1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'slab_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 120 #include <net/sock.h> 121 122 #include <asm/cacheflush.h> 123 #include <asm/tlbflush.h> 124 #include <asm/page.h> 125 126 #include <trace/events/kmem.h> 127 128 #include "internal.h" 129 130 #include "slab.h" 131 132 /* 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 134 * 0 for faster, smaller code (especially in the critical paths). 135 * 136 * STATS - 1 to collect stats for /proc/slabinfo. 137 * 0 for faster, smaller code (especially in the critical paths). 138 * 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 140 */ 141 142 #ifdef CONFIG_DEBUG_SLAB 143 #define DEBUG 1 144 #define STATS 1 145 #define FORCED_DEBUG 1 146 #else 147 #define DEBUG 0 148 #define STATS 0 149 #define FORCED_DEBUG 0 150 #endif 151 152 /* Shouldn't this be in a header file somewhere? */ 153 #define BYTES_PER_WORD sizeof(void *) 154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 155 156 #ifndef ARCH_KMALLOC_FLAGS 157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 158 #endif 159 160 /* 161 * true if a page was allocated from pfmemalloc reserves for network-based 162 * swap 163 */ 164 static bool pfmemalloc_active __read_mostly; 165 166 /* 167 * kmem_bufctl_t: 168 * 169 * Bufctl's are used for linking objs within a slab 170 * linked offsets. 171 * 172 * This implementation relies on "struct page" for locating the cache & 173 * slab an object belongs to. 174 * This allows the bufctl structure to be small (one int), but limits 175 * the number of objects a slab (not a cache) can contain when off-slab 176 * bufctls are used. The limit is the size of the largest general cache 177 * that does not use off-slab slabs. 178 * For 32bit archs with 4 kB pages, is this 56. 179 * This is not serious, as it is only for large objects, when it is unwise 180 * to have too many per slab. 181 * Note: This limit can be raised by introducing a general cache whose size 182 * is less than 512 (PAGE_SIZE<<3), but greater than 256. 183 */ 184 185 typedef unsigned int kmem_bufctl_t; 186 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) 187 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) 188 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) 189 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) 190 191 /* 192 * struct slab_rcu 193 * 194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to 195 * arrange for kmem_freepages to be called via RCU. This is useful if 196 * we need to approach a kernel structure obliquely, from its address 197 * obtained without the usual locking. We can lock the structure to 198 * stabilize it and check it's still at the given address, only if we 199 * can be sure that the memory has not been meanwhile reused for some 200 * other kind of object (which our subsystem's lock might corrupt). 201 * 202 * rcu_read_lock before reading the address, then rcu_read_unlock after 203 * taking the spinlock within the structure expected at that address. 204 */ 205 struct slab_rcu { 206 struct rcu_head head; 207 struct kmem_cache *cachep; 208 void *addr; 209 }; 210 211 /* 212 * struct slab 213 * 214 * Manages the objs in a slab. Placed either at the beginning of mem allocated 215 * for a slab, or allocated from an general cache. 216 * Slabs are chained into three list: fully used, partial, fully free slabs. 217 */ 218 struct slab { 219 union { 220 struct { 221 struct list_head list; 222 unsigned long colouroff; 223 void *s_mem; /* including colour offset */ 224 unsigned int inuse; /* num of objs active in slab */ 225 kmem_bufctl_t free; 226 unsigned short nodeid; 227 }; 228 struct slab_rcu __slab_cover_slab_rcu; 229 }; 230 }; 231 232 /* 233 * struct array_cache 234 * 235 * Purpose: 236 * - LIFO ordering, to hand out cache-warm objects from _alloc 237 * - reduce the number of linked list operations 238 * - reduce spinlock operations 239 * 240 * The limit is stored in the per-cpu structure to reduce the data cache 241 * footprint. 242 * 243 */ 244 struct array_cache { 245 unsigned int avail; 246 unsigned int limit; 247 unsigned int batchcount; 248 unsigned int touched; 249 spinlock_t lock; 250 void *entry[]; /* 251 * Must have this definition in here for the proper 252 * alignment of array_cache. Also simplifies accessing 253 * the entries. 254 * 255 * Entries should not be directly dereferenced as 256 * entries belonging to slabs marked pfmemalloc will 257 * have the lower bits set SLAB_OBJ_PFMEMALLOC 258 */ 259 }; 260 261 #define SLAB_OBJ_PFMEMALLOC 1 262 static inline bool is_obj_pfmemalloc(void *objp) 263 { 264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC; 265 } 266 267 static inline void set_obj_pfmemalloc(void **objp) 268 { 269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC); 270 return; 271 } 272 273 static inline void clear_obj_pfmemalloc(void **objp) 274 { 275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC); 276 } 277 278 /* 279 * bootstrap: The caches do not work without cpuarrays anymore, but the 280 * cpuarrays are allocated from the generic caches... 281 */ 282 #define BOOT_CPUCACHE_ENTRIES 1 283 struct arraycache_init { 284 struct array_cache cache; 285 void *entries[BOOT_CPUCACHE_ENTRIES]; 286 }; 287 288 /* 289 * Need this for bootstrapping a per node allocator. 290 */ 291 #define NUM_INIT_LISTS (3 * MAX_NUMNODES) 292 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 293 #define CACHE_CACHE 0 294 #define SIZE_AC MAX_NUMNODES 295 #define SIZE_NODE (2 * MAX_NUMNODES) 296 297 static int drain_freelist(struct kmem_cache *cache, 298 struct kmem_cache_node *n, int tofree); 299 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 300 int node); 301 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 302 static void cache_reap(struct work_struct *unused); 303 304 static int slab_early_init = 1; 305 306 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init)) 307 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 308 309 static void kmem_cache_node_init(struct kmem_cache_node *parent) 310 { 311 INIT_LIST_HEAD(&parent->slabs_full); 312 INIT_LIST_HEAD(&parent->slabs_partial); 313 INIT_LIST_HEAD(&parent->slabs_free); 314 parent->shared = NULL; 315 parent->alien = NULL; 316 parent->colour_next = 0; 317 spin_lock_init(&parent->list_lock); 318 parent->free_objects = 0; 319 parent->free_touched = 0; 320 } 321 322 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 323 do { \ 324 INIT_LIST_HEAD(listp); \ 325 list_splice(&(cachep->node[nodeid]->slab), listp); \ 326 } while (0) 327 328 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 329 do { \ 330 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 331 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 332 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 333 } while (0) 334 335 #define CFLGS_OFF_SLAB (0x80000000UL) 336 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 337 338 #define BATCHREFILL_LIMIT 16 339 /* 340 * Optimization question: fewer reaps means less probability for unnessary 341 * cpucache drain/refill cycles. 342 * 343 * OTOH the cpuarrays can contain lots of objects, 344 * which could lock up otherwise freeable slabs. 345 */ 346 #define REAPTIMEOUT_CPUC (2*HZ) 347 #define REAPTIMEOUT_LIST3 (4*HZ) 348 349 #if STATS 350 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 351 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 352 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 353 #define STATS_INC_GROWN(x) ((x)->grown++) 354 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 355 #define STATS_SET_HIGH(x) \ 356 do { \ 357 if ((x)->num_active > (x)->high_mark) \ 358 (x)->high_mark = (x)->num_active; \ 359 } while (0) 360 #define STATS_INC_ERR(x) ((x)->errors++) 361 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 362 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 363 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 364 #define STATS_SET_FREEABLE(x, i) \ 365 do { \ 366 if ((x)->max_freeable < i) \ 367 (x)->max_freeable = i; \ 368 } while (0) 369 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 370 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 371 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 372 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 373 #else 374 #define STATS_INC_ACTIVE(x) do { } while (0) 375 #define STATS_DEC_ACTIVE(x) do { } while (0) 376 #define STATS_INC_ALLOCED(x) do { } while (0) 377 #define STATS_INC_GROWN(x) do { } while (0) 378 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 379 #define STATS_SET_HIGH(x) do { } while (0) 380 #define STATS_INC_ERR(x) do { } while (0) 381 #define STATS_INC_NODEALLOCS(x) do { } while (0) 382 #define STATS_INC_NODEFREES(x) do { } while (0) 383 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 384 #define STATS_SET_FREEABLE(x, i) do { } while (0) 385 #define STATS_INC_ALLOCHIT(x) do { } while (0) 386 #define STATS_INC_ALLOCMISS(x) do { } while (0) 387 #define STATS_INC_FREEHIT(x) do { } while (0) 388 #define STATS_INC_FREEMISS(x) do { } while (0) 389 #endif 390 391 #if DEBUG 392 393 /* 394 * memory layout of objects: 395 * 0 : objp 396 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 397 * the end of an object is aligned with the end of the real 398 * allocation. Catches writes behind the end of the allocation. 399 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 400 * redzone word. 401 * cachep->obj_offset: The real object. 402 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 403 * cachep->size - 1* BYTES_PER_WORD: last caller address 404 * [BYTES_PER_WORD long] 405 */ 406 static int obj_offset(struct kmem_cache *cachep) 407 { 408 return cachep->obj_offset; 409 } 410 411 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 412 { 413 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 414 return (unsigned long long*) (objp + obj_offset(cachep) - 415 sizeof(unsigned long long)); 416 } 417 418 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 419 { 420 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 421 if (cachep->flags & SLAB_STORE_USER) 422 return (unsigned long long *)(objp + cachep->size - 423 sizeof(unsigned long long) - 424 REDZONE_ALIGN); 425 return (unsigned long long *) (objp + cachep->size - 426 sizeof(unsigned long long)); 427 } 428 429 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 430 { 431 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 432 return (void **)(objp + cachep->size - BYTES_PER_WORD); 433 } 434 435 #else 436 437 #define obj_offset(x) 0 438 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 439 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 440 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 441 442 #endif 443 444 /* 445 * Do not go above this order unless 0 objects fit into the slab or 446 * overridden on the command line. 447 */ 448 #define SLAB_MAX_ORDER_HI 1 449 #define SLAB_MAX_ORDER_LO 0 450 static int slab_max_order = SLAB_MAX_ORDER_LO; 451 static bool slab_max_order_set __initdata; 452 453 static inline struct kmem_cache *virt_to_cache(const void *obj) 454 { 455 struct page *page = virt_to_head_page(obj); 456 return page->slab_cache; 457 } 458 459 static inline struct slab *virt_to_slab(const void *obj) 460 { 461 struct page *page = virt_to_head_page(obj); 462 463 VM_BUG_ON(!PageSlab(page)); 464 return page->slab_page; 465 } 466 467 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, 468 unsigned int idx) 469 { 470 return slab->s_mem + cache->size * idx; 471 } 472 473 /* 474 * We want to avoid an expensive divide : (offset / cache->size) 475 * Using the fact that size is a constant for a particular cache, 476 * we can replace (offset / cache->size) by 477 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 478 */ 479 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 480 const struct slab *slab, void *obj) 481 { 482 u32 offset = (obj - slab->s_mem); 483 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 484 } 485 486 static struct arraycache_init initarray_generic = 487 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 488 489 /* internal cache of cache description objs */ 490 static struct kmem_cache kmem_cache_boot = { 491 .batchcount = 1, 492 .limit = BOOT_CPUCACHE_ENTRIES, 493 .shared = 1, 494 .size = sizeof(struct kmem_cache), 495 .name = "kmem_cache", 496 }; 497 498 #define BAD_ALIEN_MAGIC 0x01020304ul 499 500 #ifdef CONFIG_LOCKDEP 501 502 /* 503 * Slab sometimes uses the kmalloc slabs to store the slab headers 504 * for other slabs "off slab". 505 * The locking for this is tricky in that it nests within the locks 506 * of all other slabs in a few places; to deal with this special 507 * locking we put on-slab caches into a separate lock-class. 508 * 509 * We set lock class for alien array caches which are up during init. 510 * The lock annotation will be lost if all cpus of a node goes down and 511 * then comes back up during hotplug 512 */ 513 static struct lock_class_key on_slab_l3_key; 514 static struct lock_class_key on_slab_alc_key; 515 516 static struct lock_class_key debugobj_l3_key; 517 static struct lock_class_key debugobj_alc_key; 518 519 static void slab_set_lock_classes(struct kmem_cache *cachep, 520 struct lock_class_key *l3_key, struct lock_class_key *alc_key, 521 int q) 522 { 523 struct array_cache **alc; 524 struct kmem_cache_node *n; 525 int r; 526 527 n = cachep->node[q]; 528 if (!n) 529 return; 530 531 lockdep_set_class(&n->list_lock, l3_key); 532 alc = n->alien; 533 /* 534 * FIXME: This check for BAD_ALIEN_MAGIC 535 * should go away when common slab code is taught to 536 * work even without alien caches. 537 * Currently, non NUMA code returns BAD_ALIEN_MAGIC 538 * for alloc_alien_cache, 539 */ 540 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) 541 return; 542 for_each_node(r) { 543 if (alc[r]) 544 lockdep_set_class(&alc[r]->lock, alc_key); 545 } 546 } 547 548 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) 549 { 550 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node); 551 } 552 553 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) 554 { 555 int node; 556 557 for_each_online_node(node) 558 slab_set_debugobj_lock_classes_node(cachep, node); 559 } 560 561 static void init_node_lock_keys(int q) 562 { 563 int i; 564 565 if (slab_state < UP) 566 return; 567 568 for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) { 569 struct kmem_cache_node *n; 570 struct kmem_cache *cache = kmalloc_caches[i]; 571 572 if (!cache) 573 continue; 574 575 n = cache->node[q]; 576 if (!n || OFF_SLAB(cache)) 577 continue; 578 579 slab_set_lock_classes(cache, &on_slab_l3_key, 580 &on_slab_alc_key, q); 581 } 582 } 583 584 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q) 585 { 586 if (!cachep->node[q]) 587 return; 588 589 slab_set_lock_classes(cachep, &on_slab_l3_key, 590 &on_slab_alc_key, q); 591 } 592 593 static inline void on_slab_lock_classes(struct kmem_cache *cachep) 594 { 595 int node; 596 597 VM_BUG_ON(OFF_SLAB(cachep)); 598 for_each_node(node) 599 on_slab_lock_classes_node(cachep, node); 600 } 601 602 static inline void init_lock_keys(void) 603 { 604 int node; 605 606 for_each_node(node) 607 init_node_lock_keys(node); 608 } 609 #else 610 static void init_node_lock_keys(int q) 611 { 612 } 613 614 static inline void init_lock_keys(void) 615 { 616 } 617 618 static inline void on_slab_lock_classes(struct kmem_cache *cachep) 619 { 620 } 621 622 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node) 623 { 624 } 625 626 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) 627 { 628 } 629 630 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) 631 { 632 } 633 #endif 634 635 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 636 637 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 638 { 639 return cachep->array[smp_processor_id()]; 640 } 641 642 static size_t slab_mgmt_size(size_t nr_objs, size_t align) 643 { 644 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); 645 } 646 647 /* 648 * Calculate the number of objects and left-over bytes for a given buffer size. 649 */ 650 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 651 size_t align, int flags, size_t *left_over, 652 unsigned int *num) 653 { 654 int nr_objs; 655 size_t mgmt_size; 656 size_t slab_size = PAGE_SIZE << gfporder; 657 658 /* 659 * The slab management structure can be either off the slab or 660 * on it. For the latter case, the memory allocated for a 661 * slab is used for: 662 * 663 * - The struct slab 664 * - One kmem_bufctl_t for each object 665 * - Padding to respect alignment of @align 666 * - @buffer_size bytes for each object 667 * 668 * If the slab management structure is off the slab, then the 669 * alignment will already be calculated into the size. Because 670 * the slabs are all pages aligned, the objects will be at the 671 * correct alignment when allocated. 