xref: /openbmc/linux/mm/slab.c (revision d8eabc37)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/slab.c
4  * Written by Mark Hemment, 1996/97.
5  * (markhe@nextd.demon.co.uk)
6  *
7  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8  *
9  * Major cleanup, different bufctl logic, per-cpu arrays
10  *	(c) 2000 Manfred Spraul
11  *
12  * Cleanup, make the head arrays unconditional, preparation for NUMA
13  * 	(c) 2002 Manfred Spraul
14  *
15  * An implementation of the Slab Allocator as described in outline in;
16  *	UNIX Internals: The New Frontiers by Uresh Vahalia
17  *	Pub: Prentice Hall	ISBN 0-13-101908-2
18  * or with a little more detail in;
19  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
20  *	Jeff Bonwick (Sun Microsystems).
21  *	Presented at: USENIX Summer 1994 Technical Conference
22  *
23  * The memory is organized in caches, one cache for each object type.
24  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25  * Each cache consists out of many slabs (they are small (usually one
26  * page long) and always contiguous), and each slab contains multiple
27  * initialized objects.
28  *
29  * This means, that your constructor is used only for newly allocated
30  * slabs and you must pass objects with the same initializations to
31  * kmem_cache_free.
32  *
33  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34  * normal). If you need a special memory type, then must create a new
35  * cache for that memory type.
36  *
37  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38  *   full slabs with 0 free objects
39  *   partial slabs
40  *   empty slabs with no allocated objects
41  *
42  * If partial slabs exist, then new allocations come from these slabs,
43  * otherwise from empty slabs or new slabs are allocated.
44  *
45  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47  *
48  * Each cache has a short per-cpu head array, most allocs
49  * and frees go into that array, and if that array overflows, then 1/2
50  * of the entries in the array are given back into the global cache.
51  * The head array is strictly LIFO and should improve the cache hit rates.
52  * On SMP, it additionally reduces the spinlock operations.
53  *
54  * The c_cpuarray may not be read with enabled local interrupts -
55  * it's changed with a smp_call_function().
56  *
57  * SMP synchronization:
58  *  constructors and destructors are called without any locking.
59  *  Several members in struct kmem_cache and struct slab never change, they
60  *	are accessed without any locking.
61  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
62  *  	and local interrupts are disabled so slab code is preempt-safe.
63  *  The non-constant members are protected with a per-cache irq spinlock.
64  *
65  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66  * in 2000 - many ideas in the current implementation are derived from
67  * his patch.
68  *
69  * Further notes from the original documentation:
70  *
71  * 11 April '97.  Started multi-threading - markhe
72  *	The global cache-chain is protected by the mutex 'slab_mutex'.
73  *	The sem is only needed when accessing/extending the cache-chain, which
74  *	can never happen inside an interrupt (kmem_cache_create(),
75  *	kmem_cache_shrink() and kmem_cache_reap()).
76  *
77  *	At present, each engine can be growing a cache.  This should be blocked.
78  *
79  * 15 March 2005. NUMA slab allocator.
80  *	Shai Fultheim <shai@scalex86.org>.
81  *	Shobhit Dayal <shobhit@calsoftinc.com>
82  *	Alok N Kataria <alokk@calsoftinc.com>
83  *	Christoph Lameter <christoph@lameter.com>
84  *
85  *	Modified the slab allocator to be node aware on NUMA systems.
86  *	Each node has its own list of partial, free and full slabs.
87  *	All object allocations for a node occur from node specific slab lists.
88  */
89 
90 #include	<linux/slab.h>
91 #include	<linux/mm.h>
92 #include	<linux/poison.h>
93 #include	<linux/swap.h>
94 #include	<linux/cache.h>
95 #include	<linux/interrupt.h>
96 #include	<linux/init.h>
97 #include	<linux/compiler.h>
98 #include	<linux/cpuset.h>
99 #include	<linux/proc_fs.h>
100 #include	<linux/seq_file.h>
101 #include	<linux/notifier.h>
102 #include	<linux/kallsyms.h>
103 #include	<linux/cpu.h>
104 #include	<linux/sysctl.h>
105 #include	<linux/module.h>
106 #include	<linux/rcupdate.h>
107 #include	<linux/string.h>
108 #include	<linux/uaccess.h>
109 #include	<linux/nodemask.h>
110 #include	<linux/kmemleak.h>
111 #include	<linux/mempolicy.h>
112 #include	<linux/mutex.h>
113 #include	<linux/fault-inject.h>
114 #include	<linux/rtmutex.h>
115 #include	<linux/reciprocal_div.h>
116 #include	<linux/debugobjects.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 #include	<linux/sched/task_stack.h>
120 
121 #include	<net/sock.h>
122 
123 #include	<asm/cacheflush.h>
124 #include	<asm/tlbflush.h>
125 #include	<asm/page.h>
126 
127 #include <trace/events/kmem.h>
128 
129 #include	"internal.h"
130 
131 #include	"slab.h"
132 
133 /*
134  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135  *		  0 for faster, smaller code (especially in the critical paths).
136  *
137  * STATS	- 1 to collect stats for /proc/slabinfo.
138  *		  0 for faster, smaller code (especially in the critical paths).
139  *
140  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141  */
142 
143 #ifdef CONFIG_DEBUG_SLAB
144 #define	DEBUG		1
145 #define	STATS		1
146 #define	FORCED_DEBUG	1
147 #else
148 #define	DEBUG		0
149 #define	STATS		0
150 #define	FORCED_DEBUG	0
151 #endif
152 
153 /* Shouldn't this be in a header file somewhere? */
154 #define	BYTES_PER_WORD		sizeof(void *)
155 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160 
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169 
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171 
172 /*
173  * struct array_cache
174  *
175  * Purpose:
176  * - LIFO ordering, to hand out cache-warm objects from _alloc
177  * - reduce the number of linked list operations
178  * - reduce spinlock operations
179  *
180  * The limit is stored in the per-cpu structure to reduce the data cache
181  * footprint.
182  *
183  */
184 struct array_cache {
185 	unsigned int avail;
186 	unsigned int limit;
187 	unsigned int batchcount;
188 	unsigned int touched;
189 	void *entry[];	/*
190 			 * Must have this definition in here for the proper
191 			 * alignment of array_cache. Also simplifies accessing
192 			 * the entries.
193 			 */
194 };
195 
196 struct alien_cache {
197 	spinlock_t lock;
198 	struct array_cache ac;
199 };
200 
201 /*
202  * Need this for bootstrapping a per node allocator.
203  */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define	CACHE_CACHE 0
207 #define	SIZE_NODE (MAX_NUMNODES)
208 
209 static int drain_freelist(struct kmem_cache *cache,
210 			struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 			int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216 
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 						void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 				struct kmem_cache_node *n, struct page *page,
221 				void **list);
222 static int slab_early_init = 1;
223 
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 	INIT_LIST_HEAD(&parent->slabs_full);
229 	INIT_LIST_HEAD(&parent->slabs_partial);
230 	INIT_LIST_HEAD(&parent->slabs_free);
231 	parent->total_slabs = 0;
232 	parent->free_slabs = 0;
233 	parent->shared = NULL;
234 	parent->alien = NULL;
235 	parent->colour_next = 0;
236 	spin_lock_init(&parent->list_lock);
237 	parent->free_objects = 0;
238 	parent->free_touched = 0;
239 }
240 
241 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
242 	do {								\
243 		INIT_LIST_HEAD(listp);					\
244 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 	} while (0)
246 
247 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
248 	do {								\
249 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
250 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
252 	} while (0)
253 
254 #define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
258 
259 #define BATCHREFILL_LIMIT	16
260 /*
261  * Optimization question: fewer reaps means less probability for unnessary
262  * cpucache drain/refill cycles.
263  *
264  * OTOH the cpuarrays can contain lots of objects,
265  * which could lock up otherwise freeable slabs.
266  */
267 #define REAPTIMEOUT_AC		(2*HZ)
268 #define REAPTIMEOUT_NODE	(4*HZ)
269 
270 #if STATS
271 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
272 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
273 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
274 #define	STATS_INC_GROWN(x)	((x)->grown++)
275 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
276 #define	STATS_SET_HIGH(x)						\
277 	do {								\
278 		if ((x)->num_active > (x)->high_mark)			\
279 			(x)->high_mark = (x)->num_active;		\
280 	} while (0)
281 #define	STATS_INC_ERR(x)	((x)->errors++)
282 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
285 #define	STATS_SET_FREEABLE(x, i)					\
286 	do {								\
287 		if ((x)->max_freeable < i)				\
288 			(x)->max_freeable = i;				\
289 	} while (0)
290 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
294 #else
295 #define	STATS_INC_ACTIVE(x)	do { } while (0)
296 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
297 #define	STATS_INC_ALLOCED(x)	do { } while (0)
298 #define	STATS_INC_GROWN(x)	do { } while (0)
299 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
300 #define	STATS_SET_HIGH(x)	do { } while (0)
301 #define	STATS_INC_ERR(x)	do { } while (0)
302 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303 #define	STATS_INC_NODEFREES(x)	do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
305 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
307 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
308 #define STATS_INC_FREEHIT(x)	do { } while (0)
309 #define STATS_INC_FREEMISS(x)	do { } while (0)
310 #endif
311 
312 #if DEBUG
313 
314 /*
315  * memory layout of objects:
316  * 0		: objp
317  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318  * 		the end of an object is aligned with the end of the real
319  * 		allocation. Catches writes behind the end of the allocation.
320  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321  * 		redzone word.
322  * cachep->obj_offset: The real object.
