xref: /openbmc/linux/mm/slab.c (revision dba8b46992c55946d3b092934f581a343403118f)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<asm/cacheflush.h>
121 #include	<asm/tlbflush.h>
122 #include	<asm/page.h>
123 
124 /*
125  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
126  *		  0 for faster, smaller code (especially in the critical paths).
127  *
128  * STATS	- 1 to collect stats for /proc/slabinfo.
129  *		  0 for faster, smaller code (especially in the critical paths).
130  *
131  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
132  */
133 
134 #ifdef CONFIG_DEBUG_SLAB
135 #define	DEBUG		1
136 #define	STATS		1
137 #define	FORCED_DEBUG	1
138 #else
139 #define	DEBUG		0
140 #define	STATS		0
141 #define	FORCED_DEBUG	0
142 #endif
143 
144 /* Shouldn't this be in a header file somewhere? */
145 #define	BYTES_PER_WORD		sizeof(void *)
146 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
147 
148 #ifndef ARCH_KMALLOC_FLAGS
149 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
150 #endif
151 
152 /* Legal flag mask for kmem_cache_create(). */
153 #if DEBUG
154 # define CREATE_MASK	(SLAB_RED_ZONE | \
155 			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
156 			 SLAB_CACHE_DMA | \
157 			 SLAB_STORE_USER | \
158 			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159 			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
160 			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
161 #else
162 # define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
163 			 SLAB_CACHE_DMA | \
164 			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165 			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
166 			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
167 #endif
168 
169 /*
170  * kmem_bufctl_t:
171  *
172  * Bufctl's are used for linking objs within a slab
173  * linked offsets.
174  *
175  * This implementation relies on "struct page" for locating the cache &
176  * slab an object belongs to.
177  * This allows the bufctl structure to be small (one int), but limits
178  * the number of objects a slab (not a cache) can contain when off-slab
179  * bufctls are used. The limit is the size of the largest general cache
180  * that does not use off-slab slabs.
181  * For 32bit archs with 4 kB pages, is this 56.
182  * This is not serious, as it is only for large objects, when it is unwise
183  * to have too many per slab.
184  * Note: This limit can be raised by introducing a general cache whose size
185  * is less than 512 (PAGE_SIZE<<3), but greater than 256.
186  */
187 
188 typedef unsigned int kmem_bufctl_t;
189 #define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
190 #define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
191 #define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
192 #define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
193 
194 /*
195  * struct slab_rcu
196  *
197  * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
198  * arrange for kmem_freepages to be called via RCU.  This is useful if
199  * we need to approach a kernel structure obliquely, from its address
200  * obtained without the usual locking.  We can lock the structure to
201  * stabilize it and check it's still at the given address, only if we
202  * can be sure that the memory has not been meanwhile reused for some
203  * other kind of object (which our subsystem's lock might corrupt).
204  *
205  * rcu_read_lock before reading the address, then rcu_read_unlock after
206  * taking the spinlock within the structure expected at that address.
207  */
208 struct slab_rcu {
209 	struct rcu_head head;
210 	struct kmem_cache *cachep;
211 	void *addr;
212 };
213 
214 /*
215  * struct slab
216  *
217  * Manages the objs in a slab. Placed either at the beginning of mem allocated
218  * for a slab, or allocated from an general cache.
219  * Slabs are chained into three list: fully used, partial, fully free slabs.
220  */
221 struct slab {
222 	union {
223 		struct {
224 			struct list_head list;
225 			unsigned long colouroff;
226 			void *s_mem;		/* including colour offset */
227 			unsigned int inuse;	/* num of objs active in slab */
228 			kmem_bufctl_t free;
229 			unsigned short nodeid;
230 		};
231 		struct slab_rcu __slab_cover_slab_rcu;
232 	};
233 };
234 
235 /*
236  * struct array_cache
237  *
238  * Purpose:
239  * - LIFO ordering, to hand out cache-warm objects from _alloc
240  * - reduce the number of linked list operations
241  * - reduce spinlock operations
242  *
243  * The limit is stored in the per-cpu structure to reduce the data cache
244  * footprint.
245  *
246  */
247 struct array_cache {
248 	unsigned int avail;
249 	unsigned int limit;
250 	unsigned int batchcount;
251 	unsigned int touched;
252 	spinlock_t lock;
253 	void *entry[];	/*
254 			 * Must have this definition in here for the proper
255 			 * alignment of array_cache. Also simplifies accessing
256 			 * the entries.
257 			 */
258 };
259 
260 /*
261  * bootstrap: The caches do not work without cpuarrays anymore, but the
262  * cpuarrays are allocated from the generic caches...
263  */
264 #define BOOT_CPUCACHE_ENTRIES	1
265 struct arraycache_init {
266 	struct array_cache cache;
267 	void *entries[BOOT_CPUCACHE_ENTRIES];
268 };
269 
270 /*
271  * The slab lists for all objects.
272  */
273 struct kmem_list3 {
274 	struct list_head slabs_partial;	/* partial list first, better asm code */
275 	struct list_head slabs_full;
276 	struct list_head slabs_free;
277 	unsigned long free_objects;
278 	unsigned int free_limit;
279 	unsigned int colour_next;	/* Per-node cache coloring */
280 	spinlock_t list_lock;
281 	struct array_cache *shared;	/* shared per node */
282 	struct array_cache **alien;	/* on other nodes */
283 	unsigned long next_reap;	/* updated without locking */
284 	int free_touched;		/* updated without locking */
285 };
286 
287 /*
288  * Need this for bootstrapping a per node allocator.
289  */
290 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
291 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
292 #define	CACHE_CACHE 0
293 #define	SIZE_AC MAX_NUMNODES
294 #define	SIZE_L3 (2 * MAX_NUMNODES)
295 
296 static int drain_freelist(struct kmem_cache *cache,
297 			struct kmem_list3 *l3, int tofree);
298 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
299 			int node);
300 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
301 static void cache_reap(struct work_struct *unused);
302 
303 /*
304  * This function must be completely optimized away if a constant is passed to
305  * it.  Mostly the same as what is in linux/slab.h except it returns an index.
306  */
307 static __always_inline int index_of(const size_t size)
308 {
309 	extern void __bad_size(void);
310 
311 	if (__builtin_constant_p(size)) {
312 		int i = 0;
313 
314 #define CACHE(x) \
315 	if (size <=x) \
316 		return i; \
317 	else \
318 		i++;
319 #include <linux/kmalloc_sizes.h>
320 #undef CACHE
321 		__bad_size();
322 	} else
323 		__bad_size();
324 	return 0;
325 }
326 
327 static int slab_early_init = 1;
328 
329 #define INDEX_AC index_of(sizeof(struct arraycache_init))
330 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
331 
332 static void kmem_list3_init(struct kmem_list3 *parent)
333 {
334 	INIT_LIST_HEAD(&parent->slabs_full);
335 	INIT_LIST_HEAD(&parent->slabs_partial);
336 	INIT_LIST_HEAD(&parent->slabs_free);
337 	parent->shared = NULL;
338 	parent->alien = NULL;
339 	parent->colour_next = 0;
340 	spin_lock_init(&parent->list_lock);
341 	parent->free_objects = 0;
342 	parent->free_touched = 0;
343 }
344 
345 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
346 	do {								\
347 		INIT_LIST_HEAD(listp);					\
348 		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
349 	} while (0)
350 
351 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
352 	do {								\
353 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
354 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
355 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
356 	} while (0)
357 
358 #define CFLGS_OFF_SLAB		(0x80000000UL)
359 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
360 
361 #define BATCHREFILL_LIMIT	16
362 /*
363  * Optimization question: fewer reaps means less probability for unnessary
364  * cpucache drain/refill cycles.
365  *
366  * OTOH the cpuarrays can contain lots of objects,
367  * which could lock up otherwise freeable slabs.
368  */
369 #define REAPTIMEOUT_CPUC	(2*HZ)
370 #define REAPTIMEOUT_LIST3	(4*HZ)
371 
372 #if STATS
373 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
374 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
375 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
376 #define	STATS_INC_GROWN(x)	((x)->grown++)
377 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
378 #define	STATS_SET_HIGH(x)						\
379 	do {								\
380 		if ((x)->num_active > (x)->high_mark)			\
381 			(x)->high_mark = (x)->num_active;		\
382 	} while (0)
383 #define	STATS_INC_ERR(x)	((x)->errors++)
384 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
385 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
386 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
387 #define	STATS_SET_FREEABLE(x, i)					\
388 	do {								\
389 		if ((x)->max_freeable < i)				\
390 			(x)->max_freeable = i;				\
391 	} while (0)
392 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
393 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
394 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
395 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
396 #else
397 #define	STATS_INC_ACTIVE(x)	do { } while (0)
398 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
399 #define	STATS_INC_ALLOCED(x)	do { } while (0)
400 #define	STATS_INC_GROWN(x)	do { } while (0)
401 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
402 #define	STATS_SET_HIGH(x)	do { } while (0)
403 #define	STATS_INC_ERR(x)	do { } while (0)
404 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
405 #define	STATS_INC_NODEFREES(x)	do { } while (0)
406 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
407 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
408 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
409 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
410 #define STATS_INC_FREEHIT(x)	do { } while (0)
411 #define STATS_INC_FREEMISS(x)	do { } while (0)
412 #endif
413 
414 #if DEBUG
415 
416 /*
417  * memory layout of objects:
418  * 0		: objp
419  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
420  * 		the end of an object is aligned with the end of the real
421  * 		allocation. Catches writes behind the end of the allocation.
422  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
423  * 		redzone word.
424  * cachep->obj_offset: The real object.
425  * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
426  * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
427  *					[BYTES_PER_WORD long]
428  */
429 static int obj_offset(struct kmem_cache *cachep)
430 {
431 	return cachep->obj_offset;
432 }
433 
434 static int obj_size(struct kmem_cache *cachep)
435 {
436 	return cachep->obj_size;
437 }
438 
439 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
440 {
441 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
442 	return (unsigned long long*) (objp + obj_offset(cachep) -
443 				      sizeof(unsigned long long));
444 }
445 
446 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
447 {
448 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
449 	if (cachep->flags & SLAB_STORE_USER)
450 		return (unsigned long long *)(objp + cachep->buffer_size -
451 					      sizeof(unsigned long long) -
452 					      REDZONE_ALIGN);
453 	return (unsigned long long *) (objp + cachep->buffer_size -
454 				       sizeof(unsigned long long));
455 }
456 
457 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
458 {
459 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
460 	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
461 }
462 
463 #else
464 
465 #define obj_offset(x)			0
466 #define obj_size(cachep)		(cachep->buffer_size)
467 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
468 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
469 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
470 
471 #endif
472 
473 #ifdef CONFIG_TRACING
474 size_t slab_buffer_size(struct kmem_cache *cachep)
475 {
476 	return cachep->buffer_size;
477 }
478 EXPORT_SYMBOL(slab_buffer_size);
479 #endif
480 
481 /*
482  * Do not go above this order unless 0 objects fit into the slab.
483  */
484 #define	BREAK_GFP_ORDER_HI	1
485 #define	BREAK_GFP_ORDER_LO	0
486 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
487 
488 /*
489  * Functions for storing/retrieving the cachep and or slab from the page
490  * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
491  * these are used to find the cache which an obj belongs to.
492  */
493 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
494 {
495 	page->lru.next = (struct list_head *)cache;
496 }
497 
498 static inline struct kmem_cache *page_get_cache(struct page *page)
499 {
500 	page = compound_head(page);
501 	BUG_ON(!PageSlab(page));
502 	return (struct kmem_cache *)page->lru.next;
503 }
504 
505 static inline void page_set_slab(struct page *page, struct slab *slab)
506 {
507 	page->lru.prev = (struct list_head *)slab;
508 }
509 
510 static inline struct slab *page_get_slab(struct page *page)
511 {
512 	BUG_ON(!PageSlab(page));
513 	return (struct slab *)page->lru.prev;
514 }
515 
516 static inline struct kmem_cache *virt_to_cache(const void *obj)
517 {
518 	struct page *page = virt_to_head_page(obj);
519 	return page_get_cache(page);
520 }
521 
522 static inline struct slab *virt_to_slab(const void *obj)
523 {
524 	struct page *page = virt_to_head_page(obj);
525 	return page_get_slab(page);
526 }
527 
528 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
529 				 unsigned int idx)
530 {
531 	return slab->s_mem + cache->buffer_size * idx;
532 }
533 
534 /*
535  * We want to avoid an expensive divide : (offset / cache->buffer_size)
536  *   Using the fact that buffer_size is a constant for a particular cache,
537  *   we can replace (offset / cache->buffer_size) by
538  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
539  */
540 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
541 					const struct slab *slab, void *obj)
542 {
543 	u32 offset = (obj - slab->s_mem);
544 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
545 }
546 
547 /*
548  * These are the default caches for kmalloc. Custom caches can have other sizes.
549  */
550 struct cache_sizes malloc_sizes[] = {
551 #define CACHE(x) { .cs_size = (x) },
552 #include <linux/kmalloc_sizes.h>
553 	CACHE(ULONG_MAX)
554 #undef CACHE
555 };
556 EXPORT_SYMBOL(malloc_sizes);
557 
558 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
559 struct cache_names {
560 	char *name;
561 	char *name_dma;
562 };
563 
564 static struct cache_names __initdata cache_names[] = {
565 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
566 #include <linux/kmalloc_sizes.h>
567 	{NULL,}
568 #undef CACHE
569 };
570 
571 static struct arraycache_init initarray_cache __initdata =
572     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
573 static struct arraycache_init initarray_generic =
574     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
575 
576 /* internal cache of cache description objs */
577 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
578 static struct kmem_cache cache_cache = {
579 	.nodelists = cache_cache_nodelists,
580 	.batchcount = 1,
581 	.limit = BOOT_CPUCACHE_ENTRIES,
582 	.shared = 1,
583 	.buffer_size = sizeof(struct kmem_cache),
584 	.name = "kmem_cache",
585 };
586 
587 #define BAD_ALIEN_MAGIC 0x01020304ul
588 
589 /*
590  * chicken and egg problem: delay the per-cpu array allocation
591  * until the general caches are up.
592  */
593 static enum {
594 	NONE,
595 	PARTIAL_AC,
596 	PARTIAL_L3,
597 	EARLY,
598 	FULL
599 } g_cpucache_up;
600 
601 /*
602  * used by boot code to determine if it can use slab based allocator
603  */
604 int slab_is_available(void)
605 {
606 	return g_cpucache_up >= EARLY;
607 }
608 
609 #ifdef CONFIG_LOCKDEP
610 
611 /*
612  * Slab sometimes uses the kmalloc slabs to store the slab headers
613  * for other slabs "off slab".
614  * The locking for this is tricky in that it nests within the locks
615  * of all other slabs in a few places; to deal with this special
616  * locking we put on-slab caches into a separate lock-class.
617  *
618  * We set lock class for alien array caches which are up during init.
619  * The lock annotation will be lost if all cpus of a node goes down and
620  * then comes back up during hotplug
621  */
622 static struct lock_class_key on_slab_l3_key;
623 static struct lock_class_key on_slab_alc_key;
624 
625 static struct lock_class_key debugobj_l3_key;
626 static struct lock_class_key debugobj_alc_key;
627 
628 static void slab_set_lock_classes(struct kmem_cache *cachep,
629 		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
630 		int q)
631 {
632 	struct array_cache **alc;
633 	struct kmem_list3 *l3;
634 	int r;
635 
636 	l3 = cachep->nodelists[q];
637 	if (!l3)
638 		return;
639 
640 	lockdep_set_class(&l3->list_lock, l3_key);
641 	alc = l3->alien;
642 	/*
643 	 * FIXME: This check for BAD_ALIEN_MAGIC
644 	 * should go away when common slab code is taught to
645 	 * work even without alien caches.
646 	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
647 	 * for alloc_alien_cache,
648 	 */
649 	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
650 		return;
651 	for_each_node(r) {
652 		if (alc[r])
653 			lockdep_set_class(&alc[r]->lock, alc_key);
654 	}
655 }
656 
657 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
658 {
659 	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
660 }
661 
662 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
663 {
664 	int node;
665 
666 	for_each_online_node(node)
667 		slab_set_debugobj_lock_classes_node(cachep, node);
668 }
669 
670 static void init_node_lock_keys(int q)
671 {
672 	struct cache_sizes *s = malloc_sizes;
673 
674 	if (g_cpucache_up != FULL)
675 		return;
676 
677 	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
678 		struct kmem_list3 *l3;
679 
680 		l3 = s->cs_cachep->nodelists[q];
681 		if (!l3 || OFF_SLAB(s->cs_cachep))
682 			continue;
683 
684 		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
685 				&on_slab_alc_key, q);
686 	}
687 }
688 
689 static inline void init_lock_keys(void)
690 {
691 	int node;
692 
693 	for_each_node(node)
694 		init_node_lock_keys(node);
695 }
696 #else
697 static void init_node_lock_keys(int q)
698 {
699 }
700 
701 static inline void init_lock_keys(void)
702 {
703 }
704 
705 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
706 {
707 }
708 
709 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
710 {
711 }
712 #endif
713 
714 /*
715  * Guard access to the cache-chain.
716  */
717 static DEFINE_MUTEX(cache_chain_mutex);
718 static struct list_head cache_chain;
719 
720 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
721 
722 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
723 {
724 	return cachep->array[smp_processor_id()];
725 }
726 
727 static inline struct kmem_cache *__find_general_cachep(size_t size,
728 							gfp_t gfpflags)
729 {
730 	struct cache_sizes *csizep = malloc_sizes;
731 
732 #if DEBUG
733 	/* This happens if someone tries to call
734 	 * kmem_cache_create(), or __kmalloc(), before
735 	 * the generic caches are initialized.
