (0) 503 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 504 #define STATS_SET_FREEABLE(x, i) do { } while (0) 505 #define STATS_INC_ALLOCHIT(x) do { } while (0) 506 #define STATS_INC_ALLOCMISS(x) do { } while (0) 507 #define STATS_INC_FREEHIT(x) do { } while (0) 508 #define STATS_INC_FREEMISS(x) do { } while (0) 509 #endif 510 511 #if DEBUG 512 513 /* 514 * memory layout of objects: 515 * 0 : objp 516 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 517 * the end of an object is aligned with the end of the real 518 * allocation. Catches writes behind the end of the allocation. 519 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 520 * redzone word. 521 * cachep->obj_offset: The real object. 522 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 523 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address 524 * [BYTES_PER_WORD long] 525 */ 526 static int obj_offset(struct kmem_cache *cachep) 527 { 528 return cachep->obj_offset; 529 } 530 531 static int obj_size(struct kmem_cache *cachep) 532 { 533 return cachep->obj_size; 534 } 535 536 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 537 { 538 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 539 return (unsigned long long*) (objp + obj_offset(cachep) - 540 sizeof(unsigned long long)); 541 } 542 543 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 544 { 545 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 546 if (cachep->flags & SLAB_STORE_USER) 547 return (unsigned long long *)(objp + cachep->buffer_size - 548 sizeof(unsigned long long) - 549 REDZONE_ALIGN); 550 return (unsigned long long *) (objp + cachep->buffer_size - 551 sizeof(unsigned long long)); 552 } 553 554 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 555 { 556 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 557 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); 558 } 559 560 #else 561 562 #define obj_offset(x) 0 563 #define obj_size(cachep) (cachep->buffer_size) 564 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 565 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 566 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 567 568 #endif 569 570 /* 571 * Do not go above this order unless 0 objects fit into the slab. 572 */ 573 #define BREAK_GFP_ORDER_HI 1 574 #define BREAK_GFP_ORDER_LO 0 575 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; 576 577 /* 578 * Functions for storing/retrieving the cachep and or slab from the page 579 * allocator. These are used to find the slab an obj belongs to. With kfree(), 580 * these are used to find the cache which an obj belongs to. 581 */ 582 static inline void page_set_cache(struct page *page, struct kmem_cache *cache) 583 { 584 page->lru.next = (struct list_head *)cache; 585 } 586 587 static inline struct kmem_cache *page_get_cache(struct page *page) 588 { 589 page = compound_head(page); 590 BUG_ON(!PageSlab(page)); 591 return (struct kmem_cache *)page->lru.next; 592 } 593 594 static inline void page_set_slab(struct page *page, struct slab *slab) 595 { 596 page->lru.prev = (struct list_head *)slab; 597 } 598 599 static inline struct slab *page_get_slab(struct page *page) 600 { 601 BUG_ON(!PageSlab(page)); 602 return (struct slab *)page->lru.prev; 603 } 604 605 static inline struct kmem_cache *virt_to_cache(const void *obj) 606 { 607 struct page *page = virt_to_head_page(obj); 608 return page_get_cache(page); 609 } 610 611 static inline struct slab *virt_to_slab(const void *obj) 612 { 613 struct page *page = virt_to_head_page(obj); 614 return page_get_slab(page); 615 } 616 617 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, 618 unsigned int idx) 619 { 620 return slab->s_mem + cache->buffer_size * idx; 621 } 622 623 /* 624 * We want to avoid an expensive divide : (offset / cache->buffer_size) 625 * Using the fact that buffer_size is a constant for a particular cache, 626 * we can replace (offset / cache->buffer_size) by 627 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 628 */ 629 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 630 const struct slab *slab, void *obj) 631 { 632 u32 offset = (obj - slab->s_mem); 633 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 634 } 635 636 /* 637 * These are the default caches for kmalloc. Custom caches can have other sizes. 638 */ 639 struct cache_sizes malloc_sizes[] = { 640 #define CACHE(x) { .cs_size = (x) }, 641 #include <linux/kmalloc_sizes.h> 642 CACHE(ULONG_MAX) 643 #undef CACHE 644 }; 645 EXPORT_SYMBOL(malloc_sizes); 646 647 /* Must match cache_sizes above. Out of line to keep cache footprint low. */ 648 struct cache_names { 649 char *name; 650 char *name_dma; 651 }; 652 653 static struct cache_names __initdata cache_names[] = { 654 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, 655 #include <linux/kmalloc_sizes.h> 656 {NULL,} 657 #undef CACHE 658 }; 659 660 static struct arraycache_init initarray_cache __initdata = 661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 662 static struct arraycache_init initarray_generic = 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 664 665 /* internal cache of cache description objs */ 666 static struct kmem_cache cache_cache = { 667 .batchcount = 1, 668 .limit = BOOT_CPUCACHE_ENTRIES, 669 .shared = 1, 670 .buffer_size = sizeof(struct kmem_cache), 671 .name = "kmem_cache", 672 }; 673 674 #define BAD_ALIEN_MAGIC 0x01020304ul 675 676 #ifdef CONFIG_LOCKDEP 677 678 /* 679 * Slab sometimes uses the kmalloc slabs to store the slab headers 680 * for other slabs "off slab". 681 * The locking for this is tricky in that it nests within the locks 682 * of all other slabs in a few places; to deal with this special 683 * locking we put on-slab caches into a separate lock-class. 684 * 685 * We set lock class for alien array caches which are up during init. 686 * The lock annotation will be lost if all cpus of a node goes down and 687 * then comes back up during hotplug 688 */ 689 static struct lock_class_key on_slab_l3_key; 690 static struct lock_class_key on_slab_alc_key; 691 692 static inline void init_lock_keys(void) 693 694 { 695 int q; 696 struct cache_sizes *s = malloc_sizes; 697 698 while (s->cs_size != ULONG_MAX) { 699 for_each_node(q) { 700 struct array_cache **alc; 701 int r; 702 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q]; 703 if (!l3 || OFF_SLAB(s->cs_cachep)) 704 continue; 705 lockdep_set_class(&l3->list_lock, &on_slab_l3_key); 706 alc = l3->alien; 707 /* 708 * FIXME: This check for BAD_ALIEN_MAGIC 709 * should go away when common slab code is taught to 710 * work even without alien caches. 711 * Currently, non NUMA code returns BAD_ALIEN_MAGIC 712 * for alloc_alien_cache, 713 */ 714 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) 715 continue; 716 for_each_node(r) { 717 if (alc[r]) 718 lockdep_set_class(&alc[r]->lock, 719 &on_slab_alc_key); 720 } 721 } 722 s++; 723 } 724 } 725 #else 726 static inline void init_lock_keys(void) 727 { 728 } 729 #endif 730 731 /* 732 * Guard access to the cache-chain. 733 */ 734 static DEFINE_MUTEX(cache_chain_mutex); 735 static struct list_head cache_chain; 736 737 /* 738 * chicken and egg problem: delay the per-cpu array allocation 739 * until the general caches are up. 740 */ 741 static enum { 742 NONE, 743 PARTIAL_AC, 744 PARTIAL_L3, 745 FULL 746 } g_cpucache_up; 747 748 /* 749 * used by boot code to determine if it can use slab based allocator 750 */ 751 int slab_is_available(void) 752 { 753 return g_cpucache_up == FULL; 754 } 755 756 static DEFINE_PER_CPU(struct delayed_work, reap_work); 757 758 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 759 { 760 return cachep->array[smp_processor_id()]; 761 } 762 763 static inline struct kmem_cache *__find_general_cachep(size_t size, 764 gfp_t gfpflags) 765 { 766 struct cache_sizes *csizep = malloc_sizes; 767 768 #if DEBUG 769 /* This happens if someone tries to call 770 * kmem_cache_create(), or __kmalloc(), before 771 * the generic caches are initialized. 772 */ 773 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); 774 #endif 775 if (!size) 776 return ZERO_SIZE_PTR; 777 778 while (size > csizep->cs_size) 779 csizep++; 780 781 /* 782 * Really subtle: The last entry with cs->cs_size==ULONG_MAX 783 * has cs_{dma,}cachep==NULL. Thus no special case 784 * for large kmalloc calls required. 785 */ 786 #ifdef CONFIG_ZONE_DMA 787 if (unlikely(gfpflags & GFP_DMA)) 788 return csizep->cs_dmacachep; 789 #endif 790 return csizep->cs_cachep; 791 } 792 793 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) 794 { 795 return __find_general_cachep(size, gfpflags); 796 } 797 798 static size_t slab_mgmt_size(size_t nr_objs, size_t align) 799 { 800 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); 801 } 802 803 /* 804 * Calculate the number of objects and left-over bytes for a given buffer size. 805 */ 806 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 807 size_t align, int flags, size_t *left_over, 808 unsigned int *num) 809 { 810 int nr_objs; 811 size_t mgmt_size; 812 size_t slab_size = PAGE_SIZE << gfporder; 813 814 /* 815 * The slab management structure can be either off the slab or 816 * on it. For the latter case, the memory allocated for a 817 * slab is used for: 818 * 819 * - The struct slab 820 * - One kmem_bufctl_t for each object 821 * - Padding to respect alignment of @align 822 * - @buffer_size bytes for each object 823 * 824 * If the slab management structure is off the slab, then the 825 * alignment will already be calculated into the size. Because 826 * the slabs are all pages aligned, the objects will be at the 827 * correct alignment when allocated. 828 */ 829 if (flags & CFLGS_OFF_SLAB) { 830 mgmt_size = 0; 831 nr_objs = slab_size / buffer_size; 832 833 if (nr_objs > SLAB_LIMIT) 834 nr_objs = SLAB_LIMIT; 835 } else { 836 /* 837 * Ignore padding for the initial guess. The padding 838 * is at most @align-1 bytes, and @buffer_size is at 839 * least @align. In the worst case, this result will 840 * be one greater than the number of objects that fit 841 * into the memory allocation when taking the padding 842 * into account. 843 */ 844 nr_objs = (slab_size - sizeof(struct slab)) / 845 (buffer_size + sizeof(kmem_bufctl_t)); 846 847 /* 848 * This calculated number will be either the right 849 * amount, or one greater than what we want. 850 */ 851 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size 852 > slab_size) 853 nr_objs--; 854 855 if (nr_objs > SLAB_LIMIT) 856 nr_objs = SLAB_LIMIT; 857 858 mgmt_size = slab_mgmt_size(nr_objs, align); 859 } 860 *num = nr_objs; 861 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 862 } 863 864 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 865 866 static void __slab_error(const char *function, struct kmem_cache *cachep, 867 char *msg) 868 { 869 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 870 function, cachep->name, msg); 871 dump_stack(); 872 } 873 874 /* 875 * By default on NUMA we use alien caches to stage the freeing of 876 * objects allocated from other nodes. This causes massive memory 877 * inefficiencies when using fake NUMA setup to split memory into a 878 * large number of small nodes, so it can be disabled on the command 879 * line 880 */ 881 882 static int use_alien_caches __read_mostly = 1; 883 static int numa_platform __read_mostly = 1; 884 static int __init noaliencache_setup(char *s) 885 { 886 use_alien_caches = 0; 887 return 1; 888 } 889 __setup("noaliencache", noaliencache_setup); 890 891 #ifdef CONFIG_NUMA 892 /* 893 * Special reaping functions for NUMA systems called from cache_reap(). 894 * These take care of doing round robin flushing of alien caches (containing 895 * objects freed on different nodes from which they were allocated) and the 896 * flushing of remote pcps by calling drain_node_pages. 897 */ 898 static DEFINE_PER_CPU(unsigned long, reap_node); 899 900 static void init_reap_node(int cpu) 901 { 902 int node; 903 904 node = next_node(cpu_to_node(cpu), node_online_map); 905 if (node == MAX_NUMNODES) 906 node = first_node(node_online_map); 907 908 per_cpu(reap_node, cpu) = node; 909 } 910 911 static void next_reap_node(void) 912 { 913 int node = __get_cpu_var(reap_node); 914 915 node = next_node(node, node_online_map); 916 if (unlikely(node >= MAX_NUMNODES)) 917 node = first_node(node_online_map); 918 __get_cpu_var(reap_node) = node; 919 } 920 921 #else 922 #define init_reap_node(cpu) do { } while (0) 923 #define next_reap_node(void) do { } while (0) 924 #endif 925 926 /* 927 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 928 * via the workqueue/eventd. 929 * Add the CPU number into the expiration time to minimize the possibility of 930 * the CPUs getting into lockstep and contending for the global cache chain 931 * lock. 932 */ 933 static void __cpuinit start_cpu_timer(int cpu) 934 { 935 struct delayed_work *reap_work = &per_cpu(reap_work, cpu); 936 937 /* 938 * When this gets called from do_initcalls via cpucache_init(), 939 * init_workqueues() has already run, so keventd will be setup 940 * at that time. 941 */ 942 if (keventd_up() && reap_work->work.func == NULL) { 943 init_reap_node(cpu); 944 INIT_DELAYED_WORK(reap_work, cache_reap); 945 schedule_delayed_work_on(cpu, reap_work, 946 __round_jiffies_relative(HZ, cpu)); 947 } 948 } 949 950 static struct array_cache *alloc_arraycache(int node, int entries, 951 int batchcount) 952 { 953 int memsize = sizeof(void *) * entries + sizeof(struct array_cache); 954 struct array_cache *nc = NULL; 955 956 nc = kmalloc_node(memsize, GFP_KERNEL, node); 957 if (nc) { 958 nc->avail = 0; 959 nc->limit = entries; 960 nc->batchcount = batchcount; 961 nc->touched = 0; 962 spin_lock_init(&nc->lock); 963 } 964 return nc; 965 } 966 967 /* 968 * Transfer objects in one arraycache to another. 969 * Locking must be handled by the caller. 970 * 971 * Return the number of entries transferred. 