xref: /openbmc/linux/mm/slab.c (revision e1f7c9ee)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * true if a page was allocated from pfmemalloc reserves for network-based
173  * swap
174  */
175 static bool pfmemalloc_active __read_mostly;
176 
177 /*
178  * struct array_cache
179  *
180  * Purpose:
181  * - LIFO ordering, to hand out cache-warm objects from _alloc
182  * - reduce the number of linked list operations
183  * - reduce spinlock operations
184  *
185  * The limit is stored in the per-cpu structure to reduce the data cache
186  * footprint.
187  *
188  */
189 struct array_cache {
190 	unsigned int avail;
191 	unsigned int limit;
192 	unsigned int batchcount;
193 	unsigned int touched;
194 	void *entry[];	/*
195 			 * Must have this definition in here for the proper
196 			 * alignment of array_cache. Also simplifies accessing
197 			 * the entries.
198 			 *
199 			 * Entries should not be directly dereferenced as
200 			 * entries belonging to slabs marked pfmemalloc will
201 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 			 */
203 };
204 
205 struct alien_cache {
206 	spinlock_t lock;
207 	struct array_cache ac;
208 };
209 
210 #define SLAB_OBJ_PFMEMALLOC	1
211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215 
216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 	return;
220 }
221 
222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226 
227 /*
228  * bootstrap: The caches do not work without cpuarrays anymore, but the
229  * cpuarrays are allocated from the generic caches...
230  */
231 #define BOOT_CPUCACHE_ENTRIES	1
232 struct arraycache_init {
233 	struct array_cache cache;
234 	void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236 
237 /*
238  * Need this for bootstrapping a per node allocator.
239  */
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define	CACHE_CACHE 0
243 #define	SIZE_NODE (MAX_NUMNODES)
244 
245 static int drain_freelist(struct kmem_cache *cache,
246 			struct kmem_cache_node *n, int tofree);
247 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 			int node, struct list_head *list);
249 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251 static void cache_reap(struct work_struct *unused);
252 
253 static int slab_early_init = 1;
254 
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256 
257 static void kmem_cache_node_init(struct kmem_cache_node *parent)
258 {
259 	INIT_LIST_HEAD(&parent->slabs_full);
260 	INIT_LIST_HEAD(&parent->slabs_partial);
261 	INIT_LIST_HEAD(&parent->slabs_free);
262 	parent->shared = NULL;
263 	parent->alien = NULL;
264 	parent->colour_next = 0;
265 	spin_lock_init(&parent->list_lock);
266 	parent->free_objects = 0;
267 	parent->free_touched = 0;
268 }
269 
270 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
271 	do {								\
272 		INIT_LIST_HEAD(listp);					\
273 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
274 	} while (0)
275 
276 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
277 	do {								\
278 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
279 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
281 	} while (0)
282 
283 #define CFLGS_OFF_SLAB		(0x80000000UL)
284 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
285 
286 #define BATCHREFILL_LIMIT	16
287 /*
288  * Optimization question: fewer reaps means less probability for unnessary
289  * cpucache drain/refill cycles.
290  *
291  * OTOH the cpuarrays can contain lots of objects,
292  * which could lock up otherwise freeable slabs.
293  */
294 #define REAPTIMEOUT_AC		(2*HZ)
295 #define REAPTIMEOUT_NODE	(4*HZ)
296 
297 #if STATS
298 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
299 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
300 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
301 #define	STATS_INC_GROWN(x)	((x)->grown++)
302 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
303 #define	STATS_SET_HIGH(x)						\
304 	do {								\
305 		if ((x)->num_active > (x)->high_mark)			\
306 			(x)->high_mark = (x)->num_active;		\
307 	} while (0)
308 #define	STATS_INC_ERR(x)	((x)->errors++)
309 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
310 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
311 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
312 #define	STATS_SET_FREEABLE(x, i)					\
313 	do {								\
314 		if ((x)->max_freeable < i)				\
315 			(x)->max_freeable = i;				\
316 	} while (0)
317 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
318 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
319 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
320 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
321 #else
322 #define	STATS_INC_ACTIVE(x)	do { } while (0)
323 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
324 #define	STATS_INC_ALLOCED(x)	do { } while (0)
325 #define	STATS_INC_GROWN(x)	do { } while (0)
326 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
327 #define	STATS_SET_HIGH(x)	do { } while (0)
328 #define	STATS_INC_ERR(x)	do { } while (0)
329 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
330 #define	STATS_INC_NODEFREES(x)	do { } while (0)
331 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
332 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
333 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
334 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
335 #define STATS_INC_FREEHIT(x)	do { } while (0)
336 #define STATS_INC_FREEMISS(x)	do { } while (0)
337 #endif
338 
339 #if DEBUG
340 
341 /*
342  * memory layout of objects:
343  * 0		: objp
344  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
345  * 		the end of an object is aligned with the end of the real
346  * 		allocation. Catches writes behind the end of the allocation.
347  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
348  * 		redzone word.
349  * cachep->obj_offset: The real object.
350  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
351  * cachep->size - 1* BYTES_PER_WORD: last caller address
352  *					[BYTES_PER_WORD long]
353  */
354 static int obj_offset(struct kmem_cache *cachep)
355 {
356 	return cachep->obj_offset;
357 }
358 
359 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
360 {
361 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362 	return (unsigned long long*) (objp + obj_offset(cachep) -
363 				      sizeof(unsigned long long));
364 }
365 
366 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
367 {
368 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
369 	if (cachep->flags & SLAB_STORE_USER)
370 		return (unsigned long long *)(objp + cachep->size -
371 					      sizeof(unsigned long long) -
372 					      REDZONE_ALIGN);
373 	return (unsigned long long *) (objp + cachep->size -
374 				       sizeof(unsigned long long));
375 }
376 
377 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
378 {
379 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
381 }
382 
383 #else
384 
385 #define obj_offset(x)			0
386 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
387 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
388 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
389 
390 #endif
391 
392 #define OBJECT_FREE (0)
393 #define OBJECT_ACTIVE (1)
394 
395 #ifdef CONFIG_DEBUG_SLAB_LEAK
396 
397 static void set_obj_status(struct page *page, int idx, int val)
398 {
399 	int freelist_size;
400 	char *status;
401 	struct kmem_cache *cachep = page->slab_cache;
402 
403 	freelist_size = cachep->num * sizeof(freelist_idx_t);
404 	status = (char *)page->freelist + freelist_size;
405 	status[idx] = val;
406 }
407 
408 static inline unsigned int get_obj_status(struct page *page, int idx)
409 {
410 	int freelist_size;
411 	char *status;
412 	struct kmem_cache *cachep = page->slab_cache;
413 
414 	freelist_size = cachep->num * sizeof(freelist_idx_t);
415 	status = (char *)page->freelist + freelist_size;
416 
417 	return status[idx];
418 }
419 
420 #else
421 static inline void set_obj_status(struct page *page, int idx, int val) {}
422 
423 #endif
424 
425 /*
426  * Do not go above this order unless 0 objects fit into the slab or
427  * overridden on the command line.
428  */
429 #define	SLAB_MAX_ORDER_HI	1
430 #define	SLAB_MAX_ORDER_LO	0
431 static int slab_max_order = SLAB_MAX_ORDER_LO;
432 static bool slab_max_order_set __initdata;
433 
434 static inline struct kmem_cache *virt_to_cache(const void *obj)
435 {
436 	struct page *page = virt_to_head_page(obj);
437 	return page->slab_cache;
438 }
439 
440 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441 				 unsigned int idx)
442 {
443 	return page->s_mem + cache->size * idx;
444 }
445 
446 /*
447  * We want to avoid an expensive divide : (offset / cache->size)
448  *   Using the fact that size is a constant for a particular cache,
449  *   we can replace (offset / cache->size) by
450  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
451  */
452 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453 					const struct page *page, void *obj)
454 {
455 	u32 offset = (obj - page->s_mem);
456 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
457 }
458 
459 /* internal cache of cache description objs */
460 static struct kmem_cache kmem_cache_boot = {
461 	.batchcount = 1,
462 	.limit = BOOT_CPUCACHE_ENTRIES,
463 	.shared = 1,
464 	.size = sizeof(struct kmem_cache),
465 	.name = "kmem_cache",
466 };
467 
468 #define BAD_ALIEN_MAGIC 0x01020304ul
469 
470 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
471 
472 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
473 {
474 	return this_cpu_ptr(cachep->cpu_cache);
475 }
476 
477 static size_t calculate_freelist_size(int nr_objs, size_t align)
478 {
479 	size_t freelist_size;
480 
481 	freelist_size = nr_objs * sizeof(freelist_idx_t);
482 	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
483 		freelist_size += nr_objs * sizeof(char);
484 
485 	if (align)
486 		freelist_size = ALIGN(freelist_size, align);
487 
488 	return freelist_size;
489 }
490 
491 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
492 				size_t idx_size, size_t align)
493 {
494 	int nr_objs;
495 	size_t remained_size;
496 	size_t freelist_size;
497 	int extra_space = 0;
498 
499 	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
500 		extra_space = sizeof(char);
501 	/*
502 	 * Ignore padding for the initial guess. The padding
503 	 * is at most @align-1 bytes, and @buffer_size is at
504 	 * least @align. In the worst case, this result will
505 	 * be one greater than the number of objects that fit
506 	 * into the memory allocation when taking the padding
507 	 * into account.
508 	 */
509 	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
510 
511 	/*
512 	 * This calculated number will be either the right
513 	 * amount, or one greater than what we want.
514 	 */
515 	remained_size = slab_size - nr_objs * buffer_size;
516 	freelist_size = calculate_freelist_size(nr_objs, align);
517 	if (remained_size < freelist_size)
518 		nr_objs--;
519 
520 	return nr_objs;
521 }
522 
523 /*
524  * Calculate the number of objects and left-over bytes for a given buffer size.
525  */
526 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
527 			   size_t align, int flags, size_t *left_over,
528 			   unsigned int *num)
529 {
530 	int nr_objs;
531 	size_t mgmt_size;
532 	size_t slab_size = PAGE_SIZE << gfporder;
533 
534 	/*
535 	 * The slab management structure can be either off the slab or
536 	 * on it. For the latter case, the memory allocated for a
537 	 * slab is used for:
538 	 *
539 	 * - One unsigned int for each object
540 	 * - Padding to respect alignment of @align
541 	 * - @buffer_size bytes for each object
542 	 *
543 	 * If the slab management structure is off the slab, then the
544 	 * alignment will already be calculated into the size. Because
545 	 * the slabs are all pages aligned, the objects will be at the
546 	 * correct alignment when allocated.
547 	 */
548 	if (flags & CFLGS_OFF_SLAB) {
549 		mgmt_size = 0;
550 		nr_objs = slab_size / buffer_size;
551 
552 	} else {
553 		nr_objs = calculate_nr_objs(slab_size, buffer_size,
554 					sizeof(freelist_idx_t), align);
555 		mgmt_size = calculate_freelist_size(nr_objs, align);
556 	}
557 	*num = nr_objs;
558 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
559 }
560 
561 #if DEBUG
562 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
563 
564 static void __slab_error(const char *function, struct kmem_cache *cachep,
565 			char *msg)
566 {
567 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
568 	       function, cachep->name, msg);
569 	dump_stack();
570 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
571 }
572 #endif
573 
574 /*
575  * By default on NUMA we use alien caches to stage the freeing of
576  * objects allocated from other nodes. This causes massive memory
577  * inefficiencies when using fake NUMA setup to split memory into a
578  * large number of small nodes, so it can be disabled on the command
579  * line
580   */
581 
582 static int use_alien_caches __read_mostly = 1;
583 static int __init noaliencache_setup(char *s)
584 {
585 	use_alien_caches = 0;
586 	return 1;
587 }
588 __setup("noaliencache", noaliencache_setup);
589 
590 static int __init slab_max_order_setup(char *str)
591 {
592 	get_option(&str, &slab_max_order);
593 	slab_max_order = slab_max_order < 0 ? 0 :
594 				min(slab_max_order, MAX_ORDER - 1);
595 	slab_max_order_set = true;
596 
597 	return 1;
598 }
599 __setup("slab_max_order=", slab_max_order_setup);
600 
601 #ifdef CONFIG_NUMA
602 /*
603  * Special reaping functions for NUMA systems called from cache_reap().
604  * These take care of doing round robin flushing of alien caches (containing
605  * objects freed on different nodes from which they were allocated) and the
606  * flushing of remote pcps by calling drain_node_pages.
607  */
608 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
609 
610 static void init_reap_node(int cpu)
611 {
612 	int node;
613 
614 	node = next_node(cpu_to_mem(cpu), node_online_map);
615 	if (node == MAX_NUMNODES)
616 		node = first_node(node_online_map);
617 
618 	per_cpu(slab_reap_node, cpu) = node;
619 }
620 
621 static void next_reap_node(void)
622 {
623 	int node = __this_cpu_read(slab_reap_node);
624 
625 	node = next_node(node, node_online_map);
626 	if (unlikely(node >= MAX_NUMNODES))
627 		node = first_node(node_online_map);
628 	__this_cpu_write(slab_reap_node, node);
629 }
630 
631 #else
632 #define init_reap_node(cpu) do { } while (0)
633 #define next_reap_node(void) do { } while (0)
634 #endif
635 
636 /*
637  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
638  * via the workqueue/eventd.
639  * Add the CPU number into the expiration time to minimize the possibility of
640  * the CPUs getting into lockstep and contending for the global cache chain
641  * lock.
642  */
643 static void start_cpu_timer(int cpu)
644 {
645 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
646 
647 	/*
648 	 * When this gets called from do_initcalls via cpucache_init(),
649 	 * init_workqueues() has already run, so keventd will be setup
650 	 * at that time.
651 	 */
652 	if (keventd_up() && reap_work->work.func == NULL) {
653 		init_reap_node(cpu);
654 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655 		schedule_delayed_work_on(cpu, reap_work,
656 					__round_jiffies_relative(HZ, cpu));
657 	}
658 }
659 
660 static void init_arraycache(struct array_cache *ac, int limit, int batch)
661 {
662 	/*
663 	 * The array_cache structures contain pointers to free object.
664 	 * However, when such objects are allocated or transferred to another
665 	 * cache the pointers are not cleared and they could be counted as
666 	 * valid references during a kmemleak scan. Therefore, kmemleak must
667 	 * not scan such objects.
668 	 */
669 	kmemleak_no_scan(ac);
670 	if (ac) {
671 		ac->avail = 0;
672 		ac->limit = limit;
673 		ac->batchcount = batch;
674 		ac->touched = 0;
675 	}
676 }
677 
678 static struct array_cache *alloc_arraycache(int node, int entries,
679 					    int batchcount, gfp_t gfp)
680 {
681 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682 	struct array_cache *ac = NULL;
683 
684 	ac = kmalloc_node(memsize, gfp, node);
685 	init_arraycache(ac, entries, batchcount);
686 	return ac;
687 }
688 
689 static inline bool is_slab_pfmemalloc(struct page *page)
690 {
691 	return PageSlabPfmemalloc(page);
692 }
693 
694 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
695 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
696 						struct array_cache *ac)
697 {
698 	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699 	struct page *page;
700 	unsigned long flags;
701 
702 	if (!pfmemalloc_active)
703 		return;
704 
705 	spin_lock_irqsave(&n->list_lock, flags);
706 	list_for_each_entry(page, &n->slabs_full, lru)
707 		if (is_slab_pfmemalloc(page))
708 			goto out;
709 
710 	list_for_each_entry(page, &n->slabs_partial, lru)
711 		if (is_slab_pfmemalloc(page))
712 			goto out;
713 
714 	list_for_each_entry(page, &n->slabs_free, lru)
715 		if (is_slab_pfmemalloc(page))
716 			goto out;
717 
718 	pfmemalloc_active = false;
719 out:
720 	spin_unlock_irqrestore(&n->list_lock, flags);
721 }
722 
723 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724 						gfp_t flags, bool force_refill)
725 {
726 	int i;
727 	void *objp = ac->entry[--ac->avail];
728 
729 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
730 	if (unlikely(is_obj_pfmemalloc(objp))) {
731 		struct kmem_cache_node *n;
732 
733 		if (gfp_pfmemalloc_allowed(flags)) {
734 			clear_obj_pfmemalloc(&objp);
735 			return objp;
736 		}
737 
738 		/* The caller cannot use PFMEMALLOC objects, find another one */
739 		for (i = 0; i < ac->avail; i++) {
740 			/* If a !PFMEMALLOC object is found, swap them */
741 			if (!is_obj_pfmemalloc(ac->entry[i])) {
742 				objp = ac->entry[i];
743 				ac->entry[i] = ac->entry[ac->avail];
744 				ac->entry[ac->avail] = objp;
745 				return objp;
746 			}
747 		}
748 
749 		/*
750 		 * If there are empty slabs on the slabs_free list and we are
751 		 * being forced to refill the cache, mark this one !pfmemalloc.