736 	 */
737 	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
738 #endif
739 	if (!size)
740 		return ZERO_SIZE_PTR;
741 
742 	while (size > csizep->cs_size)
743 		csizep++;
744 
745 	/*
746 	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
747 	 * has cs_{dma,}cachep==NULL. Thus no special case
748 	 * for large kmalloc calls required.
749 	 */
750 #ifdef CONFIG_ZONE_DMA
751 	if (unlikely(gfpflags & GFP_DMA))
752 		return csizep->cs_dmacachep;
753 #endif
754 	return csizep->cs_cachep;
755 }
756 
757 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
758 {
759 	return __find_general_cachep(size, gfpflags);
760 }
761 
762 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
763 {
764 	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
765 }
766 
767 /*
768  * Calculate the number of objects and left-over bytes for a given buffer size.
769  */
770 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
771 			   size_t align, int flags, size_t *left_over,
772 			   unsigned int *num)
773 {
774 	int nr_objs;
775 	size_t mgmt_size;
776 	size_t slab_size = PAGE_SIZE << gfporder;
777 
778 	/*
779 	 * The slab management structure can be either off the slab or
780 	 * on it. For the latter case, the memory allocated for a
781 	 * slab is used for:
782 	 *
783 	 * - The struct slab
784 	 * - One kmem_bufctl_t for each object
785 	 * - Padding to respect alignment of @align
786 	 * - @buffer_size bytes for each object
787 	 *
788 	 * If the slab management structure is off the slab, then the
789 	 * alignment will already be calculated into the size. Because
790 	 * the slabs are all pages aligned, the objects will be at the
791 	 * correct alignment when allocated.
792 	 */
793 	if (flags & CFLGS_OFF_SLAB) {
794 		mgmt_size = 0;
795 		nr_objs = slab_size / buffer_size;
796 
797 		if (nr_objs > SLAB_LIMIT)
798 			nr_objs = SLAB_LIMIT;
799 	} else {
800 		/*
801 		 * Ignore padding for the initial guess. The padding
802 		 * is at most @align-1 bytes, and @buffer_size is at
803 		 * least @align. In the worst case, this result will
804 		 * be one greater than the number of objects that fit
805 		 * into the memory allocation when taking the padding
806 		 * into account.
807 		 */
808 		nr_objs = (slab_size - sizeof(struct slab)) /
809 			  (buffer_size + sizeof(kmem_bufctl_t));
810 
811 		/*
812 		 * This calculated number will be either the right
813 		 * amount, or one greater than what we want.
814 		 */
815 		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
816 		       > slab_size)
817 			nr_objs--;
818 
819 		if (nr_objs > SLAB_LIMIT)
820 			nr_objs = SLAB_LIMIT;
821 
822 		mgmt_size = slab_mgmt_size(nr_objs, align);
823 	}
824 	*num = nr_objs;
825 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
826 }
827 
828 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
829 
830 static void __slab_error(const char *function, struct kmem_cache *cachep,
831 			char *msg)
832 {
833 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
834 	       function, cachep->name, msg);
835 	dump_stack();
836 }
837 
838 /*
839  * By default on NUMA we use alien caches to stage the freeing of
840  * objects allocated from other nodes. This causes massive memory
841  * inefficiencies when using fake NUMA setup to split memory into a
842  * large number of small nodes, so it can be disabled on the command
843  * line
844   */
845 
846 static int use_alien_caches __read_mostly = 1;
847 static int __init noaliencache_setup(char *s)
848 {
849 	use_alien_caches = 0;
850 	return 1;
851 }
852 __setup("noaliencache", noaliencache_setup);
853 
854 #ifdef CONFIG_NUMA
855 /*
856  * Special reaping functions for NUMA systems called from cache_reap().
857  * These take care of doing round robin flushing of alien caches (containing
858  * objects freed on different nodes from which they were allocated) and the
859  * flushing of remote pcps by calling drain_node_pages.
860  */
861 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
862 
863 static void init_reap_node(int cpu)
864 {
865 	int node;
866 
867 	node = next_node(cpu_to_mem(cpu), node_online_map);
868 	if (node == MAX_NUMNODES)
869 		node = first_node(node_online_map);
870 
871 	per_cpu(slab_reap_node, cpu) = node;
872 }
873 
874 static void next_reap_node(void)
875 {
876 	int node = __this_cpu_read(slab_reap_node);
877 
878 	node = next_node(node, node_online_map);
879 	if (unlikely(node >= MAX_NUMNODES))
880 		node = first_node(node_online_map);
881 	__this_cpu_write(slab_reap_node, node);
882 }
883 
884 #else
885 #define init_reap_node(cpu) do { } while (0)
886 #define next_reap_node(void) do { } while (0)
887 #endif
888 
889 /*
890  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
891  * via the workqueue/eventd.
892  * Add the CPU number into the expiration time to minimize the possibility of
893  * the CPUs getting into lockstep and contending for the global cache chain
894  * lock.
895  */
896 static void __cpuinit start_cpu_timer(int cpu)
897 {
898 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
899 
900 	/*
901 	 * When this gets called from do_initcalls via cpucache_init(),
902 	 * init_workqueues() has already run, so keventd will be setup
903 	 * at that time.
904 	 */
905 	if (keventd_up() && reap_work->work.func == NULL) {
906 		init_reap_node(cpu);
907 		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
908 		schedule_delayed_work_on(cpu, reap_work,
909 					__round_jiffies_relative(HZ, cpu));
910 	}
911 }
912 
913 static struct array_cache *alloc_arraycache(int node, int entries,
914 					    int batchcount, gfp_t gfp)
915 {
916 	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
917 	struct array_cache *nc = NULL;
918 
919 	nc = kmalloc_node(memsize, gfp, node);
920 	/*
921 	 * The array_cache structures contain pointers to free object.
922 	 * However, when such objects are allocated or transferred to another
923 	 * cache the pointers are not cleared and they could be counted as
924 	 * valid references during a kmemleak scan. Therefore, kmemleak must
925 	 * not scan such objects.
926 	 */
927 	kmemleak_no_scan(nc);
928 	if (nc) {
929 		nc->avail = 0;
930 		nc->limit = entries;
931 		nc->batchcount = batchcount;
932 		nc->touched = 0;
933 		spin_lock_init(&nc->lock);
934 	}
935 	return nc;
936 }
937 
938 /*
939  * Transfer objects in one arraycache to another.
940  * Locking must be handled by the caller.
941  *
942  * Return the number of entries transferred.
943  */
944 static int transfer_objects(struct array_cache *to,
945 		struct array_cache *from, unsigned int max)
946 {
947 	/* Figure out how many entries to transfer */
948 	int nr = min3(from->avail, max, to->limit - to->avail);
949 
950 	if (!nr)
951 		return 0;
952 
953 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
954 			sizeof(void *) *nr);
955 
956 	from->avail -= nr;
957 	to->avail += nr;
958 	return nr;
959 }
960 
961 #ifndef CONFIG_NUMA
962 
963 #define drain_alien_cache(cachep, alien) do { } while (0)
964 #define reap_alien(cachep, l3) do { } while (0)
965 
966 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
967 {
968 	return (struct array_cache **)BAD_ALIEN_MAGIC;
969 }
970 
971 static inline void free_alien_cache(struct array_cache **ac_ptr)
972 {
973 }
974 
975 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
976 {
977 	return 0;
978 }
979 
980 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
981 		gfp_t flags)
982 {
983 	return NULL;
984 }
985 
986 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
987 		 gfp_t flags, int nodeid)
988 {
989 	return NULL;
990 }
991 
992 #else	/* CONFIG_NUMA */
993 
994 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
995 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
996 
997 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
998 {
999 	struct array_cache **ac_ptr;
1000 	int memsize = sizeof(void *) * nr_node_ids;
1001 	int i;
1002 
1003 	if (limit > 1)
1004 		limit = 12;
1005 	ac_ptr = kzalloc_node(memsize, gfp, node);
1006 	if (ac_ptr) {
1007 		for_each_node(i) {
1008 			if (i == node || !node_online(i))
1009 				continue;
1010 			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1011 			if (!ac_ptr[i]) {
1012 				for (i--; i >= 0; i--)
1013 					kfree(ac_ptr[i]);
1014 				kfree(ac_ptr);
1015 				return NULL;
1016 			}
1017 		}
1018 	}
1019 	return ac_ptr;
1020 }
1021 
1022 static void free_alien_cache(struct array_cache **ac_ptr)
1023 {
1024 	int i;
1025 
1026 	if (!ac_ptr)
1027 		return;
1028 	for_each_node(i)
1029 	    kfree(ac_ptr[i]);
1030 	kfree(ac_ptr);
1031 }
1032 
1033 static void __drain_alien_cache(struct kmem_cache *cachep,
1034 				struct array_cache *ac, int node)
1035 {
1036 	struct kmem_list3 *rl3 = cachep->nodelists[node];
1037 
1038 	if (ac->avail) {
1039 		spin_lock(&rl3->list_lock);
1040 		/*
1041 		 * Stuff objects into the remote nodes shared array first.
1042 		 * That way we could avoid the overhead of putting the objects
1043 		 * into the free lists and getting them back later.
1044 		 */
1045 		if (rl3->shared)
1046 			transfer_objects(rl3->shared, ac, ac->limit);
1047 
1048 		free_block(cachep, ac->entry, ac->avail, node);
1049 		ac->avail = 0;
1050 		spin_unlock(&rl3->list_lock);
1051 	}
1052 }
1053 
1054 /*
1055  * Called from cache_reap() to regularly drain alien caches round robin.
1056  */
1057 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1058 {
1059 	int node = __this_cpu_read(slab_reap_node);
1060 
1061 	if (l3->alien) {
1062 		struct array_cache *ac = l3->alien[node];
1063 
1064 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1065 			__drain_alien_cache(cachep, ac, node);
1066 			spin_unlock_irq(&ac->lock);
1067 		}
1068 	}
1069 }
1070 
1071 static void drain_alien_cache(struct kmem_cache *cachep,
1072 				struct array_cache **alien)
1073 {
1074 	int i = 0;
1075 	struct array_cache *ac;
1076 	unsigned long flags;
1077 
1078 	for_each_online_node(i) {
1079 		ac = alien[i];
1080 		if (ac) {
1081 			spin_lock_irqsave(&ac->lock, flags);
1082 			__drain_alien_cache(cachep, ac, i);
1083 			spin_unlock_irqrestore(&ac->lock, flags);
1084 		}
1085 	}
1086 }
1087 
1088 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1089 {
1090 	struct slab *slabp = virt_to_slab(objp);
1091 	int nodeid = slabp->nodeid;
1092 	struct kmem_list3 *l3;
1093 	struct array_cache *alien = NULL;
1094 	int node;
1095 
1096 	node = numa_mem_id();
1097 
1098 	/*
1099 	 * Make sure we are not freeing a object from another node to the array
1100 	 * cache on this cpu.
1101 	 */
1102 	if (likely(slabp->nodeid == node))
1103 		return 0;
1104 
1105 	l3 = cachep->nodelists[node];
1106 	STATS_INC_NODEFREES(cachep);
1107 	if (l3->alien && l3->alien[nodeid]) {
1108 		alien = l3->alien[nodeid];
1109 		spin_lock(&alien->lock);
1110 		if (unlikely(alien->avail == alien->limit)) {
1111 			STATS_INC_ACOVERFLOW(cachep);
1112 			__drain_alien_cache(cachep, alien, nodeid);
1113 		}
1114 		alien->entry[alien->avail++] = objp;
1115 		spin_unlock(&alien->lock);
1116 	} else {
1117 		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1118 		free_block(cachep, &objp, 1, nodeid);
1119 		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1120 	}
1121 	return 1;
1122 }
1123 #endif
1124 
1125 /*
1126  * Allocates and initializes nodelists for a node on each slab cache, used for
1127  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
1128  * will be allocated off-node since memory is not yet online for the new node.
1129  * When hotplugging memory or a cpu, existing nodelists are not replaced if
1130  * already in use.
1131  *
1132  * Must hold cache_chain_mutex.
1133  */
1134 static int init_cache_nodelists_node(int node)
1135 {
1136 	struct kmem_cache *cachep;
1137 	struct kmem_list3 *l3;
1138 	const int memsize = sizeof(struct kmem_list3);
1139 
1140 	list_for_each_entry(cachep, &cache_chain, next) {
1141 		/*
1142 		 * Set up the size64 kmemlist for cpu before we can
1143 		 * begin anything. Make sure some other cpu on this
1144 		 * node has not already allocated this
1145 		 */
1146 		if (!cachep->nodelists[node]) {
1147 			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1148 			if (!l3)
1149 				return -ENOMEM;
1150 			kmem_list3_init(l3);
1151 			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1152 			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1153 
1154 			/*
1155 			 * The l3s don't come and go as CPUs come and
1156 			 * go.  cache_chain_mutex is sufficient
1157 			 * protection here.
1158 			 */
1159 			cachep->nodelists[node] = l3;
1160 		}
1161 
1162 		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1163 		cachep->nodelists[node]->free_limit =
1164 			(1 + nr_cpus_node(node)) *
1165 			cachep->batchcount + cachep->num;
1166 		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1167 	}
1168 	return 0;
1169 }
1170 
1171 static void __cpuinit cpuup_canceled(long cpu)
1172 {
1173 	struct kmem_cache *cachep;
1174 	struct kmem_list3 *l3 = NULL;
1175 	int node = cpu_to_mem(cpu);
1176 	const struct cpumask *mask = cpumask_of_node(node);
1177 
1178 	list_for_each_entry(cachep, &cache_chain, next) {
1179 		struct array_cache *nc;
1180 		struct array_cache *shared;
1181 		struct array_cache **alien;
1182 
1183 		/* cpu is dead; no one can alloc from it. */
1184 		nc = cachep->array[cpu];
1185 		cachep->array[cpu] = NULL;
1186 		l3 = cachep->nodelists[node];
1187 
1188 		if (!l3)
1189 			goto free_array_cache;
1190 
1191 		spin_lock_irq(&l3->list_lock);
1192 
1193 		/* Free limit for this kmem_list3 */
1194 		l3->free_limit -= cachep->batchcount;
1195 		if (nc)
1196 			free_block(cachep, nc->entry, nc->avail, node);
1197 
1198 		if (!cpumask_empty(mask)) {
1199 			spin_unlock_irq(&l3->list_lock);
1200 			goto free_array_cache;
1201 		}
1202 
1203 		shared = l3->shared;
1204 		if (shared) {
1205 			free_block(cachep, shared->entry,
1206 				   shared->avail, node);
1207 			l3->shared = NULL;
1208 		}
1209 
1210 		alien = l3->alien;
1211 		l3->alien = NULL;
1212 
1213 		spin_unlock_irq(&l3->list_lock);
1214 
1215 		kfree(shared);
1216 		if (alien) {
1217 			drain_alien_cache(cachep, alien);
1218 			free_alien_cache(alien);
1219 		}
1220 free_array_cache:
1221 		kfree(nc);
1222 	}
1223 	/*
1224 	 * In the previous loop, all the objects were freed to
1225 	 * the respective cache's slabs,  now we can go ahead and
1226 	 * shrink each nodelist to its limit.
1227 	 */
1228 	list_for_each_entry(cachep, &cache_chain, next) {
1229 		l3 = cachep->nodelists[node];
1230 		if (!l3)
1231 			continue;
1232 		drain_freelist(cachep, l3, l3->free_objects);
1233 	}
1234 }
1235 
1236 static int __cpuinit cpuup_prepare(long cpu)
1237 {
1238 	struct kmem_cache *cachep;
1239 	struct kmem_list3 *l3 = NULL;
1240 	int node = cpu_to_mem(cpu);
1241 	int err;
1242 
1243 	/*
1244 	 * We need to do this right in the beginning since
1245 	 * alloc_arraycache's are going to use this list.
1246 	 * kmalloc_node allows us to add the slab to the right
1247 	 * kmem_list3 and not this cpu's kmem_list3
1248 	 */
1249 	err = init_cache_nodelists_node(node);
1250 	if (err < 0)
1251 		goto bad;
1252 
1253 	/*
1254 	 * Now we can go ahead with allocating the shared arrays and
1255 	 * array caches
1256 	 */
1257 	list_for_each_entry(cachep, &cache_chain, next) {
1258 		struct array_cache *nc;
1259 		struct array_cache *shared = NULL;
1260 		struct array_cache **alien = NULL;
1261 
1262 		nc = alloc_arraycache(node, cachep->limit,
1263 					cachep->batchcount, GFP_KERNEL);
1264 		if (!nc)
1265 			goto bad;
1266 		if (cachep->shared) {
1267 			shared = alloc_arraycache(node,
1268 				cachep->shared * cachep->batchcount,
1269 				0xbaadf00d, GFP_KERNEL);
1270 			if (!shared) {
1271 				kfree(nc);
1272 				goto bad;
1273 			}
1274 		}
1275 		if (use_alien_caches) {
1276 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1277 			if (!alien) {
1278 				kfree(shared);
1279 				kfree(nc);
1280 				goto bad;
1281 			}
1282 		}
1283 		cachep->array[cpu] = nc;
1284 		l3 = cachep->nodelists[node];
1285 		BUG_ON(!l3);
1286 
1287 		spin_lock_irq(&l3->list_lock);
1288 		if (!l3->shared) {
1289 			/*
1290 			 * We are serialised from CPU_DEAD or
1291 			 * CPU_UP_CANCELLED by the cpucontrol lock
1292 			 */
1293 			l3->shared = shared;
1294 			shared = NULL;
1295 		}
1296 #ifdef CONFIG_NUMA
1297 		if (!l3->alien) {
1298 			l3->alien = alien;
1299 			alien = NULL;
1300 		}
1301 #endif
1302 		spin_unlock_irq(&l3->list_lock);
1303 		kfree(shared);
1304 		free_alien_cache(alien);
1305 		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1306 			slab_set_debugobj_lock_classes_node(cachep, node);
1307 	}
1308 	init_node_lock_keys(node);
1309 
1310 	return 0;
1311 bad:
1312 	cpuup_canceled(cpu);
1313 	return -ENOMEM;
1314 }
1315 
1316 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1317 				    unsigned long action, void *hcpu)
1318 {
1319 	long cpu = (long)hcpu;
1320 	int err = 0;
1321 
1322 	switch (action) {
1323 	case CPU_UP_PREPARE:
1324 	case CPU_UP_PREPARE_FROZEN:
1325 		mutex_lock(&cache_chain_mutex);
1326 		err = cpuup_prepare(cpu);
1327 		mutex_unlock(&cache_chain_mutex);
1328 		break;
1329 	case CPU_ONLINE:
1330 	case CPU_ONLINE_FROZEN:
1331 		start_cpu_timer(cpu);
1332 		break;
1333 #ifdef CONFIG_HOTPLUG_CPU
1334   	case CPU_DOWN_PREPARE:
1335   	case CPU_DOWN_PREPARE_FROZEN:
1336 		/*
1337 		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1338 		 * held so that if cache_reap() is invoked it cannot do
1339 		 * anything expensive but will only modify reap_work
1340 		 * and reschedule the timer.