672 */ 673 if (flags & CFLGS_OFF_SLAB) { 674 mgmt_size = 0; 675 nr_objs = slab_size / buffer_size; 676 677 if (nr_objs > SLAB_LIMIT) 678 nr_objs = SLAB_LIMIT; 679 } else { 680 /* 681 * Ignore padding for the initial guess. The padding 682 * is at most @align-1 bytes, and @buffer_size is at 683 * least @align. In the worst case, this result will 684 * be one greater than the number of objects that fit 685 * into the memory allocation when taking the padding 686 * into account. 687 */ 688 nr_objs = (slab_size - sizeof(struct slab)) / 689 (buffer_size + sizeof(kmem_bufctl_t)); 690 691 /* 692 * This calculated number will be either the right 693 * amount, or one greater than what we want. 694 */ 695 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size 696 > slab_size) 697 nr_objs--; 698 699 if (nr_objs > SLAB_LIMIT) 700 nr_objs = SLAB_LIMIT; 701 702 mgmt_size = slab_mgmt_size(nr_objs, align); 703 } 704 *num = nr_objs; 705 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 706 } 707 708 #if DEBUG 709 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 710 711 static void __slab_error(const char *function, struct kmem_cache *cachep, 712 char *msg) 713 { 714 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 715 function, cachep->name, msg); 716 dump_stack(); 717 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 718 } 719 #endif 720 721 /* 722 * By default on NUMA we use alien caches to stage the freeing of 723 * objects allocated from other nodes. This causes massive memory 724 * inefficiencies when using fake NUMA setup to split memory into a 725 * large number of small nodes, so it can be disabled on the command 726 * line 727 */ 728 729 static int use_alien_caches __read_mostly = 1; 730 static int __init noaliencache_setup(char *s) 731 { 732 use_alien_caches = 0; 733 return 1; 734 } 735 __setup("noaliencache", noaliencache_setup); 736 737 static int __init slab_max_order_setup(char *str) 738 { 739 get_option(&str, &slab_max_order); 740 slab_max_order = slab_max_order < 0 ? 0 : 741 min(slab_max_order, MAX_ORDER - 1); 742 slab_max_order_set = true; 743 744 return 1; 745 } 746 __setup("slab_max_order=", slab_max_order_setup); 747 748 #ifdef CONFIG_NUMA 749 /* 750 * Special reaping functions for NUMA systems called from cache_reap(). 751 * These take care of doing round robin flushing of alien caches (containing 752 * objects freed on different nodes from which they were allocated) and the 753 * flushing of remote pcps by calling drain_node_pages. 754 */ 755 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 756 757 static void init_reap_node(int cpu) 758 { 759 int node; 760 761 node = next_node(cpu_to_mem(cpu), node_online_map); 762 if (node == MAX_NUMNODES) 763 node = first_node(node_online_map); 764 765 per_cpu(slab_reap_node, cpu) = node; 766 } 767 768 static void next_reap_node(void) 769 { 770 int node = __this_cpu_read(slab_reap_node); 771 772 node = next_node(node, node_online_map); 773 if (unlikely(node >= MAX_NUMNODES)) 774 node = first_node(node_online_map); 775 __this_cpu_write(slab_reap_node, node); 776 } 777 778 #else 779 #define init_reap_node(cpu) do { } while (0) 780 #define next_reap_node(void) do { } while (0) 781 #endif 782 783 /* 784 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 785 * via the workqueue/eventd. 786 * Add the CPU number into the expiration time to minimize the possibility of 787 * the CPUs getting into lockstep and contending for the global cache chain 788 * lock. 789 */ 790 static void __cpuinit start_cpu_timer(int cpu) 791 { 792 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 793 794 /* 795 * When this gets called from do_initcalls via cpucache_init(), 796 * init_workqueues() has already run, so keventd will be setup 797 * at that time. 798 */ 799 if (keventd_up() && reap_work->work.func == NULL) { 800 init_reap_node(cpu); 801 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 802 schedule_delayed_work_on(cpu, reap_work, 803 __round_jiffies_relative(HZ, cpu)); 804 } 805 } 806 807 static struct array_cache *alloc_arraycache(int node, int entries, 808 int batchcount, gfp_t gfp) 809 { 810 int memsize = sizeof(void *) * entries + sizeof(struct array_cache); 811 struct array_cache *nc = NULL; 812 813 nc = kmalloc_node(memsize, gfp, node); 814 /* 815 * The array_cache structures contain pointers to free object. 816 * However, when such objects are allocated or transferred to another 817 * cache the pointers are not cleared and they could be counted as 818 * valid references during a kmemleak scan. Therefore, kmemleak must 819 * not scan such objects. 820 */ 821 kmemleak_no_scan(nc); 822 if (nc) { 823 nc->avail = 0; 824 nc->limit = entries; 825 nc->batchcount = batchcount; 826 nc->touched = 0; 827 spin_lock_init(&nc->lock); 828 } 829 return nc; 830 } 831 832 static inline bool is_slab_pfmemalloc(struct slab *slabp) 833 { 834 struct page *page = virt_to_page(slabp->s_mem); 835 836 return PageSlabPfmemalloc(page); 837 } 838 839 /* Clears pfmemalloc_active if no slabs have pfmalloc set */ 840 static void recheck_pfmemalloc_active(struct kmem_cache *cachep, 841 struct array_cache *ac) 842 { 843 struct kmem_cache_node *n = cachep->node[numa_mem_id()]; 844 struct slab *slabp; 845 unsigned long flags; 846 847 if (!pfmemalloc_active) 848 return; 849 850 spin_lock_irqsave(&n->list_lock, flags); 851 list_for_each_entry(slabp, &n->slabs_full, list) 852 if (is_slab_pfmemalloc(slabp)) 853 goto out; 854 855 list_for_each_entry(slabp, &n->slabs_partial, list) 856 if (is_slab_pfmemalloc(slabp)) 857 goto out; 858 859 list_for_each_entry(slabp, &n->slabs_free, list) 860 if (is_slab_pfmemalloc(slabp)) 861 goto out; 862 863 pfmemalloc_active = false; 864 out: 865 spin_unlock_irqrestore(&n->list_lock, flags); 866 } 867 868 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, 869 gfp_t flags, bool force_refill) 870 { 871 int i; 872 void *objp = ac->entry[--ac->avail]; 873 874 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ 875 if (unlikely(is_obj_pfmemalloc(objp))) { 876 struct kmem_cache_node *n; 877 878 if (gfp_pfmemalloc_allowed(flags)) { 879 clear_obj_pfmemalloc(&objp); 880 return objp; 881 } 882 883 /* The caller cannot use PFMEMALLOC objects, find another one */ 884 for (i = 0; i < ac->avail; i++) { 885 /* If a !PFMEMALLOC object is found, swap them */ 886 if (!is_obj_pfmemalloc(ac->entry[i])) { 887 objp = ac->entry[i]; 888 ac->entry[i] = ac->entry[ac->avail]; 889 ac->entry[ac->avail] = objp; 890 return objp; 891 } 892 } 893 894 /* 895 * If there are empty slabs on the slabs_free list and we are 896 * being forced to refill the cache, mark this one !pfmemalloc. 897 */ 898 n = cachep->node[numa_mem_id()]; 899 if (!list_empty(&n->slabs_free) && force_refill) { 900 struct slab *slabp = virt_to_slab(objp); 901 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem)); 902 clear_obj_pfmemalloc(&objp); 903 recheck_pfmemalloc_active(cachep, ac); 904 return objp; 905 } 906 907 /* No !PFMEMALLOC objects available */ 908 ac->avail++; 909 objp = NULL; 910 } 911 912 return objp; 913 } 914 915 static inline void *ac_get_obj(struct kmem_cache *cachep, 916 struct array_cache *ac, gfp_t flags, bool force_refill) 917 { 918 void *objp; 919 920 if (unlikely(sk_memalloc_socks())) 921 objp = __ac_get_obj(cachep, ac, flags, force_refill); 922 else 923 objp = ac->entry[--ac->avail]; 924 925 return objp; 926 } 927 928 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, 929 void *objp) 930 { 931 if (unlikely(pfmemalloc_active)) { 932 /* Some pfmemalloc slabs exist, check if this is one */ 933 struct page *page = virt_to_head_page(objp); 934 if (PageSlabPfmemalloc(page)) 935 set_obj_pfmemalloc(&objp); 936 } 937 938 return objp; 939 } 940 941 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, 942 void *objp) 943 { 944 if (unlikely(sk_memalloc_socks())) 945 objp = __ac_put_obj(cachep, ac, objp); 946 947 ac->entry[ac->avail++] = objp; 948 } 949 950 /* 951 * Transfer objects in one arraycache to another. 952 * Locking must be handled by the caller. 953 * 954 * Return the number of entries transferred. 955 */ 956 static int transfer_objects(struct array_cache *to, 957 struct array_cache *from, unsigned int max) 958 { 959 /* Figure out how many entries to transfer */ 960 int nr = min3(from->avail, max, to->limit - to->avail); 961 962 if (!nr) 963 return 0; 964 965 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 966 sizeof(void *) *nr); 967 968 from->avail -= nr; 969 to->avail += nr; 970 return nr; 971 } 972 973 #ifndef CONFIG_NUMA 974 975 #define drain_alien_cache(cachep, alien) do { } while (0) 976 #define reap_alien(cachep, n) do { } while (0) 977 978 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 979 { 980 return (struct array_cache **)BAD_ALIEN_MAGIC; 981 } 982 983 static inline void free_alien_cache(struct array_cache **ac_ptr) 984 { 985 } 986 987 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 988 { 989 return 0; 990 } 991 992 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 993 gfp_t flags) 994 { 995 return NULL; 996 } 997 998 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 999 gfp_t flags, int nodeid) 1000 { 1001 return NULL; 1002 } 1003 1004 #else /* CONFIG_NUMA */ 1005 1006 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 1007 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 1008 1009 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 1010 { 1011 struct array_cache **ac_ptr; 1012 int memsize = sizeof(void *) * nr_node_ids; 1013 int i; 1014 1015 if (limit > 1) 1016 limit = 12; 1017 ac_ptr = kzalloc_node(memsize, gfp, node); 1018 if (ac_ptr) { 1019 for_each_node(i) { 1020 if (i == node || !node_online(i)) 1021 continue; 1022 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); 1023 if (!ac_ptr[i]) { 1024 for (i--; i >= 0; i--) 1025 kfree(ac_ptr[i]); 1026 kfree(ac_ptr); 1027 return NULL; 1028 } 1029 } 1030 } 1031 return ac_ptr; 1032 } 1033 1034 static void free_alien_cache(struct array_cache **ac_ptr) 1035 { 1036 int i; 1037 1038 if (!ac_ptr) 1039 return; 1040 for_each_node(i) 1041 kfree(ac_ptr[i]); 1042 kfree(ac_ptr); 1043 } 1044 1045 static void __drain_alien_cache(struct kmem_cache *cachep, 1046 struct array_cache *ac, int node) 1047 { 1048 struct kmem_cache_node *n = cachep->node[node]; 1049 1050 if (ac->avail) { 1051 spin_lock(&n->list_lock); 1052 /* 1053 * Stuff objects into the remote nodes shared array first. 1054 * That way we could avoid the overhead of putting the objects 1055 * into the free lists and getting them back later. 1056 */ 1057 if (n->shared) 1058 transfer_objects(n->shared, ac, ac->limit); 1059 1060 free_block(cachep, ac->entry, ac->avail, node); 1061 ac->avail = 0; 1062 spin_unlock(&n->list_lock); 1063 } 1064 } 1065 1066 /* 1067 * Called from cache_reap() to regularly drain alien caches round robin. 1068 */ 1069 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 1070 { 1071 int node = __this_cpu_read(slab_reap_node); 1072 1073 if (n->alien) { 1074 struct array_cache *ac = n->alien[node]; 1075 1076 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { 1077 __drain_alien_cache(cachep, ac, node); 1078 spin_unlock_irq(&ac->lock); 1079 } 1080 } 1081 } 1082 1083 static void drain_alien_cache(struct kmem_cache *cachep, 1084 struct array_cache **alien) 1085 { 1086 int i = 0; 1087 struct array_cache *ac; 1088 unsigned long flags; 1089 1090 for_each_online_node(i) { 1091 ac = alien[i]; 1092 if (ac) { 1093 spin_lock_irqsave(&ac->lock, flags); 1094 __drain_alien_cache(cachep, ac, i); 1095 spin_unlock_irqrestore(&ac->lock, flags); 1096 } 1097 } 1098 } 1099 1100 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1101 { 1102 struct slab *slabp = virt_to_slab(objp); 1103 int nodeid = slabp->nodeid; 1104 struct kmem_cache_node *n; 1105 struct array_cache *alien = NULL; 1106 int node; 1107 1108 node = numa_mem_id(); 1109 1110 /* 1111 * Make sure we are not freeing a object from another node to the array 1112 * cache on this cpu. 1113 */ 1114 if (likely(slabp->nodeid == node)) 1115 return 0; 1116 1117 n = cachep->node[node]; 1118 STATS_INC_NODEFREES(cachep); 1119 if (n->alien && n->alien[nodeid]) { 1120 alien = n->alien[nodeid]; 1121 spin_lock(&alien->lock); 1122 if (unlikely(alien->avail == alien->limit)) { 1123 STATS_INC_ACOVERFLOW(cachep); 1124 __drain_alien_cache(cachep, alien, nodeid); 1125 } 1126 ac_put_obj(cachep, alien, objp); 1127 spin_unlock(&alien->lock); 1128 } else { 1129 spin_lock(&(cachep->node[nodeid])->list_lock); 1130 free_block(cachep, &objp, 1, nodeid); 1131 spin_unlock(&(cachep->node[nodeid])->list_lock); 1132 } 1133 return 1; 1134 } 1135 #endif 1136 1137 /* 1138 * Allocates and initializes node for a node on each slab cache, used for 1139 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 1140 * will be allocated off-node since memory is not yet online for the new node. 1141 * When hotplugging memory or a cpu, existing node are not replaced if 1142 * already in use. 1143 * 1144 * Must hold slab_mutex. 1145 */ 1146 static int init_cache_node_node(int node) 1147 { 1148 struct kmem_cache *cachep; 1149 struct kmem_cache_node *n; 1150 const int memsize = sizeof(struct kmem_cache_node); 1151 1152 list_for_each_entry(cachep, &slab_caches, list) { 1153 /* 1154 * Set up the size64 kmemlist for cpu before we can 1155 * begin anything. Make sure some other cpu on this 1156 * node has not already allocated this 1157 */ 1158 if (!cachep->node[node]) { 1159 n = kmalloc_node(memsize, GFP_KERNEL, node); 1160 if (!n) 1161 return -ENOMEM; 1162 kmem_cache_node_init(n); 1163 n->next_reap = jiffies + REAPTIMEOUT_LIST3 + 1164 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1165 1166 /* 1167 * The l3s don't come and go as CPUs come and 1168 * go. slab_mutex is sufficient 1169 * protection here. 1170 */ 1171 cachep->node[node] = n; 1172 } 1173 1174 spin_lock_irq(&cachep->node[node]->list_lock); 1175 cachep->node[node]->free_limit = 1176 (1 + nr_cpus_node(node)) * 1177 cachep->batchcount + cachep->num; 1178 spin_unlock_irq(&cachep->node[node]->list_lock); 1179 } 1180 return 0; 1181 } 1182 1183 static void __cpuinit cpuup_canceled(long cpu) 1184 { 1185 struct kmem_cache *cachep; 1186 struct kmem_cache_node *n = NULL; 1187 int node = cpu_to_mem(cpu); 1188 const struct cpumask *mask = cpumask_of_node(node); 1189 1190 list_for_each_entry(cachep, &slab_caches, list) { 1191 struct array_cache *nc; 1192 struct array_cache *shared; 1193 struct array_cache **alien; 1194 1195 /* cpu is dead; no one can alloc from it. */ 1196 nc = cachep->array[cpu]; 1197 cachep->array[cpu] = NULL; 1198 n = cachep->node[node]; 1199 1200 if (!n) 1201 goto free_array_cache; 1202 1203 spin_lock_irq(&n->list_lock); 1204 1205 /* Free limit for this kmem_cache_node */ 1206 n->free_limit -= cachep->batchcount; 1207 if (nc) 1208 free_block(cachep, nc->entry, nc->avail, node); 1209 1210 if (!cpumask_empty(mask)) { 1211 spin_unlock_irq(&n->list_lock); 1212 goto free_array_cache; 1213 } 1214 1215 shared = n->shared; 1216 if (shared) { 1217 free_block(cachep, shared->entry, 1218 shared->avail, node); 1219 n->shared = NULL; 1220 } 1221 1222 alien = n->alien; 1223 n->alien = NULL; 1224 1225 spin_unlock_irq(&n->list_lock); 1226 1227 kfree(shared); 1228 if (alien) { 1229 drain_alien_cache(cachep, alien); 1230 free_alien_cache(alien); 1231 } 1232 free_array_cache: 1233 kfree(nc); 1234 } 1235 /* 1236 * In the previous loop, all the objects were freed to 1237 * the respective cache's slabs, now we can go ahead and 1238 * shrink each nodelist to its limit. 