972 */ 973 static int transfer_objects(struct array_cache *to, 974 struct array_cache *from, unsigned int max) 975 { 976 /* Figure out how many entries to transfer */ 977 int nr = min(min(from->avail, max), to->limit - to->avail); 978 979 if (!nr) 980 return 0; 981 982 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 983 sizeof(void *) *nr); 984 985 from->avail -= nr; 986 to->avail += nr; 987 to->touched = 1; 988 return nr; 989 } 990 991 #ifndef CONFIG_NUMA 992 993 #define drain_alien_cache(cachep, alien) do { } while (0) 994 #define reap_alien(cachep, l3) do { } while (0) 995 996 static inline struct array_cache **alloc_alien_cache(int node, int limit) 997 { 998 return (struct array_cache **)BAD_ALIEN_MAGIC; 999 } 1000 1001 static inline void free_alien_cache(struct array_cache **ac_ptr) 1002 { 1003 } 1004 1005 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1006 { 1007 return 0; 1008 } 1009 1010 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 1011 gfp_t flags) 1012 { 1013 return NULL; 1014 } 1015 1016 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 1017 gfp_t flags, int nodeid) 1018 { 1019 return NULL; 1020 } 1021 1022 #else /* CONFIG_NUMA */ 1023 1024 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 1025 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 1026 1027 static struct array_cache **alloc_alien_cache(int node, int limit) 1028 { 1029 struct array_cache **ac_ptr; 1030 int memsize = sizeof(void *) * nr_node_ids; 1031 int i; 1032 1033 if (limit > 1) 1034 limit = 12; 1035 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node); 1036 if (ac_ptr) { 1037 for_each_node(i) { 1038 if (i == node || !node_online(i)) { 1039 ac_ptr[i] = NULL; 1040 continue; 1041 } 1042 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); 1043 if (!ac_ptr[i]) { 1044 for (i--; i >= 0; i--) 1045 kfree(ac_ptr[i]); 1046 kfree(ac_ptr); 1047 return NULL; 1048 } 1049 } 1050 } 1051 return ac_ptr; 1052 } 1053 1054 static void free_alien_cache(struct array_cache **ac_ptr) 1055 { 1056 int i; 1057 1058 if (!ac_ptr) 1059 return; 1060 for_each_node(i) 1061 kfree(ac_ptr[i]); 1062 kfree(ac_ptr); 1063 } 1064 1065 static void __drain_alien_cache(struct kmem_cache *cachep, 1066 struct array_cache *ac, int node) 1067 { 1068 struct kmem_list3 *rl3 = cachep->nodelists[node]; 1069 1070 if (ac->avail) { 1071 spin_lock(&rl3->list_lock); 1072 /* 1073 * Stuff objects into the remote nodes shared array first. 1074 * That way we could avoid the overhead of putting the objects 1075 * into the free lists and getting them back later. 1076 */ 1077 if (rl3->shared) 1078 transfer_objects(rl3->shared, ac, ac->limit); 1079 1080 free_block(cachep, ac->entry, ac->avail, node); 1081 ac->avail = 0; 1082 spin_unlock(&rl3->list_lock); 1083 } 1084 } 1085 1086 /* 1087 * Called from cache_reap() to regularly drain alien caches round robin. 1088 */ 1089 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) 1090 { 1091 int node = __get_cpu_var(reap_node); 1092 1093 if (l3->alien) { 1094 struct array_cache *ac = l3->alien[node]; 1095 1096 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { 1097 __drain_alien_cache(cachep, ac, node); 1098 spin_unlock_irq(&ac->lock); 1099 } 1100 } 1101 } 1102 1103 static void drain_alien_cache(struct kmem_cache *cachep, 1104 struct array_cache **alien) 1105 { 1106 int i = 0; 1107 struct array_cache *ac; 1108 unsigned long flags; 1109 1110 for_each_online_node(i) { 1111 ac = alien[i]; 1112 if (ac) { 1113 spin_lock_irqsave(&ac->lock, flags); 1114 __drain_alien_cache(cachep, ac, i); 1115 spin_unlock_irqrestore(&ac->lock, flags); 1116 } 1117 } 1118 } 1119 1120 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1121 { 1122 struct slab *slabp = virt_to_slab(objp); 1123 int nodeid = slabp->nodeid; 1124 struct kmem_list3 *l3; 1125 struct array_cache *alien = NULL; 1126 int node; 1127 1128 node = numa_node_id(); 1129 1130 /* 1131 * Make sure we are not freeing a object from another node to the array 1132 * cache on this cpu. 1133 */ 1134 if (likely(slabp->nodeid == node)) 1135 return 0; 1136 1137 l3 = cachep->nodelists[node]; 1138 STATS_INC_NODEFREES(cachep); 1139 if (l3->alien && l3->alien[nodeid]) { 1140 alien = l3->alien[nodeid]; 1141 spin_lock(&alien->lock); 1142 if (unlikely(alien->avail == alien->limit)) { 1143 STATS_INC_ACOVERFLOW(cachep); 1144 __drain_alien_cache(cachep, alien, nodeid); 1145 } 1146 alien->entry[alien->avail++] = objp; 1147 spin_unlock(&alien->lock); 1148 } else { 1149 spin_lock(&(cachep->nodelists[nodeid])->list_lock); 1150 free_block(cachep, &objp, 1, nodeid); 1151 spin_unlock(&(cachep->nodelists[nodeid])->list_lock); 1152 } 1153 return 1; 1154 } 1155 #endif 1156 1157 static void __cpuinit cpuup_canceled(long cpu) 1158 { 1159 struct kmem_cache *cachep; 1160 struct kmem_list3 *l3 = NULL; 1161 int node = cpu_to_node(cpu); 1162 node_to_cpumask_ptr(mask, node); 1163 1164 list_for_each_entry(cachep, &cache_chain, next) { 1165 struct array_cache *nc; 1166 struct array_cache *shared; 1167 struct array_cache **alien; 1168 1169 /* cpu is dead; no one can alloc from it. */ 1170 nc = cachep->array[cpu]; 1171 cachep->array[cpu] = NULL; 1172 l3 = cachep->nodelists[node]; 1173 1174 if (!l3) 1175 goto free_array_cache; 1176 1177 spin_lock_irq(&l3->list_lock); 1178 1179 /* Free limit for this kmem_list3 */ 1180 l3->free_limit -= cachep->batchcount; 1181 if (nc) 1182 free_block(cachep, nc->entry, nc->avail, node); 1183 1184 if (!cpus_empty(*mask)) { 1185 spin_unlock_irq(&l3->list_lock); 1186 goto free_array_cache; 1187 } 1188 1189 shared = l3->shared; 1190 if (shared) { 1191 free_block(cachep, shared->entry, 1192 shared->avail, node); 1193 l3->shared = NULL; 1194 } 1195 1196 alien = l3->alien; 1197 l3->alien = NULL; 1198 1199 spin_unlock_irq(&l3->list_lock); 1200 1201 kfree(shared); 1202 if (alien) { 1203 drain_alien_cache(cachep, alien); 1204 free_alien_cache(alien); 1205 } 1206 free_array_cache: 1207 kfree(nc); 1208 } 1209 /* 1210 * In the previous loop, all the objects were freed to 1211 * the respective cache's slabs, now we can go ahead and 1212 * shrink each nodelist to its limit. 1213 */ 1214 list_for_each_entry(cachep, &cache_chain, next) { 1215 l3 = cachep->nodelists[node]; 1216 if (!l3) 1217 continue; 1218 drain_freelist(cachep, l3, l3->free_objects); 1219 } 1220 } 1221 1222 static int __cpuinit cpuup_prepare(long cpu) 1223 { 1224 struct kmem_cache *cachep; 1225 struct kmem_list3 *l3 = NULL; 1226 int node = cpu_to_node(cpu); 1227 const int memsize = sizeof(struct kmem_list3); 1228 1229 /* 1230 * We need to do this right in the beginning since 1231 * alloc_arraycache's are going to use this list. 1232 * kmalloc_node allows us to add the slab to the right 1233 * kmem_list3 and not this cpu's kmem_list3 1234 */ 1235 1236 list_for_each_entry(cachep, &cache_chain, next) { 1237 /* 1238 * Set up the size64 kmemlist for cpu before we can 1239 * begin anything. Make sure some other cpu on this 1240 * node has not already allocated this 1241 */ 1242 if (!cachep->nodelists[node]) { 1243 l3 = kmalloc_node(memsize, GFP_KERNEL, node); 1244 if (!l3) 1245 goto bad; 1246 kmem_list3_init(l3); 1247 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 1248 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1249 1250 /* 1251 * The l3s don't come and go as CPUs come and 1252 * go. cache_chain_mutex is sufficient 1253 * protection here. 1254 */ 1255 cachep->nodelists[node] = l3; 1256 } 1257 1258 spin_lock_irq(&cachep->nodelists[node]->list_lock); 1259 cachep->nodelists[node]->free_limit = 1260 (1 + nr_cpus_node(node)) * 1261 cachep->batchcount + cachep->num; 1262 spin_unlock_irq(&cachep->nodelists[node]->list_lock); 1263 } 1264 1265 /* 1266 * Now we can go ahead with allocating the shared arrays and 1267 * array caches 1268 */ 1269 list_for_each_entry(cachep, &cache_chain, next) { 1270 struct array_cache *nc; 1271 struct array_cache *shared = NULL; 1272 struct array_cache **alien = NULL; 1273 1274 nc = alloc_arraycache(node, cachep->limit, 1275 cachep->batchcount); 1276 if (!nc) 1277 goto bad; 1278 if (cachep->shared) { 1279 shared = alloc_arraycache(node, 1280 cachep->shared * cachep->batchcount, 1281 0xbaadf00d); 1282 if (!shared) { 1283 kfree(nc); 1284 goto bad; 1285 } 1286 } 1287 if (use_alien_caches) { 1288 alien = alloc_alien_cache(node, cachep->limit); 1289 if (!alien) { 1290 kfree(shared); 1291 kfree(nc); 1292 goto bad; 1293 } 1294 } 1295 cachep->array[cpu] = nc; 1296 l3 = cachep->nodelists[node]; 1297 BUG_ON(!l3); 1298 1299 spin_lock_irq(&l3->list_lock); 1300 if (!l3->shared) { 1301 /* 1302 * We are serialised from CPU_DEAD or 1303 * CPU_UP_CANCELLED by the cpucontrol lock 1304 */ 1305 l3->shared = shared; 1306 shared = NULL; 1307 } 1308 #ifdef CONFIG_NUMA 1309 if (!l3->alien) { 1310 l3->alien = alien; 1311 alien = NULL; 1312 } 1313 #endif 1314 spin_unlock_irq(&l3->list_lock); 1315 kfree(shared); 1316 free_alien_cache(alien); 1317 } 1318 return 0; 1319 bad: 1320 cpuup_canceled(cpu); 1321 return -ENOMEM; 1322 } 1323 1324 static int __cpuinit cpuup_callback(struct notifier_block *nfb, 1325 unsigned long action, void *hcpu) 1326 { 1327 long cpu = (long)hcpu; 1328 int err = 0; 1329 1330 switch (action) { 1331 case CPU_UP_PREPARE: 1332 case CPU_UP_PREPARE_FROZEN: 1333 mutex_lock(&cache_chain_mutex); 1334 err = cpuup_prepare(cpu); 1335 mutex_unlock(&cache_chain_mutex); 1336 break; 1337 case CPU_ONLINE: 1338 case CPU_ONLINE_FROZEN: 1339 start_cpu_timer(cpu); 1340 break; 1341 #ifdef CONFIG_HOTPLUG_CPU 1342 case CPU_DOWN_PREPARE: 1343 case CPU_DOWN_PREPARE_FROZEN: 1344 /* 1345 * Shutdown cache reaper. Note that the cache_chain_mutex is 1346 * held so that if cache_reap() is invoked it cannot do 1347 * anything expensive but will only modify reap_work 1348 * and reschedule the timer. 1349 */ 1350 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu)); 1351 /* Now the cache_reaper is guaranteed to be not running. */ 1352 per_cpu(reap_work, cpu).work.func = NULL; 1353 break; 1354 case CPU_DOWN_FAILED: 1355 case CPU_DOWN_FAILED_FROZEN: 1356 start_cpu_timer(cpu); 1357 break; 1358 case CPU_DEAD: 1359 case CPU_DEAD_FROZEN: 1360 /* 1361 * Even if all the cpus of a node are down, we don't free the 1362 * kmem_list3 of any cache. This to avoid a race between 1363 * cpu_down, and a kmalloc allocation from another cpu for 1364 * memory from the node of the cpu going down. The list3 1365 * structure is usually allocated from kmem_cache_create() and 1366 * gets destroyed at kmem_cache_destroy(). 1367 */ 1368 /* fall through */ 1369 #endif 1370 case CPU_UP_CANCELED: 1371 case CPU_UP_CANCELED_FROZEN: 1372 mutex_lock(&cache_chain_mutex); 1373 cpuup_canceled(cpu); 1374 mutex_unlock(&cache_chain_mutex); 1375 break; 1376 } 1377 return err ? NOTIFY_BAD : NOTIFY_OK; 1378 } 1379 1380 static struct notifier_block __cpuinitdata cpucache_notifier = { 1381 &cpuup_callback, NULL, 0 1382 }; 1383 1384 /* 1385 * swap the static kmem_list3 with kmalloced memory 1386 */ 1387 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, 1388 int nodeid) 1389 { 1390 struct kmem_list3 *ptr; 1391 1392 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid); 1393 BUG_ON(!ptr); 1394 1395 local_irq_disable(); 1396 memcpy(ptr, list, sizeof(struct kmem_list3)); 1397 /* 1398 * Do not assume that spinlocks can be initialized via memcpy: 1399 */ 1400 spin_lock_init(&ptr->list_lock); 1401 1402 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1403 cachep->nodelists[nodeid] = ptr; 1404 local_irq_enable(); 1405 } 1406 1407 /* 1408 * For setting up all the kmem_list3s for cache whose buffer_size is same as 1409 * size of kmem_list3. 1410 */ 1411 static void __init set_up_list3s(struct kmem_cache *cachep, int index) 1412 { 1413 int node; 1414 1415 for_each_online_node(node) { 1416 cachep->nodelists[node] = &initkmem_list3[index + node]; 1417 cachep->nodelists[node]->next_reap = jiffies + 1418 REAPTIMEOUT_LIST3 + 1419 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1420 } 1421 } 1422 1423 /* 1424 * Initialisation. Called after the page allocator have been initialised and 1425 * before smp_init(). 1426 */ 1427 void __init kmem_cache_init(void) 1428 { 1429 size_t left_over; 1430 struct cache_sizes *sizes; 1431 struct cache_names *names; 1432 int i; 1433 int order; 1434 int node; 1435 1436 if (num_possible_nodes() == 1) { 1437 use_alien_caches = 0; 1438 numa_platform = 0; 1439 } 1440 1441 for (i = 0; i < NUM_INIT_LISTS; i++) { 1442 kmem_list3_init(&initkmem_list3[i]); 1443 if (i < MAX_NUMNODES) 1444 cache_cache.nodelists[i] = NULL; 1445 } 1446 set_up_list3s(&cache_cache, CACHE_CACHE); 1447 1448 /* 1449 * Fragmentation resistance on low memory - only use bigger 1450 * page orders on machines with more than 32MB of memory. 1451 */ 1452 if (num_physpages > (32 << 20) >> PAGE_SHIFT) 1453 slab_break_gfp_order = BREAK_GFP_ORDER_HI; 1454 1455 /* Bootstrap is tricky, because several objects are allocated 1456 * from caches that do not exist yet: 1457 * 1) initialize the cache_cache cache: it contains the struct 1458 * kmem_cache structures of all caches, except cache_cache itself: 1459 * cache_cache is statically allocated. 1460 * Initially an __init data area is used for the head array and the 1461 * kmem_list3 structures, it's replaced with a kmalloc allocated 1462 * array at the end of the bootstrap. 1463 * 2) Create the first kmalloc cache. 1464 * The struct kmem_cache for the new cache is allocated normally. 1465 * An __init data area is used for the head array. 1466 * 3) Create the remaining kmalloc caches, with minimally sized 1467 * head arrays. 1468 * 4) Replace the __init data head arrays for cache_cache and the first 1469 * kmalloc cache with kmalloc allocated arrays. 1470 * 5) Replace the __init data for kmem_list3 for cache_cache and 1471 * the other cache's with kmalloc allocated memory. 1472 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1473 */ 1474 1475 node = numa_node_id(); 1476 1477 /* 1) create the cache_cache */ 1478 INIT_LIST_HEAD(&cache_chain); 1479 list_add(&cache_cache.next, &cache_chain); 1480 cache_cache.colour_off = cache_line_size(); 1481 cache_cache.array[smp_processor_id()] = &initarray_cache.cache; 1482 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; 1483 1484 /* 1485 * struct kmem_cache size depends on nr_node_ids, which 1486 * can be less than MAX_NUMNODES. 