752 		 */
753 		n = get_node(cachep, numa_mem_id());
754 		if (!list_empty(&n->slabs_free) && force_refill) {
755 			struct page *page = virt_to_head_page(objp);
756 			ClearPageSlabPfmemalloc(page);
757 			clear_obj_pfmemalloc(&objp);
758 			recheck_pfmemalloc_active(cachep, ac);
759 			return objp;
760 		}
761 
762 		/* No !PFMEMALLOC objects available */
763 		ac->avail++;
764 		objp = NULL;
765 	}
766 
767 	return objp;
768 }
769 
770 static inline void *ac_get_obj(struct kmem_cache *cachep,
771 			struct array_cache *ac, gfp_t flags, bool force_refill)
772 {
773 	void *objp;
774 
775 	if (unlikely(sk_memalloc_socks()))
776 		objp = __ac_get_obj(cachep, ac, flags, force_refill);
777 	else
778 		objp = ac->entry[--ac->avail];
779 
780 	return objp;
781 }
782 
783 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
784 			struct array_cache *ac, void *objp)
785 {
786 	if (unlikely(pfmemalloc_active)) {
787 		/* Some pfmemalloc slabs exist, check if this is one */
788 		struct page *page = virt_to_head_page(objp);
789 		if (PageSlabPfmemalloc(page))
790 			set_obj_pfmemalloc(&objp);
791 	}
792 
793 	return objp;
794 }
795 
796 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
797 								void *objp)
798 {
799 	if (unlikely(sk_memalloc_socks()))
800 		objp = __ac_put_obj(cachep, ac, objp);
801 
802 	ac->entry[ac->avail++] = objp;
803 }
804 
805 /*
806  * Transfer objects in one arraycache to another.
807  * Locking must be handled by the caller.
808  *
809  * Return the number of entries transferred.
810  */
811 static int transfer_objects(struct array_cache *to,
812 		struct array_cache *from, unsigned int max)
813 {
814 	/* Figure out how many entries to transfer */
815 	int nr = min3(from->avail, max, to->limit - to->avail);
816 
817 	if (!nr)
818 		return 0;
819 
820 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
821 			sizeof(void *) *nr);
822 
823 	from->avail -= nr;
824 	to->avail += nr;
825 	return nr;
826 }
827 
828 #ifndef CONFIG_NUMA
829 
830 #define drain_alien_cache(cachep, alien) do { } while (0)
831 #define reap_alien(cachep, n) do { } while (0)
832 
833 static inline struct alien_cache **alloc_alien_cache(int node,
834 						int limit, gfp_t gfp)
835 {
836 	return (struct alien_cache **)BAD_ALIEN_MAGIC;
837 }
838 
839 static inline void free_alien_cache(struct alien_cache **ac_ptr)
840 {
841 }
842 
843 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
844 {
845 	return 0;
846 }
847 
848 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
849 		gfp_t flags)
850 {
851 	return NULL;
852 }
853 
854 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855 		 gfp_t flags, int nodeid)
856 {
857 	return NULL;
858 }
859 
860 #else	/* CONFIG_NUMA */
861 
862 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
863 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
864 
865 static struct alien_cache *__alloc_alien_cache(int node, int entries,
866 						int batch, gfp_t gfp)
867 {
868 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
869 	struct alien_cache *alc = NULL;
870 
871 	alc = kmalloc_node(memsize, gfp, node);
872 	init_arraycache(&alc->ac, entries, batch);
873 	spin_lock_init(&alc->lock);
874 	return alc;
875 }
876 
877 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
878 {
879 	struct alien_cache **alc_ptr;
880 	size_t memsize = sizeof(void *) * nr_node_ids;
881 	int i;
882 
883 	if (limit > 1)
884 		limit = 12;
885 	alc_ptr = kzalloc_node(memsize, gfp, node);
886 	if (!alc_ptr)
887 		return NULL;
888 
889 	for_each_node(i) {
890 		if (i == node || !node_online(i))
891 			continue;
892 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
893 		if (!alc_ptr[i]) {
894 			for (i--; i >= 0; i--)
895 				kfree(alc_ptr[i]);
896 			kfree(alc_ptr);
897 			return NULL;
898 		}
899 	}
900 	return alc_ptr;
901 }
902 
903 static void free_alien_cache(struct alien_cache **alc_ptr)
904 {
905 	int i;
906 
907 	if (!alc_ptr)
908 		return;
909 	for_each_node(i)
910 	    kfree(alc_ptr[i]);
911 	kfree(alc_ptr);
912 }
913 
914 static void __drain_alien_cache(struct kmem_cache *cachep,
915 				struct array_cache *ac, int node,
916 				struct list_head *list)
917 {
918 	struct kmem_cache_node *n = get_node(cachep, node);
919 
920 	if (ac->avail) {
921 		spin_lock(&n->list_lock);
922 		/*
923 		 * Stuff objects into the remote nodes shared array first.
924 		 * That way we could avoid the overhead of putting the objects
925 		 * into the free lists and getting them back later.
926 		 */
927 		if (n->shared)
928 			transfer_objects(n->shared, ac, ac->limit);
929 
930 		free_block(cachep, ac->entry, ac->avail, node, list);
931 		ac->avail = 0;
932 		spin_unlock(&n->list_lock);
933 	}
934 }
935 
936 /*
937  * Called from cache_reap() to regularly drain alien caches round robin.
938  */
939 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
940 {
941 	int node = __this_cpu_read(slab_reap_node);
942 
943 	if (n->alien) {
944 		struct alien_cache *alc = n->alien[node];
945 		struct array_cache *ac;
946 
947 		if (alc) {
948 			ac = &alc->ac;
949 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
950 				LIST_HEAD(list);
951 
952 				__drain_alien_cache(cachep, ac, node, &list);
953 				spin_unlock_irq(&alc->lock);
954 				slabs_destroy(cachep, &list);
955 			}
956 		}
957 	}
958 }
959 
960 static void drain_alien_cache(struct kmem_cache *cachep,
961 				struct alien_cache **alien)
962 {
963 	int i = 0;
964 	struct alien_cache *alc;
965 	struct array_cache *ac;
966 	unsigned long flags;
967 
968 	for_each_online_node(i) {
969 		alc = alien[i];
970 		if (alc) {
971 			LIST_HEAD(list);
972 
973 			ac = &alc->ac;
974 			spin_lock_irqsave(&alc->lock, flags);
975 			__drain_alien_cache(cachep, ac, i, &list);
976 			spin_unlock_irqrestore(&alc->lock, flags);
977 			slabs_destroy(cachep, &list);
978 		}
979 	}
980 }
981 
982 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
983 				int node, int page_node)
984 {
985 	struct kmem_cache_node *n;
986 	struct alien_cache *alien = NULL;
987 	struct array_cache *ac;
988 	LIST_HEAD(list);
989 
990 	n = get_node(cachep, node);
991 	STATS_INC_NODEFREES(cachep);
992 	if (n->alien && n->alien[page_node]) {
993 		alien = n->alien[page_node];
994 		ac = &alien->ac;
995 		spin_lock(&alien->lock);
996 		if (unlikely(ac->avail == ac->limit)) {
997 			STATS_INC_ACOVERFLOW(cachep);
998 			__drain_alien_cache(cachep, ac, page_node, &list);
999 		}
1000 		ac_put_obj(cachep, ac, objp);
1001 		spin_unlock(&alien->lock);
1002 		slabs_destroy(cachep, &list);
1003 	} else {
1004 		n = get_node(cachep, page_node);
1005 		spin_lock(&n->list_lock);
1006 		free_block(cachep, &objp, 1, page_node, &list);
1007 		spin_unlock(&n->list_lock);
1008 		slabs_destroy(cachep, &list);
1009 	}
1010 	return 1;
1011 }
1012 
1013 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1014 {
1015 	int page_node = page_to_nid(virt_to_page(objp));
1016 	int node = numa_mem_id();
1017 	/*
1018 	 * Make sure we are not freeing a object from another node to the array
1019 	 * cache on this cpu.
1020 	 */
1021 	if (likely(node == page_node))
1022 		return 0;
1023 
1024 	return __cache_free_alien(cachep, objp, node, page_node);
1025 }
1026 #endif
1027 
1028 /*
1029  * Allocates and initializes node for a node on each slab cache, used for
1030  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1031  * will be allocated off-node since memory is not yet online for the new node.
1032  * When hotplugging memory or a cpu, existing node are not replaced if
1033  * already in use.
1034  *
1035  * Must hold slab_mutex.
1036  */
1037 static int init_cache_node_node(int node)
1038 {
1039 	struct kmem_cache *cachep;
1040 	struct kmem_cache_node *n;
1041 	const size_t memsize = sizeof(struct kmem_cache_node);
1042 
1043 	list_for_each_entry(cachep, &slab_caches, list) {
1044 		/*
1045 		 * Set up the kmem_cache_node for cpu before we can
1046 		 * begin anything. Make sure some other cpu on this
1047 		 * node has not already allocated this
1048 		 */
1049 		n = get_node(cachep, node);
1050 		if (!n) {
1051 			n = kmalloc_node(memsize, GFP_KERNEL, node);
1052 			if (!n)
1053 				return -ENOMEM;
1054 			kmem_cache_node_init(n);
1055 			n->next_reap = jiffies + REAPTIMEOUT_NODE +
1056 			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1057 
1058 			/*
1059 			 * The kmem_cache_nodes don't come and go as CPUs
1060 			 * come and go.  slab_mutex is sufficient
1061 			 * protection here.
1062 			 */
1063 			cachep->node[node] = n;
1064 		}
1065 
1066 		spin_lock_irq(&n->list_lock);
1067 		n->free_limit =
1068 			(1 + nr_cpus_node(node)) *
1069 			cachep->batchcount + cachep->num;
1070 		spin_unlock_irq(&n->list_lock);
1071 	}
1072 	return 0;
1073 }
1074 
1075 static inline int slabs_tofree(struct kmem_cache *cachep,
1076 						struct kmem_cache_node *n)
1077 {
1078 	return (n->free_objects + cachep->num - 1) / cachep->num;
1079 }
1080 
1081 static void cpuup_canceled(long cpu)
1082 {
1083 	struct kmem_cache *cachep;
1084 	struct kmem_cache_node *n = NULL;
1085 	int node = cpu_to_mem(cpu);
1086 	const struct cpumask *mask = cpumask_of_node(node);
1087 
1088 	list_for_each_entry(cachep, &slab_caches, list) {
1089 		struct array_cache *nc;
1090 		struct array_cache *shared;
1091 		struct alien_cache **alien;
1092 		LIST_HEAD(list);
1093 
1094 		n = get_node(cachep, node);
1095 		if (!n)
1096 			continue;
1097 
1098 		spin_lock_irq(&n->list_lock);
1099 
1100 		/* Free limit for this kmem_cache_node */
1101 		n->free_limit -= cachep->batchcount;
1102 
1103 		/* cpu is dead; no one can alloc from it. */
1104 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1105 		if (nc) {
1106 			free_block(cachep, nc->entry, nc->avail, node, &list);
1107 			nc->avail = 0;
1108 		}
1109 
1110 		if (!cpumask_empty(mask)) {
1111 			spin_unlock_irq(&n->list_lock);
1112 			goto free_slab;
1113 		}
1114 
1115 		shared = n->shared;
1116 		if (shared) {
1117 			free_block(cachep, shared->entry,
1118 				   shared->avail, node, &list);
1119 			n->shared = NULL;
1120 		}
1121 
1122 		alien = n->alien;
1123 		n->alien = NULL;
1124 
1125 		spin_unlock_irq(&n->list_lock);
1126 
1127 		kfree(shared);
1128 		if (alien) {
1129 			drain_alien_cache(cachep, alien);
1130 			free_alien_cache(alien);
1131 		}
1132 
1133 free_slab:
1134 		slabs_destroy(cachep, &list);
1135 	}
1136 	/*
1137 	 * In the previous loop, all the objects were freed to
1138 	 * the respective cache's slabs,  now we can go ahead and
1139 	 * shrink each nodelist to its limit.
1140 	 */
1141 	list_for_each_entry(cachep, &slab_caches, list) {
1142 		n = get_node(cachep, node);
1143 		if (!n)
1144 			continue;
1145 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1146 	}
1147 }
1148 
1149 static int cpuup_prepare(long cpu)
1150 {
1151 	struct kmem_cache *cachep;
1152 	struct kmem_cache_node *n = NULL;
1153 	int node = cpu_to_mem(cpu);
1154 	int err;
1155 
1156 	/*
1157 	 * We need to do this right in the beginning since
1158 	 * alloc_arraycache's are going to use this list.
1159 	 * kmalloc_node allows us to add the slab to the right
1160 	 * kmem_cache_node and not this cpu's kmem_cache_node
1161 	 */
1162 	err = init_cache_node_node(node);
1163 	if (err < 0)
1164 		goto bad;
1165 
1166 	/*
1167 	 * Now we can go ahead with allocating the shared arrays and
1168 	 * array caches
1169 	 */
1170 	list_for_each_entry(cachep, &slab_caches, list) {
1171 		struct array_cache *shared = NULL;
1172 		struct alien_cache **alien = NULL;
1173 
1174 		if (cachep->shared) {
1175 			shared = alloc_arraycache(node,
1176 				cachep->shared * cachep->batchcount,
1177 				0xbaadf00d, GFP_KERNEL);
1178 			if (!shared)
1179 				goto bad;
1180 		}
1181 		if (use_alien_caches) {
1182 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1183 			if (!alien) {
1184 				kfree(shared);
1185 				goto bad;
1186 			}
1187 		}
1188 		n = get_node(cachep, node);
1189 		BUG_ON(!n);
1190 
1191 		spin_lock_irq(&n->list_lock);
1192 		if (!n->shared) {
1193 			/*
1194 			 * We are serialised from CPU_DEAD or
1195 			 * CPU_UP_CANCELLED by the cpucontrol lock
1196 			 */
1197 			n->shared = shared;
1198 			shared = NULL;
1199 		}
1200 #ifdef CONFIG_NUMA
1201 		if (!n->alien) {
1202 			n->alien = alien;
1203 			alien = NULL;
1204 		}
1205 #endif
1206 		spin_unlock_irq(&n->list_lock);
1207 		kfree(shared);
1208 		free_alien_cache(alien);
1209 	}
1210 
1211 	return 0;
1212 bad:
1213 	cpuup_canceled(cpu);
1214 	return -ENOMEM;
1215 }
1216 
1217 static int cpuup_callback(struct notifier_block *nfb,
1218 				    unsigned long action, void *hcpu)
1219 {
1220 	long cpu = (long)hcpu;
1221 	int err = 0;
1222 
1223 	switch (action) {
1224 	case CPU_UP_PREPARE:
1225 	case CPU_UP_PREPARE_FROZEN:
1226 		mutex_lock(&slab_mutex);
1227 		err = cpuup_prepare(cpu);
1228 		mutex_unlock(&slab_mutex);
1229 		break;
1230 	case CPU_ONLINE:
1231 	case CPU_ONLINE_FROZEN:
1232 		start_cpu_timer(cpu);
1233 		break;
1234 #ifdef CONFIG_HOTPLUG_CPU
1235   	case CPU_DOWN_PREPARE:
1236   	case CPU_DOWN_PREPARE_FROZEN:
1237 		/*
1238 		 * Shutdown cache reaper. Note that the slab_mutex is
1239 		 * held so that if cache_reap() is invoked it cannot do
1240 		 * anything expensive but will only modify reap_work
1241 		 * and reschedule the timer.