1239 */ 1240 list_for_each_entry(cachep, &slab_caches, list) { 1241 n = cachep->node[node]; 1242 if (!n) 1243 continue; 1244 drain_freelist(cachep, n, n->free_objects); 1245 } 1246 } 1247 1248 static int __cpuinit cpuup_prepare(long cpu) 1249 { 1250 struct kmem_cache *cachep; 1251 struct kmem_cache_node *n = NULL; 1252 int node = cpu_to_mem(cpu); 1253 int err; 1254 1255 /* 1256 * We need to do this right in the beginning since 1257 * alloc_arraycache's are going to use this list. 1258 * kmalloc_node allows us to add the slab to the right 1259 * kmem_cache_node and not this cpu's kmem_cache_node 1260 */ 1261 err = init_cache_node_node(node); 1262 if (err < 0) 1263 goto bad; 1264 1265 /* 1266 * Now we can go ahead with allocating the shared arrays and 1267 * array caches 1268 */ 1269 list_for_each_entry(cachep, &slab_caches, list) { 1270 struct array_cache *nc; 1271 struct array_cache *shared = NULL; 1272 struct array_cache **alien = NULL; 1273 1274 nc = alloc_arraycache(node, cachep->limit, 1275 cachep->batchcount, GFP_KERNEL); 1276 if (!nc) 1277 goto bad; 1278 if (cachep->shared) { 1279 shared = alloc_arraycache(node, 1280 cachep->shared * cachep->batchcount, 1281 0xbaadf00d, GFP_KERNEL); 1282 if (!shared) { 1283 kfree(nc); 1284 goto bad; 1285 } 1286 } 1287 if (use_alien_caches) { 1288 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); 1289 if (!alien) { 1290 kfree(shared); 1291 kfree(nc); 1292 goto bad; 1293 } 1294 } 1295 cachep->array[cpu] = nc; 1296 n = cachep->node[node]; 1297 BUG_ON(!n); 1298 1299 spin_lock_irq(&n->list_lock); 1300 if (!n->shared) { 1301 /* 1302 * We are serialised from CPU_DEAD or 1303 * CPU_UP_CANCELLED by the cpucontrol lock 1304 */ 1305 n->shared = shared; 1306 shared = NULL; 1307 } 1308 #ifdef CONFIG_NUMA 1309 if (!n->alien) { 1310 n->alien = alien; 1311 alien = NULL; 1312 } 1313 #endif 1314 spin_unlock_irq(&n->list_lock); 1315 kfree(shared); 1316 free_alien_cache(alien); 1317 if (cachep->flags & SLAB_DEBUG_OBJECTS) 1318 slab_set_debugobj_lock_classes_node(cachep, node); 1319 else if (!OFF_SLAB(cachep) && 1320 !(cachep->flags & SLAB_DESTROY_BY_RCU)) 1321 on_slab_lock_classes_node(cachep, node); 1322 } 1323 init_node_lock_keys(node); 1324 1325 return 0; 1326 bad: 1327 cpuup_canceled(cpu); 1328 return -ENOMEM; 1329 } 1330 1331 static int __cpuinit cpuup_callback(struct notifier_block *nfb, 1332 unsigned long action, void *hcpu) 1333 { 1334 long cpu = (long)hcpu; 1335 int err = 0; 1336 1337 switch (action) { 1338 case CPU_UP_PREPARE: 1339 case CPU_UP_PREPARE_FROZEN: 1340 mutex_lock(&slab_mutex); 1341 err = cpuup_prepare(cpu); 1342 mutex_unlock(&slab_mutex); 1343 break; 1344 case CPU_ONLINE: 1345 case CPU_ONLINE_FROZEN: 1346 start_cpu_timer(cpu); 1347 break; 1348 #ifdef CONFIG_HOTPLUG_CPU 1349 case CPU_DOWN_PREPARE: 1350 case CPU_DOWN_PREPARE_FROZEN: 1351 /* 1352 * Shutdown cache reaper. Note that the slab_mutex is 1353 * held so that if cache_reap() is invoked it cannot do 1354 * anything expensive but will only modify reap_work 1355 * and reschedule the timer. 1356 */ 1357 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1358 /* Now the cache_reaper is guaranteed to be not running. */ 1359 per_cpu(slab_reap_work, cpu).work.func = NULL; 1360 break; 1361 case CPU_DOWN_FAILED: 1362 case CPU_DOWN_FAILED_FROZEN: 1363 start_cpu_timer(cpu); 1364 break; 1365 case CPU_DEAD: 1366 case CPU_DEAD_FROZEN: 1367 /* 1368 * Even if all the cpus of a node are down, we don't free the 1369 * kmem_cache_node of any cache. This to avoid a race between 1370 * cpu_down, and a kmalloc allocation from another cpu for 1371 * memory from the node of the cpu going down. The node 1372 * structure is usually allocated from kmem_cache_create() and 1373 * gets destroyed at kmem_cache_destroy(). 1374 */ 1375 /* fall through */ 1376 #endif 1377 case CPU_UP_CANCELED: 1378 case CPU_UP_CANCELED_FROZEN: 1379 mutex_lock(&slab_mutex); 1380 cpuup_canceled(cpu); 1381 mutex_unlock(&slab_mutex); 1382 break; 1383 } 1384 return notifier_from_errno(err); 1385 } 1386 1387 static struct notifier_block __cpuinitdata cpucache_notifier = { 1388 &cpuup_callback, NULL, 0 1389 }; 1390 1391 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1392 /* 1393 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1394 * Returns -EBUSY if all objects cannot be drained so that the node is not 1395 * removed. 1396 * 1397 * Must hold slab_mutex. 1398 */ 1399 static int __meminit drain_cache_node_node(int node) 1400 { 1401 struct kmem_cache *cachep; 1402 int ret = 0; 1403 1404 list_for_each_entry(cachep, &slab_caches, list) { 1405 struct kmem_cache_node *n; 1406 1407 n = cachep->node[node]; 1408 if (!n) 1409 continue; 1410 1411 drain_freelist(cachep, n, n->free_objects); 1412 1413 if (!list_empty(&n->slabs_full) || 1414 !list_empty(&n->slabs_partial)) { 1415 ret = -EBUSY; 1416 break; 1417 } 1418 } 1419 return ret; 1420 } 1421 1422 static int __meminit slab_memory_callback(struct notifier_block *self, 1423 unsigned long action, void *arg) 1424 { 1425 struct memory_notify *mnb = arg; 1426 int ret = 0; 1427 int nid; 1428 1429 nid = mnb->status_change_nid; 1430 if (nid < 0) 1431 goto out; 1432 1433 switch (action) { 1434 case MEM_GOING_ONLINE: 1435 mutex_lock(&slab_mutex); 1436 ret = init_cache_node_node(nid); 1437 mutex_unlock(&slab_mutex); 1438 break; 1439 case MEM_GOING_OFFLINE: 1440 mutex_lock(&slab_mutex); 1441 ret = drain_cache_node_node(nid); 1442 mutex_unlock(&slab_mutex); 1443 break; 1444 case MEM_ONLINE: 1445 case MEM_OFFLINE: 1446 case MEM_CANCEL_ONLINE: 1447 case MEM_CANCEL_OFFLINE: 1448 break; 1449 } 1450 out: 1451 return notifier_from_errno(ret); 1452 } 1453 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1454 1455 /* 1456 * swap the static kmem_cache_node with kmalloced memory 1457 */ 1458 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1459 int nodeid) 1460 { 1461 struct kmem_cache_node *ptr; 1462 1463 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1464 BUG_ON(!ptr); 1465 1466 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1467 /* 1468 * Do not assume that spinlocks can be initialized via memcpy: 1469 */ 1470 spin_lock_init(&ptr->list_lock); 1471 1472 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1473 cachep->node[nodeid] = ptr; 1474 } 1475 1476 /* 1477 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1478 * size of kmem_cache_node. 1479 */ 1480 static void __init set_up_node(struct kmem_cache *cachep, int index) 1481 { 1482 int node; 1483 1484 for_each_online_node(node) { 1485 cachep->node[node] = &init_kmem_cache_node[index + node]; 1486 cachep->node[node]->next_reap = jiffies + 1487 REAPTIMEOUT_LIST3 + 1488 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1489 } 1490 } 1491 1492 /* 1493 * The memory after the last cpu cache pointer is used for the 1494 * the node pointer. 1495 */ 1496 static void setup_node_pointer(struct kmem_cache *cachep) 1497 { 1498 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids]; 1499 } 1500 1501 /* 1502 * Initialisation. Called after the page allocator have been initialised and 1503 * before smp_init(). 1504 */ 1505 void __init kmem_cache_init(void) 1506 { 1507 int i; 1508 1509 kmem_cache = &kmem_cache_boot; 1510 setup_node_pointer(kmem_cache); 1511 1512 if (num_possible_nodes() == 1) 1513 use_alien_caches = 0; 1514 1515 for (i = 0; i < NUM_INIT_LISTS; i++) 1516 kmem_cache_node_init(&init_kmem_cache_node[i]); 1517 1518 set_up_node(kmem_cache, CACHE_CACHE); 1519 1520 /* 1521 * Fragmentation resistance on low memory - only use bigger 1522 * page orders on machines with more than 32MB of memory if 1523 * not overridden on the command line. 1524 */ 1525 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1526 slab_max_order = SLAB_MAX_ORDER_HI; 1527 1528 /* Bootstrap is tricky, because several objects are allocated 1529 * from caches that do not exist yet: 1530 * 1) initialize the kmem_cache cache: it contains the struct 1531 * kmem_cache structures of all caches, except kmem_cache itself: 1532 * kmem_cache is statically allocated. 1533 * Initially an __init data area is used for the head array and the 1534 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1535 * array at the end of the bootstrap. 1536 * 2) Create the first kmalloc cache. 1537 * The struct kmem_cache for the new cache is allocated normally. 1538 * An __init data area is used for the head array. 1539 * 3) Create the remaining kmalloc caches, with minimally sized 1540 * head arrays. 1541 * 4) Replace the __init data head arrays for kmem_cache and the first 1542 * kmalloc cache with kmalloc allocated arrays. 1543 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1544 * the other cache's with kmalloc allocated memory. 1545 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1546 */ 1547 1548 /* 1) create the kmem_cache */ 1549 1550 /* 1551 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1552 */ 1553 create_boot_cache(kmem_cache, "kmem_cache", 1554 offsetof(struct kmem_cache, array[nr_cpu_ids]) + 1555 nr_node_ids * sizeof(struct kmem_cache_node *), 1556 SLAB_HWCACHE_ALIGN); 1557 list_add(&kmem_cache->list, &slab_caches); 1558 1559 /* 2+3) create the kmalloc caches */ 1560 1561 /* 1562 * Initialize the caches that provide memory for the array cache and the 1563 * kmem_cache_node structures first. Without this, further allocations will 1564 * bug. 1565 */ 1566 1567 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac", 1568 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS); 1569 1570 if (INDEX_AC != INDEX_NODE) 1571 kmalloc_caches[INDEX_NODE] = 1572 create_kmalloc_cache("kmalloc-node", 1573 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1574 1575 slab_early_init = 0; 1576 1577 /* 4) Replace the bootstrap head arrays */ 1578 { 1579 struct array_cache *ptr; 1580 1581 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1582 1583 memcpy(ptr, cpu_cache_get(kmem_cache), 1584 sizeof(struct arraycache_init)); 1585 /* 1586 * Do not assume that spinlocks can be initialized via memcpy: 1587 */ 1588 spin_lock_init(&ptr->lock); 1589 1590 kmem_cache->array[smp_processor_id()] = ptr; 1591 1592 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1593 1594 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC]) 1595 != &initarray_generic.cache); 1596 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]), 1597 sizeof(struct arraycache_init)); 1598 /* 1599 * Do not assume that spinlocks can be initialized via memcpy: 1600 */ 1601 spin_lock_init(&ptr->lock); 1602 1603 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr; 1604 } 1605 /* 5) Replace the bootstrap kmem_cache_node */ 1606 { 1607 int nid; 1608 1609 for_each_online_node(nid) { 1610 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1611 1612 init_list(kmalloc_caches[INDEX_AC], 1613 &init_kmem_cache_node[SIZE_AC + nid], nid); 1614 1615 if (INDEX_AC != INDEX_NODE) { 1616 init_list(kmalloc_caches[INDEX_NODE], 1617 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1618 } 1619 } 1620 } 1621 1622 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1623 } 1624 1625 void __init kmem_cache_init_late(void) 1626 { 1627 struct kmem_cache *cachep; 1628 1629 slab_state = UP; 1630 1631 /* 6) resize the head arrays to their final sizes */ 1632 mutex_lock(&slab_mutex); 1633 list_for_each_entry(cachep, &slab_caches, list) 1634 if (enable_cpucache(cachep, GFP_NOWAIT)) 1635 BUG(); 1636 mutex_unlock(&slab_mutex); 1637 1638 /* Annotate slab for lockdep -- annotate the malloc caches */ 1639 init_lock_keys(); 1640 1641 /* Done! */ 1642 slab_state = FULL; 1643 1644 /* 1645 * Register a cpu startup notifier callback that initializes 1646 * cpu_cache_get for all new cpus 1647 */ 1648 register_cpu_notifier(&cpucache_notifier); 1649 1650 #ifdef CONFIG_NUMA 1651 /* 1652 * Register a memory hotplug callback that initializes and frees 1653 * node. 1654 */ 1655 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1656 #endif 1657 1658 /* 1659 * The reap timers are started later, with a module init call: That part 1660 * of the kernel is not yet operational. 1661 */ 1662 } 1663 1664 static int __init cpucache_init(void) 1665 { 1666 int cpu; 1667 1668 /* 1669 * Register the timers that return unneeded pages to the page allocator 1670 */ 1671 for_each_online_cpu(cpu) 1672 start_cpu_timer(cpu); 1673 1674 /* Done! */ 1675 slab_state = FULL; 1676 return 0; 1677 } 1678 __initcall(cpucache_init); 1679 1680 static noinline void 1681 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1682 { 1683 struct kmem_cache_node *n; 1684 struct slab *slabp; 1685 unsigned long flags; 1686 int node; 1687 1688 printk(KERN_WARNING 1689 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1690 nodeid, gfpflags); 1691 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n", 1692 cachep->name, cachep->size, cachep->gfporder); 1693 1694 for_each_online_node(node) { 1695 unsigned long active_objs = 0, num_objs = 0, free_objects = 0; 1696 unsigned long active_slabs = 0, num_slabs = 0; 1697 1698 n = cachep->node[node]; 1699 if (!n) 1700 continue; 1701 1702 spin_lock_irqsave(&n->list_lock, flags); 1703 list_for_each_entry(slabp, &n->slabs_full, list) { 1704 active_objs += cachep->num; 1705 active_slabs++; 1706 } 1707 list_for_each_entry(slabp, &n->slabs_partial, list) { 1708 active_objs += slabp->inuse; 1709 active_slabs++; 1710 } 1711 list_for_each_entry(slabp, &n->slabs_free, list) 1712 num_slabs++; 1713 1714 free_objects += n->free_objects; 1715 spin_unlock_irqrestore(&n->list_lock, flags); 1716 1717 num_slabs += active_slabs; 1718 num_objs = num_slabs * cachep->num; 1719 printk(KERN_WARNING 1720 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", 1721 node, active_slabs, num_slabs, active_objs, num_objs, 1722 free_objects); 1723 } 1724 } 1725 1726 /* 1727 * Interface to system's page allocator. No need to hold the cache-lock. 1728 * 1729 * If we requested dmaable memory, we will get it. Even if we 1730 * did not request dmaable memory, we might get it, but that 1731 * would be relatively rare and ignorable. 1732 */ 1733 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) 1734 { 1735 struct page *page; 1736 int nr_pages; 1737 int i; 1738 1739 #ifndef CONFIG_MMU 1740 /* 1741 * Nommu uses slab's for process anonymous memory allocations, and thus 1742 * requires __GFP_COMP to properly refcount higher order allocations 1743 */ 1744 flags |= __GFP_COMP; 1745 #endif 1746 1747 flags |= cachep->allocflags; 1748 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1749 flags |= __GFP_RECLAIMABLE; 1750 1751 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1752 if (!page) { 1753 if (!