1341 		*/
1342 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1343 		/* Now the cache_reaper is guaranteed to be not running. */
1344 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1345   		break;
1346   	case CPU_DOWN_FAILED:
1347   	case CPU_DOWN_FAILED_FROZEN:
1348 		start_cpu_timer(cpu);
1349   		break;
1350 	case CPU_DEAD:
1351 	case CPU_DEAD_FROZEN:
1352 		/*
1353 		 * Even if all the cpus of a node are down, we don't free the
1354 		 * kmem_list3 of any cache. This to avoid a race between
1355 		 * cpu_down, and a kmalloc allocation from another cpu for
1356 		 * memory from the node of the cpu going down.  The list3
1357 		 * structure is usually allocated from kmem_cache_create() and
1358 		 * gets destroyed at kmem_cache_destroy().
1359 		 */
1360 		/* fall through */
1361 #endif
1362 	case CPU_UP_CANCELED:
1363 	case CPU_UP_CANCELED_FROZEN:
1364 		mutex_lock(&cache_chain_mutex);
1365 		cpuup_canceled(cpu);
1366 		mutex_unlock(&cache_chain_mutex);
1367 		break;
1368 	}
1369 	return notifier_from_errno(err);
1370 }
1371 
1372 static struct notifier_block __cpuinitdata cpucache_notifier = {
1373 	&cpuup_callback, NULL, 0
1374 };
1375 
1376 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1377 /*
1378  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1379  * Returns -EBUSY if all objects cannot be drained so that the node is not
1380  * removed.
1381  *
1382  * Must hold cache_chain_mutex.
1383  */
1384 static int __meminit drain_cache_nodelists_node(int node)
1385 {
1386 	struct kmem_cache *cachep;
1387 	int ret = 0;
1388 
1389 	list_for_each_entry(cachep, &cache_chain, next) {
1390 		struct kmem_list3 *l3;
1391 
1392 		l3 = cachep->nodelists[node];
1393 		if (!l3)
1394 			continue;
1395 
1396 		drain_freelist(cachep, l3, l3->free_objects);
1397 
1398 		if (!list_empty(&l3->slabs_full) ||
1399 		    !list_empty(&l3->slabs_partial)) {
1400 			ret = -EBUSY;
1401 			break;
1402 		}
1403 	}
1404 	return ret;
1405 }
1406 
1407 static int __meminit slab_memory_callback(struct notifier_block *self,
1408 					unsigned long action, void *arg)
1409 {
1410 	struct memory_notify *mnb = arg;
1411 	int ret = 0;
1412 	int nid;
1413 
1414 	nid = mnb->status_change_nid;
1415 	if (nid < 0)
1416 		goto out;
1417 
1418 	switch (action) {
1419 	case MEM_GOING_ONLINE:
1420 		mutex_lock(&cache_chain_mutex);
1421 		ret = init_cache_nodelists_node(nid);
1422 		mutex_unlock(&cache_chain_mutex);
1423 		break;
1424 	case MEM_GOING_OFFLINE:
1425 		mutex_lock(&cache_chain_mutex);
1426 		ret = drain_cache_nodelists_node(nid);
1427 		mutex_unlock(&cache_chain_mutex);
1428 		break;
1429 	case MEM_ONLINE:
1430 	case MEM_OFFLINE:
1431 	case MEM_CANCEL_ONLINE:
1432 	case MEM_CANCEL_OFFLINE:
1433 		break;
1434 	}
1435 out:
1436 	return notifier_from_errno(ret);
1437 }
1438 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1439 
1440 /*
1441  * swap the static kmem_list3 with kmalloced memory
1442  */
1443 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1444 				int nodeid)
1445 {
1446 	struct kmem_list3 *ptr;
1447 
1448 	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1449 	BUG_ON(!ptr);
1450 
1451 	memcpy(ptr, list, sizeof(struct kmem_list3));
1452 	/*
1453 	 * Do not assume that spinlocks can be initialized via memcpy:
1454 	 */
1455 	spin_lock_init(&ptr->list_lock);
1456 
1457 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1458 	cachep->nodelists[nodeid] = ptr;
1459 }
1460 
1461 /*
1462  * For setting up all the kmem_list3s for cache whose buffer_size is same as
1463  * size of kmem_list3.
1464  */
1465 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1466 {
1467 	int node;
1468 
1469 	for_each_online_node(node) {
1470 		cachep->nodelists[node] = &initkmem_list3[index + node];
1471 		cachep->nodelists[node]->next_reap = jiffies +
1472 		    REAPTIMEOUT_LIST3 +
1473 		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1474 	}
1475 }
1476 
1477 /*
1478  * Initialisation.  Called after the page allocator have been initialised and
1479  * before smp_init().
1480  */
1481 void __init kmem_cache_init(void)
1482 {
1483 	size_t left_over;
1484 	struct cache_sizes *sizes;
1485 	struct cache_names *names;
1486 	int i;
1487 	int order;
1488 	int node;
1489 
1490 	if (num_possible_nodes() == 1)
1491 		use_alien_caches = 0;
1492 
1493 	for (i = 0; i < NUM_INIT_LISTS; i++) {
1494 		kmem_list3_init(&initkmem_list3[i]);
1495 		if (i < MAX_NUMNODES)
1496 			cache_cache.nodelists[i] = NULL;
1497 	}
1498 	set_up_list3s(&cache_cache, CACHE_CACHE);
1499 
1500 	/*
1501 	 * Fragmentation resistance on low memory - only use bigger
1502 	 * page orders on machines with more than 32MB of memory.
1503 	 */
1504 	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1505 		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1506 
1507 	/* Bootstrap is tricky, because several objects are allocated
1508 	 * from caches that do not exist yet:
1509 	 * 1) initialize the cache_cache cache: it contains the struct
1510 	 *    kmem_cache structures of all caches, except cache_cache itself:
1511 	 *    cache_cache is statically allocated.
1512 	 *    Initially an __init data area is used for the head array and the
1513 	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1514 	 *    array at the end of the bootstrap.
1515 	 * 2) Create the first kmalloc cache.
1516 	 *    The struct kmem_cache for the new cache is allocated normally.
1517 	 *    An __init data area is used for the head array.
1518 	 * 3) Create the remaining kmalloc caches, with minimally sized
1519 	 *    head arrays.
1520 	 * 4) Replace the __init data head arrays for cache_cache and the first
1521 	 *    kmalloc cache with kmalloc allocated arrays.
1522 	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1523 	 *    the other cache's with kmalloc allocated memory.
1524 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1525 	 */
1526 
1527 	node = numa_mem_id();
1528 
1529 	/* 1) create the cache_cache */
1530 	INIT_LIST_HEAD(&cache_chain);
1531 	list_add(&cache_cache.next, &cache_chain);
1532 	cache_cache.colour_off = cache_line_size();
1533 	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1534 	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1535 
1536 	/*
1537 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1538 	 */
1539 	cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1540 				  nr_node_ids * sizeof(struct kmem_list3 *);
1541 #if DEBUG
1542 	cache_cache.obj_size = cache_cache.buffer_size;
1543 #endif
1544 	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1545 					cache_line_size());
1546 	cache_cache.reciprocal_buffer_size =
1547 		reciprocal_value(cache_cache.buffer_size);
1548 
1549 	for (order = 0; order < MAX_ORDER; order++) {
1550 		cache_estimate(order, cache_cache.buffer_size,
1551 			cache_line_size(), 0, &left_over, &cache_cache.num);
1552 		if (cache_cache.num)
1553 			break;
1554 	}
1555 	BUG_ON(!cache_cache.num);
1556 	cache_cache.gfporder = order;
1557 	cache_cache.colour = left_over / cache_cache.colour_off;
1558 	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1559 				      sizeof(struct slab), cache_line_size());
1560 
1561 	/* 2+3) create the kmalloc caches */
1562 	sizes = malloc_sizes;
1563 	names = cache_names;
1564 
1565 	/*
1566 	 * Initialize the caches that provide memory for the array cache and the
1567 	 * kmem_list3 structures first.  Without this, further allocations will
1568 	 * bug.
1569 	 */
1570 
1571 	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1572 					sizes[INDEX_AC].cs_size,
1573 					ARCH_KMALLOC_MINALIGN,
1574 					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1575 					NULL);
1576 
1577 	if (INDEX_AC != INDEX_L3) {
1578 		sizes[INDEX_L3].cs_cachep =
1579 			kmem_cache_create(names[INDEX_L3].name,
1580 				sizes[INDEX_L3].cs_size,
1581 				ARCH_KMALLOC_MINALIGN,
1582 				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1583 				NULL);
1584 	}
1585 
1586 	slab_early_init = 0;
1587 
1588 	while (sizes->cs_size != ULONG_MAX) {
1589 		/*
1590 		 * For performance, all the general caches are L1 aligned.
1591 		 * This should be particularly beneficial on SMP boxes, as it
1592 		 * eliminates "false sharing".
1593 		 * Note for systems short on memory removing the alignment will
1594 		 * allow tighter packing of the smaller caches.
1595 		 */
1596 		if (!sizes->cs_cachep) {
1597 			sizes->cs_cachep = kmem_cache_create(names->name,
1598 					sizes->cs_size,
1599 					ARCH_KMALLOC_MINALIGN,
1600 					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1601 					NULL);
1602 		}
1603 #ifdef CONFIG_ZONE_DMA
1604 		sizes->cs_dmacachep = kmem_cache_create(
1605 					names->name_dma,
1606 					sizes->cs_size,
1607 					ARCH_KMALLOC_MINALIGN,
1608 					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1609 						SLAB_PANIC,
1610 					NULL);
1611 #endif
1612 		sizes++;
1613 		names++;
1614 	}
1615 	/* 4) Replace the bootstrap head arrays */
1616 	{
1617 		struct array_cache *ptr;
1618 
1619 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1620 
1621 		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1622 		memcpy(ptr, cpu_cache_get(&cache_cache),
1623 		       sizeof(struct arraycache_init));
1624 		/*
1625 		 * Do not assume that spinlocks can be initialized via memcpy:
1626 		 */
1627 		spin_lock_init(&ptr->lock);
1628 
1629 		cache_cache.array[smp_processor_id()] = ptr;
1630 
1631 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1632 
1633 		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1634 		       != &initarray_generic.cache);
1635 		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1636 		       sizeof(struct arraycache_init));
1637 		/*
1638 		 * Do not assume that spinlocks can be initialized via memcpy:
1639 		 */
1640 		spin_lock_init(&ptr->lock);
1641 
1642 		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1643 		    ptr;
1644 	}
1645 	/* 5) Replace the bootstrap kmem_list3's */
1646 	{
1647 		int nid;
1648 
1649 		for_each_online_node(nid) {
1650 			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1651 
1652 			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1653 				  &initkmem_list3[SIZE_AC + nid], nid);
1654 
1655 			if (INDEX_AC != INDEX_L3) {
1656 				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1657 					  &initkmem_list3[SIZE_L3 + nid], nid);
1658 			}
1659 		}
1660 	}
1661 
1662 	g_cpucache_up = EARLY;
1663 }
1664 
1665 void __init kmem_cache_init_late(void)
1666 {
1667 	struct kmem_cache *cachep;
1668 
1669 	/* Annotate slab for lockdep -- annotate the malloc caches */
1670 	init_lock_keys();
1671 
1672 	/* 6) resize the head arrays to their final sizes */
1673 	mutex_lock(&cache_chain_mutex);
1674 	list_for_each_entry(cachep, &cache_chain, next)
1675 		if (enable_cpucache(cachep, GFP_NOWAIT))
1676 			BUG();
1677 	mutex_unlock(&cache_chain_mutex);
1678 
1679 	/* Done! */
1680 	g_cpucache_up = FULL;
1681 
1682 	/*
1683 	 * Register a cpu startup notifier callback that initializes
1684 	 * cpu_cache_get for all new cpus
1685 	 */
1686 	register_cpu_notifier(&cpucache_notifier);
1687 
1688 #ifdef CONFIG_NUMA
1689 	/*
1690 	 * Register a memory hotplug callback that initializes and frees
1691 	 * nodelists.
1692 	 */
1693 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1694 #endif
1695 
1696 	/*
1697 	 * The reap timers are started later, with a module init call: That part
1698 	 * of the kernel is not yet operational.
1699 	 */
1700 }
1701 
1702 static int __init cpucache_init(void)
1703 {
1704 	int cpu;
1705 
1706 	/*
1707 	 * Register the timers that return unneeded pages to the page allocator
1708 	 */
1709 	for_each_online_cpu(cpu)
1710 		start_cpu_timer(cpu);
1711 	return 0;
1712 }
1713 __initcall(cpucache_init);
1714 
1715 /*
1716  * Interface to system's page allocator. No need to hold the cache-lock.
1717  *
1718  * If we requested dmaable memory, we will get it. Even if we
1719  * did not request dmaable memory, we might get it, but that
1720  * would be relatively rare and ignorable.
1721  */
1722 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1723 {
1724 	struct page *page;
1725 	int nr_pages;
1726 	int i;
1727 
1728 #ifndef CONFIG_MMU
1729 	/*
1730 	 * Nommu uses slab's for process anonymous memory allocations, and thus
1731 	 * requires __GFP_COMP to properly refcount higher order allocations
1732 	 */
1733 	flags |= __GFP_COMP;
1734 #endif
1735 
1736 	flags |= cachep->gfpflags;
1737 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1738 		flags |= __GFP_RECLAIMABLE;
1739 
1740 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1741 	if (!page)
1742 		return NULL;
1743 
1744 	nr_pages = (1 << cachep->gfporder);
1745 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1746 		add_zone_page_state(page_zone(page),
1747 			NR_SLAB_RECLAIMABLE, nr_pages);
1748 	else
1749 		add_zone_page_state(page_zone(page),
1750 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1751 	for (i = 0; i < nr_pages; i++)
1752 		__SetPageSlab(page + i);
1753 
1754 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1755 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1756 
1757 		if (cachep->ctor)
1758 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1759 		else
1760 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1761 	}
1762 
1763 	return page_address(page);
1764 }
1765 
1766 /*
1767  * Interface to system's page release.
