1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 120 #include <asm/cacheflush.h> 121 #include <asm/tlbflush.h> 122 #include <asm/page.h> 123 124 /* 125 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 126 * 0 for faster, smaller code (especially in the critical paths). 127 * 128 * STATS - 1 to collect stats for /proc/slabinfo. 129 * 0 for faster, smaller code (especially in the critical paths). 130 * 131 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 132 */ 133 134 #ifdef CONFIG_DEBUG_SLAB 135 #define DEBUG 1 136 #define STATS 1 137 #define FORCED_DEBUG 1 138 #else 139 #define DEBUG 0 140 #define STATS 0 141 #define FORCED_DEBUG 0 142 #endif 143 144 /* Shouldn't this be in a header file somewhere? */ 145 #define BYTES_PER_WORD sizeof(void *) 146 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 147 148 #ifndef ARCH_KMALLOC_FLAGS 149 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 150 #endif 151 152 /* Legal flag mask for kmem_cache_create(). */ 153 #if DEBUG 154 # define CREATE_MASK (SLAB_RED_ZONE | \ 155 SLAB_POISON | SLAB_HWCACHE_ALIGN | \ 156 SLAB_CACHE_DMA | \ 157 SLAB_STORE_USER | \ 158 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 159 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ 160 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) 161 #else 162 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ 163 SLAB_CACHE_DMA | \ 164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 165 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ 166 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) 167 #endif 168 169 /* 170 * kmem_bufctl_t: 171 * 172 * Bufctl's are used for linking objs within a slab 173 * linked offsets. 174 * 175 * This implementation relies on "struct page" for locating the cache & 176 * slab an object belongs to. 177 * This allows the bufctl structure to be small (one int), but limits 178 * the number of objects a slab (not a cache) can contain when off-slab 179 * bufctls are used. The limit is the size of the largest general cache 180 * that does not use off-slab slabs. 181 * For 32bit archs with 4 kB pages, is this 56. 182 * This is not serious, as it is only for large objects, when it is unwise 183 * to have too many per slab. 184 * Note: This limit can be raised by introducing a general cache whose size 185 * is less than 512 (PAGE_SIZE<<3), but greater than 256. 186 */ 187 188 typedef unsigned int kmem_bufctl_t; 189 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) 190 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) 191 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) 192 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) 193 194 /* 195 * struct slab_rcu 196 * 197 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to 198 * arrange for kmem_freepages to be called via RCU. This is useful if 199 * we need to approach a kernel structure obliquely, from its address 200 * obtained without the usual locking. We can lock the structure to 201 * stabilize it and check it's still at the given address, only if we 202 * can be sure that the memory has not been meanwhile reused for some 203 * other kind of object (which our subsystem's lock might corrupt). 204 * 205 * rcu_read_lock before reading the address, then rcu_read_unlock after 206 * taking the spinlock within the structure expected at that address. 207 */ 208 struct slab_rcu { 209 struct rcu_head head; 210 struct kmem_cache *cachep; 211 void *addr; 212 }; 213 214 /* 215 * struct slab 216 * 217 * Manages the objs in a slab. Placed either at the beginning of mem allocated 218 * for a slab, or allocated from an general cache. 219 * Slabs are chained into three list: fully used, partial, fully free slabs. 220 */ 221 struct slab { 222 union { 223 struct { 224 struct list_head list; 225 unsigned long colouroff; 226 void *s_mem; /* including colour offset */ 227 unsigned int inuse; /* num of objs active in slab */ 228 kmem_bufctl_t free; 229 unsigned short nodeid; 230 }; 231 struct slab_rcu __slab_cover_slab_rcu; 232 }; 233 }; 234 235 /* 236 * struct array_cache 237 * 238 * Purpose: 239 * - LIFO ordering, to hand out cache-warm objects from _alloc 240 * - reduce the number of linked list operations 241 * - reduce spinlock operations 242 * 243 * The limit is stored in the per-cpu structure to reduce the data cache 244 * footprint. 245 * 246 */ 247 struct array_cache { 248 unsigned int avail; 249 unsigned int limit; 250 unsigned int batchcount; 251 unsigned int touched; 252 spinlock_t lock; 253 void *entry[]; /* 254 * Must have this definition in here for the proper 255 * alignment of array_cache. Also simplifies accessing 256 * the entries. 257 */ 258 }; 259 260 /* 261 * bootstrap: The caches do not work without cpuarrays anymore, but the 262 * cpuarrays are allocated from the generic caches... 263 */ 264 #define BOOT_CPUCACHE_ENTRIES 1 265 struct arraycache_init { 266 struct array_cache cache; 267 void *entries[BOOT_CPUCACHE_ENTRIES]; 268 }; 269 270 /* 271 * The slab lists for all objects. 272 */ 273 struct kmem_list3 { 274 struct list_head slabs_partial; /* partial list first, better asm code */ 275 struct list_head slabs_full; 276 struct list_head slabs_free; 277 unsigned long free_objects; 278 unsigned int free_limit; 279 unsigned int colour_next; /* Per-node cache coloring */ 280 spinlock_t list_lock; 281 struct array_cache *shared; /* shared per node */ 282 struct array_cache **alien; /* on other nodes */ 283 unsigned long next_reap; /* updated without locking */ 284 int free_touched; /* updated without locking */ 285 }; 286 287 /* 288 * Need this for bootstrapping a per node allocator. 289 */ 290 #define NUM_INIT_LISTS (3 * MAX_NUMNODES) 291 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; 292 #define CACHE_CACHE 0 293 #define SIZE_AC MAX_NUMNODES 294 #define SIZE_L3 (2 * MAX_NUMNODES) 295 296 static int drain_freelist(struct kmem_cache *cache, 297 struct kmem_list3 *l3, int tofree); 298 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 299 int node); 300 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 301 static void cache_reap(struct work_struct *unused); 302 303 /* 304 * This function must be completely optimized away if a constant is passed to 305 * it. Mostly the same as what is in linux/slab.h except it returns an index. 306 */ 307 static __always_inline int index_of(const size_t size) 308 { 309 extern void __bad_size(void); 310 311 if (__builtin_constant_p(size)) { 312 int i = 0; 313 314 #define CACHE(x) \ 315 if (size <=x) \ 316 return i; \ 317 else \ 318 i++; 319 #include <linux/kmalloc_sizes.h> 320 #undef CACHE 321 __bad_size(); 322 } else 323 __bad_size(); 324 return 0; 325 } 326 327 static int slab_early_init = 1; 328 329 #define INDEX_AC index_of(sizeof(struct arraycache_init)) 330 #define INDEX_L3 index_of(sizeof(struct kmem_list3)) 331 332 static void kmem_list3_init(struct kmem_list3 *parent) 333 { 334 INIT_LIST_HEAD(&parent->slabs_full); 335 INIT_LIST_HEAD(&parent->slabs_partial); 336 INIT_LIST_HEAD(&parent->slabs_free); 337 parent->shared = NULL; 338 parent->alien = NULL; 339 parent->colour_next = 0; 340 spin_lock_init(&parent->list_lock); 341 parent->free_objects = 0; 342 parent->free_touched = 0; 343 } 344 345 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 346 do { \ 347 INIT_LIST_HEAD(listp); \ 348 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ 349 } while (0) 350 351 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 352 do { \ 353 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 354 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 355 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 356 } while (0) 357 358 #define CFLGS_OFF_SLAB (0x80000000UL) 359 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 360 361 #define BATCHREFILL_LIMIT 16 362 /* 363 * Optimization question: fewer reaps means less probability for unnessary 364 * cpucache drain/refill cycles. 365 * 366 * OTOH the cpuarrays can contain lots of objects, 367 * which could lock up otherwise freeable slabs. 368 */ 369 #define REAPTIMEOUT_CPUC (2*HZ) 370 #define REAPTIMEOUT_LIST3 (4*HZ) 371 372 #if STATS 373 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 374 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 375 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 376 #define STATS_INC_GROWN(x) ((x)->grown++) 377 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 378 #define STATS_SET_HIGH(x) \ 379 do { \ 380 if ((x)->num_active > (x)->high_mark) \ 381 (x)->high_mark = (x)->num_active; \ 382 } while (0) 383 #define STATS_INC_ERR(x) ((x)->errors++) 384 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 385 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 386 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 387 #define STATS_SET_FREEABLE(x, i) \ 388 do { \ 389 if ((x)->max_freeable < i) \ 390 (x)->max_freeable = i; \ 391 } while (0) 392 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 393 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 394 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 395 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 396 #else 397 #define STATS_INC_ACTIVE(x) do { } while (0) 398 #define STATS_DEC_ACTIVE(x) do { } while (0) 399 #define STATS_INC_ALLOCED(x) do { } while (0) 400 #define STATS_INC_GROWN(x) do { } while (0) 401 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 402 #define STATS_SET_HIGH(x) do { } while (0) 403 #define STATS_INC_ERR(x) do { } while (0) 404 #define STATS_INC_NODEALLOCS(x) do { } while (0) 405 #define STATS_INC_NODEFREES(x) do { } while (0) 406 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 407 #define STATS_SET_FREEABLE(x, i) do { } while (0) 408 #define STATS_INC_ALLOCHIT(x) do { } while (0) 409 #define STATS_INC_ALLOCMISS(x) do { } while (0) 410 #define STATS_INC_FREEHIT(x) do { } while (0) 411 #define STATS_INC_FREEMISS(x) do { } while (0) 412 #endif 413 414 #if DEBUG 415 416 /* 417 * memory layout of objects: 418 * 0 : objp 419 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 420 * the end of an object is aligned with the end of the real 421 * allocation. Catches writes behind the end of the allocation. 422 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 423 * redzone word. 424 * cachep->obj_offset: The real object. 425 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 426 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address 427 * [BYTES_PER_WORD long] 428 */ 429 static int obj_offset(struct kmem_cache *cachep) 430 { 431 return cachep->obj_offset; 432 } 433 434 static int obj_size(struct kmem_cache *cachep) 435 { 436 return cachep->obj_size; 437 } 438 439 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 440 { 441 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 442 return (unsigned long long*) (objp + obj_offset(cachep) - 443 sizeof(unsigned long long)); 444 } 445 446 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 447 { 448 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 449 if (cachep->flags & SLAB_STORE_USER) 450 return (unsigned long long *)(objp + cachep->buffer_size - 451 sizeof(unsigned long long) - 452 REDZONE_ALIGN); 453 return (unsigned long long *) (objp + cachep->buffer_size - 454 sizeof(unsigned long long)); 455 } 456 457 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 458 { 459 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 460 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); 461 } 462 463 #else 464 465 #define obj_offset(x) 0 466 #define obj_size(cachep) (cachep->buffer_size) 467 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 468 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 469 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 470 471 #endif 472 473 #ifdef CONFIG_TRACING 474 size_t slab_buffer_size(struct kmem_cache *cachep) 475 { 476 return cachep->buffer_size; 477 } 478 EXPORT_SYMBOL(slab_buffer_size); 479 #endif 480 481 /* 482 * Do not go above this order unless 0 objects fit into the slab. 483 */ 484 #define BREAK_GFP_ORDER_HI 1 485 #define BREAK_GFP_ORDER_LO 0 486 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; 487 488 /* 489 * Functions for storing/retrieving the cachep and or slab from the page 490 * allocator. These are used to find the slab an obj belongs to. With kfree(), 491 * these are used to find the cache which an obj belongs to. 492 */ 493 static inline void page_set_cache(struct page *page, struct kmem_cache *cache) 494 { 495 page->lru.next = (struct list_head *)cache; 496 } 497 498 static inline struct kmem_cache *page_get_cache(struct page *page) 499 { 500 page = compound_head(page); 501 BUG_ON(!PageSlab(page)); 502 return (struct kmem_cache *)page->lru.next; 503 } 504 505 static inline void page_set_slab(struct page *page, struct slab *slab) 506 { 507 page->lru.prev = (struct list_head *)slab; 508 } 509 510 static inline struct slab *page_get_slab(struct page *page) 511 { 512 BUG_ON(!PageSlab(page)); 513 return (struct slab *)page->lru.prev; 514 } 515 516 static inline struct kmem_cache *virt_to_cache(const void *obj) 517 { 518 struct page *page = virt_to_head_page(obj); 519 return page_get_cache(page); 520 } 521 522 static inline struct slab *virt_to_slab(const void *obj) 523 { 524 struct page *page = virt_to_head_page(obj); 525 return page_get_slab(page); 526 } 527 528 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, 529 unsigned int idx) 530 { 531 return slab->s_mem + cache->buffer_size * idx; 532 } 533 534 /* 535 * We want to avoid an expensive divide : (offset / cache->buffer_size) 536 * Using the fact that buffer_size is a constant for a particular cache, 537 * we can replace (offset / cache->buffer_size) by 538 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 539 */ 540 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 541 const struct slab *slab, void *obj) 542 { 543 u32 offset = (obj - slab->s_mem); 544 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 545 } 546 547 /* 548 * These are the default caches for kmalloc. Custom caches can have other sizes. 549 */ 550 struct cache_sizes malloc_sizes[] = { 551 #define CACHE(x) { .cs_size = (x) }, 552 #include <linux/kmalloc_sizes.h> 553 CACHE(ULONG_MAX) 554 #undef CACHE 555 }; 556 EXPORT_SYMBOL(malloc_sizes); 557 558 /* Must match cache_sizes above. Out of line to keep cache footprint low. */ 559 struct cache_names { 560 char *name; 561 char *name_dma; 562 }; 563 564 static struct cache_names __initdata cache_names[] = { 565 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, 566 #include <linux/kmalloc_sizes.h> 567 {NULL,} 568 #undef CACHE 569 }; 570 571 static struct arraycache_init initarray_cache __initdata = 572 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 573 static struct arraycache_init initarray_generic = 574 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 575 576 /* internal cache of cache description objs */ 577 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES]; 578 static struct kmem_cache cache_cache = { 579 .nodelists = cache_cache_nodelists, 580 .batchcount = 1, 581 .limit = BOOT_CPUCACHE_ENTRIES, 582 .shared = 1, 583 .buffer_size = sizeof(struct kmem_cache), 584 .name = "kmem_cache", 585 }; 586 587 #define BAD_ALIEN_MAGIC 0x01020304ul 588 589 /* 590 * chicken and egg problem: delay the per-cpu array allocation 591 * until the general caches are up. 592 */ 593 static enum { 594 NONE, 595 PARTIAL_AC, 596 PARTIAL_L3, 597 EARLY, 598 FULL 599 } g_cpucache_up; 600 601 /* 602 * used by boot code to determine if it can use slab based allocator 603 */ 604 int slab_is_available(void) 605 { 606 return g_cpucache_up >= EARLY; 607 } 608 609 #ifdef CONFIG_LOCKDEP 610 611 /* 612 * Slab sometimes uses the kmalloc slabs to store the slab headers 613 * for other slabs "off slab". 614 * The locking for this is tricky in that it nests within the locks 615 * of all other slabs in a few places; to deal with this special 616 * locking we put on-slab caches into a separate lock-class. 