1487 */ 1488 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) + 1489 nr_node_ids * sizeof(struct kmem_list3 *); 1490 #if DEBUG 1491 cache_cache.obj_size = cache_cache.buffer_size; 1492 #endif 1493 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, 1494 cache_line_size()); 1495 cache_cache.reciprocal_buffer_size = 1496 reciprocal_value(cache_cache.buffer_size); 1497 1498 for (order = 0; order < MAX_ORDER; order++) { 1499 cache_estimate(order, cache_cache.buffer_size, 1500 cache_line_size(), 0, &left_over, &cache_cache.num); 1501 if (cache_cache.num) 1502 break; 1503 } 1504 BUG_ON(!cache_cache.num); 1505 cache_cache.gfporder = order; 1506 cache_cache.colour = left_over / cache_cache.colour_off; 1507 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + 1508 sizeof(struct slab), cache_line_size()); 1509 1510 /* 2+3) create the kmalloc caches */ 1511 sizes = malloc_sizes; 1512 names = cache_names; 1513 1514 /* 1515 * Initialize the caches that provide memory for the array cache and the 1516 * kmem_list3 structures first. Without this, further allocations will 1517 * bug. 1518 */ 1519 1520 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, 1521 sizes[INDEX_AC].cs_size, 1522 ARCH_KMALLOC_MINALIGN, 1523 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1524 NULL); 1525 1526 if (INDEX_AC != INDEX_L3) { 1527 sizes[INDEX_L3].cs_cachep = 1528 kmem_cache_create(names[INDEX_L3].name, 1529 sizes[INDEX_L3].cs_size, 1530 ARCH_KMALLOC_MINALIGN, 1531 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1532 NULL); 1533 } 1534 1535 slab_early_init = 0; 1536 1537 while (sizes->cs_size != ULONG_MAX) { 1538 /* 1539 * For performance, all the general caches are L1 aligned. 1540 * This should be particularly beneficial on SMP boxes, as it 1541 * eliminates "false sharing". 1542 * Note for systems short on memory removing the alignment will 1543 * allow tighter packing of the smaller caches. 1544 */ 1545 if (!sizes->cs_cachep) { 1546 sizes->cs_cachep = kmem_cache_create(names->name, 1547 sizes->cs_size, 1548 ARCH_KMALLOC_MINALIGN, 1549 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1550 NULL); 1551 } 1552 #ifdef CONFIG_ZONE_DMA 1553 sizes->cs_dmacachep = kmem_cache_create( 1554 names->name_dma, 1555 sizes->cs_size, 1556 ARCH_KMALLOC_MINALIGN, 1557 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| 1558 SLAB_PANIC, 1559 NULL); 1560 #endif 1561 sizes++; 1562 names++; 1563 } 1564 /* 4) Replace the bootstrap head arrays */ 1565 { 1566 struct array_cache *ptr; 1567 1568 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 1569 1570 local_irq_disable(); 1571 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); 1572 memcpy(ptr, cpu_cache_get(&cache_cache), 1573 sizeof(struct arraycache_init)); 1574 /* 1575 * Do not assume that spinlocks can be initialized via memcpy: 1576 */ 1577 spin_lock_init(&ptr->lock); 1578 1579 cache_cache.array[smp_processor_id()] = ptr; 1580 local_irq_enable(); 1581 1582 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 1583 1584 local_irq_disable(); 1585 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) 1586 != &initarray_generic.cache); 1587 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), 1588 sizeof(struct arraycache_init)); 1589 /* 1590 * Do not assume that spinlocks can be initialized via memcpy: 1591 */ 1592 spin_lock_init(&ptr->lock); 1593 1594 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = 1595 ptr; 1596 local_irq_enable(); 1597 } 1598 /* 5) Replace the bootstrap kmem_list3's */ 1599 { 1600 int nid; 1601 1602 for_each_online_node(nid) { 1603 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); 1604 1605 init_list(malloc_sizes[INDEX_AC].cs_cachep, 1606 &initkmem_list3[SIZE_AC + nid], nid); 1607 1608 if (INDEX_AC != INDEX_L3) { 1609 init_list(malloc_sizes[INDEX_L3].cs_cachep, 1610 &initkmem_list3[SIZE_L3 + nid], nid); 1611 } 1612 } 1613 } 1614 1615 /* 6) resize the head arrays to their final sizes */ 1616 { 1617 struct kmem_cache *cachep; 1618 mutex_lock(&cache_chain_mutex); 1619 list_for_each_entry(cachep, &cache_chain, next) 1620 if (enable_cpucache(cachep)) 1621 BUG(); 1622 mutex_unlock(&cache_chain_mutex); 1623 } 1624 1625 /* Annotate slab for lockdep -- annotate the malloc caches */ 1626 init_lock_keys(); 1627 1628 1629 /* Done! */ 1630 g_cpucache_up = FULL; 1631 1632 /* 1633 * Register a cpu startup notifier callback that initializes 1634 * cpu_cache_get for all new cpus 1635 */ 1636 register_cpu_notifier(&cpucache_notifier); 1637 1638 /* 1639 * The reap timers are started later, with a module init call: That part 1640 * of the kernel is not yet operational. 1641 */ 1642 } 1643 1644 static int __init cpucache_init(void) 1645 { 1646 int cpu; 1647 1648 /* 1649 * Register the timers that return unneeded pages to the page allocator 1650 */ 1651 for_each_online_cpu(cpu) 1652 start_cpu_timer(cpu); 1653 return 0; 1654 } 1655 __initcall(cpucache_init); 1656 1657 /* 1658 * Interface to system's page allocator. No need to hold the cache-lock. 1659 * 1660 * If we requested dmaable memory, we will get it. Even if we 1661 * did not request dmaable memory, we might get it, but that 1662 * would be relatively rare and ignorable. 1663 */ 1664 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) 1665 { 1666 struct page *page; 1667 int nr_pages; 1668 int i; 1669 1670 #ifndef CONFIG_MMU 1671 /* 1672 * Nommu uses slab's for process anonymous memory allocations, and thus 1673 * requires __GFP_COMP to properly refcount higher order allocations 1674 */ 1675 flags |= __GFP_COMP; 1676 #endif 1677 1678 flags |= cachep->gfpflags; 1679 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1680 flags |= __GFP_RECLAIMABLE; 1681 1682 page = alloc_pages_node(nodeid, flags, cachep->gfporder); 1683 if (!page) 1684 return NULL; 1685 1686 nr_pages = (1 << cachep->gfporder); 1687 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1688 add_zone_page_state(page_zone(page), 1689 NR_SLAB_RECLAIMABLE, nr_pages); 1690 else 1691 add_zone_page_state(page_zone(page), 1692 NR_SLAB_UNRECLAIMABLE, nr_pages); 1693 for (i = 0; i < nr_pages; i++) 1694 __SetPageSlab(page + i); 1695 return page_address(page); 1696 } 1697 1698 /* 1699 * Interface to system's page release. 1700 */ 1701 static void kmem_freepages(struct kmem_cache *cachep, void *addr) 1702 { 1703 unsigned long i = (1 << cachep->gfporder); 1704 struct page *page = virt_to_page(addr); 1705 const unsigned long nr_freed = i; 1706 1707 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1708 sub_zone_page_state(page_zone(page), 1709 NR_SLAB_RECLAIMABLE, nr_freed); 1710 else 1711 sub_zone_page_state(page_zone(page), 1712 NR_SLAB_UNRECLAIMABLE, nr_freed); 1713 while (i--) { 1714 BUG_ON(!PageSlab(page)); 1715 __ClearPageSlab(page); 1716 page++; 1717 } 1718 if (current->reclaim_state) 1719 current->reclaim_state->reclaimed_slab += nr_freed; 1720 free_pages((unsigned long)addr, cachep->gfporder); 1721 } 1722 1723 static void kmem_rcu_free(struct rcu_head *head) 1724 { 1725 struct slab_rcu *slab_rcu = (struct slab_rcu *)head; 1726 struct kmem_cache *cachep = slab_rcu->cachep; 1727 1728 kmem_freepages(cachep, slab_rcu->addr); 1729 if (OFF_SLAB(cachep)) 1730 kmem_cache_free(cachep->slabp_cache, slab_rcu); 1731 } 1732 1733 #if DEBUG 1734 1735 #ifdef CONFIG_DEBUG_PAGEALLOC 1736 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1737 unsigned long caller) 1738 { 1739 int size = obj_size(cachep); 1740 1741 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1742 1743 if (size < 5 * sizeof(unsigned long)) 1744 return; 1745 1746 *addr++ = 0x12345678; 1747 *addr++ = caller; 1748 *addr++ = smp_processor_id(); 1749 size -= 3 * sizeof(unsigned long); 1750 { 1751 unsigned long *sptr = &caller; 1752 unsigned long svalue; 1753 1754 while (!kstack_end(sptr)) { 1755 svalue = *sptr++; 1756 if (kernel_text_address(svalue)) { 1757 *addr++ = svalue; 1758 size -= sizeof(unsigned long); 1759 if (size <= sizeof(unsigned long)) 1760 break; 1761 } 1762 } 1763 1764 } 1765 *addr++ = 0x87654321; 1766 } 1767 #endif 1768 1769 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1770 { 1771 int size = obj_size(cachep); 1772 addr = &((char *)addr)[obj_offset(cachep)]; 1773 1774 memset(addr, val, size); 1775 *(unsigned char *)(addr + size - 1) = POISON_END; 1776 } 1777 1778 static void dump_line(char *data, int offset, int limit) 1779 { 1780 int i; 1781 unsigned char error = 0; 1782 int bad_count = 0; 1783 1784 printk(KERN_ERR "%03x:", offset); 1785 for (i = 0; i < limit; i++) { 1786 if (data[offset + i] != POISON_FREE) { 1787 error = data[offset + i]; 1788 bad_count++; 1789 } 1790 printk(" %02x", (unsigned char)data[offset + i]); 1791 } 1792 printk("\n"); 1793 1794 if (bad_count == 1) { 1795 error ^= POISON_FREE; 1796 if (!(error & (error - 1))) { 1797 printk(KERN_ERR "Single bit error detected. Probably " 1798 "bad RAM.\n"); 1799 #ifdef CONFIG_X86 1800 printk(KERN_ERR "Run memtest86+ or a similar memory " 1801 "test tool.\n"); 1802 #else 1803 printk(KERN_ERR "Run a memory test tool.\n"); 1804 #endif 1805 } 1806 } 1807 } 1808 #endif 1809 1810 #if DEBUG 1811 1812 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1813 { 1814 int i, size; 1815 char *realobj; 1816 1817 if (cachep->flags & SLAB_RED_ZONE) { 1818 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 1819 *dbg_redzone1(cachep, objp), 1820 *dbg_redzone2(cachep, objp)); 1821 } 1822 1823 if (cachep->flags & SLAB_STORE_USER) { 1824 printk(KERN_ERR "Last user: [<%p>]", 1825 *dbg_userword(cachep, objp)); 1826 print_symbol("(%s)", 1827 (unsigned long)*dbg_userword(cachep, objp)); 1828 printk("\n"); 1829 } 1830 realobj = (char *)objp + obj_offset(cachep); 1831 size = obj_size(cachep); 1832 for (i = 0; i < size && lines; i += 16, lines--) { 1833 int limit; 1834 limit = 16; 1835 if (i + limit > size) 1836 limit = size - i; 1837 dump_line(realobj, i, limit); 1838 } 1839 } 1840 1841 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1842 { 1843 char *realobj; 1844 int size, i; 1845 int lines = 0; 1846 1847 realobj = (char *)objp + obj_offset(cachep); 1848 size = obj_size(cachep); 1849 1850 for (i = 0; i < size; i++) { 1851 char exp = POISON_FREE; 1852 if (i == size - 1) 1853 exp = POISON_END; 1854 if (realobj[i] != exp) { 1855 int limit; 1856 /* Mismatch ! */ 1857 /* Print header */ 1858 if (lines == 0) { 1859 printk(KERN_ERR 1860 "Slab corruption: %s start=%p, len=%d\n", 1861 cachep->name, realobj, size); 1862 print_objinfo(cachep, objp, 0); 1863 } 1864 /* Hexdump the affected line */ 1865 i = (i / 16) * 16; 1866 limit = 16; 1867 if (i + limit > size) 1868 limit = size - i; 1869 dump_line(realobj, i, limit); 1870 i += 16; 1871 lines++; 1872 /* Limit to 5 lines */ 1873 if (lines > 5) 1874 break; 1875 } 1876 } 1877 if (lines != 0) { 1878 /* Print some data about the neighboring objects, if they 1879 * exist: 1880 */ 1881 struct slab *slabp = virt_to_slab(objp); 1882 unsigned int objnr; 1883 1884 objnr = obj_to_index(cachep, slabp, objp); 1885 if (objnr) { 1886 objp = index_to_obj(cachep, slabp, objnr - 1); 1887 realobj = (char *)objp + obj_offset(cachep); 1888 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1889 realobj, size); 1890 print_objinfo(cachep, objp, 2); 1891 } 1892 if (objnr + 1 < cachep->num) { 1893 objp = index_to_obj(cachep, slabp, objnr + 1); 1894 realobj = (char *)objp + obj_offset(cachep); 1895 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1896 realobj, size); 1897 print_objinfo(cachep, objp, 2); 1898 } 1899 } 1900 } 1901 #endif 1902 1903 #if DEBUG 1904 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 1905 { 1906 int i; 1907 for (i = 0; i < cachep->num; i++) { 1908 void *objp = index_to_obj(cachep, slabp, i); 1909 1910 if (cachep->flags & SLAB_POISON) { 1911 #ifdef CONFIG_DEBUG_PAGEALLOC 1912 if (cachep->buffer_size % PAGE_SIZE == 0 && 1913 OFF_SLAB(cachep)) 1914 kernel_map_pages(virt_to_page(objp), 1915 cachep->buffer_size / PAGE_SIZE, 1); 1916 else 1917 check_poison_obj(cachep, objp); 1918 #else 1919 check_poison_obj(cachep, objp); 1920 #endif 1921 } 1922 if (cachep->flags & SLAB_RED_ZONE) { 1923 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1924 slab_error(cachep, "start of a freed object " 1925 "was overwritten"); 1926 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1927 slab_error(cachep, "end of a freed object " 1928 "was overwritten"); 1929 } 1930 } 1931 } 1932 #else 1933 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 1934 { 1935 } 1936 #endif 1937 1938 /** 1939 * slab_destroy - destroy and release all objects in a slab 1940 * @cachep: cache pointer being destroyed 1941 * @slabp: slab pointer being destroyed 1942 * 1943 * Destroy all the objs in a slab, and release the mem back to the system. 1944 * Before calling the slab must have been unlinked from the cache. The 1945 * cache-lock is not held/needed. 1946 */ 1947 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) 1948 { 1949 void *addr = slabp->s_mem - slabp->colouroff; 1950 1951 slab_destroy_debugcheck(cachep, slabp); 1952 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 1953 struct slab_rcu *slab_rcu; 1954 1955 slab_rcu = (struct slab_rcu *)slabp; 1956 slab_rcu->cachep = cachep; 1957 slab_rcu->addr = addr; 1958 call_rcu(&slab_rcu->head, kmem_rcu_free); 1959 } else { 1960 kmem_freepages(cachep, addr); 1961 if (OFF_SLAB(cachep)) 1962 kmem_cache_free(cachep->slabp_cache, slabp); 1963 } 1964 } 1965 1966 static void __kmem_cache_destroy(struct kmem_cache *cachep) 1967 { 1968 int i; 1969 struct kmem_list3 *l3; 1970 1971 for_each_online_cpu(i) 1972 kfree(cachep->array[i]); 1973 1974 /* NUMA: free the list3 structures */ 1975 for_each_online_node(i) { 1976 l3 = cachep->nodelists[i]; 1977 if (l3) { 1978 kfree(l3->shared); 1979 free_alien_cache(l3->alien); 1980 kfree(l3); 1981 } 1982 } 1983 kmem_cache_free(&cache_cache, cachep); 1984 } 1985 1986 1987 /** 1988 * calculate_slab_order - calculate size (page order) of slabs 1989 * @cachep: pointer to the cache that is being created 1990 * @size: size of objects to be created in this cache. 1991 * @align: required alignment for the objects. 1992 * @flags: slab allocation flags 1993 * 1994 * Also calculates the number of objects per slab. 1995 * 1996 * This could be made much more intelligent. For now, try to avoid using 1997 * high order pages for slabs. When the gfp() functions are more friendly 1998 * towards high-order requests, this should be changed. 