(flags & __GFP_NOWARN) && printk_ratelimit()) 1754 slab_out_of_memory(cachep, flags, nodeid); 1755 return NULL; 1756 } 1757 1758 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1759 if (unlikely(page->pfmemalloc)) 1760 pfmemalloc_active = true; 1761 1762 nr_pages = (1 << cachep->gfporder); 1763 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1764 add_zone_page_state(page_zone(page), 1765 NR_SLAB_RECLAIMABLE, nr_pages); 1766 else 1767 add_zone_page_state(page_zone(page), 1768 NR_SLAB_UNRECLAIMABLE, nr_pages); 1769 for (i = 0; i < nr_pages; i++) { 1770 __SetPageSlab(page + i); 1771 1772 if (page->pfmemalloc) 1773 SetPageSlabPfmemalloc(page + i); 1774 } 1775 memcg_bind_pages(cachep, cachep->gfporder); 1776 1777 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1778 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1779 1780 if (cachep->ctor) 1781 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1782 else 1783 kmemcheck_mark_unallocated_pages(page, nr_pages); 1784 } 1785 1786 return page_address(page); 1787 } 1788 1789 /* 1790 * Interface to system's page release. 1791 */ 1792 static void kmem_freepages(struct kmem_cache *cachep, void *addr) 1793 { 1794 unsigned long i = (1 << cachep->gfporder); 1795 struct page *page = virt_to_page(addr); 1796 const unsigned long nr_freed = i; 1797 1798 kmemcheck_free_shadow(page, cachep->gfporder); 1799 1800 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1801 sub_zone_page_state(page_zone(page), 1802 NR_SLAB_RECLAIMABLE, nr_freed); 1803 else 1804 sub_zone_page_state(page_zone(page), 1805 NR_SLAB_UNRECLAIMABLE, nr_freed); 1806 while (i--) { 1807 BUG_ON(!PageSlab(page)); 1808 __ClearPageSlabPfmemalloc(page); 1809 __ClearPageSlab(page); 1810 page++; 1811 } 1812 1813 memcg_release_pages(cachep, cachep->gfporder); 1814 if (current->reclaim_state) 1815 current->reclaim_state->reclaimed_slab += nr_freed; 1816 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder); 1817 } 1818 1819 static void kmem_rcu_free(struct rcu_head *head) 1820 { 1821 struct slab_rcu *slab_rcu = (struct slab_rcu *)head; 1822 struct kmem_cache *cachep = slab_rcu->cachep; 1823 1824 kmem_freepages(cachep, slab_rcu->addr); 1825 if (OFF_SLAB(cachep)) 1826 kmem_cache_free(cachep->slabp_cache, slab_rcu); 1827 } 1828 1829 #if DEBUG 1830 1831 #ifdef CONFIG_DEBUG_PAGEALLOC 1832 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1833 unsigned long caller) 1834 { 1835 int size = cachep->object_size; 1836 1837 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1838 1839 if (size < 5 * sizeof(unsigned long)) 1840 return; 1841 1842 *addr++ = 0x12345678; 1843 *addr++ = caller; 1844 *addr++ = smp_processor_id(); 1845 size -= 3 * sizeof(unsigned long); 1846 { 1847 unsigned long *sptr = &caller; 1848 unsigned long svalue; 1849 1850 while (!kstack_end(sptr)) { 1851 svalue = *sptr++; 1852 if (kernel_text_address(svalue)) { 1853 *addr++ = svalue; 1854 size -= sizeof(unsigned long); 1855 if (size <= sizeof(unsigned long)) 1856 break; 1857 } 1858 } 1859 1860 } 1861 *addr++ = 0x87654321; 1862 } 1863 #endif 1864 1865 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1866 { 1867 int size = cachep->object_size; 1868 addr = &((char *)addr)[obj_offset(cachep)]; 1869 1870 memset(addr, val, size); 1871 *(unsigned char *)(addr + size - 1) = POISON_END; 1872 } 1873 1874 static void dump_line(char *data, int offset, int limit) 1875 { 1876 int i; 1877 unsigned char error = 0; 1878 int bad_count = 0; 1879 1880 printk(KERN_ERR "%03x: ", offset); 1881 for (i = 0; i < limit; i++) { 1882 if (data[offset + i] != POISON_FREE) { 1883 error = data[offset + i]; 1884 bad_count++; 1885 } 1886 } 1887 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1888 &data[offset], limit, 1); 1889 1890 if (bad_count == 1) { 1891 error ^= POISON_FREE; 1892 if (!(error & (error - 1))) { 1893 printk(KERN_ERR "Single bit error detected. Probably " 1894 "bad RAM.\n"); 1895 #ifdef CONFIG_X86 1896 printk(KERN_ERR "Run memtest86+ or a similar memory " 1897 "test tool.\n"); 1898 #else 1899 printk(KERN_ERR "Run a memory test tool.\n"); 1900 #endif 1901 } 1902 } 1903 } 1904 #endif 1905 1906 #if DEBUG 1907 1908 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1909 { 1910 int i, size; 1911 char *realobj; 1912 1913 if (cachep->flags & SLAB_RED_ZONE) { 1914 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 1915 *dbg_redzone1(cachep, objp), 1916 *dbg_redzone2(cachep, objp)); 1917 } 1918 1919 if (cachep->flags & SLAB_STORE_USER) { 1920 printk(KERN_ERR "Last user: [<%p>](%pSR)\n", 1921 *dbg_userword(cachep, objp), 1922 *dbg_userword(cachep, objp)); 1923 } 1924 realobj = (char *)objp + obj_offset(cachep); 1925 size = cachep->object_size; 1926 for (i = 0; i < size && lines; i += 16, lines--) { 1927 int limit; 1928 limit = 16; 1929 if (i + limit > size) 1930 limit = size - i; 1931 dump_line(realobj, i, limit); 1932 } 1933 } 1934 1935 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1936 { 1937 char *realobj; 1938 int size, i; 1939 int lines = 0; 1940 1941 realobj = (char *)objp + obj_offset(cachep); 1942 size = cachep->object_size; 1943 1944 for (i = 0; i < size; i++) { 1945 char exp = POISON_FREE; 1946 if (i == size - 1) 1947 exp = POISON_END; 1948 if (realobj[i] != exp) { 1949 int limit; 1950 /* Mismatch ! */ 1951 /* Print header */ 1952 if (lines == 0) { 1953 printk(KERN_ERR 1954 "Slab corruption (%s): %s start=%p, len=%d\n", 1955 print_tainted(), cachep->name, realobj, size); 1956 print_objinfo(cachep, objp, 0); 1957 } 1958 /* Hexdump the affected line */ 1959 i = (i / 16) * 16; 1960 limit = 16; 1961 if (i + limit > size) 1962 limit = size - i; 1963 dump_line(realobj, i, limit); 1964 i += 16; 1965 lines++; 1966 /* Limit to 5 lines */ 1967 if (lines > 5) 1968 break; 1969 } 1970 } 1971 if (lines != 0) { 1972 /* Print some data about the neighboring objects, if they 1973 * exist: 1974 */ 1975 struct slab *slabp = virt_to_slab(objp); 1976 unsigned int objnr; 1977 1978 objnr = obj_to_index(cachep, slabp, objp); 1979 if (objnr) { 1980 objp = index_to_obj(cachep, slabp, objnr - 1); 1981 realobj = (char *)objp + obj_offset(cachep); 1982 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1983 realobj, size); 1984 print_objinfo(cachep, objp, 2); 1985 } 1986 if (objnr + 1 < cachep->num) { 1987 objp = index_to_obj(cachep, slabp, objnr + 1); 1988 realobj = (char *)objp + obj_offset(cachep); 1989 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1990 realobj, size); 1991 print_objinfo(cachep, objp, 2); 1992 } 1993 } 1994 } 1995 #endif 1996 1997 #if DEBUG 1998 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 1999 { 2000 int i; 2001 for (i = 0; i < cachep->num; i++) { 2002 void *objp = index_to_obj(cachep, slabp, i); 2003 2004 if (cachep->flags & SLAB_POISON) { 2005 #ifdef CONFIG_DEBUG_PAGEALLOC 2006 if (cachep->size % PAGE_SIZE == 0 && 2007 OFF_SLAB(cachep)) 2008 kernel_map_pages(virt_to_page(objp), 2009 cachep->size / PAGE_SIZE, 1); 2010 else 2011 check_poison_obj(cachep, objp); 2012 #else 2013 check_poison_obj(cachep, objp); 2014 #endif 2015 } 2016 if (cachep->flags & SLAB_RED_ZONE) { 2017 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2018 slab_error(cachep, "start of a freed object " 2019 "was overwritten"); 2020 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2021 slab_error(cachep, "end of a freed object " 2022 "was overwritten"); 2023 } 2024 } 2025 } 2026 #else 2027 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 2028 { 2029 } 2030 #endif 2031 2032 /** 2033 * slab_destroy - destroy and release all objects in a slab 2034 * @cachep: cache pointer being destroyed 2035 * @slabp: slab pointer being destroyed 2036 * 2037 * Destroy all the objs in a slab, and release the mem back to the system. 2038 * Before calling the slab must have been unlinked from the cache. The 2039 * cache-lock is not held/needed. 2040 */ 2041 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) 2042 { 2043 void *addr = slabp->s_mem - slabp->colouroff; 2044 2045 slab_destroy_debugcheck(cachep, slabp); 2046 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 2047 struct slab_rcu *slab_rcu; 2048 2049 slab_rcu = (struct slab_rcu *)slabp; 2050 slab_rcu->cachep = cachep; 2051 slab_rcu->addr = addr; 2052 call_rcu(&slab_rcu->head, kmem_rcu_free); 2053 } else { 2054 kmem_freepages(cachep, addr); 2055 if (OFF_SLAB(cachep)) 2056 kmem_cache_free(cachep->slabp_cache, slabp); 2057 } 2058 } 2059 2060 /** 2061 * calculate_slab_order - calculate size (page order) of slabs 2062 * @cachep: pointer to the cache that is being created 2063 * @size: size of objects to be created in this cache. 2064 * @align: required alignment for the objects. 2065 * @flags: slab allocation flags 2066 * 2067 * Also calculates the number of objects per slab. 2068 * 2069 * This could be made much more intelligent. For now, try to avoid using 2070 * high order pages for slabs. When the gfp() functions are more friendly 2071 * towards high-order requests, this should be changed. 2072 */ 2073 static size_t calculate_slab_order(struct kmem_cache *cachep, 2074 size_t size, size_t align, unsigned long flags) 2075 { 2076 unsigned long offslab_limit; 2077 size_t left_over = 0; 2078 int gfporder; 2079 2080 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 2081 unsigned int num; 2082 size_t remainder; 2083 2084 cache_estimate(gfporder, size, align, flags, &remainder, &num); 2085 if (!num) 2086 continue; 2087 2088 if (flags & CFLGS_OFF_SLAB) { 2089 /* 2090 * Max number of objs-per-slab for caches which 2091 * use off-slab slabs. Needed to avoid a possible 2092 * looping condition in cache_grow(). 2093 */ 2094 offslab_limit = size - sizeof(struct slab); 2095 offslab_limit /= sizeof(kmem_bufctl_t); 2096 2097 if (num > offslab_limit) 2098 break; 2099 } 2100 2101 /* Found something acceptable - save it away */ 2102 cachep->num = num; 2103 cachep->gfporder = gfporder; 2104 left_over = remainder; 2105 2106 /* 2107 * A VFS-reclaimable slab tends to have most allocations 2108 * as GFP_NOFS and we really don't want to have to be allocating 2109 * higher-order pages when we are unable to shrink dcache. 2110 */ 2111 if (flags & SLAB_RECLAIM_ACCOUNT) 2112 break; 2113 2114 /* 2115 * Large number of objects is good, but very large slabs are 2116 * currently bad for the gfp()s. 2117 */ 2118 if (gfporder >= slab_max_order) 2119 break; 2120 2121 /* 2122 * Acceptable internal fragmentation? 2123 */ 2124 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 2125 break; 2126 } 2127 return left_over; 2128 } 2129 2130 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 2131 { 2132 if (slab_state >= FULL) 2133 return enable_cpucache(cachep, gfp); 2134 2135 if (slab_state == DOWN) { 2136 /* 2137 * Note: Creation of first cache (kmem_cache). 2138 * The setup_node is taken care 2139 * of by the caller of __kmem_cache_create 2140 */ 2141 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2142 slab_state = PARTIAL; 2143 } else if (slab_state == PARTIAL) { 2144 /* 2145 * Note: the second kmem_cache_create must create the cache 2146 * that's used by kmalloc(24), otherwise the creation of 2147 * further caches will BUG(). 2148 */ 2149 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2150 2151 /* 2152 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is 2153 * the second cache, then we need to set up all its node/, 2154 * otherwise the creation of further caches will BUG(). 2155 */ 2156 set_up_node(cachep, SIZE_AC); 2157 if (INDEX_AC == INDEX_NODE) 2158 slab_state = PARTIAL_NODE; 2159 else 2160 slab_state = PARTIAL_ARRAYCACHE; 2161 } else { 2162 /* Remaining boot caches */ 2163 cachep->array[smp_processor_id()] = 2164 kmalloc(sizeof(struct arraycache_init), gfp); 2165 2166 if (slab_state == PARTIAL_ARRAYCACHE) { 2167 set_up_node(cachep, SIZE_NODE); 2168 slab_state = PARTIAL_NODE; 2169 } else { 2170 int node; 2171 for_each_online_node(node) { 2172 cachep->node[node] = 2173 kmalloc_node(sizeof(struct kmem_cache_node), 2174 gfp, node); 2175 BUG_ON(!cachep->node[node]); 2176 kmem_cache_node_init(cachep->node[node]); 2177 } 2178 } 2179 } 2180 cachep->node[numa_mem_id()]->next_reap = 2181 jiffies + REAPTIMEOUT_LIST3 + 2182 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 2183 2184 cpu_cache_get(cachep)->avail = 0; 2185 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2186 cpu_cache_get(cachep)->batchcount = 1; 2187 cpu_cache_get(cachep)->touched = 0; 2188 cachep->batchcount = 1; 2189 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2190 return 0; 2191 } 2192 2193 /** 2194 * __kmem_cache_create - Create a cache. 2195 * @cachep: cache management descriptor 2196 * @flags: SLAB flags 2197 * 2198 * Returns a ptr to the cache on success, NULL on failure. 2199 * Cannot be called within a int, but can be interrupted. 2200 * The @ctor is run when new pages are allocated by the cache. 2201 * 2202 * The flags are 2203 * 2204 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2205 * to catch references to uninitialised memory. 2206 * 2207 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2208 * for buffer overruns. 2209 * 2210 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2211 * cacheline. This can be beneficial if you're counting cycles as closely 2212 * as davem. 2213 */ 2214 int 2215 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2216 { 2217 size_t left_over, slab_size, ralign; 2218 gfp_t gfp; 2219 int err; 2220 size_t size = cachep->size; 2221 2222 #if DEBUG 2223 #if FORCED_DEBUG 2224 /* 2225 * Enable redzoning and last user accounting, except for caches with 2226 * large objects, if the increased size would increase the object size 2227 * above the next power of two: caches with object sizes just above a 2228 * power of two have a significant amount of internal fragmentation. 2229 */ 2230 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2231 2 * sizeof(unsigned long long))) 2232 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2233 if (!(flags & SLAB_DESTROY_BY_RCU)) 2234 flags |= SLAB_POISON; 2235 #endif 2236 if (flags & SLAB_DESTROY_BY_RCU) 2237 BUG_ON(flags & SLAB_POISON); 2238 #endif 2239 2240 /* 2241 * Check that size is in terms of words. This is needed to avoid 2242 * unaligned accesses for some archs when redzoning is used, and makes 2243 * sure any on-slab bufctl's are also correctly aligned. 2244 */ 2245 if (size & (BYTES_PER_WORD - 1)) { 2246 size += (BYTES_PER_WORD - 1); 2247 size &= ~(BYTES_PER_WORD - 1); 2248 } 2249 2250 /* 2251 * Redzoning and user store require word alignment or possibly larger. 2252 * Note this will be overridden by architecture or caller mandated 2253 * alignment if either is greater than BYTES_PER_WORD. 2254 */ 2255 if (flags & SLAB_STORE_USER) 2256 ralign = BYTES_PER_WORD; 2257 2258 if (flags & SLAB_RED_ZONE) { 2259 ralign = REDZONE_ALIGN; 2260 /* If redzoning, ensure that the second redzone is suitably 2261 * aligned, by adjusting the object size accordingly. */ 2262 size += REDZONE_ALIGN - 1; 2263 size &= ~(REDZONE_ALIGN - 1); 2264 } 2265 2266 /* 3) caller mandated alignment */ 2267 if (ralign < cachep->align) { 2268 ralign = cachep->align; 2269 } 2270 /* disable debug if necessary */ 2271 if (ralign > __alignof__(unsigned long long)) 2272 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2273 /* 2274 * 4) Store it. 2275 */ 2276 cachep->align = ralign; 2277 2278 if (slab_is_available()) 2279 gfp = GFP_KERNEL; 2280 else 2281 gfp = GFP_NOWAIT; 2282 2283 setup_node_pointer(cachep); 2284 #if DEBUG 2285 2286 /* 2287 * Both debugging options require word-alignment which is calculated 2288 * into align above. 