1768  */
1769 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1770 {
1771 	unsigned long i = (1 << cachep->gfporder);
1772 	struct page *page = virt_to_page(addr);
1773 	const unsigned long nr_freed = i;
1774 
1775 	kmemcheck_free_shadow(page, cachep->gfporder);
1776 
1777 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1778 		sub_zone_page_state(page_zone(page),
1779 				NR_SLAB_RECLAIMABLE, nr_freed);
1780 	else
1781 		sub_zone_page_state(page_zone(page),
1782 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1783 	while (i--) {
1784 		BUG_ON(!PageSlab(page));
1785 		__ClearPageSlab(page);
1786 		page++;
1787 	}
1788 	if (current->reclaim_state)
1789 		current->reclaim_state->reclaimed_slab += nr_freed;
1790 	free_pages((unsigned long)addr, cachep->gfporder);
1791 }
1792 
1793 static void kmem_rcu_free(struct rcu_head *head)
1794 {
1795 	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1796 	struct kmem_cache *cachep = slab_rcu->cachep;
1797 
1798 	kmem_freepages(cachep, slab_rcu->addr);
1799 	if (OFF_SLAB(cachep))
1800 		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1801 }
1802 
1803 #if DEBUG
1804 
1805 #ifdef CONFIG_DEBUG_PAGEALLOC
1806 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1807 			    unsigned long caller)
1808 {
1809 	int size = obj_size(cachep);
1810 
1811 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1812 
1813 	if (size < 5 * sizeof(unsigned long))
1814 		return;
1815 
1816 	*addr++ = 0x12345678;
1817 	*addr++ = caller;
1818 	*addr++ = smp_processor_id();
1819 	size -= 3 * sizeof(unsigned long);
1820 	{
1821 		unsigned long *sptr = &caller;
1822 		unsigned long svalue;
1823 
1824 		while (!kstack_end(sptr)) {
1825 			svalue = *sptr++;
1826 			if (kernel_text_address(svalue)) {
1827 				*addr++ = svalue;
1828 				size -= sizeof(unsigned long);
1829 				if (size <= sizeof(unsigned long))
1830 					break;
1831 			}
1832 		}
1833 
1834 	}
1835 	*addr++ = 0x87654321;
1836 }
1837 #endif
1838 
1839 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1840 {
1841 	int size = obj_size(cachep);
1842 	addr = &((char *)addr)[obj_offset(cachep)];
1843 
1844 	memset(addr, val, size);
1845 	*(unsigned char *)(addr + size - 1) = POISON_END;
1846 }
1847 
1848 static void dump_line(char *data, int offset, int limit)
1849 {
1850 	int i;
1851 	unsigned char error = 0;
1852 	int bad_count = 0;
1853 
1854 	printk(KERN_ERR "%03x:", offset);
1855 	for (i = 0; i < limit; i++) {
1856 		if (data[offset + i] != POISON_FREE) {
1857 			error = data[offset + i];
1858 			bad_count++;
1859 		}
1860 		printk(" %02x", (unsigned char)data[offset + i]);
1861 	}
1862 	printk("\n");
1863 
1864 	if (bad_count == 1) {
1865 		error ^= POISON_FREE;
1866 		if (!(error & (error - 1))) {
1867 			printk(KERN_ERR "Single bit error detected. Probably "
1868 					"bad RAM.\n");
1869 #ifdef CONFIG_X86
1870 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1871 					"test tool.\n");
1872 #else
1873 			printk(KERN_ERR "Run a memory test tool.\n");
1874 #endif
1875 		}
1876 	}
1877 }
1878 #endif
1879 
1880 #if DEBUG
1881 
1882 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1883 {
1884 	int i, size;
1885 	char *realobj;
1886 
1887 	if (cachep->flags & SLAB_RED_ZONE) {
1888 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1889 			*dbg_redzone1(cachep, objp),
1890 			*dbg_redzone2(cachep, objp));
1891 	}
1892 
1893 	if (cachep->flags & SLAB_STORE_USER) {
1894 		printk(KERN_ERR "Last user: [<%p>]",
1895 			*dbg_userword(cachep, objp));
1896 		print_symbol("(%s)",
1897 				(unsigned long)*dbg_userword(cachep, objp));
1898 		printk("\n");
1899 	}
1900 	realobj = (char *)objp + obj_offset(cachep);
1901 	size = obj_size(cachep);
1902 	for (i = 0; i < size && lines; i += 16, lines--) {
1903 		int limit;
1904 		limit = 16;
1905 		if (i + limit > size)
1906 			limit = size - i;
1907 		dump_line(realobj, i, limit);
1908 	}
1909 }
1910 
1911 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1912 {
1913 	char *realobj;
1914 	int size, i;
1915 	int lines = 0;
1916 
1917 	realobj = (char *)objp + obj_offset(cachep);
1918 	size = obj_size(cachep);
1919 
1920 	for (i = 0; i < size; i++) {
1921 		char exp = POISON_FREE;
1922 		if (i == size - 1)
1923 			exp = POISON_END;
1924 		if (realobj[i] != exp) {
1925 			int limit;
1926 			/* Mismatch ! */
1927 			/* Print header */
1928 			if (lines == 0) {
1929 				printk(KERN_ERR
1930 					"Slab corruption: %s start=%p, len=%d\n",
1931 					cachep->name, realobj, size);
1932 				print_objinfo(cachep, objp, 0);
1933 			}
1934 			/* Hexdump the affected line */
1935 			i = (i / 16) * 16;
1936 			limit = 16;
1937 			if (i + limit > size)
1938 				limit = size - i;
1939 			dump_line(realobj, i, limit);
1940 			i += 16;
1941 			lines++;
1942 			/* Limit to 5 lines */
1943 			if (lines > 5)
1944 				break;
1945 		}
1946 	}
1947 	if (lines != 0) {
1948 		/* Print some data about the neighboring objects, if they
1949 		 * exist:
1950 		 */
1951 		struct slab *slabp = virt_to_slab(objp);
1952 		unsigned int objnr;
1953 
1954 		objnr = obj_to_index(cachep, slabp, objp);
1955 		if (objnr) {
1956 			objp = index_to_obj(cachep, slabp, objnr - 1);
1957 			realobj = (char *)objp + obj_offset(cachep);
1958 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1959 			       realobj, size);
1960 			print_objinfo(cachep, objp, 2);
1961 		}
1962 		if (objnr + 1 < cachep->num) {
1963 			objp = index_to_obj(cachep, slabp, objnr + 1);
1964 			realobj = (char *)objp + obj_offset(cachep);
1965 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1966 			       realobj, size);
1967 			print_objinfo(cachep, objp, 2);
1968 		}
1969 	}
1970 }
1971 #endif
1972 
1973 #if DEBUG
1974 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1975 {
1976 	int i;
1977 	for (i = 0; i < cachep->num; i++) {
1978 		void *objp = index_to_obj(cachep, slabp, i);
1979 
1980 		if (cachep->flags & SLAB_POISON) {
1981 #ifdef CONFIG_DEBUG_PAGEALLOC
1982 			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1983 					OFF_SLAB(cachep))
1984 				kernel_map_pages(virt_to_page(objp),
1985 					cachep->buffer_size / PAGE_SIZE, 1);
1986 			else
1987 				check_poison_obj(cachep, objp);
1988 #else
1989 			check_poison_obj(cachep, objp);
1990 #endif
1991 		}
1992 		if (cachep->flags & SLAB_RED_ZONE) {
1993 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1994 				slab_error(cachep, "start of a freed object "
1995 					   "was overwritten");
1996 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1997 				slab_error(cachep, "end of a freed object "
1998 					   "was overwritten");
1999 		}
2000 	}
2001 }
2002 #else
2003 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2004 {
2005 }
2006 #endif
2007 
2008 /**
2009  * slab_destroy - destroy and release all objects in a slab
2010  * @cachep: cache pointer being destroyed
2011  * @slabp: slab pointer being destroyed
2012  *
2013  * Destroy all the objs in a slab, and release the mem back to the system.
2014  * Before calling the slab must have been unlinked from the cache.  The
2015  * cache-lock is not held/needed.
2016  */
2017 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2018 {
2019 	void *addr = slabp->s_mem - slabp->colouroff;
2020 
2021 	slab_destroy_debugcheck(cachep, slabp);
2022 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2023 		struct slab_rcu *slab_rcu;
2024 
2025 		slab_rcu = (struct slab_rcu *)slabp;
2026 		slab_rcu->cachep = cachep;
2027 		slab_rcu->addr = addr;
2028 		call_rcu(&slab_rcu->head, kmem_rcu_free);
2029 	} else {
2030 		kmem_freepages(cachep, addr);
2031 		if (OFF_SLAB(cachep))
2032 			kmem_cache_free(cachep->slabp_cache, slabp);
2033 	}
2034 }
2035 
2036 static void __kmem_cache_destroy(struct kmem_cache *cachep)
2037 {
2038 	int i;
2039 	struct kmem_list3 *l3;
2040 
2041 	for_each_online_cpu(i)
2042 	    kfree(cachep->array[i]);
2043 
2044 	/* NUMA: free the list3 structures */
2045 	for_each_online_node(i) {
2046 		l3 = cachep->nodelists[i];
2047 		if (l3) {
2048 			kfree(l3->shared);
2049 			free_alien_cache(l3->alien);
2050 			kfree(l3);
2051 		}
2052 	}
2053 	kmem_cache_free(&cache_cache, cachep);
2054 }
2055 
2056 
2057 /**
2058  * calculate_slab_order - calculate size (page order) of slabs
2059  * @cachep: pointer to the cache that is being created
2060  * @size: size of objects to be created in this cache.
2061  * @align: required alignment for the objects.
2062  * @flags: slab allocation flags
2063  *
2064  * Also calculates the number of objects per slab.
2065  *
2066  * This could be made much more intelligent.  For now, try to avoid using
2067  * high order pages for slabs.  When the gfp() functions are more friendly
2068  * towards high-order requests, this should be changed.
2069  */
2070 static size_t calculate_slab_order(struct kmem_cache *cachep,
2071 			size_t size, size_t align, unsigned long flags)
2072 {
2073 	unsigned long offslab_limit;
2074 	size_t left_over = 0;
2075 	int gfporder;
2076 
2077 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2078 		unsigned int num;
2079 		size_t remainder;
2080 
2081 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2082 		if (!num)
2083 			continue;
2084 
2085 		if (flags & CFLGS_OFF_SLAB) {
2086 			/*
2087 			 * Max number of objs-per-slab for caches which
2088 			 * use off-slab slabs. Needed to avoid a possible
2089 			 * looping condition in cache_grow().
2090 			 */
2091 			offslab_limit = size - sizeof(struct slab);
2092 			offslab_limit /= sizeof(kmem_bufctl_t);
2093 
2094  			if (num > offslab_limit)
2095 				break;
2096 		}
2097 
2098 		/* Found something acceptable - save it away */
2099 		cachep->num = num;
2100 		cachep->gfporder = gfporder;
2101 		left_over = remainder;
2102 
2103 		/*
2104 		 * A VFS-reclaimable slab tends to have most allocations
2105 		 * as GFP_NOFS and we really don't want to have to be allocating
2106 		 * higher-order pages when we are unable to shrink dcache.
2107 		 */
2108 		if (flags & SLAB_RECLAIM_ACCOUNT)
2109 			break;
2110 
2111 		/*
2112 		 * Large number of objects is good, but very large slabs are
2113 		 * currently bad for the gfp()s.
2114 		 */
2115 		if (gfporder >= slab_break_gfp_order)
2116 			break;
2117 
2118 		/*
2119 		 * Acceptable internal fragmentation?
2120 		 */
2121 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2122 			break;
2123 	}
2124 	return left_over;
2125 }
2126 
2127 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2128 {
2129 	if (g_cpucache_up == FULL)
2130 		return enable_cpucache(cachep, gfp);
2131 
2132 	if (g_cpucache_up == NONE) {
2133 		/*
2134 		 * Note: the first kmem_cache_create must create the cache
2135 		 * that's used by kmalloc(24), otherwise the creation of
2136 		 * further caches will BUG().
2137 		 */
2138 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2139 
2140 		/*
2141 		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2142 		 * the first cache, then we need to set up all its list3s,
2143 		 * otherwise the creation of further caches will BUG().
2144 		 */
2145 		set_up_list3s(cachep, SIZE_AC);
2146 		if (INDEX_AC == INDEX_L3)
2147 			g_cpucache_up = PARTIAL_L3;
2148 		else
2149 			g_cpucache_up = PARTIAL_AC;
2150 	} else {
2151 		cachep->array[smp_processor_id()] =
2152 			kmalloc(sizeof(struct arraycache_init), gfp);
2153 
2154 		if (g_cpucache_up == PARTIAL_AC) {
2155 			set_up_list3s(cachep, SIZE_L3);
2156 			g_cpucache_up = PARTIAL_L3;
2157 		} else {
2158 			int node;
2159 			for_each_online_node(node) {
2160 				cachep->nodelists[node] =
2161 				    kmalloc_node(sizeof(struct kmem_list3),
2162 						gfp, node);
2163 				BUG_ON(!cachep->nodelists[node]);
2164 				kmem_list3_init(cachep->nodelists[node]);
2165 			}
2166 		}
2167 	}
2168 	cachep->nodelists[numa_mem_id()]->next_reap =
2169 			jiffies + REAPTIMEOUT_LIST3 +
2170 			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2171 
2172 	cpu_cache_get(cachep)->avail = 0;
2173 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2174 	cpu_cache_get(cachep)->batchcount = 1;
2175 	cpu_cache_get(cachep)->touched = 0;
2176 	cachep->batchcount = 1;
2177 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2178 	return 0;
2179 }
2180 
2181 /**
2182  * kmem_cache_create - Create a cache.
2183  * @name: A string which is used in /proc/slabinfo to identify this cache.
2184  * @size: The size of objects to be created in this cache.
2185  * @align: The required alignment for the objects.
2186  * @flags: SLAB flags
2187  * @ctor: A constructor for the objects.
2188  *
2189  * Returns a ptr to the cache on success, NULL on failure.
2190  * Cannot be called within a int, but can be interrupted.
2191  * The @ctor is run when new pages are allocated by the cache.
2192  *
2193  * @name must be valid until the cache is destroyed. This implies that
2194  * the module calling this has to destroy the cache before getting unloaded.
2195  *
2196  * The flags are
2197  *
2198  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2199  * to catch references to uninitialised memory.
2200  *
2201  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2202  * for buffer overruns.
2203  *
2204  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2205  * cacheline.  This can be beneficial if you're counting cycles as closely
2206  * as davem.
2207  */
2208 struct kmem_cache *
2209 kmem_cache_create (const char *name, size_t size, size_t align,
2210 	unsigned long flags, void (*ctor)(void *))
2211 {
2212 	size_t left_over, slab_size, ralign;
2213 	struct kmem_cache *cachep = NULL, *pc;
2214 	gfp_t gfp;
2215 
2216 	/*
2217 	 * Sanity checks... these are all serious usage bugs.
2218 	 */
2219 	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2220 	    size > KMALLOC_MAX_SIZE) {
2221 		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2222 				name);
2223 		BUG();
2224 	}
2225 
2226 	/*
2227 	 * We use cache_chain_mutex to ensure a consistent view of
2228 	 * cpu_online_mask as well.  Please see cpuup_callback
2229 	 */
2230 	if (slab_is_available()) {
2231 		get_online_cpus();
2232 		mutex_lock(&cache_chain_mutex);
2233 	}
2234 
2235 	list_for_each_entry(pc, &cache_chain, next) {
2236 		char tmp;
2237 		int res;
2238 
2239 		/*
2240 		 * This happens when the module gets unloaded and doesn't
2241 		 * destroy its slab cache and no-one else reuses the vmalloc
2242 		 * area of the module.  Print a warning.
2243 		 */
2244 		res = probe_kernel_address(pc->name, tmp);
2245 		if (res) {
2246 			printk(KERN_ERR
2247 			       "SLAB: cache with size %d has lost its name\n",
2248 			       pc->buffer_size);
2249 			continue;
2250 		}
2251 
2252 		if (!strcmp(pc->name, name)) {
2253 			printk(KERN_ERR
2254 			       "kmem_cache_create: duplicate cache %s\n", name);
2255 			dump_stack();
2256 			goto oops;
2257 		}
2258 	}
2259 
2260 #if DEBUG
2261 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2262 #if FORCED_DEBUG
2263 	/*
2264 	 * Enable redzoning and last user accounting, except for caches with
2265 	 * large objects, if the increased size would increase the object size
2266 	 * above the next power of two: caches with object sizes just above a
2267 	 * power of two have a significant amount of internal fragmentation.
2268 	 */
2269 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2270 						2 * sizeof(unsigned long long)))
2271 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2272 	if (!(flags & SLAB_DESTROY_BY_RCU))
2273 		flags |= SLAB_POISON;
2274 #endif
2275 	if (flags & SLAB_DESTROY_BY_RCU)
2276 		BUG_ON(flags & SLAB_POISON);
2277 #endif
2278 	/*
2279 	 * Always checks flags, a caller might be expecting debug support which
2280 	 * isn't available.
2281 	 */
2282 	BUG_ON(flags & ~CREATE_MASK);
2283 
2284 	/*
2285 	 * Check that size is in terms of words.  This is needed to avoid
2286 	 * unaligned accesses for some archs when redzoning is used, and makes
2287 	 * sure any on-slab bufctl's are also correctly aligned.
2288 	 */
2289 	if (size & (BYTES_PER_WORD - 1)) {
2290 		size += (BYTES_PER_WORD - 1);
2291 		size &= ~(BYTES_PER_WORD - 1);
2292 	}
2293 
2294 	/* calculate the final buffer alignment: */
2295 
2296 	/* 1) arch recommendation: can be overridden for debug */
2297 	if (flags & SLAB_HWCACHE_ALIGN) {
2298 		/*
2299 		 * Default alignment: as specified by the arch code.  Except if
2300 		 * an object is really small, then squeeze multiple objects into
2301 		 * one cacheline.
2302 		 */
2303 		ralign = cache_line_size();
2304 		while (size <= ralign / 2)
2305 			ralign /= 2;
2306 	} else {
2307 		ralign = BYTES_PER_WORD;
2308 	}
2309 
2310 	/*
2311 	 * Redzoning and user store require word alignment or possibly larger.
2312 	 * Note this will be overridden by architecture or caller mandated
2313 	 * alignment if either is greater than BYTES_PER_WORD.
2314 	 */
2315 	if (flags & SLAB_STORE_USER)
2316 		ralign = BYTES_PER_WORD;
2317 
2318 	if (flags & SLAB_RED_ZONE) {
2319 		ralign = REDZONE_ALIGN;
2320 		/* If redzoning, ensure that the second redzone is suitably
2321 		 * aligned, by adjusting the object size accordingly. */
2322 		size += REDZONE_ALIGN - 1;
2323 		size &= ~(REDZONE_ALIGN - 1);
2324 	}
2325 
2326 	/* 2) arch mandated alignment */
2327 	if (ralign < ARCH_SLAB_MINALIGN) {
2328 		ralign = ARCH_SLAB_MINALIGN;
2329 	}
2330 	/* 3) caller mandated alignment */
2331 	if (ralign < align) {
2332 		ralign = align;
2333 	}
2334 	/* disable debug if necessary */
2335 	if (ralign > __alignof__(unsigned long long))
2336 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2337 	/*
2338 	 * 4) Store it.
2339 	 */
2340 	align = ralign;
2341 
2342 	if (slab_is_available())
2343 		gfp = GFP_KERNEL;
2344 	else
2345 		gfp = GFP_NOWAIT;
2346 
2347 	/* Get cache's description obj. */
2348 	cachep = kmem_cache_zalloc(&cache_cache, gfp);
2349 	if (!cachep)
2350 		goto oops;
2351 
2352 	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2353 #if DEBUG
2354 	cachep->obj_size = size;
2355 
2356 	/*
2357 	 * Both debugging options require word-alignment which is calculated
2358 	 * into align above.
2359 	 */
2360 	if (flags & SLAB_RED_ZONE) {
2361 		/* add space for red zone words */
2362 		cachep->obj_offset += sizeof(unsigned long long);
2363 		size += 2 * sizeof(unsigned long long);
2364 	}
2365 	if (flags & SLAB_STORE_USER) {
2366 		/* user store requires one word storage behind the end of
2367 		 * the real object. But if the second red zone needs to be
2368 		 * aligned to 64 bits, we must allow that much space.