1242 		*/
1243 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1244 		/* Now the cache_reaper is guaranteed to be not running. */
1245 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1246   		break;
1247   	case CPU_DOWN_FAILED:
1248   	case CPU_DOWN_FAILED_FROZEN:
1249 		start_cpu_timer(cpu);
1250   		break;
1251 	case CPU_DEAD:
1252 	case CPU_DEAD_FROZEN:
1253 		/*
1254 		 * Even if all the cpus of a node are down, we don't free the
1255 		 * kmem_cache_node of any cache. This to avoid a race between
1256 		 * cpu_down, and a kmalloc allocation from another cpu for
1257 		 * memory from the node of the cpu going down.  The node
1258 		 * structure is usually allocated from kmem_cache_create() and
1259 		 * gets destroyed at kmem_cache_destroy().
1260 		 */
1261 		/* fall through */
1262 #endif
1263 	case CPU_UP_CANCELED:
1264 	case CPU_UP_CANCELED_FROZEN:
1265 		mutex_lock(&slab_mutex);
1266 		cpuup_canceled(cpu);
1267 		mutex_unlock(&slab_mutex);
1268 		break;
1269 	}
1270 	return notifier_from_errno(err);
1271 }
1272 
1273 static struct notifier_block cpucache_notifier = {
1274 	&cpuup_callback, NULL, 0
1275 };
1276 
1277 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1278 /*
1279  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1280  * Returns -EBUSY if all objects cannot be drained so that the node is not
1281  * removed.
1282  *
1283  * Must hold slab_mutex.
1284  */
1285 static int __meminit drain_cache_node_node(int node)
1286 {
1287 	struct kmem_cache *cachep;
1288 	int ret = 0;
1289 
1290 	list_for_each_entry(cachep, &slab_caches, list) {
1291 		struct kmem_cache_node *n;
1292 
1293 		n = get_node(cachep, node);
1294 		if (!n)
1295 			continue;
1296 
1297 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1298 
1299 		if (!list_empty(&n->slabs_full) ||
1300 		    !list_empty(&n->slabs_partial)) {
1301 			ret = -EBUSY;
1302 			break;
1303 		}
1304 	}
1305 	return ret;
1306 }
1307 
1308 static int __meminit slab_memory_callback(struct notifier_block *self,
1309 					unsigned long action, void *arg)
1310 {
1311 	struct memory_notify *mnb = arg;
1312 	int ret = 0;
1313 	int nid;
1314 
1315 	nid = mnb->status_change_nid;
1316 	if (nid < 0)
1317 		goto out;
1318 
1319 	switch (action) {
1320 	case MEM_GOING_ONLINE:
1321 		mutex_lock(&slab_mutex);
1322 		ret = init_cache_node_node(nid);
1323 		mutex_unlock(&slab_mutex);
1324 		break;
1325 	case MEM_GOING_OFFLINE:
1326 		mutex_lock(&slab_mutex);
1327 		ret = drain_cache_node_node(nid);
1328 		mutex_unlock(&slab_mutex);
1329 		break;
1330 	case MEM_ONLINE:
1331 	case MEM_OFFLINE:
1332 	case MEM_CANCEL_ONLINE:
1333 	case MEM_CANCEL_OFFLINE:
1334 		break;
1335 	}
1336 out:
1337 	return notifier_from_errno(ret);
1338 }
1339 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1340 
1341 /*
1342  * swap the static kmem_cache_node with kmalloced memory
1343  */
1344 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1345 				int nodeid)
1346 {
1347 	struct kmem_cache_node *ptr;
1348 
1349 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1350 	BUG_ON(!ptr);
1351 
1352 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1353 	/*
1354 	 * Do not assume that spinlocks can be initialized via memcpy:
1355 	 */
1356 	spin_lock_init(&ptr->list_lock);
1357 
1358 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1359 	cachep->node[nodeid] = ptr;
1360 }
1361 
1362 /*
1363  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1364  * size of kmem_cache_node.
1365  */
1366 static void __init set_up_node(struct kmem_cache *cachep, int index)
1367 {
1368 	int node;
1369 
1370 	for_each_online_node(node) {
1371 		cachep->node[node] = &init_kmem_cache_node[index + node];
1372 		cachep->node[node]->next_reap = jiffies +
1373 		    REAPTIMEOUT_NODE +
1374 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1375 	}
1376 }
1377 
1378 /*
1379  * Initialisation.  Called after the page allocator have been initialised and
1380  * before smp_init().
1381  */
1382 void __init kmem_cache_init(void)
1383 {
1384 	int i;
1385 
1386 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1387 					sizeof(struct rcu_head));
1388 	kmem_cache = &kmem_cache_boot;
1389 
1390 	if (num_possible_nodes() == 1)
1391 		use_alien_caches = 0;
1392 
1393 	for (i = 0; i < NUM_INIT_LISTS; i++)
1394 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1395 
1396 	/*
1397 	 * Fragmentation resistance on low memory - only use bigger
1398 	 * page orders on machines with more than 32MB of memory if
1399 	 * not overridden on the command line.
1400 	 */
1401 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1402 		slab_max_order = SLAB_MAX_ORDER_HI;
1403 
1404 	/* Bootstrap is tricky, because several objects are allocated
1405 	 * from caches that do not exist yet:
1406 	 * 1) initialize the kmem_cache cache: it contains the struct
1407 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1408 	 *    kmem_cache is statically allocated.
1409 	 *    Initially an __init data area is used for the head array and the
1410 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1411 	 *    array at the end of the bootstrap.
1412 	 * 2) Create the first kmalloc cache.
1413 	 *    The struct kmem_cache for the new cache is allocated normally.
1414 	 *    An __init data area is used for the head array.
1415 	 * 3) Create the remaining kmalloc caches, with minimally sized
1416 	 *    head arrays.
1417 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1418 	 *    kmalloc cache with kmalloc allocated arrays.
1419 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1420 	 *    the other cache's with kmalloc allocated memory.
1421 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1422 	 */
1423 
1424 	/* 1) create the kmem_cache */
1425 
1426 	/*
1427 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1428 	 */
1429 	create_boot_cache(kmem_cache, "kmem_cache",
1430 		offsetof(struct kmem_cache, node) +
1431 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1432 				  SLAB_HWCACHE_ALIGN);
1433 	list_add(&kmem_cache->list, &slab_caches);
1434 	slab_state = PARTIAL;
1435 
1436 	/*
1437 	 * Initialize the caches that provide memory for the  kmem_cache_node
1438 	 * structures first.  Without this, further allocations will bug.
1439 	 */
1440 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1441 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1442 	slab_state = PARTIAL_NODE;
1443 
1444 	slab_early_init = 0;
1445 
1446 	/* 5) Replace the bootstrap kmem_cache_node */
1447 	{
1448 		int nid;
1449 
1450 		for_each_online_node(nid) {
1451 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1452 
1453 			init_list(kmalloc_caches[INDEX_NODE],
1454 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1455 		}
1456 	}
1457 
1458 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1459 }
1460 
1461 void __init kmem_cache_init_late(void)
1462 {
1463 	struct kmem_cache *cachep;
1464 
1465 	slab_state = UP;
1466 
1467 	/* 6) resize the head arrays to their final sizes */
1468 	mutex_lock(&slab_mutex);
1469 	list_for_each_entry(cachep, &slab_caches, list)
1470 		if (enable_cpucache(cachep, GFP_NOWAIT))
1471 			BUG();
1472 	mutex_unlock(&slab_mutex);
1473 
1474 	/* Done! */
1475 	slab_state = FULL;
1476 
1477 	/*
1478 	 * Register a cpu startup notifier callback that initializes
1479 	 * cpu_cache_get for all new cpus
1480 	 */
1481 	register_cpu_notifier(&cpucache_notifier);
1482 
1483 #ifdef CONFIG_NUMA
1484 	/*
1485 	 * Register a memory hotplug callback that initializes and frees
1486 	 * node.
1487 	 */
1488 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1489 #endif
1490 
1491 	/*
1492 	 * The reap timers are started later, with a module init call: That part
1493 	 * of the kernel is not yet operational.
1494 	 */
1495 }
1496 
1497 static int __init cpucache_init(void)
1498 {
1499 	int cpu;
1500 
1501 	/*
1502 	 * Register the timers that return unneeded pages to the page allocator
1503 	 */
1504 	for_each_online_cpu(cpu)
1505 		start_cpu_timer(cpu);
1506 
1507 	/* Done! */
1508 	slab_state = FULL;
1509 	return 0;
1510 }
1511 __initcall(cpucache_init);
1512 
1513 static noinline void
1514 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1515 {
1516 #if DEBUG
1517 	struct kmem_cache_node *n;
1518 	struct page *page;
1519 	unsigned long flags;
1520 	int node;
1521 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1522 				      DEFAULT_RATELIMIT_BURST);
1523 
1524 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1525 		return;
1526 
1527 	printk(KERN_WARNING
1528 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1529 		nodeid, gfpflags);
1530 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1531 		cachep->name, cachep->size, cachep->gfporder);
1532 
1533 	for_each_kmem_cache_node(cachep, node, n) {
1534 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1535 		unsigned long active_slabs = 0, num_slabs = 0;
1536 
1537 		spin_lock_irqsave(&n->list_lock, flags);
1538 		list_for_each_entry(page, &n->slabs_full, lru) {
1539 			active_objs += cachep->num;
1540 			active_slabs++;
1541 		}
1542 		list_for_each_entry(page, &n->slabs_partial, lru) {
1543 			active_objs += page->active;
1544 			active_slabs++;
1545 		}
1546 		list_for_each_entry(page, &n->slabs_free, lru)
1547 			num_slabs++;
1548 
1549 		free_objects += n->free_objects;
1550 		spin_unlock_irqrestore(&n->list_lock, flags);
1551 
1552 		num_slabs += active_slabs;
1553 		num_objs = num_slabs * cachep->num;
1554 		printk(KERN_WARNING
1555 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1556 			node, active_slabs, num_slabs, active_objs, num_objs,
1557 			free_objects);
1558 	}
1559 #endif
1560 }
1561 
1562 /*
1563  * Interface to system's page allocator. No need to hold the
1564  * kmem_cache_node ->list_lock.
1565  *
1566  * If we requested dmaable memory, we will get it. Even if we
1567  * did not request dmaable memory, we might get it, but that
1568  * would be relatively rare and ignorable.
1569  */
1570 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1571 								int nodeid)
1572 {
1573 	struct page *page;
1574 	int nr_pages;
1575 
1576 	flags |= cachep->allocflags;
1577 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1578 		flags |= __GFP_RECLAIMABLE;
1579 
1580 	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1581 		return NULL;
1582 
1583 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1584 	if (!page) {
1585 		memcg_uncharge_slab(cachep, cachep->gfporder);
1586 		slab_out_of_memory(cachep, flags, nodeid);
1587 		return NULL;
1588 	}
1589 
1590 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1591 	if (unlikely(page->pfmemalloc))
1592 		pfmemalloc_active = true;
1593 
1594 	nr_pages = (1 << cachep->gfporder);
1595 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1596 		add_zone_page_state(page_zone(page),
1597 			NR_SLAB_RECLAIMABLE, nr_pages);
1598 	else
1599 		add_zone_page_state(page_zone(page),
1600 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1601 	__SetPageSlab(page);
1602 	if (page->pfmemalloc)
1603 		SetPageSlabPfmemalloc(page);
1604 
1605 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1606 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1607 
1608 		if (cachep->ctor)
1609 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1610 		else
1611 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1612 	}
1613 
1614 	return page;
1615 }
1616 
1617 /*
1618  * Interface to system's page release.