2289 */ 2290 if (flags & SLAB_RED_ZONE) { 2291 /* add space for red zone words */ 2292 cachep->obj_offset += sizeof(unsigned long long); 2293 size += 2 * sizeof(unsigned long long); 2294 } 2295 if (flags & SLAB_STORE_USER) { 2296 /* user store requires one word storage behind the end of 2297 * the real object. But if the second red zone needs to be 2298 * aligned to 64 bits, we must allow that much space. 2299 */ 2300 if (flags & SLAB_RED_ZONE) 2301 size += REDZONE_ALIGN; 2302 else 2303 size += BYTES_PER_WORD; 2304 } 2305 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2306 if (size >= kmalloc_size(INDEX_NODE + 1) 2307 && cachep->object_size > cache_line_size() 2308 && ALIGN(size, cachep->align) < PAGE_SIZE) { 2309 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); 2310 size = PAGE_SIZE; 2311 } 2312 #endif 2313 #endif 2314 2315 /* 2316 * Determine if the slab management is 'on' or 'off' slab. 2317 * (bootstrapping cannot cope with offslab caches so don't do 2318 * it too early on. Always use on-slab management when 2319 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) 2320 */ 2321 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init && 2322 !(flags & SLAB_NOLEAKTRACE)) 2323 /* 2324 * Size is large, assume best to place the slab management obj 2325 * off-slab (should allow better packing of objs). 2326 */ 2327 flags |= CFLGS_OFF_SLAB; 2328 2329 size = ALIGN(size, cachep->align); 2330 2331 left_over = calculate_slab_order(cachep, size, cachep->align, flags); 2332 2333 if (!cachep->num) 2334 return -E2BIG; 2335 2336 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) 2337 + sizeof(struct slab), cachep->align); 2338 2339 /* 2340 * If the slab has been placed off-slab, and we have enough space then 2341 * move it on-slab. This is at the expense of any extra colouring. 2342 */ 2343 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { 2344 flags &= ~CFLGS_OFF_SLAB; 2345 left_over -= slab_size; 2346 } 2347 2348 if (flags & CFLGS_OFF_SLAB) { 2349 /* really off slab. No need for manual alignment */ 2350 slab_size = 2351 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); 2352 2353 #ifdef CONFIG_PAGE_POISONING 2354 /* If we're going to use the generic kernel_map_pages() 2355 * poisoning, then it's going to smash the contents of 2356 * the redzone and userword anyhow, so switch them off. 2357 */ 2358 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) 2359 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2360 #endif 2361 } 2362 2363 cachep->colour_off = cache_line_size(); 2364 /* Offset must be a multiple of the alignment. */ 2365 if (cachep->colour_off < cachep->align) 2366 cachep->colour_off = cachep->align; 2367 cachep->colour = left_over / cachep->colour_off; 2368 cachep->slab_size = slab_size; 2369 cachep->flags = flags; 2370 cachep->allocflags = 0; 2371 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2372 cachep->allocflags |= GFP_DMA; 2373 cachep->size = size; 2374 cachep->reciprocal_buffer_size = reciprocal_value(size); 2375 2376 if (flags & CFLGS_OFF_SLAB) { 2377 cachep->slabp_cache = kmalloc_slab(slab_size, 0u); 2378 /* 2379 * This is a possibility for one of the malloc_sizes caches. 2380 * But since we go off slab only for object size greater than 2381 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, 2382 * this should not happen at all. 2383 * But leave a BUG_ON for some lucky dude. 2384 */ 2385 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); 2386 } 2387 2388 err = setup_cpu_cache(cachep, gfp); 2389 if (err) { 2390 __kmem_cache_shutdown(cachep); 2391 return err; 2392 } 2393 2394 if (flags & SLAB_DEBUG_OBJECTS) { 2395 /* 2396 * Would deadlock through slab_destroy()->call_rcu()-> 2397 * debug_object_activate()->kmem_cache_alloc(). 2398 */ 2399 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU); 2400 2401 slab_set_debugobj_lock_classes(cachep); 2402 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU)) 2403 on_slab_lock_classes(cachep); 2404 2405 return 0; 2406 } 2407 2408 #if DEBUG 2409 static void check_irq_off(void) 2410 { 2411 BUG_ON(!irqs_disabled()); 2412 } 2413 2414 static void check_irq_on(void) 2415 { 2416 BUG_ON(irqs_disabled()); 2417 } 2418 2419 static void check_spinlock_acquired(struct kmem_cache *cachep) 2420 { 2421 #ifdef CONFIG_SMP 2422 check_irq_off(); 2423 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock); 2424 #endif 2425 } 2426 2427 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2428 { 2429 #ifdef CONFIG_SMP 2430 check_irq_off(); 2431 assert_spin_locked(&cachep->node[node]->list_lock); 2432 #endif 2433 } 2434 2435 #else 2436 #define check_irq_off() do { } while(0) 2437 #define check_irq_on() do { } while(0) 2438 #define check_spinlock_acquired(x) do { } while(0) 2439 #define check_spinlock_acquired_node(x, y) do { } while(0) 2440 #endif 2441 2442 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 2443 struct array_cache *ac, 2444 int force, int node); 2445 2446 static void do_drain(void *arg) 2447 { 2448 struct kmem_cache *cachep = arg; 2449 struct array_cache *ac; 2450 int node = numa_mem_id(); 2451 2452 check_irq_off(); 2453 ac = cpu_cache_get(cachep); 2454 spin_lock(&cachep->node[node]->list_lock); 2455 free_block(cachep, ac->entry, ac->avail, node); 2456 spin_unlock(&cachep->node[node]->list_lock); 2457 ac->avail = 0; 2458 } 2459 2460 static void drain_cpu_caches(struct kmem_cache *cachep) 2461 { 2462 struct kmem_cache_node *n; 2463 int node; 2464 2465 on_each_cpu(do_drain, cachep, 1); 2466 check_irq_on(); 2467 for_each_online_node(node) { 2468 n = cachep->node[node]; 2469 if (n && n->alien) 2470 drain_alien_cache(cachep, n->alien); 2471 } 2472 2473 for_each_online_node(node) { 2474 n = cachep->node[node]; 2475 if (n) 2476 drain_array(cachep, n, n->shared, 1, node); 2477 } 2478 } 2479 2480 /* 2481 * Remove slabs from the list of free slabs. 2482 * Specify the number of slabs to drain in tofree. 2483 * 2484 * Returns the actual number of slabs released. 2485 */ 2486 static int drain_freelist(struct kmem_cache *cache, 2487 struct kmem_cache_node *n, int tofree) 2488 { 2489 struct list_head *p; 2490 int nr_freed; 2491 struct slab *slabp; 2492 2493 nr_freed = 0; 2494 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2495 2496 spin_lock_irq(&n->list_lock); 2497 p = n->slabs_free.prev; 2498 if (p == &n->slabs_free) { 2499 spin_unlock_irq(&n->list_lock); 2500 goto out; 2501 } 2502 2503 slabp = list_entry(p, struct slab, list); 2504 #if DEBUG 2505 BUG_ON(slabp->inuse); 2506 #endif 2507 list_del(&slabp->list); 2508 /* 2509 * Safe to drop the lock. The slab is no longer linked 2510 * to the cache. 2511 */ 2512 n->free_objects -= cache->num; 2513 spin_unlock_irq(&n->list_lock); 2514 slab_destroy(cache, slabp); 2515 nr_freed++; 2516 } 2517 out: 2518 return nr_freed; 2519 } 2520 2521 /* Called with slab_mutex held to protect against cpu hotplug */ 2522 static int __cache_shrink(struct kmem_cache *cachep) 2523 { 2524 int ret = 0, i = 0; 2525 struct kmem_cache_node *n; 2526 2527 drain_cpu_caches(cachep); 2528 2529 check_irq_on(); 2530 for_each_online_node(i) { 2531 n = cachep->node[i]; 2532 if (!n) 2533 continue; 2534 2535 drain_freelist(cachep, n, n->free_objects); 2536 2537 ret += !list_empty(&n->slabs_full) || 2538 !list_empty(&n->slabs_partial); 2539 } 2540 return (ret ? 1 : 0); 2541 } 2542 2543 /** 2544 * kmem_cache_shrink - Shrink a cache. 2545 * @cachep: The cache to shrink. 2546 * 2547 * Releases as many slabs as possible for a cache. 2548 * To help debugging, a zero exit status indicates all slabs were released. 2549 */ 2550 int kmem_cache_shrink(struct kmem_cache *cachep) 2551 { 2552 int ret; 2553 BUG_ON(!cachep || in_interrupt()); 2554 2555 get_online_cpus(); 2556 mutex_lock(&slab_mutex); 2557 ret = __cache_shrink(cachep); 2558 mutex_unlock(&slab_mutex); 2559 put_online_cpus(); 2560 return ret; 2561 } 2562 EXPORT_SYMBOL(kmem_cache_shrink); 2563 2564 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2565 { 2566 int i; 2567 struct kmem_cache_node *n; 2568 int rc = __cache_shrink(cachep); 2569 2570 if (rc) 2571 return rc; 2572 2573 for_each_online_cpu(i) 2574 kfree(cachep->array[i]); 2575 2576 /* NUMA: free the node structures */ 2577 for_each_online_node(i) { 2578 n = cachep->node[i]; 2579 if (n) { 2580 kfree(n->shared); 2581 free_alien_cache(n->alien); 2582 kfree(n); 2583 } 2584 } 2585 return 0; 2586 } 2587 2588 /* 2589 * Get the memory for a slab management obj. 2590 * For a slab cache when the slab descriptor is off-slab, slab descriptors 2591 * always come from malloc_sizes caches. The slab descriptor cannot 2592 * come from the same cache which is getting created because, 2593 * when we are searching for an appropriate cache for these 2594 * descriptors in kmem_cache_create, we search through the malloc_sizes array. 2595 * If we are creating a malloc_sizes cache here it would not be visible to 2596 * kmem_find_general_cachep till the initialization is complete. 2597 * Hence we cannot have slabp_cache same as the original cache. 2598 */ 2599 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, 2600 int colour_off, gfp_t local_flags, 2601 int nodeid) 2602 { 2603 struct slab *slabp; 2604 2605 if (OFF_SLAB(cachep)) { 2606 /* Slab management obj is off-slab. */ 2607 slabp = kmem_cache_alloc_node(cachep->slabp_cache, 2608 local_flags, nodeid); 2609 /* 2610 * If the first object in the slab is leaked (it's allocated 2611 * but no one has a reference to it), we want to make sure 2612 * kmemleak does not treat the ->s_mem pointer as a reference 2613 * to the object. Otherwise we will not report the leak. 2614 */ 2615 kmemleak_scan_area(&slabp->list, sizeof(struct list_head), 2616 local_flags); 2617 if (!slabp) 2618 return NULL; 2619 } else { 2620 slabp = objp + colour_off; 2621 colour_off += cachep->slab_size; 2622 } 2623 slabp->inuse = 0; 2624 slabp->colouroff = colour_off; 2625 slabp->s_mem = objp + colour_off; 2626 slabp->nodeid = nodeid; 2627 slabp->free = 0; 2628 return slabp; 2629 } 2630 2631 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) 2632 { 2633 return (kmem_bufctl_t *) (slabp + 1); 2634 } 2635 2636 static void cache_init_objs(struct kmem_cache *cachep, 2637 struct slab *slabp) 2638 { 2639 int i; 2640 2641 for (i = 0; i < cachep->num; i++) { 2642 void *objp = index_to_obj(cachep, slabp, i); 2643 #if DEBUG 2644 /* need to poison the objs? */ 2645 if (cachep->flags & SLAB_POISON) 2646 poison_obj(cachep, objp, POISON_FREE); 2647 if (cachep->flags & SLAB_STORE_USER) 2648 *dbg_userword(cachep, objp) = NULL; 2649 2650 if (cachep->flags & SLAB_RED_ZONE) { 2651 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2652 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2653 } 2654 /* 2655 * Constructors are not allowed to allocate memory from the same 2656 * cache which they are a constructor for. Otherwise, deadlock. 2657 * They must also be threaded. 2658 */ 2659 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2660 cachep->ctor(objp + obj_offset(cachep)); 2661 2662 if (cachep->flags & SLAB_RED_ZONE) { 2663 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2664 slab_error(cachep, "constructor overwrote the" 2665 " end of an object"); 2666 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2667 slab_error(cachep, "constructor overwrote the" 2668 " start of an object"); 2669 } 2670 if ((cachep->size % PAGE_SIZE) == 0 && 2671 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2672 kernel_map_pages(virt_to_page(objp), 2673 cachep->size / PAGE_SIZE, 0); 2674 #else 2675 if (cachep->ctor) 2676 cachep->ctor(objp); 2677 #endif 2678 slab_bufctl(slabp)[i] = i + 1; 2679 } 2680 slab_bufctl(slabp)[i - 1] = BUFCTL_END; 2681 } 2682 2683 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2684 { 2685 if (CONFIG_ZONE_DMA_FLAG) { 2686 if (flags & GFP_DMA) 2687 BUG_ON(!(cachep->allocflags & GFP_DMA)); 2688 else 2689 BUG_ON(cachep->allocflags & GFP_DMA); 2690 } 2691 } 2692 2693 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, 2694 int nodeid) 2695 { 2696 void *objp = index_to_obj(cachep, slabp, slabp->free); 2697 kmem_bufctl_t next; 2698 2699 slabp->inuse++; 2700 next = slab_bufctl(slabp)[slabp->free]; 2701 #if DEBUG 2702 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; 2703 WARN_ON(slabp->nodeid != nodeid); 2704 #endif 2705 slabp->free = next; 2706 2707 return objp; 2708 } 2709 2710 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, 2711 void *objp, int nodeid) 2712 { 2713 unsigned int objnr = obj_to_index(cachep, slabp, objp); 2714 2715 #if DEBUG 2716 /* Verify that the slab belongs to the intended node */ 2717 WARN_ON(slabp->nodeid != nodeid); 2718 2719 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { 2720 printk(KERN_ERR "slab: double free detected in cache " 2721 "'%s', objp %p\n", cachep->name, objp); 2722 BUG(); 2723 } 2724 #endif 2725 slab_bufctl(slabp)[objnr] = slabp->free; 2726 slabp->free = objnr; 2727 slabp->inuse--; 2728 } 2729 2730 /* 2731 * Map pages beginning at addr to the given cache and slab. This is required 2732 * for the slab allocator to be able to lookup the cache and slab of a 2733 * virtual address for kfree, ksize, and slab debugging. 2734 */ 2735 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, 2736 void *addr) 2737 { 2738 int nr_pages; 2739 struct page *page; 2740 2741 page = virt_to_page(addr); 2742 2743 nr_pages = 1; 2744 if (likely(!PageCompound(page))) 2745 nr_pages <<= cache->gfporder; 2746 2747 do { 2748 page->slab_cache = cache; 2749 page->slab_page = slab; 2750 page++; 2751 } while (--nr_pages); 2752 } 2753 2754 /* 2755 * Grow (by 1) the number of slabs within a cache. This is called by 2756 * kmem_cache_alloc() when there are no active objs left in a cache. 2757 */ 2758 static int cache_grow(struct kmem_cache *cachep, 2759 gfp_t flags, int nodeid, void *objp) 2760 { 2761 struct slab *slabp; 2762 size_t offset; 2763 gfp_t local_flags; 2764 struct kmem_cache_node *n; 2765 2766 /* 2767 * Be lazy and only check for valid flags here, keeping it out of the 2768 * critical path in kmem_cache_alloc(). 2769 */ 2770 BUG_ON(flags & GFP_SLAB_BUG_MASK); 2771 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2772 2773 /* Take the node list lock to change the colour_next on this node */ 2774 check_irq_off(); 2775 n = cachep->node[nodeid]; 2776 spin_lock(&n->list_lock); 2777 2778 /* Get colour for the slab, and cal the next value. */ 2779 offset = n->colour_next; 2780 n->colour_next++; 2781 if (n->colour_next >= cachep->colour) 2782 n->colour_next = 0; 2783 spin_unlock(&n->list_lock); 2784 2785 offset *= cachep->colour_off; 2786 2787 if (local_flags & __GFP_WAIT) 2788 local_irq_enable(); 2789 2790 /* 2791 * The test for missing atomic flag is performed here, rather than 2792 * the more obvious place, simply to reduce the critical path length 2793 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2794 * will eventually be caught here (where it matters). 2795 */ 2796 kmem_flagcheck(cachep, flags); 2797 2798 /* 2799 * Get mem for the objs. Attempt to allocate a physical page from 2800 * 'nodeid'. 