2369 		 */
2370 		if (flags & SLAB_RED_ZONE)
2371 			size += REDZONE_ALIGN;
2372 		else
2373 			size += BYTES_PER_WORD;
2374 	}
2375 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2376 	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2377 	    && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2378 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2379 		size = PAGE_SIZE;
2380 	}
2381 #endif
2382 #endif
2383 
2384 	/*
2385 	 * Determine if the slab management is 'on' or 'off' slab.
2386 	 * (bootstrapping cannot cope with offslab caches so don't do
2387 	 * it too early on. Always use on-slab management when
2388 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2389 	 */
2390 	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2391 	    !(flags & SLAB_NOLEAKTRACE))
2392 		/*
2393 		 * Size is large, assume best to place the slab management obj
2394 		 * off-slab (should allow better packing of objs).
2395 		 */
2396 		flags |= CFLGS_OFF_SLAB;
2397 
2398 	size = ALIGN(size, align);
2399 
2400 	left_over = calculate_slab_order(cachep, size, align, flags);
2401 
2402 	if (!cachep->num) {
2403 		printk(KERN_ERR
2404 		       "kmem_cache_create: couldn't create cache %s.\n", name);
2405 		kmem_cache_free(&cache_cache, cachep);
2406 		cachep = NULL;
2407 		goto oops;
2408 	}
2409 	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2410 			  + sizeof(struct slab), align);
2411 
2412 	/*
2413 	 * If the slab has been placed off-slab, and we have enough space then
2414 	 * move it on-slab. This is at the expense of any extra colouring.
2415 	 */
2416 	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2417 		flags &= ~CFLGS_OFF_SLAB;
2418 		left_over -= slab_size;
2419 	}
2420 
2421 	if (flags & CFLGS_OFF_SLAB) {
2422 		/* really off slab. No need for manual alignment */
2423 		slab_size =
2424 		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2425 
2426 #ifdef CONFIG_PAGE_POISONING
2427 		/* If we're going to use the generic kernel_map_pages()
2428 		 * poisoning, then it's going to smash the contents of
2429 		 * the redzone and userword anyhow, so switch them off.
2430 		 */
2431 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2432 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2433 #endif
2434 	}
2435 
2436 	cachep->colour_off = cache_line_size();
2437 	/* Offset must be a multiple of the alignment. */
2438 	if (cachep->colour_off < align)
2439 		cachep->colour_off = align;
2440 	cachep->colour = left_over / cachep->colour_off;
2441 	cachep->slab_size = slab_size;
2442 	cachep->flags = flags;
2443 	cachep->gfpflags = 0;
2444 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2445 		cachep->gfpflags |= GFP_DMA;
2446 	cachep->buffer_size = size;
2447 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2448 
2449 	if (flags & CFLGS_OFF_SLAB) {
2450 		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2451 		/*
2452 		 * This is a possibility for one of the malloc_sizes caches.
2453 		 * But since we go off slab only for object size greater than
2454 		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2455 		 * this should not happen at all.
2456 		 * But leave a BUG_ON for some lucky dude.
2457 		 */
2458 		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2459 	}
2460 	cachep->ctor = ctor;
2461 	cachep->name = name;
2462 
2463 	if (setup_cpu_cache(cachep, gfp)) {
2464 		__kmem_cache_destroy(cachep);
2465 		cachep = NULL;
2466 		goto oops;
2467 	}
2468 
2469 	if (flags & SLAB_DEBUG_OBJECTS) {
2470 		/*
2471 		 * Would deadlock through slab_destroy()->call_rcu()->
2472 		 * debug_object_activate()->kmem_cache_alloc().
2473 		 */
2474 		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2475 
2476 		slab_set_debugobj_lock_classes(cachep);
2477 	}
2478 
2479 	/* cache setup completed, link it into the list */
2480 	list_add(&cachep->next, &cache_chain);
2481 oops:
2482 	if (!cachep && (flags & SLAB_PANIC))
2483 		panic("kmem_cache_create(): failed to create slab `%s'\n",
2484 		      name);
2485 	if (slab_is_available()) {
2486 		mutex_unlock(&cache_chain_mutex);
2487 		put_online_cpus();
2488 	}
2489 	return cachep;
2490 }
2491 EXPORT_SYMBOL(kmem_cache_create);
2492 
2493 #if DEBUG
2494 static void check_irq_off(void)
2495 {
2496 	BUG_ON(!irqs_disabled());
2497 }
2498 
2499 static void check_irq_on(void)
2500 {
2501 	BUG_ON(irqs_disabled());
2502 }
2503 
2504 static void check_spinlock_acquired(struct kmem_cache *cachep)
2505 {
2506 #ifdef CONFIG_SMP
2507 	check_irq_off();
2508 	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2509 #endif
2510 }
2511 
2512 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2513 {
2514 #ifdef CONFIG_SMP
2515 	check_irq_off();
2516 	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2517 #endif
2518 }
2519 
2520 #else
2521 #define check_irq_off()	do { } while(0)
2522 #define check_irq_on()	do { } while(0)
2523 #define check_spinlock_acquired(x) do { } while(0)
2524 #define check_spinlock_acquired_node(x, y) do { } while(0)
2525 #endif
2526 
2527 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2528 			struct array_cache *ac,
2529 			int force, int node);
2530 
2531 static void do_drain(void *arg)
2532 {
2533 	struct kmem_cache *cachep = arg;
2534 	struct array_cache *ac;
2535 	int node = numa_mem_id();
2536 
2537 	check_irq_off();
2538 	ac = cpu_cache_get(cachep);
2539 	spin_lock(&cachep->nodelists[node]->list_lock);
2540 	free_block(cachep, ac->entry, ac->avail, node);
2541 	spin_unlock(&cachep->nodelists[node]->list_lock);
2542 	ac->avail = 0;
2543 }
2544 
2545 static void drain_cpu_caches(struct kmem_cache *cachep)
2546 {
2547 	struct kmem_list3 *l3;
2548 	int node;
2549 
2550 	on_each_cpu(do_drain, cachep, 1);
2551 	check_irq_on();
2552 	for_each_online_node(node) {
2553 		l3 = cachep->nodelists[node];
2554 		if (l3 && l3->alien)
2555 			drain_alien_cache(cachep, l3->alien);
2556 	}
2557 
2558 	for_each_online_node(node) {
2559 		l3 = cachep->nodelists[node];
2560 		if (l3)
2561 			drain_array(cachep, l3, l3->shared, 1, node);
2562 	}
2563 }
2564 
2565 /*
2566  * Remove slabs from the list of free slabs.
2567  * Specify the number of slabs to drain in tofree.
2568  *
2569  * Returns the actual number of slabs released.
2570  */
2571 static int drain_freelist(struct kmem_cache *cache,
2572 			struct kmem_list3 *l3, int tofree)
2573 {
2574 	struct list_head *p;
2575 	int nr_freed;
2576 	struct slab *slabp;
2577 
2578 	nr_freed = 0;
2579 	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2580 
2581 		spin_lock_irq(&l3->list_lock);
2582 		p = l3->slabs_free.prev;
2583 		if (p == &l3->slabs_free) {
2584 			spin_unlock_irq(&l3->list_lock);
2585 			goto out;
2586 		}
2587 
2588 		slabp = list_entry(p, struct slab, list);
2589 #if DEBUG
2590 		BUG_ON(slabp->inuse);
2591 #endif
2592 		list_del(&slabp->list);
2593 		/*
2594 		 * Safe to drop the lock. The slab is no longer linked
2595 		 * to the cache.
2596 		 */
2597 		l3->free_objects -= cache->num;
2598 		spin_unlock_irq(&l3->list_lock);
2599 		slab_destroy(cache, slabp);
2600 		nr_freed++;
2601 	}
2602 out:
2603 	return nr_freed;
2604 }
2605 
2606 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2607 static int __cache_shrink(struct kmem_cache *cachep)
2608 {
2609 	int ret = 0, i = 0;
2610 	struct kmem_list3 *l3;
2611 
2612 	drain_cpu_caches(cachep);
2613 
2614 	check_irq_on();
2615 	for_each_online_node(i) {
2616 		l3 = cachep->nodelists[i];
2617 		if (!l3)
2618 			continue;
2619 
2620 		drain_freelist(cachep, l3, l3->free_objects);
2621 
2622 		ret += !list_empty(&l3->slabs_full) ||
2623 			!list_empty(&l3->slabs_partial);
2624 	}
2625 	return (ret ? 1 : 0);
2626 }
2627 
2628 /**
2629  * kmem_cache_shrink - Shrink a cache.
2630  * @cachep: The cache to shrink.
2631  *
2632  * Releases as many slabs as possible for a cache.
2633  * To help debugging, a zero exit status indicates all slabs were released.
2634  */
2635 int kmem_cache_shrink(struct kmem_cache *cachep)
2636 {
2637 	int ret;
2638 	BUG_ON(!cachep || in_interrupt());
2639 
2640 	get_online_cpus();
2641 	mutex_lock(&cache_chain_mutex);
2642 	ret = __cache_shrink(cachep);
2643 	mutex_unlock(&cache_chain_mutex);
2644 	put_online_cpus();
2645 	return ret;
2646 }
2647 EXPORT_SYMBOL(kmem_cache_shrink);
2648 
2649 /**
2650  * kmem_cache_destroy - delete a cache
2651  * @cachep: the cache to destroy
2652  *
2653  * Remove a &struct kmem_cache object from the slab cache.
2654  *
2655  * It is expected this function will be called by a module when it is
2656  * unloaded.  This will remove the cache completely, and avoid a duplicate
2657  * cache being allocated each time a module is loaded and unloaded, if the
2658  * module doesn't have persistent in-kernel storage across loads and unloads.
2659  *
2660  * The cache must be empty before calling this function.
2661  *
2662  * The caller must guarantee that no one will allocate memory from the cache
2663  * during the kmem_cache_destroy().
2664  */
2665 void kmem_cache_destroy(struct kmem_cache *cachep)
2666 {
2667 	BUG_ON(!cachep || in_interrupt());
2668 
2669 	/* Find the cache in the chain of caches. */
2670 	get_online_cpus();
2671 	mutex_lock(&cache_chain_mutex);
2672 	/*
2673 	 * the chain is never empty, cache_cache is never destroyed
2674 	 */
2675 	list_del(&cachep->next);
2676 	if (__cache_shrink(cachep)) {
2677 		slab_error(cachep, "Can't free all objects");
2678 		list_add(&cachep->next, &cache_chain);
2679 		mutex_unlock(&cache_chain_mutex);
2680 		put_online_cpus();
2681 		return;
2682 	}
2683 
2684 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2685 		rcu_barrier();
2686 
2687 	__kmem_cache_destroy(cachep);
2688 	mutex_unlock(&cache_chain_mutex);
2689 	put_online_cpus();
2690 }
2691 EXPORT_SYMBOL(kmem_cache_destroy);
2692 
2693 /*
2694  * Get the memory for a slab management obj.
2695  * For a slab cache when the slab descriptor is off-slab, slab descriptors
2696  * always come from malloc_sizes caches.  The slab descriptor cannot
2697  * come from the same cache which is getting created because,
2698  * when we are searching for an appropriate cache for these
2699  * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2700  * If we are creating a malloc_sizes cache here it would not be visible to
2701  * kmem_find_general_cachep till the initialization is complete.
2702  * Hence we cannot have slabp_cache same as the original cache.
2703  */
2704 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2705 				   int colour_off, gfp_t local_flags,
2706 				   int nodeid)
2707 {
2708 	struct slab *slabp;
2709 
2710 	if (OFF_SLAB(cachep)) {
2711 		/* Slab management obj is off-slab. */
2712 		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2713 					      local_flags, nodeid);
2714 		/*
2715 		 * If the first object in the slab is leaked (it's allocated
2716 		 * but no one has a reference to it), we want to make sure
2717 		 * kmemleak does not treat the ->s_mem pointer as a reference
2718 		 * to the object. Otherwise we will not report the leak.
2719 		 */
2720 		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2721 				   local_flags);
2722 		if (!slabp)
2723 			return NULL;
2724 	} else {
2725 		slabp = objp + colour_off;
2726 		colour_off += cachep->slab_size;
2727 	}
2728 	slabp->inuse = 0;
2729 	slabp->colouroff = colour_off;
2730 	slabp->s_mem = objp + colour_off;
2731 	slabp->nodeid = nodeid;
2732 	slabp->free = 0;
2733 	return slabp;
2734 }
2735 
2736 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2737 {
2738 	return (kmem_bufctl_t *) (slabp + 1);
2739 }
2740 
2741 static void cache_init_objs(struct kmem_cache *cachep,
2742 			    struct slab *slabp)
2743 {
2744 	int i;
2745 
2746 	for (i = 0; i < cachep->num; i++) {
2747 		void *objp = index_to_obj(cachep, slabp, i);
2748 #if DEBUG
2749 		/* need to poison the objs? */
2750 		if (cachep->flags & SLAB_POISON)
2751 			poison_obj(cachep, objp, POISON_FREE);
2752 		if (cachep->flags & SLAB_STORE_USER)
2753 			*dbg_userword(cachep, objp) = NULL;
2754 
2755 		if (cachep->flags & SLAB_RED_ZONE) {
2756 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2757 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2758 		}
2759 		/*
2760 		 * Constructors are not allowed to allocate memory from the same
2761 		 * cache which they are a constructor for.  Otherwise, deadlock.
2762 		 * They must also be threaded.
2763 		 */
2764 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2765 			cachep->ctor(objp + obj_offset(cachep));
2766 
2767 		if (cachep->flags & SLAB_RED_ZONE) {
2768 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2769 				slab_error(cachep, "constructor overwrote the"
2770 					   " end of an object");
2771 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2772 				slab_error(cachep, "constructor overwrote the"
2773 					   " start of an object");
2774 		}
2775 		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2776 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2777 			kernel_map_pages(virt_to_page(objp),
2778 					 cachep->buffer_size / PAGE_SIZE, 0);
2779 #else
2780 		if (cachep->ctor)
2781 			cachep->ctor(objp);
2782 #endif
2783 		slab_bufctl(slabp)[i] = i + 1;
2784 	}
2785 	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2786 }
2787 
2788 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2789 {
2790 	if (CONFIG_ZONE_DMA_FLAG) {
2791 		if (flags & GFP_DMA)
2792 			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2793 		else
2794 			BUG_ON(cachep->gfpflags & GFP_DMA);
2795 	}
2796 }
2797 
2798 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2799 				int nodeid)
2800 {
2801 	void *objp = index_to_obj(cachep, slabp, slabp->free);
2802 	kmem_bufctl_t next;
2803 
2804 	slabp->inuse++;
2805 	next = slab_bufctl(slabp)[slabp->free];
2806 #if DEBUG
2807 	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2808 	WARN_ON(slabp->nodeid != nodeid);
2809 #endif
2810 	slabp->free = next;
2811 
2812 	return objp;
2813 }
2814 
2815 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2816 				void *objp, int nodeid)
2817 {
2818 	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2819 
2820 #if DEBUG
2821 	/* Verify that the slab belongs to the intended node */
2822 	WARN_ON(slabp->nodeid != nodeid);
2823 
2824 	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2825 		printk(KERN_ERR "slab: double free detected in cache "
2826 				"'%s', objp %p\n", cachep->name, objp);
2827 		BUG();
2828 	}
2829 #endif
2830 	slab_bufctl(slabp)[objnr] = slabp->free;
2831 	slabp->free = objnr;
2832 	slabp->inuse--;
2833 }
2834 
2835 /*
2836  * Map pages beginning at addr to the given cache and slab. This is required
2837  * for the slab allocator to be able to lookup the cache and slab of a
2838  * virtual address for kfree, ksize, and slab debugging.
2839  */
2840 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2841 			   void *addr)
2842 {
2843 	int nr_pages;
2844 	struct page *page;
2845 
2846 	page = virt_to_page(addr);
2847 
2848 	nr_pages = 1;
2849 	if (likely(!PageCompound(page)))
2850 		nr_pages <<= cache->gfporder;
2851 
2852 	do {
2853 		page_set_cache(page, cache);
2854 		page_set_slab(page, slab);
2855 		page++;
2856 	} while (--nr_pages);
2857 }
2858 
2859 /*
2860  * Grow (by 1) the number of slabs within a cache.  This is called by
2861  * kmem_cache_alloc() when there are no active objs left in a cache.
2862  */
2863 static int cache_grow(struct kmem_cache *cachep,
2864 		gfp_t flags, int nodeid, void *objp)
2865 {
2866 	struct slab *slabp;
2867 	size_t offset;
2868 	gfp_t local_flags;
2869 	struct kmem_list3 *l3;
2870 
2871 	/*
2872 	 * Be lazy and only check for valid flags here,  keeping it out of the
2873 	 * critical path in kmem_cache_alloc().
2874 	 */
2875 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2876 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2877 
2878 	/* Take the l3 list lock to change the colour_next on this node */
2879 	check_irq_off();
2880 	l3 = cachep->nodelists[nodeid];
2881 	spin_lock(&l3->list_lock);
2882 
2883 	/* Get colour for the slab, and cal the next value. */
2884 	offset = l3->colour_next;
2885 	l3->colour_next++;
2886 	if (l3->colour_next >= cachep->colour)
2887 		l3->colour_next = 0;
2888 	spin_unlock(&l3->list_lock);
2889 
2890 	offset *= cachep->colour_off;
2891 
2892 	if (local_flags & __GFP_WAIT)
2893 		local_irq_enable();
2894 
2895 	/*
2896 	 * The test for missing atomic flag is performed here, rather than
2897 	 * the more obvious place, simply to reduce the critical path length
2898 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2899 	 * will eventually be caught here (where it matters).
2900 	 */
2901 	kmem_flagcheck(cachep, flags);
2902 
2903 	/*
2904 	 * Get mem for the objs.  Attempt to allocate a physical page from
2905 	 * 'nodeid'.