1999 */ 2000 static size_t calculate_slab_order(struct kmem_cache *cachep, 2001 size_t size, size_t align, unsigned long flags) 2002 { 2003 unsigned long offslab_limit; 2004 size_t left_over = 0; 2005 int gfporder; 2006 2007 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 2008 unsigned int num; 2009 size_t remainder; 2010 2011 cache_estimate(gfporder, size, align, flags, &remainder, &num); 2012 if (!num) 2013 continue; 2014 2015 if (flags & CFLGS_OFF_SLAB) { 2016 /* 2017 * Max number of objs-per-slab for caches which 2018 * use off-slab slabs. Needed to avoid a possible 2019 * looping condition in cache_grow(). 2020 */ 2021 offslab_limit = size - sizeof(struct slab); 2022 offslab_limit /= sizeof(kmem_bufctl_t); 2023 2024 if (num > offslab_limit) 2025 break; 2026 } 2027 2028 /* Found something acceptable - save it away */ 2029 cachep->num = num; 2030 cachep->gfporder = gfporder; 2031 left_over = remainder; 2032 2033 /* 2034 * A VFS-reclaimable slab tends to have most allocations 2035 * as GFP_NOFS and we really don't want to have to be allocating 2036 * higher-order pages when we are unable to shrink dcache. 2037 */ 2038 if (flags & SLAB_RECLAIM_ACCOUNT) 2039 break; 2040 2041 /* 2042 * Large number of objects is good, but very large slabs are 2043 * currently bad for the gfp()s. 2044 */ 2045 if (gfporder >= slab_break_gfp_order) 2046 break; 2047 2048 /* 2049 * Acceptable internal fragmentation? 2050 */ 2051 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 2052 break; 2053 } 2054 return left_over; 2055 } 2056 2057 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep) 2058 { 2059 if (g_cpucache_up == FULL) 2060 return enable_cpucache(cachep); 2061 2062 if (g_cpucache_up == NONE) { 2063 /* 2064 * Note: the first kmem_cache_create must create the cache 2065 * that's used by kmalloc(24), otherwise the creation of 2066 * further caches will BUG(). 2067 */ 2068 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2069 2070 /* 2071 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is 2072 * the first cache, then we need to set up all its list3s, 2073 * otherwise the creation of further caches will BUG(). 2074 */ 2075 set_up_list3s(cachep, SIZE_AC); 2076 if (INDEX_AC == INDEX_L3) 2077 g_cpucache_up = PARTIAL_L3; 2078 else 2079 g_cpucache_up = PARTIAL_AC; 2080 } else { 2081 cachep->array[smp_processor_id()] = 2082 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 2083 2084 if (g_cpucache_up == PARTIAL_AC) { 2085 set_up_list3s(cachep, SIZE_L3); 2086 g_cpucache_up = PARTIAL_L3; 2087 } else { 2088 int node; 2089 for_each_online_node(node) { 2090 cachep->nodelists[node] = 2091 kmalloc_node(sizeof(struct kmem_list3), 2092 GFP_KERNEL, node); 2093 BUG_ON(!cachep->nodelists[node]); 2094 kmem_list3_init(cachep->nodelists[node]); 2095 } 2096 } 2097 } 2098 cachep->nodelists[numa_node_id()]->next_reap = 2099 jiffies + REAPTIMEOUT_LIST3 + 2100 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 2101 2102 cpu_cache_get(cachep)->avail = 0; 2103 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2104 cpu_cache_get(cachep)->batchcount = 1; 2105 cpu_cache_get(cachep)->touched = 0; 2106 cachep->batchcount = 1; 2107 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2108 return 0; 2109 } 2110 2111 /** 2112 * kmem_cache_create - Create a cache. 2113 * @name: A string which is used in /proc/slabinfo to identify this cache. 2114 * @size: The size of objects to be created in this cache. 2115 * @align: The required alignment for the objects. 2116 * @flags: SLAB flags 2117 * @ctor: A constructor for the objects. 2118 * 2119 * Returns a ptr to the cache on success, NULL on failure. 2120 * Cannot be called within a int, but can be interrupted. 2121 * The @ctor is run when new pages are allocated by the cache. 2122 * 2123 * @name must be valid until the cache is destroyed. This implies that 2124 * the module calling this has to destroy the cache before getting unloaded. 2125 * 2126 * The flags are 2127 * 2128 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2129 * to catch references to uninitialised memory. 2130 * 2131 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2132 * for buffer overruns. 2133 * 2134 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2135 * cacheline. This can be beneficial if you're counting cycles as closely 2136 * as davem. 2137 */ 2138 struct kmem_cache * 2139 kmem_cache_create (const char *name, size_t size, size_t align, 2140 unsigned long flags, void (*ctor)(void *)) 2141 { 2142 size_t left_over, slab_size, ralign; 2143 struct kmem_cache *cachep = NULL, *pc; 2144 2145 /* 2146 * Sanity checks... these are all serious usage bugs. 2147 */ 2148 if (!name || in_interrupt() || (size < BYTES_PER_WORD) || 2149 size > KMALLOC_MAX_SIZE) { 2150 printk(KERN_ERR "%s: Early error in slab %s\n", __func__, 2151 name); 2152 BUG(); 2153 } 2154 2155 /* 2156 * We use cache_chain_mutex to ensure a consistent view of 2157 * cpu_online_map as well. Please see cpuup_callback 2158 */ 2159 get_online_cpus(); 2160 mutex_lock(&cache_chain_mutex); 2161 2162 list_for_each_entry(pc, &cache_chain, next) { 2163 char tmp; 2164 int res; 2165 2166 /* 2167 * This happens when the module gets unloaded and doesn't 2168 * destroy its slab cache and no-one else reuses the vmalloc 2169 * area of the module. Print a warning. 2170 */ 2171 res = probe_kernel_address(pc->name, tmp); 2172 if (res) { 2173 printk(KERN_ERR 2174 "SLAB: cache with size %d has lost its name\n", 2175 pc->buffer_size); 2176 continue; 2177 } 2178 2179 if (!strcmp(pc->name, name)) { 2180 printk(KERN_ERR 2181 "kmem_cache_create: duplicate cache %s\n", name); 2182 dump_stack(); 2183 goto oops; 2184 } 2185 } 2186 2187 #if DEBUG 2188 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 2189 #if FORCED_DEBUG 2190 /* 2191 * Enable redzoning and last user accounting, except for caches with 2192 * large objects, if the increased size would increase the object size 2193 * above the next power of two: caches with object sizes just above a 2194 * power of two have a significant amount of internal fragmentation. 2195 */ 2196 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2197 2 * sizeof(unsigned long long))) 2198 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2199 if (!(flags & SLAB_DESTROY_BY_RCU)) 2200 flags |= SLAB_POISON; 2201 #endif 2202 if (flags & SLAB_DESTROY_BY_RCU) 2203 BUG_ON(flags & SLAB_POISON); 2204 #endif 2205 /* 2206 * Always checks flags, a caller might be expecting debug support which 2207 * isn't available. 2208 */ 2209 BUG_ON(flags & ~CREATE_MASK); 2210 2211 /* 2212 * Check that size is in terms of words. This is needed to avoid 2213 * unaligned accesses for some archs when redzoning is used, and makes 2214 * sure any on-slab bufctl's are also correctly aligned. 2215 */ 2216 if (size & (BYTES_PER_WORD - 1)) { 2217 size += (BYTES_PER_WORD - 1); 2218 size &= ~(BYTES_PER_WORD - 1); 2219 } 2220 2221 /* calculate the final buffer alignment: */ 2222 2223 /* 1) arch recommendation: can be overridden for debug */ 2224 if (flags & SLAB_HWCACHE_ALIGN) { 2225 /* 2226 * Default alignment: as specified by the arch code. Except if 2227 * an object is really small, then squeeze multiple objects into 2228 * one cacheline. 2229 */ 2230 ralign = cache_line_size(); 2231 while (size <= ralign / 2) 2232 ralign /= 2; 2233 } else { 2234 ralign = BYTES_PER_WORD; 2235 } 2236 2237 /* 2238 * Redzoning and user store require word alignment or possibly larger. 2239 * Note this will be overridden by architecture or caller mandated 2240 * alignment if either is greater than BYTES_PER_WORD. 2241 */ 2242 if (flags & SLAB_STORE_USER) 2243 ralign = BYTES_PER_WORD; 2244 2245 if (flags & SLAB_RED_ZONE) { 2246 ralign = REDZONE_ALIGN; 2247 /* If redzoning, ensure that the second redzone is suitably 2248 * aligned, by adjusting the object size accordingly. */ 2249 size += REDZONE_ALIGN - 1; 2250 size &= ~(REDZONE_ALIGN - 1); 2251 } 2252 2253 /* 2) arch mandated alignment */ 2254 if (ralign < ARCH_SLAB_MINALIGN) { 2255 ralign = ARCH_SLAB_MINALIGN; 2256 } 2257 /* 3) caller mandated alignment */ 2258 if (ralign < align) { 2259 ralign = align; 2260 } 2261 /* disable debug if necessary */ 2262 if (ralign > __alignof__(unsigned long long)) 2263 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2264 /* 2265 * 4) Store it. 2266 */ 2267 align = ralign; 2268 2269 /* Get cache's description obj. */ 2270 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL); 2271 if (!cachep) 2272 goto oops; 2273 2274 #if DEBUG 2275 cachep->obj_size = size; 2276 2277 /* 2278 * Both debugging options require word-alignment which is calculated 2279 * into align above. 2280 */ 2281 if (flags & SLAB_RED_ZONE) { 2282 /* add space for red zone words */ 2283 cachep->obj_offset += sizeof(unsigned long long); 2284 size += 2 * sizeof(unsigned long long); 2285 } 2286 if (flags & SLAB_STORE_USER) { 2287 /* user store requires one word storage behind the end of 2288 * the real object. But if the second red zone needs to be 2289 * aligned to 64 bits, we must allow that much space. 2290 */ 2291 if (flags & SLAB_RED_ZONE) 2292 size += REDZONE_ALIGN; 2293 else 2294 size += BYTES_PER_WORD; 2295 } 2296 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2297 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size 2298 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { 2299 cachep->obj_offset += PAGE_SIZE - size; 2300 size = PAGE_SIZE; 2301 } 2302 #endif 2303 #endif 2304 2305 /* 2306 * Determine if the slab management is 'on' or 'off' slab. 2307 * (bootstrapping cannot cope with offslab caches so don't do 2308 * it too early on.) 2309 */ 2310 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init) 2311 /* 2312 * Size is large, assume best to place the slab management obj 2313 * off-slab (should allow better packing of objs). 2314 */ 2315 flags |= CFLGS_OFF_SLAB; 2316 2317 size = ALIGN(size, align); 2318 2319 left_over = calculate_slab_order(cachep, size, align, flags); 2320 2321 if (!cachep->num) { 2322 printk(KERN_ERR 2323 "kmem_cache_create: couldn't create cache %s.\n", name); 2324 kmem_cache_free(&cache_cache, cachep); 2325 cachep = NULL; 2326 goto oops; 2327 } 2328 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) 2329 + sizeof(struct slab), align); 2330 2331 /* 2332 * If the slab has been placed off-slab, and we have enough space then 2333 * move it on-slab. This is at the expense of any extra colouring. 2334 */ 2335 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { 2336 flags &= ~CFLGS_OFF_SLAB; 2337 left_over -= slab_size; 2338 } 2339 2340 if (flags & CFLGS_OFF_SLAB) { 2341 /* really off slab. No need for manual alignment */ 2342 slab_size = 2343 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); 2344 } 2345 2346 cachep->colour_off = cache_line_size(); 2347 /* Offset must be a multiple of the alignment. */ 2348 if (cachep->colour_off < align) 2349 cachep->colour_off = align; 2350 cachep->colour = left_over / cachep->colour_off; 2351 cachep->slab_size = slab_size; 2352 cachep->flags = flags; 2353 cachep->gfpflags = 0; 2354 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2355 cachep->gfpflags |= GFP_DMA; 2356 cachep->buffer_size = size; 2357 cachep->reciprocal_buffer_size = reciprocal_value(size); 2358 2359 if (flags & CFLGS_OFF_SLAB) { 2360 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); 2361 /* 2362 * This is a possibility for one of the malloc_sizes caches. 2363 * But since we go off slab only for object size greater than 2364 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, 2365 * this should not happen at all. 2366 * But leave a BUG_ON for some lucky dude. 2367 */ 2368 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); 2369 } 2370 cachep->ctor = ctor; 2371 cachep->name = name; 2372 2373 if (setup_cpu_cache(cachep)) { 2374 __kmem_cache_destroy(cachep); 2375 cachep = NULL; 2376 goto oops; 2377 } 2378 2379 /* cache setup completed, link it into the list */ 2380 list_add(&cachep->next, &cache_chain); 2381 oops: 2382 if (!cachep && (flags & SLAB_PANIC)) 2383 panic("kmem_cache_create(): failed to create slab `%s'\n", 2384 name); 2385 mutex_unlock(&cache_chain_mutex); 2386 put_online_cpus(); 2387 return cachep; 2388 } 2389 EXPORT_SYMBOL(kmem_cache_create); 2390 2391 #if DEBUG 2392 static void check_irq_off(void) 2393 { 2394 BUG_ON(!irqs_disabled()); 2395 } 2396 2397 static void check_irq_on(void) 2398 { 2399 BUG_ON(irqs_disabled()); 2400 } 2401 2402 static void check_spinlock_acquired(struct kmem_cache *cachep) 2403 { 2404 #ifdef CONFIG_SMP 2405 check_irq_off(); 2406 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); 2407 #endif 2408 } 2409 2410 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2411 { 2412 #ifdef CONFIG_SMP 2413 check_irq_off(); 2414 assert_spin_locked(&cachep->nodelists[node]->list_lock); 2415 #endif 2416 } 2417 2418 #else 2419 #define check_irq_off() do { } while(0) 2420 #define check_irq_on() do { } while(0) 2421 #define check_spinlock_acquired(x) do { } while(0) 2422 #define check_spinlock_acquired_node(x, y) do { } while(0) 2423 #endif 2424 2425 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 2426 struct array_cache *ac, 2427 int force, int node); 2428 2429 static void do_drain(void *arg) 2430 { 2431 struct kmem_cache *cachep = arg; 2432 struct array_cache *ac; 2433 int node = numa_node_id(); 2434 2435 check_irq_off(); 2436 ac = cpu_cache_get(cachep); 2437 spin_lock(&cachep->nodelists[node]->list_lock); 2438 free_block(cachep, ac->entry, ac->avail, node); 2439 spin_unlock(&cachep->nodelists[node]->list_lock); 2440 ac->avail = 0; 2441 } 2442 2443 static void drain_cpu_caches(struct kmem_cache *cachep) 2444 { 2445 struct kmem_list3 *l3; 2446 int node; 2447 2448 on_each_cpu(do_drain, cachep, 1); 2449 check_irq_on(); 2450 for_each_online_node(node) { 2451 l3 = cachep->nodelists[node]; 2452 if (l3 && l3->alien) 2453 drain_alien_cache(cachep, l3->alien); 2454 } 2455 2456 for_each_online_node(node) { 2457 l3 = cachep->nodelists[node]; 2458 if (l3) 2459 drain_array(cachep, l3, l3->shared, 1, node); 2460 } 2461 } 2462 2463 /* 2464 * Remove slabs from the list of free slabs. 2465 * Specify the number of slabs to drain in tofree. 2466 * 2467 * Returns the actual number of slabs released. 