2801 */ 2802 if (!objp) 2803 objp = kmem_getpages(cachep, local_flags, nodeid); 2804 if (!objp) 2805 goto failed; 2806 2807 /* Get slab management. */ 2808 slabp = alloc_slabmgmt(cachep, objp, offset, 2809 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2810 if (!slabp) 2811 goto opps1; 2812 2813 slab_map_pages(cachep, slabp, objp); 2814 2815 cache_init_objs(cachep, slabp); 2816 2817 if (local_flags & __GFP_WAIT) 2818 local_irq_disable(); 2819 check_irq_off(); 2820 spin_lock(&n->list_lock); 2821 2822 /* Make slab active. */ 2823 list_add_tail(&slabp->list, &(n->slabs_free)); 2824 STATS_INC_GROWN(cachep); 2825 n->free_objects += cachep->num; 2826 spin_unlock(&n->list_lock); 2827 return 1; 2828 opps1: 2829 kmem_freepages(cachep, objp); 2830 failed: 2831 if (local_flags & __GFP_WAIT) 2832 local_irq_disable(); 2833 return 0; 2834 } 2835 2836 #if DEBUG 2837 2838 /* 2839 * Perform extra freeing checks: 2840 * - detect bad pointers. 2841 * - POISON/RED_ZONE checking 2842 */ 2843 static void kfree_debugcheck(const void *objp) 2844 { 2845 if (!virt_addr_valid(objp)) { 2846 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2847 (unsigned long)objp); 2848 BUG(); 2849 } 2850 } 2851 2852 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2853 { 2854 unsigned long long redzone1, redzone2; 2855 2856 redzone1 = *dbg_redzone1(cache, obj); 2857 redzone2 = *dbg_redzone2(cache, obj); 2858 2859 /* 2860 * Redzone is ok. 2861 */ 2862 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2863 return; 2864 2865 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2866 slab_error(cache, "double free detected"); 2867 else 2868 slab_error(cache, "memory outside object was overwritten"); 2869 2870 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 2871 obj, redzone1, redzone2); 2872 } 2873 2874 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2875 unsigned long caller) 2876 { 2877 struct page *page; 2878 unsigned int objnr; 2879 struct slab *slabp; 2880 2881 BUG_ON(virt_to_cache(objp) != cachep); 2882 2883 objp -= obj_offset(cachep); 2884 kfree_debugcheck(objp); 2885 page = virt_to_head_page(objp); 2886 2887 slabp = page->slab_page; 2888 2889 if (cachep->flags & SLAB_RED_ZONE) { 2890 verify_redzone_free(cachep, objp); 2891 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2892 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2893 } 2894 if (cachep->flags & SLAB_STORE_USER) 2895 *dbg_userword(cachep, objp) = (void *)caller; 2896 2897 objnr = obj_to_index(cachep, slabp, objp); 2898 2899 BUG_ON(objnr >= cachep->num); 2900 BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); 2901 2902 #ifdef CONFIG_DEBUG_SLAB_LEAK 2903 slab_bufctl(slabp)[objnr] = BUFCTL_FREE; 2904 #endif 2905 if (cachep->flags & SLAB_POISON) { 2906 #ifdef CONFIG_DEBUG_PAGEALLOC 2907 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 2908 store_stackinfo(cachep, objp, caller); 2909 kernel_map_pages(virt_to_page(objp), 2910 cachep->size / PAGE_SIZE, 0); 2911 } else { 2912 poison_obj(cachep, objp, POISON_FREE); 2913 } 2914 #else 2915 poison_obj(cachep, objp, POISON_FREE); 2916 #endif 2917 } 2918 return objp; 2919 } 2920 2921 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) 2922 { 2923 kmem_bufctl_t i; 2924 int entries = 0; 2925 2926 /* Check slab's freelist to see if this obj is there. */ 2927 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { 2928 entries++; 2929 if (entries > cachep->num || i >= cachep->num) 2930 goto bad; 2931 } 2932 if (entries != cachep->num - slabp->inuse) { 2933 bad: 2934 printk(KERN_ERR "slab: Internal list corruption detected in " 2935 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n", 2936 cachep->name, cachep->num, slabp, slabp->inuse, 2937 print_tainted()); 2938 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp, 2939 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t), 2940 1); 2941 BUG(); 2942 } 2943 } 2944 #else 2945 #define kfree_debugcheck(x) do { } while(0) 2946 #define cache_free_debugcheck(x,objp,z) (objp) 2947 #define check_slabp(x,y) do { } while(0) 2948 #endif 2949 2950 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, 2951 bool force_refill) 2952 { 2953 int batchcount; 2954 struct kmem_cache_node *n; 2955 struct array_cache *ac; 2956 int node; 2957 2958 check_irq_off(); 2959 node = numa_mem_id(); 2960 if (unlikely(force_refill)) 2961 goto force_grow; 2962 retry: 2963 ac = cpu_cache_get(cachep); 2964 batchcount = ac->batchcount; 2965 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2966 /* 2967 * If there was little recent activity on this cache, then 2968 * perform only a partial refill. Otherwise we could generate 2969 * refill bouncing. 2970 */ 2971 batchcount = BATCHREFILL_LIMIT; 2972 } 2973 n = cachep->node[node]; 2974 2975 BUG_ON(ac->avail > 0 || !n); 2976 spin_lock(&n->list_lock); 2977 2978 /* See if we can refill from the shared array */ 2979 if (n->shared && transfer_objects(ac, n->shared, batchcount)) { 2980 n->shared->touched = 1; 2981 goto alloc_done; 2982 } 2983 2984 while (batchcount > 0) { 2985 struct list_head *entry; 2986 struct slab *slabp; 2987 /* Get slab alloc is to come from. */ 2988 entry = n->slabs_partial.next; 2989 if (entry == &n->slabs_partial) { 2990 n->free_touched = 1; 2991 entry = n->slabs_free.next; 2992 if (entry == &n->slabs_free) 2993 goto must_grow; 2994 } 2995 2996 slabp = list_entry(entry, struct slab, list); 2997 check_slabp(cachep, slabp); 2998 check_spinlock_acquired(cachep); 2999 3000 /* 3001 * The slab was either on partial or free list so 3002 * there must be at least one object available for 3003 * allocation. 3004 */ 3005 BUG_ON(slabp->inuse >= cachep->num); 3006 3007 while (slabp->inuse < cachep->num && batchcount--) { 3008 STATS_INC_ALLOCED(cachep); 3009 STATS_INC_ACTIVE(cachep); 3010 STATS_SET_HIGH(cachep); 3011 3012 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp, 3013 node)); 3014 } 3015 check_slabp(cachep, slabp); 3016 3017 /* move slabp to correct slabp list: */ 3018 list_del(&slabp->list); 3019 if (slabp->free == BUFCTL_END) 3020 list_add(&slabp->list, &n->slabs_full); 3021 else 3022 list_add(&slabp->list, &n->slabs_partial); 3023 } 3024 3025 must_grow: 3026 n->free_objects -= ac->avail; 3027 alloc_done: 3028 spin_unlock(&n->list_lock); 3029 3030 if (unlikely(!ac->avail)) { 3031 int x; 3032 force_grow: 3033 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 3034 3035 /* cache_grow can reenable interrupts, then ac could change. */ 3036 ac = cpu_cache_get(cachep); 3037 node = numa_mem_id(); 3038 3039 /* no objects in sight? abort */ 3040 if (!x && (ac->avail == 0 || force_refill)) 3041 return NULL; 3042 3043 if (!ac->avail) /* objects refilled by interrupt? */ 3044 goto retry; 3045 } 3046 ac->touched = 1; 3047 3048 return ac_get_obj(cachep, ac, flags, force_refill); 3049 } 3050 3051 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3052 gfp_t flags) 3053 { 3054 might_sleep_if(flags & __GFP_WAIT); 3055 #if DEBUG 3056 kmem_flagcheck(cachep, flags); 3057 #endif 3058 } 3059 3060 #if DEBUG 3061 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3062 gfp_t flags, void *objp, unsigned long caller) 3063 { 3064 if (!objp) 3065 return objp; 3066 if (cachep->flags & SLAB_POISON) { 3067 #ifdef CONFIG_DEBUG_PAGEALLOC 3068 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 3069 kernel_map_pages(virt_to_page(objp), 3070 cachep->size / PAGE_SIZE, 1); 3071 else 3072 check_poison_obj(cachep, objp); 3073 #else 3074 check_poison_obj(cachep, objp); 3075 #endif 3076 poison_obj(cachep, objp, POISON_INUSE); 3077 } 3078 if (cachep->flags & SLAB_STORE_USER) 3079 *dbg_userword(cachep, objp) = (void *)caller; 3080 3081 if (cachep->flags & SLAB_RED_ZONE) { 3082 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3083 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3084 slab_error(cachep, "double free, or memory outside" 3085 " object was overwritten"); 3086 printk(KERN_ERR 3087 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3088 objp, *dbg_redzone1(cachep, objp), 3089 *dbg_redzone2(cachep, objp)); 3090 } 3091 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3092 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3093 } 3094 #ifdef CONFIG_DEBUG_SLAB_LEAK 3095 { 3096 struct slab *slabp; 3097 unsigned objnr; 3098 3099 slabp = virt_to_head_page(objp)->slab_page; 3100 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size; 3101 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; 3102 } 3103 #endif 3104 objp += obj_offset(cachep); 3105 if (cachep->ctor && cachep->flags & SLAB_POISON) 3106 cachep->ctor(objp); 3107 if (ARCH_SLAB_MINALIGN && 3108 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3109 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3110 objp, (int)ARCH_SLAB_MINALIGN); 3111 } 3112 return objp; 3113 } 3114 #else 3115 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3116 #endif 3117 3118 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) 3119 { 3120 if (cachep == kmem_cache) 3121 return false; 3122 3123 return should_failslab(cachep->object_size, flags, cachep->flags); 3124 } 3125 3126 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3127 { 3128 void *objp; 3129 struct array_cache *ac; 3130 bool force_refill = false; 3131 3132 check_irq_off(); 3133 3134 ac = cpu_cache_get(cachep); 3135 if (likely(ac->avail)) { 3136 ac->touched = 1; 3137 objp = ac_get_obj(cachep, ac, flags, false); 3138 3139 /* 3140 * Allow for the possibility all avail objects are not allowed 3141 * by the current flags 3142 */ 3143 if (objp) { 3144 STATS_INC_ALLOCHIT(cachep); 3145 goto out; 3146 } 3147 force_refill = true; 3148 } 3149 3150 STATS_INC_ALLOCMISS(cachep); 3151 objp = cache_alloc_refill(cachep, flags, force_refill); 3152 /* 3153 * the 'ac' may be updated by cache_alloc_refill(), 3154 * and kmemleak_erase() requires its correct value. 3155 */ 3156 ac = cpu_cache_get(cachep); 3157 3158 out: 3159 /* 3160 * To avoid a false negative, if an object that is in one of the 3161 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3162 * treat the array pointers as a reference to the object. 3163 */ 3164 if (objp) 3165 kmemleak_erase(&ac->entry[ac->avail]); 3166 return objp; 3167 } 3168 3169 #ifdef CONFIG_NUMA 3170 /* 3171 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. 3172 * 3173 * If we are in_interrupt, then process context, including cpusets and 3174 * mempolicy, may not apply and should not be used for allocation policy. 3175 */ 3176 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3177 { 3178 int nid_alloc, nid_here; 3179 3180 if (in_interrupt() || (flags & __GFP_THISNODE)) 3181 return NULL; 3182 nid_alloc = nid_here = numa_mem_id(); 3183 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3184 nid_alloc = cpuset_slab_spread_node(); 3185 else if (current->mempolicy) 3186 nid_alloc = slab_node(); 3187 if (nid_alloc != nid_here) 3188 return ____cache_alloc_node(cachep, flags, nid_alloc); 3189 return NULL; 3190 } 3191 3192 /* 3193 * Fallback function if there was no memory available and no objects on a 3194 * certain node and fall back is permitted. First we scan all the 3195 * available node for available objects. If that fails then we 3196 * perform an allocation without specifying a node. This allows the page 3197 * allocator to do its reclaim / fallback magic. We then insert the 3198 * slab into the proper nodelist and then allocate from it. 3199 */ 3200 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3201 { 3202 struct zonelist *zonelist; 3203 gfp_t local_flags; 3204 struct zoneref *z; 3205 struct zone *zone; 3206 enum zone_type high_zoneidx = gfp_zone(flags); 3207 void *obj = NULL; 3208 int nid; 3209 unsigned int cpuset_mems_cookie; 3210 3211 if (flags & __GFP_THISNODE) 3212 return NULL; 3213 3214 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3215 3216 retry_cpuset: 3217 cpuset_mems_cookie = get_mems_allowed(); 3218 zonelist = node_zonelist(slab_node(), flags); 3219 3220 retry: 3221 /* 3222 * Look through allowed nodes for objects available 3223 * from existing per node queues. 3224 */ 3225 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3226 nid = zone_to_nid(zone); 3227 3228 if (cpuset_zone_allowed_hardwall(zone, flags) && 3229 cache->node[nid] && 3230 cache->node[nid]->free_objects) { 3231 obj = ____cache_alloc_node(cache, 3232 flags | GFP_THISNODE, nid); 3233 if (obj) 3234 break; 3235 } 3236 } 3237 3238 if (!obj) { 3239 /* 3240 * This allocation will be performed within the constraints 3241 * of the current cpuset / memory policy requirements. 3242 * We may trigger various forms of reclaim on the allowed 3243 * set and go into memory reserves if necessary. 3244 */ 3245 if (local_flags & __GFP_WAIT) 3246 local_irq_enable(); 3247 kmem_flagcheck(cache, flags); 3248 obj = kmem_getpages(cache, local_flags, numa_mem_id()); 3249 if (local_flags & __GFP_WAIT) 3250 local_irq_disable(); 3251 if (obj) { 3252 /* 3253 * Insert into the appropriate per node queues 3254 */ 3255 nid = page_to_nid(virt_to_page(obj)); 3256 if (cache_grow(cache, flags, nid, obj)) { 3257 obj = ____cache_alloc_node(cache, 3258 flags | GFP_THISNODE, nid); 3259 if (!obj) 3260 /* 3261 * Another processor may allocate the 3262 * objects in the slab since we are 3263 * not holding any locks. 3264 */ 3265 goto retry; 3266 } else { 3267 /* cache_grow already freed obj */ 3268 obj = NULL; 3269 } 3270 } 3271 } 3272 3273 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj)) 3274 goto retry_cpuset; 3275 return obj; 3276 } 3277 3278 /* 3279 * A interface to enable slab creation on nodeid 3280 */ 3281 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3282 int nodeid) 3283 { 3284 struct list_head *entry; 3285 struct slab *slabp; 3286 struct kmem_cache_node *n; 3287 void *obj; 3288 int x; 3289 3290 VM_BUG_ON(nodeid > num_online_nodes()); 3291 n = cachep->node[nodeid]; 3292 BUG_ON(!n); 3293 3294 retry: 3295 check_irq_off(); 3296 spin_lock(&n->list_lock); 3297 entry = n->slabs_partial.next; 3298 if (entry == &n->slabs_partial) { 3299 n->free_touched = 1; 3300 entry = n->slabs_free.next; 3301 if (entry == &n->slabs_free) 3302 goto must_grow; 3303 } 3304 3305 slabp = list_entry(entry, struct slab, list); 3306 check_spinlock_acquired_node(cachep, nodeid); 3307 check_slabp(cachep, slabp); 3308 3309 STATS_INC_NODEALLOCS(cachep); 3310 STATS_INC_ACTIVE(cachep); 3311 STATS_SET_HIGH(cachep); 3312 3313 BUG_ON(slabp->inuse == cachep->num); 3314 3315 obj = slab_get_obj(cachep, slabp, nodeid); 3316 check_slabp(cachep, slabp); 3317 n->free_objects--; 3318 /* move slabp to correct slabp list: */ 3319 list_del(&slabp->list); 3320 3321 if (slabp->free == BUFCTL_END) 3322 list_add(&slabp->list, &n->slabs_full); 3323 else 3324 list_add(&slabp->list, &n->slabs_partial); 3325 3326 spin_unlock(&n->list_lock); 3327 goto done; 3328 3329 must_grow: 3330 spin_unlock(&n->list_lock); 3331 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3332 if (x) 3333 goto retry; 3334 3335 return fallback_alloc(cachep, flags); 3336 3337 done: 3338 return obj; 3339 } 3340 3341 /** 3342 * kmem_cache_alloc_node - Allocate an object on the specified node 3343 * @cachep: The cache to allocate from. 3344 * @flags: See kmalloc(). 3345 * @nodeid: node number of the target node. 3346 * @caller: return address of caller, used for debug information 3347 * 3348 * Identical to kmem_cache_alloc but it will allocate memory on the given 3349 * node, which can improve the performance for cpu bound structures. 3350 * 3351 * Fallback to other node is possible if __GFP_THISNODE is not set. 3352 */ 3353 static __always_inline void * 3354 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3355 unsigned long caller) 3356 { 3357 unsigned long save_flags; 3358 void *ptr; 3359 int slab_node = numa_mem_id(); 3360 3361 flags &= gfp_allowed_mask; 3362 3363 lockdep_trace_alloc(flags); 3364 3365 if (slab_should_failslab(cachep, flags)) 3366 return NULL; 3367 3368 cachep = memcg_kmem_get_cache(cachep, flags); 3369 3370 cache_alloc_debugcheck_before(cachep, flags); 3371 local_irq_save(save_flags); 3372 3373 if (nodeid == NUMA_NO_NODE) 3374 nodeid = slab_node; 3375 3376 if (unlikely(!cachep->node[nodeid])) { 3377 /* Node not bootstrapped yet */ 3378 ptr = fallback_alloc(cachep, flags); 3379 goto out; 3380 } 3381 3382 if (nodeid == slab_node) { 3383 /* 3384 * Use the locally cached objects if possible. 