2906 	 */
2907 	if (!objp)
2908 		objp = kmem_getpages(cachep, local_flags, nodeid);
2909 	if (!objp)
2910 		goto failed;
2911 
2912 	/* Get slab management. */
2913 	slabp = alloc_slabmgmt(cachep, objp, offset,
2914 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2915 	if (!slabp)
2916 		goto opps1;
2917 
2918 	slab_map_pages(cachep, slabp, objp);
2919 
2920 	cache_init_objs(cachep, slabp);
2921 
2922 	if (local_flags & __GFP_WAIT)
2923 		local_irq_disable();
2924 	check_irq_off();
2925 	spin_lock(&l3->list_lock);
2926 
2927 	/* Make slab active. */
2928 	list_add_tail(&slabp->list, &(l3->slabs_free));
2929 	STATS_INC_GROWN(cachep);
2930 	l3->free_objects += cachep->num;
2931 	spin_unlock(&l3->list_lock);
2932 	return 1;
2933 opps1:
2934 	kmem_freepages(cachep, objp);
2935 failed:
2936 	if (local_flags & __GFP_WAIT)
2937 		local_irq_disable();
2938 	return 0;
2939 }
2940 
2941 #if DEBUG
2942 
2943 /*
2944  * Perform extra freeing checks:
2945  * - detect bad pointers.
2946  * - POISON/RED_ZONE checking
2947  */
2948 static void kfree_debugcheck(const void *objp)
2949 {
2950 	if (!virt_addr_valid(objp)) {
2951 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2952 		       (unsigned long)objp);
2953 		BUG();
2954 	}
2955 }
2956 
2957 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2958 {
2959 	unsigned long long redzone1, redzone2;
2960 
2961 	redzone1 = *dbg_redzone1(cache, obj);
2962 	redzone2 = *dbg_redzone2(cache, obj);
2963 
2964 	/*
2965 	 * Redzone is ok.
2966 	 */
2967 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2968 		return;
2969 
2970 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2971 		slab_error(cache, "double free detected");
2972 	else
2973 		slab_error(cache, "memory outside object was overwritten");
2974 
2975 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2976 			obj, redzone1, redzone2);
2977 }
2978 
2979 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2980 				   void *caller)
2981 {
2982 	struct page *page;
2983 	unsigned int objnr;
2984 	struct slab *slabp;
2985 
2986 	BUG_ON(virt_to_cache(objp) != cachep);
2987 
2988 	objp -= obj_offset(cachep);
2989 	kfree_debugcheck(objp);
2990 	page = virt_to_head_page(objp);
2991 
2992 	slabp = page_get_slab(page);
2993 
2994 	if (cachep->flags & SLAB_RED_ZONE) {
2995 		verify_redzone_free(cachep, objp);
2996 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2997 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2998 	}
2999 	if (cachep->flags & SLAB_STORE_USER)
3000 		*dbg_userword(cachep, objp) = caller;
3001 
3002 	objnr = obj_to_index(cachep, slabp, objp);
3003 
3004 	BUG_ON(objnr >= cachep->num);
3005 	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3006 
3007 #ifdef CONFIG_DEBUG_SLAB_LEAK
3008 	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3009 #endif
3010 	if (cachep->flags & SLAB_POISON) {
3011 #ifdef CONFIG_DEBUG_PAGEALLOC
3012 		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3013 			store_stackinfo(cachep, objp, (unsigned long)caller);
3014 			kernel_map_pages(virt_to_page(objp),
3015 					 cachep->buffer_size / PAGE_SIZE, 0);
3016 		} else {
3017 			poison_obj(cachep, objp, POISON_FREE);
3018 		}
3019 #else
3020 		poison_obj(cachep, objp, POISON_FREE);
3021 #endif
3022 	}
3023 	return objp;
3024 }
3025 
3026 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3027 {
3028 	kmem_bufctl_t i;
3029 	int entries = 0;
3030 
3031 	/* Check slab's freelist to see if this obj is there. */
3032 	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3033 		entries++;
3034 		if (entries > cachep->num || i >= cachep->num)
3035 			goto bad;
3036 	}
3037 	if (entries != cachep->num - slabp->inuse) {
3038 bad:
3039 		printk(KERN_ERR "slab: Internal list corruption detected in "
3040 				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
3041 			cachep->name, cachep->num, slabp, slabp->inuse);
3042 		for (i = 0;
3043 		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
3044 		     i++) {
3045 			if (i % 16 == 0)
3046 				printk("\n%03x:", i);
3047 			printk(" %02x", ((unsigned char *)slabp)[i]);
3048 		}
3049 		printk("\n");
3050 		BUG();
3051 	}
3052 }
3053 #else
3054 #define kfree_debugcheck(x) do { } while(0)
3055 #define cache_free_debugcheck(x,objp,z) (objp)
3056 #define check_slabp(x,y) do { } while(0)
3057 #endif
3058 
3059 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3060 {
3061 	int batchcount;
3062 	struct kmem_list3 *l3;
3063 	struct array_cache *ac;
3064 	int node;
3065 
3066 retry:
3067 	check_irq_off();
3068 	node = numa_mem_id();
3069 	ac = cpu_cache_get(cachep);
3070 	batchcount = ac->batchcount;
3071 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3072 		/*
3073 		 * If there was little recent activity on this cache, then
3074 		 * perform only a partial refill.  Otherwise we could generate
3075 		 * refill bouncing.
3076 		 */
3077 		batchcount = BATCHREFILL_LIMIT;
3078 	}
3079 	l3 = cachep->nodelists[node];
3080 
3081 	BUG_ON(ac->avail > 0 || !l3);
3082 	spin_lock(&l3->list_lock);
3083 
3084 	/* See if we can refill from the shared array */
3085 	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3086 		l3->shared->touched = 1;
3087 		goto alloc_done;
3088 	}
3089 
3090 	while (batchcount > 0) {
3091 		struct list_head *entry;
3092 		struct slab *slabp;
3093 		/* Get slab alloc is to come from. */
3094 		entry = l3->slabs_partial.next;
3095 		if (entry == &l3->slabs_partial) {
3096 			l3->free_touched = 1;
3097 			entry = l3->slabs_free.next;
3098 			if (entry == &l3->slabs_free)
3099 				goto must_grow;
3100 		}
3101 
3102 		slabp = list_entry(entry, struct slab, list);
3103 		check_slabp(cachep, slabp);
3104 		check_spinlock_acquired(cachep);
3105 
3106 		/*
3107 		 * The slab was either on partial or free list so
3108 		 * there must be at least one object available for
3109 		 * allocation.
3110 		 */
3111 		BUG_ON(slabp->inuse >= cachep->num);
3112 
3113 		while (slabp->inuse < cachep->num && batchcount--) {
3114 			STATS_INC_ALLOCED(cachep);
3115 			STATS_INC_ACTIVE(cachep);
3116 			STATS_SET_HIGH(cachep);
3117 
3118 			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3119 							    node);
3120 		}
3121 		check_slabp(cachep, slabp);
3122 
3123 		/* move slabp to correct slabp list: */
3124 		list_del(&slabp->list);
3125 		if (slabp->free == BUFCTL_END)
3126 			list_add(&slabp->list, &l3->slabs_full);
3127 		else
3128 			list_add(&slabp->list, &l3->slabs_partial);
3129 	}
3130 
3131 must_grow:
3132 	l3->free_objects -= ac->avail;
3133 alloc_done:
3134 	spin_unlock(&l3->list_lock);
3135 
3136 	if (unlikely(!ac->avail)) {
3137 		int x;
3138 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3139 
3140 		/* cache_grow can reenable interrupts, then ac could change. */
3141 		ac = cpu_cache_get(cachep);
3142 		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3143 			return NULL;
3144 
3145 		if (!ac->avail)		/* objects refilled by interrupt? */
3146 			goto retry;
3147 	}
3148 	ac->touched = 1;
3149 	return ac->entry[--ac->avail];
3150 }
3151 
3152 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3153 						gfp_t flags)
3154 {
3155 	might_sleep_if(flags & __GFP_WAIT);
3156 #if DEBUG
3157 	kmem_flagcheck(cachep, flags);
3158 #endif
3159 }
3160 
3161 #if DEBUG
3162 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3163 				gfp_t flags, void *objp, void *caller)
3164 {
3165 	if (!objp)
3166 		return objp;
3167 	if (cachep->flags & SLAB_POISON) {
3168 #ifdef CONFIG_DEBUG_PAGEALLOC
3169 		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3170 			kernel_map_pages(virt_to_page(objp),
3171 					 cachep->buffer_size / PAGE_SIZE, 1);
3172 		else
3173 			check_poison_obj(cachep, objp);
3174 #else
3175 		check_poison_obj(cachep, objp);
3176 #endif
3177 		poison_obj(cachep, objp, POISON_INUSE);
3178 	}
3179 	if (cachep->flags & SLAB_STORE_USER)
3180 		*dbg_userword(cachep, objp) = caller;
3181 
3182 	if (cachep->flags & SLAB_RED_ZONE) {
3183 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3184 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3185 			slab_error(cachep, "double free, or memory outside"
3186 						" object was overwritten");
3187 			printk(KERN_ERR
3188 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3189 				objp, *dbg_redzone1(cachep, objp),
3190 				*dbg_redzone2(cachep, objp));
3191 		}
3192 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3193 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3194 	}
3195 #ifdef CONFIG_DEBUG_SLAB_LEAK
3196 	{
3197 		struct slab *slabp;
3198 		unsigned objnr;
3199 
3200 		slabp = page_get_slab(virt_to_head_page(objp));
3201 		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3202 		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3203 	}
3204 #endif
3205 	objp += obj_offset(cachep);
3206 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3207 		cachep->ctor(objp);
3208 	if (ARCH_SLAB_MINALIGN &&
3209 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3210 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3211 		       objp, (int)ARCH_SLAB_MINALIGN);
3212 	}
3213 	return objp;
3214 }
3215 #else
3216 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3217 #endif
3218 
3219 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3220 {
3221 	if (cachep == &cache_cache)
3222 		return false;
3223 
3224 	return should_failslab(obj_size(cachep), flags, cachep->flags);
3225 }
3226 
3227 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3228 {
3229 	void *objp;
3230 	struct array_cache *ac;
3231 
3232 	check_irq_off();
3233 
3234 	ac = cpu_cache_get(cachep);
3235 	if (likely(ac->avail)) {
3236 		STATS_INC_ALLOCHIT(cachep);
3237 		ac->touched = 1;
3238 		objp = ac->entry[--ac->avail];
3239 	} else {
3240 		STATS_INC_ALLOCMISS(cachep);
3241 		objp = cache_alloc_refill(cachep, flags);
3242 		/*
3243 		 * the 'ac' may be updated by cache_alloc_refill(),
3244 		 * and kmemleak_erase() requires its correct value.
3245 		 */
3246 		ac = cpu_cache_get(cachep);
3247 	}
3248 	/*
3249 	 * To avoid a false negative, if an object that is in one of the
3250 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3251 	 * treat the array pointers as a reference to the object.
3252 	 */
3253 	if (objp)
3254 		kmemleak_erase(&ac->entry[ac->avail]);
3255 	return objp;
3256 }
3257 
3258 #ifdef CONFIG_NUMA
3259 /*
3260  * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3261  *
3262  * If we are in_interrupt, then process context, including cpusets and
3263  * mempolicy, may not apply and should not be used for allocation policy.
3264  */
3265 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3266 {
3267 	int nid_alloc, nid_here;
3268 
3269 	if (in_interrupt() || (flags & __GFP_THISNODE))
3270 		return NULL;
3271 	nid_alloc = nid_here = numa_mem_id();
3272 	get_mems_allowed();
3273 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3274 		nid_alloc = cpuset_slab_spread_node();
3275 	else if (current->mempolicy)
3276 		nid_alloc = slab_node(current->mempolicy);
3277 	put_mems_allowed();
3278 	if (nid_alloc != nid_here)
3279 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3280 	return NULL;
3281 }
3282 
3283 /*
3284  * Fallback function if there was no memory available and no objects on a
3285  * certain node and fall back is permitted. First we scan all the
3286  * available nodelists for available objects. If that fails then we
3287  * perform an allocation without specifying a node. This allows the page
3288  * allocator to do its reclaim / fallback magic. We then insert the
3289  * slab into the proper nodelist and then allocate from it.
3290  */
3291 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3292 {
3293 	struct zonelist *zonelist;
3294 	gfp_t local_flags;
3295 	struct zoneref *z;
3296 	struct zone *zone;
3297 	enum zone_type high_zoneidx = gfp_zone(flags);
3298 	void *obj = NULL;
3299 	int nid;
3300 
3301 	if (flags & __GFP_THISNODE)
3302 		return NULL;
3303 
3304 	get_mems_allowed();
3305 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3306 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3307 
3308 retry:
3309 	/*
3310 	 * Look through allowed nodes for objects available
3311 	 * from existing per node queues.
3312 	 */
3313 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3314 		nid = zone_to_nid(zone);
3315 
3316 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3317 			cache->nodelists[nid] &&
3318 			cache->nodelists[nid]->free_objects) {
3319 				obj = ____cache_alloc_node(cache,
3320 					flags | GFP_THISNODE, nid);
3321 				if (obj)
3322 					break;
3323 		}
3324 	}
3325 
3326 	if (!obj) {
3327 		/*
3328 		 * This allocation will be performed within the constraints
3329 		 * of the current cpuset / memory policy requirements.
3330 		 * We may trigger various forms of reclaim on the allowed
3331 		 * set and go into memory reserves if necessary.
3332 		 */
3333 		if (local_flags & __GFP_WAIT)
3334 			local_irq_enable();
3335 		kmem_flagcheck(cache, flags);
3336 		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3337 		if (local_flags & __GFP_WAIT)
3338 			local_irq_disable();
3339 		if (obj) {
3340 			/*
3341 			 * Insert into the appropriate per node queues
3342 			 */
3343 			nid = page_to_nid(virt_to_page(obj));
3344 			if (cache_grow(cache, flags, nid, obj)) {
3345 				obj = ____cache_alloc_node(cache,
3346 					flags | GFP_THISNODE, nid);
3347 				if (!obj)
3348 					/*
3349 					 * Another processor may allocate the
3350 					 * objects in the slab since we are
3351 					 * not holding any locks.
3352 					 */
3353 					goto retry;
3354 			} else {
3355 				/* cache_grow already freed obj */
3356 				obj = NULL;
3357 			}
3358 		}
3359 	}
3360 	put_mems_allowed();
3361 	return obj;
3362 }
3363 
3364 /*
3365  * A interface to enable slab creation on nodeid
3366  */
3367 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3368 				int nodeid)
3369 {
3370 	struct list_head *entry;
3371 	struct slab *slabp;
3372 	struct kmem_list3 *l3;
3373 	void *obj;
3374 	int x;
3375 
3376 	l3 = cachep->nodelists[nodeid];
3377 	BUG_ON(!l3);
3378 
3379 retry:
3380 	check_irq_off();
3381 	spin_lock(&l3->list_lock);
3382 	entry = l3->slabs_partial.next;
3383 	if (entry == &l3->slabs_partial) {
3384 		l3->free_touched = 1;
3385 		entry = l3->slabs_free.next;
3386 		if (entry == &l3->slabs_free)
3387 			goto must_grow;
3388 	}
3389 
3390 	slabp = list_entry(entry, struct slab, list);
3391 	check_spinlock_acquired_node(cachep, nodeid);
3392 	check_slabp(cachep, slabp);
3393 
3394 	STATS_INC_NODEALLOCS(cachep);
3395 	STATS_INC_ACTIVE(cachep);
3396 	STATS_SET_HIGH(cachep);
3397 
3398 	BUG_ON(slabp->inuse == cachep->num);
3399 
3400 	obj = slab_get_obj(cachep, slabp, nodeid);
3401 	check_slabp(cachep, slabp);
3402 	l3->free_objects--;
3403 	/* move slabp to correct slabp list: */
3404 	list_del(&slabp->list);
3405 
3406 	if (slabp->free == BUFCTL_END)
3407 		list_add(&slabp->list, &l3->slabs_full);
3408 	else
3409 		list_add(&slabp->list, &l3->slabs_partial);
3410 
3411 	spin_unlock(&l3->list_lock);
3412 	goto done;
3413 
3414 must_grow:
3415 	spin_unlock(&l3->list_lock);
3416 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3417 	if (x)
3418 		goto retry;
3419 
3420 	return fallback_alloc(cachep, flags);
3421 
3422 done:
3423 	return obj;
3424 }
3425 
3426 /**
3427  * kmem_cache_alloc_node - Allocate an object on the specified node
3428  * @cachep: The cache to allocate from.
3429  * @flags: See kmalloc().
3430  * @nodeid: node number of the target node.
3431  * @caller: return address of caller, used for debug information
3432  *
3433  * Identical to kmem_cache_alloc but it will allocate memory on the given
3434  * node, which can improve the performance for cpu bound structures.
3435  *
3436  * Fallback to other node is possible if __GFP_THISNODE is not set.
3437  */
3438 static __always_inline void *
3439 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3440 		   void *caller)
3441 {
3442 	unsigned long save_flags;
3443 	void *ptr;
3444 	int slab_node = numa_mem_id();
3445 
3446 	flags &= gfp_allowed_mask;
3447 
3448 	lockdep_trace_alloc(flags);
3449 
3450 	if (slab_should_failslab(cachep, flags))
3451 		return NULL;
3452 
3453 	cache_alloc_debugcheck_before(cachep, flags);
3454 	local_irq_save(save_flags);
3455 
3456 	if (nodeid == NUMA_NO_NODE)
3457 		nodeid = slab_node;
3458 
3459 	if (unlikely(!cachep->nodelists[nodeid])) {
3460 		/* Node not bootstrapped yet */
3461 		ptr = fallback_alloc(cachep, flags);
3462 		goto out;
3463 	}
3464 
3465 	if (nodeid == slab_node) {
3466 		/*
3467 		 * Use the locally cached objects if possible.