2468 */ 2469 static int drain_freelist(struct kmem_cache *cache, 2470 struct kmem_list3 *l3, int tofree) 2471 { 2472 struct list_head *p; 2473 int nr_freed; 2474 struct slab *slabp; 2475 2476 nr_freed = 0; 2477 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { 2478 2479 spin_lock_irq(&l3->list_lock); 2480 p = l3->slabs_free.prev; 2481 if (p == &l3->slabs_free) { 2482 spin_unlock_irq(&l3->list_lock); 2483 goto out; 2484 } 2485 2486 slabp = list_entry(p, struct slab, list); 2487 #if DEBUG 2488 BUG_ON(slabp->inuse); 2489 #endif 2490 list_del(&slabp->list); 2491 /* 2492 * Safe to drop the lock. The slab is no longer linked 2493 * to the cache. 2494 */ 2495 l3->free_objects -= cache->num; 2496 spin_unlock_irq(&l3->list_lock); 2497 slab_destroy(cache, slabp); 2498 nr_freed++; 2499 } 2500 out: 2501 return nr_freed; 2502 } 2503 2504 /* Called with cache_chain_mutex held to protect against cpu hotplug */ 2505 static int __cache_shrink(struct kmem_cache *cachep) 2506 { 2507 int ret = 0, i = 0; 2508 struct kmem_list3 *l3; 2509 2510 drain_cpu_caches(cachep); 2511 2512 check_irq_on(); 2513 for_each_online_node(i) { 2514 l3 = cachep->nodelists[i]; 2515 if (!l3) 2516 continue; 2517 2518 drain_freelist(cachep, l3, l3->free_objects); 2519 2520 ret += !list_empty(&l3->slabs_full) || 2521 !list_empty(&l3->slabs_partial); 2522 } 2523 return (ret ? 1 : 0); 2524 } 2525 2526 /** 2527 * kmem_cache_shrink - Shrink a cache. 2528 * @cachep: The cache to shrink. 2529 * 2530 * Releases as many slabs as possible for a cache. 2531 * To help debugging, a zero exit status indicates all slabs were released. 2532 */ 2533 int kmem_cache_shrink(struct kmem_cache *cachep) 2534 { 2535 int ret; 2536 BUG_ON(!cachep || in_interrupt()); 2537 2538 get_online_cpus(); 2539 mutex_lock(&cache_chain_mutex); 2540 ret = __cache_shrink(cachep); 2541 mutex_unlock(&cache_chain_mutex); 2542 put_online_cpus(); 2543 return ret; 2544 } 2545 EXPORT_SYMBOL(kmem_cache_shrink); 2546 2547 /** 2548 * kmem_cache_destroy - delete a cache 2549 * @cachep: the cache to destroy 2550 * 2551 * Remove a &struct kmem_cache object from the slab cache. 2552 * 2553 * It is expected this function will be called by a module when it is 2554 * unloaded. This will remove the cache completely, and avoid a duplicate 2555 * cache being allocated each time a module is loaded and unloaded, if the 2556 * module doesn't have persistent in-kernel storage across loads and unloads. 2557 * 2558 * The cache must be empty before calling this function. 2559 * 2560 * The caller must guarantee that noone will allocate memory from the cache 2561 * during the kmem_cache_destroy(). 2562 */ 2563 void kmem_cache_destroy(struct kmem_cache *cachep) 2564 { 2565 BUG_ON(!cachep || in_interrupt()); 2566 2567 /* Find the cache in the chain of caches. */ 2568 get_online_cpus(); 2569 mutex_lock(&cache_chain_mutex); 2570 /* 2571 * the chain is never empty, cache_cache is never destroyed 2572 */ 2573 list_del(&cachep->next); 2574 if (__cache_shrink(cachep)) { 2575 slab_error(cachep, "Can't free all objects"); 2576 list_add(&cachep->next, &cache_chain); 2577 mutex_unlock(&cache_chain_mutex); 2578 put_online_cpus(); 2579 return; 2580 } 2581 2582 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 2583 synchronize_rcu(); 2584 2585 __kmem_cache_destroy(cachep); 2586 mutex_unlock(&cache_chain_mutex); 2587 put_online_cpus(); 2588 } 2589 EXPORT_SYMBOL(kmem_cache_destroy); 2590 2591 /* 2592 * Get the memory for a slab management obj. 2593 * For a slab cache when the slab descriptor is off-slab, slab descriptors 2594 * always come from malloc_sizes caches. The slab descriptor cannot 2595 * come from the same cache which is getting created because, 2596 * when we are searching for an appropriate cache for these 2597 * descriptors in kmem_cache_create, we search through the malloc_sizes array. 2598 * If we are creating a malloc_sizes cache here it would not be visible to 2599 * kmem_find_general_cachep till the initialization is complete. 2600 * Hence we cannot have slabp_cache same as the original cache. 2601 */ 2602 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, 2603 int colour_off, gfp_t local_flags, 2604 int nodeid) 2605 { 2606 struct slab *slabp; 2607 2608 if (OFF_SLAB(cachep)) { 2609 /* Slab management obj is off-slab. */ 2610 slabp = kmem_cache_alloc_node(cachep->slabp_cache, 2611 local_flags & ~GFP_THISNODE, nodeid); 2612 if (!slabp) 2613 return NULL; 2614 } else { 2615 slabp = objp + colour_off; 2616 colour_off += cachep->slab_size; 2617 } 2618 slabp->inuse = 0; 2619 slabp->colouroff = colour_off; 2620 slabp->s_mem = objp + colour_off; 2621 slabp->nodeid = nodeid; 2622 slabp->free = 0; 2623 return slabp; 2624 } 2625 2626 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) 2627 { 2628 return (kmem_bufctl_t *) (slabp + 1); 2629 } 2630 2631 static void cache_init_objs(struct kmem_cache *cachep, 2632 struct slab *slabp) 2633 { 2634 int i; 2635 2636 for (i = 0; i < cachep->num; i++) { 2637 void *objp = index_to_obj(cachep, slabp, i); 2638 #if DEBUG 2639 /* need to poison the objs? */ 2640 if (cachep->flags & SLAB_POISON) 2641 poison_obj(cachep, objp, POISON_FREE); 2642 if (cachep->flags & SLAB_STORE_USER) 2643 *dbg_userword(cachep, objp) = NULL; 2644 2645 if (cachep->flags & SLAB_RED_ZONE) { 2646 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2647 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2648 } 2649 /* 2650 * Constructors are not allowed to allocate memory from the same 2651 * cache which they are a constructor for. Otherwise, deadlock. 2652 * They must also be threaded. 2653 */ 2654 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2655 cachep->ctor(objp + obj_offset(cachep)); 2656 2657 if (cachep->flags & SLAB_RED_ZONE) { 2658 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2659 slab_error(cachep, "constructor overwrote the" 2660 " end of an object"); 2661 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2662 slab_error(cachep, "constructor overwrote the" 2663 " start of an object"); 2664 } 2665 if ((cachep->buffer_size % PAGE_SIZE) == 0 && 2666 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2667 kernel_map_pages(virt_to_page(objp), 2668 cachep->buffer_size / PAGE_SIZE, 0); 2669 #else 2670 if (cachep->ctor) 2671 cachep->ctor(objp); 2672 #endif 2673 slab_bufctl(slabp)[i] = i + 1; 2674 } 2675 slab_bufctl(slabp)[i - 1] = BUFCTL_END; 2676 } 2677 2678 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2679 { 2680 if (CONFIG_ZONE_DMA_FLAG) { 2681 if (flags & GFP_DMA) 2682 BUG_ON(!(cachep->gfpflags & GFP_DMA)); 2683 else 2684 BUG_ON(cachep->gfpflags & GFP_DMA); 2685 } 2686 } 2687 2688 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, 2689 int nodeid) 2690 { 2691 void *objp = index_to_obj(cachep, slabp, slabp->free); 2692 kmem_bufctl_t next; 2693 2694 slabp->inuse++; 2695 next = slab_bufctl(slabp)[slabp->free]; 2696 #if DEBUG 2697 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; 2698 WARN_ON(slabp->nodeid != nodeid); 2699 #endif 2700 slabp->free = next; 2701 2702 return objp; 2703 } 2704 2705 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, 2706 void *objp, int nodeid) 2707 { 2708 unsigned int objnr = obj_to_index(cachep, slabp, objp); 2709 2710 #if DEBUG 2711 /* Verify that the slab belongs to the intended node */ 2712 WARN_ON(slabp->nodeid != nodeid); 2713 2714 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { 2715 printk(KERN_ERR "slab: double free detected in cache " 2716 "'%s', objp %p\n", cachep->name, objp); 2717 BUG(); 2718 } 2719 #endif 2720 slab_bufctl(slabp)[objnr] = slabp->free; 2721 slabp->free = objnr; 2722 slabp->inuse--; 2723 } 2724 2725 /* 2726 * Map pages beginning at addr to the given cache and slab. This is required 2727 * for the slab allocator to be able to lookup the cache and slab of a 2728 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging. 2729 */ 2730 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, 2731 void *addr) 2732 { 2733 int nr_pages; 2734 struct page *page; 2735 2736 page = virt_to_page(addr); 2737 2738 nr_pages = 1; 2739 if (likely(!PageCompound(page))) 2740 nr_pages <<= cache->gfporder; 2741 2742 do { 2743 page_set_cache(page, cache); 2744 page_set_slab(page, slab); 2745 page++; 2746 } while (--nr_pages); 2747 } 2748 2749 /* 2750 * Grow (by 1) the number of slabs within a cache. This is called by 2751 * kmem_cache_alloc() when there are no active objs left in a cache. 2752 */ 2753 static int cache_grow(struct kmem_cache *cachep, 2754 gfp_t flags, int nodeid, void *objp) 2755 { 2756 struct slab *slabp; 2757 size_t offset; 2758 gfp_t local_flags; 2759 struct kmem_list3 *l3; 2760 2761 /* 2762 * Be lazy and only check for valid flags here, keeping it out of the 2763 * critical path in kmem_cache_alloc(). 2764 */ 2765 BUG_ON(flags & GFP_SLAB_BUG_MASK); 2766 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2767 2768 /* Take the l3 list lock to change the colour_next on this node */ 2769 check_irq_off(); 2770 l3 = cachep->nodelists[nodeid]; 2771 spin_lock(&l3->list_lock); 2772 2773 /* Get colour for the slab, and cal the next value. */ 2774 offset = l3->colour_next; 2775 l3->colour_next++; 2776 if (l3->colour_next >= cachep->colour) 2777 l3->colour_next = 0; 2778 spin_unlock(&l3->list_lock); 2779 2780 offset *= cachep->colour_off; 2781 2782 if (local_flags & __GFP_WAIT) 2783 local_irq_enable(); 2784 2785 /* 2786 * The test for missing atomic flag is performed here, rather than 2787 * the more obvious place, simply to reduce the critical path length 2788 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2789 * will eventually be caught here (where it matters). 2790 */ 2791 kmem_flagcheck(cachep, flags); 2792 2793 /* 2794 * Get mem for the objs. Attempt to allocate a physical page from 2795 * 'nodeid'. 2796 */ 2797 if (!objp) 2798 objp = kmem_getpages(cachep, local_flags, nodeid); 2799 if (!objp) 2800 goto failed; 2801 2802 /* Get slab management. */ 2803 slabp = alloc_slabmgmt(cachep, objp, offset, 2804 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2805 if (!slabp) 2806 goto opps1; 2807 2808 slab_map_pages(cachep, slabp, objp); 2809 2810 cache_init_objs(cachep, slabp); 2811 2812 if (local_flags & __GFP_WAIT) 2813 local_irq_disable(); 2814 check_irq_off(); 2815 spin_lock(&l3->list_lock); 2816 2817 /* Make slab active. */ 2818 list_add_tail(&slabp->list, &(l3->slabs_free)); 2819 STATS_INC_GROWN(cachep); 2820 l3->free_objects += cachep->num; 2821 spin_unlock(&l3->list_lock); 2822 return 1; 2823 opps1: 2824 kmem_freepages(cachep, objp); 2825 failed: 2826 if (local_flags & __GFP_WAIT) 2827 local_irq_disable(); 2828 return 0; 2829 } 2830 2831 #if DEBUG 2832 2833 /* 2834 * Perform extra freeing checks: 2835 * - detect bad pointers. 2836 * - POISON/RED_ZONE checking 2837 */ 2838 static void kfree_debugcheck(const void *objp) 2839 { 2840 if (!virt_addr_valid(objp)) { 2841 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2842 (unsigned long)objp); 2843 BUG(); 2844 } 2845 } 2846 2847 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2848 { 2849 unsigned long long redzone1, redzone2; 2850 2851 redzone1 = *dbg_redzone1(cache, obj); 2852 redzone2 = *dbg_redzone2(cache, obj); 2853 2854 /* 2855 * Redzone is ok. 2856 */ 2857 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2858 return; 2859 2860 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2861 slab_error(cache, "double free detected"); 2862 else 2863 slab_error(cache, "memory outside object was overwritten"); 2864 2865 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 2866 obj, redzone1, redzone2); 2867 } 2868 2869 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2870 void *caller) 2871 { 2872 struct page *page; 2873 unsigned int objnr; 2874 struct slab *slabp; 2875 2876 BUG_ON(virt_to_cache(objp) != cachep); 2877 2878 objp -= obj_offset(cachep); 2879 kfree_debugcheck(objp); 2880 page = virt_to_head_page(objp); 2881 2882 slabp = page_get_slab(page); 2883 2884 if (cachep->flags & SLAB_RED_ZONE) { 2885 verify_redzone_free(cachep, objp); 2886 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2887 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2888 } 2889 if (cachep->flags & SLAB_STORE_USER) 2890 *dbg_userword(cachep, objp) = caller; 2891 2892 objnr = obj_to_index(cachep, slabp, objp); 2893 2894 BUG_ON(objnr >= cachep->num); 2895 BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); 2896 2897 #ifdef CONFIG_DEBUG_SLAB_LEAK 2898 slab_bufctl(slabp)[objnr] = BUFCTL_FREE; 2899 #endif 2900 if (cachep->flags & SLAB_POISON) { 2901 #ifdef CONFIG_DEBUG_PAGEALLOC 2902 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 2903 store_stackinfo(cachep, objp, (unsigned long)caller); 2904 kernel_map_pages(virt_to_page(objp), 2905 cachep->buffer_size / PAGE_SIZE, 0); 2906 } else { 2907 poison_obj(cachep, objp, POISON_FREE); 2908 } 2909 #else 2910 poison_obj(cachep, objp, POISON_FREE); 2911 #endif 2912 } 2913 return objp; 2914 } 2915 2916 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) 2917 { 2918 kmem_bufctl_t i; 2919 int entries = 0; 2920 2921 /* Check slab's freelist to see if this obj is there. */ 2922 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { 2923 entries++; 2924 if (entries > cachep->num || i >= cachep->num) 2925 goto bad; 2926 } 2927 if (entries != cachep->num - slabp->inuse) { 2928 bad: 2929 printk(KERN_ERR "slab: Internal list corruption detected in " 2930 "cache '%s'(%d), slabp %p(%d). Hexdump:\n", 2931 cachep->name, cachep->num, slabp, slabp->inuse); 2932 for (i = 0; 2933 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); 2934 i++) { 2935 if (i % 16 == 0) 2936 printk("\n%03x:", i); 2937 printk(" %02x", ((unsigned char *)slabp)[i]); 2938 } 2939 printk("\n"); 2940 BUG(); 2941 } 2942 } 2943 #else 2944 #define kfree_debugcheck(x) do { } while(0) 2945 #define cache_free_debugcheck(x,objp,z) (objp) 2946 #define check_slabp(x,y) do { } while(0) 2947 #endif 2948 2949 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2950 { 2951 int batchcount; 2952 struct kmem_list3 *l3; 2953 struct array_cache *ac; 2954 int node; 2955 2956 retry: 2957 check_irq_off(); 2958 node = numa_node_id(); 2959 ac = cpu_cache_get(cachep); 2960 batchcount = ac->batchcount; 2961 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2962 /* 2963 * If there was little recent activity on this cache, then 2964 * perform only a partial refill. Otherwise we could generate 2965 * refill bouncing. 