1619  */
1620 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1621 {
1622 	const unsigned long nr_freed = (1 << cachep->gfporder);
1623 
1624 	kmemcheck_free_shadow(page, cachep->gfporder);
1625 
1626 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1627 		sub_zone_page_state(page_zone(page),
1628 				NR_SLAB_RECLAIMABLE, nr_freed);
1629 	else
1630 		sub_zone_page_state(page_zone(page),
1631 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1632 
1633 	BUG_ON(!PageSlab(page));
1634 	__ClearPageSlabPfmemalloc(page);
1635 	__ClearPageSlab(page);
1636 	page_mapcount_reset(page);
1637 	page->mapping = NULL;
1638 
1639 	if (current->reclaim_state)
1640 		current->reclaim_state->reclaimed_slab += nr_freed;
1641 	__free_pages(page, cachep->gfporder);
1642 	memcg_uncharge_slab(cachep, cachep->gfporder);
1643 }
1644 
1645 static void kmem_rcu_free(struct rcu_head *head)
1646 {
1647 	struct kmem_cache *cachep;
1648 	struct page *page;
1649 
1650 	page = container_of(head, struct page, rcu_head);
1651 	cachep = page->slab_cache;
1652 
1653 	kmem_freepages(cachep, page);
1654 }
1655 
1656 #if DEBUG
1657 
1658 #ifdef CONFIG_DEBUG_PAGEALLOC
1659 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1660 			    unsigned long caller)
1661 {
1662 	int size = cachep->object_size;
1663 
1664 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1665 
1666 	if (size < 5 * sizeof(unsigned long))
1667 		return;
1668 
1669 	*addr++ = 0x12345678;
1670 	*addr++ = caller;
1671 	*addr++ = smp_processor_id();
1672 	size -= 3 * sizeof(unsigned long);
1673 	{
1674 		unsigned long *sptr = &caller;
1675 		unsigned long svalue;
1676 
1677 		while (!kstack_end(sptr)) {
1678 			svalue = *sptr++;
1679 			if (kernel_text_address(svalue)) {
1680 				*addr++ = svalue;
1681 				size -= sizeof(unsigned long);
1682 				if (size <= sizeof(unsigned long))
1683 					break;
1684 			}
1685 		}
1686 
1687 	}
1688 	*addr++ = 0x87654321;
1689 }
1690 #endif
1691 
1692 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1693 {
1694 	int size = cachep->object_size;
1695 	addr = &((char *)addr)[obj_offset(cachep)];
1696 
1697 	memset(addr, val, size);
1698 	*(unsigned char *)(addr + size - 1) = POISON_END;
1699 }
1700 
1701 static void dump_line(char *data, int offset, int limit)
1702 {
1703 	int i;
1704 	unsigned char error = 0;
1705 	int bad_count = 0;
1706 
1707 	printk(KERN_ERR "%03x: ", offset);
1708 	for (i = 0; i < limit; i++) {
1709 		if (data[offset + i] != POISON_FREE) {
1710 			error = data[offset + i];
1711 			bad_count++;
1712 		}
1713 	}
1714 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1715 			&data[offset], limit, 1);
1716 
1717 	if (bad_count == 1) {
1718 		error ^= POISON_FREE;
1719 		if (!(error & (error - 1))) {
1720 			printk(KERN_ERR "Single bit error detected. Probably "
1721 					"bad RAM.\n");
1722 #ifdef CONFIG_X86
1723 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1724 					"test tool.\n");
1725 #else
1726 			printk(KERN_ERR "Run a memory test tool.\n");
1727 #endif
1728 		}
1729 	}
1730 }
1731 #endif
1732 
1733 #if DEBUG
1734 
1735 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1736 {
1737 	int i, size;
1738 	char *realobj;
1739 
1740 	if (cachep->flags & SLAB_RED_ZONE) {
1741 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1742 			*dbg_redzone1(cachep, objp),
1743 			*dbg_redzone2(cachep, objp));
1744 	}
1745 
1746 	if (cachep->flags & SLAB_STORE_USER) {
1747 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1748 		       *dbg_userword(cachep, objp),
1749 		       *dbg_userword(cachep, objp));
1750 	}
1751 	realobj = (char *)objp + obj_offset(cachep);
1752 	size = cachep->object_size;
1753 	for (i = 0; i < size && lines; i += 16, lines--) {
1754 		int limit;
1755 		limit = 16;
1756 		if (i + limit > size)
1757 			limit = size - i;
1758 		dump_line(realobj, i, limit);
1759 	}
1760 }
1761 
1762 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1763 {
1764 	char *realobj;
1765 	int size, i;
1766 	int lines = 0;
1767 
1768 	realobj = (char *)objp + obj_offset(cachep);
1769 	size = cachep->object_size;
1770 
1771 	for (i = 0; i < size; i++) {
1772 		char exp = POISON_FREE;
1773 		if (i == size - 1)
1774 			exp = POISON_END;
1775 		if (realobj[i] != exp) {
1776 			int limit;
1777 			/* Mismatch ! */
1778 			/* Print header */
1779 			if (lines == 0) {
1780 				printk(KERN_ERR
1781 					"Slab corruption (%s): %s start=%p, len=%d\n",
1782 					print_tainted(), cachep->name, realobj, size);
1783 				print_objinfo(cachep, objp, 0);
1784 			}
1785 			/* Hexdump the affected line */
1786 			i = (i / 16) * 16;
1787 			limit = 16;
1788 			if (i + limit > size)
1789 				limit = size - i;
1790 			dump_line(realobj, i, limit);
1791 			i += 16;
1792 			lines++;
1793 			/* Limit to 5 lines */
1794 			if (lines > 5)
1795 				break;
1796 		}
1797 	}
1798 	if (lines != 0) {
1799 		/* Print some data about the neighboring objects, if they
1800 		 * exist:
1801 		 */
1802 		struct page *page = virt_to_head_page(objp);
1803 		unsigned int objnr;
1804 
1805 		objnr = obj_to_index(cachep, page, objp);
1806 		if (objnr) {
1807 			objp = index_to_obj(cachep, page, objnr - 1);
1808 			realobj = (char *)objp + obj_offset(cachep);
1809 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1810 			       realobj, size);
1811 			print_objinfo(cachep, objp, 2);
1812 		}
1813 		if (objnr + 1 < cachep->num) {
1814 			objp = index_to_obj(cachep, page, objnr + 1);
1815 			realobj = (char *)objp + obj_offset(cachep);
1816 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1817 			       realobj, size);
1818 			print_objinfo(cachep, objp, 2);
1819 		}
1820 	}
1821 }
1822 #endif
1823 
1824 #if DEBUG
1825 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1826 						struct page *page)
1827 {
1828 	int i;
1829 	for (i = 0; i < cachep->num; i++) {
1830 		void *objp = index_to_obj(cachep, page, i);
1831 
1832 		if (cachep->flags & SLAB_POISON) {
1833 #ifdef CONFIG_DEBUG_PAGEALLOC
1834 			if (cachep->size % PAGE_SIZE == 0 &&
1835 					OFF_SLAB(cachep))
1836 				kernel_map_pages(virt_to_page(objp),
1837 					cachep->size / PAGE_SIZE, 1);
1838 			else
1839 				check_poison_obj(cachep, objp);
1840 #else
1841 			check_poison_obj(cachep, objp);
1842 #endif
1843 		}
1844 		if (cachep->flags & SLAB_RED_ZONE) {
1845 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1846 				slab_error(cachep, "start of a freed object "
1847 					   "was overwritten");
1848 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1849 				slab_error(cachep, "end of a freed object "
1850 					   "was overwritten");
1851 		}
1852 	}
1853 }
1854 #else
1855 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1856 						struct page *page)
1857 {
1858 }
1859 #endif
1860 
1861 /**
1862  * slab_destroy - destroy and release all objects in a slab
1863  * @cachep: cache pointer being destroyed
1864  * @page: page pointer being destroyed
1865  *
1866  * Destroy all the objs in a slab page, and release the mem back to the system.
1867  * Before calling the slab page must have been unlinked from the cache. The
1868  * kmem_cache_node ->list_lock is not held/needed.
1869  */
1870 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1871 {
1872 	void *freelist;
1873 
1874 	freelist = page->freelist;
1875 	slab_destroy_debugcheck(cachep, page);
1876 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1877 		struct rcu_head *head;
1878 
1879 		/*
1880 		 * RCU free overloads the RCU head over the LRU.
1881 		 * slab_page has been overloeaded over the LRU,
1882 		 * however it is not used from now on so that
1883 		 * we can use it safely.
1884 		 */
1885 		head = (void *)&page->rcu_head;
1886 		call_rcu(head, kmem_rcu_free);
1887 
1888 	} else {
1889 		kmem_freepages(cachep, page);
1890 	}
1891 
1892 	/*
1893 	 * From now on, we don't use freelist
1894 	 * although actual page can be freed in rcu context
1895 	 */
1896 	if (OFF_SLAB(cachep))
1897 		kmem_cache_free(cachep->freelist_cache, freelist);
1898 }
1899 
1900 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1901 {
1902 	struct page *page, *n;
1903 
1904 	list_for_each_entry_safe(page, n, list, lru) {
1905 		list_del(&page->lru);
1906 		slab_destroy(cachep, page);
1907 	}
1908 }
1909 
1910 /**
1911  * calculate_slab_order - calculate size (page order) of slabs
1912  * @cachep: pointer to the cache that is being created
1913  * @size: size of objects to be created in this cache.
1914  * @align: required alignment for the objects.
1915  * @flags: slab allocation flags
1916  *
1917  * Also calculates the number of objects per slab.
1918  *
1919  * This could be made much more intelligent.  For now, try to avoid using
1920  * high order pages for slabs.  When the gfp() functions are more friendly
1921  * towards high-order requests, this should be changed.
1922  */
1923 static size_t calculate_slab_order(struct kmem_cache *cachep,
1924 			size_t size, size_t align, unsigned long flags)
1925 {
1926 	unsigned long offslab_limit;
1927 	size_t left_over = 0;
1928 	int gfporder;
1929 
1930 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1931 		unsigned int num;
1932 		size_t remainder;
1933 
1934 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1935 		if (!num)
1936 			continue;
1937 
1938 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1939 		if (num > SLAB_OBJ_MAX_NUM)
1940 			break;
1941 
1942 		if (flags & CFLGS_OFF_SLAB) {
1943 			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1944 			/*
1945 			 * Max number of objs-per-slab for caches which
1946 			 * use off-slab slabs. Needed to avoid a possible
1947 			 * looping condition in cache_grow().
1948 			 */
1949 			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1950 				freelist_size_per_obj += sizeof(char);
1951 			offslab_limit = size;
1952 			offslab_limit /= freelist_size_per_obj;
1953 
1954  			if (num > offslab_limit)
1955 				break;
1956 		}
1957 
1958 		/* Found something acceptable - save it away */
1959 		cachep->num = num;
1960 		cachep->gfporder = gfporder;
1961 		left_over = remainder;
1962 
1963 		/*
1964 		 * A VFS-reclaimable slab tends to have most allocations
1965 		 * as GFP_NOFS and we really don't want to have to be allocating
1966 		 * higher-order pages when we are unable to shrink dcache.
1967 		 */
1968 		if (flags & SLAB_RECLAIM_ACCOUNT)
1969 			break;
1970 
1971 		/*
1972 		 * Large number of objects is good, but very large slabs are
1973 		 * currently bad for the gfp()s.
1974 		 */
1975 		if (gfporder >= slab_max_order)
1976 			break;
1977 
1978 		/*
1979 		 * Acceptable internal fragmentation?
1980 		 */
1981 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1982 			break;
1983 	}
1984 	return left_over;
1985 }
1986 
1987 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1988 		struct kmem_cache *cachep, int entries, int batchcount)
1989 {
1990 	int cpu;
1991 	size_t size;
1992 	struct array_cache __percpu *cpu_cache;
1993 
1994 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1995 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1996 
1997 	if (!cpu_cache)
1998 		return NULL;
1999 
2000 	for_each_possible_cpu(cpu) {
2001 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2002 				entries, batchcount);
2003 	}
2004 
2005 	return cpu_cache;
2006 }
2007 
2008 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2009 {
2010 	if (slab_state >= FULL)
2011 		return enable_cpucache(cachep, gfp);
2012 
2013 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2014 	if (!cachep->cpu_cache)
2015 		return 1;
2016 
2017 	if (slab_state == DOWN) {
2018 		/* Creation of first cache (kmem_cache). */
2019 		set_up_node(kmem_cache, CACHE_CACHE);
2020 	} else if (slab_state == PARTIAL) {
2021 		/* For kmem_cache_node */
2022 		set_up_node(cachep, SIZE_NODE);
2023 	} else {
2024 		int node;
2025 
2026 		for_each_online_node(node) {
2027 			cachep->node[node] = kmalloc_node(
2028 				sizeof(struct kmem_cache_node), gfp, node);
2029 			BUG_ON(!cachep->node[node]);
2030 			kmem_cache_node_init(cachep->node[node]);
2031 		}
2032 	}
2033 
2034 	cachep->node[numa_mem_id()]->next_reap =
2035 			jiffies + REAPTIMEOUT_NODE +
2036 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2037 
2038 	cpu_cache_get(cachep)->avail = 0;
2039 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2040 	cpu_cache_get(cachep)->batchcount = 1;
2041 	cpu_cache_get(cachep)->touched = 0;
2042 	cachep->batchcount = 1;
2043 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2044 	return 0;
2045 }
2046 
2047 unsigned long kmem_cache_flags(unsigned long object_size,
2048 	unsigned long flags, const char *name,
2049 	void (*ctor)(void *))
2050 {
2051 	return flags;
2052 }
2053 
2054 struct kmem_cache *
2055 __kmem_cache_alias(const char *name, size_t size, size_t align,
2056 		   unsigned long flags, void (*ctor)(void *))
2057 {
2058 	struct kmem_cache *cachep;
2059 
2060 	cachep = find_mergeable(size, align, flags, name, ctor);
2061 	if (cachep) {
2062 		cachep->refcount++;
2063 
2064 		/*
2065 		 * Adjust the object sizes so that we clear
2066 		 * the complete object on kzalloc.
2067 		 */
2068 		cachep->object_size = max_t(int, cachep->object_size, size);
2069 	}
2070 	return cachep;
2071 }
2072 
2073 /**
2074  * __kmem_cache_create - Create a cache.
2075  * @cachep: cache management descriptor
2076  * @flags: SLAB flags
2077  *
2078  * Returns a ptr to the cache on success, NULL on failure.
2079  * Cannot be called within a int, but can be interrupted.
2080  * The @ctor is run when new pages are allocated by the cache.
2081  *
2082  * The flags are
2083  *
2084  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2085  * to catch references to uninitialised memory.
2086  *
2087  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2088  * for buffer overruns.
2089  *
2090  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2091  * cacheline.  This can be beneficial if you're counting cycles as closely
2092  * as davem.
2093  */
2094 int
2095 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2096 {
2097 	size_t left_over, freelist_size;
2098 	size_t ralign = BYTES_PER_WORD;
2099 	gfp_t gfp;
2100 	int err;
2101 	size_t size = cachep->size;
2102 
2103 #if DEBUG
2104 #if FORCED_DEBUG
2105 	/*
2106 	 * Enable redzoning and last user accounting, except for caches with
2107 	 * large objects, if the increased size would increase the object size
2108 	 * above the next power of two: caches with object sizes just above a
2109 	 * power of two have a significant amount of internal fragmentation.
2110 	 */
2111 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2112 						2 * sizeof(unsigned long long)))
2113 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2114 	if (!(flags & SLAB_DESTROY_BY_RCU))
2115 		flags |= SLAB_POISON;
2116 #endif
2117 	if (flags & SLAB_DESTROY_BY_RCU)
2118 		BUG_ON(flags & SLAB_POISON);
2119 #endif
2120 
2121 	/*
2122 	 * Check that size is in terms of words.  This is needed to avoid
2123 	 * unaligned accesses for some archs when redzoning is used, and makes
2124 	 * sure any on-slab bufctl's are also correctly aligned.
2125 	 */
2126 	if (size & (BYTES_PER_WORD - 1)) {
2127 		size += (BYTES_PER_WORD - 1);
2128 		size &= ~(BYTES_PER_WORD - 1);
2129 	}
2130 
2131 	if (flags & SLAB_RED_ZONE) {
2132 		ralign = REDZONE_ALIGN;
2133 		/* If redzoning, ensure that the second redzone is suitably
2134 		 * aligned, by adjusting the object size accordingly. */
2135 		size += REDZONE_ALIGN - 1;
2136 		size &= ~(REDZONE_ALIGN - 1);
2137 	}
2138 
2139 	/* 3) caller mandated alignment */
2140 	if (ralign < cachep->align) {
2141 		ralign = cachep->align;
2142 	}
2143 	/* disable debug if necessary */
2144 	if (ralign > __alignof__(unsigned long long))
2145 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2146 	/*
2147 	 * 4) Store it.
2148 	 */
2149 	cachep->align = ralign;
2150 
2151 	if (slab_is_available())
2152 		gfp = GFP_KERNEL;
2153 	else
2154 		gfp = GFP_NOWAIT;
2155 
2156 #if DEBUG
2157 
2158 	/*
2159 	 * Both debugging options require word-alignment which is calculated
2160 	 * into align above.
2161 	 */
2162 	if (flags & SLAB_RED_ZONE) {
2163 		/* add space for red zone words */
2164 		cachep->obj_offset += sizeof(unsigned long long);
2165 		size += 2 * sizeof(unsigned long long);
2166 	}
2167 	if (flags & SLAB_STORE_USER) {
2168 		/* user store requires one word storage behind the end of
2169 		 * the real object. But if the second red zone needs to be
2170 		 * aligned to 64 bits, we must allow that much space.
2171 		 */
2172 		if (flags & SLAB_RED_ZONE)
2173 			size += REDZONE_ALIGN;
2174 		else
2175 			size += BYTES_PER_WORD;
2176 	}
2177 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2178 	if (size >= kmalloc_size(INDEX_NODE + 1)
2179 	    && cachep->object_size > cache_line_size()
2180 	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
2181 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2182 		size = PAGE_SIZE;
2183 	}
2184 #endif
2185 #endif
2186 
2187 	/*
2188 	 * Determine if the slab management is 'on' or 'off' slab.
2189 	 * (bootstrapping cannot cope with offslab caches so don't do
2190 	 * it too early on. Always use on-slab management when
2191 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2192 	 */
2193 	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2194 	    !(flags & SLAB_NOLEAKTRACE))
2195 		/*
2196 		 * Size is large, assume best to place the slab management obj
2197 		 * off-slab (should allow better packing of objs).
2198 		 */
2199 		flags |= CFLGS_OFF_SLAB;
2200 
2201 	size = ALIGN(size, cachep->align);
2202 	/*
2203 	 * We should restrict the number of objects in a slab to implement
2204 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2205 	 */
2206 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2207 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2208 
2209 	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2210 
2211 	if (!cachep->num)
2212 		return -E2BIG;
2213 
2214 	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2215 
2216 	/*
2217 	 * If the slab has been placed off-slab, and we have enough space then
2218 	 * move it on-slab. This is at the expense of any extra colouring.