323  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324  * cachep->size - 1* BYTES_PER_WORD: last caller address
325  *					[BYTES_PER_WORD long]
326  */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 	return cachep->obj_offset;
330 }
331 
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 	return (unsigned long long*) (objp + obj_offset(cachep) -
336 				      sizeof(unsigned long long));
337 }
338 
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 	if (cachep->flags & SLAB_STORE_USER)
343 		return (unsigned long long *)(objp + cachep->size -
344 					      sizeof(unsigned long long) -
345 					      REDZONE_ALIGN);
346 	return (unsigned long long *) (objp + cachep->size -
347 				       sizeof(unsigned long long));
348 }
349 
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355 
356 #else
357 
358 #define obj_offset(x)			0
359 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
362 
363 #endif
364 
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366 
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 	return atomic_read(&cachep->store_user_clean) == 1;
370 }
371 
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 	atomic_set(&cachep->store_user_clean, 1);
375 }
376 
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 	if (is_store_user_clean(cachep))
380 		atomic_set(&cachep->store_user_clean, 0);
381 }
382 
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385 
386 #endif
387 
388 /*
389  * Do not go above this order unless 0 objects fit into the slab or
390  * overridden on the command line.
391  */
392 #define	SLAB_MAX_ORDER_HI	1
393 #define	SLAB_MAX_ORDER_LO	0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396 
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 	struct page *page = virt_to_head_page(obj);
400 	return page->slab_cache;
401 }
402 
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 				 unsigned int idx)
405 {
406 	return page->s_mem + cache->size * idx;
407 }
408 
409 #define BOOT_CPUCACHE_ENTRIES	1
410 /* internal cache of cache description objs */
411 static struct kmem_cache kmem_cache_boot = {
412 	.batchcount = 1,
413 	.limit = BOOT_CPUCACHE_ENTRIES,
414 	.shared = 1,
415 	.size = sizeof(struct kmem_cache),
416 	.name = "kmem_cache",
417 };
418 
419 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
420 
421 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
422 {
423 	return this_cpu_ptr(cachep->cpu_cache);
424 }
425 
426 /*
427  * Calculate the number of objects and left-over bytes for a given buffer size.
428  */
429 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
430 		slab_flags_t flags, size_t *left_over)
431 {
432 	unsigned int num;
433 	size_t slab_size = PAGE_SIZE << gfporder;
434 
435 	/*
436 	 * The slab management structure can be either off the slab or
437 	 * on it. For the latter case, the memory allocated for a
438 	 * slab is used for:
439 	 *
440 	 * - @buffer_size bytes for each object
441 	 * - One freelist_idx_t for each object
442 	 *
443 	 * We don't need to consider alignment of freelist because
444 	 * freelist will be at the end of slab page. The objects will be
445 	 * at the correct alignment.
446 	 *
447 	 * If the slab management structure is off the slab, then the
448 	 * alignment will already be calculated into the size. Because
449 	 * the slabs are all pages aligned, the objects will be at the
450 	 * correct alignment when allocated.
451 	 */
452 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
453 		num = slab_size / buffer_size;
454 		*left_over = slab_size % buffer_size;
455 	} else {
456 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
457 		*left_over = slab_size %
458 			(buffer_size + sizeof(freelist_idx_t));
459 	}
460 
461 	return num;
462 }
463 
464 #if DEBUG
465 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
466 
467 static void __slab_error(const char *function, struct kmem_cache *cachep,
468 			char *msg)
469 {
470 	pr_err("slab error in %s(): cache `%s': %s\n",
471 	       function, cachep->name, msg);
472 	dump_stack();
473 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
474 }
475 #endif
476 
477 /*
478  * By default on NUMA we use alien caches to stage the freeing of
479  * objects allocated from other nodes. This causes massive memory
480  * inefficiencies when using fake NUMA setup to split memory into a
481  * large number of small nodes, so it can be disabled on the command
482  * line
483   */
484 
485 static int use_alien_caches __read_mostly = 1;
486 static int __init noaliencache_setup(char *s)
487 {
488 	use_alien_caches = 0;
489 	return 1;
490 }
491 __setup("noaliencache", noaliencache_setup);
492 
493 static int __init slab_max_order_setup(char *str)
494 {
495 	get_option(&str, &slab_max_order);
496 	slab_max_order = slab_max_order < 0 ? 0 :
497 				min(slab_max_order, MAX_ORDER - 1);
498 	slab_max_order_set = true;
499 
500 	return 1;
501 }
502 __setup("slab_max_order=", slab_max_order_setup);
503 
504 #ifdef CONFIG_NUMA
505 /*
506  * Special reaping functions for NUMA systems called from cache_reap().
507  * These take care of doing round robin flushing of alien caches (containing
508  * objects freed on different nodes from which they were allocated) and the
509  * flushing of remote pcps by calling drain_node_pages.
510  */
511 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
512 
513 static void init_reap_node(int cpu)
514 {
515 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
516 						    node_online_map);
517 }
518 
519 static void next_reap_node(void)
520 {
521 	int node = __this_cpu_read(slab_reap_node);
522 
523 	node = next_node_in(node, node_online_map);
524 	__this_cpu_write(slab_reap_node, node);
525 }
526 
527 #else
528 #define init_reap_node(cpu) do { } while (0)
529 #define next_reap_node(void) do { } while (0)
530 #endif
531 
532 /*
533  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
534  * via the workqueue/eventd.
535  * Add the CPU number into the expiration time to minimize the possibility of
536  * the CPUs getting into lockstep and contending for the global cache chain
537  * lock.
538  */
539 static void start_cpu_timer(int cpu)
540 {
541 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
542 
543 	if (reap_work->work.func == NULL) {
544 		init_reap_node(cpu);
545 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
546 		schedule_delayed_work_on(cpu, reap_work,
547 					__round_jiffies_relative(HZ, cpu));
548 	}
549 }
550 
551 static void init_arraycache(struct array_cache *ac, int limit, int batch)
552 {
553 	/*
554 	 * The array_cache structures contain pointers to free object.
555 	 * However, when such objects are allocated or transferred to another
556 	 * cache the pointers are not cleared and they could be counted as
557 	 * valid references during a kmemleak scan. Therefore, kmemleak must
558 	 * not scan such objects.
559 	 */
560 	kmemleak_no_scan(ac);
561 	if (ac) {
562 		ac->avail = 0;
563 		ac->limit = limit;
564 		ac->batchcount = batch;
565 		ac->touched = 0;
566 	}
567 }
568 
569 static struct array_cache *alloc_arraycache(int node, int entries,
570 					    int batchcount, gfp_t gfp)
571 {
572 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
573 	struct array_cache *ac = NULL;
574 
575 	ac = kmalloc_node(memsize, gfp, node);
576 	init_arraycache(ac, entries, batchcount);
577 	return ac;
578 }
579 
580 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
581 					struct page *page, void *objp)
582 {
583 	struct kmem_cache_node *n;
584 	int page_node;
585 	LIST_HEAD(list);
586 
587 	page_node = page_to_nid(page);
588 	n = get_node(cachep, page_node);
589 
590 	spin_lock(&n->list_lock);
591 	free_block(cachep, &objp, 1, page_node, &list);
592 	spin_unlock(&n->list_lock);
593 
594 	slabs_destroy(cachep, &list);
595 }
596 
597 /*
598  * Transfer objects in one arraycache to another.
599  * Locking must be handled by the caller.
600  *
601  * Return the number of entries transferred.
602  */
603 static int transfer_objects(struct array_cache *to,
604 		struct array_cache *from, unsigned int max)
605 {
606 	/* Figure out how many entries to transfer */
607 	int nr = min3(from->avail, max, to->limit - to->avail);
608 
609 	if (!nr)
610 		return 0;
611 
612 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
613 			sizeof(void *) *nr);
614 
615 	from->avail -= nr;
616 	to->avail += nr;
617 	return nr;
618 }
619 
620 #ifndef CONFIG_NUMA
621 
622 #define drain_alien_cache(cachep, alien) do { } while (0)
623 #define reap_alien(cachep, n) do { } while (0)
624 
625 static inline struct alien_cache **alloc_alien_cache(int node,
626 						int limit, gfp_t gfp)
627 {
628 	return NULL;
629 }
630 
631 static inline void free_alien_cache(struct alien_cache **ac_ptr)
632 {
633 }
634 
635 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
636 {
637 	return 0;
638 }
639 
640 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
641 		gfp_t flags)
642 {
643 	return NULL;
644 }
645 
646 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
647 		 gfp_t flags, int nodeid)
648 {
649 	return NULL;
650 }
651 
652 static inline gfp_t gfp_exact_node(gfp_t flags)
653 {
654 	return flags & ~__GFP_NOFAIL;
655 }
656 
657 #else	/* CONFIG_NUMA */
658 
659 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
660 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
661 
662 static struct alien_cache *__alloc_alien_cache(int node, int entries,
663 						int batch, gfp_t gfp)
664 {
665 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
666 	struct alien_cache *alc = NULL;
667 
668 	alc = kmalloc_node(memsize, gfp, node);
669 	if (alc) {
670 		init_arraycache(&alc->ac, entries, batch);
671 		spin_lock_init(&alc->lock);
672 	}
673 	return alc;
674 }
675 
676 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
677 {
678 	struct alien_cache **alc_ptr;
679 	size_t memsize = sizeof(void *) * nr_node_ids;
680 	int i;
681 
682 	if (limit > 1)
683 		limit = 12;
684 	alc_ptr = kzalloc_node(memsize, gfp, node);
685 	if (!alc_ptr)
686 		return NULL;
687 
688 	for_each_node(i) {
689 		if (i == node || !node_online(i))
690 			continue;
691 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
692 		if (!alc_ptr[i]) {
693 			for (i--; i >= 0; i--)
694 				kfree(alc_ptr[i]);
695 			kfree(alc_ptr);
696 			return NULL;
697 		}
698 	}
699 	return alc_ptr;
700 }
701 
702 static void free_alien_cache(struct alien_cache **alc_ptr)
703 {
704 	int i;
705 
706 	if (!alc_ptr)
707 		return;
708 	for_each_node(i)
709 	    kfree(alc_ptr[i]);
710 	kfree(alc_ptr);
711 }
712 
713 static void __drain_alien_cache(struct kmem_cache *cachep,
714 				struct array_cache *ac, int node,
715 				struct list_head *list)
716 {
717 	struct kmem_cache_node *n = get_node(cachep, node);
718 
719 	if (ac->avail) {
720 		spin_lock(&n->list_lock);
721 		/*
722 		 * Stuff objects into the remote nodes shared array first.