617 * 618 * We set lock class for alien array caches which are up during init. 619 * The lock annotation will be lost if all cpus of a node goes down and 620 * then comes back up during hotplug 621 */ 622 static struct lock_class_key on_slab_l3_key; 623 static struct lock_class_key on_slab_alc_key; 624 625 static struct lock_class_key debugobj_l3_key; 626 static struct lock_class_key debugobj_alc_key; 627 628 static void slab_set_lock_classes(struct kmem_cache *cachep, 629 struct lock_class_key *l3_key, struct lock_class_key *alc_key, 630 int q) 631 { 632 struct array_cache **alc; 633 struct kmem_list3 *l3; 634 int r; 635 636 l3 = cachep->nodelists[q]; 637 if (!l3) 638 return; 639 640 lockdep_set_class(&l3->list_lock, l3_key); 641 alc = l3->alien; 642 /* 643 * FIXME: This check for BAD_ALIEN_MAGIC 644 * should go away when common slab code is taught to 645 * work even without alien caches. 646 * Currently, non NUMA code returns BAD_ALIEN_MAGIC 647 * for alloc_alien_cache, 648 */ 649 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) 650 return; 651 for_each_node(r) { 652 if (alc[r]) 653 lockdep_set_class(&alc[r]->lock, alc_key); 654 } 655 } 656 657 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) 658 { 659 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node); 660 } 661 662 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) 663 { 664 int node; 665 666 for_each_online_node(node) 667 slab_set_debugobj_lock_classes_node(cachep, node); 668 } 669 670 static void init_node_lock_keys(int q) 671 { 672 struct cache_sizes *s = malloc_sizes; 673 674 if (g_cpucache_up != FULL) 675 return; 676 677 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) { 678 struct kmem_list3 *l3; 679 680 l3 = s->cs_cachep->nodelists[q]; 681 if (!l3 || OFF_SLAB(s->cs_cachep)) 682 continue; 683 684 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key, 685 &on_slab_alc_key, q); 686 } 687 } 688 689 static inline void init_lock_keys(void) 690 { 691 int node; 692 693 for_each_node(node) 694 init_node_lock_keys(node); 695 } 696 #else 697 static void init_node_lock_keys(int q) 698 { 699 } 700 701 static inline void init_lock_keys(void) 702 { 703 } 704 705 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) 706 { 707 } 708 709 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) 710 { 711 } 712 #endif 713 714 /* 715 * Guard access to the cache-chain. 716 */ 717 static DEFINE_MUTEX(cache_chain_mutex); 718 static struct list_head cache_chain; 719 720 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 721 722 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 723 { 724 return cachep->array[smp_processor_id()]; 725 } 726 727 static inline struct kmem_cache *__find_general_cachep(size_t size, 728 gfp_t gfpflags) 729 { 730 struct cache_sizes *csizep = malloc_sizes; 731 732 #if DEBUG 733 /* This happens if someone tries to call 734 * kmem_cache_create(), or __kmalloc(), before 735 * the generic caches are initialized. 736 */ 737 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); 738 #endif 739 if (!size) 740 return ZERO_SIZE_PTR; 741 742 while (size > csizep->cs_size) 743 csizep++; 744 745 /* 746 * Really subtle: The last entry with cs->cs_size==ULONG_MAX 747 * has cs_{dma,}cachep==NULL. Thus no special case 748 * for large kmalloc calls required. 749 */ 750 #ifdef CONFIG_ZONE_DMA 751 if (unlikely(gfpflags & GFP_DMA)) 752 return csizep->cs_dmacachep; 753 #endif 754 return csizep->cs_cachep; 755 } 756 757 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) 758 { 759 return __find_general_cachep(size, gfpflags); 760 } 761 762 static size_t slab_mgmt_size(size_t nr_objs, size_t align) 763 { 764 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); 765 } 766 767 /* 768 * Calculate the number of objects and left-over bytes for a given buffer size. 769 */ 770 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 771 size_t align, int flags, size_t *left_over, 772 unsigned int *num) 773 { 774 int nr_objs; 775 size_t mgmt_size; 776 size_t slab_size = PAGE_SIZE << gfporder; 777 778 /* 779 * The slab management structure can be either off the slab or 780 * on it. For the latter case, the memory allocated for a 781 * slab is used for: 782 * 783 * - The struct slab 784 * - One kmem_bufctl_t for each object 785 * - Padding to respect alignment of @align 786 * - @buffer_size bytes for each object 787 * 788 * If the slab management structure is off the slab, then the 789 * alignment will already be calculated into the size. Because 790 * the slabs are all pages aligned, the objects will be at the 791 * correct alignment when allocated. 792 */ 793 if (flags & CFLGS_OFF_SLAB) { 794 mgmt_size = 0; 795 nr_objs = slab_size / buffer_size; 796 797 if (nr_objs > SLAB_LIMIT) 798 nr_objs = SLAB_LIMIT; 799 } else { 800 /* 801 * Ignore padding for the initial guess. The padding 802 * is at most @align-1 bytes, and @buffer_size is at 803 * least @align. In the worst case, this result will 804 * be one greater than the number of objects that fit 805 * into the memory allocation when taking the padding 806 * into account. 807 */ 808 nr_objs = (slab_size - sizeof(struct slab)) / 809 (buffer_size + sizeof(kmem_bufctl_t)); 810 811 /* 812 * This calculated number will be either the right 813 * amount, or one greater than what we want. 814 */ 815 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size 816 > slab_size) 817 nr_objs--; 818 819 if (nr_objs > SLAB_LIMIT) 820 nr_objs = SLAB_LIMIT; 821 822 mgmt_size = slab_mgmt_size(nr_objs, align); 823 } 824 *num = nr_objs; 825 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 826 } 827 828 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 829 830 static void __slab_error(const char *function, struct kmem_cache *cachep, 831 char *msg) 832 { 833 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 834 function, cachep->name, msg); 835 dump_stack(); 836 } 837 838 /* 839 * By default on NUMA we use alien caches to stage the freeing of 840 * objects allocated from other nodes. This causes massive memory 841 * inefficiencies when using fake NUMA setup to split memory into a 842 * large number of small nodes, so it can be disabled on the command 843 * line 844 */ 845 846 static int use_alien_caches __read_mostly = 1; 847 static int __init noaliencache_setup(char *s) 848 { 849 use_alien_caches = 0; 850 return 1; 851 } 852 __setup("noaliencache", noaliencache_setup); 853 854 #ifdef CONFIG_NUMA 855 /* 856 * Special reaping functions for NUMA systems called from cache_reap(). 857 * These take care of doing round robin flushing of alien caches (containing 858 * objects freed on different nodes from which they were allocated) and the 859 * flushing of remote pcps by calling drain_node_pages. 860 */ 861 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 862 863 static void init_reap_node(int cpu) 864 { 865 int node; 866 867 node = next_node(cpu_to_mem(cpu), node_online_map); 868 if (node == MAX_NUMNODES) 869 node = first_node(node_online_map); 870 871 per_cpu(slab_reap_node, cpu) = node; 872 } 873 874 static void next_reap_node(void) 875 { 876 int node = __this_cpu_read(slab_reap_node); 877 878 node = next_node(node, node_online_map); 879 if (unlikely(node >= MAX_NUMNODES)) 880 node = first_node(node_online_map); 881 __this_cpu_write(slab_reap_node, node); 882 } 883 884 #else 885 #define init_reap_node(cpu) do { } while (0) 886 #define next_reap_node(void) do { } while (0) 887 #endif 888 889 /* 890 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 891 * via the workqueue/eventd. 892 * Add the CPU number into the expiration time to minimize the possibility of 893 * the CPUs getting into lockstep and contending for the global cache chain 894 * lock. 895 */ 896 static void __cpuinit start_cpu_timer(int cpu) 897 { 898 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 899 900 /* 901 * When this gets called from do_initcalls via cpucache_init(), 902 * init_workqueues() has already run, so keventd will be setup 903 * at that time. 904 */ 905 if (keventd_up() && reap_work->work.func == NULL) { 906 init_reap_node(cpu); 907 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap); 908 schedule_delayed_work_on(cpu, reap_work, 909 __round_jiffies_relative(HZ, cpu)); 910 } 911 } 912 913 static struct array_cache *alloc_arraycache(int node, int entries, 914 int batchcount, gfp_t gfp) 915 { 916 int memsize = sizeof(void *) * entries + sizeof(struct array_cache); 917 struct array_cache *nc = NULL; 918 919 nc = kmalloc_node(memsize, gfp, node); 920 /* 921 * The array_cache structures contain pointers to free object. 922 * However, when such objects are allocated or transferred to another 923 * cache the pointers are not cleared and they could be counted as 924 * valid references during a kmemleak scan. Therefore, kmemleak must 925 * not scan such objects. 926 */ 927 kmemleak_no_scan(nc); 928 if (nc) { 929 nc->avail = 0; 930 nc->limit = entries; 931 nc->batchcount = batchcount; 932 nc->touched = 0; 933 spin_lock_init(&nc->lock); 934 } 935 return nc; 936 } 937 938 /* 939 * Transfer objects in one arraycache to another. 940 * Locking must be handled by the caller. 941 * 942 * Return the number of entries transferred. 943 */ 944 static int transfer_objects(struct array_cache *to, 945 struct array_cache *from, unsigned int max) 946 { 947 /* Figure out how many entries to transfer */ 948 int nr = min3(from->avail, max, to->limit - to->avail); 949 950 if (!nr) 951 return 0; 952 953 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 954 sizeof(void *) *nr); 955 956 from->avail -= nr; 957 to->avail += nr; 958 return nr; 959 } 960 961 #ifndef CONFIG_NUMA 962 963 #define drain_alien_cache(cachep, alien) do { } while (0) 964 #define reap_alien(cachep, l3) do { } while (0) 965 966 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 967 { 968 return (struct array_cache **)BAD_ALIEN_MAGIC; 969 } 970 971 static inline void free_alien_cache(struct array_cache **ac_ptr) 972 { 973 } 974 975 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 976 { 977 return 0; 978 } 979 980 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 981 gfp_t flags) 982 { 983 return NULL; 984 } 985 986 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 987 gfp_t flags, int nodeid) 988 { 989 return NULL; 990 } 991 992 #else /* CONFIG_NUMA */ 993 994 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 995 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 996 997 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 998 { 999 struct array_cache **ac_ptr; 1000 int memsize = sizeof(void *) * nr_node_ids; 1001 int i; 1002 1003 if (limit > 1) 1004 limit = 12; 1005 ac_ptr = kzalloc_node(memsize, gfp, node); 1006 if (ac_ptr) { 1007 for_each_node(i) { 1008 if (i == node || !node_online(i)) 1009 continue; 1010 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); 1011 if (!ac_ptr[i]) { 1012 for (i--; i >= 0; i--) 1013 kfree(ac_ptr[i]); 1014 kfree(ac_ptr); 1015 return NULL; 1016 } 1017 } 1018 } 1019 return ac_ptr; 1020 } 1021 1022 static void free_alien_cache(struct array_cache **ac_ptr) 1023 { 1024 int i; 1025 1026 if (!ac_ptr) 1027 return; 1028 for_each_node(i) 1029 kfree(ac_ptr[i]); 1030 kfree(ac_ptr); 1031 } 1032 1033 static void __drain_alien_cache(struct kmem_cache *cachep, 1034 struct array_cache *ac, int node) 1035 { 1036 struct kmem_list3 *rl3 = cachep->nodelists[node]; 1037 1038 if (ac->avail) { 1039 spin_lock(&rl3->list_lock); 1040 /* 1041 * Stuff objects into the remote nodes shared array first. 1042 * That way we could avoid the overhead of putting the objects 1043 * into the free lists and getting them back later. 1044 */ 1045 if (rl3->shared) 1046 transfer_objects(rl3->shared, ac, ac->limit); 1047 1048 free_block(cachep, ac->entry, ac->avail, node); 1049 ac->avail = 0; 1050 spin_unlock(&rl3->list_lock); 1051 } 1052 } 1053 1054 /* 1055 * Called from cache_reap() to regularly drain alien caches round robin. 1056 */ 1057 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) 1058 { 1059 int node = __this_cpu_read(slab_reap_node); 1060 1061 if (l3->alien) { 1062 struct array_cache *ac = l3->alien[node]; 1063 1064 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { 1065 __drain_alien_cache(cachep, ac, node); 1066 spin_unlock_irq(&ac->lock); 1067 } 1068 } 1069 } 1070 1071 static void drain_alien_cache(struct kmem_cache *cachep, 1072 struct array_cache **alien) 1073 { 1074 int i = 0; 1075 struct array_cache *ac; 1076 unsigned long flags; 1077 1078 for_each_online_node(i) { 1079 ac = alien[i]; 1080 if (ac) { 1081 spin_lock_irqsave(&ac->lock, flags); 1082 __drain_alien_cache(cachep, ac, i); 1083 spin_unlock_irqrestore(&ac->lock, flags); 1084 } 1085 } 1086 } 1087 1088 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1089 { 1090 struct slab *slabp = virt_to_slab(objp); 1091 int nodeid = slabp->nodeid; 1092 struct kmem_list3 *l3; 1093 struct array_cache *alien = NULL; 1094 int node; 1095 1096 node = numa_mem_id(); 1097 1098 /* 1099 * Make sure we are not freeing a object from another node to the array 1100 * cache on this cpu. 1101 */ 1102 if (likely(slabp->nodeid == node)) 1103 return 0; 1104 1105 l3 = cachep->nodelists[node]; 1106 STATS_INC_NODEFREES(cachep); 1107 if (l3->alien && l3->alien[nodeid]) { 1108 alien = l3->alien[nodeid]; 1109 spin_lock(&alien->lock); 1110 if (unlikely(alien->avail == alien->limit)) { 1111 STATS_INC_ACOVERFLOW(cachep); 1112 __drain_alien_cache(cachep, alien, nodeid); 1113 } 1114 alien->entry[alien->avail++] = objp; 1115 spin_unlock(&alien->lock); 1116 } else { 1117 spin_lock(&(cachep->nodelists[nodeid])->list_lock); 1118 free_block(cachep, &objp, 1, nodeid); 1119 spin_unlock(&(cachep->nodelists[nodeid])->list_lock); 1120 } 1121 return 1; 1122 } 1123 #endif 1124 1125 /* 1126 * Allocates and initializes nodelists for a node on each slab cache, used for 1127 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 1128 * will be allocated off-node since memory is not yet online for the new node. 1129 * When hotplugging memory or a cpu, existing nodelists are not replaced if 1130 * already in use. 1131 * 1132 * Must hold cache_chain_mutex. 1133 */ 1134 static int init_cache_nodelists_node(int node) 1135 { 1136 struct kmem_cache *cachep; 1137 struct kmem_list3 *l3; 1138 const int memsize = sizeof(struct kmem_list3); 1139 1140 list_for_each_entry(cachep, &cache_chain, next) { 1141 /* 1142 * Set up the size64 kmemlist for cpu before we can 1143 * begin anything. Make sure some other cpu on this 1144 * node has not already allocated this 1145 */ 1146 if (!cachep->nodelists[node]) { 1147 l3 = kmalloc_node(memsize, GFP_KERNEL, node); 1148 if (!l3) 1149 return -ENOMEM; 1150 kmem_list3_init(l3); 1151 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 1152 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1153 1154 /* 1155 * The l3s don't come and go as CPUs come and 1156 * go. cache_chain_mutex is sufficient 1157 * protection here. 1158 */ 1159 cachep->nodelists[node] = l3; 1160 } 1161 1162 spin_lock_irq(&cachep->nodelists[node]->list_lock); 1163 cachep->nodelists[node]->free_limit = 1164 (1 + nr_cpus_node(node)) * 1165 cachep->batchcount + cachep->num; 1166 spin_unlock_irq(&cachep->nodelists[node]->list_lock); 1167 } 1168 return 0; 1169 } 1170 1171 static void __cpuinit cpuup_canceled(long cpu) 1172 { 1173 struct kmem_cache *cachep; 1174 struct kmem_list3 *l3 = NULL; 1175 int node = cpu_to_mem(cpu); 1176 const struct cpumask *mask = cpumask_of_node(node); 1177 1178 list_for_each_entry(cachep, &cache_chain, next) { 1179 struct array_cache *nc; 1180 struct array_cache *shared; 1181 struct array_cache **alien; 1182 1183 /* cpu is dead; no one can alloc from it. */ 1184 nc = cachep->array[cpu]; 1185 cachep->array[cpu] = NULL; 1186 l3 = cachep->nodelists[node]; 1187 1188 if (!l3) 1189 goto free_array_cache; 1190 1191 spin_lock_irq(&l3->list_lock); 1192 1193 /* Free limit for this kmem_list3 */ 1194 l3->free_limit -= cachep->batchcount; 1195 if (nc) 1196 free_block(cachep, nc->entry, nc->avail, node); 1197 1198 if (!cpumask_empty(mask)) { 1199 spin_unlock_irq(&l3->list_lock); 1200 goto free_array_cache; 1201 } 1202 1203 shared = l3->shared; 1204 if (shared) { 1205 free_block(cachep, shared->entry, 1206 shared->avail, node); 1207 l3->shared = NULL; 1208 } 1209 1210 alien = l3->alien; 1211 l3->alien = NULL; 1212 1213 spin_unlock_irq(&l3->list_lock); 1214 1215 kfree(shared); 1216 if (alien) { 1217 drain_alien_cache(cachep, alien); 1218 free_alien_cache(alien); 1219 } 1220 free_array_cache: 1221 kfree(nc); 1222 } 1223 /* 1224 * In the previous loop, all the objects were freed to 1225 * the respective cache's slabs, now we can go ahead and 1226 * shrink each nodelist to its limit. 