2219 	 */
2220 	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2221 		flags &= ~CFLGS_OFF_SLAB;
2222 		left_over -= freelist_size;
2223 	}
2224 
2225 	if (flags & CFLGS_OFF_SLAB) {
2226 		/* really off slab. No need for manual alignment */
2227 		freelist_size = calculate_freelist_size(cachep->num, 0);
2228 
2229 #ifdef CONFIG_PAGE_POISONING
2230 		/* If we're going to use the generic kernel_map_pages()
2231 		 * poisoning, then it's going to smash the contents of
2232 		 * the redzone and userword anyhow, so switch them off.
2233 		 */
2234 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2235 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2236 #endif
2237 	}
2238 
2239 	cachep->colour_off = cache_line_size();
2240 	/* Offset must be a multiple of the alignment. */
2241 	if (cachep->colour_off < cachep->align)
2242 		cachep->colour_off = cachep->align;
2243 	cachep->colour = left_over / cachep->colour_off;
2244 	cachep->freelist_size = freelist_size;
2245 	cachep->flags = flags;
2246 	cachep->allocflags = __GFP_COMP;
2247 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2248 		cachep->allocflags |= GFP_DMA;
2249 	cachep->size = size;
2250 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2251 
2252 	if (flags & CFLGS_OFF_SLAB) {
2253 		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2254 		/*
2255 		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2256 		 * But since we go off slab only for object size greater than
2257 		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2258 		 * in ascending order,this should not happen at all.
2259 		 * But leave a BUG_ON for some lucky dude.
2260 		 */
2261 		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2262 	}
2263 
2264 	err = setup_cpu_cache(cachep, gfp);
2265 	if (err) {
2266 		__kmem_cache_shutdown(cachep);
2267 		return err;
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 #if DEBUG
2274 static void check_irq_off(void)
2275 {
2276 	BUG_ON(!irqs_disabled());
2277 }
2278 
2279 static void check_irq_on(void)
2280 {
2281 	BUG_ON(irqs_disabled());
2282 }
2283 
2284 static void check_spinlock_acquired(struct kmem_cache *cachep)
2285 {
2286 #ifdef CONFIG_SMP
2287 	check_irq_off();
2288 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2289 #endif
2290 }
2291 
2292 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2293 {
2294 #ifdef CONFIG_SMP
2295 	check_irq_off();
2296 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2297 #endif
2298 }
2299 
2300 #else
2301 #define check_irq_off()	do { } while(0)
2302 #define check_irq_on()	do { } while(0)
2303 #define check_spinlock_acquired(x) do { } while(0)
2304 #define check_spinlock_acquired_node(x, y) do { } while(0)
2305 #endif
2306 
2307 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2308 			struct array_cache *ac,
2309 			int force, int node);
2310 
2311 static void do_drain(void *arg)
2312 {
2313 	struct kmem_cache *cachep = arg;
2314 	struct array_cache *ac;
2315 	int node = numa_mem_id();
2316 	struct kmem_cache_node *n;
2317 	LIST_HEAD(list);
2318 
2319 	check_irq_off();
2320 	ac = cpu_cache_get(cachep);
2321 	n = get_node(cachep, node);
2322 	spin_lock(&n->list_lock);
2323 	free_block(cachep, ac->entry, ac->avail, node, &list);
2324 	spin_unlock(&n->list_lock);
2325 	slabs_destroy(cachep, &list);
2326 	ac->avail = 0;
2327 }
2328 
2329 static void drain_cpu_caches(struct kmem_cache *cachep)
2330 {
2331 	struct kmem_cache_node *n;
2332 	int node;
2333 
2334 	on_each_cpu(do_drain, cachep, 1);
2335 	check_irq_on();
2336 	for_each_kmem_cache_node(cachep, node, n)
2337 		if (n->alien)
2338 			drain_alien_cache(cachep, n->alien);
2339 
2340 	for_each_kmem_cache_node(cachep, node, n)
2341 		drain_array(cachep, n, n->shared, 1, node);
2342 }
2343 
2344 /*
2345  * Remove slabs from the list of free slabs.
2346  * Specify the number of slabs to drain in tofree.
2347  *
2348  * Returns the actual number of slabs released.
2349  */
2350 static int drain_freelist(struct kmem_cache *cache,
2351 			struct kmem_cache_node *n, int tofree)
2352 {
2353 	struct list_head *p;
2354 	int nr_freed;
2355 	struct page *page;
2356 
2357 	nr_freed = 0;
2358 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2359 
2360 		spin_lock_irq(&n->list_lock);
2361 		p = n->slabs_free.prev;
2362 		if (p == &n->slabs_free) {
2363 			spin_unlock_irq(&n->list_lock);
2364 			goto out;
2365 		}
2366 
2367 		page = list_entry(p, struct page, lru);
2368 #if DEBUG
2369 		BUG_ON(page->active);
2370 #endif
2371 		list_del(&page->lru);
2372 		/*
2373 		 * Safe to drop the lock. The slab is no longer linked
2374 		 * to the cache.
2375 		 */
2376 		n->free_objects -= cache->num;
2377 		spin_unlock_irq(&n->list_lock);
2378 		slab_destroy(cache, page);
2379 		nr_freed++;
2380 	}
2381 out:
2382 	return nr_freed;
2383 }
2384 
2385 int __kmem_cache_shrink(struct kmem_cache *cachep)
2386 {
2387 	int ret = 0;
2388 	int node;
2389 	struct kmem_cache_node *n;
2390 
2391 	drain_cpu_caches(cachep);
2392 
2393 	check_irq_on();
2394 	for_each_kmem_cache_node(cachep, node, n) {
2395 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2396 
2397 		ret += !list_empty(&n->slabs_full) ||
2398 			!list_empty(&n->slabs_partial);
2399 	}
2400 	return (ret ? 1 : 0);
2401 }
2402 
2403 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2404 {
2405 	int i;
2406 	struct kmem_cache_node *n;
2407 	int rc = __kmem_cache_shrink(cachep);
2408 
2409 	if (rc)
2410 		return rc;
2411 
2412 	free_percpu(cachep->cpu_cache);
2413 
2414 	/* NUMA: free the node structures */
2415 	for_each_kmem_cache_node(cachep, i, n) {
2416 		kfree(n->shared);
2417 		free_alien_cache(n->alien);
2418 		kfree(n);
2419 		cachep->node[i] = NULL;
2420 	}
2421 	return 0;
2422 }
2423 
2424 /*
2425  * Get the memory for a slab management obj.
2426  *
2427  * For a slab cache when the slab descriptor is off-slab, the
2428  * slab descriptor can't come from the same cache which is being created,
2429  * Because if it is the case, that means we defer the creation of
2430  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2431  * And we eventually call down to __kmem_cache_create(), which
2432  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2433  * This is a "chicken-and-egg" problem.
2434  *
2435  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2436  * which are all initialized during kmem_cache_init().
2437  */
2438 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2439 				   struct page *page, int colour_off,
2440 				   gfp_t local_flags, int nodeid)
2441 {
2442 	void *freelist;
2443 	void *addr = page_address(page);
2444 
2445 	if (OFF_SLAB(cachep)) {
2446 		/* Slab management obj is off-slab. */
2447 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2448 					      local_flags, nodeid);
2449 		if (!freelist)
2450 			return NULL;
2451 	} else {
2452 		freelist = addr + colour_off;
2453 		colour_off += cachep->freelist_size;
2454 	}
2455 	page->active = 0;
2456 	page->s_mem = addr + colour_off;
2457 	return freelist;
2458 }
2459 
2460 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2461 {
2462 	return ((freelist_idx_t *)page->freelist)[idx];
2463 }
2464 
2465 static inline void set_free_obj(struct page *page,
2466 					unsigned int idx, freelist_idx_t val)
2467 {
2468 	((freelist_idx_t *)(page->freelist))[idx] = val;
2469 }
2470 
2471 static void cache_init_objs(struct kmem_cache *cachep,
2472 			    struct page *page)
2473 {
2474 	int i;
2475 
2476 	for (i = 0; i < cachep->num; i++) {
2477 		void *objp = index_to_obj(cachep, page, i);
2478 #if DEBUG
2479 		/* need to poison the objs? */
2480 		if (cachep->flags & SLAB_POISON)
2481 			poison_obj(cachep, objp, POISON_FREE);
2482 		if (cachep->flags & SLAB_STORE_USER)
2483 			*dbg_userword(cachep, objp) = NULL;
2484 
2485 		if (cachep->flags & SLAB_RED_ZONE) {
2486 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2487 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2488 		}
2489 		/*
2490 		 * Constructors are not allowed to allocate memory from the same
2491 		 * cache which they are a constructor for.  Otherwise, deadlock.
2492 		 * They must also be threaded.
2493 		 */
2494 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2495 			cachep->ctor(objp + obj_offset(cachep));
2496 
2497 		if (cachep->flags & SLAB_RED_ZONE) {
2498 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2499 				slab_error(cachep, "constructor overwrote the"
2500 					   " end of an object");
2501 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2502 				slab_error(cachep, "constructor overwrote the"
2503 					   " start of an object");
2504 		}
2505 		if ((cachep->size % PAGE_SIZE) == 0 &&
2506 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2507 			kernel_map_pages(virt_to_page(objp),
2508 					 cachep->size / PAGE_SIZE, 0);
2509 #else
2510 		if (cachep->ctor)
2511 			cachep->ctor(objp);
2512 #endif
2513 		set_obj_status(page, i, OBJECT_FREE);
2514 		set_free_obj(page, i, i);
2515 	}
2516 }
2517 
2518 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2519 {
2520 	if (CONFIG_ZONE_DMA_FLAG) {
2521 		if (flags & GFP_DMA)
2522 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2523 		else
2524 			BUG_ON(cachep->allocflags & GFP_DMA);
2525 	}
2526 }
2527 
2528 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2529 				int nodeid)
2530 {
2531 	void *objp;
2532 
2533 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2534 	page->active++;
2535 #if DEBUG
2536 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2537 #endif
2538 
2539 	return objp;
2540 }
2541 
2542 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2543 				void *objp, int nodeid)
2544 {
2545 	unsigned int objnr = obj_to_index(cachep, page, objp);
2546 #if DEBUG
2547 	unsigned int i;
2548 
2549 	/* Verify that the slab belongs to the intended node */
2550 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2551 
2552 	/* Verify double free bug */
2553 	for (i = page->active; i < cachep->num; i++) {
2554 		if (get_free_obj(page, i) == objnr) {
2555 			printk(KERN_ERR "slab: double free detected in cache "
2556 					"'%s', objp %p\n", cachep->name, objp);
2557 			BUG();
2558 		}
2559 	}
2560 #endif
2561 	page->active--;
2562 	set_free_obj(page, page->active, objnr);
2563 }
2564 
2565 /*
2566  * Map pages beginning at addr to the given cache and slab. This is required
2567  * for the slab allocator to be able to lookup the cache and slab of a
2568  * virtual address for kfree, ksize, and slab debugging.
2569  */
2570 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2571 			   void *freelist)
2572 {
2573 	page->slab_cache = cache;
2574 	page->freelist = freelist;
2575 }
2576 
2577 /*
2578  * Grow (by 1) the number of slabs within a cache.  This is called by
2579  * kmem_cache_alloc() when there are no active objs left in a cache.
2580  */
2581 static int cache_grow(struct kmem_cache *cachep,
2582 		gfp_t flags, int nodeid, struct page *page)
2583 {
2584 	void *freelist;
2585 	size_t offset;
2586 	gfp_t local_flags;
2587 	struct kmem_cache_node *n;
2588 
2589 	/*
2590 	 * Be lazy and only check for valid flags here,  keeping it out of the
2591 	 * critical path in kmem_cache_alloc().
2592 	 */
2593 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2594 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2595 
2596 	/* Take the node list lock to change the colour_next on this node */
2597 	check_irq_off();
2598 	n = get_node(cachep, nodeid);
2599 	spin_lock(&n->list_lock);
2600 
2601 	/* Get colour for the slab, and cal the next value. */
2602 	offset = n->colour_next;
2603 	n->colour_next++;
2604 	if (n->colour_next >= cachep->colour)
2605 		n->colour_next = 0;
2606 	spin_unlock(&n->list_lock);
2607 
2608 	offset *= cachep->colour_off;
2609 
2610 	if (local_flags & __GFP_WAIT)
2611 		local_irq_enable();
2612 
2613 	/*
2614 	 * The test for missing atomic flag is performed here, rather than
2615 	 * the more obvious place, simply to reduce the critical path length
2616 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2617 	 * will eventually be caught here (where it matters).
2618 	 */
2619 	kmem_flagcheck(cachep, flags);
2620 
2621 	/*
2622 	 * Get mem for the objs.  Attempt to allocate a physical page from
2623 	 * 'nodeid'.
2624 	 */
2625 	if (!page)
2626 		page = kmem_getpages(cachep, local_flags, nodeid);
2627 	if (!page)
2628 		goto failed;
2629 
2630 	/* Get slab management. */
2631 	freelist = alloc_slabmgmt(cachep, page, offset,
2632 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2633 	if (!freelist)
2634 		goto opps1;
2635 
2636 	slab_map_pages(cachep, page, freelist);
2637 
2638 	cache_init_objs(cachep, page);
2639 
2640 	if (local_flags & __GFP_WAIT)
2641 		local_irq_disable();
2642 	check_irq_off();
2643 	spin_lock(&n->list_lock);
2644 
2645 	/* Make slab active. */
2646 	list_add_tail(&page->lru, &(n->slabs_free));
2647 	STATS_INC_GROWN(cachep);
2648 	n->free_objects += cachep->num;
2649 	spin_unlock(&n->list_lock);
2650 	return 1;
2651 opps1:
2652 	kmem_freepages(cachep, page);
2653 failed:
2654 	if (local_flags & __GFP_WAIT)
2655 		local_irq_disable();
2656 	return 0;
2657 }
2658 
2659 #if DEBUG
2660 
2661 /*
2662  * Perform extra freeing checks:
2663  * - detect bad pointers.
2664  * - POISON/RED_ZONE checking
2665  */
2666 static void kfree_debugcheck(const void *objp)
2667 {
2668 	if (!virt_addr_valid(objp)) {
2669 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2670 		       (unsigned long)objp);
2671 		BUG();
2672 	}
2673 }
2674 
2675 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2676 {
2677 	unsigned long long redzone1, redzone2;
2678 
2679 	redzone1 = *dbg_redzone1(cache, obj);
2680 	redzone2 = *dbg_redzone2(cache, obj);
2681 
2682 	/*
2683 	 * Redzone is ok.