723 		 * That way we could avoid the overhead of putting the objects
724 		 * into the free lists and getting them back later.
725 		 */
726 		if (n->shared)
727 			transfer_objects(n->shared, ac, ac->limit);
728 
729 		free_block(cachep, ac->entry, ac->avail, node, list);
730 		ac->avail = 0;
731 		spin_unlock(&n->list_lock);
732 	}
733 }
734 
735 /*
736  * Called from cache_reap() to regularly drain alien caches round robin.
737  */
738 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
739 {
740 	int node = __this_cpu_read(slab_reap_node);
741 
742 	if (n->alien) {
743 		struct alien_cache *alc = n->alien[node];
744 		struct array_cache *ac;
745 
746 		if (alc) {
747 			ac = &alc->ac;
748 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
749 				LIST_HEAD(list);
750 
751 				__drain_alien_cache(cachep, ac, node, &list);
752 				spin_unlock_irq(&alc->lock);
753 				slabs_destroy(cachep, &list);
754 			}
755 		}
756 	}
757 }
758 
759 static void drain_alien_cache(struct kmem_cache *cachep,
760 				struct alien_cache **alien)
761 {
762 	int i = 0;
763 	struct alien_cache *alc;
764 	struct array_cache *ac;
765 	unsigned long flags;
766 
767 	for_each_online_node(i) {
768 		alc = alien[i];
769 		if (alc) {
770 			LIST_HEAD(list);
771 
772 			ac = &alc->ac;
773 			spin_lock_irqsave(&alc->lock, flags);
774 			__drain_alien_cache(cachep, ac, i, &list);
775 			spin_unlock_irqrestore(&alc->lock, flags);
776 			slabs_destroy(cachep, &list);
777 		}
778 	}
779 }
780 
781 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
782 				int node, int page_node)
783 {
784 	struct kmem_cache_node *n;
785 	struct alien_cache *alien = NULL;
786 	struct array_cache *ac;
787 	LIST_HEAD(list);
788 
789 	n = get_node(cachep, node);
790 	STATS_INC_NODEFREES(cachep);
791 	if (n->alien && n->alien[page_node]) {
792 		alien = n->alien[page_node];
793 		ac = &alien->ac;
794 		spin_lock(&alien->lock);
795 		if (unlikely(ac->avail == ac->limit)) {
796 			STATS_INC_ACOVERFLOW(cachep);
797 			__drain_alien_cache(cachep, ac, page_node, &list);
798 		}
799 		ac->entry[ac->avail++] = objp;
800 		spin_unlock(&alien->lock);
801 		slabs_destroy(cachep, &list);
802 	} else {
803 		n = get_node(cachep, page_node);
804 		spin_lock(&n->list_lock);
805 		free_block(cachep, &objp, 1, page_node, &list);
806 		spin_unlock(&n->list_lock);
807 		slabs_destroy(cachep, &list);
808 	}
809 	return 1;
810 }
811 
812 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
813 {
814 	int page_node = page_to_nid(virt_to_page(objp));
815 	int node = numa_mem_id();
816 	/*
817 	 * Make sure we are not freeing a object from another node to the array
818 	 * cache on this cpu.
819 	 */
820 	if (likely(node == page_node))
821 		return 0;
822 
823 	return __cache_free_alien(cachep, objp, node, page_node);
824 }
825 
826 /*
827  * Construct gfp mask to allocate from a specific node but do not reclaim or
828  * warn about failures.
829  */
830 static inline gfp_t gfp_exact_node(gfp_t flags)
831 {
832 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
833 }
834 #endif
835 
836 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
837 {
838 	struct kmem_cache_node *n;
839 
840 	/*
841 	 * Set up the kmem_cache_node for cpu before we can
842 	 * begin anything. Make sure some other cpu on this
843 	 * node has not already allocated this
844 	 */
845 	n = get_node(cachep, node);
846 	if (n) {
847 		spin_lock_irq(&n->list_lock);
848 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
849 				cachep->num;
850 		spin_unlock_irq(&n->list_lock);
851 
852 		return 0;
853 	}
854 
855 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
856 	if (!n)
857 		return -ENOMEM;
858 
859 	kmem_cache_node_init(n);
860 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
861 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
862 
863 	n->free_limit =
864 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
865 
866 	/*
867 	 * The kmem_cache_nodes don't come and go as CPUs
868 	 * come and go.  slab_mutex is sufficient
869 	 * protection here.
870 	 */
871 	cachep->node[node] = n;
872 
873 	return 0;
874 }
875 
876 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
877 /*
878  * Allocates and initializes node for a node on each slab cache, used for
879  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
880  * will be allocated off-node since memory is not yet online for the new node.
881  * When hotplugging memory or a cpu, existing node are not replaced if
882  * already in use.
883  *
884  * Must hold slab_mutex.
885  */
886 static int init_cache_node_node(int node)
887 {
888 	int ret;
889 	struct kmem_cache *cachep;
890 
891 	list_for_each_entry(cachep, &slab_caches, list) {
892 		ret = init_cache_node(cachep, node, GFP_KERNEL);
893 		if (ret)
894 			return ret;
895 	}
896 
897 	return 0;
898 }
899 #endif
900 
901 static int setup_kmem_cache_node(struct kmem_cache *cachep,
902 				int node, gfp_t gfp, bool force_change)
903 {
904 	int ret = -ENOMEM;
905 	struct kmem_cache_node *n;
906 	struct array_cache *old_shared = NULL;
907 	struct array_cache *new_shared = NULL;
908 	struct alien_cache **new_alien = NULL;
909 	LIST_HEAD(list);
910 
911 	if (use_alien_caches) {
912 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
913 		if (!new_alien)
914 			goto fail;
915 	}
916 
917 	if (cachep->shared) {
918 		new_shared = alloc_arraycache(node,
919 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
920 		if (!new_shared)
921 			goto fail;
922 	}
923 
924 	ret = init_cache_node(cachep, node, gfp);
925 	if (ret)
926 		goto fail;
927 
928 	n = get_node(cachep, node);
929 	spin_lock_irq(&n->list_lock);
930 	if (n->shared && force_change) {
931 		free_block(cachep, n->shared->entry,
932 				n->shared->avail, node, &list);
933 		n->shared->avail = 0;
934 	}
935 
936 	if (!n->shared || force_change) {
937 		old_shared = n->shared;
938 		n->shared = new_shared;
939 		new_shared = NULL;
940 	}
941 
942 	if (!n->alien) {
943 		n->alien = new_alien;
944 		new_alien = NULL;
945 	}
946 
947 	spin_unlock_irq(&n->list_lock);
948 	slabs_destroy(cachep, &list);
949 
950 	/*
951 	 * To protect lockless access to n->shared during irq disabled context.
952 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
953 	 * guaranteed to be valid until irq is re-enabled, because it will be
954 	 * freed after synchronize_rcu().
955 	 */
956 	if (old_shared && force_change)
957 		synchronize_rcu();
958 
959 fail:
960 	kfree(old_shared);
961 	kfree(new_shared);
962 	free_alien_cache(new_alien);
963 
964 	return ret;
965 }
966 
967 #ifdef CONFIG_SMP
968 
969 static void cpuup_canceled(long cpu)
970 {
971 	struct kmem_cache *cachep;
972 	struct kmem_cache_node *n = NULL;
973 	int node = cpu_to_mem(cpu);
974 	const struct cpumask *mask = cpumask_of_node(node);
975 
976 	list_for_each_entry(cachep, &slab_caches, list) {
977 		struct array_cache *nc;
978 		struct array_cache *shared;
979 		struct alien_cache **alien;
980 		LIST_HEAD(list);
981 
982 		n = get_node(cachep, node);
983 		if (!n)
984 			continue;
985 
986 		spin_lock_irq(&n->list_lock);
987 
988 		/* Free limit for this kmem_cache_node */
989 		n->free_limit -= cachep->batchcount;
990 
991 		/* cpu is dead; no one can alloc from it. */
992 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
993 		if (nc) {
994 			free_block(cachep, nc->entry, nc->avail, node, &list);
995 			nc->avail = 0;
996 		}
997 
998 		if (!cpumask_empty(mask)) {
999 			spin_unlock_irq(&n->list_lock);
1000 			goto free_slab;
1001 		}
1002 
1003 		shared = n->shared;
1004 		if (shared) {
1005 			free_block(cachep, shared->entry,
1006 				   shared->avail, node, &list);
1007 			n->shared = NULL;
1008 		}
1009 
1010 		alien = n->alien;
1011 		n->alien = NULL;
1012 
1013 		spin_unlock_irq(&n->list_lock);
1014 
1015 		kfree(shared);
1016 		if (alien) {
1017 			drain_alien_cache(cachep, alien);
1018 			free_alien_cache(alien);
1019 		}
1020 
1021 free_slab:
1022 		slabs_destroy(cachep, &list);
1023 	}
1024 	/*
1025 	 * In the previous loop, all the objects were freed to
1026 	 * the respective cache's slabs,  now we can go ahead and
1027 	 * shrink each nodelist to its limit.