2966 */ 2967 batchcount = BATCHREFILL_LIMIT; 2968 } 2969 l3 = cachep->nodelists[node]; 2970 2971 BUG_ON(ac->avail > 0 || !l3); 2972 spin_lock(&l3->list_lock); 2973 2974 /* See if we can refill from the shared array */ 2975 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) 2976 goto alloc_done; 2977 2978 while (batchcount > 0) { 2979 struct list_head *entry; 2980 struct slab *slabp; 2981 /* Get slab alloc is to come from. */ 2982 entry = l3->slabs_partial.next; 2983 if (entry == &l3->slabs_partial) { 2984 l3->free_touched = 1; 2985 entry = l3->slabs_free.next; 2986 if (entry == &l3->slabs_free) 2987 goto must_grow; 2988 } 2989 2990 slabp = list_entry(entry, struct slab, list); 2991 check_slabp(cachep, slabp); 2992 check_spinlock_acquired(cachep); 2993 2994 /* 2995 * The slab was either on partial or free list so 2996 * there must be at least one object available for 2997 * allocation. 2998 */ 2999 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num); 3000 3001 while (slabp->inuse < cachep->num && batchcount--) { 3002 STATS_INC_ALLOCED(cachep); 3003 STATS_INC_ACTIVE(cachep); 3004 STATS_SET_HIGH(cachep); 3005 3006 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, 3007 node); 3008 } 3009 check_slabp(cachep, slabp); 3010 3011 /* move slabp to correct slabp list: */ 3012 list_del(&slabp->list); 3013 if (slabp->free == BUFCTL_END) 3014 list_add(&slabp->list, &l3->slabs_full); 3015 else 3016 list_add(&slabp->list, &l3->slabs_partial); 3017 } 3018 3019 must_grow: 3020 l3->free_objects -= ac->avail; 3021 alloc_done: 3022 spin_unlock(&l3->list_lock); 3023 3024 if (unlikely(!ac->avail)) { 3025 int x; 3026 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 3027 3028 /* cache_grow can reenable interrupts, then ac could change. */ 3029 ac = cpu_cache_get(cachep); 3030 if (!x && ac->avail == 0) /* no objects in sight? abort */ 3031 return NULL; 3032 3033 if (!ac->avail) /* objects refilled by interrupt? */ 3034 goto retry; 3035 } 3036 ac->touched = 1; 3037 return ac->entry[--ac->avail]; 3038 } 3039 3040 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3041 gfp_t flags) 3042 { 3043 might_sleep_if(flags & __GFP_WAIT); 3044 #if DEBUG 3045 kmem_flagcheck(cachep, flags); 3046 #endif 3047 } 3048 3049 #if DEBUG 3050 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3051 gfp_t flags, void *objp, void *caller) 3052 { 3053 if (!objp) 3054 return objp; 3055 if (cachep->flags & SLAB_POISON) { 3056 #ifdef CONFIG_DEBUG_PAGEALLOC 3057 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 3058 kernel_map_pages(virt_to_page(objp), 3059 cachep->buffer_size / PAGE_SIZE, 1); 3060 else 3061 check_poison_obj(cachep, objp); 3062 #else 3063 check_poison_obj(cachep, objp); 3064 #endif 3065 poison_obj(cachep, objp, POISON_INUSE); 3066 } 3067 if (cachep->flags & SLAB_STORE_USER) 3068 *dbg_userword(cachep, objp) = caller; 3069 3070 if (cachep->flags & SLAB_RED_ZONE) { 3071 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3072 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3073 slab_error(cachep, "double free, or memory outside" 3074 " object was overwritten"); 3075 printk(KERN_ERR 3076 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3077 objp, *dbg_redzone1(cachep, objp), 3078 *dbg_redzone2(cachep, objp)); 3079 } 3080 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3081 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3082 } 3083 #ifdef CONFIG_DEBUG_SLAB_LEAK 3084 { 3085 struct slab *slabp; 3086 unsigned objnr; 3087 3088 slabp = page_get_slab(virt_to_head_page(objp)); 3089 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; 3090 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; 3091 } 3092 #endif 3093 objp += obj_offset(cachep); 3094 if (cachep->ctor && cachep->flags & SLAB_POISON) 3095 cachep->ctor(objp); 3096 #if ARCH_SLAB_MINALIGN 3097 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { 3098 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3099 objp, ARCH_SLAB_MINALIGN); 3100 } 3101 #endif 3102 return objp; 3103 } 3104 #else 3105 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3106 #endif 3107 3108 #ifdef CONFIG_FAILSLAB 3109 3110 static struct failslab_attr { 3111 3112 struct fault_attr attr; 3113 3114 u32 ignore_gfp_wait; 3115 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3116 struct dentry *ignore_gfp_wait_file; 3117 #endif 3118 3119 } failslab = { 3120 .attr = FAULT_ATTR_INITIALIZER, 3121 .ignore_gfp_wait = 1, 3122 }; 3123 3124 static int __init setup_failslab(char *str) 3125 { 3126 return setup_fault_attr(&failslab.attr, str); 3127 } 3128 __setup("failslab=", setup_failslab); 3129 3130 static int should_failslab(struct kmem_cache *cachep, gfp_t flags) 3131 { 3132 if (cachep == &cache_cache) 3133 return 0; 3134 if (flags & __GFP_NOFAIL) 3135 return 0; 3136 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT)) 3137 return 0; 3138 3139 return should_fail(&failslab.attr, obj_size(cachep)); 3140 } 3141 3142 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3143 3144 static int __init failslab_debugfs(void) 3145 { 3146 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 3147 struct dentry *dir; 3148 int err; 3149 3150 err = init_fault_attr_dentries(&failslab.attr, "failslab"); 3151 if (err) 3152 return err; 3153 dir = failslab.attr.dentries.dir; 3154 3155 failslab.ignore_gfp_wait_file = 3156 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3157 &failslab.ignore_gfp_wait); 3158 3159 if (!failslab.ignore_gfp_wait_file) { 3160 err = -ENOMEM; 3161 debugfs_remove(failslab.ignore_gfp_wait_file); 3162 cleanup_fault_attr_dentries(&failslab.attr); 3163 } 3164 3165 return err; 3166 } 3167 3168 late_initcall(failslab_debugfs); 3169 3170 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3171 3172 #else /* CONFIG_FAILSLAB */ 3173 3174 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags) 3175 { 3176 return 0; 3177 } 3178 3179 #endif /* CONFIG_FAILSLAB */ 3180 3181 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3182 { 3183 void *objp; 3184 struct array_cache *ac; 3185 3186 check_irq_off(); 3187 3188 ac = cpu_cache_get(cachep); 3189 if (likely(ac->avail)) { 3190 STATS_INC_ALLOCHIT(cachep); 3191 ac->touched = 1; 3192 objp = ac->entry[--ac->avail]; 3193 } else { 3194 STATS_INC_ALLOCMISS(cachep); 3195 objp = cache_alloc_refill(cachep, flags); 3196 } 3197 return objp; 3198 } 3199 3200 #ifdef CONFIG_NUMA 3201 /* 3202 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. 3203 * 3204 * If we are in_interrupt, then process context, including cpusets and 3205 * mempolicy, may not apply and should not be used for allocation policy. 3206 */ 3207 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3208 { 3209 int nid_alloc, nid_here; 3210 3211 if (in_interrupt() || (flags & __GFP_THISNODE)) 3212 return NULL; 3213 nid_alloc = nid_here = numa_node_id(); 3214 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3215 nid_alloc = cpuset_mem_spread_node(); 3216 else if (current->mempolicy) 3217 nid_alloc = slab_node(current->mempolicy); 3218 if (nid_alloc != nid_here) 3219 return ____cache_alloc_node(cachep, flags, nid_alloc); 3220 return NULL; 3221 } 3222 3223 /* 3224 * Fallback function if there was no memory available and no objects on a 3225 * certain node and fall back is permitted. First we scan all the 3226 * available nodelists for available objects. If that fails then we 3227 * perform an allocation without specifying a node. This allows the page 3228 * allocator to do its reclaim / fallback magic. We then insert the 3229 * slab into the proper nodelist and then allocate from it. 3230 */ 3231 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3232 { 3233 struct zonelist *zonelist; 3234 gfp_t local_flags; 3235 struct zoneref *z; 3236 struct zone *zone; 3237 enum zone_type high_zoneidx = gfp_zone(flags); 3238 void *obj = NULL; 3239 int nid; 3240 3241 if (flags & __GFP_THISNODE) 3242 return NULL; 3243 3244 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 3245 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3246 3247 retry: 3248 /* 3249 * Look through allowed nodes for objects available 3250 * from existing per node queues. 3251 */ 3252 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3253 nid = zone_to_nid(zone); 3254 3255 if (cpuset_zone_allowed_hardwall(zone, flags) && 3256 cache->nodelists[nid] && 3257 cache->nodelists[nid]->free_objects) { 3258 obj = ____cache_alloc_node(cache, 3259 flags | GFP_THISNODE, nid); 3260 if (obj) 3261 break; 3262 } 3263 } 3264 3265 if (!obj) { 3266 /* 3267 * This allocation will be performed within the constraints 3268 * of the current cpuset / memory policy requirements. 3269 * We may trigger various forms of reclaim on the allowed 3270 * set and go into memory reserves if necessary. 3271 */ 3272 if (local_flags & __GFP_WAIT) 3273 local_irq_enable(); 3274 kmem_flagcheck(cache, flags); 3275 obj = kmem_getpages(cache, local_flags, -1); 3276 if (local_flags & __GFP_WAIT) 3277 local_irq_disable(); 3278 if (obj) { 3279 /* 3280 * Insert into the appropriate per node queues 3281 */ 3282 nid = page_to_nid(virt_to_page(obj)); 3283 if (cache_grow(cache, flags, nid, obj)) { 3284 obj = ____cache_alloc_node(cache, 3285 flags | GFP_THISNODE, nid); 3286 if (!obj) 3287 /* 3288 * Another processor may allocate the 3289 * objects in the slab since we are 3290 * not holding any locks. 3291 */ 3292 goto retry; 3293 } else { 3294 /* cache_grow already freed obj */ 3295 obj = NULL; 3296 } 3297 } 3298 } 3299 return obj; 3300 } 3301 3302 /* 3303 * A interface to enable slab creation on nodeid 3304 */ 3305 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3306 int nodeid) 3307 { 3308 struct list_head *entry; 3309 struct slab *slabp; 3310 struct kmem_list3 *l3; 3311 void *obj; 3312 int x; 3313 3314 l3 = cachep->nodelists[nodeid]; 3315 BUG_ON(!l3); 3316 3317 retry: 3318 check_irq_off(); 3319 spin_lock(&l3->list_lock); 3320 entry = l3->slabs_partial.next; 3321 if (entry == &l3->slabs_partial) { 3322 l3->free_touched = 1; 3323 entry = l3->slabs_free.next; 3324 if (entry == &l3->slabs_free) 3325 goto must_grow; 3326 } 3327 3328 slabp = list_entry(entry, struct slab, list); 3329 check_spinlock_acquired_node(cachep, nodeid); 3330 check_slabp(cachep, slabp); 3331 3332 STATS_INC_NODEALLOCS(cachep); 3333 STATS_INC_ACTIVE(cachep); 3334 STATS_SET_HIGH(cachep); 3335 3336 BUG_ON(slabp->inuse == cachep->num); 3337 3338 obj = slab_get_obj(cachep, slabp, nodeid); 3339 check_slabp(cachep, slabp); 3340 l3->free_objects--; 3341 /* move slabp to correct slabp list: */ 3342 list_del(&slabp->list); 3343 3344 if (slabp->free == BUFCTL_END) 3345 list_add(&slabp->list, &l3->slabs_full); 3346 else 3347 list_add(&slabp->list, &l3->slabs_partial); 3348 3349 spin_unlock(&l3->list_lock); 3350 goto done; 3351 3352 must_grow: 3353 spin_unlock(&l3->list_lock); 3354 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3355 if (x) 3356 goto retry; 3357 3358 return fallback_alloc(cachep, flags); 3359 3360 done: 3361 return obj; 3362 } 3363 3364 /** 3365 * kmem_cache_alloc_node - Allocate an object on the specified node 3366 * @cachep: The cache to allocate from. 3367 * @flags: See kmalloc(). 3368 * @nodeid: node number of the target node. 3369 * @caller: return address of caller, used for debug information 3370 * 3371 * Identical to kmem_cache_alloc but it will allocate memory on the given 3372 * node, which can improve the performance for cpu bound structures. 3373 * 3374 * Fallback to other node is possible if __GFP_THISNODE is not set. 3375 */ 3376 static __always_inline void * 3377 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3378 void *caller) 3379 { 3380 unsigned long save_flags; 3381 void *ptr; 3382 3383 if (should_failslab(cachep, flags)) 3384 return NULL; 3385 3386 cache_alloc_debugcheck_before(cachep, flags); 3387 local_irq_save(save_flags); 3388 3389 if (unlikely(nodeid == -1)) 3390 nodeid = numa_node_id(); 3391 3392 if (unlikely(!cachep->nodelists[nodeid])) { 3393 /* Node not bootstrapped yet */ 3394 ptr = fallback_alloc(cachep, flags); 3395 goto out; 3396 } 3397 3398 if (nodeid == numa_node_id()) { 3399 /* 3400 * Use the locally cached objects if possible. 3401 * However ____cache_alloc does not allow fallback 3402 * to other nodes. It may fail while we still have 3403 * objects on other nodes available. 3404 */ 3405 ptr = ____cache_alloc(cachep, flags); 3406 if (ptr) 3407 goto out; 3408 } 3409 /* ___cache_alloc_node can fall back to other nodes */ 3410 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3411 out: 3412 local_irq_restore(save_flags); 3413 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3414 3415 if (unlikely((flags & __GFP_ZERO) && ptr)) 3416 memset(ptr, 0, obj_size(cachep)); 3417 3418 return ptr; 3419 } 3420 3421 static __always_inline void * 3422 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3423 { 3424 void *objp; 3425 3426 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { 3427 objp = alternate_node_alloc(cache, flags); 3428 if (objp) 3429 goto out; 3430 } 3431 objp = ____cache_alloc(cache, flags); 3432 3433 /* 3434 * We may just have run out of memory on the local node. 3435 * ____cache_alloc_node() knows how to locate memory on other nodes 3436 */ 3437 if (!objp) 3438 objp = ____cache_alloc_node(cache, flags, numa_node_id()); 3439 3440 out: 3441 return objp; 3442 } 3443 #else 3444 3445 static __always_inline void * 3446 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3447 { 3448 return ____cache_alloc(cachep, flags); 3449 } 3450 3451 #endif /* CONFIG_NUMA */ 3452 3453 static __always_inline void * 3454 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) 3455 { 3456 unsigned long save_flags; 3457 void *objp; 3458 3459 if (should_failslab(cachep, flags)) 3460 return NULL; 3461 3462 cache_alloc_debugcheck_before(cachep, flags); 3463 local_irq_save(save_flags); 3464 objp = __do_cache_alloc(cachep, flags); 3465 local_irq_restore(save_flags); 3466 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3467 prefetchw(objp); 3468 3469 if (unlikely((flags & __GFP_ZERO) && objp)) 3470 memset(objp, 0, obj_size(cachep)); 3471 3472 return objp; 3473 } 3474 3475 /* 3476 * Caller needs to acquire correct kmem_list's list_lock 3477 */ 3478 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, 3479 int node) 3480 { 3481 int i; 3482 struct kmem_list3 *l3; 3483 3484 for (i = 0; i < nr_objects; i++) { 3485 void *objp = objpp[i]; 3486 struct slab *slabp; 3487 3488 slabp = virt_to_slab(objp); 3489 l3 = cachep->nodelists[node]; 3490 list_del(&slabp->list); 3491 check_spinlock_acquired_node(cachep, node); 3492 check_slabp(cachep, slabp); 3493 slab_put_obj(cachep, slabp, objp, node); 3494 STATS_DEC_ACTIVE(cachep); 3495 l3->free_objects++; 3496 check_slabp(cachep, slabp); 3497 3498 /* fixup slab chains */ 3499 if (slabp->inuse == 0) { 3500 if (l3->free_objects > l3->free_limit) { 3501 l3->free_objects -= cachep->num; 3502 /* No need to drop any previously held 3503 * lock here, even if we have a off-slab slab 3504 * descriptor it is guaranteed to come from 3505 * a different cache, refer to comments before 3506 * alloc_slabmgmt. 