3468 		 * However ____cache_alloc does not allow fallback
3469 		 * to other nodes. It may fail while we still have
3470 		 * objects on other nodes available.
3471 		 */
3472 		ptr = ____cache_alloc(cachep, flags);
3473 		if (ptr)
3474 			goto out;
3475 	}
3476 	/* ___cache_alloc_node can fall back to other nodes */
3477 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3478   out:
3479 	local_irq_restore(save_flags);
3480 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3481 	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3482 				 flags);
3483 
3484 	if (likely(ptr))
3485 		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3486 
3487 	if (unlikely((flags & __GFP_ZERO) && ptr))
3488 		memset(ptr, 0, obj_size(cachep));
3489 
3490 	return ptr;
3491 }
3492 
3493 static __always_inline void *
3494 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3495 {
3496 	void *objp;
3497 
3498 	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3499 		objp = alternate_node_alloc(cache, flags);
3500 		if (objp)
3501 			goto out;
3502 	}
3503 	objp = ____cache_alloc(cache, flags);
3504 
3505 	/*
3506 	 * We may just have run out of memory on the local node.
3507 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3508 	 */
3509 	if (!objp)
3510 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3511 
3512   out:
3513 	return objp;
3514 }
3515 #else
3516 
3517 static __always_inline void *
3518 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3519 {
3520 	return ____cache_alloc(cachep, flags);
3521 }
3522 
3523 #endif /* CONFIG_NUMA */
3524 
3525 static __always_inline void *
3526 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3527 {
3528 	unsigned long save_flags;
3529 	void *objp;
3530 
3531 	flags &= gfp_allowed_mask;
3532 
3533 	lockdep_trace_alloc(flags);
3534 
3535 	if (slab_should_failslab(cachep, flags))
3536 		return NULL;
3537 
3538 	cache_alloc_debugcheck_before(cachep, flags);
3539 	local_irq_save(save_flags);
3540 	objp = __do_cache_alloc(cachep, flags);
3541 	local_irq_restore(save_flags);
3542 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3543 	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3544 				 flags);
3545 	prefetchw(objp);
3546 
3547 	if (likely(objp))
3548 		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3549 
3550 	if (unlikely((flags & __GFP_ZERO) && objp))
3551 		memset(objp, 0, obj_size(cachep));
3552 
3553 	return objp;
3554 }
3555 
3556 /*
3557  * Caller needs to acquire correct kmem_list's list_lock
3558  */
3559 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3560 		       int node)
3561 {
3562 	int i;
3563 	struct kmem_list3 *l3;
3564 
3565 	for (i = 0; i < nr_objects; i++) {
3566 		void *objp = objpp[i];
3567 		struct slab *slabp;
3568 
3569 		slabp = virt_to_slab(objp);
3570 		l3 = cachep->nodelists[node];
3571 		list_del(&slabp->list);
3572 		check_spinlock_acquired_node(cachep, node);
3573 		check_slabp(cachep, slabp);
3574 		slab_put_obj(cachep, slabp, objp, node);
3575 		STATS_DEC_ACTIVE(cachep);
3576 		l3->free_objects++;
3577 		check_slabp(cachep, slabp);
3578 
3579 		/* fixup slab chains */
3580 		if (slabp->inuse == 0) {
3581 			if (l3->free_objects > l3->free_limit) {
3582 				l3->free_objects -= cachep->num;
3583 				/* No need to drop any previously held
3584 				 * lock here, even if we have a off-slab slab
3585 				 * descriptor it is guaranteed to come from
3586 				 * a different cache, refer to comments before
3587 				 * alloc_slabmgmt.
3588 				 */
3589 				slab_destroy(cachep, slabp);
3590 			} else {
3591 				list_add(&slabp->list, &l3->slabs_free);
3592 			}
3593 		} else {
3594 			/* Unconditionally move a slab to the end of the
3595 			 * partial list on free - maximum time for the
3596 			 * other objects to be freed, too.
3597 			 */
3598 			list_add_tail(&slabp->list, &l3->slabs_partial);
3599 		}
3600 	}
3601 }
3602 
3603 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3604 {
3605 	int batchcount;
3606 	struct kmem_list3 *l3;
3607 	int node = numa_mem_id();
3608 
3609 	batchcount = ac->batchcount;
3610 #if DEBUG
3611 	BUG_ON(!batchcount || batchcount > ac->avail);
3612 #endif
3613 	check_irq_off();
3614 	l3 = cachep->nodelists[node];
3615 	spin_lock(&l3->list_lock);
3616 	if (l3->shared) {
3617 		struct array_cache *shared_array = l3->shared;
3618 		int max = shared_array->limit - shared_array->avail;
3619 		if (max) {
3620 			if (batchcount > max)
3621 				batchcount = max;
3622 			memcpy(&(shared_array->entry[shared_array->avail]),
3623 			       ac->entry, sizeof(void *) * batchcount);
3624 			shared_array->avail += batchcount;
3625 			goto free_done;
3626 		}
3627 	}
3628 
3629 	free_block(cachep, ac->entry, batchcount, node);
3630 free_done:
3631 #if STATS
3632 	{
3633 		int i = 0;
3634 		struct list_head *p;
3635 
3636 		p = l3->slabs_free.next;
3637 		while (p != &(l3->slabs_free)) {
3638 			struct slab *slabp;
3639 
3640 			slabp = list_entry(p, struct slab, list);
3641 			BUG_ON(slabp->inuse);
3642 
3643 			i++;
3644 			p = p->next;
3645 		}
3646 		STATS_SET_FREEABLE(cachep, i);
3647 	}
3648 #endif
3649 	spin_unlock(&l3->list_lock);
3650 	ac->avail -= batchcount;
3651 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3652 }
3653 
3654 /*
3655  * Release an obj back to its cache. If the obj has a constructed state, it must
3656  * be in this state _before_ it is released.  Called with disabled ints.
3657  */
3658 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3659     void *caller)
3660 {
3661 	struct array_cache *ac = cpu_cache_get(cachep);
3662 
3663 	check_irq_off();
3664 	kmemleak_free_recursive(objp, cachep->flags);
3665 	objp = cache_free_debugcheck(cachep, objp, caller);
3666 
3667 	kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3668 
3669 	/*
3670 	 * Skip calling cache_free_alien() when the platform is not numa.
3671 	 * This will avoid cache misses that happen while accessing slabp (which
3672 	 * is per page memory  reference) to get nodeid. Instead use a global
3673 	 * variable to skip the call, which is mostly likely to be present in
3674 	 * the cache.
3675 	 */
3676 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3677 		return;
3678 
3679 	if (likely(ac->avail < ac->limit)) {
3680 		STATS_INC_FREEHIT(cachep);
3681 		ac->entry[ac->avail++] = objp;
3682 		return;
3683 	} else {
3684 		STATS_INC_FREEMISS(cachep);
3685 		cache_flusharray(cachep, ac);
3686 		ac->entry[ac->avail++] = objp;
3687 	}
3688 }
3689 
3690 /**
3691  * kmem_cache_alloc - Allocate an object
3692  * @cachep: The cache to allocate from.
3693  * @flags: See kmalloc().
3694  *
3695  * Allocate an object from this cache.  The flags are only relevant
3696  * if the cache has no available objects.
3697  */
3698 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3699 {
3700 	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3701 
3702 	trace_kmem_cache_alloc(_RET_IP_, ret,
3703 			       obj_size(cachep), cachep->buffer_size, flags);
3704 
3705 	return ret;
3706 }
3707 EXPORT_SYMBOL(kmem_cache_alloc);
3708 
3709 #ifdef CONFIG_TRACING
3710 void *
3711 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3712 {
3713 	void *ret;
3714 
3715 	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3716 
3717 	trace_kmalloc(_RET_IP_, ret,
3718 		      size, slab_buffer_size(cachep), flags);
3719 	return ret;
3720 }
3721 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3722 #endif
3723 
3724 #ifdef CONFIG_NUMA
3725 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3726 {
3727 	void *ret = __cache_alloc_node(cachep, flags, nodeid,
3728 				       __builtin_return_address(0));
3729 
3730 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3731 				    obj_size(cachep), cachep->buffer_size,
3732 				    flags, nodeid);
3733 
3734 	return ret;
3735 }
3736 EXPORT_SYMBOL(kmem_cache_alloc_node);
3737 
3738 #ifdef CONFIG_TRACING
3739 void *kmem_cache_alloc_node_trace(size_t size,
3740 				  struct kmem_cache *cachep,
3741 				  gfp_t flags,
3742 				  int nodeid)
3743 {
3744 	void *ret;
3745 
3746 	ret = __cache_alloc_node(cachep, flags, nodeid,
3747 				  __builtin_return_address(0));
3748 	trace_kmalloc_node(_RET_IP_, ret,
3749 			   size, slab_buffer_size(cachep),
3750 			   flags, nodeid);
3751 	return ret;
3752 }
3753 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3754 #endif
3755 
3756 static __always_inline void *
3757 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3758 {
3759 	struct kmem_cache *cachep;
3760 
3761 	cachep = kmem_find_general_cachep(size, flags);
3762 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3763 		return cachep;
3764 	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3765 }
3766 
3767 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3768 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3769 {
3770 	return __do_kmalloc_node(size, flags, node,
3771 			__builtin_return_address(0));
3772 }
3773 EXPORT_SYMBOL(__kmalloc_node);
3774 
3775 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3776 		int node, unsigned long caller)
3777 {
3778 	return __do_kmalloc_node(size, flags, node, (void *)caller);
3779 }
3780 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3781 #else
3782 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3783 {
3784 	return __do_kmalloc_node(size, flags, node, NULL);
3785 }
3786 EXPORT_SYMBOL(__kmalloc_node);
3787 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3788 #endif /* CONFIG_NUMA */
3789 
3790 /**
3791  * __do_kmalloc - allocate memory
3792  * @size: how many bytes of memory are required.
3793  * @flags: the type of memory to allocate (see kmalloc).
3794  * @caller: function caller for debug tracking of the caller
3795  */
3796 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3797 					  void *caller)
3798 {
3799 	struct kmem_cache *cachep;
3800 	void *ret;
3801 
3802 	/* If you want to save a few bytes .text space: replace
3803 	 * __ with kmem_.
3804 	 * Then kmalloc uses the uninlined functions instead of the inline
3805 	 * functions.
3806 	 */
3807 	cachep = __find_general_cachep(size, flags);
3808 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3809 		return cachep;
3810 	ret = __cache_alloc(cachep, flags, caller);
3811 
3812 	trace_kmalloc((unsigned long) caller, ret,
3813 		      size, cachep->buffer_size, flags);
3814 
3815 	return ret;
3816 }
3817 
3818 
3819 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3820 void *__kmalloc(size_t size, gfp_t flags)
3821 {
3822 	return __do_kmalloc(size, flags, __builtin_return_address(0));
3823 }
3824 EXPORT_SYMBOL(__kmalloc);
3825 
3826 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3827 {
3828 	return __do_kmalloc(size, flags, (void *)caller);
3829 }
3830 EXPORT_SYMBOL(__kmalloc_track_caller);
3831 
3832 #else
3833 void *__kmalloc(size_t size, gfp_t flags)
3834 {
3835 	return __do_kmalloc(size, flags, NULL);
3836 }
3837 EXPORT_SYMBOL(__kmalloc);
3838 #endif
3839 
3840 /**
3841  * kmem_cache_free - Deallocate an object
3842  * @cachep: The cache the allocation was from.
3843  * @objp: The previously allocated object.
3844  *
3845  * Free an object which was previously allocated from this
3846  * cache.
3847  */
3848 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3849 {
3850 	unsigned long flags;
3851 
3852 	local_irq_save(flags);
3853 	debug_check_no_locks_freed(objp, obj_size(cachep));
3854 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3855 		debug_check_no_obj_freed(objp, obj_size(cachep));
3856 	__cache_free(cachep, objp, __builtin_return_address(0));
3857 	local_irq_restore(flags);
3858 
3859 	trace_kmem_cache_free(_RET_IP_, objp);
3860 }
3861 EXPORT_SYMBOL(kmem_cache_free);
3862 
3863 /**
3864  * kfree - free previously allocated memory
3865  * @objp: pointer returned by kmalloc.
3866  *
3867  * If @objp is NULL, no operation is performed.
3868  *
3869  * Don't free memory not originally allocated by kmalloc()
3870  * or you will run into trouble.
3871  */
3872 void kfree(const void *objp)
3873 {
3874 	struct kmem_cache *c;
3875 	unsigned long flags;
3876 
3877 	trace_kfree(_RET_IP_, objp);
3878 
3879 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3880 		return;
3881 	local_irq_save(flags);
3882 	kfree_debugcheck(objp);
3883 	c = virt_to_cache(objp);
3884 	debug_check_no_locks_freed(objp, obj_size(c));
3885 	debug_check_no_obj_freed(objp, obj_size(c));
3886 	__cache_free(c, (void *)objp, __builtin_return_address(0));
3887 	local_irq_restore(flags);
3888 }
3889 EXPORT_SYMBOL(kfree);
3890 
3891 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3892 {
3893 	return obj_size(cachep);
3894 }
3895 EXPORT_SYMBOL(kmem_cache_size);
3896 
3897 /*
3898  * This initializes kmem_list3 or resizes various caches for all nodes.
3899  */
3900 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3901 {
3902 	int node;
3903 	struct kmem_list3 *l3;
3904 	struct array_cache *new_shared;
3905 	struct array_cache **new_alien = NULL;
3906 
3907 	for_each_online_node(node) {
3908 
3909                 if (use_alien_caches) {
3910                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3911                         if (!new_alien)
3912                                 goto fail;
3913                 }
3914 
3915 		new_shared = NULL;
3916 		if (cachep->shared) {
3917 			new_shared = alloc_arraycache(node,
3918 				cachep->shared*cachep->batchcount,
3919 					0xbaadf00d, gfp);
3920 			if (!new_shared) {
3921 				free_alien_cache(new_alien);
3922 				goto fail;
3923 			}
3924 		}
3925 
3926 		l3 = cachep->nodelists[node];
3927 		if (l3) {
3928 			struct array_cache *shared = l3->shared;
3929 
3930 			spin_lock_irq(&l3->list_lock);
3931 
3932 			if (shared)
3933 				free_block(cachep, shared->entry,
3934 						shared->avail, node);
3935 
3936 			l3->shared = new_shared;
3937 			if (!l3->alien) {
3938 				l3->alien = new_alien;
3939 				new_alien = NULL;
3940 			}
3941 			l3->free_limit = (1 + nr_cpus_node(node)) *
3942 					cachep->batchcount + cachep->num;
3943 			spin_unlock_irq(&l3->list_lock);
3944 			kfree(shared);
3945 			free_alien_cache(new_alien);
3946 			continue;
3947 		}
3948 		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3949 		if (!l3) {
3950 			free_alien_cache(new_alien);
3951 			kfree(new_shared);
3952 			goto fail;
3953 		}
3954 
3955 		kmem_list3_init(l3);
3956 		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3957 				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3958 		l3->shared = new_shared;
3959 		l3->alien = new_alien;
3960 		l3->free_limit = (1 + nr_cpus_node(node)) *
3961 					cachep->batchcount + cachep->num;
3962 		cachep->nodelists[node] = l3;
3963 	}
3964 	return 0;
3965 
3966 fail:
3967 	if (!cachep->next.next) {
3968 		/* Cache is not active yet. Roll back what we did */
3969 		node--;
3970 		while (node >= 0) {
3971 			if (cachep->nodelists[node]) {
3972 				l3 = cachep->nodelists[node];
3973 
3974 				kfree(l3->shared);
3975 				free_alien_cache(l3->alien);
3976 				kfree(l3);
3977 				cachep->nodelists[node] = NULL;
3978 			}
3979 			node--;
3980 		}
3981 	}
3982 	return -ENOMEM;
3983 }
3984 
3985 struct ccupdate_struct {
3986 	struct kmem_cache *cachep;
3987 	struct array_cache *new[0];
3988 };
3989 
3990 static void do_ccupdate_local(void *info)
3991 {
3992 	struct ccupdate_struct *new = info;
3993 	struct array_cache *old;
3994 
3995 	check_irq_off();
3996 	old = cpu_cache_get(new->cachep);
3997 
3998 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3999 	new->new[smp_processor_id()] = old;
4000 }
4001 
4002 /* Always called with the cache_chain_mutex held */
4003 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4004 				int batchcount, int shared, gfp_t gfp)
4005 {
4006 	struct ccupdate_struct *new;
4007 	int i;
4008 
4009 	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4010 		      gfp);
4011 	if (!new)
4012 		return -ENOMEM;
4013 
4014 	for_each_online_cpu(i) {
4015 		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4016 						batchcount, gfp);
4017 		if (!new->new[i]) {
4018 			for (i--; i >= 0; i--)
4019 				kfree(new->new[i]);
4020 			kfree(new);
4021 			return -ENOMEM;
4022 		}
4023 	}
4024 	new->cachep = cachep;
4025 
4026 	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4027 
4028 	check_irq_on();
4029 	cachep->batchcount = batchcount;
4030 	cachep->limit = limit;
4031 	cachep->shared = shared;
4032 
4033 	for_each_online_cpu(i) {
4034 		struct array_cache *ccold = new->new[i];
4035 		if (!ccold)
4036 			continue;
4037 		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4038 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4039 		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4040 		kfree(ccold);
4041 	}
4042 	kfree(new);
4043 	return alloc_kmemlist(cachep, gfp);
4044 }
4045 
4046 /* Called with cache_chain_mutex held always */
4047 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4048 {
4049 	int err;
4050 	int limit, shared;
4051 
4052 	/*
4053 	 * The head array serves three purposes:
4054 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
4055 	 * - reduce the number of spinlock operations.