1227 */ 1228 list_for_each_entry(cachep, &cache_chain, next) { 1229 l3 = cachep->nodelists[node]; 1230 if (!l3) 1231 continue; 1232 drain_freelist(cachep, l3, l3->free_objects); 1233 } 1234 } 1235 1236 static int __cpuinit cpuup_prepare(long cpu) 1237 { 1238 struct kmem_cache *cachep; 1239 struct kmem_list3 *l3 = NULL; 1240 int node = cpu_to_mem(cpu); 1241 int err; 1242 1243 /* 1244 * We need to do this right in the beginning since 1245 * alloc_arraycache's are going to use this list. 1246 * kmalloc_node allows us to add the slab to the right 1247 * kmem_list3 and not this cpu's kmem_list3 1248 */ 1249 err = init_cache_nodelists_node(node); 1250 if (err < 0) 1251 goto bad; 1252 1253 /* 1254 * Now we can go ahead with allocating the shared arrays and 1255 * array caches 1256 */ 1257 list_for_each_entry(cachep, &cache_chain, next) { 1258 struct array_cache *nc; 1259 struct array_cache *shared = NULL; 1260 struct array_cache **alien = NULL; 1261 1262 nc = alloc_arraycache(node, cachep->limit, 1263 cachep->batchcount, GFP_KERNEL); 1264 if (!nc) 1265 goto bad; 1266 if (cachep->shared) { 1267 shared = alloc_arraycache(node, 1268 cachep->shared * cachep->batchcount, 1269 0xbaadf00d, GFP_KERNEL); 1270 if (!shared) { 1271 kfree(nc); 1272 goto bad; 1273 } 1274 } 1275 if (use_alien_caches) { 1276 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); 1277 if (!alien) { 1278 kfree(shared); 1279 kfree(nc); 1280 goto bad; 1281 } 1282 } 1283 cachep->array[cpu] = nc; 1284 l3 = cachep->nodelists[node]; 1285 BUG_ON(!l3); 1286 1287 spin_lock_irq(&l3->list_lock); 1288 if (!l3->shared) { 1289 /* 1290 * We are serialised from CPU_DEAD or 1291 * CPU_UP_CANCELLED by the cpucontrol lock 1292 */ 1293 l3->shared = shared; 1294 shared = NULL; 1295 } 1296 #ifdef CONFIG_NUMA 1297 if (!l3->alien) { 1298 l3->alien = alien; 1299 alien = NULL; 1300 } 1301 #endif 1302 spin_unlock_irq(&l3->list_lock); 1303 kfree(shared); 1304 free_alien_cache(alien); 1305 if (cachep->flags & SLAB_DEBUG_OBJECTS) 1306 slab_set_debugobj_lock_classes_node(cachep, node); 1307 } 1308 init_node_lock_keys(node); 1309 1310 return 0; 1311 bad: 1312 cpuup_canceled(cpu); 1313 return -ENOMEM; 1314 } 1315 1316 static int __cpuinit cpuup_callback(struct notifier_block *nfb, 1317 unsigned long action, void *hcpu) 1318 { 1319 long cpu = (long)hcpu; 1320 int err = 0; 1321 1322 switch (action) { 1323 case CPU_UP_PREPARE: 1324 case CPU_UP_PREPARE_FROZEN: 1325 mutex_lock(&cache_chain_mutex); 1326 err = cpuup_prepare(cpu); 1327 mutex_unlock(&cache_chain_mutex); 1328 break; 1329 case CPU_ONLINE: 1330 case CPU_ONLINE_FROZEN: 1331 start_cpu_timer(cpu); 1332 break; 1333 #ifdef CONFIG_HOTPLUG_CPU 1334 case CPU_DOWN_PREPARE: 1335 case CPU_DOWN_PREPARE_FROZEN: 1336 /* 1337 * Shutdown cache reaper. Note that the cache_chain_mutex is 1338 * held so that if cache_reap() is invoked it cannot do 1339 * anything expensive but will only modify reap_work 1340 * and reschedule the timer. 1341 */ 1342 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1343 /* Now the cache_reaper is guaranteed to be not running. */ 1344 per_cpu(slab_reap_work, cpu).work.func = NULL; 1345 break; 1346 case CPU_DOWN_FAILED: 1347 case CPU_DOWN_FAILED_FROZEN: 1348 start_cpu_timer(cpu); 1349 break; 1350 case CPU_DEAD: 1351 case CPU_DEAD_FROZEN: 1352 /* 1353 * Even if all the cpus of a node are down, we don't free the 1354 * kmem_list3 of any cache. This to avoid a race between 1355 * cpu_down, and a kmalloc allocation from another cpu for 1356 * memory from the node of the cpu going down. The list3 1357 * structure is usually allocated from kmem_cache_create() and 1358 * gets destroyed at kmem_cache_destroy(). 1359 */ 1360 /* fall through */ 1361 #endif 1362 case CPU_UP_CANCELED: 1363 case CPU_UP_CANCELED_FROZEN: 1364 mutex_lock(&cache_chain_mutex); 1365 cpuup_canceled(cpu); 1366 mutex_unlock(&cache_chain_mutex); 1367 break; 1368 } 1369 return notifier_from_errno(err); 1370 } 1371 1372 static struct notifier_block __cpuinitdata cpucache_notifier = { 1373 &cpuup_callback, NULL, 0 1374 }; 1375 1376 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1377 /* 1378 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1379 * Returns -EBUSY if all objects cannot be drained so that the node is not 1380 * removed. 1381 * 1382 * Must hold cache_chain_mutex. 1383 */ 1384 static int __meminit drain_cache_nodelists_node(int node) 1385 { 1386 struct kmem_cache *cachep; 1387 int ret = 0; 1388 1389 list_for_each_entry(cachep, &cache_chain, next) { 1390 struct kmem_list3 *l3; 1391 1392 l3 = cachep->nodelists[node]; 1393 if (!l3) 1394 continue; 1395 1396 drain_freelist(cachep, l3, l3->free_objects); 1397 1398 if (!list_empty(&l3->slabs_full) || 1399 !list_empty(&l3->slabs_partial)) { 1400 ret = -EBUSY; 1401 break; 1402 } 1403 } 1404 return ret; 1405 } 1406 1407 static int __meminit slab_memory_callback(struct notifier_block *self, 1408 unsigned long action, void *arg) 1409 { 1410 struct memory_notify *mnb = arg; 1411 int ret = 0; 1412 int nid; 1413 1414 nid = mnb->status_change_nid; 1415 if (nid < 0) 1416 goto out; 1417 1418 switch (action) { 1419 case MEM_GOING_ONLINE: 1420 mutex_lock(&cache_chain_mutex); 1421 ret = init_cache_nodelists_node(nid); 1422 mutex_unlock(&cache_chain_mutex); 1423 break; 1424 case MEM_GOING_OFFLINE: 1425 mutex_lock(&cache_chain_mutex); 1426 ret = drain_cache_nodelists_node(nid); 1427 mutex_unlock(&cache_chain_mutex); 1428 break; 1429 case MEM_ONLINE: 1430 case MEM_OFFLINE: 1431 case MEM_CANCEL_ONLINE: 1432 case MEM_CANCEL_OFFLINE: 1433 break; 1434 } 1435 out: 1436 return notifier_from_errno(ret); 1437 } 1438 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1439 1440 /* 1441 * swap the static kmem_list3 with kmalloced memory 1442 */ 1443 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, 1444 int nodeid) 1445 { 1446 struct kmem_list3 *ptr; 1447 1448 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); 1449 BUG_ON(!ptr); 1450 1451 memcpy(ptr, list, sizeof(struct kmem_list3)); 1452 /* 1453 * Do not assume that spinlocks can be initialized via memcpy: 1454 */ 1455 spin_lock_init(&ptr->list_lock); 1456 1457 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1458 cachep->nodelists[nodeid] = ptr; 1459 } 1460 1461 /* 1462 * For setting up all the kmem_list3s for cache whose buffer_size is same as 1463 * size of kmem_list3. 1464 */ 1465 static void __init set_up_list3s(struct kmem_cache *cachep, int index) 1466 { 1467 int node; 1468 1469 for_each_online_node(node) { 1470 cachep->nodelists[node] = &initkmem_list3[index + node]; 1471 cachep->nodelists[node]->next_reap = jiffies + 1472 REAPTIMEOUT_LIST3 + 1473 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1474 } 1475 } 1476 1477 /* 1478 * Initialisation. Called after the page allocator have been initialised and 1479 * before smp_init(). 1480 */ 1481 void __init kmem_cache_init(void) 1482 { 1483 size_t left_over; 1484 struct cache_sizes *sizes; 1485 struct cache_names *names; 1486 int i; 1487 int order; 1488 int node; 1489 1490 if (num_possible_nodes() == 1) 1491 use_alien_caches = 0; 1492 1493 for (i = 0; i < NUM_INIT_LISTS; i++) { 1494 kmem_list3_init(&initkmem_list3[i]); 1495 if (i < MAX_NUMNODES) 1496 cache_cache.nodelists[i] = NULL; 1497 } 1498 set_up_list3s(&cache_cache, CACHE_CACHE); 1499 1500 /* 1501 * Fragmentation resistance on low memory - only use bigger 1502 * page orders on machines with more than 32MB of memory. 1503 */ 1504 if (totalram_pages > (32 << 20) >> PAGE_SHIFT) 1505 slab_break_gfp_order = BREAK_GFP_ORDER_HI; 1506 1507 /* Bootstrap is tricky, because several objects are allocated 1508 * from caches that do not exist yet: 1509 * 1) initialize the cache_cache cache: it contains the struct 1510 * kmem_cache structures of all caches, except cache_cache itself: 1511 * cache_cache is statically allocated. 1512 * Initially an __init data area is used for the head array and the 1513 * kmem_list3 structures, it's replaced with a kmalloc allocated 1514 * array at the end of the bootstrap. 1515 * 2) Create the first kmalloc cache. 1516 * The struct kmem_cache for the new cache is allocated normally. 1517 * An __init data area is used for the head array. 1518 * 3) Create the remaining kmalloc caches, with minimally sized 1519 * head arrays. 1520 * 4) Replace the __init data head arrays for cache_cache and the first 1521 * kmalloc cache with kmalloc allocated arrays. 1522 * 5) Replace the __init data for kmem_list3 for cache_cache and 1523 * the other cache's with kmalloc allocated memory. 1524 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1525 */ 1526 1527 node = numa_mem_id(); 1528 1529 /* 1) create the cache_cache */ 1530 INIT_LIST_HEAD(&cache_chain); 1531 list_add(&cache_cache.next, &cache_chain); 1532 cache_cache.colour_off = cache_line_size(); 1533 cache_cache.array[smp_processor_id()] = &initarray_cache.cache; 1534 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; 1535 1536 /* 1537 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1538 */ 1539 cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) + 1540 nr_node_ids * sizeof(struct kmem_list3 *); 1541 #if DEBUG 1542 cache_cache.obj_size = cache_cache.buffer_size; 1543 #endif 1544 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, 1545 cache_line_size()); 1546 cache_cache.reciprocal_buffer_size = 1547 reciprocal_value(cache_cache.buffer_size); 1548 1549 for (order = 0; order < MAX_ORDER; order++) { 1550 cache_estimate(order, cache_cache.buffer_size, 1551 cache_line_size(), 0, &left_over, &cache_cache.num); 1552 if (cache_cache.num) 1553 break; 1554 } 1555 BUG_ON(!cache_cache.num); 1556 cache_cache.gfporder = order; 1557 cache_cache.colour = left_over / cache_cache.colour_off; 1558 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + 1559 sizeof(struct slab), cache_line_size()); 1560 1561 /* 2+3) create the kmalloc caches */ 1562 sizes = malloc_sizes; 1563 names = cache_names; 1564 1565 /* 1566 * Initialize the caches that provide memory for the array cache and the 1567 * kmem_list3 structures first. Without this, further allocations will 1568 * bug. 1569 */ 1570 1571 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, 1572 sizes[INDEX_AC].cs_size, 1573 ARCH_KMALLOC_MINALIGN, 1574 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1575 NULL); 1576 1577 if (INDEX_AC != INDEX_L3) { 1578 sizes[INDEX_L3].cs_cachep = 1579 kmem_cache_create(names[INDEX_L3].name, 1580 sizes[INDEX_L3].cs_size, 1581 ARCH_KMALLOC_MINALIGN, 1582 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1583 NULL); 1584 } 1585 1586 slab_early_init = 0; 1587 1588 while (sizes->cs_size != ULONG_MAX) { 1589 /* 1590 * For performance, all the general caches are L1 aligned. 1591 * This should be particularly beneficial on SMP boxes, as it 1592 * eliminates "false sharing". 1593 * Note for systems short on memory removing the alignment will 1594 * allow tighter packing of the smaller caches. 1595 */ 1596 if (!sizes->cs_cachep) { 1597 sizes->cs_cachep = kmem_cache_create(names->name, 1598 sizes->cs_size, 1599 ARCH_KMALLOC_MINALIGN, 1600 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1601 NULL); 1602 } 1603 #ifdef CONFIG_ZONE_DMA 1604 sizes->cs_dmacachep = kmem_cache_create( 1605 names->name_dma, 1606 sizes->cs_size, 1607 ARCH_KMALLOC_MINALIGN, 1608 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| 1609 SLAB_PANIC, 1610 NULL); 1611 #endif 1612 sizes++; 1613 names++; 1614 } 1615 /* 4) Replace the bootstrap head arrays */ 1616 { 1617 struct array_cache *ptr; 1618 1619 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1620 1621 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); 1622 memcpy(ptr, cpu_cache_get(&cache_cache), 1623 sizeof(struct arraycache_init)); 1624 /* 1625 * Do not assume that spinlocks can be initialized via memcpy: 1626 */ 1627 spin_lock_init(&ptr->lock); 1628 1629 cache_cache.array[smp_processor_id()] = ptr; 1630 1631 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1632 1633 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) 1634 != &initarray_generic.cache); 1635 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), 1636 sizeof(struct arraycache_init)); 1637 /* 1638 * Do not assume that spinlocks can be initialized via memcpy: 1639 */ 1640 spin_lock_init(&ptr->lock); 1641 1642 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = 1643 ptr; 1644 } 1645 /* 5) Replace the bootstrap kmem_list3's */ 1646 { 1647 int nid; 1648 1649 for_each_online_node(nid) { 1650 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); 1651 1652 init_list(malloc_sizes[INDEX_AC].cs_cachep, 1653 &initkmem_list3[SIZE_AC + nid], nid); 1654 1655 if (INDEX_AC != INDEX_L3) { 1656 init_list(malloc_sizes[INDEX_L3].cs_cachep, 1657 &initkmem_list3[SIZE_L3 + nid], nid); 1658 } 1659 } 1660 } 1661 1662 g_cpucache_up = EARLY; 1663 } 1664 1665 void __init kmem_cache_init_late(void) 1666 { 1667 struct kmem_cache *cachep; 1668 1669 /* Annotate slab for lockdep -- annotate the malloc caches */ 1670 init_lock_keys(); 1671 1672 /* 6) resize the head arrays to their final sizes */ 1673 mutex_lock(&cache_chain_mutex); 1674 list_for_each_entry(cachep, &cache_chain, next) 1675 if (enable_cpucache(cachep, GFP_NOWAIT)) 1676 BUG(); 1677 mutex_unlock(&cache_chain_mutex); 1678 1679 /* Done! */ 1680 g_cpucache_up = FULL; 1681 1682 /* 1683 * Register a cpu startup notifier callback that initializes 1684 * cpu_cache_get for all new cpus 1685 */ 1686 register_cpu_notifier(&cpucache_notifier); 1687 1688 #ifdef CONFIG_NUMA 1689 /* 1690 * Register a memory hotplug callback that initializes and frees 1691 * nodelists. 1692 */ 1693 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1694 #endif 1695 1696 /* 1697 * The reap timers are started later, with a module init call: That part 1698 * of the kernel is not yet operational. 1699 */ 1700 } 1701 1702 static int __init cpucache_init(void) 1703 { 1704 int cpu; 1705 1706 /* 1707 * Register the timers that return unneeded pages to the page allocator 1708 */ 1709 for_each_online_cpu(cpu) 1710 start_cpu_timer(cpu); 1711 return 0; 1712 } 1713 __initcall(cpucache_init); 1714 1715 /* 1716 * Interface to system's page allocator. No need to hold the cache-lock. 1717 * 1718 * If we requested dmaable memory, we will get it. Even if we 1719 * did not request dmaable memory, we might get it, but that 1720 * would be relatively rare and ignorable. 1721 */ 1722 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) 1723 { 1724 struct page *page; 1725 int nr_pages; 1726 int i; 1727 1728 #ifndef CONFIG_MMU 1729 /* 1730 * Nommu uses slab's for process anonymous memory allocations, and thus 1731 * requires __GFP_COMP to properly refcount higher order allocations 1732 */ 1733 flags |= __GFP_COMP; 1734 #endif 1735 1736 flags |= cachep->gfpflags; 1737 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1738 flags |= __GFP_RECLAIMABLE; 1739 1740 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1741 if (!page) 1742 return NULL; 1743 1744 nr_pages = (1 << cachep->gfporder); 1745 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1746 add_zone_page_state(page_zone(page), 1747 NR_SLAB_RECLAIMABLE, nr_pages); 1748 else 1749 add_zone_page_state(page_zone(page), 1750 NR_SLAB_UNRECLAIMABLE, nr_pages); 1751 for (i = 0; i < nr_pages; i++) 1752 __SetPageSlab(page + i); 1753 1754 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1755 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1756 1757 if (cachep->ctor) 1758 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1759 else 1760 kmemcheck_mark_unallocated_pages(page, nr_pages); 1761 } 1762 1763 return page_address(page); 1764 } 1765 1766 /* 1767 * Interface to system's page release. 