3507 */ 3508 slab_destroy(cachep, slabp); 3509 } else { 3510 list_add(&slabp->list, &l3->slabs_free); 3511 } 3512 } else { 3513 /* Unconditionally move a slab to the end of the 3514 * partial list on free - maximum time for the 3515 * other objects to be freed, too. 3516 */ 3517 list_add_tail(&slabp->list, &l3->slabs_partial); 3518 } 3519 } 3520 } 3521 3522 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3523 { 3524 int batchcount; 3525 struct kmem_list3 *l3; 3526 int node = numa_node_id(); 3527 3528 batchcount = ac->batchcount; 3529 #if DEBUG 3530 BUG_ON(!batchcount || batchcount > ac->avail); 3531 #endif 3532 check_irq_off(); 3533 l3 = cachep->nodelists[node]; 3534 spin_lock(&l3->list_lock); 3535 if (l3->shared) { 3536 struct array_cache *shared_array = l3->shared; 3537 int max = shared_array->limit - shared_array->avail; 3538 if (max) { 3539 if (batchcount > max) 3540 batchcount = max; 3541 memcpy(&(shared_array->entry[shared_array->avail]), 3542 ac->entry, sizeof(void *) * batchcount); 3543 shared_array->avail += batchcount; 3544 goto free_done; 3545 } 3546 } 3547 3548 free_block(cachep, ac->entry, batchcount, node); 3549 free_done: 3550 #if STATS 3551 { 3552 int i = 0; 3553 struct list_head *p; 3554 3555 p = l3->slabs_free.next; 3556 while (p != &(l3->slabs_free)) { 3557 struct slab *slabp; 3558 3559 slabp = list_entry(p, struct slab, list); 3560 BUG_ON(slabp->inuse); 3561 3562 i++; 3563 p = p->next; 3564 } 3565 STATS_SET_FREEABLE(cachep, i); 3566 } 3567 #endif 3568 spin_unlock(&l3->list_lock); 3569 ac->avail -= batchcount; 3570 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3571 } 3572 3573 /* 3574 * Release an obj back to its cache. If the obj has a constructed state, it must 3575 * be in this state _before_ it is released. Called with disabled ints. 3576 */ 3577 static inline void __cache_free(struct kmem_cache *cachep, void *objp) 3578 { 3579 struct array_cache *ac = cpu_cache_get(cachep); 3580 3581 check_irq_off(); 3582 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); 3583 3584 /* 3585 * Skip calling cache_free_alien() when the platform is not numa. 3586 * This will avoid cache misses that happen while accessing slabp (which 3587 * is per page memory reference) to get nodeid. Instead use a global 3588 * variable to skip the call, which is mostly likely to be present in 3589 * the cache. 3590 */ 3591 if (numa_platform && cache_free_alien(cachep, objp)) 3592 return; 3593 3594 if (likely(ac->avail < ac->limit)) { 3595 STATS_INC_FREEHIT(cachep); 3596 ac->entry[ac->avail++] = objp; 3597 return; 3598 } else { 3599 STATS_INC_FREEMISS(cachep); 3600 cache_flusharray(cachep, ac); 3601 ac->entry[ac->avail++] = objp; 3602 } 3603 } 3604 3605 /** 3606 * kmem_cache_alloc - Allocate an object 3607 * @cachep: The cache to allocate from. 3608 * @flags: See kmalloc(). 3609 * 3610 * Allocate an object from this cache. The flags are only relevant 3611 * if the cache has no available objects. 3612 */ 3613 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3614 { 3615 return __cache_alloc(cachep, flags, __builtin_return_address(0)); 3616 } 3617 EXPORT_SYMBOL(kmem_cache_alloc); 3618 3619 /** 3620 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry. 3621 * @cachep: the cache we're checking against 3622 * @ptr: pointer to validate 3623 * 3624 * This verifies that the untrusted pointer looks sane; 3625 * it is _not_ a guarantee that the pointer is actually 3626 * part of the slab cache in question, but it at least 3627 * validates that the pointer can be dereferenced and 3628 * looks half-way sane. 3629 * 3630 * Currently only used for dentry validation. 3631 */ 3632 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr) 3633 { 3634 unsigned long addr = (unsigned long)ptr; 3635 unsigned long min_addr = PAGE_OFFSET; 3636 unsigned long align_mask = BYTES_PER_WORD - 1; 3637 unsigned long size = cachep->buffer_size; 3638 struct page *page; 3639 3640 if (unlikely(addr < min_addr)) 3641 goto out; 3642 if (unlikely(addr > (unsigned long)high_memory - size)) 3643 goto out; 3644 if (unlikely(addr & align_mask)) 3645 goto out; 3646 if (unlikely(!kern_addr_valid(addr))) 3647 goto out; 3648 if (unlikely(!kern_addr_valid(addr + size - 1))) 3649 goto out; 3650 page = virt_to_page(ptr); 3651 if (unlikely(!PageSlab(page))) 3652 goto out; 3653 if (unlikely(page_get_cache(page) != cachep)) 3654 goto out; 3655 return 1; 3656 out: 3657 return 0; 3658 } 3659 3660 #ifdef CONFIG_NUMA 3661 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3662 { 3663 return __cache_alloc_node(cachep, flags, nodeid, 3664 __builtin_return_address(0)); 3665 } 3666 EXPORT_SYMBOL(kmem_cache_alloc_node); 3667 3668 static __always_inline void * 3669 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) 3670 { 3671 struct kmem_cache *cachep; 3672 3673 cachep = kmem_find_general_cachep(size, flags); 3674 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3675 return cachep; 3676 return kmem_cache_alloc_node(cachep, flags, node); 3677 } 3678 3679 #ifdef CONFIG_DEBUG_SLAB 3680 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3681 { 3682 return __do_kmalloc_node(size, flags, node, 3683 __builtin_return_address(0)); 3684 } 3685 EXPORT_SYMBOL(__kmalloc_node); 3686 3687 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3688 int node, void *caller) 3689 { 3690 return __do_kmalloc_node(size, flags, node, caller); 3691 } 3692 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3693 #else 3694 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3695 { 3696 return __do_kmalloc_node(size, flags, node, NULL); 3697 } 3698 EXPORT_SYMBOL(__kmalloc_node); 3699 #endif /* CONFIG_DEBUG_SLAB */ 3700 #endif /* CONFIG_NUMA */ 3701 3702 /** 3703 * __do_kmalloc - allocate memory 3704 * @size: how many bytes of memory are required. 3705 * @flags: the type of memory to allocate (see kmalloc). 3706 * @caller: function caller for debug tracking of the caller 3707 */ 3708 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3709 void *caller) 3710 { 3711 struct kmem_cache *cachep; 3712 3713 /* If you want to save a few bytes .text space: replace 3714 * __ with kmem_. 3715 * Then kmalloc uses the uninlined functions instead of the inline 3716 * functions. 3717 */ 3718 cachep = __find_general_cachep(size, flags); 3719 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3720 return cachep; 3721 return __cache_alloc(cachep, flags, caller); 3722 } 3723 3724 3725 #ifdef CONFIG_DEBUG_SLAB 3726 void *__kmalloc(size_t size, gfp_t flags) 3727 { 3728 return __do_kmalloc(size, flags, __builtin_return_address(0)); 3729 } 3730 EXPORT_SYMBOL(__kmalloc); 3731 3732 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller) 3733 { 3734 return __do_kmalloc(size, flags, caller); 3735 } 3736 EXPORT_SYMBOL(__kmalloc_track_caller); 3737 3738 #else 3739 void *__kmalloc(size_t size, gfp_t flags) 3740 { 3741 return __do_kmalloc(size, flags, NULL); 3742 } 3743 EXPORT_SYMBOL(__kmalloc); 3744 #endif 3745 3746 /** 3747 * kmem_cache_free - Deallocate an object 3748 * @cachep: The cache the allocation was from. 3749 * @objp: The previously allocated object. 3750 * 3751 * Free an object which was previously allocated from this 3752 * cache. 3753 */ 3754 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3755 { 3756 unsigned long flags; 3757 3758 local_irq_save(flags); 3759 debug_check_no_locks_freed(objp, obj_size(cachep)); 3760 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3761 debug_check_no_obj_freed(objp, obj_size(cachep)); 3762 __cache_free(cachep, objp); 3763 local_irq_restore(flags); 3764 } 3765 EXPORT_SYMBOL(kmem_cache_free); 3766 3767 /** 3768 * kfree - free previously allocated memory 3769 * @objp: pointer returned by kmalloc. 3770 * 3771 * If @objp is NULL, no operation is performed. 3772 * 3773 * Don't free memory not originally allocated by kmalloc() 3774 * or you will run into trouble. 3775 */ 3776 void kfree(const void *objp) 3777 { 3778 struct kmem_cache *c; 3779 unsigned long flags; 3780 3781 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3782 return; 3783 local_irq_save(flags); 3784 kfree_debugcheck(objp); 3785 c = virt_to_cache(objp); 3786 debug_check_no_locks_freed(objp, obj_size(c)); 3787 debug_check_no_obj_freed(objp, obj_size(c)); 3788 __cache_free(c, (void *)objp); 3789 local_irq_restore(flags); 3790 } 3791 EXPORT_SYMBOL(kfree); 3792 3793 unsigned int kmem_cache_size(struct kmem_cache *cachep) 3794 { 3795 return obj_size(cachep); 3796 } 3797 EXPORT_SYMBOL(kmem_cache_size); 3798 3799 const char *kmem_cache_name(struct kmem_cache *cachep) 3800 { 3801 return cachep->name; 3802 } 3803 EXPORT_SYMBOL_GPL(kmem_cache_name); 3804 3805 /* 3806 * This initializes kmem_list3 or resizes various caches for all nodes. 3807 */ 3808 static int alloc_kmemlist(struct kmem_cache *cachep) 3809 { 3810 int node; 3811 struct kmem_list3 *l3; 3812 struct array_cache *new_shared; 3813 struct array_cache **new_alien = NULL; 3814 3815 for_each_online_node(node) { 3816 3817 if (use_alien_caches) { 3818 new_alien = alloc_alien_cache(node, cachep->limit); 3819 if (!new_alien) 3820 goto fail; 3821 } 3822 3823 new_shared = NULL; 3824 if (cachep->shared) { 3825 new_shared = alloc_arraycache(node, 3826 cachep->shared*cachep->batchcount, 3827 0xbaadf00d); 3828 if (!new_shared) { 3829 free_alien_cache(new_alien); 3830 goto fail; 3831 } 3832 } 3833 3834 l3 = cachep->nodelists[node]; 3835 if (l3) { 3836 struct array_cache *shared = l3->shared; 3837 3838 spin_lock_irq(&l3->list_lock); 3839 3840 if (shared) 3841 free_block(cachep, shared->entry, 3842 shared->avail, node); 3843 3844 l3->shared = new_shared; 3845 if (!l3->alien) { 3846 l3->alien = new_alien; 3847 new_alien = NULL; 3848 } 3849 l3->free_limit = (1 + nr_cpus_node(node)) * 3850 cachep->batchcount + cachep->num; 3851 spin_unlock_irq(&l3->list_lock); 3852 kfree(shared); 3853 free_alien_cache(new_alien); 3854 continue; 3855 } 3856 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node); 3857 if (!l3) { 3858 free_alien_cache(new_alien); 3859 kfree(new_shared); 3860 goto fail; 3861 } 3862 3863 kmem_list3_init(l3); 3864 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 3865 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 3866 l3->shared = new_shared; 3867 l3->alien = new_alien; 3868 l3->free_limit = (1 + nr_cpus_node(node)) * 3869 cachep->batchcount + cachep->num; 3870 cachep->nodelists[node] = l3; 3871 } 3872 return 0; 3873 3874 fail: 3875 if (!cachep->next.next) { 3876 /* Cache is not active yet. Roll back what we did */ 3877 node--; 3878 while (node >= 0) { 3879 if (cachep->nodelists[node]) { 3880 l3 = cachep->nodelists[node]; 3881 3882 kfree(l3->shared); 3883 free_alien_cache(l3->alien); 3884 kfree(l3); 3885 cachep->nodelists[node] = NULL; 3886 } 3887 node--; 3888 } 3889 } 3890 return -ENOMEM; 3891 } 3892 3893 struct ccupdate_struct { 3894 struct kmem_cache *cachep; 3895 struct array_cache *new[NR_CPUS]; 3896 }; 3897 3898 static void do_ccupdate_local(void *info) 3899 { 3900 struct ccupdate_struct *new = info; 3901 struct array_cache *old; 3902 3903 check_irq_off(); 3904 old = cpu_cache_get(new->cachep); 3905 3906 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 3907 new->new[smp_processor_id()] = old; 3908 } 3909 3910 /* Always called with the cache_chain_mutex held */ 3911 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3912 int batchcount, int shared) 3913 { 3914 struct ccupdate_struct *new; 3915 int i; 3916 3917 new = kzalloc(sizeof(*new), GFP_KERNEL); 3918 if (!new) 3919 return -ENOMEM; 3920 3921 for_each_online_cpu(i) { 3922 new->new[i] = alloc_arraycache(cpu_to_node(i), limit, 3923 batchcount); 3924 if (!new->new[i]) { 3925 for (i--; i >= 0; i--) 3926 kfree(new->new[i]); 3927 kfree(new); 3928 return -ENOMEM; 3929 } 3930 } 3931 new->cachep = cachep; 3932 3933 on_each_cpu(do_ccupdate_local, (void *)new, 1); 3934 3935 check_irq_on(); 3936 cachep->batchcount = batchcount; 3937 cachep->limit = limit; 3938 cachep->shared = shared; 3939 3940 for_each_online_cpu(i) { 3941 struct array_cache *ccold = new->new[i]; 3942 if (!ccold) 3943 continue; 3944 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); 3945 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i)); 3946 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); 3947 kfree(ccold); 3948 } 3949 kfree(new); 3950 return alloc_kmemlist(cachep); 3951 } 3952 3953 /* Called with cache_chain_mutex held always */ 3954 static int enable_cpucache(struct kmem_cache *cachep) 3955 { 3956 int err; 3957 int limit, shared; 3958 3959 /* 3960 * The head array serves three purposes: 3961 * - create a LIFO ordering, i.e. return objects that are cache-warm 3962 * - reduce the number of spinlock operations. 3963 * - reduce the number of linked list operations on the slab and 3964 * bufctl chains: array operations are cheaper. 3965 * The numbers are guessed, we should auto-tune as described by 3966 * Bonwick. 