2684 	 */
2685 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2686 		return;
2687 
2688 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2689 		slab_error(cache, "double free detected");
2690 	else
2691 		slab_error(cache, "memory outside object was overwritten");
2692 
2693 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2694 			obj, redzone1, redzone2);
2695 }
2696 
2697 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2698 				   unsigned long caller)
2699 {
2700 	unsigned int objnr;
2701 	struct page *page;
2702 
2703 	BUG_ON(virt_to_cache(objp) != cachep);
2704 
2705 	objp -= obj_offset(cachep);
2706 	kfree_debugcheck(objp);
2707 	page = virt_to_head_page(objp);
2708 
2709 	if (cachep->flags & SLAB_RED_ZONE) {
2710 		verify_redzone_free(cachep, objp);
2711 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2712 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2713 	}
2714 	if (cachep->flags & SLAB_STORE_USER)
2715 		*dbg_userword(cachep, objp) = (void *)caller;
2716 
2717 	objnr = obj_to_index(cachep, page, objp);
2718 
2719 	BUG_ON(objnr >= cachep->num);
2720 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2721 
2722 	set_obj_status(page, objnr, OBJECT_FREE);
2723 	if (cachep->flags & SLAB_POISON) {
2724 #ifdef CONFIG_DEBUG_PAGEALLOC
2725 		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2726 			store_stackinfo(cachep, objp, caller);
2727 			kernel_map_pages(virt_to_page(objp),
2728 					 cachep->size / PAGE_SIZE, 0);
2729 		} else {
2730 			poison_obj(cachep, objp, POISON_FREE);
2731 		}
2732 #else
2733 		poison_obj(cachep, objp, POISON_FREE);
2734 #endif
2735 	}
2736 	return objp;
2737 }
2738 
2739 #else
2740 #define kfree_debugcheck(x) do { } while(0)
2741 #define cache_free_debugcheck(x,objp,z) (objp)
2742 #endif
2743 
2744 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2745 							bool force_refill)
2746 {
2747 	int batchcount;
2748 	struct kmem_cache_node *n;
2749 	struct array_cache *ac;
2750 	int node;
2751 
2752 	check_irq_off();
2753 	node = numa_mem_id();
2754 	if (unlikely(force_refill))
2755 		goto force_grow;
2756 retry:
2757 	ac = cpu_cache_get(cachep);
2758 	batchcount = ac->batchcount;
2759 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2760 		/*
2761 		 * If there was little recent activity on this cache, then
2762 		 * perform only a partial refill.  Otherwise we could generate
2763 		 * refill bouncing.
2764 		 */
2765 		batchcount = BATCHREFILL_LIMIT;
2766 	}
2767 	n = get_node(cachep, node);
2768 
2769 	BUG_ON(ac->avail > 0 || !n);
2770 	spin_lock(&n->list_lock);
2771 
2772 	/* See if we can refill from the shared array */
2773 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2774 		n->shared->touched = 1;
2775 		goto alloc_done;
2776 	}
2777 
2778 	while (batchcount > 0) {
2779 		struct list_head *entry;
2780 		struct page *page;
2781 		/* Get slab alloc is to come from. */
2782 		entry = n->slabs_partial.next;
2783 		if (entry == &n->slabs_partial) {
2784 			n->free_touched = 1;
2785 			entry = n->slabs_free.next;
2786 			if (entry == &n->slabs_free)
2787 				goto must_grow;
2788 		}
2789 
2790 		page = list_entry(entry, struct page, lru);
2791 		check_spinlock_acquired(cachep);
2792 
2793 		/*
2794 		 * The slab was either on partial or free list so
2795 		 * there must be at least one object available for
2796 		 * allocation.
2797 		 */
2798 		BUG_ON(page->active >= cachep->num);
2799 
2800 		while (page->active < cachep->num && batchcount--) {
2801 			STATS_INC_ALLOCED(cachep);
2802 			STATS_INC_ACTIVE(cachep);
2803 			STATS_SET_HIGH(cachep);
2804 
2805 			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2806 									node));
2807 		}
2808 
2809 		/* move slabp to correct slabp list: */
2810 		list_del(&page->lru);
2811 		if (page->active == cachep->num)
2812 			list_add(&page->lru, &n->slabs_full);
2813 		else
2814 			list_add(&page->lru, &n->slabs_partial);
2815 	}
2816 
2817 must_grow:
2818 	n->free_objects -= ac->avail;
2819 alloc_done:
2820 	spin_unlock(&n->list_lock);
2821 
2822 	if (unlikely(!ac->avail)) {
2823 		int x;
2824 force_grow:
2825 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2826 
2827 		/* cache_grow can reenable interrupts, then ac could change. */
2828 		ac = cpu_cache_get(cachep);
2829 		node = numa_mem_id();
2830 
2831 		/* no objects in sight? abort */
2832 		if (!x && (ac->avail == 0 || force_refill))
2833 			return NULL;
2834 
2835 		if (!ac->avail)		/* objects refilled by interrupt? */
2836 			goto retry;
2837 	}
2838 	ac->touched = 1;
2839 
2840 	return ac_get_obj(cachep, ac, flags, force_refill);
2841 }
2842 
2843 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2844 						gfp_t flags)
2845 {
2846 	might_sleep_if(flags & __GFP_WAIT);
2847 #if DEBUG
2848 	kmem_flagcheck(cachep, flags);
2849 #endif
2850 }
2851 
2852 #if DEBUG
2853 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2854 				gfp_t flags, void *objp, unsigned long caller)
2855 {
2856 	struct page *page;
2857 
2858 	if (!objp)
2859 		return objp;
2860 	if (cachep->flags & SLAB_POISON) {
2861 #ifdef CONFIG_DEBUG_PAGEALLOC
2862 		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2863 			kernel_map_pages(virt_to_page(objp),
2864 					 cachep->size / PAGE_SIZE, 1);
2865 		else
2866 			check_poison_obj(cachep, objp);
2867 #else
2868 		check_poison_obj(cachep, objp);
2869 #endif
2870 		poison_obj(cachep, objp, POISON_INUSE);
2871 	}
2872 	if (cachep->flags & SLAB_STORE_USER)
2873 		*dbg_userword(cachep, objp) = (void *)caller;
2874 
2875 	if (cachep->flags & SLAB_RED_ZONE) {
2876 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2877 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2878 			slab_error(cachep, "double free, or memory outside"
2879 						" object was overwritten");
2880 			printk(KERN_ERR
2881 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2882 				objp, *dbg_redzone1(cachep, objp),
2883 				*dbg_redzone2(cachep, objp));
2884 		}
2885 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2886 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2887 	}
2888 
2889 	page = virt_to_head_page(objp);
2890 	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2891 	objp += obj_offset(cachep);
2892 	if (cachep->ctor && cachep->flags & SLAB_POISON)
2893 		cachep->ctor(objp);
2894 	if (ARCH_SLAB_MINALIGN &&
2895 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2896 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2897 		       objp, (int)ARCH_SLAB_MINALIGN);
2898 	}
2899 	return objp;
2900 }
2901 #else
2902 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2903 #endif
2904 
2905 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2906 {
2907 	if (unlikely(cachep == kmem_cache))
2908 		return false;
2909 
2910 	return should_failslab(cachep->object_size, flags, cachep->flags);
2911 }
2912 
2913 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2914 {
2915 	void *objp;
2916 	struct array_cache *ac;
2917 	bool force_refill = false;
2918 
2919 	check_irq_off();
2920 
2921 	ac = cpu_cache_get(cachep);
2922 	if (likely(ac->avail)) {
2923 		ac->touched = 1;
2924 		objp = ac_get_obj(cachep, ac, flags, false);
2925 
2926 		/*
2927 		 * Allow for the possibility all avail objects are not allowed
2928 		 * by the current flags
2929 		 */
2930 		if (objp) {
2931 			STATS_INC_ALLOCHIT(cachep);
2932 			goto out;
2933 		}
2934 		force_refill = true;
2935 	}
2936 
2937 	STATS_INC_ALLOCMISS(cachep);
2938 	objp = cache_alloc_refill(cachep, flags, force_refill);
2939 	/*
2940 	 * the 'ac' may be updated by cache_alloc_refill(),
2941 	 * and kmemleak_erase() requires its correct value.
2942 	 */
2943 	ac = cpu_cache_get(cachep);
2944 
2945 out:
2946 	/*
2947 	 * To avoid a false negative, if an object that is in one of the
2948 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2949 	 * treat the array pointers as a reference to the object.
2950 	 */
2951 	if (objp)
2952 		kmemleak_erase(&ac->entry[ac->avail]);
2953 	return objp;
2954 }
2955 
2956 #ifdef CONFIG_NUMA
2957 /*
2958  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2959  *
2960  * If we are in_interrupt, then process context, including cpusets and
2961  * mempolicy, may not apply and should not be used for allocation policy.
2962  */
2963 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2964 {
2965 	int nid_alloc, nid_here;
2966 
2967 	if (in_interrupt() || (flags & __GFP_THISNODE))
2968 		return NULL;
2969 	nid_alloc = nid_here = numa_mem_id();
2970 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2971 		nid_alloc = cpuset_slab_spread_node();
2972 	else if (current->mempolicy)
2973 		nid_alloc = mempolicy_slab_node();
2974 	if (nid_alloc != nid_here)
2975 		return ____cache_alloc_node(cachep, flags, nid_alloc);
2976 	return NULL;
2977 }
2978 
2979 /*
2980  * Fallback function if there was no memory available and no objects on a
2981  * certain node and fall back is permitted. First we scan all the
2982  * available node for available objects. If that fails then we
2983  * perform an allocation without specifying a node. This allows the page
2984  * allocator to do its reclaim / fallback magic. We then insert the
2985  * slab into the proper nodelist and then allocate from it.
2986  */
2987 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2988 {
2989 	struct zonelist *zonelist;
2990 	gfp_t local_flags;
2991 	struct zoneref *z;
2992 	struct zone *zone;
2993 	enum zone_type high_zoneidx = gfp_zone(flags);
2994 	void *obj = NULL;
2995 	int nid;
2996 	unsigned int cpuset_mems_cookie;
2997 
2998 	if (flags & __GFP_THISNODE)
2999 		return NULL;
3000 
3001 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3002 
3003 retry_cpuset:
3004 	cpuset_mems_cookie = read_mems_allowed_begin();
3005 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3006 
3007 retry:
3008 	/*
3009 	 * Look through allowed nodes for objects available
3010 	 * from existing per node queues.
3011 	 */
3012 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3013 		nid = zone_to_nid(zone);
3014 
3015 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3016 			get_node(cache, nid) &&
3017 			get_node(cache, nid)->free_objects) {
3018 				obj = ____cache_alloc_node(cache,
3019 					flags | GFP_THISNODE, nid);
3020 				if (obj)
3021 					break;
3022 		}
3023 	}
3024 
3025 	if (!obj) {
3026 		/*
3027 		 * This allocation will be performed within the constraints
3028 		 * of the current cpuset / memory policy requirements.
3029 		 * We may trigger various forms of reclaim on the allowed
3030 		 * set and go into memory reserves if necessary.
3031 		 */
3032 		struct page *page;
3033 
3034 		if (local_flags & __GFP_WAIT)
3035 			local_irq_enable();
3036 		kmem_flagcheck(cache, flags);
3037 		page = kmem_getpages(cache, local_flags, numa_mem_id());
3038 		if (local_flags & __GFP_WAIT)
3039 			local_irq_disable();
3040 		if (page) {
3041 			/*
3042 			 * Insert into the appropriate per node queues
3043 			 */
3044 			nid = page_to_nid(page);
3045 			if (cache_grow(cache, flags, nid, page)) {
3046 				obj = ____cache_alloc_node(cache,
3047 					flags | GFP_THISNODE, nid);
3048 				if (!obj)
3049 					/*
3050 					 * Another processor may allocate the
3051 					 * objects in the slab since we are
3052 					 * not holding any locks.
3053 					 */
3054 					goto retry;
3055 			} else {
3056 				/* cache_grow already freed obj */
3057 				obj = NULL;
3058 			}
3059 		}
3060 	}
3061 
3062 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3063 		goto retry_cpuset;
3064 	return obj;
3065 }
3066 
3067 /*
3068  * A interface to enable slab creation on nodeid
3069  */
3070 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3071 				int nodeid)
3072 {
3073 	struct list_head *entry;
3074 	struct page *page;
3075 	struct kmem_cache_node *n;
3076 	void *obj;
3077 	int x;
3078 
3079 	VM_BUG_ON(nodeid > num_online_nodes());
3080 	n = get_node(cachep, nodeid);
3081 	BUG_ON(!n);
3082 
3083 retry:
3084 	check_irq_off();
3085 	spin_lock(&n->list_lock);
3086 	entry = n->slabs_partial.next;
3087 	if (entry == &n->slabs_partial) {
3088 		n->free_touched = 1;
3089 		entry = n->slabs_free.next;
3090 		if (entry == &n->slabs_free)
3091 			goto must_grow;
3092 	}
3093 
3094 	page = list_entry(entry, struct page, lru);
3095 	check_spinlock_acquired_node(cachep, nodeid);
3096 
3097 	STATS_INC_NODEALLOCS(cachep);
3098 	STATS_INC_ACTIVE(cachep);
3099 	STATS_SET_HIGH(cachep);
3100 
3101 	BUG_ON(page->active == cachep->num);
3102 
3103 	obj = slab_get_obj(cachep, page, nodeid);
3104 	n->free_objects--;
3105 	/* move slabp to correct slabp list: */
3106 	list_del(&page->lru);
3107 
3108 	if (page->active == cachep->num)
3109 		list_add(&page->lru, &n->slabs_full);
3110 	else
3111 		list_add(&page->lru, &n->slabs_partial);
3112 
3113 	spin_unlock(&n->list_lock);
3114 	goto done;
3115 
3116 must_grow:
3117 	spin_unlock(&n->list_lock);
3118 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3119 	if (x)
3120 		goto retry;
3121 
3122 	return fallback_alloc(cachep, flags);
3123 
3124 done:
3125 	return obj;
3126 }
3127 
3128 static __always_inline void *
3129 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3130 		   unsigned long caller)
3131 {
3132 	unsigned long save_flags;
3133 	void *ptr;
3134 	int slab_node = numa_mem_id();
3135 
3136 	flags &= gfp_allowed_mask;
3137 
3138 	lockdep_trace_alloc(flags);
3139 
3140 	if (slab_should_failslab(cachep, flags))
3141 		return NULL;
3142 
3143 	cachep = memcg_kmem_get_cache(cachep, flags);
3144 
3145 	cache_alloc_debugcheck_before(cachep, flags);
3146 	local_irq_save(save_flags);
3147 
3148 	if (nodeid == NUMA_NO_NODE)
3149 		nodeid = slab_node;
3150 
3151 	if (unlikely(!get_node(cachep, nodeid))) {
3152 		/* Node not bootstrapped yet */
3153 		ptr = fallback_alloc(cachep, flags);
3154 		goto out;
3155 	}
3156 
3157 	if (nodeid == slab_node) {
3158 		/*
3159 		 * Use the locally cached objects if possible.
3160 		 * However ____cache_alloc does not allow fallback
3161 		 * to other nodes. It may fail while we still have
3162 		 * objects on other nodes available.
3163 		 */
3164 		ptr = ____cache_alloc(cachep, flags);
3165 		if (ptr)
3166 			goto out;
3167 	}
3168 	/* ___cache_alloc_node can fall back to other nodes */
3169 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3170   out:
3171 	local_irq_restore(save_flags);
3172 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3173 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3174 				 flags);
3175 
3176 	if (likely(ptr)) {
3177 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3178 		if (unlikely(flags & __GFP_ZERO))
3179 			memset(ptr, 0, cachep->object_size);
3180 	}
3181 
3182 	return ptr;
3183 }
3184 
3185 static __always_inline void *
3186 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3187 {
3188 	void *objp;
3189 
3190 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3191 		objp = alternate_node_alloc(cache, flags);
3192 		if (objp)
3193 			goto out;
3194 	}
3195 	objp = ____cache_alloc(cache, flags);
3196 
3197 	/*
3198 	 * We may just have run out of memory on the local node.