1028 	 */
1029 	list_for_each_entry(cachep, &slab_caches, list) {
1030 		n = get_node(cachep, node);
1031 		if (!n)
1032 			continue;
1033 		drain_freelist(cachep, n, INT_MAX);
1034 	}
1035 }
1036 
1037 static int cpuup_prepare(long cpu)
1038 {
1039 	struct kmem_cache *cachep;
1040 	int node = cpu_to_mem(cpu);
1041 	int err;
1042 
1043 	/*
1044 	 * We need to do this right in the beginning since
1045 	 * alloc_arraycache's are going to use this list.
1046 	 * kmalloc_node allows us to add the slab to the right
1047 	 * kmem_cache_node and not this cpu's kmem_cache_node
1048 	 */
1049 	err = init_cache_node_node(node);
1050 	if (err < 0)
1051 		goto bad;
1052 
1053 	/*
1054 	 * Now we can go ahead with allocating the shared arrays and
1055 	 * array caches
1056 	 */
1057 	list_for_each_entry(cachep, &slab_caches, list) {
1058 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1059 		if (err)
1060 			goto bad;
1061 	}
1062 
1063 	return 0;
1064 bad:
1065 	cpuup_canceled(cpu);
1066 	return -ENOMEM;
1067 }
1068 
1069 int slab_prepare_cpu(unsigned int cpu)
1070 {
1071 	int err;
1072 
1073 	mutex_lock(&slab_mutex);
1074 	err = cpuup_prepare(cpu);
1075 	mutex_unlock(&slab_mutex);
1076 	return err;
1077 }
1078 
1079 /*
1080  * This is called for a failed online attempt and for a successful
1081  * offline.
1082  *
1083  * Even if all the cpus of a node are down, we don't free the
1084  * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1085  * a kmalloc allocation from another cpu for memory from the node of
1086  * the cpu going down.  The list3 structure is usually allocated from
1087  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1088  */
1089 int slab_dead_cpu(unsigned int cpu)
1090 {
1091 	mutex_lock(&slab_mutex);
1092 	cpuup_canceled(cpu);
1093 	mutex_unlock(&slab_mutex);
1094 	return 0;
1095 }
1096 #endif
1097 
1098 static int slab_online_cpu(unsigned int cpu)
1099 {
1100 	start_cpu_timer(cpu);
1101 	return 0;
1102 }
1103 
1104 static int slab_offline_cpu(unsigned int cpu)
1105 {
1106 	/*
1107 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1108 	 * that if cache_reap() is invoked it cannot do anything
1109 	 * expensive but will only modify reap_work and reschedule the
1110 	 * timer.
1111 	 */
1112 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1113 	/* Now the cache_reaper is guaranteed to be not running. */
1114 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1115 	return 0;
1116 }
1117 
1118 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1119 /*
1120  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1121  * Returns -EBUSY if all objects cannot be drained so that the node is not
1122  * removed.
1123  *
1124  * Must hold slab_mutex.
1125  */
1126 static int __meminit drain_cache_node_node(int node)
1127 {
1128 	struct kmem_cache *cachep;
1129 	int ret = 0;
1130 
1131 	list_for_each_entry(cachep, &slab_caches, list) {
1132 		struct kmem_cache_node *n;
1133 
1134 		n = get_node(cachep, node);
1135 		if (!n)
1136 			continue;
1137 
1138 		drain_freelist(cachep, n, INT_MAX);
1139 
1140 		if (!list_empty(&n->slabs_full) ||
1141 		    !list_empty(&n->slabs_partial)) {
1142 			ret = -EBUSY;
1143 			break;
1144 		}
1145 	}
1146 	return ret;
1147 }
1148 
1149 static int __meminit slab_memory_callback(struct notifier_block *self,
1150 					unsigned long action, void *arg)
1151 {
1152 	struct memory_notify *mnb = arg;
1153 	int ret = 0;
1154 	int nid;
1155 
1156 	nid = mnb->status_change_nid;
1157 	if (nid < 0)
1158 		goto out;
1159 
1160 	switch (action) {
1161 	case MEM_GOING_ONLINE:
1162 		mutex_lock(&slab_mutex);
1163 		ret = init_cache_node_node(nid);
1164 		mutex_unlock(&slab_mutex);
1165 		break;
1166 	case MEM_GOING_OFFLINE:
1167 		mutex_lock(&slab_mutex);
1168 		ret = drain_cache_node_node(nid);
1169 		mutex_unlock(&slab_mutex);
1170 		break;
1171 	case MEM_ONLINE:
1172 	case MEM_OFFLINE:
1173 	case MEM_CANCEL_ONLINE:
1174 	case MEM_CANCEL_OFFLINE:
1175 		break;
1176 	}
1177 out:
1178 	return notifier_from_errno(ret);
1179 }
1180 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1181 
1182 /*
1183  * swap the static kmem_cache_node with kmalloced memory
1184  */
1185 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1186 				int nodeid)
1187 {
1188 	struct kmem_cache_node *ptr;
1189 
1190 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1191 	BUG_ON(!ptr);
1192 
1193 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1194 	/*
1195 	 * Do not assume that spinlocks can be initialized via memcpy:
1196 	 */
1197 	spin_lock_init(&ptr->list_lock);
1198 
1199 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1200 	cachep->node[nodeid] = ptr;
1201 }
1202 
1203 /*
1204  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1205  * size of kmem_cache_node.
1206  */
1207 static void __init set_up_node(struct kmem_cache *cachep, int index)
1208 {
1209 	int node;
1210 
1211 	for_each_online_node(node) {
1212 		cachep->node[node] = &init_kmem_cache_node[index + node];
1213 		cachep->node[node]->next_reap = jiffies +
1214 		    REAPTIMEOUT_NODE +
1215 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1216 	}
1217 }
1218 
1219 /*
1220  * Initialisation.  Called after the page allocator have been initialised and
1221  * before smp_init().
1222  */
1223 void __init kmem_cache_init(void)
1224 {
1225 	int i;
1226 
1227 	kmem_cache = &kmem_cache_boot;
1228 
1229 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1230 		use_alien_caches = 0;
1231 
1232 	for (i = 0; i < NUM_INIT_LISTS; i++)
1233 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1234 
1235 	/*
1236 	 * Fragmentation resistance on low memory - only use bigger
1237 	 * page orders on machines with more than 32MB of memory if
1238 	 * not overridden on the command line.
1239 	 */
1240 	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1241 		slab_max_order = SLAB_MAX_ORDER_HI;
1242 
1243 	/* Bootstrap is tricky, because several objects are allocated
1244 	 * from caches that do not exist yet:
1245 	 * 1) initialize the kmem_cache cache: it contains the struct
1246 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1247 	 *    kmem_cache is statically allocated.
1248 	 *    Initially an __init data area is used for the head array and the
1249 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1250 	 *    array at the end of the bootstrap.
1251 	 * 2) Create the first kmalloc cache.
1252 	 *    The struct kmem_cache for the new cache is allocated normally.
1253 	 *    An __init data area is used for the head array.
1254 	 * 3) Create the remaining kmalloc caches, with minimally sized
1255 	 *    head arrays.
1256 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1257 	 *    kmalloc cache with kmalloc allocated arrays.
1258 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1259 	 *    the other cache's with kmalloc allocated memory.
1260 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1261 	 */
1262 
1263 	/* 1) create the kmem_cache */
1264 
1265 	/*
1266 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1267 	 */
1268 	create_boot_cache(kmem_cache, "kmem_cache",
1269 		offsetof(struct kmem_cache, node) +
1270 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1271 				  SLAB_HWCACHE_ALIGN, 0, 0);
1272 	list_add(&kmem_cache->list, &slab_caches);
1273 	memcg_link_cache(kmem_cache);
1274 	slab_state = PARTIAL;
1275 
1276 	/*
1277 	 * Initialize the caches that provide memory for the  kmem_cache_node
1278 	 * structures first.  Without this, further allocations will bug.
1279 	 */
1280 	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1281 				kmalloc_info[INDEX_NODE].name,
1282 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1283 				0, kmalloc_size(INDEX_NODE));
1284 	slab_state = PARTIAL_NODE;
1285 	setup_kmalloc_cache_index_table();
1286 
1287 	slab_early_init = 0;
1288 
1289 	/* 5) Replace the bootstrap kmem_cache_node */
1290 	{
1291 		int nid;
1292 
1293 		for_each_online_node(nid) {
1294 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1295 
1296 			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1297 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1298 		}
1299 	}
1300 
1301 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1302 }
1303 
1304 void __init kmem_cache_init_late(void)
1305 {
1306 	struct kmem_cache *cachep;
1307 
1308 	/* 6) resize the head arrays to their final sizes */
1309 	mutex_lock(&slab_mutex);
1310 	list_for_each_entry(cachep, &slab_caches, list)
1311 		if (enable_cpucache(cachep, GFP_NOWAIT))
1312 			BUG();
1313 	mutex_unlock(&slab_mutex);
1314 
1315 	/* Done! */
1316 	slab_state = FULL;
1317 
1318 #ifdef CONFIG_NUMA
1319 	/*
1320 	 * Register a memory hotplug callback that initializes and frees
1321 	 * node.
1322 	 */
1323 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1324 #endif
1325 
1326 	/*
1327 	 * The reap timers are started later, with a module init call: That part
1328 	 * of the kernel is not yet operational.