4056 	 * - reduce the number of linked list operations on the slab and
4057 	 *   bufctl chains: array operations are cheaper.
4058 	 * The numbers are guessed, we should auto-tune as described by
4059 	 * Bonwick.
4060 	 */
4061 	if (cachep->buffer_size > 131072)
4062 		limit = 1;
4063 	else if (cachep->buffer_size > PAGE_SIZE)
4064 		limit = 8;
4065 	else if (cachep->buffer_size > 1024)
4066 		limit = 24;
4067 	else if (cachep->buffer_size > 256)
4068 		limit = 54;
4069 	else
4070 		limit = 120;
4071 
4072 	/*
4073 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4074 	 * allocation behaviour: Most allocs on one cpu, most free operations
4075 	 * on another cpu. For these cases, an efficient object passing between
4076 	 * cpus is necessary. This is provided by a shared array. The array
4077 	 * replaces Bonwick's magazine layer.
4078 	 * On uniprocessor, it's functionally equivalent (but less efficient)
4079 	 * to a larger limit. Thus disabled by default.
4080 	 */
4081 	shared = 0;
4082 	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4083 		shared = 8;
4084 
4085 #if DEBUG
4086 	/*
4087 	 * With debugging enabled, large batchcount lead to excessively long
4088 	 * periods with disabled local interrupts. Limit the batchcount
4089 	 */
4090 	if (limit > 32)
4091 		limit = 32;
4092 #endif
4093 	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4094 	if (err)
4095 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4096 		       cachep->name, -err);
4097 	return err;
4098 }
4099 
4100 /*
4101  * Drain an array if it contains any elements taking the l3 lock only if
4102  * necessary. Note that the l3 listlock also protects the array_cache
4103  * if drain_array() is used on the shared array.
4104  */
4105 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4106 			 struct array_cache *ac, int force, int node)
4107 {
4108 	int tofree;
4109 
4110 	if (!ac || !ac->avail)
4111 		return;
4112 	if (ac->touched && !force) {
4113 		ac->touched = 0;
4114 	} else {
4115 		spin_lock_irq(&l3->list_lock);
4116 		if (ac->avail) {
4117 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4118 			if (tofree > ac->avail)
4119 				tofree = (ac->avail + 1) / 2;
4120 			free_block(cachep, ac->entry, tofree, node);
4121 			ac->avail -= tofree;
4122 			memmove(ac->entry, &(ac->entry[tofree]),
4123 				sizeof(void *) * ac->avail);
4124 		}
4125 		spin_unlock_irq(&l3->list_lock);
4126 	}
4127 }
4128 
4129 /**
4130  * cache_reap - Reclaim memory from caches.
4131  * @w: work descriptor
4132  *
4133  * Called from workqueue/eventd every few seconds.
4134  * Purpose:
4135  * - clear the per-cpu caches for this CPU.
4136  * - return freeable pages to the main free memory pool.
4137  *
4138  * If we cannot acquire the cache chain mutex then just give up - we'll try
4139  * again on the next iteration.
4140  */
4141 static void cache_reap(struct work_struct *w)
4142 {
4143 	struct kmem_cache *searchp;
4144 	struct kmem_list3 *l3;
4145 	int node = numa_mem_id();
4146 	struct delayed_work *work = to_delayed_work(w);
4147 
4148 	if (!mutex_trylock(&cache_chain_mutex))
4149 		/* Give up. Setup the next iteration. */
4150 		goto out;
4151 
4152 	list_for_each_entry(searchp, &cache_chain, next) {
4153 		check_irq_on();
4154 
4155 		/*
4156 		 * We only take the l3 lock if absolutely necessary and we
4157 		 * have established with reasonable certainty that
4158 		 * we can do some work if the lock was obtained.
4159 		 */
4160 		l3 = searchp->nodelists[node];
4161 
4162 		reap_alien(searchp, l3);
4163 
4164 		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4165 
4166 		/*
4167 		 * These are racy checks but it does not matter
4168 		 * if we skip one check or scan twice.
4169 		 */
4170 		if (time_after(l3->next_reap, jiffies))
4171 			goto next;
4172 
4173 		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4174 
4175 		drain_array(searchp, l3, l3->shared, 0, node);
4176 
4177 		if (l3->free_touched)
4178 			l3->free_touched = 0;
4179 		else {
4180 			int freed;
4181 
4182 			freed = drain_freelist(searchp, l3, (l3->free_limit +
4183 				5 * searchp->num - 1) / (5 * searchp->num));
4184 			STATS_ADD_REAPED(searchp, freed);
4185 		}
4186 next:
4187 		cond_resched();
4188 	}
4189 	check_irq_on();
4190 	mutex_unlock(&cache_chain_mutex);
4191 	next_reap_node();
4192 out:
4193 	/* Set up the next iteration */
4194 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4195 }
4196 
4197 #ifdef CONFIG_SLABINFO
4198 
4199 static void print_slabinfo_header(struct seq_file *m)
4200 {
4201 	/*
4202 	 * Output format version, so at least we can change it
4203 	 * without _too_ many complaints.
4204 	 */
4205 #if STATS
4206 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4207 #else
4208 	seq_puts(m, "slabinfo - version: 2.1\n");
4209 #endif
4210 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4211 		 "<objperslab> <pagesperslab>");
4212 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4213 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4214 #if STATS
4215 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4216 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4217 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4218 #endif
4219 	seq_putc(m, '\n');
4220 }
4221 
4222 static void *s_start(struct seq_file *m, loff_t *pos)
4223 {
4224 	loff_t n = *pos;
4225 
4226 	mutex_lock(&cache_chain_mutex);
4227 	if (!n)
4228 		print_slabinfo_header(m);
4229 
4230 	return seq_list_start(&cache_chain, *pos);
4231 }
4232 
4233 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4234 {
4235 	return seq_list_next(p, &cache_chain, pos);
4236 }
4237 
4238 static void s_stop(struct seq_file *m, void *p)
4239 {
4240 	mutex_unlock(&cache_chain_mutex);
4241 }
4242 
4243 static int s_show(struct seq_file *m, void *p)
4244 {
4245 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4246 	struct slab *slabp;
4247 	unsigned long active_objs;
4248 	unsigned long num_objs;
4249 	unsigned long active_slabs = 0;
4250 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4251 	const char *name;
4252 	char *error = NULL;
4253 	int node;
4254 	struct kmem_list3 *l3;
4255 
4256 	active_objs = 0;
4257 	num_slabs = 0;
4258 	for_each_online_node(node) {
4259 		l3 = cachep->nodelists[node];
4260 		if (!l3)
4261 			continue;
4262 
4263 		check_irq_on();
4264 		spin_lock_irq(&l3->list_lock);
4265 
4266 		list_for_each_entry(slabp, &l3->slabs_full, list) {
4267 			if (slabp->inuse != cachep->num && !error)
4268 				error = "slabs_full accounting error";
4269 			active_objs += cachep->num;
4270 			active_slabs++;
4271 		}
4272 		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4273 			if (slabp->inuse == cachep->num && !error)
4274 				error = "slabs_partial inuse accounting error";
4275 			if (!slabp->inuse && !error)
4276 				error = "slabs_partial/inuse accounting error";
4277 			active_objs += slabp->inuse;
4278 			active_slabs++;
4279 		}
4280 		list_for_each_entry(slabp, &l3->slabs_free, list) {
4281 			if (slabp->inuse && !error)
4282 				error = "slabs_free/inuse accounting error";
4283 			num_slabs++;
4284 		}
4285 		free_objects += l3->free_objects;
4286 		if (l3->shared)
4287 			shared_avail += l3->shared->avail;
4288 
4289 		spin_unlock_irq(&l3->list_lock);
4290 	}
4291 	num_slabs += active_slabs;
4292 	num_objs = num_slabs * cachep->num;
4293 	if (num_objs - active_objs != free_objects && !error)
4294 		error = "free_objects accounting error";
4295 
4296 	name = cachep->name;
4297 	if (error)
4298 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4299 
4300 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4301 		   name, active_objs, num_objs, cachep->buffer_size,
4302 		   cachep->num, (1 << cachep->gfporder));
4303 	seq_printf(m, " : tunables %4u %4u %4u",
4304 		   cachep->limit, cachep->batchcount, cachep->shared);
4305 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4306 		   active_slabs, num_slabs, shared_avail);
4307 #if STATS
4308 	{			/* list3 stats */
4309 		unsigned long high = cachep->high_mark;
4310 		unsigned long allocs = cachep->num_allocations;
4311 		unsigned long grown = cachep->grown;
4312 		unsigned long reaped = cachep->reaped;
4313 		unsigned long errors = cachep->errors;
4314 		unsigned long max_freeable = cachep->max_freeable;
4315 		unsigned long node_allocs = cachep->node_allocs;
4316 		unsigned long node_frees = cachep->node_frees;
4317 		unsigned long overflows = cachep->node_overflow;
4318 
4319 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4320 			   "%4lu %4lu %4lu %4lu %4lu",
4321 			   allocs, high, grown,
4322 			   reaped, errors, max_freeable, node_allocs,
4323 			   node_frees, overflows);
4324 	}
4325 	/* cpu stats */
4326 	{
4327 		unsigned long allochit = atomic_read(&cachep->allochit);
4328 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4329 		unsigned long freehit = atomic_read(&cachep->freehit);
4330 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4331 
4332 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4333 			   allochit, allocmiss, freehit, freemiss);
4334 	}
4335 #endif
4336 	seq_putc(m, '\n');
4337 	return 0;
4338 }
4339 
4340 /*
4341  * slabinfo_op - iterator that generates /proc/slabinfo
4342  *
4343  * Output layout:
4344  * cache-name
4345  * num-active-objs
4346  * total-objs
4347  * object size
4348  * num-active-slabs
4349  * total-slabs
4350  * num-pages-per-slab
4351  * + further values on SMP and with statistics enabled
4352  */
4353 
4354 static const struct seq_operations slabinfo_op = {
4355 	.start = s_start,
4356 	.next = s_next,
4357 	.stop = s_stop,
4358 	.show = s_show,
4359 };
4360 
4361 #define MAX_SLABINFO_WRITE 128
4362 /**
4363  * slabinfo_write - Tuning for the slab allocator
4364  * @file: unused
4365  * @buffer: user buffer
4366  * @count: data length
4367  * @ppos: unused
4368  */
4369 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4370 		       size_t count, loff_t *ppos)
4371 {
4372 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4373 	int limit, batchcount, shared, res;
4374 	struct kmem_cache *cachep;
4375 
4376 	if (count > MAX_SLABINFO_WRITE)
4377 		return -EINVAL;
4378 	if (copy_from_user(&kbuf, buffer, count))
4379 		return -EFAULT;
4380 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4381 
4382 	tmp = strchr(kbuf, ' ');
4383 	if (!tmp)
4384 		return -EINVAL;
4385 	*tmp = '\0';
4386 	tmp++;
4387 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4388 		return -EINVAL;
4389 
4390 	/* Find the cache in the chain of caches. */
4391 	mutex_lock(&cache_chain_mutex);
4392 	res = -EINVAL;
4393 	list_for_each_entry(cachep, &cache_chain, next) {
4394 		if (!strcmp(cachep->name, kbuf)) {
4395 			if (limit < 1 || batchcount < 1 ||
4396 					batchcount > limit || shared < 0) {
4397 				res = 0;
4398 			} else {
4399 				res = do_tune_cpucache(cachep, limit,
4400 						       batchcount, shared,
4401 						       GFP_KERNEL);
4402 			}
4403 			break;
4404 		}
4405 	}
4406 	mutex_unlock(&cache_chain_mutex);
4407 	if (res >= 0)
4408 		res = count;
4409 	return res;
4410 }
4411 
4412 static int slabinfo_open(struct inode *inode, struct file *file)
4413 {
4414 	return seq_open(file, &slabinfo_op);
4415 }
4416 
4417 static const struct file_operations proc_slabinfo_operations = {
4418 	.open		= slabinfo_open,
4419 	.read		= seq_read,
4420 	.write		= slabinfo_write,
4421 	.llseek		= seq_lseek,
4422 	.release	= seq_release,
4423 };
4424 
4425 #ifdef CONFIG_DEBUG_SLAB_LEAK
4426 
4427 static void *leaks_start(struct seq_file *m, loff_t *pos)
4428 {
4429 	mutex_lock(&cache_chain_mutex);
4430 	return seq_list_start(&cache_chain, *pos);
4431 }
4432 
4433 static inline int add_caller(unsigned long *n, unsigned long v)
4434 {
4435 	unsigned long *p;
4436 	int l;
4437 	if (!v)
4438 		return 1;
4439 	l = n[1];
4440 	p = n + 2;
4441 	while (l) {
4442 		int i = l/2;
4443 		unsigned long *q = p + 2 * i;
4444 		if (*q == v) {
4445 			q[1]++;
4446 			return 1;
4447 		}
4448 		if (*q > v) {
4449 			l = i;
4450 		} else {
4451 			p = q + 2;
4452 			l -= i + 1;
4453 		}
4454 	}
4455 	if (++n[1] == n[0])
4456 		return 0;
4457 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4458 	p[0] = v;
4459 	p[1] = 1;
4460 	return 1;
4461 }
4462 
4463 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4464 {
4465 	void *p;
4466 	int i;
4467 	if (n[0] == n[1])
4468 		return;
4469 	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4470 		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4471 			continue;
4472 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4473 			return;
4474 	}
4475 }
4476 
4477 static void show_symbol(struct seq_file *m, unsigned long address)
4478 {
4479 #ifdef CONFIG_KALLSYMS
4480 	unsigned long offset, size;
4481 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4482 
4483 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4484 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4485 		if (modname[0])
4486 			seq_printf(m, " [%s]", modname);
4487 		return;
4488 	}
4489 #endif
4490 	seq_printf(m, "%p", (void *)address);
4491 }
4492 
4493 static int leaks_show(struct seq_file *m, void *p)
4494 {
4495 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4496 	struct slab *slabp;
4497 	struct kmem_list3 *l3;
4498 	const char *name;
4499 	unsigned long *n = m->private;
4500 	int node;
4501 	int i;
4502 
4503 	if (!(cachep->flags & SLAB_STORE_USER))
4504 		return 0;
4505 	if (!(cachep->flags & SLAB_RED_ZONE))
4506 		return 0;
4507 
4508 	/* OK, we can do it */
4509 
4510 	n[1] = 0;
4511 
4512 	for_each_online_node(node) {
4513 		l3 = cachep->nodelists[node];
4514 		if (!l3)
4515 			continue;
4516 
4517 		check_irq_on();
4518 		spin_lock_irq(&l3->list_lock);
4519 
4520 		list_for_each_entry(slabp, &l3->slabs_full, list)
4521 			handle_slab(n, cachep, slabp);
4522 		list_for_each_entry(slabp, &l3->slabs_partial, list)
4523 			handle_slab(n, cachep, slabp);
4524 		spin_unlock_irq(&l3->list_lock);
4525 	}
4526 	name = cachep->name;
4527 	if (n[0] == n[1]) {
4528 		/* Increase the buffer size */
4529 		mutex_unlock(&cache_chain_mutex);
4530 		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4531 		if (!m->private) {
4532 			/* Too bad, we are really out */
4533 			m->private = n;
4534 			mutex_lock(&cache_chain_mutex);
4535 			return -ENOMEM;
4536 		}
4537 		*(unsigned long *)m->private = n[0] * 2;
4538 		kfree(n);
4539 		mutex_lock(&cache_chain_mutex);
4540 		/* Now make sure this entry will be retried */
4541 		m->count = m->size;
4542 		return 0;
4543 	}
4544 	for (i = 0; i < n[1]; i++) {
4545 		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4546 		show_symbol(m, n[2*i+2]);
4547 		seq_putc(m, '\n');
4548 	}
4549 
4550 	return 0;
4551 }
4552 
4553 static const struct seq_operations slabstats_op = {
4554 	.start = leaks_start,
4555 	.next = s_next,
4556 	.stop = s_stop,
4557 	.show = leaks_show,
4558 };
4559 
4560 static int slabstats_open(struct inode *inode, struct file *file)
4561 {
4562 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4563 	int ret = -ENOMEM;
4564 	if (n) {
4565 		ret = seq_open(file, &slabstats_op);
4566 		if (!ret) {
4567 			struct seq_file *m = file->private_data;
4568 			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4569 			m->private = n;
4570 			n = NULL;
4571 		}
4572 		kfree(n);
4573 	}
4574 	return ret;
4575 }
4576 
4577 static const struct file_operations proc_slabstats_operations = {
4578 	.open		= slabstats_open,
4579 	.read		= seq_read,
4580 	.llseek		= seq_lseek,
4581 	.release	= seq_release_private,
4582 };
4583 #endif
4584 
4585 static int __init slab_proc_init(void)
4586 {
4587 	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4588 #ifdef CONFIG_DEBUG_SLAB_LEAK
4589 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4590 #endif
4591 	return 0;
4592 }
4593 module_init(slab_proc_init);
4594 #endif
4595 
4596 /**
4597  * ksize - get the actual amount of memory allocated for a given object
4598  * @objp: Pointer to the object
4599  *
4600  * kmalloc may internally round up allocations and return more memory
4601  * than requested. ksize() can be used to determine the actual amount of
4602  * memory allocated. The caller may use this additional memory, even though
4603  * a smaller amount of memory was initially specified with the kmalloc call.
4604  * The caller must guarantee that objp points to a valid object previously
4605  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4606  * must not be freed during the duration of the call.
4607  */
4608 size_t ksize(const void *objp)
4609 {
4610 	BUG_ON(!objp);
4611 	if (unlikely(objp == ZERO_SIZE_PTR))
4612 		return 0;
4613 
4614 	return obj_size(virt_to_cache(objp));
4615 }
4616 EXPORT_SYMBOL(ksize);
4617