3199 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3200 	 */
3201 	if (!objp)
3202 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3203 
3204   out:
3205 	return objp;
3206 }
3207 #else
3208 
3209 static __always_inline void *
3210 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3211 {
3212 	return ____cache_alloc(cachep, flags);
3213 }
3214 
3215 #endif /* CONFIG_NUMA */
3216 
3217 static __always_inline void *
3218 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3219 {
3220 	unsigned long save_flags;
3221 	void *objp;
3222 
3223 	flags &= gfp_allowed_mask;
3224 
3225 	lockdep_trace_alloc(flags);
3226 
3227 	if (slab_should_failslab(cachep, flags))
3228 		return NULL;
3229 
3230 	cachep = memcg_kmem_get_cache(cachep, flags);
3231 
3232 	cache_alloc_debugcheck_before(cachep, flags);
3233 	local_irq_save(save_flags);
3234 	objp = __do_cache_alloc(cachep, flags);
3235 	local_irq_restore(save_flags);
3236 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3237 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3238 				 flags);
3239 	prefetchw(objp);
3240 
3241 	if (likely(objp)) {
3242 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3243 		if (unlikely(flags & __GFP_ZERO))
3244 			memset(objp, 0, cachep->object_size);
3245 	}
3246 
3247 	return objp;
3248 }
3249 
3250 /*
3251  * Caller needs to acquire correct kmem_cache_node's list_lock
3252  * @list: List of detached free slabs should be freed by caller
3253  */
3254 static void free_block(struct kmem_cache *cachep, void **objpp,
3255 			int nr_objects, int node, struct list_head *list)
3256 {
3257 	int i;
3258 	struct kmem_cache_node *n = get_node(cachep, node);
3259 
3260 	for (i = 0; i < nr_objects; i++) {
3261 		void *objp;
3262 		struct page *page;
3263 
3264 		clear_obj_pfmemalloc(&objpp[i]);
3265 		objp = objpp[i];
3266 
3267 		page = virt_to_head_page(objp);
3268 		list_del(&page->lru);
3269 		check_spinlock_acquired_node(cachep, node);
3270 		slab_put_obj(cachep, page, objp, node);
3271 		STATS_DEC_ACTIVE(cachep);
3272 		n->free_objects++;
3273 
3274 		/* fixup slab chains */
3275 		if (page->active == 0) {
3276 			if (n->free_objects > n->free_limit) {
3277 				n->free_objects -= cachep->num;
3278 				list_add_tail(&page->lru, list);
3279 			} else {
3280 				list_add(&page->lru, &n->slabs_free);
3281 			}
3282 		} else {
3283 			/* Unconditionally move a slab to the end of the
3284 			 * partial list on free - maximum time for the
3285 			 * other objects to be freed, too.
3286 			 */
3287 			list_add_tail(&page->lru, &n->slabs_partial);
3288 		}
3289 	}
3290 }
3291 
3292 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3293 {
3294 	int batchcount;
3295 	struct kmem_cache_node *n;
3296 	int node = numa_mem_id();
3297 	LIST_HEAD(list);
3298 
3299 	batchcount = ac->batchcount;
3300 #if DEBUG
3301 	BUG_ON(!batchcount || batchcount > ac->avail);
3302 #endif
3303 	check_irq_off();
3304 	n = get_node(cachep, node);
3305 	spin_lock(&n->list_lock);
3306 	if (n->shared) {
3307 		struct array_cache *shared_array = n->shared;
3308 		int max = shared_array->limit - shared_array->avail;
3309 		if (max) {
3310 			if (batchcount > max)
3311 				batchcount = max;
3312 			memcpy(&(shared_array->entry[shared_array->avail]),
3313 			       ac->entry, sizeof(void *) * batchcount);
3314 			shared_array->avail += batchcount;
3315 			goto free_done;
3316 		}
3317 	}
3318 
3319 	free_block(cachep, ac->entry, batchcount, node, &list);
3320 free_done:
3321 #if STATS
3322 	{
3323 		int i = 0;
3324 		struct list_head *p;
3325 
3326 		p = n->slabs_free.next;
3327 		while (p != &(n->slabs_free)) {
3328 			struct page *page;
3329 
3330 			page = list_entry(p, struct page, lru);
3331 			BUG_ON(page->active);
3332 
3333 			i++;
3334 			p = p->next;
3335 		}
3336 		STATS_SET_FREEABLE(cachep, i);
3337 	}
3338 #endif
3339 	spin_unlock(&n->list_lock);
3340 	slabs_destroy(cachep, &list);
3341 	ac->avail -= batchcount;
3342 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3343 }
3344 
3345 /*
3346  * Release an obj back to its cache. If the obj has a constructed state, it must
3347  * be in this state _before_ it is released.  Called with disabled ints.
3348  */
3349 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3350 				unsigned long caller)
3351 {
3352 	struct array_cache *ac = cpu_cache_get(cachep);
3353 
3354 	check_irq_off();
3355 	kmemleak_free_recursive(objp, cachep->flags);
3356 	objp = cache_free_debugcheck(cachep, objp, caller);
3357 
3358 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3359 
3360 	/*
3361 	 * Skip calling cache_free_alien() when the platform is not numa.
3362 	 * This will avoid cache misses that happen while accessing slabp (which
3363 	 * is per page memory  reference) to get nodeid. Instead use a global
3364 	 * variable to skip the call, which is mostly likely to be present in
3365 	 * the cache.
3366 	 */
3367 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3368 		return;
3369 
3370 	if (ac->avail < ac->limit) {
3371 		STATS_INC_FREEHIT(cachep);
3372 	} else {
3373 		STATS_INC_FREEMISS(cachep);
3374 		cache_flusharray(cachep, ac);
3375 	}
3376 
3377 	ac_put_obj(cachep, ac, objp);
3378 }
3379 
3380 /**
3381  * kmem_cache_alloc - Allocate an object
3382  * @cachep: The cache to allocate from.
3383  * @flags: See kmalloc().
3384  *
3385  * Allocate an object from this cache.  The flags are only relevant
3386  * if the cache has no available objects.
3387  */
3388 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3389 {
3390 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3391 
3392 	trace_kmem_cache_alloc(_RET_IP_, ret,
3393 			       cachep->object_size, cachep->size, flags);
3394 
3395 	return ret;
3396 }
3397 EXPORT_SYMBOL(kmem_cache_alloc);
3398 
3399 #ifdef CONFIG_TRACING
3400 void *
3401 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3402 {
3403 	void *ret;
3404 
3405 	ret = slab_alloc(cachep, flags, _RET_IP_);
3406 
3407 	trace_kmalloc(_RET_IP_, ret,
3408 		      size, cachep->size, flags);
3409 	return ret;
3410 }
3411 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3412 #endif
3413 
3414 #ifdef CONFIG_NUMA
3415 /**
3416  * kmem_cache_alloc_node - Allocate an object on the specified node
3417  * @cachep: The cache to allocate from.
3418  * @flags: See kmalloc().
3419  * @nodeid: node number of the target node.
3420  *
3421  * Identical to kmem_cache_alloc but it will allocate memory on the given
3422  * node, which can improve the performance for cpu bound structures.
3423  *
3424  * Fallback to other node is possible if __GFP_THISNODE is not set.
3425  */
3426 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3427 {
3428 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3429 
3430 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3431 				    cachep->object_size, cachep->size,
3432 				    flags, nodeid);
3433 
3434 	return ret;
3435 }
3436 EXPORT_SYMBOL(kmem_cache_alloc_node);
3437 
3438 #ifdef CONFIG_TRACING
3439 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3440 				  gfp_t flags,
3441 				  int nodeid,
3442 				  size_t size)
3443 {
3444 	void *ret;
3445 
3446 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3447 
3448 	trace_kmalloc_node(_RET_IP_, ret,
3449 			   size, cachep->size,
3450 			   flags, nodeid);
3451 	return ret;
3452 }
3453 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3454 #endif
3455 
3456 static __always_inline void *
3457 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3458 {
3459 	struct kmem_cache *cachep;
3460 
3461 	cachep = kmalloc_slab(size, flags);
3462 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3463 		return cachep;
3464 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3465 }
3466 
3467 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3468 {
3469 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3470 }
3471 EXPORT_SYMBOL(__kmalloc_node);
3472 
3473 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3474 		int node, unsigned long caller)
3475 {
3476 	return __do_kmalloc_node(size, flags, node, caller);
3477 }
3478 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3479 #endif /* CONFIG_NUMA */
3480 
3481 /**
3482  * __do_kmalloc - allocate memory
3483  * @size: how many bytes of memory are required.
3484  * @flags: the type of memory to allocate (see kmalloc).
3485  * @caller: function caller for debug tracking of the caller
3486  */
3487 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3488 					  unsigned long caller)
3489 {
3490 	struct kmem_cache *cachep;
3491 	void *ret;
3492 
3493 	cachep = kmalloc_slab(size, flags);
3494 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3495 		return cachep;
3496 	ret = slab_alloc(cachep, flags, caller);
3497 
3498 	trace_kmalloc(caller, ret,
3499 		      size, cachep->size, flags);
3500 
3501 	return ret;
3502 }
3503 
3504 void *__kmalloc(size_t size, gfp_t flags)
3505 {
3506 	return __do_kmalloc(size, flags, _RET_IP_);
3507 }
3508 EXPORT_SYMBOL(__kmalloc);
3509 
3510 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3511 {
3512 	return __do_kmalloc(size, flags, caller);
3513 }
3514 EXPORT_SYMBOL(__kmalloc_track_caller);
3515 
3516 /**
3517  * kmem_cache_free - Deallocate an object
3518  * @cachep: The cache the allocation was from.
3519  * @objp: The previously allocated object.
3520  *
3521  * Free an object which was previously allocated from this
3522  * cache.
3523  */
3524 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3525 {
3526 	unsigned long flags;
3527 	cachep = cache_from_obj(cachep, objp);
3528 	if (!cachep)
3529 		return;
3530 
3531 	local_irq_save(flags);
3532 	debug_check_no_locks_freed(objp, cachep->object_size);
3533 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3534 		debug_check_no_obj_freed(objp, cachep->object_size);
3535 	__cache_free(cachep, objp, _RET_IP_);
3536 	local_irq_restore(flags);
3537 
3538 	trace_kmem_cache_free(_RET_IP_, objp);
3539 }
3540 EXPORT_SYMBOL(kmem_cache_free);
3541 
3542 /**
3543  * kfree - free previously allocated memory
3544  * @objp: pointer returned by kmalloc.
3545  *
3546  * If @objp is NULL, no operation is performed.
3547  *
3548  * Don't free memory not originally allocated by kmalloc()
3549  * or you will run into trouble.
3550  */
3551 void kfree(const void *objp)
3552 {
3553 	struct kmem_cache *c;
3554 	unsigned long flags;
3555 
3556 	trace_kfree(_RET_IP_, objp);
3557 
3558 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3559 		return;
3560 	local_irq_save(flags);
3561 	kfree_debugcheck(objp);
3562 	c = virt_to_cache(objp);
3563 	debug_check_no_locks_freed(objp, c->object_size);
3564 
3565 	debug_check_no_obj_freed(objp, c->object_size);
3566 	__cache_free(c, (void *)objp, _RET_IP_);
3567 	local_irq_restore(flags);
3568 }
3569 EXPORT_SYMBOL(kfree);
3570 
3571 /*
3572  * This initializes kmem_cache_node or resizes various caches for all nodes.
3573  */
3574 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3575 {
3576 	int node;
3577 	struct kmem_cache_node *n;
3578 	struct array_cache *new_shared;
3579 	struct alien_cache **new_alien = NULL;
3580 
3581 	for_each_online_node(node) {
3582 
3583                 if (use_alien_caches) {
3584                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3585                         if (!new_alien)
3586                                 goto fail;
3587                 }
3588 
3589 		new_shared = NULL;
3590 		if (cachep->shared) {
3591 			new_shared = alloc_arraycache(node,
3592 				cachep->shared*cachep->batchcount,
3593 					0xbaadf00d, gfp);
3594 			if (!new_shared) {
3595 				free_alien_cache(new_alien);
3596 				goto fail;
3597 			}
3598 		}
3599 
3600 		n = get_node(cachep, node);
3601 		if (n) {
3602 			struct array_cache *shared = n->shared;
3603 			LIST_HEAD(list);
3604 
3605 			spin_lock_irq(&n->list_lock);
3606 
3607 			if (shared)
3608 				free_block(cachep, shared->entry,
3609 						shared->avail, node, &list);
3610 
3611 			n->shared = new_shared;
3612 			if (!n->alien) {
3613 				n->alien = new_alien;
3614 				new_alien = NULL;
3615 			}
3616 			n->free_limit = (1 + nr_cpus_node(node)) *
3617 					cachep->batchcount + cachep->num;
3618 			spin_unlock_irq(&n->list_lock);
3619 			slabs_destroy(cachep, &list);
3620 			kfree(shared);
3621 			free_alien_cache(new_alien);
3622 			continue;
3623 		}
3624 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3625 		if (!n) {
3626 			free_alien_cache(new_alien);
3627 			kfree(new_shared);
3628 			goto fail;
3629 		}
3630 
3631 		kmem_cache_node_init(n);
3632 		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3633 				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3634 		n->shared = new_shared;
3635 		n->alien = new_alien;
3636 		n->free_limit = (1 + nr_cpus_node(node)) *
3637 					cachep->batchcount + cachep->num;
3638 		cachep->node[node] = n;
3639 	}
3640 	return 0;
3641 
3642 fail:
3643 	if (!cachep->list.next) {
3644 		/* Cache is not active yet. Roll back what we did */
3645 		node--;
3646 		while (node >= 0) {
3647 			n = get_node(cachep, node);
3648 			if (n) {
3649 				kfree(n->shared);
3650 				free_alien_cache(n->alien);
3651 				kfree(n);
3652 				cachep->node[node] = NULL;
3653 			}
3654 			node--;
3655 		}
3656 	}
3657 	return -ENOMEM;
3658 }
3659 
3660 /* Always called with the slab_mutex held */
3661 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3662 				int batchcount, int shared, gfp_t gfp)
3663 {
3664 	struct array_cache __percpu *cpu_cache, *prev;
3665 	int cpu;
3666 
3667 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3668 	if (!cpu_cache)
3669 		return -ENOMEM;
3670 
3671 	prev = cachep->cpu_cache;
3672 	cachep->cpu_cache = cpu_cache;
3673 	kick_all_cpus_sync();
3674 
3675 	check_irq_on();
3676 	cachep->batchcount = batchcount;
3677 	cachep->limit = limit;
3678 	cachep->shared = shared;
3679 
3680 	if (!prev)
3681 		goto alloc_node;
3682 
3683 	for_each_online_cpu(cpu) {
3684 		LIST_HEAD(list);
3685 		int node;
3686 		struct kmem_cache_node *n;
3687 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3688 
3689 		node = cpu_to_mem(cpu);
3690 		n = get_node(cachep, node);
3691 		spin_lock_irq(&n->list_lock);
3692 		free_block(cachep, ac->entry, ac->avail, node, &list);
3693 		spin_unlock_irq(&n->list_lock);
3694 		slabs_destroy(cachep, &list);
3695 	}
3696 	free_percpu(prev);
3697 
3698 alloc_node:
3699 	return alloc_kmem_cache_node(cachep, gfp);
3700 }
3701 
3702 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3703 				int batchcount, int shared, gfp_t gfp)
3704 {
3705 	int ret;
3706 	struct kmem_cache *c = NULL;
3707 	int i = 0;
3708 
3709 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3710 
3711 	if (slab_state < FULL)
3712 		return ret;
3713 
3714 	if ((ret < 0) || !is_root_cache(cachep))
3715 		return ret;
3716 
3717 	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3718 	for_each_memcg_cache_index(i) {
3719 		c = cache_from_memcg_idx(cachep, i);
3720 		if (c)
3721 			/* return value determined by the parent cache only */
3722 			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3723 	}
3724 
3725 	return ret;
3726 }
3727 
3728 /* Called with slab_mutex held always */
3729 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3730 {
3731 	int err;
3732 	int limit = 0;
3733 	int shared = 0;
3734 	int batchcount = 0;
3735 
3736 	if (!is_root_cache(cachep)) {
3737 		struct kmem_cache *root = memcg_root_cache(cachep);
3738 		limit = root->limit;
3739 		shared = root->shared;
3740 		batchcount = root->batchcount;
3741 	}
3742 
3743 	if (limit && shared && batchcount)
3744 		goto skip_setup;
3745 	/*
3746 	 * The head array serves three purposes:
3747 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3748 	 * - reduce the number of spinlock operations.