1329 	 */
1330 }
1331 
1332 static int __init cpucache_init(void)
1333 {
1334 	int ret;
1335 
1336 	/*
1337 	 * Register the timers that return unneeded pages to the page allocator
1338 	 */
1339 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1340 				slab_online_cpu, slab_offline_cpu);
1341 	WARN_ON(ret < 0);
1342 
1343 	return 0;
1344 }
1345 __initcall(cpucache_init);
1346 
1347 static noinline void
1348 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1349 {
1350 #if DEBUG
1351 	struct kmem_cache_node *n;
1352 	unsigned long flags;
1353 	int node;
1354 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1355 				      DEFAULT_RATELIMIT_BURST);
1356 
1357 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1358 		return;
1359 
1360 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1361 		nodeid, gfpflags, &gfpflags);
1362 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1363 		cachep->name, cachep->size, cachep->gfporder);
1364 
1365 	for_each_kmem_cache_node(cachep, node, n) {
1366 		unsigned long total_slabs, free_slabs, free_objs;
1367 
1368 		spin_lock_irqsave(&n->list_lock, flags);
1369 		total_slabs = n->total_slabs;
1370 		free_slabs = n->free_slabs;
1371 		free_objs = n->free_objects;
1372 		spin_unlock_irqrestore(&n->list_lock, flags);
1373 
1374 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1375 			node, total_slabs - free_slabs, total_slabs,
1376 			(total_slabs * cachep->num) - free_objs,
1377 			total_slabs * cachep->num);
1378 	}
1379 #endif
1380 }
1381 
1382 /*
1383  * Interface to system's page allocator. No need to hold the
1384  * kmem_cache_node ->list_lock.
1385  *
1386  * If we requested dmaable memory, we will get it. Even if we
1387  * did not request dmaable memory, we might get it, but that
1388  * would be relatively rare and ignorable.
1389  */
1390 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1391 								int nodeid)
1392 {
1393 	struct page *page;
1394 	int nr_pages;
1395 
1396 	flags |= cachep->allocflags;
1397 
1398 	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1399 	if (!page) {
1400 		slab_out_of_memory(cachep, flags, nodeid);
1401 		return NULL;
1402 	}
1403 
1404 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1405 		__free_pages(page, cachep->gfporder);
1406 		return NULL;
1407 	}
1408 
1409 	nr_pages = (1 << cachep->gfporder);
1410 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1411 		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1412 	else
1413 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1414 
1415 	__SetPageSlab(page);
1416 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1417 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1418 		SetPageSlabPfmemalloc(page);
1419 
1420 	return page;
1421 }
1422 
1423 /*
1424  * Interface to system's page release.
1425  */
1426 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1427 {
1428 	int order = cachep->gfporder;
1429 	unsigned long nr_freed = (1 << order);
1430 
1431 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1432 		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1433 	else
1434 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1435 
1436 	BUG_ON(!PageSlab(page));
1437 	__ClearPageSlabPfmemalloc(page);
1438 	__ClearPageSlab(page);
1439 	page_mapcount_reset(page);
1440 	page->mapping = NULL;
1441 
1442 	if (current->reclaim_state)
1443 		current->reclaim_state->reclaimed_slab += nr_freed;
1444 	memcg_uncharge_slab(page, order, cachep);
1445 	__free_pages(page, order);
1446 }
1447 
1448 static void kmem_rcu_free(struct rcu_head *head)
1449 {
1450 	struct kmem_cache *cachep;
1451 	struct page *page;
1452 
1453 	page = container_of(head, struct page, rcu_head);
1454 	cachep = page->slab_cache;
1455 
1456 	kmem_freepages(cachep, page);
1457 }
1458 
1459 #if DEBUG
1460 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1461 {
1462 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1463 		(cachep->size % PAGE_SIZE) == 0)
1464 		return true;
1465 
1466 	return false;
1467 }
1468 
1469 #ifdef CONFIG_DEBUG_PAGEALLOC
1470 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1471 			    unsigned long caller)
1472 {
1473 	int size = cachep->object_size;
1474 
1475 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1476 
1477 	if (size < 5 * sizeof(unsigned long))
1478 		return;
1479 
1480 	*addr++ = 0x12345678;
1481 	*addr++ = caller;
1482 	*addr++ = smp_processor_id();
1483 	size -= 3 * sizeof(unsigned long);
1484 	{
1485 		unsigned long *sptr = &caller;
1486 		unsigned long svalue;
1487 
1488 		while (!kstack_end(sptr)) {
1489 			svalue = *sptr++;
1490 			if (kernel_text_address(svalue)) {
1491 				*addr++ = svalue;
1492 				size -= sizeof(unsigned long);
1493 				if (size <= sizeof(unsigned long))
1494 					break;
1495 			}
1496 		}
1497 
1498 	}
1499 	*addr++ = 0x87654321;
1500 }
1501 
1502 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1503 				int map, unsigned long caller)
1504 {
1505 	if (!is_debug_pagealloc_cache(cachep))
1506 		return;
1507 
1508 	if (caller)
1509 		store_stackinfo(cachep, objp, caller);
1510 
1511 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1512 }
1513 
1514 #else
1515 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1516 				int map, unsigned long caller) {}
1517 
1518 #endif
1519 
1520 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1521 {
1522 	int size = cachep->object_size;
1523 	addr = &((char *)addr)[obj_offset(cachep)];
1524 
1525 	memset(addr, val, size);
1526 	*(unsigned char *)(addr + size - 1) = POISON_END;
1527 }
1528 
1529 static void dump_line(char *data, int offset, int limit)
1530 {
1531 	int i;
1532 	unsigned char error = 0;
1533 	int bad_count = 0;
1534 
1535 	pr_err("%03x: ", offset);
1536 	for (i = 0; i < limit; i++) {
1537 		if (data[offset + i] != POISON_FREE) {
1538 			error = data[offset + i];
1539 			bad_count++;
1540 		}
1541 	}
1542 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1543 			&data[offset], limit, 1);
1544 
1545 	if (bad_count == 1) {
1546 		error ^= POISON_FREE;
1547 		if (!(error & (error - 1))) {
1548 			pr_err("Single bit error detected. Probably bad RAM.\n");
1549 #ifdef CONFIG_X86
1550 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1551 #else
1552 			pr_err("Run a memory test tool.\n");
1553 #endif
1554 		}
1555 	}
1556 }
1557 #endif
1558 
1559 #if DEBUG
1560 
1561 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1562 {
1563 	int i, size;
1564 	char *realobj;
1565 
1566 	if (cachep->flags & SLAB_RED_ZONE) {
1567 		pr_err("Redzone: 0x%llx/0x%llx\n",
1568 		       *dbg_redzone1(cachep, objp),
1569 		       *dbg_redzone2(cachep, objp));
1570 	}
1571 
1572 	if (cachep->flags & SLAB_STORE_USER)
1573 		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1574 	realobj = (char *)objp + obj_offset(cachep);
1575 	size = cachep->object_size;
1576 	for (i = 0; i < size && lines; i += 16, lines--) {
1577 		int limit;
1578 		limit = 16;
1579 		if (i + limit > size)
1580 			limit = size - i;
1581 		dump_line(realobj, i, limit);
1582 	}
1583 }
1584 
1585 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1586 {
1587 	char *realobj;
1588 	int size, i;
1589 	int lines = 0;
1590 
1591 	if (is_debug_pagealloc_cache(cachep))
1592 		return;
1593 
1594 	realobj = (char *)objp + obj_offset(cachep);
1595 	size = cachep->object_size;
1596 
1597 	for (i = 0; i < size; i++) {
1598 		char exp = POISON_FREE;
1599 		if (i == size - 1)
1600 			exp = POISON_END;
1601 		if (realobj[i] != exp) {
1602 			int limit;
1603 			/* Mismatch ! */
1604 			/* Print header */
1605 			if (lines == 0) {
1606 				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1607 				       print_tainted(), cachep->name,
1608 				       realobj, size);
1609 				print_objinfo(cachep, objp, 0);
1610 			}
1611 			/* Hexdump the affected line */
1612 			i = (i / 16) * 16;
1613 			limit = 16;
1614 			if (i + limit > size)
1615 				limit = size - i;
1616 			dump_line(realobj, i, limit);
1617 			i += 16;
1618 			lines++;
1619 			/* Limit to 5 lines */
1620 			if (lines > 5)
1621 				break;
1622 		}
1623 	}
1624 	if (lines != 0) {
1625 		/* Print some data about the neighboring objects, if they
1626 		 * exist:
1627 		 */
1628 		struct page *page = virt_to_head_page(objp);
1629 		unsigned int objnr;
1630 
1631 		objnr = obj_to_index(cachep, page, objp);
1632 		if (objnr) {
1633 			objp = index_to_obj(cachep, page, objnr - 1);
1634 			realobj = (char *)objp + obj_offset(cachep);
1635 			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1636 			print_objinfo(cachep, objp, 2);
1637 		}
1638 		if (objnr + 1 < cachep->num) {
1639 			objp = index_to_obj(cachep, page, objnr + 1);
1640 			realobj = (char *)objp + obj_offset(cachep);
1641 			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1642 			print_objinfo(cachep, objp, 2);
1643 		}
1644 	}
1645 }
1646 #endif
1647 
1648 #if DEBUG
1649 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1650 						struct page *page)
1651 {
1652 	int i;
1653 
1654 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1655 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1656 			POISON_FREE);
1657 	}
1658 
1659 	for (i = 0; i < cachep->num; i++) {
1660 		void *objp = index_to_obj(cachep, page, i);
1661 
1662 		if (cachep->flags & SLAB_POISON) {
1663 			check_poison_obj(cachep, objp);
1664 			slab_kernel_map(cachep, objp, 1, 0);
1665 		}
1666 		if (cachep->flags & SLAB_RED_ZONE) {
1667 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1668 				slab_error(cachep, "start of a freed object was overwritten");
1669 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1670 				slab_error(cachep, "end of a freed object was overwritten");
1671 		}
1672 	}
1673 }
1674 #else
1675 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1676 						struct page *page)
1677 {
1678 }
1679 #endif
1680 
1681 /**
1682  * slab_destroy - destroy and release all objects in a slab
1683  * @cachep: cache pointer being destroyed
1684  * @page: page pointer being destroyed
1685  *
1686  * Destroy all the objs in a slab page, and release the mem back to the system.