1768 */ 1769 static void kmem_freepages(struct kmem_cache *cachep, void *addr) 1770 { 1771 unsigned long i = (1 << cachep->gfporder); 1772 struct page *page = virt_to_page(addr); 1773 const unsigned long nr_freed = i; 1774 1775 kmemcheck_free_shadow(page, cachep->gfporder); 1776 1777 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1778 sub_zone_page_state(page_zone(page), 1779 NR_SLAB_RECLAIMABLE, nr_freed); 1780 else 1781 sub_zone_page_state(page_zone(page), 1782 NR_SLAB_UNRECLAIMABLE, nr_freed); 1783 while (i--) { 1784 BUG_ON(!PageSlab(page)); 1785 __ClearPageSlab(page); 1786 page++; 1787 } 1788 if (current->reclaim_state) 1789 current->reclaim_state->reclaimed_slab += nr_freed; 1790 free_pages((unsigned long)addr, cachep->gfporder); 1791 } 1792 1793 static void kmem_rcu_free(struct rcu_head *head) 1794 { 1795 struct slab_rcu *slab_rcu = (struct slab_rcu *)head; 1796 struct kmem_cache *cachep = slab_rcu->cachep; 1797 1798 kmem_freepages(cachep, slab_rcu->addr); 1799 if (OFF_SLAB(cachep)) 1800 kmem_cache_free(cachep->slabp_cache, slab_rcu); 1801 } 1802 1803 #if DEBUG 1804 1805 #ifdef CONFIG_DEBUG_PAGEALLOC 1806 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1807 unsigned long caller) 1808 { 1809 int size = obj_size(cachep); 1810 1811 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1812 1813 if (size < 5 * sizeof(unsigned long)) 1814 return; 1815 1816 *addr++ = 0x12345678; 1817 *addr++ = caller; 1818 *addr++ = smp_processor_id(); 1819 size -= 3 * sizeof(unsigned long); 1820 { 1821 unsigned long *sptr = &caller; 1822 unsigned long svalue; 1823 1824 while (!kstack_end(sptr)) { 1825 svalue = *sptr++; 1826 if (kernel_text_address(svalue)) { 1827 *addr++ = svalue; 1828 size -= sizeof(unsigned long); 1829 if (size <= sizeof(unsigned long)) 1830 break; 1831 } 1832 } 1833 1834 } 1835 *addr++ = 0x87654321; 1836 } 1837 #endif 1838 1839 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1840 { 1841 int size = obj_size(cachep); 1842 addr = &((char *)addr)[obj_offset(cachep)]; 1843 1844 memset(addr, val, size); 1845 *(unsigned char *)(addr + size - 1) = POISON_END; 1846 } 1847 1848 static void dump_line(char *data, int offset, int limit) 1849 { 1850 int i; 1851 unsigned char error = 0; 1852 int bad_count = 0; 1853 1854 printk(KERN_ERR "%03x:", offset); 1855 for (i = 0; i < limit; i++) { 1856 if (data[offset + i] != POISON_FREE) { 1857 error = data[offset + i]; 1858 bad_count++; 1859 } 1860 printk(" %02x", (unsigned char)data[offset + i]); 1861 } 1862 printk("\n"); 1863 1864 if (bad_count == 1) { 1865 error ^= POISON_FREE; 1866 if (!(error & (error - 1))) { 1867 printk(KERN_ERR "Single bit error detected. Probably " 1868 "bad RAM.\n"); 1869 #ifdef CONFIG_X86 1870 printk(KERN_ERR "Run memtest86+ or a similar memory " 1871 "test tool.\n"); 1872 #else 1873 printk(KERN_ERR "Run a memory test tool.\n"); 1874 #endif 1875 } 1876 } 1877 } 1878 #endif 1879 1880 #if DEBUG 1881 1882 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1883 { 1884 int i, size; 1885 char *realobj; 1886 1887 if (cachep->flags & SLAB_RED_ZONE) { 1888 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 1889 *dbg_redzone1(cachep, objp), 1890 *dbg_redzone2(cachep, objp)); 1891 } 1892 1893 if (cachep->flags & SLAB_STORE_USER) { 1894 printk(KERN_ERR "Last user: [<%p>]", 1895 *dbg_userword(cachep, objp)); 1896 print_symbol("(%s)", 1897 (unsigned long)*dbg_userword(cachep, objp)); 1898 printk("\n"); 1899 } 1900 realobj = (char *)objp + obj_offset(cachep); 1901 size = obj_size(cachep); 1902 for (i = 0; i < size && lines; i += 16, lines--) { 1903 int limit; 1904 limit = 16; 1905 if (i + limit > size) 1906 limit = size - i; 1907 dump_line(realobj, i, limit); 1908 } 1909 } 1910 1911 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1912 { 1913 char *realobj; 1914 int size, i; 1915 int lines = 0; 1916 1917 realobj = (char *)objp + obj_offset(cachep); 1918 size = obj_size(cachep); 1919 1920 for (i = 0; i < size; i++) { 1921 char exp = POISON_FREE; 1922 if (i == size - 1) 1923 exp = POISON_END; 1924 if (realobj[i] != exp) { 1925 int limit; 1926 /* Mismatch ! */ 1927 /* Print header */ 1928 if (lines == 0) { 1929 printk(KERN_ERR 1930 "Slab corruption: %s start=%p, len=%d\n", 1931 cachep->name, realobj, size); 1932 print_objinfo(cachep, objp, 0); 1933 } 1934 /* Hexdump the affected line */ 1935 i = (i / 16) * 16; 1936 limit = 16; 1937 if (i + limit > size) 1938 limit = size - i; 1939 dump_line(realobj, i, limit); 1940 i += 16; 1941 lines++; 1942 /* Limit to 5 lines */ 1943 if (lines > 5) 1944 break; 1945 } 1946 } 1947 if (lines != 0) { 1948 /* Print some data about the neighboring objects, if they 1949 * exist: 1950 */ 1951 struct slab *slabp = virt_to_slab(objp); 1952 unsigned int objnr; 1953 1954 objnr = obj_to_index(cachep, slabp, objp); 1955 if (objnr) { 1956 objp = index_to_obj(cachep, slabp, objnr - 1); 1957 realobj = (char *)objp + obj_offset(cachep); 1958 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1959 realobj, size); 1960 print_objinfo(cachep, objp, 2); 1961 } 1962 if (objnr + 1 < cachep->num) { 1963 objp = index_to_obj(cachep, slabp, objnr + 1); 1964 realobj = (char *)objp + obj_offset(cachep); 1965 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1966 realobj, size); 1967 print_objinfo(cachep, objp, 2); 1968 } 1969 } 1970 } 1971 #endif 1972 1973 #if DEBUG 1974 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 1975 { 1976 int i; 1977 for (i = 0; i < cachep->num; i++) { 1978 void *objp = index_to_obj(cachep, slabp, i); 1979 1980 if (cachep->flags & SLAB_POISON) { 1981 #ifdef CONFIG_DEBUG_PAGEALLOC 1982 if (cachep->buffer_size % PAGE_SIZE == 0 && 1983 OFF_SLAB(cachep)) 1984 kernel_map_pages(virt_to_page(objp), 1985 cachep->buffer_size / PAGE_SIZE, 1); 1986 else 1987 check_poison_obj(cachep, objp); 1988 #else 1989 check_poison_obj(cachep, objp); 1990 #endif 1991 } 1992 if (cachep->flags & SLAB_RED_ZONE) { 1993 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1994 slab_error(cachep, "start of a freed object " 1995 "was overwritten"); 1996 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1997 slab_error(cachep, "end of a freed object " 1998 "was overwritten"); 1999 } 2000 } 2001 } 2002 #else 2003 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 2004 { 2005 } 2006 #endif 2007 2008 /** 2009 * slab_destroy - destroy and release all objects in a slab 2010 * @cachep: cache pointer being destroyed 2011 * @slabp: slab pointer being destroyed 2012 * 2013 * Destroy all the objs in a slab, and release the mem back to the system. 2014 * Before calling the slab must have been unlinked from the cache. The 2015 * cache-lock is not held/needed. 2016 */ 2017 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) 2018 { 2019 void *addr = slabp->s_mem - slabp->colouroff; 2020 2021 slab_destroy_debugcheck(cachep, slabp); 2022 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 2023 struct slab_rcu *slab_rcu; 2024 2025 slab_rcu = (struct slab_rcu *)slabp; 2026 slab_rcu->cachep = cachep; 2027 slab_rcu->addr = addr; 2028 call_rcu(&slab_rcu->head, kmem_rcu_free); 2029 } else { 2030 kmem_freepages(cachep, addr); 2031 if (OFF_SLAB(cachep)) 2032 kmem_cache_free(cachep->slabp_cache, slabp); 2033 } 2034 } 2035 2036 static void __kmem_cache_destroy(struct kmem_cache *cachep) 2037 { 2038 int i; 2039 struct kmem_list3 *l3; 2040 2041 for_each_online_cpu(i) 2042 kfree(cachep->array[i]); 2043 2044 /* NUMA: free the list3 structures */ 2045 for_each_online_node(i) { 2046 l3 = cachep->nodelists[i]; 2047 if (l3) { 2048 kfree(l3->shared); 2049 free_alien_cache(l3->alien); 2050 kfree(l3); 2051 } 2052 } 2053 kmem_cache_free(&cache_cache, cachep); 2054 } 2055 2056 2057 /** 2058 * calculate_slab_order - calculate size (page order) of slabs 2059 * @cachep: pointer to the cache that is being created 2060 * @size: size of objects to be created in this cache. 2061 * @align: required alignment for the objects. 2062 * @flags: slab allocation flags 2063 * 2064 * Also calculates the number of objects per slab. 2065 * 2066 * This could be made much more intelligent. For now, try to avoid using 2067 * high order pages for slabs. When the gfp() functions are more friendly 2068 * towards high-order requests, this should be changed. 2069 */ 2070 static size_t calculate_slab_order(struct kmem_cache *cachep, 2071 size_t size, size_t align, unsigned long flags) 2072 { 2073 unsigned long offslab_limit; 2074 size_t left_over = 0; 2075 int gfporder; 2076 2077 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 2078 unsigned int num; 2079 size_t remainder; 2080 2081 cache_estimate(gfporder, size, align, flags, &remainder, &num); 2082 if (!num) 2083 continue; 2084 2085 if (flags & CFLGS_OFF_SLAB) { 2086 /* 2087 * Max number of objs-per-slab for caches which 2088 * use off-slab slabs. Needed to avoid a possible 2089 * looping condition in cache_grow(). 2090 */ 2091 offslab_limit = size - sizeof(struct slab); 2092 offslab_limit /= sizeof(kmem_bufctl_t); 2093 2094 if (num > offslab_limit) 2095 break; 2096 } 2097 2098 /* Found something acceptable - save it away */ 2099 cachep->num = num; 2100 cachep->gfporder = gfporder; 2101 left_over = remainder; 2102 2103 /* 2104 * A VFS-reclaimable slab tends to have most allocations 2105 * as GFP_NOFS and we really don't want to have to be allocating 2106 * higher-order pages when we are unable to shrink dcache. 2107 */ 2108 if (flags & SLAB_RECLAIM_ACCOUNT) 2109 break; 2110 2111 /* 2112 * Large number of objects is good, but very large slabs are 2113 * currently bad for the gfp()s. 2114 */ 2115 if (gfporder >= slab_break_gfp_order) 2116 break; 2117 2118 /* 2119 * Acceptable internal fragmentation? 2120 */ 2121 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 2122 break; 2123 } 2124 return left_over; 2125 } 2126 2127 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 2128 { 2129 if (g_cpucache_up == FULL) 2130 return enable_cpucache(cachep, gfp); 2131 2132 if (g_cpucache_up == NONE) { 2133 /* 2134 * Note: the first kmem_cache_create must create the cache 2135 * that's used by kmalloc(24), otherwise the creation of 2136 * further caches will BUG(). 2137 */ 2138 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2139 2140 /* 2141 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is 2142 * the first cache, then we need to set up all its list3s, 2143 * otherwise the creation of further caches will BUG(). 2144 */ 2145 set_up_list3s(cachep, SIZE_AC); 2146 if (INDEX_AC == INDEX_L3) 2147 g_cpucache_up = PARTIAL_L3; 2148 else 2149 g_cpucache_up = PARTIAL_AC; 2150 } else { 2151 cachep->array[smp_processor_id()] = 2152 kmalloc(sizeof(struct arraycache_init), gfp); 2153 2154 if (g_cpucache_up == PARTIAL_AC) { 2155 set_up_list3s(cachep, SIZE_L3); 2156 g_cpucache_up = PARTIAL_L3; 2157 } else { 2158 int node; 2159 for_each_online_node(node) { 2160 cachep->nodelists[node] = 2161 kmalloc_node(sizeof(struct kmem_list3), 2162 gfp, node); 2163 BUG_ON(!cachep->nodelists[node]); 2164 kmem_list3_init(cachep->nodelists[node]); 2165 } 2166 } 2167 } 2168 cachep->nodelists[numa_mem_id()]->next_reap = 2169 jiffies + REAPTIMEOUT_LIST3 + 2170 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 2171 2172 cpu_cache_get(cachep)->avail = 0; 2173 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2174 cpu_cache_get(cachep)->batchcount = 1; 2175 cpu_cache_get(cachep)->touched = 0; 2176 cachep->batchcount = 1; 2177 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2178 return 0; 2179 } 2180 2181 /** 2182 * kmem_cache_create - Create a cache. 2183 * @name: A string which is used in /proc/slabinfo to identify this cache. 2184 * @size: The size of objects to be created in this cache. 2185 * @align: The required alignment for the objects. 2186 * @flags: SLAB flags 2187 * @ctor: A constructor for the objects. 2188 * 2189 * Returns a ptr to the cache on success, NULL on failure. 2190 * Cannot be called within a int, but can be interrupted. 2191 * The @ctor is run when new pages are allocated by the cache. 2192 * 2193 * @name must be valid until the cache is destroyed. This implies that 2194 * the module calling this has to destroy the cache before getting unloaded. 2195 * 2196 * The flags are 2197 * 2198 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2199 * to catch references to uninitialised memory. 2200 * 2201 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2202 * for buffer overruns. 2203 * 2204 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2205 * cacheline. This can be beneficial if you're counting cycles as closely 2206 * as davem. 2207 */ 2208 struct kmem_cache * 2209 kmem_cache_create (const char *name, size_t size, size_t align, 2210 unsigned long flags, void (*ctor)(void *)) 2211 { 2212 size_t left_over, slab_size, ralign; 2213 struct kmem_cache *cachep = NULL, *pc; 2214 gfp_t gfp; 2215 2216 /* 2217 * Sanity checks... these are all serious usage bugs. 2218 */ 2219 if (!name || in_interrupt() || (size < BYTES_PER_WORD) || 2220 size > KMALLOC_MAX_SIZE) { 2221 printk(KERN_ERR "%s: Early error in slab %s\n", __func__, 2222 name); 2223 BUG(); 2224 } 2225 2226 /* 2227 * We use cache_chain_mutex to ensure a consistent view of 2228 * cpu_online_mask as well. Please see cpuup_callback 2229 */ 2230 if (slab_is_available()) { 2231 get_online_cpus(); 2232 mutex_lock(&cache_chain_mutex); 2233 } 2234 2235 list_for_each_entry(pc, &cache_chain, next) { 2236 char tmp; 2237 int res; 2238 2239 /* 2240 * This happens when the module gets unloaded and doesn't 2241 * destroy its slab cache and no-one else reuses the vmalloc 2242 * area of the module. Print a warning. 2243 */ 2244 res = probe_kernel_address(pc->name, tmp); 2245 if (res) { 2246 printk(KERN_ERR 2247 "SLAB: cache with size %d has lost its name\n", 2248 pc->buffer_size); 2249 continue; 2250 } 2251 2252 if (!strcmp(pc->name, name)) { 2253 printk(KERN_ERR 2254 "kmem_cache_create: duplicate cache %s\n", name); 2255 dump_stack(); 2256 goto oops; 2257 } 2258 } 2259 2260 #if DEBUG 2261 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 2262 #if FORCED_DEBUG 2263 /* 2264 * Enable redzoning and last user accounting, except for caches with 2265 * large objects, if the increased size would increase the object size 2266 * above the next power of two: caches with object sizes just above a 2267 * power of two have a significant amount of internal fragmentation. 2268 */ 2269 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2270 2 * sizeof(unsigned long long))) 2271 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2272 if (!(flags & SLAB_DESTROY_BY_RCU)) 2273 flags |= SLAB_POISON; 2274 #endif 2275 if (flags & SLAB_DESTROY_BY_RCU) 2276 BUG_ON(flags & SLAB_POISON); 2277 #endif 2278 /* 2279 * Always checks flags, a caller might be expecting debug support which 2280 * isn't available. 2281 */ 2282 BUG_ON(flags & ~CREATE_MASK); 2283 2284 /* 2285 * Check that size is in terms of words. This is needed to avoid 2286 * unaligned accesses for some archs when redzoning is used, and makes 2287 * sure any on-slab bufctl's are also correctly aligned. 2288 */ 2289 if (size & (BYTES_PER_WORD - 1)) { 2290 size += (BYTES_PER_WORD - 1); 2291 size &= ~(BYTES_PER_WORD - 1); 2292 } 2293 2294 /* calculate the final buffer alignment: */ 2295 2296 /* 1) arch recommendation: can be overridden for debug */ 2297 if (flags & SLAB_HWCACHE_ALIGN) { 2298 /* 2299 * Default alignment: as specified by the arch code. Except if 2300 * an object is really small, then squeeze multiple objects into 2301 * one cacheline. 2302 */ 2303 ralign = cache_line_size(); 2304 while (size <= ralign / 2) 2305 ralign /= 2; 2306 } else { 2307 ralign = BYTES_PER_WORD; 2308 } 2309 2310 /* 2311 * Redzoning and user store require word alignment or possibly larger. 2312 * Note this will be overridden by architecture or caller mandated 2313 * alignment if either is greater than BYTES_PER_WORD. 2314 */ 2315 if (flags & SLAB_STORE_USER) 2316 ralign = BYTES_PER_WORD; 2317 2318 if (flags & SLAB_RED_ZONE) { 2319 ralign = REDZONE_ALIGN; 2320 /* If redzoning, ensure that the second redzone is suitably 2321 * aligned, by adjusting the object size accordingly. */ 2322 size += REDZONE_ALIGN - 1; 2323 size &= ~(REDZONE_ALIGN - 1); 2324 } 2325 2326 /* 2) arch mandated alignment */ 2327 if (ralign < ARCH_SLAB_MINALIGN) { 2328 ralign = ARCH_SLAB_MINALIGN; 2329 } 2330 /* 3) caller mandated alignment */ 2331 if (ralign < align) { 2332 ralign = align; 2333 } 2334 /* disable debug if necessary */ 2335 if (ralign > __alignof__(unsigned long long)) 2336 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2337 /* 2338 * 4) Store it. 2339 */ 2340 align = ralign; 2341 2342 if (slab_is_available()) 2343 gfp = GFP_KERNEL; 2344 else 2345 gfp = GFP_NOWAIT; 2346 2347 /* Get cache's description obj. */ 2348 cachep = kmem_cache_zalloc(&cache_cache, gfp); 2349 if (!cachep) 2350 goto oops; 2351 2352 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids]; 2353 #if DEBUG 2354 cachep->obj_size = size; 2355 2356 /* 2357 * Both debugging options require word-alignment which is calculated 2358 * into align above. 