3749 	 * - reduce the number of linked list operations on the slab and
3750 	 *   bufctl chains: array operations are cheaper.
3751 	 * The numbers are guessed, we should auto-tune as described by
3752 	 * Bonwick.
3753 	 */
3754 	if (cachep->size > 131072)
3755 		limit = 1;
3756 	else if (cachep->size > PAGE_SIZE)
3757 		limit = 8;
3758 	else if (cachep->size > 1024)
3759 		limit = 24;
3760 	else if (cachep->size > 256)
3761 		limit = 54;
3762 	else
3763 		limit = 120;
3764 
3765 	/*
3766 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3767 	 * allocation behaviour: Most allocs on one cpu, most free operations
3768 	 * on another cpu. For these cases, an efficient object passing between
3769 	 * cpus is necessary. This is provided by a shared array. The array
3770 	 * replaces Bonwick's magazine layer.
3771 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3772 	 * to a larger limit. Thus disabled by default.
3773 	 */
3774 	shared = 0;
3775 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3776 		shared = 8;
3777 
3778 #if DEBUG
3779 	/*
3780 	 * With debugging enabled, large batchcount lead to excessively long
3781 	 * periods with disabled local interrupts. Limit the batchcount
3782 	 */
3783 	if (limit > 32)
3784 		limit = 32;
3785 #endif
3786 	batchcount = (limit + 1) / 2;
3787 skip_setup:
3788 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3789 	if (err)
3790 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3791 		       cachep->name, -err);
3792 	return err;
3793 }
3794 
3795 /*
3796  * Drain an array if it contains any elements taking the node lock only if
3797  * necessary. Note that the node listlock also protects the array_cache
3798  * if drain_array() is used on the shared array.
3799  */
3800 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3801 			 struct array_cache *ac, int force, int node)
3802 {
3803 	LIST_HEAD(list);
3804 	int tofree;
3805 
3806 	if (!ac || !ac->avail)
3807 		return;
3808 	if (ac->touched && !force) {
3809 		ac->touched = 0;
3810 	} else {
3811 		spin_lock_irq(&n->list_lock);
3812 		if (ac->avail) {
3813 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3814 			if (tofree > ac->avail)
3815 				tofree = (ac->avail + 1) / 2;
3816 			free_block(cachep, ac->entry, tofree, node, &list);
3817 			ac->avail -= tofree;
3818 			memmove(ac->entry, &(ac->entry[tofree]),
3819 				sizeof(void *) * ac->avail);
3820 		}
3821 		spin_unlock_irq(&n->list_lock);
3822 		slabs_destroy(cachep, &list);
3823 	}
3824 }
3825 
3826 /**
3827  * cache_reap - Reclaim memory from caches.
3828  * @w: work descriptor
3829  *
3830  * Called from workqueue/eventd every few seconds.
3831  * Purpose:
3832  * - clear the per-cpu caches for this CPU.
3833  * - return freeable pages to the main free memory pool.
3834  *
3835  * If we cannot acquire the cache chain mutex then just give up - we'll try
3836  * again on the next iteration.
3837  */
3838 static void cache_reap(struct work_struct *w)
3839 {
3840 	struct kmem_cache *searchp;
3841 	struct kmem_cache_node *n;
3842 	int node = numa_mem_id();
3843 	struct delayed_work *work = to_delayed_work(w);
3844 
3845 	if (!mutex_trylock(&slab_mutex))
3846 		/* Give up. Setup the next iteration. */
3847 		goto out;
3848 
3849 	list_for_each_entry(searchp, &slab_caches, list) {
3850 		check_irq_on();
3851 
3852 		/*
3853 		 * We only take the node lock if absolutely necessary and we
3854 		 * have established with reasonable certainty that
3855 		 * we can do some work if the lock was obtained.
3856 		 */
3857 		n = get_node(searchp, node);
3858 
3859 		reap_alien(searchp, n);
3860 
3861 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3862 
3863 		/*
3864 		 * These are racy checks but it does not matter
3865 		 * if we skip one check or scan twice.
3866 		 */
3867 		if (time_after(n->next_reap, jiffies))
3868 			goto next;
3869 
3870 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3871 
3872 		drain_array(searchp, n, n->shared, 0, node);
3873 
3874 		if (n->free_touched)
3875 			n->free_touched = 0;
3876 		else {
3877 			int freed;
3878 
3879 			freed = drain_freelist(searchp, n, (n->free_limit +
3880 				5 * searchp->num - 1) / (5 * searchp->num));
3881 			STATS_ADD_REAPED(searchp, freed);
3882 		}
3883 next:
3884 		cond_resched();
3885 	}
3886 	check_irq_on();
3887 	mutex_unlock(&slab_mutex);
3888 	next_reap_node();
3889 out:
3890 	/* Set up the next iteration */
3891 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3892 }
3893 
3894 #ifdef CONFIG_SLABINFO
3895 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3896 {
3897 	struct page *page;
3898 	unsigned long active_objs;
3899 	unsigned long num_objs;
3900 	unsigned long active_slabs = 0;
3901 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3902 	const char *name;
3903 	char *error = NULL;
3904 	int node;
3905 	struct kmem_cache_node *n;
3906 
3907 	active_objs = 0;
3908 	num_slabs = 0;
3909 	for_each_kmem_cache_node(cachep, node, n) {
3910 
3911 		check_irq_on();
3912 		spin_lock_irq(&n->list_lock);
3913 
3914 		list_for_each_entry(page, &n->slabs_full, lru) {
3915 			if (page->active != cachep->num && !error)
3916 				error = "slabs_full accounting error";
3917 			active_objs += cachep->num;
3918 			active_slabs++;
3919 		}
3920 		list_for_each_entry(page, &n->slabs_partial, lru) {
3921 			if (page->active == cachep->num && !error)
3922 				error = "slabs_partial accounting error";
3923 			if (!page->active && !error)
3924 				error = "slabs_partial accounting error";
3925 			active_objs += page->active;
3926 			active_slabs++;
3927 		}
3928 		list_for_each_entry(page, &n->slabs_free, lru) {
3929 			if (page->active && !error)
3930 				error = "slabs_free accounting error";
3931 			num_slabs++;
3932 		}
3933 		free_objects += n->free_objects;
3934 		if (n->shared)
3935 			shared_avail += n->shared->avail;
3936 
3937 		spin_unlock_irq(&n->list_lock);
3938 	}
3939 	num_slabs += active_slabs;
3940 	num_objs = num_slabs * cachep->num;
3941 	if (num_objs - active_objs != free_objects && !error)
3942 		error = "free_objects accounting error";
3943 
3944 	name = cachep->name;
3945 	if (error)
3946 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3947 
3948 	sinfo->active_objs = active_objs;
3949 	sinfo->num_objs = num_objs;
3950 	sinfo->active_slabs = active_slabs;
3951 	sinfo->num_slabs = num_slabs;
3952 	sinfo->shared_avail = shared_avail;
3953 	sinfo->limit = cachep->limit;
3954 	sinfo->batchcount = cachep->batchcount;
3955 	sinfo->shared = cachep->shared;
3956 	sinfo->objects_per_slab = cachep->num;
3957 	sinfo->cache_order = cachep->gfporder;
3958 }
3959 
3960 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3961 {
3962 #if STATS
3963 	{			/* node stats */
3964 		unsigned long high = cachep->high_mark;
3965 		unsigned long allocs = cachep->num_allocations;
3966 		unsigned long grown = cachep->grown;
3967 		unsigned long reaped = cachep->reaped;
3968 		unsigned long errors = cachep->errors;
3969 		unsigned long max_freeable = cachep->max_freeable;
3970 		unsigned long node_allocs = cachep->node_allocs;
3971 		unsigned long node_frees = cachep->node_frees;
3972 		unsigned long overflows = cachep->node_overflow;
3973 
3974 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3975 			   "%4lu %4lu %4lu %4lu %4lu",
3976 			   allocs, high, grown,
3977 			   reaped, errors, max_freeable, node_allocs,
3978 			   node_frees, overflows);
3979 	}
3980 	/* cpu stats */
3981 	{
3982 		unsigned long allochit = atomic_read(&cachep->allochit);
3983 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3984 		unsigned long freehit = atomic_read(&cachep->freehit);
3985 		unsigned long freemiss = atomic_read(&cachep->freemiss);
3986 
3987 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3988 			   allochit, allocmiss, freehit, freemiss);
3989 	}
3990 #endif
3991 }
3992 
3993 #define MAX_SLABINFO_WRITE 128
3994 /**
3995  * slabinfo_write - Tuning for the slab allocator
3996  * @file: unused
3997  * @buffer: user buffer
3998  * @count: data length
3999  * @ppos: unused
4000  */
4001 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4002 		       size_t count, loff_t *ppos)
4003 {
4004 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4005 	int limit, batchcount, shared, res;
4006 	struct kmem_cache *cachep;
4007 
4008 	if (count > MAX_SLABINFO_WRITE)
4009 		return -EINVAL;
4010 	if (copy_from_user(&kbuf, buffer, count))
4011 		return -EFAULT;
4012 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4013 
4014 	tmp = strchr(kbuf, ' ');
4015 	if (!tmp)
4016 		return -EINVAL;
4017 	*tmp = '\0';
4018 	tmp++;
4019 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4020 		return -EINVAL;
4021 
4022 	/* Find the cache in the chain of caches. */
4023 	mutex_lock(&slab_mutex);
4024 	res = -EINVAL;
4025 	list_for_each_entry(cachep, &slab_caches, list) {
4026 		if (!strcmp(cachep->name, kbuf)) {
4027 			if (limit < 1 || batchcount < 1 ||
4028 					batchcount > limit || shared < 0) {
4029 				res = 0;
4030 			} else {
4031 				res = do_tune_cpucache(cachep, limit,
4032 						       batchcount, shared,
4033 						       GFP_KERNEL);
4034 			}
4035 			break;
4036 		}
4037 	}
4038 	mutex_unlock(&slab_mutex);
4039 	if (res >= 0)
4040 		res = count;
4041 	return res;
4042 }
4043 
4044 #ifdef CONFIG_DEBUG_SLAB_LEAK
4045 
4046 static void *leaks_start(struct seq_file *m, loff_t *pos)
4047 {
4048 	mutex_lock(&slab_mutex);
4049 	return seq_list_start(&slab_caches, *pos);
4050 }
4051 
4052 static inline int add_caller(unsigned long *n, unsigned long v)
4053 {
4054 	unsigned long *p;
4055 	int l;
4056 	if (!v)
4057 		return 1;
4058 	l = n[1];
4059 	p = n + 2;
4060 	while (l) {
4061 		int i = l/2;
4062 		unsigned long *q = p + 2 * i;
4063 		if (*q == v) {
4064 			q[1]++;
4065 			return 1;
4066 		}
4067 		if (*q > v) {
4068 			l = i;
4069 		} else {
4070 			p = q + 2;
4071 			l -= i + 1;
4072 		}
4073 	}
4074 	if (++n[1] == n[0])
4075 		return 0;
4076 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4077 	p[0] = v;
4078 	p[1] = 1;
4079 	return 1;
4080 }
4081 
4082 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4083 						struct page *page)
4084 {
4085 	void *p;
4086 	int i;
4087 
4088 	if (n[0] == n[1])
4089 		return;
4090 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4091 		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4092 			continue;
4093 
4094 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4095 			return;
4096 	}
4097 }
4098 
4099 static void show_symbol(struct seq_file *m, unsigned long address)
4100 {
4101 #ifdef CONFIG_KALLSYMS
4102 	unsigned long offset, size;
4103 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4104 
4105 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4106 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4107 		if (modname[0])
4108 			seq_printf(m, " [%s]", modname);
4109 		return;
4110 	}
4111 #endif
4112 	seq_printf(m, "%p", (void *)address);
4113 }
4114 
4115 static int leaks_show(struct seq_file *m, void *p)
4116 {
4117 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4118 	struct page *page;
4119 	struct kmem_cache_node *n;
4120 	const char *name;
4121 	unsigned long *x = m->private;
4122 	int node;
4123 	int i;
4124 
4125 	if (!(cachep->flags & SLAB_STORE_USER))
4126 		return 0;
4127 	if (!(cachep->flags & SLAB_RED_ZONE))
4128 		return 0;
4129 
4130 	/* OK, we can do it */
4131 
4132 	x[1] = 0;
4133 
4134 	for_each_kmem_cache_node(cachep, node, n) {
4135 
4136 		check_irq_on();
4137 		spin_lock_irq(&n->list_lock);
4138 
4139 		list_for_each_entry(page, &n->slabs_full, lru)
4140 			handle_slab(x, cachep, page);
4141 		list_for_each_entry(page, &n->slabs_partial, lru)
4142 			handle_slab(x, cachep, page);
4143 		spin_unlock_irq(&n->list_lock);
4144 	}
4145 	name = cachep->name;
4146 	if (x[0] == x[1]) {
4147 		/* Increase the buffer size */
4148 		mutex_unlock(&slab_mutex);
4149 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4150 		if (!m->private) {
4151 			/* Too bad, we are really out */
4152 			m->private = x;
4153 			mutex_lock(&slab_mutex);
4154 			return -ENOMEM;
4155 		}
4156 		*(unsigned long *)m->private = x[0] * 2;
4157 		kfree(x);
4158 		mutex_lock(&slab_mutex);
4159 		/* Now make sure this entry will be retried */
4160 		m->count = m->size;
4161 		return 0;
4162 	}
4163 	for (i = 0; i < x[1]; i++) {
4164 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4165 		show_symbol(m, x[2*i+2]);
4166 		seq_putc(m, '\n');
4167 	}
4168 
4169 	return 0;
4170 }
4171 
4172 static const struct seq_operations slabstats_op = {
4173 	.start = leaks_start,
4174 	.next = slab_next,
4175 	.stop = slab_stop,
4176 	.show = leaks_show,
4177 };
4178 
4179 static int slabstats_open(struct inode *inode, struct file *file)
4180 {
4181 	unsigned long *n;
4182 
4183 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4184 	if (!n)
4185 		return -ENOMEM;
4186 
4187 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4188 
4189 	return 0;
4190 }
4191 
4192 static const struct file_operations proc_slabstats_operations = {
4193 	.open		= slabstats_open,
4194 	.read		= seq_read,
4195 	.llseek		= seq_lseek,
4196 	.release	= seq_release_private,
4197 };
4198 #endif
4199 
4200 static int __init slab_proc_init(void)
4201 {
4202 #ifdef CONFIG_DEBUG_SLAB_LEAK
4203 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4204 #endif
4205 	return 0;
4206 }
4207 module_init(slab_proc_init);
4208 #endif
4209 
4210 /**
4211  * ksize - get the actual amount of memory allocated for a given object
4212  * @objp: Pointer to the object
4213  *
4214  * kmalloc may internally round up allocations and return more memory
4215  * than requested. ksize() can be used to determine the actual amount of
4216  * memory allocated. The caller may use this additional memory, even though
4217  * a smaller amount of memory was initially specified with the kmalloc call.
4218  * The caller must guarantee that objp points to a valid object previously
4219  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4220  * must not be freed during the duration of the call.
4221  */
4222 size_t ksize(const void *objp)
4223 {
4224 	BUG_ON(!objp);
4225 	if (unlikely(objp == ZERO_SIZE_PTR))
4226 		return 0;
4227 
4228 	return virt_to_cache(objp)->object_size;
4229 }
4230 EXPORT_SYMBOL(ksize);
4231