1687  * Before calling the slab page must have been unlinked from the cache. The
1688  * kmem_cache_node ->list_lock is not held/needed.
1689  */
1690 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1691 {
1692 	void *freelist;
1693 
1694 	freelist = page->freelist;
1695 	slab_destroy_debugcheck(cachep, page);
1696 	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1697 		call_rcu(&page->rcu_head, kmem_rcu_free);
1698 	else
1699 		kmem_freepages(cachep, page);
1700 
1701 	/*
1702 	 * From now on, we don't use freelist
1703 	 * although actual page can be freed in rcu context
1704 	 */
1705 	if (OFF_SLAB(cachep))
1706 		kmem_cache_free(cachep->freelist_cache, freelist);
1707 }
1708 
1709 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1710 {
1711 	struct page *page, *n;
1712 
1713 	list_for_each_entry_safe(page, n, list, lru) {
1714 		list_del(&page->lru);
1715 		slab_destroy(cachep, page);
1716 	}
1717 }
1718 
1719 /**
1720  * calculate_slab_order - calculate size (page order) of slabs
1721  * @cachep: pointer to the cache that is being created
1722  * @size: size of objects to be created in this cache.
1723  * @flags: slab allocation flags
1724  *
1725  * Also calculates the number of objects per slab.
1726  *
1727  * This could be made much more intelligent.  For now, try to avoid using
1728  * high order pages for slabs.  When the gfp() functions are more friendly
1729  * towards high-order requests, this should be changed.
1730  */
1731 static size_t calculate_slab_order(struct kmem_cache *cachep,
1732 				size_t size, slab_flags_t flags)
1733 {
1734 	size_t left_over = 0;
1735 	int gfporder;
1736 
1737 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1738 		unsigned int num;
1739 		size_t remainder;
1740 
1741 		num = cache_estimate(gfporder, size, flags, &remainder);
1742 		if (!num)
1743 			continue;
1744 
1745 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1746 		if (num > SLAB_OBJ_MAX_NUM)
1747 			break;
1748 
1749 		if (flags & CFLGS_OFF_SLAB) {
1750 			struct kmem_cache *freelist_cache;
1751 			size_t freelist_size;
1752 
1753 			freelist_size = num * sizeof(freelist_idx_t);
1754 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1755 			if (!freelist_cache)
1756 				continue;
1757 
1758 			/*
1759 			 * Needed to avoid possible looping condition
1760 			 * in cache_grow_begin()
1761 			 */
1762 			if (OFF_SLAB(freelist_cache))
1763 				continue;
1764 
1765 			/* check if off slab has enough benefit */
1766 			if (freelist_cache->size > cachep->size / 2)
1767 				continue;
1768 		}
1769 
1770 		/* Found something acceptable - save it away */
1771 		cachep->num = num;
1772 		cachep->gfporder = gfporder;
1773 		left_over = remainder;
1774 
1775 		/*
1776 		 * A VFS-reclaimable slab tends to have most allocations
1777 		 * as GFP_NOFS and we really don't want to have to be allocating
1778 		 * higher-order pages when we are unable to shrink dcache.
1779 		 */
1780 		if (flags & SLAB_RECLAIM_ACCOUNT)
1781 			break;
1782 
1783 		/*
1784 		 * Large number of objects is good, but very large slabs are
1785 		 * currently bad for the gfp()s.
1786 		 */
1787 		if (gfporder >= slab_max_order)
1788 			break;
1789 
1790 		/*
1791 		 * Acceptable internal fragmentation?
1792 		 */
1793 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1794 			break;
1795 	}
1796 	return left_over;
1797 }
1798 
1799 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1800 		struct kmem_cache *cachep, int entries, int batchcount)
1801 {
1802 	int cpu;
1803 	size_t size;
1804 	struct array_cache __percpu *cpu_cache;
1805 
1806 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1807 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1808 
1809 	if (!cpu_cache)
1810 		return NULL;
1811 
1812 	for_each_possible_cpu(cpu) {
1813 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1814 				entries, batchcount);
1815 	}
1816 
1817 	return cpu_cache;
1818 }
1819 
1820 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1821 {
1822 	if (slab_state >= FULL)
1823 		return enable_cpucache(cachep, gfp);
1824 
1825 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1826 	if (!cachep->cpu_cache)
1827 		return 1;
1828 
1829 	if (slab_state == DOWN) {
1830 		/* Creation of first cache (kmem_cache). */
1831 		set_up_node(kmem_cache, CACHE_CACHE);
1832 	} else if (slab_state == PARTIAL) {
1833 		/* For kmem_cache_node */
1834 		set_up_node(cachep, SIZE_NODE);
1835 	} else {
1836 		int node;
1837 
1838 		for_each_online_node(node) {
1839 			cachep->node[node] = kmalloc_node(
1840 				sizeof(struct kmem_cache_node), gfp, node);
1841 			BUG_ON(!cachep->node[node]);
1842 			kmem_cache_node_init(cachep->node[node]);
1843 		}
1844 	}
1845 
1846 	cachep->node[numa_mem_id()]->next_reap =
1847 			jiffies + REAPTIMEOUT_NODE +
1848 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1849 
1850 	cpu_cache_get(cachep)->avail = 0;
1851 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1852 	cpu_cache_get(cachep)->batchcount = 1;
1853 	cpu_cache_get(cachep)->touched = 0;
1854 	cachep->batchcount = 1;
1855 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1856 	return 0;
1857 }
1858 
1859 slab_flags_t kmem_cache_flags(unsigned int object_size,
1860 	slab_flags_t flags, const char *name,
1861 	void (*ctor)(void *))
1862 {
1863 	return flags;
1864 }
1865 
1866 struct kmem_cache *
1867 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1868 		   slab_flags_t flags, void (*ctor)(void *))
1869 {
1870 	struct kmem_cache *cachep;
1871 
1872 	cachep = find_mergeable(size, align, flags, name, ctor);
1873 	if (cachep) {
1874 		cachep->refcount++;
1875 
1876 		/*
1877 		 * Adjust the object sizes so that we clear
1878 		 * the complete object on kzalloc.
1879 		 */
1880 		cachep->object_size = max_t(int, cachep->object_size, size);
1881 	}
1882 	return cachep;
1883 }
1884 
1885 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1886 			size_t size, slab_flags_t flags)
1887 {
1888 	size_t left;
1889 
1890 	cachep->num = 0;
1891 
1892 	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1893 		return false;
1894 
1895 	left = calculate_slab_order(cachep, size,
1896 			flags | CFLGS_OBJFREELIST_SLAB);
1897 	if (!cachep->num)
1898 		return false;
1899 
1900 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1901 		return false;
1902 
1903 	cachep->colour = left / cachep->colour_off;
1904 
1905 	return true;
1906 }
1907 
1908 static bool set_off_slab_cache(struct kmem_cache *cachep,
1909 			size_t size, slab_flags_t flags)
1910 {
1911 	size_t left;
1912 
1913 	cachep->num = 0;
1914 
1915 	/*
1916 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1917 	 * to avoid recursive calls into kmemleak.
1918 	 */
1919 	if (flags & SLAB_NOLEAKTRACE)
1920 		return false;
1921 
1922 	/*
1923 	 * Size is large, assume best to place the slab management obj
1924 	 * off-slab (should allow better packing of objs).
1925 	 */
1926 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1927 	if (!cachep->num)
1928 		return false;
1929 
1930 	/*
1931 	 * If the slab has been placed off-slab, and we have enough space then
1932 	 * move it on-slab. This is at the expense of any extra colouring.
1933 	 */
1934 	if (left >= cachep->num * sizeof(freelist_idx_t))
1935 		return false;
1936 
1937 	cachep->colour = left / cachep->colour_off;
1938 
1939 	return true;
1940 }
1941 
1942 static bool set_on_slab_cache(struct kmem_cache *cachep,
1943 			size_t size, slab_flags_t flags)
1944 {
1945 	size_t left;
1946 
1947 	cachep->num = 0;
1948 
1949 	left = calculate_slab_order(cachep, size, flags);
1950 	if (!cachep->num)
1951 		return false;
1952 
1953 	cachep->colour = left / cachep->colour_off;
1954 
1955 	return true;
1956 }
1957 
1958 /**
1959  * __kmem_cache_create - Create a cache.
1960  * @cachep: cache management descriptor
1961  * @flags: SLAB flags
1962  *
1963  * Returns a ptr to the cache on success, NULL on failure.
1964  * Cannot be called within a int, but can be interrupted.
1965  * The @ctor is run when new pages are allocated by the cache.
1966  *
1967  * The flags are
1968  *
1969  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1970  * to catch references to uninitialised memory.
1971  *
1972  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1973  * for buffer overruns.
1974  *
1975  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1976  * cacheline.  This can be beneficial if you're counting cycles as closely
1977  * as davem.