2359 */ 2360 if (flags & SLAB_RED_ZONE) { 2361 /* add space for red zone words */ 2362 cachep->obj_offset += sizeof(unsigned long long); 2363 size += 2 * sizeof(unsigned long long); 2364 } 2365 if (flags & SLAB_STORE_USER) { 2366 /* user store requires one word storage behind the end of 2367 * the real object. But if the second red zone needs to be 2368 * aligned to 64 bits, we must allow that much space. 2369 */ 2370 if (flags & SLAB_RED_ZONE) 2371 size += REDZONE_ALIGN; 2372 else 2373 size += BYTES_PER_WORD; 2374 } 2375 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2376 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size 2377 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) { 2378 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align); 2379 size = PAGE_SIZE; 2380 } 2381 #endif 2382 #endif 2383 2384 /* 2385 * Determine if the slab management is 'on' or 'off' slab. 2386 * (bootstrapping cannot cope with offslab caches so don't do 2387 * it too early on. Always use on-slab management when 2388 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) 2389 */ 2390 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init && 2391 !(flags & SLAB_NOLEAKTRACE)) 2392 /* 2393 * Size is large, assume best to place the slab management obj 2394 * off-slab (should allow better packing of objs). 2395 */ 2396 flags |= CFLGS_OFF_SLAB; 2397 2398 size = ALIGN(size, align); 2399 2400 left_over = calculate_slab_order(cachep, size, align, flags); 2401 2402 if (!cachep->num) { 2403 printk(KERN_ERR 2404 "kmem_cache_create: couldn't create cache %s.\n", name); 2405 kmem_cache_free(&cache_cache, cachep); 2406 cachep = NULL; 2407 goto oops; 2408 } 2409 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) 2410 + sizeof(struct slab), align); 2411 2412 /* 2413 * If the slab has been placed off-slab, and we have enough space then 2414 * move it on-slab. This is at the expense of any extra colouring. 2415 */ 2416 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { 2417 flags &= ~CFLGS_OFF_SLAB; 2418 left_over -= slab_size; 2419 } 2420 2421 if (flags & CFLGS_OFF_SLAB) { 2422 /* really off slab. No need for manual alignment */ 2423 slab_size = 2424 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); 2425 2426 #ifdef CONFIG_PAGE_POISONING 2427 /* If we're going to use the generic kernel_map_pages() 2428 * poisoning, then it's going to smash the contents of 2429 * the redzone and userword anyhow, so switch them off. 2430 */ 2431 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) 2432 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2433 #endif 2434 } 2435 2436 cachep->colour_off = cache_line_size(); 2437 /* Offset must be a multiple of the alignment. */ 2438 if (cachep->colour_off < align) 2439 cachep->colour_off = align; 2440 cachep->colour = left_over / cachep->colour_off; 2441 cachep->slab_size = slab_size; 2442 cachep->flags = flags; 2443 cachep->gfpflags = 0; 2444 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2445 cachep->gfpflags |= GFP_DMA; 2446 cachep->buffer_size = size; 2447 cachep->reciprocal_buffer_size = reciprocal_value(size); 2448 2449 if (flags & CFLGS_OFF_SLAB) { 2450 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); 2451 /* 2452 * This is a possibility for one of the malloc_sizes caches. 2453 * But since we go off slab only for object size greater than 2454 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, 2455 * this should not happen at all. 2456 * But leave a BUG_ON for some lucky dude. 2457 */ 2458 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); 2459 } 2460 cachep->ctor = ctor; 2461 cachep->name = name; 2462 2463 if (setup_cpu_cache(cachep, gfp)) { 2464 __kmem_cache_destroy(cachep); 2465 cachep = NULL; 2466 goto oops; 2467 } 2468 2469 if (flags & SLAB_DEBUG_OBJECTS) { 2470 /* 2471 * Would deadlock through slab_destroy()->call_rcu()-> 2472 * debug_object_activate()->kmem_cache_alloc(). 2473 */ 2474 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU); 2475 2476 slab_set_debugobj_lock_classes(cachep); 2477 } 2478 2479 /* cache setup completed, link it into the list */ 2480 list_add(&cachep->next, &cache_chain); 2481 oops: 2482 if (!cachep && (flags & SLAB_PANIC)) 2483 panic("kmem_cache_create(): failed to create slab `%s'\n", 2484 name); 2485 if (slab_is_available()) { 2486 mutex_unlock(&cache_chain_mutex); 2487 put_online_cpus(); 2488 } 2489 return cachep; 2490 } 2491 EXPORT_SYMBOL(kmem_cache_create); 2492 2493 #if DEBUG 2494 static void check_irq_off(void) 2495 { 2496 BUG_ON(!irqs_disabled()); 2497 } 2498 2499 static void check_irq_on(void) 2500 { 2501 BUG_ON(irqs_disabled()); 2502 } 2503 2504 static void check_spinlock_acquired(struct kmem_cache *cachep) 2505 { 2506 #ifdef CONFIG_SMP 2507 check_irq_off(); 2508 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock); 2509 #endif 2510 } 2511 2512 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2513 { 2514 #ifdef CONFIG_SMP 2515 check_irq_off(); 2516 assert_spin_locked(&cachep->nodelists[node]->list_lock); 2517 #endif 2518 } 2519 2520 #else 2521 #define check_irq_off() do { } while(0) 2522 #define check_irq_on() do { } while(0) 2523 #define check_spinlock_acquired(x) do { } while(0) 2524 #define check_spinlock_acquired_node(x, y) do { } while(0) 2525 #endif 2526 2527 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 2528 struct array_cache *ac, 2529 int force, int node); 2530 2531 static void do_drain(void *arg) 2532 { 2533 struct kmem_cache *cachep = arg; 2534 struct array_cache *ac; 2535 int node = numa_mem_id(); 2536 2537 check_irq_off(); 2538 ac = cpu_cache_get(cachep); 2539 spin_lock(&cachep->nodelists[node]->list_lock); 2540 free_block(cachep, ac->entry, ac->avail, node); 2541 spin_unlock(&cachep->nodelists[node]->list_lock); 2542 ac->avail = 0; 2543 } 2544 2545 static void drain_cpu_caches(struct kmem_cache *cachep) 2546 { 2547 struct kmem_list3 *l3; 2548 int node; 2549 2550 on_each_cpu(do_drain, cachep, 1); 2551 check_irq_on(); 2552 for_each_online_node(node) { 2553 l3 = cachep->nodelists[node]; 2554 if (l3 && l3->alien) 2555 drain_alien_cache(cachep, l3->alien); 2556 } 2557 2558 for_each_online_node(node) { 2559 l3 = cachep->nodelists[node]; 2560 if (l3) 2561 drain_array(cachep, l3, l3->shared, 1, node); 2562 } 2563 } 2564 2565 /* 2566 * Remove slabs from the list of free slabs. 2567 * Specify the number of slabs to drain in tofree. 2568 * 2569 * Returns the actual number of slabs released. 2570 */ 2571 static int drain_freelist(struct kmem_cache *cache, 2572 struct kmem_list3 *l3, int tofree) 2573 { 2574 struct list_head *p; 2575 int nr_freed; 2576 struct slab *slabp; 2577 2578 nr_freed = 0; 2579 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { 2580 2581 spin_lock_irq(&l3->list_lock); 2582 p = l3->slabs_free.prev; 2583 if (p == &l3->slabs_free) { 2584 spin_unlock_irq(&l3->list_lock); 2585 goto out; 2586 } 2587 2588 slabp = list_entry(p, struct slab, list); 2589 #if DEBUG 2590 BUG_ON(slabp->inuse); 2591 #endif 2592 list_del(&slabp->list); 2593 /* 2594 * Safe to drop the lock. The slab is no longer linked 2595 * to the cache. 2596 */ 2597 l3->free_objects -= cache->num; 2598 spin_unlock_irq(&l3->list_lock); 2599 slab_destroy(cache, slabp); 2600 nr_freed++; 2601 } 2602 out: 2603 return nr_freed; 2604 } 2605 2606 /* Called with cache_chain_mutex held to protect against cpu hotplug */ 2607 static int __cache_shrink(struct kmem_cache *cachep) 2608 { 2609 int ret = 0, i = 0; 2610 struct kmem_list3 *l3; 2611 2612 drain_cpu_caches(cachep); 2613 2614 check_irq_on(); 2615 for_each_online_node(i) { 2616 l3 = cachep->nodelists[i]; 2617 if (!l3) 2618 continue; 2619 2620 drain_freelist(cachep, l3, l3->free_objects); 2621 2622 ret += !list_empty(&l3->slabs_full) || 2623 !list_empty(&l3->slabs_partial); 2624 } 2625 return (ret ? 1 : 0); 2626 } 2627 2628 /** 2629 * kmem_cache_shrink - Shrink a cache. 2630 * @cachep: The cache to shrink. 2631 * 2632 * Releases as many slabs as possible for a cache. 2633 * To help debugging, a zero exit status indicates all slabs were released. 2634 */ 2635 int kmem_cache_shrink(struct kmem_cache *cachep) 2636 { 2637 int ret; 2638 BUG_ON(!cachep || in_interrupt()); 2639 2640 get_online_cpus(); 2641 mutex_lock(&cache_chain_mutex); 2642 ret = __cache_shrink(cachep); 2643 mutex_unlock(&cache_chain_mutex); 2644 put_online_cpus(); 2645 return ret; 2646 } 2647 EXPORT_SYMBOL(kmem_cache_shrink); 2648 2649 /** 2650 * kmem_cache_destroy - delete a cache 2651 * @cachep: the cache to destroy 2652 * 2653 * Remove a &struct kmem_cache object from the slab cache. 2654 * 2655 * It is expected this function will be called by a module when it is 2656 * unloaded. This will remove the cache completely, and avoid a duplicate 2657 * cache being allocated each time a module is loaded and unloaded, if the 2658 * module doesn't have persistent in-kernel storage across loads and unloads. 2659 * 2660 * The cache must be empty before calling this function. 2661 * 2662 * The caller must guarantee that no one will allocate memory from the cache 2663 * during the kmem_cache_destroy(). 2664 */ 2665 void kmem_cache_destroy(struct kmem_cache *cachep) 2666 { 2667 BUG_ON(!cachep || in_interrupt()); 2668 2669 /* Find the cache in the chain of caches. */ 2670 get_online_cpus(); 2671 mutex_lock(&cache_chain_mutex); 2672 /* 2673 * the chain is never empty, cache_cache is never destroyed 2674 */ 2675 list_del(&cachep->next); 2676 if (__cache_shrink(cachep)) { 2677 slab_error(cachep, "Can't free all objects"); 2678 list_add(&cachep->next, &cache_chain); 2679 mutex_unlock(&cache_chain_mutex); 2680 put_online_cpus(); 2681 return; 2682 } 2683 2684 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 2685 rcu_barrier(); 2686 2687 __kmem_cache_destroy(cachep); 2688 mutex_unlock(&cache_chain_mutex); 2689 put_online_cpus(); 2690 } 2691 EXPORT_SYMBOL(kmem_cache_destroy); 2692 2693 /* 2694 * Get the memory for a slab management obj. 2695 * For a slab cache when the slab descriptor is off-slab, slab descriptors 2696 * always come from malloc_sizes caches. The slab descriptor cannot 2697 * come from the same cache which is getting created because, 2698 * when we are searching for an appropriate cache for these 2699 * descriptors in kmem_cache_create, we search through the malloc_sizes array. 2700 * If we are creating a malloc_sizes cache here it would not be visible to 2701 * kmem_find_general_cachep till the initialization is complete. 2702 * Hence we cannot have slabp_cache same as the original cache. 2703 */ 2704 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, 2705 int colour_off, gfp_t local_flags, 2706 int nodeid) 2707 { 2708 struct slab *slabp; 2709 2710 if (OFF_SLAB(cachep)) { 2711 /* Slab management obj is off-slab. */ 2712 slabp = kmem_cache_alloc_node(cachep->slabp_cache, 2713 local_flags, nodeid); 2714 /* 2715 * If the first object in the slab is leaked (it's allocated 2716 * but no one has a reference to it), we want to make sure 2717 * kmemleak does not treat the ->s_mem pointer as a reference 2718 * to the object. Otherwise we will not report the leak. 2719 */ 2720 kmemleak_scan_area(&slabp->list, sizeof(struct list_head), 2721 local_flags); 2722 if (!slabp) 2723 return NULL; 2724 } else { 2725 slabp = objp + colour_off; 2726 colour_off += cachep->slab_size; 2727 } 2728 slabp->inuse = 0; 2729 slabp->colouroff = colour_off; 2730 slabp->s_mem = objp + colour_off; 2731 slabp->nodeid = nodeid; 2732 slabp->free = 0; 2733 return slabp; 2734 } 2735 2736 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) 2737 { 2738 return (kmem_bufctl_t *) (slabp + 1); 2739 } 2740 2741 static void cache_init_objs(struct kmem_cache *cachep, 2742 struct slab *slabp) 2743 { 2744 int i; 2745 2746 for (i = 0; i < cachep->num; i++) { 2747 void *objp = index_to_obj(cachep, slabp, i); 2748 #if DEBUG 2749 /* need to poison the objs? */ 2750 if (cachep->flags & SLAB_POISON) 2751 poison_obj(cachep, objp, POISON_FREE); 2752 if (cachep->flags & SLAB_STORE_USER) 2753 *dbg_userword(cachep, objp) = NULL; 2754 2755 if (cachep->flags & SLAB_RED_ZONE) { 2756 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2757 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2758 } 2759 /* 2760 * Constructors are not allowed to allocate memory from the same 2761 * cache which they are a constructor for. Otherwise, deadlock. 2762 * They must also be threaded. 2763 */ 2764 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2765 cachep->ctor(objp + obj_offset(cachep)); 2766 2767 if (cachep->flags & SLAB_RED_ZONE) { 2768 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2769 slab_error(cachep, "constructor overwrote the" 2770 " end of an object"); 2771 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2772 slab_error(cachep, "constructor overwrote the" 2773 " start of an object"); 2774 } 2775 if ((cachep->buffer_size % PAGE_SIZE) == 0 && 2776 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2777 kernel_map_pages(virt_to_page(objp), 2778 cachep->buffer_size / PAGE_SIZE, 0); 2779 #else 2780 if (cachep->ctor) 2781 cachep->ctor(objp); 2782 #endif 2783 slab_bufctl(slabp)[i] = i + 1; 2784 } 2785 slab_bufctl(slabp)[i - 1] = BUFCTL_END; 2786 } 2787 2788 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2789 { 2790 if (CONFIG_ZONE_DMA_FLAG) { 2791 if (flags & GFP_DMA) 2792 BUG_ON(!(cachep->gfpflags & GFP_DMA)); 2793 else 2794 BUG_ON(cachep->gfpflags & GFP_DMA); 2795 } 2796 } 2797 2798 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, 2799 int nodeid) 2800 { 2801 void *objp = index_to_obj(cachep, slabp, slabp->free); 2802 kmem_bufctl_t next; 2803 2804 slabp->inuse++; 2805 next = slab_bufctl(slabp)[slabp->free]; 2806 #if DEBUG 2807 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; 2808 WARN_ON(slabp->nodeid != nodeid); 2809 #endif 2810 slabp->free = next; 2811 2812 return objp; 2813 } 2814 2815 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, 2816 void *objp, int nodeid) 2817 { 2818 unsigned int objnr = obj_to_index(cachep, slabp, objp); 2819 2820 #if DEBUG 2821 /* Verify that the slab belongs to the intended node */ 2822 WARN_ON(slabp->nodeid != nodeid); 2823 2824 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { 2825 printk(KERN_ERR "slab: double free detected in cache " 2826 "'%s', objp %p\n", cachep->name, objp); 2827 BUG(); 2828 } 2829 #endif 2830 slab_bufctl(slabp)[objnr] = slabp->free; 2831 slabp->free = objnr; 2832 slabp->inuse--; 2833 } 2834 2835 /* 2836 * Map pages beginning at addr to the given cache and slab. This is required 2837 * for the slab allocator to be able to lookup the cache and slab of a 2838 * virtual address for kfree, ksize, and slab debugging. 2839 */ 2840 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, 2841 void *addr) 2842 { 2843 int nr_pages; 2844 struct page *page; 2845 2846 page = virt_to_page(addr); 2847 2848 nr_pages = 1; 2849 if (likely(!PageCompound(page))) 2850 nr_pages <<= cache->gfporder; 2851 2852 do { 2853 page_set_cache(page, cache); 2854 page_set_slab(page, slab); 2855 page++; 2856 } while (--nr_pages); 2857 } 2858 2859 /* 2860 * Grow (by 1) the number of slabs within a cache. This is called by 2861 * kmem_cache_alloc() when there are no active objs left in a cache. 2862 */ 2863 static int cache_grow(struct kmem_cache *cachep, 2864 gfp_t flags, int nodeid, void *objp) 2865 { 2866 struct slab *slabp; 2867 size_t offset; 2868 gfp_t local_flags; 2869 struct kmem_list3 *l3; 2870 2871 /* 2872 * Be lazy and only check for valid flags here, keeping it out of the 2873 * critical path in kmem_cache_alloc(). 