3967 */ 3968 if (cachep->buffer_size > 131072) 3969 limit = 1; 3970 else if (cachep->buffer_size > PAGE_SIZE) 3971 limit = 8; 3972 else if (cachep->buffer_size > 1024) 3973 limit = 24; 3974 else if (cachep->buffer_size > 256) 3975 limit = 54; 3976 else 3977 limit = 120; 3978 3979 /* 3980 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3981 * allocation behaviour: Most allocs on one cpu, most free operations 3982 * on another cpu. For these cases, an efficient object passing between 3983 * cpus is necessary. This is provided by a shared array. The array 3984 * replaces Bonwick's magazine layer. 3985 * On uniprocessor, it's functionally equivalent (but less efficient) 3986 * to a larger limit. Thus disabled by default. 3987 */ 3988 shared = 0; 3989 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1) 3990 shared = 8; 3991 3992 #if DEBUG 3993 /* 3994 * With debugging enabled, large batchcount lead to excessively long 3995 * periods with disabled local interrupts. Limit the batchcount 3996 */ 3997 if (limit > 32) 3998 limit = 32; 3999 #endif 4000 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared); 4001 if (err) 4002 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 4003 cachep->name, -err); 4004 return err; 4005 } 4006 4007 /* 4008 * Drain an array if it contains any elements taking the l3 lock only if 4009 * necessary. Note that the l3 listlock also protects the array_cache 4010 * if drain_array() is used on the shared array. 4011 */ 4012 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 4013 struct array_cache *ac, int force, int node) 4014 { 4015 int tofree; 4016 4017 if (!ac || !ac->avail) 4018 return; 4019 if (ac->touched && !force) { 4020 ac->touched = 0; 4021 } else { 4022 spin_lock_irq(&l3->list_lock); 4023 if (ac->avail) { 4024 tofree = force ? ac->avail : (ac->limit + 4) / 5; 4025 if (tofree > ac->avail) 4026 tofree = (ac->avail + 1) / 2; 4027 free_block(cachep, ac->entry, tofree, node); 4028 ac->avail -= tofree; 4029 memmove(ac->entry, &(ac->entry[tofree]), 4030 sizeof(void *) * ac->avail); 4031 } 4032 spin_unlock_irq(&l3->list_lock); 4033 } 4034 } 4035 4036 /** 4037 * cache_reap - Reclaim memory from caches. 4038 * @w: work descriptor 4039 * 4040 * Called from workqueue/eventd every few seconds. 4041 * Purpose: 4042 * - clear the per-cpu caches for this CPU. 4043 * - return freeable pages to the main free memory pool. 4044 * 4045 * If we cannot acquire the cache chain mutex then just give up - we'll try 4046 * again on the next iteration. 4047 */ 4048 static void cache_reap(struct work_struct *w) 4049 { 4050 struct kmem_cache *searchp; 4051 struct kmem_list3 *l3; 4052 int node = numa_node_id(); 4053 struct delayed_work *work = 4054 container_of(w, struct delayed_work, work); 4055 4056 if (!mutex_trylock(&cache_chain_mutex)) 4057 /* Give up. Setup the next iteration. */ 4058 goto out; 4059 4060 list_for_each_entry(searchp, &cache_chain, next) { 4061 check_irq_on(); 4062 4063 /* 4064 * We only take the l3 lock if absolutely necessary and we 4065 * have established with reasonable certainty that 4066 * we can do some work if the lock was obtained. 4067 */ 4068 l3 = searchp->nodelists[node]; 4069 4070 reap_alien(searchp, l3); 4071 4072 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); 4073 4074 /* 4075 * These are racy checks but it does not matter 4076 * if we skip one check or scan twice. 4077 */ 4078 if (time_after(l3->next_reap, jiffies)) 4079 goto next; 4080 4081 l3->next_reap = jiffies + REAPTIMEOUT_LIST3; 4082 4083 drain_array(searchp, l3, l3->shared, 0, node); 4084 4085 if (l3->free_touched) 4086 l3->free_touched = 0; 4087 else { 4088 int freed; 4089 4090 freed = drain_freelist(searchp, l3, (l3->free_limit + 4091 5 * searchp->num - 1) / (5 * searchp->num)); 4092 STATS_ADD_REAPED(searchp, freed); 4093 } 4094 next: 4095 cond_resched(); 4096 } 4097 check_irq_on(); 4098 mutex_unlock(&cache_chain_mutex); 4099 next_reap_node(); 4100 out: 4101 /* Set up the next iteration */ 4102 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); 4103 } 4104 4105 #ifdef CONFIG_SLABINFO 4106 4107 static void print_slabinfo_header(struct seq_file *m) 4108 { 4109 /* 4110 * Output format version, so at least we can change it 4111 * without _too_ many complaints. 4112 */ 4113 #if STATS 4114 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 4115 #else 4116 seq_puts(m, "slabinfo - version: 2.1\n"); 4117 #endif 4118 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4119 "<objperslab> <pagesperslab>"); 4120 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4121 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4122 #if STATS 4123 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " 4124 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 4125 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 4126 #endif 4127 seq_putc(m, '\n'); 4128 } 4129 4130 static void *s_start(struct seq_file *m, loff_t *pos) 4131 { 4132 loff_t n = *pos; 4133 4134 mutex_lock(&cache_chain_mutex); 4135 if (!n) 4136 print_slabinfo_header(m); 4137 4138 return seq_list_start(&cache_chain, *pos); 4139 } 4140 4141 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4142 { 4143 return seq_list_next(p, &cache_chain, pos); 4144 } 4145 4146 static void s_stop(struct seq_file *m, void *p) 4147 { 4148 mutex_unlock(&cache_chain_mutex); 4149 } 4150 4151 static int s_show(struct seq_file *m, void *p) 4152 { 4153 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4154 struct slab *slabp; 4155 unsigned long active_objs; 4156 unsigned long num_objs; 4157 unsigned long active_slabs = 0; 4158 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4159 const char *name; 4160 char *error = NULL; 4161 int node; 4162 struct kmem_list3 *l3; 4163 4164 active_objs = 0; 4165 num_slabs = 0; 4166 for_each_online_node(node) { 4167 l3 = cachep->nodelists[node]; 4168 if (!l3) 4169 continue; 4170 4171 check_irq_on(); 4172 spin_lock_irq(&l3->list_lock); 4173 4174 list_for_each_entry(slabp, &l3->slabs_full, list) { 4175 if (slabp->inuse != cachep->num && !error) 4176 error = "slabs_full accounting error"; 4177 active_objs += cachep->num; 4178 active_slabs++; 4179 } 4180 list_for_each_entry(slabp, &l3->slabs_partial, list) { 4181 if (slabp->inuse == cachep->num && !error) 4182 error = "slabs_partial inuse accounting error"; 4183 if (!slabp->inuse && !error) 4184 error = "slabs_partial/inuse accounting error"; 4185 active_objs += slabp->inuse; 4186 active_slabs++; 4187 } 4188 list_for_each_entry(slabp, &l3->slabs_free, list) { 4189 if (slabp->inuse && !error) 4190 error = "slabs_free/inuse accounting error"; 4191 num_slabs++; 4192 } 4193 free_objects += l3->free_objects; 4194 if (l3->shared) 4195 shared_avail += l3->shared->avail; 4196 4197 spin_unlock_irq(&l3->list_lock); 4198 } 4199 num_slabs += active_slabs; 4200 num_objs = num_slabs * cachep->num; 4201 if (num_objs - active_objs != free_objects && !error) 4202 error = "free_objects accounting error"; 4203 4204 name = cachep->name; 4205 if (error) 4206 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 4207 4208 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 4209 name, active_objs, num_objs, cachep->buffer_size, 4210 cachep->num, (1 << cachep->gfporder)); 4211 seq_printf(m, " : tunables %4u %4u %4u", 4212 cachep->limit, cachep->batchcount, cachep->shared); 4213 seq_printf(m, " : slabdata %6lu %6lu %6lu", 4214 active_slabs, num_slabs, shared_avail); 4215 #if STATS 4216 { /* list3 stats */ 4217 unsigned long high = cachep->high_mark; 4218 unsigned long allocs = cachep->num_allocations; 4219 unsigned long grown = cachep->grown; 4220 unsigned long reaped = cachep->reaped; 4221 unsigned long errors = cachep->errors; 4222 unsigned long max_freeable = cachep->max_freeable; 4223 unsigned long node_allocs = cachep->node_allocs; 4224 unsigned long node_frees = cachep->node_frees; 4225 unsigned long overflows = cachep->node_overflow; 4226 4227 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ 4228 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown, 4229 reaped, errors, max_freeable, node_allocs, 4230 node_frees, overflows); 4231 } 4232 /* cpu stats */ 4233 { 4234 unsigned long allochit = atomic_read(&cachep->allochit); 4235 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4236 unsigned long freehit = atomic_read(&cachep->freehit); 4237 unsigned long freemiss = atomic_read(&cachep->freemiss); 4238 4239 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4240 allochit, allocmiss, freehit, freemiss); 4241 } 4242 #endif 4243 seq_putc(m, '\n'); 4244 return 0; 4245 } 4246 4247 /* 4248 * slabinfo_op - iterator that generates /proc/slabinfo 4249 * 4250 * Output layout: 4251 * cache-name 4252 * num-active-objs 4253 * total-objs 4254 * object size 4255 * num-active-slabs 4256 * total-slabs 4257 * num-pages-per-slab 4258 * + further values on SMP and with statistics enabled 4259 */ 4260 4261 const struct seq_operations slabinfo_op = { 4262 .start = s_start, 4263 .next = s_next, 4264 .stop = s_stop, 4265 .show = s_show, 4266 }; 4267 4268 #define MAX_SLABINFO_WRITE 128 4269 /** 4270 * slabinfo_write - Tuning for the slab allocator 4271 * @file: unused 4272 * @buffer: user buffer 4273 * @count: data length 4274 * @ppos: unused 4275 */ 4276 ssize_t slabinfo_write(struct file *file, const char __user * buffer, 4277 size_t count, loff_t *ppos) 4278 { 4279 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4280 int limit, batchcount, shared, res; 4281 struct kmem_cache *cachep; 4282 4283 if (count > MAX_SLABINFO_WRITE) 4284 return -EINVAL; 4285 if (copy_from_user(&kbuf, buffer, count)) 4286 return -EFAULT; 4287 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4288 4289 tmp = strchr(kbuf, ' '); 4290 if (!tmp) 4291 return -EINVAL; 4292 *tmp = '\0'; 4293 tmp++; 4294 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4295 return -EINVAL; 4296 4297 /* Find the cache in the chain of caches. */ 4298 mutex_lock(&cache_chain_mutex); 4299 res = -EINVAL; 4300 list_for_each_entry(cachep, &cache_chain, next) { 4301 if (!strcmp(cachep->name, kbuf)) { 4302 if (limit < 1 || batchcount < 1 || 4303 batchcount > limit || shared < 0) { 4304 res = 0; 4305 } else { 4306 res = do_tune_cpucache(cachep, limit, 4307 batchcount, shared); 4308 } 4309 break; 4310 } 4311 } 4312 mutex_unlock(&cache_chain_mutex); 4313 if (res >= 0) 4314 res = count; 4315 return res; 4316 } 4317 4318 #ifdef CONFIG_DEBUG_SLAB_LEAK 4319 4320 static void *leaks_start(struct seq_file *m, loff_t *pos) 4321 { 4322 mutex_lock(&cache_chain_mutex); 4323 return seq_list_start(&cache_chain, *pos); 4324 } 4325 4326 static inline int add_caller(unsigned long *n, unsigned long v) 4327 { 4328 unsigned long *p; 4329 int l; 4330 if (!v) 4331 return 1; 4332 l = n[1]; 4333 p = n + 2; 4334 while (l) { 4335 int i = l/2; 4336 unsigned long *q = p + 2 * i; 4337 if (*q == v) { 4338 q[1]++; 4339 return 1; 4340 } 4341 if (*q > v) { 4342 l = i; 4343 } else { 4344 p = q + 2; 4345 l -= i + 1; 4346 } 4347 } 4348 if (++n[1] == n[0]) 4349 return 0; 4350 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4351 p[0] = v; 4352 p[1] = 1; 4353 return 1; 4354 } 4355 4356 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) 4357 { 4358 void *p; 4359 int i; 4360 if (n[0] == n[1]) 4361 return; 4362 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { 4363 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) 4364 continue; 4365 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4366 return; 4367 } 4368 } 4369 4370 static void show_symbol(struct seq_file *m, unsigned long address) 4371 { 4372 #ifdef CONFIG_KALLSYMS 4373 unsigned long offset, size; 4374 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4375 4376 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4377 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4378 if (modname[0]) 4379 seq_printf(m, " [%s]", modname); 4380 return; 4381 } 4382 #endif 4383 seq_printf(m, "%p", (void *)address); 4384 } 4385 4386 static int leaks_show(struct seq_file *m, void *p) 4387 { 4388 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4389 struct slab *slabp; 4390 struct kmem_list3 *l3; 4391 const char *name; 4392 unsigned long *n = m->private; 4393 int node; 4394 int i; 4395 4396 if (!(cachep->flags & SLAB_STORE_USER)) 4397 return 0; 4398 if (!(cachep->flags & SLAB_RED_ZONE)) 4399 return 0; 4400 4401 /* OK, we can do it */ 4402 4403 n[1] = 0; 4404 4405 for_each_online_node(node) { 4406 l3 = cachep->nodelists[node]; 4407 if (!l3) 4408 continue; 4409 4410 check_irq_on(); 4411 spin_lock_irq(&l3->list_lock); 4412 4413 list_for_each_entry(slabp, &l3->slabs_full, list) 4414 handle_slab(n, cachep, slabp); 4415 list_for_each_entry(slabp, &l3->slabs_partial, list) 4416 handle_slab(n, cachep, slabp); 4417 spin_unlock_irq(&l3->list_lock); 4418 } 4419 name = cachep->name; 4420 if (n[0] == n[1]) { 4421 /* Increase the buffer size */ 4422 mutex_unlock(&cache_chain_mutex); 4423 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4424 if (!m->private) { 4425 /* Too bad, we are really out */ 4426 m->private = n; 4427 mutex_lock(&cache_chain_mutex); 4428 return -ENOMEM; 4429 } 4430 *(unsigned long *)m->private = n[0] * 2; 4431 kfree(n); 4432 mutex_lock(&cache_chain_mutex); 4433 /* Now make sure this entry will be retried */ 4434 m->count = m->size; 4435 return 0; 4436 } 4437 for (i = 0; i < n[1]; i++) { 4438 seq_printf(m, "%s: %lu ", name, n[2*i+3]); 4439 show_symbol(m, n[2*i+2]); 4440 seq_putc(m, '\n'); 4441 } 4442 4443 return 0; 4444 } 4445 4446 const struct seq_operations slabstats_op = { 4447 .start = leaks_start, 4448 .next = s_next, 4449 .stop = s_stop, 4450 .show = leaks_show, 4451 }; 4452 #endif 4453 #endif 4454 4455 /** 4456 * ksize - get the actual amount of memory allocated for a given object 4457 * @objp: Pointer to the object 4458 * 4459 * kmalloc may internally round up allocations and return more memory 4460 * than requested. ksize() can be used to determine the actual amount of 4461 * memory allocated. The caller may use this additional memory, even though 4462 * a smaller amount of memory was initially specified with the kmalloc call. 4463 * The caller must guarantee that objp points to a valid object previously 4464 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4465 * must not be freed during the duration of the call. 4466 */ 4467 size_t ksize(const void *objp) 4468 { 4469 BUG_ON(!objp); 4470 if (unlikely(objp == ZERO_SIZE_PTR)) 4471 return 0; 4472 4473 return obj_size(virt_to_cache(objp)); 4474 } 4475 EXPORT_SYMBOL(ksize); 4476