1978  */
1979 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1980 {
1981 	size_t ralign = BYTES_PER_WORD;
1982 	gfp_t gfp;
1983 	int err;
1984 	unsigned int size = cachep->size;
1985 
1986 #if DEBUG
1987 #if FORCED_DEBUG
1988 	/*
1989 	 * Enable redzoning and last user accounting, except for caches with
1990 	 * large objects, if the increased size would increase the object size
1991 	 * above the next power of two: caches with object sizes just above a
1992 	 * power of two have a significant amount of internal fragmentation.
1993 	 */
1994 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1995 						2 * sizeof(unsigned long long)))
1996 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1997 	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1998 		flags |= SLAB_POISON;
1999 #endif
2000 #endif
2001 
2002 	/*
2003 	 * Check that size is in terms of words.  This is needed to avoid
2004 	 * unaligned accesses for some archs when redzoning is used, and makes
2005 	 * sure any on-slab bufctl's are also correctly aligned.
2006 	 */
2007 	size = ALIGN(size, BYTES_PER_WORD);
2008 
2009 	if (flags & SLAB_RED_ZONE) {
2010 		ralign = REDZONE_ALIGN;
2011 		/* If redzoning, ensure that the second redzone is suitably
2012 		 * aligned, by adjusting the object size accordingly. */
2013 		size = ALIGN(size, REDZONE_ALIGN);
2014 	}
2015 
2016 	/* 3) caller mandated alignment */
2017 	if (ralign < cachep->align) {
2018 		ralign = cachep->align;
2019 	}
2020 	/* disable debug if necessary */
2021 	if (ralign > __alignof__(unsigned long long))
2022 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2023 	/*
2024 	 * 4) Store it.
2025 	 */
2026 	cachep->align = ralign;
2027 	cachep->colour_off = cache_line_size();
2028 	/* Offset must be a multiple of the alignment. */
2029 	if (cachep->colour_off < cachep->align)
2030 		cachep->colour_off = cachep->align;
2031 
2032 	if (slab_is_available())
2033 		gfp = GFP_KERNEL;
2034 	else
2035 		gfp = GFP_NOWAIT;
2036 
2037 #if DEBUG
2038 
2039 	/*
2040 	 * Both debugging options require word-alignment which is calculated
2041 	 * into align above.
2042 	 */
2043 	if (flags & SLAB_RED_ZONE) {
2044 		/* add space for red zone words */
2045 		cachep->obj_offset += sizeof(unsigned long long);
2046 		size += 2 * sizeof(unsigned long long);
2047 	}
2048 	if (flags & SLAB_STORE_USER) {
2049 		/* user store requires one word storage behind the end of
2050 		 * the real object. But if the second red zone needs to be
2051 		 * aligned to 64 bits, we must allow that much space.
2052 		 */
2053 		if (flags & SLAB_RED_ZONE)
2054 			size += REDZONE_ALIGN;
2055 		else
2056 			size += BYTES_PER_WORD;
2057 	}
2058 #endif
2059 
2060 	kasan_cache_create(cachep, &size, &flags);
2061 
2062 	size = ALIGN(size, cachep->align);
2063 	/*
2064 	 * We should restrict the number of objects in a slab to implement
2065 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2066 	 */
2067 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2068 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2069 
2070 #if DEBUG
2071 	/*
2072 	 * To activate debug pagealloc, off-slab management is necessary
2073 	 * requirement. In early phase of initialization, small sized slab
2074 	 * doesn't get initialized so it would not be possible. So, we need
2075 	 * to check size >= 256. It guarantees that all necessary small
2076 	 * sized slab is initialized in current slab initialization sequence.
2077 	 */
2078 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2079 		size >= 256 && cachep->object_size > cache_line_size()) {
2080 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2081 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2082 
2083 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2084 				flags |= CFLGS_OFF_SLAB;
2085 				cachep->obj_offset += tmp_size - size;
2086 				size = tmp_size;
2087 				goto done;
2088 			}
2089 		}
2090 	}
2091 #endif
2092 
2093 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2094 		flags |= CFLGS_OBJFREELIST_SLAB;
2095 		goto done;
2096 	}
2097 
2098 	if (set_off_slab_cache(cachep, size, flags)) {
2099 		flags |= CFLGS_OFF_SLAB;
2100 		goto done;
2101 	}
2102 
2103 	if (set_on_slab_cache(cachep, size, flags))
2104 		goto done;
2105 
2106 	return -E2BIG;
2107 
2108 done:
2109 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2110 	cachep->flags = flags;
2111 	cachep->allocflags = __GFP_COMP;
2112 	if (flags & SLAB_CACHE_DMA)
2113 		cachep->allocflags |= GFP_DMA;
2114 	if (flags & SLAB_RECLAIM_ACCOUNT)
2115 		cachep->allocflags |= __GFP_RECLAIMABLE;
2116 	cachep->size = size;
2117 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2118 
2119 #if DEBUG
2120 	/*
2121 	 * If we're going to use the generic kernel_map_pages()
2122 	 * poisoning, then it's going to smash the contents of
2123 	 * the redzone and userword anyhow, so switch them off.
2124 	 */
2125 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2126 		(cachep->flags & SLAB_POISON) &&
2127 		is_debug_pagealloc_cache(cachep))
2128 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2129 #endif
2130 
2131 	if (OFF_SLAB(cachep)) {
2132 		cachep->freelist_cache =
2133 			kmalloc_slab(cachep->freelist_size, 0u);
2134 	}
2135 
2136 	err = setup_cpu_cache(cachep, gfp);
2137 	if (err) {
2138 		__kmem_cache_release(cachep);
2139 		return err;
2140 	}
2141 
2142 	return 0;
2143 }
2144 
2145 #if DEBUG
2146 static void check_irq_off(void)
2147 {
2148 	BUG_ON(!irqs_disabled());
2149 }
2150 
2151 static void check_irq_on(void)
2152 {
2153 	BUG_ON(irqs_disabled());
2154 }
2155 
2156 static void check_mutex_acquired(void)
2157 {
2158 	BUG_ON(!mutex_is_locked(&slab_mutex));
2159 }
2160 
2161 static void check_spinlock_acquired(struct kmem_cache *cachep)
2162 {
2163 #ifdef CONFIG_SMP
2164 	check_irq_off();
2165 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2166 #endif
2167 }
2168 
2169 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2170 {
2171 #ifdef CONFIG_SMP
2172 	check_irq_off();
2173 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2174 #endif
2175 }
2176 
2177 #else
2178 #define check_irq_off()	do { } while(0)
2179 #define check_irq_on()	do { } while(0)
2180 #define check_mutex_acquired()	do { } while(0)
2181 #define check_spinlock_acquired(x) do { } while(0)
2182 #define check_spinlock_acquired_node(x, y) do { } while(0)
2183 #endif
2184 
2185 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2186 				int node, bool free_all, struct list_head *list)
2187 {
2188 	int tofree;
2189 
2190 	if (!ac || !ac->avail)
2191 		return;
2192 
2193 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2194 	if (tofree > ac->avail)
2195 		tofree = (ac->avail + 1) / 2;
2196 
2197 	free_block(cachep, ac->entry, tofree, node, list);
2198 	ac->avail -= tofree;
2199 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2200 }
2201 
2202 static void do_drain(void *arg)
2203 {
2204 	struct kmem_cache *cachep = arg;
2205 	struct array_cache *ac;
2206 	int node = numa_mem_id();
2207 	struct kmem_cache_node *n;
2208 	LIST_HEAD(list);
2209 
2210 	check_irq_off();
2211 	ac = cpu_cache_get(cachep);
2212 	n = get_node(cachep, node);
2213 	spin_lock(&n->list_lock);
2214 	free_block(cachep, ac->entry, ac->avail, node, &list);
2215 	spin_unlock(&n->list_lock);
2216 	slabs_destroy(cachep, &list);
2217 	ac->avail = 0;
2218 }
2219 
2220 static void drain_cpu_caches(struct kmem_cache *cachep)
2221 {
2222 	struct kmem_cache_node *n;
2223 	int node;
2224 	LIST_HEAD(list);
2225 
2226 	on_each_cpu(do_drain, cachep, 1);
2227 	check_irq_on();
2228 	for_each_kmem_cache_node(cachep, node, n)
2229 		if (n->alien)
2230 			drain_alien_cache(cachep, n->alien);
2231 
2232 	for_each_kmem_cache_node(cachep, node, n) {
2233 		spin_lock_irq(&n->list_lock);
2234 		drain_array_locked(cachep, n->shared, node, true, &list);
2235 		spin_unlock_irq(&n->list_lock);
2236 
2237 		slabs_destroy(cachep, &list);
2238 	}
2239 }
2240 
2241 /*
2242  * Remove slabs from the list of free slabs.
2243  * Specify the number of slabs to drain in tofree.
2244  *
2245  * Returns the actual number of slabs released.
2246  */
2247 static int drain_freelist(struct kmem_cache *cache,
2248 			struct kmem_cache_node *n, int tofree)
2249 {
2250 	struct list_head *p;
2251 	int nr_freed;
2252 	struct page *page;
2253 
2254 	nr_freed = 0;
2255 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2256 
2257 		spin_lock_irq(&n->list_lock);
2258 		p = n->slabs_free.prev;
2259 		if (p == &n->slabs_free) {
2260 			spin_unlock_irq(&n->list_lock);
2261 			goto out;
2262 		}
2263 
2264 		page = list_entry(p, struct page, lru);
2265 		list_del(&page->lru);
2266 		n->free_slabs--;
2267 		n->total_slabs--;
2268 		/*
2269 		 * Safe to drop the lock. The slab is no longer linked
2270 		 * to the cache.