2874 */ 2875 BUG_ON(flags & GFP_SLAB_BUG_MASK); 2876 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2877 2878 /* Take the l3 list lock to change the colour_next on this node */ 2879 check_irq_off(); 2880 l3 = cachep->nodelists[nodeid]; 2881 spin_lock(&l3->list_lock); 2882 2883 /* Get colour for the slab, and cal the next value. */ 2884 offset = l3->colour_next; 2885 l3->colour_next++; 2886 if (l3->colour_next >= cachep->colour) 2887 l3->colour_next = 0; 2888 spin_unlock(&l3->list_lock); 2889 2890 offset *= cachep->colour_off; 2891 2892 if (local_flags & __GFP_WAIT) 2893 local_irq_enable(); 2894 2895 /* 2896 * The test for missing atomic flag is performed here, rather than 2897 * the more obvious place, simply to reduce the critical path length 2898 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2899 * will eventually be caught here (where it matters). 2900 */ 2901 kmem_flagcheck(cachep, flags); 2902 2903 /* 2904 * Get mem for the objs. Attempt to allocate a physical page from 2905 * 'nodeid'. 2906 */ 2907 if (!objp) 2908 objp = kmem_getpages(cachep, local_flags, nodeid); 2909 if (!objp) 2910 goto failed; 2911 2912 /* Get slab management. */ 2913 slabp = alloc_slabmgmt(cachep, objp, offset, 2914 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2915 if (!slabp) 2916 goto opps1; 2917 2918 slab_map_pages(cachep, slabp, objp); 2919 2920 cache_init_objs(cachep, slabp); 2921 2922 if (local_flags & __GFP_WAIT) 2923 local_irq_disable(); 2924 check_irq_off(); 2925 spin_lock(&l3->list_lock); 2926 2927 /* Make slab active. */ 2928 list_add_tail(&slabp->list, &(l3->slabs_free)); 2929 STATS_INC_GROWN(cachep); 2930 l3->free_objects += cachep->num; 2931 spin_unlock(&l3->list_lock); 2932 return 1; 2933 opps1: 2934 kmem_freepages(cachep, objp); 2935 failed: 2936 if (local_flags & __GFP_WAIT) 2937 local_irq_disable(); 2938 return 0; 2939 } 2940 2941 #if DEBUG 2942 2943 /* 2944 * Perform extra freeing checks: 2945 * - detect bad pointers. 2946 * - POISON/RED_ZONE checking 2947 */ 2948 static void kfree_debugcheck(const void *objp) 2949 { 2950 if (!virt_addr_valid(objp)) { 2951 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2952 (unsigned long)objp); 2953 BUG(); 2954 } 2955 } 2956 2957 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2958 { 2959 unsigned long long redzone1, redzone2; 2960 2961 redzone1 = *dbg_redzone1(cache, obj); 2962 redzone2 = *dbg_redzone2(cache, obj); 2963 2964 /* 2965 * Redzone is ok. 2966 */ 2967 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2968 return; 2969 2970 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2971 slab_error(cache, "double free detected"); 2972 else 2973 slab_error(cache, "memory outside object was overwritten"); 2974 2975 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 2976 obj, redzone1, redzone2); 2977 } 2978 2979 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2980 void *caller) 2981 { 2982 struct page *page; 2983 unsigned int objnr; 2984 struct slab *slabp; 2985 2986 BUG_ON(virt_to_cache(objp) != cachep); 2987 2988 objp -= obj_offset(cachep); 2989 kfree_debugcheck(objp); 2990 page = virt_to_head_page(objp); 2991 2992 slabp = page_get_slab(page); 2993 2994 if (cachep->flags & SLAB_RED_ZONE) { 2995 verify_redzone_free(cachep, objp); 2996 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2997 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2998 } 2999 if (cachep->flags & SLAB_STORE_USER) 3000 *dbg_userword(cachep, objp) = caller; 3001 3002 objnr = obj_to_index(cachep, slabp, objp); 3003 3004 BUG_ON(objnr >= cachep->num); 3005 BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); 3006 3007 #ifdef CONFIG_DEBUG_SLAB_LEAK 3008 slab_bufctl(slabp)[objnr] = BUFCTL_FREE; 3009 #endif 3010 if (cachep->flags & SLAB_POISON) { 3011 #ifdef CONFIG_DEBUG_PAGEALLOC 3012 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 3013 store_stackinfo(cachep, objp, (unsigned long)caller); 3014 kernel_map_pages(virt_to_page(objp), 3015 cachep->buffer_size / PAGE_SIZE, 0); 3016 } else { 3017 poison_obj(cachep, objp, POISON_FREE); 3018 } 3019 #else 3020 poison_obj(cachep, objp, POISON_FREE); 3021 #endif 3022 } 3023 return objp; 3024 } 3025 3026 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) 3027 { 3028 kmem_bufctl_t i; 3029 int entries = 0; 3030 3031 /* Check slab's freelist to see if this obj is there. */ 3032 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { 3033 entries++; 3034 if (entries > cachep->num || i >= cachep->num) 3035 goto bad; 3036 } 3037 if (entries != cachep->num - slabp->inuse) { 3038 bad: 3039 printk(KERN_ERR "slab: Internal list corruption detected in " 3040 "cache '%s'(%d), slabp %p(%d). Hexdump:\n", 3041 cachep->name, cachep->num, slabp, slabp->inuse); 3042 for (i = 0; 3043 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); 3044 i++) { 3045 if (i % 16 == 0) 3046 printk("\n%03x:", i); 3047 printk(" %02x", ((unsigned char *)slabp)[i]); 3048 } 3049 printk("\n"); 3050 BUG(); 3051 } 3052 } 3053 #else 3054 #define kfree_debugcheck(x) do { } while(0) 3055 #define cache_free_debugcheck(x,objp,z) (objp) 3056 #define check_slabp(x,y) do { } while(0) 3057 #endif 3058 3059 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 3060 { 3061 int batchcount; 3062 struct kmem_list3 *l3; 3063 struct array_cache *ac; 3064 int node; 3065 3066 retry: 3067 check_irq_off(); 3068 node = numa_mem_id(); 3069 ac = cpu_cache_get(cachep); 3070 batchcount = ac->batchcount; 3071 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 3072 /* 3073 * If there was little recent activity on this cache, then 3074 * perform only a partial refill. Otherwise we could generate 3075 * refill bouncing. 3076 */ 3077 batchcount = BATCHREFILL_LIMIT; 3078 } 3079 l3 = cachep->nodelists[node]; 3080 3081 BUG_ON(ac->avail > 0 || !l3); 3082 spin_lock(&l3->list_lock); 3083 3084 /* See if we can refill from the shared array */ 3085 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) { 3086 l3->shared->touched = 1; 3087 goto alloc_done; 3088 } 3089 3090 while (batchcount > 0) { 3091 struct list_head *entry; 3092 struct slab *slabp; 3093 /* Get slab alloc is to come from. */ 3094 entry = l3->slabs_partial.next; 3095 if (entry == &l3->slabs_partial) { 3096 l3->free_touched = 1; 3097 entry = l3->slabs_free.next; 3098 if (entry == &l3->slabs_free) 3099 goto must_grow; 3100 } 3101 3102 slabp = list_entry(entry, struct slab, list); 3103 check_slabp(cachep, slabp); 3104 check_spinlock_acquired(cachep); 3105 3106 /* 3107 * The slab was either on partial or free list so 3108 * there must be at least one object available for 3109 * allocation. 3110 */ 3111 BUG_ON(slabp->inuse >= cachep->num); 3112 3113 while (slabp->inuse < cachep->num && batchcount--) { 3114 STATS_INC_ALLOCED(cachep); 3115 STATS_INC_ACTIVE(cachep); 3116 STATS_SET_HIGH(cachep); 3117 3118 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, 3119 node); 3120 } 3121 check_slabp(cachep, slabp); 3122 3123 /* move slabp to correct slabp list: */ 3124 list_del(&slabp->list); 3125 if (slabp->free == BUFCTL_END) 3126 list_add(&slabp->list, &l3->slabs_full); 3127 else 3128 list_add(&slabp->list, &l3->slabs_partial); 3129 } 3130 3131 must_grow: 3132 l3->free_objects -= ac->avail; 3133 alloc_done: 3134 spin_unlock(&l3->list_lock); 3135 3136 if (unlikely(!ac->avail)) { 3137 int x; 3138 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 3139 3140 /* cache_grow can reenable interrupts, then ac could change. */ 3141 ac = cpu_cache_get(cachep); 3142 if (!x && ac->avail == 0) /* no objects in sight? abort */ 3143 return NULL; 3144 3145 if (!ac->avail) /* objects refilled by interrupt? */ 3146 goto retry; 3147 } 3148 ac->touched = 1; 3149 return ac->entry[--ac->avail]; 3150 } 3151 3152 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3153 gfp_t flags) 3154 { 3155 might_sleep_if(flags & __GFP_WAIT); 3156 #if DEBUG 3157 kmem_flagcheck(cachep, flags); 3158 #endif 3159 } 3160 3161 #if DEBUG 3162 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3163 gfp_t flags, void *objp, void *caller) 3164 { 3165 if (!objp) 3166 return objp; 3167 if (cachep->flags & SLAB_POISON) { 3168 #ifdef CONFIG_DEBUG_PAGEALLOC 3169 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 3170 kernel_map_pages(virt_to_page(objp), 3171 cachep->buffer_size / PAGE_SIZE, 1); 3172 else 3173 check_poison_obj(cachep, objp); 3174 #else 3175 check_poison_obj(cachep, objp); 3176 #endif 3177 poison_obj(cachep, objp, POISON_INUSE); 3178 } 3179 if (cachep->flags & SLAB_STORE_USER) 3180 *dbg_userword(cachep, objp) = caller; 3181 3182 if (cachep->flags & SLAB_RED_ZONE) { 3183 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3184 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3185 slab_error(cachep, "double free, or memory outside" 3186 " object was overwritten"); 3187 printk(KERN_ERR 3188 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3189 objp, *dbg_redzone1(cachep, objp), 3190 *dbg_redzone2(cachep, objp)); 3191 } 3192 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3193 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3194 } 3195 #ifdef CONFIG_DEBUG_SLAB_LEAK 3196 { 3197 struct slab *slabp; 3198 unsigned objnr; 3199 3200 slabp = page_get_slab(virt_to_head_page(objp)); 3201 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; 3202 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; 3203 } 3204 #endif 3205 objp += obj_offset(cachep); 3206 if (cachep->ctor && cachep->flags & SLAB_POISON) 3207 cachep->ctor(objp); 3208 if (ARCH_SLAB_MINALIGN && 3209 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3210 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3211 objp, (int)ARCH_SLAB_MINALIGN); 3212 } 3213 return objp; 3214 } 3215 #else 3216 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3217 #endif 3218 3219 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) 3220 { 3221 if (cachep == &cache_cache) 3222 return false; 3223 3224 return should_failslab(obj_size(cachep), flags, cachep->flags); 3225 } 3226 3227 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3228 { 3229 void *objp; 3230 struct array_cache *ac; 3231 3232 check_irq_off(); 3233 3234 ac = cpu_cache_get(cachep); 3235 if (likely(ac->avail)) { 3236 STATS_INC_ALLOCHIT(cachep); 3237 ac->touched = 1; 3238 objp = ac->entry[--ac->avail]; 3239 } else { 3240 STATS_INC_ALLOCMISS(cachep); 3241 objp = cache_alloc_refill(cachep, flags); 3242 /* 3243 * the 'ac' may be updated by cache_alloc_refill(), 3244 * and kmemleak_erase() requires its correct value. 3245 */ 3246 ac = cpu_cache_get(cachep); 3247 } 3248 /* 3249 * To avoid a false negative, if an object that is in one of the 3250 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3251 * treat the array pointers as a reference to the object. 3252 */ 3253 if (objp) 3254 kmemleak_erase(&ac->entry[ac->avail]); 3255 return objp; 3256 } 3257 3258 #ifdef CONFIG_NUMA 3259 /* 3260 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. 3261 * 3262 * If we are in_interrupt, then process context, including cpusets and 3263 * mempolicy, may not apply and should not be used for allocation policy. 3264 */ 3265 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3266 { 3267 int nid_alloc, nid_here; 3268 3269 if (in_interrupt() || (flags & __GFP_THISNODE)) 3270 return NULL; 3271 nid_alloc = nid_here = numa_mem_id(); 3272 get_mems_allowed(); 3273 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3274 nid_alloc = cpuset_slab_spread_node(); 3275 else if (current->mempolicy) 3276 nid_alloc = slab_node(current->mempolicy); 3277 put_mems_allowed(); 3278 if (nid_alloc != nid_here) 3279 return ____cache_alloc_node(cachep, flags, nid_alloc); 3280 return NULL; 3281 } 3282 3283 /* 3284 * Fallback function if there was no memory available and no objects on a 3285 * certain node and fall back is permitted. First we scan all the 3286 * available nodelists for available objects. If that fails then we 3287 * perform an allocation without specifying a node. This allows the page 3288 * allocator to do its reclaim / fallback magic. We then insert the 3289 * slab into the proper nodelist and then allocate from it. 3290 */ 3291 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3292 { 3293 struct zonelist *zonelist; 3294 gfp_t local_flags; 3295 struct zoneref *z; 3296 struct zone *zone; 3297 enum zone_type high_zoneidx = gfp_zone(flags); 3298 void *obj = NULL; 3299 int nid; 3300 3301 if (flags & __GFP_THISNODE) 3302 return NULL; 3303 3304 get_mems_allowed(); 3305 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 3306 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3307 3308 retry: 3309 /* 3310 * Look through allowed nodes for objects available 3311 * from existing per node queues. 3312 */ 3313 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3314 nid = zone_to_nid(zone); 3315 3316 if (cpuset_zone_allowed_hardwall(zone, flags) && 3317 cache->nodelists[nid] && 3318 cache->nodelists[nid]->free_objects) { 3319 obj = ____cache_alloc_node(cache, 3320 flags | GFP_THISNODE, nid); 3321 if (obj) 3322 break; 3323 } 3324 } 3325 3326 if (!obj) { 3327 /* 3328 * This allocation will be performed within the constraints 3329 * of the current cpuset / memory policy requirements. 3330 * We may trigger various forms of reclaim on the allowed 3331 * set and go into memory reserves if necessary. 3332 */ 3333 if (local_flags & __GFP_WAIT) 3334 local_irq_enable(); 3335 kmem_flagcheck(cache, flags); 3336 obj = kmem_getpages(cache, local_flags, numa_mem_id()); 3337 if (local_flags & __GFP_WAIT) 3338 local_irq_disable(); 3339 if (obj) { 3340 /* 3341 * Insert into the appropriate per node queues 3342 */ 3343 nid = page_to_nid(virt_to_page(obj)); 3344 if (cache_grow(cache, flags, nid, obj)) { 3345 obj = ____cache_alloc_node(cache, 3346 flags | GFP_THISNODE, nid); 3347 if (!obj) 3348 /* 3349 * Another processor may allocate the 3350 * objects in the slab since we are 3351 * not holding any locks. 3352 */ 3353 goto retry; 3354 } else { 3355 /* cache_grow already freed obj */ 3356 obj = NULL; 3357 } 3358 } 3359 } 3360 put_mems_allowed(); 3361 return obj; 3362 } 3363 3364 /* 3365 * A interface to enable slab creation on nodeid 3366 */ 3367 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3368 int nodeid) 3369 { 3370 struct list_head *entry; 3371 struct slab *slabp; 3372 struct kmem_list3 *l3; 3373 void *obj; 3374 int x; 3375 3376 l3 = cachep->nodelists[nodeid]; 3377 BUG_ON(!l3); 3378 3379 retry: 3380 check_irq_off(); 3381 spin_lock(&l3->list_lock); 3382 entry = l3->slabs_partial.next; 3383 if (entry == &l3->slabs_partial) { 3384 l3->free_touched = 1; 3385 entry = l3->slabs_free.next; 3386 if (entry == &l3->slabs_free) 3387 goto must_grow; 3388 } 3389 3390 slabp = list_entry(entry, struct slab, list); 3391 check_spinlock_acquired_node(cachep, nodeid); 3392 check_slabp(cachep, slabp); 3393 3394 STATS_INC_NODEALLOCS(cachep); 3395 STATS_INC_ACTIVE(cachep); 3396 STATS_SET_HIGH(cachep); 3397 3398 BUG_ON(slabp->inuse == cachep->num); 3399 3400 obj = slab_get_obj(cachep, slabp, nodeid); 3401 check_slabp(cachep, slabp); 3402 l3->free_objects--; 3403 /* move slabp to correct slabp list: */ 3404 list_del(&slabp->list); 3405 3406 if (slabp->free == BUFCTL_END) 3407 list_add(&slabp->list, &l3->slabs_full); 3408 else 3409 list_add(&slabp->list, &l3->slabs_partial); 3410 3411 spin_unlock(&l3->list_lock); 3412 goto done; 3413 3414 must_grow: 3415 spin_unlock(&l3->list_lock); 3416 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3417 if (x) 3418 goto retry; 3419 3420 return fallback_alloc(cachep, flags); 3421 3422 done: 3423 return obj; 3424 } 3425 3426 /** 3427 * kmem_cache_alloc_node - Allocate an object on the specified node 3428 * @cachep: The cache to allocate from. 3429 * @flags: See kmalloc(). 3430 * @nodeid: node number of the target node. 3431 * @caller: return address of caller, used for debug information 3432 * 3433 * Identical to kmem_cache_alloc but it will allocate memory on the given 3434 * node, which can improve the performance for cpu bound structures. 3435 * 3436 * Fallback to other node is possible if __GFP_THISNODE is not set. 3437 */ 3438 static __always_inline void * 3439 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3440 void *caller) 3441 { 3442 unsigned long save_flags; 3443 void *ptr; 3444 int slab_node = numa_mem_id(); 3445 3446 flags &= gfp_allowed_mask; 3447 3448 lockdep_trace_alloc(flags); 3449 3450 if (slab_should_failslab(cachep, flags)) 3451 return NULL; 3452 3453 cache_alloc_debugcheck_before(cachep, flags); 3454 local_irq_save(save_flags); 3455 3456 if (nodeid == NUMA_NO_NODE) 3457 nodeid = slab_node; 3458 3459 if (unlikely(!cachep->nodelists[nodeid])) { 3460 /* Node not bootstrapped yet */ 3461 ptr = fallback_alloc(cachep, flags); 3462 goto out; 3463 } 3464 3465 if (nodeid == slab_node) { 3466 /* 3467 * Use the locally cached objects if possible. 