3385 * However ____cache_alloc does not allow fallback 3386 * to other nodes. It may fail while we still have 3387 * objects on other nodes available. 3388 */ 3389 ptr = ____cache_alloc(cachep, flags); 3390 if (ptr) 3391 goto out; 3392 } 3393 /* ___cache_alloc_node can fall back to other nodes */ 3394 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3395 out: 3396 local_irq_restore(save_flags); 3397 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3398 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags, 3399 flags); 3400 3401 if (likely(ptr)) 3402 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size); 3403 3404 if (unlikely((flags & __GFP_ZERO) && ptr)) 3405 memset(ptr, 0, cachep->object_size); 3406 3407 return ptr; 3408 } 3409 3410 static __always_inline void * 3411 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3412 { 3413 void *objp; 3414 3415 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { 3416 objp = alternate_node_alloc(cache, flags); 3417 if (objp) 3418 goto out; 3419 } 3420 objp = ____cache_alloc(cache, flags); 3421 3422 /* 3423 * We may just have run out of memory on the local node. 3424 * ____cache_alloc_node() knows how to locate memory on other nodes 3425 */ 3426 if (!objp) 3427 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3428 3429 out: 3430 return objp; 3431 } 3432 #else 3433 3434 static __always_inline void * 3435 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3436 { 3437 return ____cache_alloc(cachep, flags); 3438 } 3439 3440 #endif /* CONFIG_NUMA */ 3441 3442 static __always_inline void * 3443 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3444 { 3445 unsigned long save_flags; 3446 void *objp; 3447 3448 flags &= gfp_allowed_mask; 3449 3450 lockdep_trace_alloc(flags); 3451 3452 if (slab_should_failslab(cachep, flags)) 3453 return NULL; 3454 3455 cachep = memcg_kmem_get_cache(cachep, flags); 3456 3457 cache_alloc_debugcheck_before(cachep, flags); 3458 local_irq_save(save_flags); 3459 objp = __do_cache_alloc(cachep, flags); 3460 local_irq_restore(save_flags); 3461 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3462 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags, 3463 flags); 3464 prefetchw(objp); 3465 3466 if (likely(objp)) 3467 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size); 3468 3469 if (unlikely((flags & __GFP_ZERO) && objp)) 3470 memset(objp, 0, cachep->object_size); 3471 3472 return objp; 3473 } 3474 3475 /* 3476 * Caller needs to acquire correct kmem_list's list_lock 3477 */ 3478 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, 3479 int node) 3480 { 3481 int i; 3482 struct kmem_cache_node *n; 3483 3484 for (i = 0; i < nr_objects; i++) { 3485 void *objp; 3486 struct slab *slabp; 3487 3488 clear_obj_pfmemalloc(&objpp[i]); 3489 objp = objpp[i]; 3490 3491 slabp = virt_to_slab(objp); 3492 n = cachep->node[node]; 3493 list_del(&slabp->list); 3494 check_spinlock_acquired_node(cachep, node); 3495 check_slabp(cachep, slabp); 3496 slab_put_obj(cachep, slabp, objp, node); 3497 STATS_DEC_ACTIVE(cachep); 3498 n->free_objects++; 3499 check_slabp(cachep, slabp); 3500 3501 /* fixup slab chains */ 3502 if (slabp->inuse == 0) { 3503 if (n->free_objects > n->free_limit) { 3504 n->free_objects -= cachep->num; 3505 /* No need to drop any previously held 3506 * lock here, even if we have a off-slab slab 3507 * descriptor it is guaranteed to come from 3508 * a different cache, refer to comments before 3509 * alloc_slabmgmt. 3510 */ 3511 slab_destroy(cachep, slabp); 3512 } else { 3513 list_add(&slabp->list, &n->slabs_free); 3514 } 3515 } else { 3516 /* Unconditionally move a slab to the end of the 3517 * partial list on free - maximum time for the 3518 * other objects to be freed, too. 3519 */ 3520 list_add_tail(&slabp->list, &n->slabs_partial); 3521 } 3522 } 3523 } 3524 3525 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3526 { 3527 int batchcount; 3528 struct kmem_cache_node *n; 3529 int node = numa_mem_id(); 3530 3531 batchcount = ac->batchcount; 3532 #if DEBUG 3533 BUG_ON(!batchcount || batchcount > ac->avail); 3534 #endif 3535 check_irq_off(); 3536 n = cachep->node[node]; 3537 spin_lock(&n->list_lock); 3538 if (n->shared) { 3539 struct array_cache *shared_array = n->shared; 3540 int max = shared_array->limit - shared_array->avail; 3541 if (max) { 3542 if (batchcount > max) 3543 batchcount = max; 3544 memcpy(&(shared_array->entry[shared_array->avail]), 3545 ac->entry, sizeof(void *) * batchcount); 3546 shared_array->avail += batchcount; 3547 goto free_done; 3548 } 3549 } 3550 3551 free_block(cachep, ac->entry, batchcount, node); 3552 free_done: 3553 #if STATS 3554 { 3555 int i = 0; 3556 struct list_head *p; 3557 3558 p = n->slabs_free.next; 3559 while (p != &(n->slabs_free)) { 3560 struct slab *slabp; 3561 3562 slabp = list_entry(p, struct slab, list); 3563 BUG_ON(slabp->inuse); 3564 3565 i++; 3566 p = p->next; 3567 } 3568 STATS_SET_FREEABLE(cachep, i); 3569 } 3570 #endif 3571 spin_unlock(&n->list_lock); 3572 ac->avail -= batchcount; 3573 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3574 } 3575 3576 /* 3577 * Release an obj back to its cache. If the obj has a constructed state, it must 3578 * be in this state _before_ it is released. Called with disabled ints. 3579 */ 3580 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3581 unsigned long caller) 3582 { 3583 struct array_cache *ac = cpu_cache_get(cachep); 3584 3585 check_irq_off(); 3586 kmemleak_free_recursive(objp, cachep->flags); 3587 objp = cache_free_debugcheck(cachep, objp, caller); 3588 3589 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3590 3591 /* 3592 * Skip calling cache_free_alien() when the platform is not numa. 3593 * This will avoid cache misses that happen while accessing slabp (which 3594 * is per page memory reference) to get nodeid. Instead use a global 3595 * variable to skip the call, which is mostly likely to be present in 3596 * the cache. 3597 */ 3598 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3599 return; 3600 3601 if (likely(ac->avail < ac->limit)) { 3602 STATS_INC_FREEHIT(cachep); 3603 } else { 3604 STATS_INC_FREEMISS(cachep); 3605 cache_flusharray(cachep, ac); 3606 } 3607 3608 ac_put_obj(cachep, ac, objp); 3609 } 3610 3611 /** 3612 * kmem_cache_alloc - Allocate an object 3613 * @cachep: The cache to allocate from. 3614 * @flags: See kmalloc(). 3615 * 3616 * Allocate an object from this cache. The flags are only relevant 3617 * if the cache has no available objects. 3618 */ 3619 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3620 { 3621 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3622 3623 trace_kmem_cache_alloc(_RET_IP_, ret, 3624 cachep->object_size, cachep->size, flags); 3625 3626 return ret; 3627 } 3628 EXPORT_SYMBOL(kmem_cache_alloc); 3629 3630 #ifdef CONFIG_TRACING 3631 void * 3632 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3633 { 3634 void *ret; 3635 3636 ret = slab_alloc(cachep, flags, _RET_IP_); 3637 3638 trace_kmalloc(_RET_IP_, ret, 3639 size, cachep->size, flags); 3640 return ret; 3641 } 3642 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3643 #endif 3644 3645 #ifdef CONFIG_NUMA 3646 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3647 { 3648 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3649 3650 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3651 cachep->object_size, cachep->size, 3652 flags, nodeid); 3653 3654 return ret; 3655 } 3656 EXPORT_SYMBOL(kmem_cache_alloc_node); 3657 3658 #ifdef CONFIG_TRACING 3659 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3660 gfp_t flags, 3661 int nodeid, 3662 size_t size) 3663 { 3664 void *ret; 3665 3666 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3667 3668 trace_kmalloc_node(_RET_IP_, ret, 3669 size, cachep->size, 3670 flags, nodeid); 3671 return ret; 3672 } 3673 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3674 #endif 3675 3676 static __always_inline void * 3677 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3678 { 3679 struct kmem_cache *cachep; 3680 3681 cachep = kmalloc_slab(size, flags); 3682 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3683 return cachep; 3684 return kmem_cache_alloc_node_trace(cachep, flags, node, size); 3685 } 3686 3687 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3688 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3689 { 3690 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3691 } 3692 EXPORT_SYMBOL(__kmalloc_node); 3693 3694 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3695 int node, unsigned long caller) 3696 { 3697 return __do_kmalloc_node(size, flags, node, caller); 3698 } 3699 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3700 #else 3701 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3702 { 3703 return __do_kmalloc_node(size, flags, node, 0); 3704 } 3705 EXPORT_SYMBOL(__kmalloc_node); 3706 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ 3707 #endif /* CONFIG_NUMA */ 3708 3709 /** 3710 * __do_kmalloc - allocate memory 3711 * @size: how many bytes of memory are required. 3712 * @flags: the type of memory to allocate (see kmalloc). 3713 * @caller: function caller for debug tracking of the caller 3714 */ 3715 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3716 unsigned long caller) 3717 { 3718 struct kmem_cache *cachep; 3719 void *ret; 3720 3721 /* If you want to save a few bytes .text space: replace 3722 * __ with kmem_. 3723 * Then kmalloc uses the uninlined functions instead of the inline 3724 * functions. 3725 */ 3726 cachep = kmalloc_slab(size, flags); 3727 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3728 return cachep; 3729 ret = slab_alloc(cachep, flags, caller); 3730 3731 trace_kmalloc(caller, ret, 3732 size, cachep->size, flags); 3733 3734 return ret; 3735 } 3736 3737 3738 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3739 void *__kmalloc(size_t size, gfp_t flags) 3740 { 3741 return __do_kmalloc(size, flags, _RET_IP_); 3742 } 3743 EXPORT_SYMBOL(__kmalloc); 3744 3745 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3746 { 3747 return __do_kmalloc(size, flags, caller); 3748 } 3749 EXPORT_SYMBOL(__kmalloc_track_caller); 3750 3751 #else 3752 void *__kmalloc(size_t size, gfp_t flags) 3753 { 3754 return __do_kmalloc(size, flags, 0); 3755 } 3756 EXPORT_SYMBOL(__kmalloc); 3757 #endif 3758 3759 /** 3760 * kmem_cache_free - Deallocate an object 3761 * @cachep: The cache the allocation was from. 3762 * @objp: The previously allocated object. 3763 * 3764 * Free an object which was previously allocated from this 3765 * cache. 3766 */ 3767 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3768 { 3769 unsigned long flags; 3770 cachep = cache_from_obj(cachep, objp); 3771 if (!cachep) 3772 return; 3773 3774 local_irq_save(flags); 3775 debug_check_no_locks_freed(objp, cachep->object_size); 3776 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3777 debug_check_no_obj_freed(objp, cachep->object_size); 3778 __cache_free(cachep, objp, _RET_IP_); 3779 local_irq_restore(flags); 3780 3781 trace_kmem_cache_free(_RET_IP_, objp); 3782 } 3783 EXPORT_SYMBOL(kmem_cache_free); 3784 3785 /** 3786 * kfree - free previously allocated memory 3787 * @objp: pointer returned by kmalloc. 3788 * 3789 * If @objp is NULL, no operation is performed. 3790 * 3791 * Don't free memory not originally allocated by kmalloc() 3792 * or you will run into trouble. 3793 */ 3794 void kfree(const void *objp) 3795 { 3796 struct kmem_cache *c; 3797 unsigned long flags; 3798 3799 trace_kfree(_RET_IP_, objp); 3800 3801 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3802 return; 3803 local_irq_save(flags); 3804 kfree_debugcheck(objp); 3805 c = virt_to_cache(objp); 3806 debug_check_no_locks_freed(objp, c->object_size); 3807 3808 debug_check_no_obj_freed(objp, c->object_size); 3809 __cache_free(c, (void *)objp, _RET_IP_); 3810 local_irq_restore(flags); 3811 } 3812 EXPORT_SYMBOL(kfree); 3813 3814 /* 3815 * This initializes kmem_cache_node or resizes various caches for all nodes. 3816 */ 3817 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) 3818 { 3819 int node; 3820 struct kmem_cache_node *n; 3821 struct array_cache *new_shared; 3822 struct array_cache **new_alien = NULL; 3823 3824 for_each_online_node(node) { 3825 3826 if (use_alien_caches) { 3827 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 3828 if (!new_alien) 3829 goto fail; 3830 } 3831 3832 new_shared = NULL; 3833 if (cachep->shared) { 3834 new_shared = alloc_arraycache(node, 3835 cachep->shared*cachep->batchcount, 3836 0xbaadf00d, gfp); 3837 if (!new_shared) { 3838 free_alien_cache(new_alien); 3839 goto fail; 3840 } 3841 } 3842 3843 n = cachep->node[node]; 3844 if (n) { 3845 struct array_cache *shared = n->shared; 3846 3847 spin_lock_irq(&n->list_lock); 3848 3849 if (shared) 3850 free_block(cachep, shared->entry, 3851 shared->avail, node); 3852 3853 n->shared = new_shared; 3854 if (!n->alien) { 3855 n->alien = new_alien; 3856 new_alien = NULL; 3857 } 3858 n->free_limit = (1 + nr_cpus_node(node)) * 3859 cachep->batchcount + cachep->num; 3860 spin_unlock_irq(&n->list_lock); 3861 kfree(shared); 3862 free_alien_cache(new_alien); 3863 continue; 3864 } 3865 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 3866 if (!n) { 3867 free_alien_cache(new_alien); 3868 kfree(new_shared); 3869 goto fail; 3870 } 3871 3872 kmem_cache_node_init(n); 3873 n->next_reap = jiffies + REAPTIMEOUT_LIST3 + 3874 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 3875 n->shared = new_shared; 3876 n->alien = new_alien; 3877 n->free_limit = (1 + nr_cpus_node(node)) * 3878 cachep->batchcount + cachep->num; 3879 cachep->node[node] = n; 3880 } 3881 return 0; 3882 3883 fail: 3884 if (!cachep->list.next) { 3885 /* Cache is not active yet. Roll back what we did */ 3886 node--; 3887 while (node >= 0) { 3888 if (cachep->node[node]) { 3889 n = cachep->node[node]; 3890 3891 kfree(n->shared); 3892 free_alien_cache(n->alien); 3893 kfree(n); 3894 cachep->node[node] = NULL; 3895 } 3896 node--; 3897 } 3898 } 3899 return -ENOMEM; 3900 } 3901 3902 struct ccupdate_struct { 3903 struct kmem_cache *cachep; 3904 struct array_cache *new[0]; 3905 }; 3906 3907 static void do_ccupdate_local(void *info) 3908 { 3909 struct ccupdate_struct *new = info; 3910 struct array_cache *old; 3911 3912 check_irq_off(); 3913 old = cpu_cache_get(new->cachep); 3914 3915 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 3916 new->new[smp_processor_id()] = old; 3917 } 3918 3919 /* Always called with the slab_mutex held */ 3920 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3921 int batchcount, int shared, gfp_t gfp) 3922 { 3923 struct ccupdate_struct *new; 3924 int i; 3925 3926 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *), 3927 gfp); 3928 if (!new) 3929 return -ENOMEM; 3930 3931 for_each_online_cpu(i) { 3932 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, 3933 batchcount, gfp); 3934 if (!new->new[i]) { 3935 for (i--; i >= 0; i--) 3936 kfree(new->new[i]); 3937 kfree(new); 3938 return -ENOMEM; 3939 } 3940 } 3941 new->cachep = cachep; 3942 3943 on_each_cpu(do_ccupdate_local, (void *)new, 1); 3944 3945 check_irq_on(); 3946 cachep->batchcount = batchcount; 3947 cachep->limit = limit; 3948 cachep->shared = shared; 3949 3950 for_each_online_cpu(i) { 3951 struct array_cache *ccold = new->new[i]; 3952 if (!ccold) 3953 continue; 3954 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); 3955 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); 3956 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); 3957 kfree(ccold); 3958 } 3959 kfree(new); 3960 return alloc_kmemlist(cachep, gfp); 3961 } 3962 3963 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3964 int batchcount, int shared, gfp_t gfp) 3965 { 3966 int ret; 3967 struct kmem_cache *c = NULL; 3968 int i = 0; 3969 3970 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3971 3972 if (slab_state < FULL) 3973 return ret; 3974 3975 if ((ret < 0) || !is_root_cache(cachep)) 3976 return ret; 3977 3978 VM_BUG_ON(!mutex_is_locked(&slab_mutex)); 3979 for_each_memcg_cache_index(i) { 3980 c = cache_from_memcg(cachep, i); 3981 if (c) 3982 /* return value determined by the parent cache only */ 3983 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3984 } 3985 3986 return ret; 3987 } 3988 3989 /* Called with slab_mutex held always */ 3990 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3991 { 3992 int err; 3993 int limit = 0; 3994 int shared = 0; 3995 int batchcount = 0; 3996 3997 if (!is_root_cache(cachep)) { 3998 struct kmem_cache *root = memcg_root_cache(cachep); 3999 limit = root->limit; 4000 shared = root->shared; 4001 batchcount = root->batchcount; 4002 } 4003 4004 if (limit && shared && batchcount) 4005 goto skip_setup; 4006 /* 4007 * The head array serves three purposes: 4008 * - create a LIFO ordering, i.e. return objects that are cache-warm 4009 * - reduce the number of spinlock operations. 