3468 * However ____cache_alloc does not allow fallback 3469 * to other nodes. It may fail while we still have 3470 * objects on other nodes available. 3471 */ 3472 ptr = ____cache_alloc(cachep, flags); 3473 if (ptr) 3474 goto out; 3475 } 3476 /* ___cache_alloc_node can fall back to other nodes */ 3477 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3478 out: 3479 local_irq_restore(save_flags); 3480 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3481 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags, 3482 flags); 3483 3484 if (likely(ptr)) 3485 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep)); 3486 3487 if (unlikely((flags & __GFP_ZERO) && ptr)) 3488 memset(ptr, 0, obj_size(cachep)); 3489 3490 return ptr; 3491 } 3492 3493 static __always_inline void * 3494 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3495 { 3496 void *objp; 3497 3498 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { 3499 objp = alternate_node_alloc(cache, flags); 3500 if (objp) 3501 goto out; 3502 } 3503 objp = ____cache_alloc(cache, flags); 3504 3505 /* 3506 * We may just have run out of memory on the local node. 3507 * ____cache_alloc_node() knows how to locate memory on other nodes 3508 */ 3509 if (!objp) 3510 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3511 3512 out: 3513 return objp; 3514 } 3515 #else 3516 3517 static __always_inline void * 3518 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3519 { 3520 return ____cache_alloc(cachep, flags); 3521 } 3522 3523 #endif /* CONFIG_NUMA */ 3524 3525 static __always_inline void * 3526 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) 3527 { 3528 unsigned long save_flags; 3529 void *objp; 3530 3531 flags &= gfp_allowed_mask; 3532 3533 lockdep_trace_alloc(flags); 3534 3535 if (slab_should_failslab(cachep, flags)) 3536 return NULL; 3537 3538 cache_alloc_debugcheck_before(cachep, flags); 3539 local_irq_save(save_flags); 3540 objp = __do_cache_alloc(cachep, flags); 3541 local_irq_restore(save_flags); 3542 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3543 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags, 3544 flags); 3545 prefetchw(objp); 3546 3547 if (likely(objp)) 3548 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep)); 3549 3550 if (unlikely((flags & __GFP_ZERO) && objp)) 3551 memset(objp, 0, obj_size(cachep)); 3552 3553 return objp; 3554 } 3555 3556 /* 3557 * Caller needs to acquire correct kmem_list's list_lock 3558 */ 3559 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, 3560 int node) 3561 { 3562 int i; 3563 struct kmem_list3 *l3; 3564 3565 for (i = 0; i < nr_objects; i++) { 3566 void *objp = objpp[i]; 3567 struct slab *slabp; 3568 3569 slabp = virt_to_slab(objp); 3570 l3 = cachep->nodelists[node]; 3571 list_del(&slabp->list); 3572 check_spinlock_acquired_node(cachep, node); 3573 check_slabp(cachep, slabp); 3574 slab_put_obj(cachep, slabp, objp, node); 3575 STATS_DEC_ACTIVE(cachep); 3576 l3->free_objects++; 3577 check_slabp(cachep, slabp); 3578 3579 /* fixup slab chains */ 3580 if (slabp->inuse == 0) { 3581 if (l3->free_objects > l3->free_limit) { 3582 l3->free_objects -= cachep->num; 3583 /* No need to drop any previously held 3584 * lock here, even if we have a off-slab slab 3585 * descriptor it is guaranteed to come from 3586 * a different cache, refer to comments before 3587 * alloc_slabmgmt. 3588 */ 3589 slab_destroy(cachep, slabp); 3590 } else { 3591 list_add(&slabp->list, &l3->slabs_free); 3592 } 3593 } else { 3594 /* Unconditionally move a slab to the end of the 3595 * partial list on free - maximum time for the 3596 * other objects to be freed, too. 3597 */ 3598 list_add_tail(&slabp->list, &l3->slabs_partial); 3599 } 3600 } 3601 } 3602 3603 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3604 { 3605 int batchcount; 3606 struct kmem_list3 *l3; 3607 int node = numa_mem_id(); 3608 3609 batchcount = ac->batchcount; 3610 #if DEBUG 3611 BUG_ON(!batchcount || batchcount > ac->avail); 3612 #endif 3613 check_irq_off(); 3614 l3 = cachep->nodelists[node]; 3615 spin_lock(&l3->list_lock); 3616 if (l3->shared) { 3617 struct array_cache *shared_array = l3->shared; 3618 int max = shared_array->limit - shared_array->avail; 3619 if (max) { 3620 if (batchcount > max) 3621 batchcount = max; 3622 memcpy(&(shared_array->entry[shared_array->avail]), 3623 ac->entry, sizeof(void *) * batchcount); 3624 shared_array->avail += batchcount; 3625 goto free_done; 3626 } 3627 } 3628 3629 free_block(cachep, ac->entry, batchcount, node); 3630 free_done: 3631 #if STATS 3632 { 3633 int i = 0; 3634 struct list_head *p; 3635 3636 p = l3->slabs_free.next; 3637 while (p != &(l3->slabs_free)) { 3638 struct slab *slabp; 3639 3640 slabp = list_entry(p, struct slab, list); 3641 BUG_ON(slabp->inuse); 3642 3643 i++; 3644 p = p->next; 3645 } 3646 STATS_SET_FREEABLE(cachep, i); 3647 } 3648 #endif 3649 spin_unlock(&l3->list_lock); 3650 ac->avail -= batchcount; 3651 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3652 } 3653 3654 /* 3655 * Release an obj back to its cache. If the obj has a constructed state, it must 3656 * be in this state _before_ it is released. Called with disabled ints. 3657 */ 3658 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3659 void *caller) 3660 { 3661 struct array_cache *ac = cpu_cache_get(cachep); 3662 3663 check_irq_off(); 3664 kmemleak_free_recursive(objp, cachep->flags); 3665 objp = cache_free_debugcheck(cachep, objp, caller); 3666 3667 kmemcheck_slab_free(cachep, objp, obj_size(cachep)); 3668 3669 /* 3670 * Skip calling cache_free_alien() when the platform is not numa. 3671 * This will avoid cache misses that happen while accessing slabp (which 3672 * is per page memory reference) to get nodeid. Instead use a global 3673 * variable to skip the call, which is mostly likely to be present in 3674 * the cache. 3675 */ 3676 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3677 return; 3678 3679 if (likely(ac->avail < ac->limit)) { 3680 STATS_INC_FREEHIT(cachep); 3681 ac->entry[ac->avail++] = objp; 3682 return; 3683 } else { 3684 STATS_INC_FREEMISS(cachep); 3685 cache_flusharray(cachep, ac); 3686 ac->entry[ac->avail++] = objp; 3687 } 3688 } 3689 3690 /** 3691 * kmem_cache_alloc - Allocate an object 3692 * @cachep: The cache to allocate from. 3693 * @flags: See kmalloc(). 3694 * 3695 * Allocate an object from this cache. The flags are only relevant 3696 * if the cache has no available objects. 3697 */ 3698 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3699 { 3700 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); 3701 3702 trace_kmem_cache_alloc(_RET_IP_, ret, 3703 obj_size(cachep), cachep->buffer_size, flags); 3704 3705 return ret; 3706 } 3707 EXPORT_SYMBOL(kmem_cache_alloc); 3708 3709 #ifdef CONFIG_TRACING 3710 void * 3711 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags) 3712 { 3713 void *ret; 3714 3715 ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); 3716 3717 trace_kmalloc(_RET_IP_, ret, 3718 size, slab_buffer_size(cachep), flags); 3719 return ret; 3720 } 3721 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3722 #endif 3723 3724 #ifdef CONFIG_NUMA 3725 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3726 { 3727 void *ret = __cache_alloc_node(cachep, flags, nodeid, 3728 __builtin_return_address(0)); 3729 3730 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3731 obj_size(cachep), cachep->buffer_size, 3732 flags, nodeid); 3733 3734 return ret; 3735 } 3736 EXPORT_SYMBOL(kmem_cache_alloc_node); 3737 3738 #ifdef CONFIG_TRACING 3739 void *kmem_cache_alloc_node_trace(size_t size, 3740 struct kmem_cache *cachep, 3741 gfp_t flags, 3742 int nodeid) 3743 { 3744 void *ret; 3745 3746 ret = __cache_alloc_node(cachep, flags, nodeid, 3747 __builtin_return_address(0)); 3748 trace_kmalloc_node(_RET_IP_, ret, 3749 size, slab_buffer_size(cachep), 3750 flags, nodeid); 3751 return ret; 3752 } 3753 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3754 #endif 3755 3756 static __always_inline void * 3757 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) 3758 { 3759 struct kmem_cache *cachep; 3760 3761 cachep = kmem_find_general_cachep(size, flags); 3762 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3763 return cachep; 3764 return kmem_cache_alloc_node_trace(size, cachep, flags, node); 3765 } 3766 3767 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3768 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3769 { 3770 return __do_kmalloc_node(size, flags, node, 3771 __builtin_return_address(0)); 3772 } 3773 EXPORT_SYMBOL(__kmalloc_node); 3774 3775 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3776 int node, unsigned long caller) 3777 { 3778 return __do_kmalloc_node(size, flags, node, (void *)caller); 3779 } 3780 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3781 #else 3782 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3783 { 3784 return __do_kmalloc_node(size, flags, node, NULL); 3785 } 3786 EXPORT_SYMBOL(__kmalloc_node); 3787 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ 3788 #endif /* CONFIG_NUMA */ 3789 3790 /** 3791 * __do_kmalloc - allocate memory 3792 * @size: how many bytes of memory are required. 3793 * @flags: the type of memory to allocate (see kmalloc). 3794 * @caller: function caller for debug tracking of the caller 3795 */ 3796 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3797 void *caller) 3798 { 3799 struct kmem_cache *cachep; 3800 void *ret; 3801 3802 /* If you want to save a few bytes .text space: replace 3803 * __ with kmem_. 3804 * Then kmalloc uses the uninlined functions instead of the inline 3805 * functions. 3806 */ 3807 cachep = __find_general_cachep(size, flags); 3808 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3809 return cachep; 3810 ret = __cache_alloc(cachep, flags, caller); 3811 3812 trace_kmalloc((unsigned long) caller, ret, 3813 size, cachep->buffer_size, flags); 3814 3815 return ret; 3816 } 3817 3818 3819 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3820 void *__kmalloc(size_t size, gfp_t flags) 3821 { 3822 return __do_kmalloc(size, flags, __builtin_return_address(0)); 3823 } 3824 EXPORT_SYMBOL(__kmalloc); 3825 3826 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3827 { 3828 return __do_kmalloc(size, flags, (void *)caller); 3829 } 3830 EXPORT_SYMBOL(__kmalloc_track_caller); 3831 3832 #else 3833 void *__kmalloc(size_t size, gfp_t flags) 3834 { 3835 return __do_kmalloc(size, flags, NULL); 3836 } 3837 EXPORT_SYMBOL(__kmalloc); 3838 #endif 3839 3840 /** 3841 * kmem_cache_free - Deallocate an object 3842 * @cachep: The cache the allocation was from. 3843 * @objp: The previously allocated object. 3844 * 3845 * Free an object which was previously allocated from this 3846 * cache. 3847 */ 3848 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3849 { 3850 unsigned long flags; 3851 3852 local_irq_save(flags); 3853 debug_check_no_locks_freed(objp, obj_size(cachep)); 3854 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3855 debug_check_no_obj_freed(objp, obj_size(cachep)); 3856 __cache_free(cachep, objp, __builtin_return_address(0)); 3857 local_irq_restore(flags); 3858 3859 trace_kmem_cache_free(_RET_IP_, objp); 3860 } 3861 EXPORT_SYMBOL(kmem_cache_free); 3862 3863 /** 3864 * kfree - free previously allocated memory 3865 * @objp: pointer returned by kmalloc. 3866 * 3867 * If @objp is NULL, no operation is performed. 3868 * 3869 * Don't free memory not originally allocated by kmalloc() 3870 * or you will run into trouble. 3871 */ 3872 void kfree(const void *objp) 3873 { 3874 struct kmem_cache *c; 3875 unsigned long flags; 3876 3877 trace_kfree(_RET_IP_, objp); 3878 3879 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3880 return; 3881 local_irq_save(flags); 3882 kfree_debugcheck(objp); 3883 c = virt_to_cache(objp); 3884 debug_check_no_locks_freed(objp, obj_size(c)); 3885 debug_check_no_obj_freed(objp, obj_size(c)); 3886 __cache_free(c, (void *)objp, __builtin_return_address(0)); 3887 local_irq_restore(flags); 3888 } 3889 EXPORT_SYMBOL(kfree); 3890 3891 unsigned int kmem_cache_size(struct kmem_cache *cachep) 3892 { 3893 return obj_size(cachep); 3894 } 3895 EXPORT_SYMBOL(kmem_cache_size); 3896 3897 /* 3898 * This initializes kmem_list3 or resizes various caches for all nodes. 3899 */ 3900 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) 3901 { 3902 int node; 3903 struct kmem_list3 *l3; 3904 struct array_cache *new_shared; 3905 struct array_cache **new_alien = NULL; 3906 3907 for_each_online_node(node) { 3908 3909 if (use_alien_caches) { 3910 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 3911 if (!new_alien) 3912 goto fail; 3913 } 3914 3915 new_shared = NULL; 3916 if (cachep->shared) { 3917 new_shared = alloc_arraycache(node, 3918 cachep->shared*cachep->batchcount, 3919 0xbaadf00d, gfp); 3920 if (!new_shared) { 3921 free_alien_cache(new_alien); 3922 goto fail; 3923 } 3924 } 3925 3926 l3 = cachep->nodelists[node]; 3927 if (l3) { 3928 struct array_cache *shared = l3->shared; 3929 3930 spin_lock_irq(&l3->list_lock); 3931 3932 if (shared) 3933 free_block(cachep, shared->entry, 3934 shared->avail, node); 3935 3936 l3->shared = new_shared; 3937 if (!l3->alien) { 3938 l3->alien = new_alien; 3939 new_alien = NULL; 3940 } 3941 l3->free_limit = (1 + nr_cpus_node(node)) * 3942 cachep->batchcount + cachep->num; 3943 spin_unlock_irq(&l3->list_lock); 3944 kfree(shared); 3945 free_alien_cache(new_alien); 3946 continue; 3947 } 3948 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); 3949 if (!l3) { 3950 free_alien_cache(new_alien); 3951 kfree(new_shared); 3952 goto fail; 3953 } 3954 3955 kmem_list3_init(l3); 3956 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 3957 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 3958 l3->shared = new_shared; 3959 l3->alien = new_alien; 3960 l3->free_limit = (1 + nr_cpus_node(node)) * 3961 cachep->batchcount + cachep->num; 3962 cachep->nodelists[node] = l3; 3963 } 3964 return 0; 3965 3966 fail: 3967 if (!cachep->next.next) { 3968 /* Cache is not active yet. Roll back what we did */ 3969 node--; 3970 while (node >= 0) { 3971 if (cachep->nodelists[node]) { 3972 l3 = cachep->nodelists[node]; 3973 3974 kfree(l3->shared); 3975 free_alien_cache(l3->alien); 3976 kfree(l3); 3977 cachep->nodelists[node] = NULL; 3978 } 3979 node--; 3980 } 3981 } 3982 return -ENOMEM; 3983 } 3984 3985 struct ccupdate_struct { 3986 struct kmem_cache *cachep; 3987 struct array_cache *new[0]; 3988 }; 3989 3990 static void do_ccupdate_local(void *info) 3991 { 3992 struct ccupdate_struct *new = info; 3993 struct array_cache *old; 3994 3995 check_irq_off(); 3996 old = cpu_cache_get(new->cachep); 3997 3998 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 3999 new->new[smp_processor_id()] = old; 4000 } 4001 4002 /* Always called with the cache_chain_mutex held */ 4003 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 4004 int batchcount, int shared, gfp_t gfp) 4005 { 4006 struct ccupdate_struct *new; 4007 int i; 4008 4009 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *), 4010 gfp); 4011 if (!new) 4012 return -ENOMEM; 4013 4014 for_each_online_cpu(i) { 4015 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, 4016 batchcount, gfp); 4017 if (!new->new[i]) { 4018 for (i--; i >= 0; i--) 4019 kfree(new->new[i]); 4020 kfree(new); 4021 return -ENOMEM; 4022 } 4023 } 4024 new->cachep = cachep; 4025 4026 on_each_cpu(do_ccupdate_local, (void *)new, 1); 4027 4028 check_irq_on(); 4029 cachep->batchcount = batchcount; 4030 cachep->limit = limit; 4031 cachep->shared = shared; 4032 4033 for_each_online_cpu(i) { 4034 struct array_cache *ccold = new->new[i]; 4035 if (!ccold) 4036 continue; 4037 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); 4038 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); 4039 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); 4040 kfree(ccold); 4041 } 4042 kfree(new); 4043 return alloc_kmemlist(cachep, gfp); 4044 } 4045 4046 /* Called with cache_chain_mutex held always */ 4047 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 4048 { 4049 int err; 4050 int limit, shared; 4051 4052 /* 4053 * The head array serves three purposes: 4054 * - create a LIFO ordering, i.e. return objects that are cache-warm 4055 * - reduce the number of spinlock operations. 4056 * - reduce the number of linked list operations on the slab and 4057 * bufctl chains: array operations are cheaper. 4058 * The numbers are guessed, we should auto-tune as described by 4059 * Bonwick. 4060 */ 4061 if (cachep->buffer_size > 131072) 4062 limit = 1; 4063 else if (cachep->buffer_size > PAGE_SIZE) 4064 limit = 8; 4065 else if (cachep->buffer_size > 1024) 4066 limit = 24; 4067 else if (cachep->buffer_size > 256) 4068 limit = 54; 4069 else 4070 limit = 120; 4071 4072 /* 4073 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 4074 * allocation behaviour: Most allocs on one cpu, most free operations 4075 * on another cpu. For these cases, an efficient object passing between 4076 * cpus is necessary. This is provided by a shared array. The array 4077 * replaces Bonwick's magazine layer. 4078 * On uniprocessor, it's functionally equivalent (but less efficient) 4079 * to a larger limit. Thus disabled by default. 4080 */ 4081 shared = 0; 4082 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1) 4083 shared = 8; 4084 4085 #if DEBUG 4086 /* 4087 * With debugging enabled, large batchcount lead to excessively long 4088 * periods with disabled local interrupts. Limit the batchcount 4089 */ 4090 if (limit > 32) 4091 limit = 32; 4092 #endif 4093 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp); 4094 if (err) 4095 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 4096 cachep->name, -err); 4097 return err; 4098 } 4099 4100 /* 4101 * Drain an array if it contains any elements taking the l3 lock only if 4102 * necessary. Note that the l3 listlock also protects the array_cache 4103 * if drain_array() is used on the shared array. 4104 */ 4105 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 4106 struct array_cache *ac, int force, int node) 4107 { 4108 int tofree; 4109 4110 if (!ac || !ac->avail) 4111 return; 4112 if (ac->touched && !force) { 4113 ac->touched = 0; 4114 } else { 4115 spin_lock_irq(&l3->list_lock); 4116 if (ac->avail) { 4117 tofree = force ? ac->avail : (ac->limit + 4) / 5; 4118 if (tofree > ac->avail) 4119 tofree = (ac->avail + 1) / 2; 4120 free_block(cachep, ac->entry, tofree, node); 4121 ac->avail -= tofree; 4122 memmove(ac->entry, &(ac->entry[tofree]), 4123 sizeof(void *) * ac->avail); 4124 } 4125 spin_unlock_irq(&l3->list_lock); 4126 } 4127 } 4128 4129 /** 4130 * cache_reap - Reclaim memory from caches. 4131 * @w: work descriptor 4132 * 4133 * Called from workqueue/eventd every few seconds. 4134 * Purpose: 4135 * - clear the per-cpu caches for this CPU. 4136 * - return freeable pages to the main free memory pool. 4137 * 4138 * If we cannot acquire the cache chain mutex then just give up - we'll try 4139 * again on the next iteration. 4140 */ 4141 static void cache_reap(struct work_struct *w) 4142 { 4143 struct kmem_cache *searchp; 4144 struct kmem_list3 *l3; 4145 int node = numa_mem_id(); 4146 struct delayed_work *work = to_delayed_work(w); 4147 4148 if (!mutex_trylock(&cache_chain_mutex)) 4149 /* Give up. Setup the next iteration. */ 4150 goto out; 4151 4152 list_for_each_entry(searchp, &cache_chain, next) { 4153 check_irq_on(); 4154 4155 /* 4156 * We only take the l3 lock if absolutely necessary and we 4157 * have established with reasonable certainty that 4158 * we can do some work if the lock was obtained. 4159 */ 4160 l3 = searchp->nodelists[node]; 4161 4162 reap_alien(searchp, l3); 4163 4164 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); 4165 4166 /* 4167 * These are racy checks but it does not matter 4168 * if we skip one check or scan twice. 4169 */ 4170 if (time_after(l3->next_reap, jiffies)) 4171 goto next; 4172 4173 l3->next_reap = jiffies + REAPTIMEOUT_LIST3; 4174 4175 drain_array(searchp, l3, l3->shared, 0, node); 4176 4177 if (l3->free_touched) 4178 l3->free_touched = 0; 4179 else { 4180 int freed; 4181 4182 freed = drain_freelist(searchp, l3, (l3->free_limit + 4183 5 * searchp->num - 1) / (5 * searchp->num)); 4184 STATS_ADD_REAPED(searchp, freed); 4185 } 4186 next: 4187 cond_resched(); 4188 } 4189 check_irq_on(); 4190 mutex_unlock(&cache_chain_mutex); 4191 next_reap_node(); 4192 out: 4193 /* Set up the next iteration */ 4194 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); 4195 } 4196 4197 #ifdef CONFIG_SLABINFO 4198 4199 static void print_slabinfo_header(struct seq_file *m) 4200 { 4201 /* 4202 * Output format version, so at least we can change it 4203 * without _too_ many complaints. 4204 */ 4205 #if STATS 4206 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 4207 #else 4208 seq_puts(m, "slabinfo - version: 2.1\n"); 4209 #endif 4210 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4211 "<objperslab> <pagesperslab>"); 4212 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4213 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4214 #if STATS 4215 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " 4216 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 4217 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 4218 #endif 4219 seq_putc(m, '\n'); 4220 } 4221 4222 static void *s_start(struct seq_file *m, loff_t *pos) 4223 { 4224 loff_t n = *pos; 4225 4226 mutex_lock(&cache_chain_mutex); 4227 if (!n) 4228 print_slabinfo_header(m); 4229 4230 return seq_list_start(&cache_chain, *pos); 4231 } 4232 4233 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4234 { 4235 return seq_list_next(p, &cache_chain, pos); 4236 } 4237 4238 static void s_stop(struct seq_file *m, void *p) 4239 { 4240 mutex_unlock(&cache_chain_mutex); 4241 } 4242 4243 static int s_show(struct seq_file *m, void *p) 4244 { 4245 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4246 struct slab *slabp; 4247 unsigned long active_objs; 4248 unsigned long num_objs; 4249 unsigned long active_slabs = 0; 4250 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4251 const char *name; 4252 char *error = NULL; 4253 int node; 4254 struct kmem_list3 *l3; 4255 4256 active_objs = 0; 4257 num_slabs = 0; 4258 for_each_online_node(node) { 4259 l3 = cachep->nodelists[node]; 4260 if (!l3) 4261 continue; 4262 4263 check_irq_on(); 4264 spin_lock_irq(&l3->list_lock); 4265 4266 list_for_each_entry(slabp, &l3->slabs_full, list) { 4267 if (slabp->inuse != cachep->num && !error) 4268 error = "slabs_full accounting error"; 4269 active_objs += cachep->num; 4270 active_slabs++; 4271 } 4272 list_for_each_entry(slabp, &l3->slabs_partial, list) { 4273 if (slabp->inuse == cachep->num && !error) 4274 error = "slabs_partial inuse accounting error"; 4275 if (!slabp->inuse && !error) 4276 error = "slabs_partial/inuse accounting error"; 4277 active_objs += slabp->inuse; 4278 active_slabs++; 4279 } 4280 list_for_each_entry(slabp, &l3->slabs_free, list) { 4281 if (slabp->inuse && !error) 4282 error = "slabs_free/inuse accounting error"; 4283 num_slabs++; 4284 } 4285 free_objects += l3->free_objects; 4286 if (l3->shared) 4287 shared_avail += l3->shared->avail; 4288 4289 spin_unlock_irq(&l3->list_lock); 4290 } 4291 num_slabs += active_slabs; 4292 num_objs = num_slabs * cachep->num; 4293 if (num_objs - active_objs != free_objects && !error) 4294 error = "free_objects accounting error"; 4295 4296 name = cachep->name; 4297 if (error) 4298 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 4299 4300 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 4301 name, active_objs, num_objs, cachep->buffer_size, 4302 cachep->num, (1 << cachep->gfporder)); 4303 seq_printf(m, " : tunables %4u %4u %4u", 4304 cachep->limit, cachep->batchcount, cachep->shared); 4305 seq_printf(m, " : slabdata %6lu %6lu %6lu", 4306 active_slabs, num_slabs, shared_avail); 4307 #if STATS 4308 { /* list3 stats */ 4309 unsigned long high = cachep->high_mark; 4310 unsigned long allocs = cachep->num_allocations; 4311 unsigned long grown = cachep->grown; 4312 unsigned long reaped = cachep->reaped; 4313 unsigned long errors = cachep->errors; 4314 unsigned long max_freeable = cachep->max_freeable; 4315 unsigned long node_allocs = cachep->node_allocs; 4316 unsigned long node_frees = cachep->node_frees; 4317 unsigned long overflows = cachep->node_overflow; 4318 4319 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " 4320 "%4lu %4lu %4lu %4lu %4lu", 4321 allocs, high, grown, 4322 reaped, errors, max_freeable, node_allocs, 4323 node_frees, overflows); 4324 } 4325 /* cpu stats */ 4326 { 4327 unsigned long allochit = atomic_read(&cachep->allochit); 4328 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4329 unsigned long freehit = atomic_read(&cachep->freehit); 4330 unsigned long freemiss = atomic_read(&cachep->freemiss); 4331 4332 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4333 allochit, allocmiss, freehit, freemiss); 4334 } 4335 #endif 4336 seq_putc(m, '\n'); 4337 return 0; 4338 } 4339 4340 /* 4341 * slabinfo_op - iterator that generates /proc/slabinfo 4342 * 4343 * Output layout: 4344 * cache-name 4345 * num-active-objs 4346 * total-objs 4347 * object size 4348 * num-active-slabs 4349 * total-slabs 4350 * num-pages-per-slab 4351 * + further values on SMP and with statistics enabled 4352 */ 4353 4354 static const struct seq_operations slabinfo_op = { 4355 .start = s_start, 4356 .next = s_next, 4357 .stop = s_stop, 4358 .show = s_show, 4359 }; 4360 4361 #define MAX_SLABINFO_WRITE 128 4362 /** 4363 * slabinfo_write - Tuning for the slab allocator 4364 * @file: unused 4365 * @buffer: user buffer 4366 * @count: data length 4367 * @ppos: unused 4368 */ 4369 static ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4370 size_t count, loff_t *ppos) 4371 { 4372 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4373 int limit, batchcount, shared, res; 4374 struct kmem_cache *cachep; 4375 4376 if (count > MAX_SLABINFO_WRITE) 4377 return -EINVAL; 4378 if (copy_from_user(&kbuf, buffer, count)) 4379 return -EFAULT; 4380 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4381 4382 tmp = strchr(kbuf, ' '); 4383 if (!tmp) 4384 return -EINVAL; 4385 *tmp = '\0'; 4386 tmp++; 4387 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4388 return -EINVAL; 4389 4390 /* Find the cache in the chain of caches. */ 4391 mutex_lock(&cache_chain_mutex); 4392 res = -EINVAL; 4393 list_for_each_entry(cachep, &cache_chain, next) { 4394 if (!strcmp(cachep->name, kbuf)) { 4395 if (limit < 1 || batchcount < 1 || 4396 batchcount > limit || shared < 0) { 4397 res = 0; 4398 } else { 4399 res = do_tune_cpucache(cachep, limit, 4400 batchcount, shared, 4401 GFP_KERNEL); 4402 } 4403 break; 4404 } 4405 } 4406 mutex_unlock(&cache_chain_mutex); 4407 if (res >= 0) 4408 res = count; 4409 return res; 4410 } 4411 4412 static int slabinfo_open(struct inode *inode, struct file *file) 4413 { 4414 return seq_open(file, &slabinfo_op); 4415 } 4416 4417 static const struct file_operations proc_slabinfo_operations = { 4418 .open = slabinfo_open, 4419 .read = seq_read, 4420 .write = slabinfo_write, 4421 .llseek = seq_lseek, 4422 .release = seq_release, 4423 }; 4424 4425 #ifdef CONFIG_DEBUG_SLAB_LEAK 4426 4427 static void *leaks_start(struct seq_file *m, loff_t *pos) 4428 { 4429 mutex_lock(&cache_chain_mutex); 4430 return seq_list_start(&cache_chain, *pos); 4431 } 4432 4433 static inline int add_caller(unsigned long *n, unsigned long v) 4434 { 4435 unsigned long *p; 4436 int l; 4437 if (!v) 4438 return 1; 4439 l = n[1]; 4440 p = n + 2; 4441 while (l) { 4442 int i = l/2; 4443 unsigned long *q = p + 2 * i; 4444 if (*q == v) { 4445 q[1]++; 4446 return 1; 4447 } 4448 if (*q > v) { 4449 l = i; 4450 } else { 4451 p = q + 2; 4452 l -= i + 1; 4453 } 4454 } 4455 if (++n[1] == n[0]) 4456 return 0; 4457 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4458 p[0] = v; 4459 p[1] = 1; 4460 return 1; 4461 } 4462 4463 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) 4464 { 4465 void *p; 4466 int i; 4467 if (n[0] == n[1]) 4468 return; 4469 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { 4470 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) 4471 continue; 4472 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4473 return; 4474 } 4475 } 4476 4477 static void show_symbol(struct seq_file *m, unsigned long address) 4478 { 4479 #ifdef CONFIG_KALLSYMS 4480 unsigned long offset, size; 4481 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4482 4483 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4484 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4485 if (modname[0]) 4486 seq_printf(m, " [%s]", modname); 4487 return; 4488 } 4489 #endif 4490 seq_printf(m, "%p", (void *)address); 4491 } 4492 4493 static int leaks_show(struct seq_file *m, void *p) 4494 { 4495 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4496 struct slab *slabp; 4497 struct kmem_list3 *l3; 4498 const char *name; 4499 unsigned long *n = m->private; 4500 int node; 4501 int i; 4502 4503 if (!(cachep->flags & SLAB_STORE_USER)) 4504 return 0; 4505 if (!(cachep->flags & SLAB_RED_ZONE)) 4506 return 0; 4507 4508 /* OK, we can do it */ 4509 4510 n[1] = 0; 4511 4512 for_each_online_node(node) { 4513 l3 = cachep->nodelists[node]; 4514 if (!l3) 4515 continue; 4516 4517 check_irq_on(); 4518 spin_lock_irq(&l3->list_lock); 4519 4520 list_for_each_entry(slabp, &l3->slabs_full, list) 4521 handle_slab(n, cachep, slabp); 4522 list_for_each_entry(slabp, &l3->slabs_partial, list) 4523 handle_slab(n, cachep, slabp); 4524 spin_unlock_irq(&l3->list_lock); 4525 } 4526 name = cachep->name; 4527 if (n[0] == n[1]) { 4528 /* Increase the buffer size */ 4529 mutex_unlock(&cache_chain_mutex); 4530 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4531 if (!m->private) { 4532 /* Too bad, we are really out */ 4533 m->private = n; 4534 mutex_lock(&cache_chain_mutex); 4535 return -ENOMEM; 4536 } 4537 *(unsigned long *)m->private = n[0] * 2; 4538 kfree(n); 4539 mutex_lock(&cache_chain_mutex); 4540 /* Now make sure this entry will be retried */ 4541 m->count = m->size; 4542 return 0; 4543 } 4544 for (i = 0; i < n[1]; i++) { 4545 seq_printf(m, "%s: %lu ", name, n[2*i+3]); 4546 show_symbol(m, n[2*i+2]); 4547 seq_putc(m, '\n'); 4548 } 4549 4550 return 0; 4551 } 4552 4553 static const struct seq_operations slabstats_op = { 4554 .start = leaks_start, 4555 .next = s_next, 4556 .stop = s_stop, 4557 .show = leaks_show, 4558 }; 4559 4560 static int slabstats_open(struct inode *inode, struct file *file) 4561 { 4562 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); 4563 int ret = -ENOMEM; 4564 if (n) { 4565 ret = seq_open(file, &slabstats_op); 4566 if (!ret) { 4567 struct seq_file *m = file->private_data; 4568 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4569 m->private = n; 4570 n = NULL; 4571 } 4572 kfree(n); 4573 } 4574 return ret; 4575 } 4576 4577 static const struct file_operations proc_slabstats_operations = { 4578 .open = slabstats_open, 4579 .read = seq_read, 4580 .llseek = seq_lseek, 4581 .release = seq_release_private, 4582 }; 4583 #endif 4584 4585 static int __init slab_proc_init(void) 4586 { 4587 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); 4588 #ifdef CONFIG_DEBUG_SLAB_LEAK 4589 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4590 #endif 4591 return 0; 4592 } 4593 module_init(slab_proc_init); 4594 #endif 4595 4596 /** 4597 * ksize - get the actual amount of memory allocated for a given object 4598 * @objp: Pointer to the object 4599 * 4600 * kmalloc may internally round up allocations and return more memory 4601 * than requested. ksize() can be used to determine the actual amount of 4602 * memory allocated. The caller may use this additional memory, even though 4603 * a smaller amount of memory was initially specified with the kmalloc call. 4604 * The caller must guarantee that objp points to a valid object previously 4605 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4606 * must not be freed during the duration of the call. 4607 */ 4608 size_t ksize(const void *objp) 4609 { 4610 BUG_ON(!objp); 4611 if (unlikely(objp == ZERO_SIZE_PTR)) 4612 return 0; 4613 4614 return obj_size(virt_to_cache(objp)); 4615 } 4616 EXPORT_SYMBOL(ksize); 4617