4010 * - reduce the number of linked list operations on the slab and 4011 * bufctl chains: array operations are cheaper. 4012 * The numbers are guessed, we should auto-tune as described by 4013 * Bonwick. 4014 */ 4015 if (cachep->size > 131072) 4016 limit = 1; 4017 else if (cachep->size > PAGE_SIZE) 4018 limit = 8; 4019 else if (cachep->size > 1024) 4020 limit = 24; 4021 else if (cachep->size > 256) 4022 limit = 54; 4023 else 4024 limit = 120; 4025 4026 /* 4027 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 4028 * allocation behaviour: Most allocs on one cpu, most free operations 4029 * on another cpu. For these cases, an efficient object passing between 4030 * cpus is necessary. This is provided by a shared array. The array 4031 * replaces Bonwick's magazine layer. 4032 * On uniprocessor, it's functionally equivalent (but less efficient) 4033 * to a larger limit. Thus disabled by default. 4034 */ 4035 shared = 0; 4036 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 4037 shared = 8; 4038 4039 #if DEBUG 4040 /* 4041 * With debugging enabled, large batchcount lead to excessively long 4042 * periods with disabled local interrupts. Limit the batchcount 4043 */ 4044 if (limit > 32) 4045 limit = 32; 4046 #endif 4047 batchcount = (limit + 1) / 2; 4048 skip_setup: 4049 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 4050 if (err) 4051 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 4052 cachep->name, -err); 4053 return err; 4054 } 4055 4056 /* 4057 * Drain an array if it contains any elements taking the node lock only if 4058 * necessary. Note that the node listlock also protects the array_cache 4059 * if drain_array() is used on the shared array. 4060 */ 4061 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 4062 struct array_cache *ac, int force, int node) 4063 { 4064 int tofree; 4065 4066 if (!ac || !ac->avail) 4067 return; 4068 if (ac->touched && !force) { 4069 ac->touched = 0; 4070 } else { 4071 spin_lock_irq(&n->list_lock); 4072 if (ac->avail) { 4073 tofree = force ? ac->avail : (ac->limit + 4) / 5; 4074 if (tofree > ac->avail) 4075 tofree = (ac->avail + 1) / 2; 4076 free_block(cachep, ac->entry, tofree, node); 4077 ac->avail -= tofree; 4078 memmove(ac->entry, &(ac->entry[tofree]), 4079 sizeof(void *) * ac->avail); 4080 } 4081 spin_unlock_irq(&n->list_lock); 4082 } 4083 } 4084 4085 /** 4086 * cache_reap - Reclaim memory from caches. 4087 * @w: work descriptor 4088 * 4089 * Called from workqueue/eventd every few seconds. 4090 * Purpose: 4091 * - clear the per-cpu caches for this CPU. 4092 * - return freeable pages to the main free memory pool. 4093 * 4094 * If we cannot acquire the cache chain mutex then just give up - we'll try 4095 * again on the next iteration. 4096 */ 4097 static void cache_reap(struct work_struct *w) 4098 { 4099 struct kmem_cache *searchp; 4100 struct kmem_cache_node *n; 4101 int node = numa_mem_id(); 4102 struct delayed_work *work = to_delayed_work(w); 4103 4104 if (!mutex_trylock(&slab_mutex)) 4105 /* Give up. Setup the next iteration. */ 4106 goto out; 4107 4108 list_for_each_entry(searchp, &slab_caches, list) { 4109 check_irq_on(); 4110 4111 /* 4112 * We only take the node lock if absolutely necessary and we 4113 * have established with reasonable certainty that 4114 * we can do some work if the lock was obtained. 4115 */ 4116 n = searchp->node[node]; 4117 4118 reap_alien(searchp, n); 4119 4120 drain_array(searchp, n, cpu_cache_get(searchp), 0, node); 4121 4122 /* 4123 * These are racy checks but it does not matter 4124 * if we skip one check or scan twice. 4125 */ 4126 if (time_after(n->next_reap, jiffies)) 4127 goto next; 4128 4129 n->next_reap = jiffies + REAPTIMEOUT_LIST3; 4130 4131 drain_array(searchp, n, n->shared, 0, node); 4132 4133 if (n->free_touched) 4134 n->free_touched = 0; 4135 else { 4136 int freed; 4137 4138 freed = drain_freelist(searchp, n, (n->free_limit + 4139 5 * searchp->num - 1) / (5 * searchp->num)); 4140 STATS_ADD_REAPED(searchp, freed); 4141 } 4142 next: 4143 cond_resched(); 4144 } 4145 check_irq_on(); 4146 mutex_unlock(&slab_mutex); 4147 next_reap_node(); 4148 out: 4149 /* Set up the next iteration */ 4150 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); 4151 } 4152 4153 #ifdef CONFIG_SLABINFO 4154 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4155 { 4156 struct slab *slabp; 4157 unsigned long active_objs; 4158 unsigned long num_objs; 4159 unsigned long active_slabs = 0; 4160 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4161 const char *name; 4162 char *error = NULL; 4163 int node; 4164 struct kmem_cache_node *n; 4165 4166 active_objs = 0; 4167 num_slabs = 0; 4168 for_each_online_node(node) { 4169 n = cachep->node[node]; 4170 if (!n) 4171 continue; 4172 4173 check_irq_on(); 4174 spin_lock_irq(&n->list_lock); 4175 4176 list_for_each_entry(slabp, &n->slabs_full, list) { 4177 if (slabp->inuse != cachep->num && !error) 4178 error = "slabs_full accounting error"; 4179 active_objs += cachep->num; 4180 active_slabs++; 4181 } 4182 list_for_each_entry(slabp, &n->slabs_partial, list) { 4183 if (slabp->inuse == cachep->num && !error) 4184 error = "slabs_partial inuse accounting error"; 4185 if (!slabp->inuse && !error) 4186 error = "slabs_partial/inuse accounting error"; 4187 active_objs += slabp->inuse; 4188 active_slabs++; 4189 } 4190 list_for_each_entry(slabp, &n->slabs_free, list) { 4191 if (slabp->inuse && !error) 4192 error = "slabs_free/inuse accounting error"; 4193 num_slabs++; 4194 } 4195 free_objects += n->free_objects; 4196 if (n->shared) 4197 shared_avail += n->shared->avail; 4198 4199 spin_unlock_irq(&n->list_lock); 4200 } 4201 num_slabs += active_slabs; 4202 num_objs = num_slabs * cachep->num; 4203 if (num_objs - active_objs != free_objects && !error) 4204 error = "free_objects accounting error"; 4205 4206 name = cachep->name; 4207 if (error) 4208 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 4209 4210 sinfo->active_objs = active_objs; 4211 sinfo->num_objs = num_objs; 4212 sinfo->active_slabs = active_slabs; 4213 sinfo->num_slabs = num_slabs; 4214 sinfo->shared_avail = shared_avail; 4215 sinfo->limit = cachep->limit; 4216 sinfo->batchcount = cachep->batchcount; 4217 sinfo->shared = cachep->shared; 4218 sinfo->objects_per_slab = cachep->num; 4219 sinfo->cache_order = cachep->gfporder; 4220 } 4221 4222 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4223 { 4224 #if STATS 4225 { /* node stats */ 4226 unsigned long high = cachep->high_mark; 4227 unsigned long allocs = cachep->num_allocations; 4228 unsigned long grown = cachep->grown; 4229 unsigned long reaped = cachep->reaped; 4230 unsigned long errors = cachep->errors; 4231 unsigned long max_freeable = cachep->max_freeable; 4232 unsigned long node_allocs = cachep->node_allocs; 4233 unsigned long node_frees = cachep->node_frees; 4234 unsigned long overflows = cachep->node_overflow; 4235 4236 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " 4237 "%4lu %4lu %4lu %4lu %4lu", 4238 allocs, high, grown, 4239 reaped, errors, max_freeable, node_allocs, 4240 node_frees, overflows); 4241 } 4242 /* cpu stats */ 4243 { 4244 unsigned long allochit = atomic_read(&cachep->allochit); 4245 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4246 unsigned long freehit = atomic_read(&cachep->freehit); 4247 unsigned long freemiss = atomic_read(&cachep->freemiss); 4248 4249 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4250 allochit, allocmiss, freehit, freemiss); 4251 } 4252 #endif 4253 } 4254 4255 #define MAX_SLABINFO_WRITE 128 4256 /** 4257 * slabinfo_write - Tuning for the slab allocator 4258 * @file: unused 4259 * @buffer: user buffer 4260 * @count: data length 4261 * @ppos: unused 4262 */ 4263 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4264 size_t count, loff_t *ppos) 4265 { 4266 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4267 int limit, batchcount, shared, res; 4268 struct kmem_cache *cachep; 4269 4270 if (count > MAX_SLABINFO_WRITE) 4271 return -EINVAL; 4272 if (copy_from_user(&kbuf, buffer, count)) 4273 return -EFAULT; 4274 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4275 4276 tmp = strchr(kbuf, ' '); 4277 if (!tmp) 4278 return -EINVAL; 4279 *tmp = '\0'; 4280 tmp++; 4281 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4282 return -EINVAL; 4283 4284 /* Find the cache in the chain of caches. */ 4285 mutex_lock(&slab_mutex); 4286 res = -EINVAL; 4287 list_for_each_entry(cachep, &slab_caches, list) { 4288 if (!strcmp(cachep->name, kbuf)) { 4289 if (limit < 1 || batchcount < 1 || 4290 batchcount > limit || shared < 0) { 4291 res = 0; 4292 } else { 4293 res = do_tune_cpucache(cachep, limit, 4294 batchcount, shared, 4295 GFP_KERNEL); 4296 } 4297 break; 4298 } 4299 } 4300 mutex_unlock(&slab_mutex); 4301 if (res >= 0) 4302 res = count; 4303 return res; 4304 } 4305 4306 #ifdef CONFIG_DEBUG_SLAB_LEAK 4307 4308 static void *leaks_start(struct seq_file *m, loff_t *pos) 4309 { 4310 mutex_lock(&slab_mutex); 4311 return seq_list_start(&slab_caches, *pos); 4312 } 4313 4314 static inline int add_caller(unsigned long *n, unsigned long v) 4315 { 4316 unsigned long *p; 4317 int l; 4318 if (!v) 4319 return 1; 4320 l = n[1]; 4321 p = n + 2; 4322 while (l) { 4323 int i = l/2; 4324 unsigned long *q = p + 2 * i; 4325 if (*q == v) { 4326 q[1]++; 4327 return 1; 4328 } 4329 if (*q > v) { 4330 l = i; 4331 } else { 4332 p = q + 2; 4333 l -= i + 1; 4334 } 4335 } 4336 if (++n[1] == n[0]) 4337 return 0; 4338 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4339 p[0] = v; 4340 p[1] = 1; 4341 return 1; 4342 } 4343 4344 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) 4345 { 4346 void *p; 4347 int i; 4348 if (n[0] == n[1]) 4349 return; 4350 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) { 4351 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) 4352 continue; 4353 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4354 return; 4355 } 4356 } 4357 4358 static void show_symbol(struct seq_file *m, unsigned long address) 4359 { 4360 #ifdef CONFIG_KALLSYMS 4361 unsigned long offset, size; 4362 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4363 4364 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4365 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4366 if (modname[0]) 4367 seq_printf(m, " [%s]", modname); 4368 return; 4369 } 4370 #endif 4371 seq_printf(m, "%p", (void *)address); 4372 } 4373 4374 static int leaks_show(struct seq_file *m, void *p) 4375 { 4376 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4377 struct slab *slabp; 4378 struct kmem_cache_node *n; 4379 const char *name; 4380 unsigned long *x = m->private; 4381 int node; 4382 int i; 4383 4384 if (!(cachep->flags & SLAB_STORE_USER)) 4385 return 0; 4386 if (!(cachep->flags & SLAB_RED_ZONE)) 4387 return 0; 4388 4389 /* OK, we can do it */ 4390 4391 x[1] = 0; 4392 4393 for_each_online_node(node) { 4394 n = cachep->node[node]; 4395 if (!n) 4396 continue; 4397 4398 check_irq_on(); 4399 spin_lock_irq(&n->list_lock); 4400 4401 list_for_each_entry(slabp, &n->slabs_full, list) 4402 handle_slab(x, cachep, slabp); 4403 list_for_each_entry(slabp, &n->slabs_partial, list) 4404 handle_slab(x, cachep, slabp); 4405 spin_unlock_irq(&n->list_lock); 4406 } 4407 name = cachep->name; 4408 if (x[0] == x[1]) { 4409 /* Increase the buffer size */ 4410 mutex_unlock(&slab_mutex); 4411 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4412 if (!m->private) { 4413 /* Too bad, we are really out */ 4414 m->private = x; 4415 mutex_lock(&slab_mutex); 4416 return -ENOMEM; 4417 } 4418 *(unsigned long *)m->private = x[0] * 2; 4419 kfree(x); 4420 mutex_lock(&slab_mutex); 4421 /* Now make sure this entry will be retried */ 4422 m->count = m->size; 4423 return 0; 4424 } 4425 for (i = 0; i < x[1]; i++) { 4426 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4427 show_symbol(m, x[2*i+2]); 4428 seq_putc(m, '\n'); 4429 } 4430 4431 return 0; 4432 } 4433 4434 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4435 { 4436 return seq_list_next(p, &slab_caches, pos); 4437 } 4438 4439 static void s_stop(struct seq_file *m, void *p) 4440 { 4441 mutex_unlock(&slab_mutex); 4442 } 4443 4444 static const struct seq_operations slabstats_op = { 4445 .start = leaks_start, 4446 .next = s_next, 4447 .stop = s_stop, 4448 .show = leaks_show, 4449 }; 4450 4451 static int slabstats_open(struct inode *inode, struct file *file) 4452 { 4453 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); 4454 int ret = -ENOMEM; 4455 if (n) { 4456 ret = seq_open(file, &slabstats_op); 4457 if (!ret) { 4458 struct seq_file *m = file->private_data; 4459 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4460 m->private = n; 4461 n = NULL; 4462 } 4463 kfree(n); 4464 } 4465 return ret; 4466 } 4467 4468 static const struct file_operations proc_slabstats_operations = { 4469 .open = slabstats_open, 4470 .read = seq_read, 4471 .llseek = seq_lseek, 4472 .release = seq_release_private, 4473 }; 4474 #endif 4475 4476 static int __init slab_proc_init(void) 4477 { 4478 #ifdef CONFIG_DEBUG_SLAB_LEAK 4479 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4480 #endif 4481 return 0; 4482 } 4483 module_init(slab_proc_init); 4484 #endif 4485 4486 /** 4487 * ksize - get the actual amount of memory allocated for a given object 4488 * @objp: Pointer to the object 4489 * 4490 * kmalloc may internally round up allocations and return more memory 4491 * than requested. ksize() can be used to determine the actual amount of 4492 * memory allocated. The caller may use this additional memory, even though 4493 * a smaller amount of memory was initially specified with the kmalloc call. 4494 * The caller must guarantee that objp points to a valid object previously 4495 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4496 * must not be freed during the duration of the call. 4497 */ 4498 size_t ksize(const void *objp) 4499 { 4500 BUG_ON(!objp); 4501 if (unlikely(objp == ZERO_SIZE_PTR)) 4502 return 0; 4503 4504 return virt_to_cache(objp)->object_size; 4505 } 4506 EXPORT_SYMBOL(ksize); 4507