2271 		 */
2272 		n->free_objects -= cache->num;
2273 		spin_unlock_irq(&n->list_lock);
2274 		slab_destroy(cache, page);
2275 		nr_freed++;
2276 	}
2277 out:
2278 	return nr_freed;
2279 }
2280 
2281 bool __kmem_cache_empty(struct kmem_cache *s)
2282 {
2283 	int node;
2284 	struct kmem_cache_node *n;
2285 
2286 	for_each_kmem_cache_node(s, node, n)
2287 		if (!list_empty(&n->slabs_full) ||
2288 		    !list_empty(&n->slabs_partial))
2289 			return false;
2290 	return true;
2291 }
2292 
2293 int __kmem_cache_shrink(struct kmem_cache *cachep)
2294 {
2295 	int ret = 0;
2296 	int node;
2297 	struct kmem_cache_node *n;
2298 
2299 	drain_cpu_caches(cachep);
2300 
2301 	check_irq_on();
2302 	for_each_kmem_cache_node(cachep, node, n) {
2303 		drain_freelist(cachep, n, INT_MAX);
2304 
2305 		ret += !list_empty(&n->slabs_full) ||
2306 			!list_empty(&n->slabs_partial);
2307 	}
2308 	return (ret ? 1 : 0);
2309 }
2310 
2311 #ifdef CONFIG_MEMCG
2312 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2313 {
2314 	__kmem_cache_shrink(cachep);
2315 }
2316 #endif
2317 
2318 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2319 {
2320 	return __kmem_cache_shrink(cachep);
2321 }
2322 
2323 void __kmem_cache_release(struct kmem_cache *cachep)
2324 {
2325 	int i;
2326 	struct kmem_cache_node *n;
2327 
2328 	cache_random_seq_destroy(cachep);
2329 
2330 	free_percpu(cachep->cpu_cache);
2331 
2332 	/* NUMA: free the node structures */
2333 	for_each_kmem_cache_node(cachep, i, n) {
2334 		kfree(n->shared);
2335 		free_alien_cache(n->alien);
2336 		kfree(n);
2337 		cachep->node[i] = NULL;
2338 	}
2339 }
2340 
2341 /*
2342  * Get the memory for a slab management obj.
2343  *
2344  * For a slab cache when the slab descriptor is off-slab, the
2345  * slab descriptor can't come from the same cache which is being created,
2346  * Because if it is the case, that means we defer the creation of
2347  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2348  * And we eventually call down to __kmem_cache_create(), which
2349  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2350  * This is a "chicken-and-egg" problem.
2351  *
2352  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2353  * which are all initialized during kmem_cache_init().
2354  */
2355 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2356 				   struct page *page, int colour_off,
2357 				   gfp_t local_flags, int nodeid)
2358 {
2359 	void *freelist;
2360 	void *addr = page_address(page);
2361 
2362 	page->s_mem = addr + colour_off;
2363 	page->active = 0;
2364 
2365 	if (OBJFREELIST_SLAB(cachep))
2366 		freelist = NULL;
2367 	else if (OFF_SLAB(cachep)) {
2368 		/* Slab management obj is off-slab. */
2369 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2370 					      local_flags, nodeid);
2371 		freelist = kasan_reset_tag(freelist);
2372 		if (!freelist)
2373 			return NULL;
2374 	} else {
2375 		/* We will use last bytes at the slab for freelist */
2376 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2377 				cachep->freelist_size;
2378 	}
2379 
2380 	return freelist;
2381 }
2382 
2383 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2384 {
2385 	return ((freelist_idx_t *)page->freelist)[idx];
2386 }
2387 
2388 static inline void set_free_obj(struct page *page,
2389 					unsigned int idx, freelist_idx_t val)
2390 {
2391 	((freelist_idx_t *)(page->freelist))[idx] = val;
2392 }
2393 
2394 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2395 {
2396 #if DEBUG
2397 	int i;
2398 
2399 	for (i = 0; i < cachep->num; i++) {
2400 		void *objp = index_to_obj(cachep, page, i);
2401 
2402 		if (cachep->flags & SLAB_STORE_USER)
2403 			*dbg_userword(cachep, objp) = NULL;
2404 
2405 		if (cachep->flags & SLAB_RED_ZONE) {
2406 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2407 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2408 		}
2409 		/*
2410 		 * Constructors are not allowed to allocate memory from the same
2411 		 * cache which they are a constructor for.  Otherwise, deadlock.
2412 		 * They must also be threaded.
2413 		 */
2414 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2415 			kasan_unpoison_object_data(cachep,
2416 						   objp + obj_offset(cachep));
2417 			cachep->ctor(objp + obj_offset(cachep));
2418 			kasan_poison_object_data(
2419 				cachep, objp + obj_offset(cachep));
2420 		}
2421 
2422 		if (cachep->flags & SLAB_RED_ZONE) {
2423 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2424 				slab_error(cachep, "constructor overwrote the end of an object");
2425 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2426 				slab_error(cachep, "constructor overwrote the start of an object");
2427 		}
2428 		/* need to poison the objs? */
2429 		if (cachep->flags & SLAB_POISON) {
2430 			poison_obj(cachep, objp, POISON_FREE);
2431 			slab_kernel_map(cachep, objp, 0, 0);
2432 		}
2433 	}
2434 #endif
2435 }
2436 
2437 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2438 /* Hold information during a freelist initialization */
2439 union freelist_init_state {
2440 	struct {
2441 		unsigned int pos;
2442 		unsigned int *list;
2443 		unsigned int count;
2444 	};
2445 	struct rnd_state rnd_state;
2446 };
2447 
2448 /*
2449  * Initialize the state based on the randomization methode available.
2450  * return true if the pre-computed list is available, false otherwize.
2451  */
2452 static bool freelist_state_initialize(union freelist_init_state *state,
2453 				struct kmem_cache *cachep,
2454 				unsigned int count)
2455 {
2456 	bool ret;
2457 	unsigned int rand;
2458 
2459 	/* Use best entropy available to define a random shift */
2460 	rand = get_random_int();
2461 
2462 	/* Use a random state if the pre-computed list is not available */
2463 	if (!cachep->random_seq) {
2464 		prandom_seed_state(&state->rnd_state, rand);
2465 		ret = false;
2466 	} else {
2467 		state->list = cachep->random_seq;
2468 		state->count = count;
2469 		state->pos = rand % count;
2470 		ret = true;
2471 	}
2472 	return ret;
2473 }
2474 
2475 /* Get the next entry on the list and randomize it using a random shift */
2476 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2477 {
2478 	if (state->pos >= state->count)
2479 		state->pos = 0;
2480 	return state->list[state->pos++];
2481 }
2482 
2483 /* Swap two freelist entries */
2484 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2485 {
2486 	swap(((freelist_idx_t *)page->freelist)[a],
2487 		((freelist_idx_t *)page->freelist)[b]);
2488 }
2489 
2490 /*
2491  * Shuffle the freelist initialization state based on pre-computed lists.
2492  * return true if the list was successfully shuffled, false otherwise.
2493  */
2494 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2495 {
2496 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2497 	union freelist_init_state state;
2498 	bool precomputed;
2499 
2500 	if (count < 2)
2501 		return false;
2502 
2503 	precomputed = freelist_state_initialize(&state, cachep, count);
2504 
2505 	/* Take a random entry as the objfreelist */
2506 	if (OBJFREELIST_SLAB(cachep)) {
2507 		if (!precomputed)
2508 			objfreelist = count - 1;
2509 		else
2510 			objfreelist = next_random_slot(&state);
2511 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2512 						obj_offset(cachep);
2513 		count--;
2514 	}
2515 
2516 	/*
2517 	 * On early boot, generate the list dynamically.
2518 	 * Later use a pre-computed list for speed.
2519 	 */
2520 	if (!precomputed) {
2521 		for (i = 0; i < count; i++)
2522 			set_free_obj(page, i, i);
2523 
2524 		/* Fisher-Yates shuffle */
2525 		for (i = count - 1; i > 0; i--) {
2526 			rand = prandom_u32_state(&state.rnd_state);
2527 			rand %= (i + 1);
2528 			swap_free_obj(page, i, rand);
2529 		}
2530 	} else {
2531 		for (i = 0; i < count; i++)
2532 			set_free_obj(page, i, next_random_slot(&state));
2533 	}
2534 
2535 	if (OBJFREELIST_SLAB(cachep))
2536 		set_free_obj(page, cachep->num - 1, objfreelist);
2537 
2538 	return true;
2539 }
2540 #else
2541 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2542 				struct page *page)
2543 {
2544 	return false;
2545 }
2546 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2547 
2548 static void cache_init_objs(struct kmem_cache *cachep,
2549 			    struct page *page)
2550 {
2551 	int i;
2552 	void *objp;
2553 	bool shuffled;
2554 
2555 	cache_init_objs_debug(cachep, page);
2556 
2557 	/* Try to randomize the freelist if enabled */
2558 	shuffled = shuffle_freelist(cachep, page);
2559 
2560 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2561 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2562 						obj_offset(cachep);
2563 	}
2564 
2565 	for (i = 0; i < cachep->num; i++) {
2566 		objp = index_to_obj(cachep, page, i);
2567 		objp = kasan_init_slab_obj(cachep, objp);
2568 
2569 		/* constructor could break poison info */
2570 		if (DEBUG == 0 && cachep->ctor) {
2571 			kasan_unpoison_object_data(cachep, objp);
2572 			cachep->ctor(objp);
2573 			kasan_poison_object_data(cachep, objp);
2574 		}
2575 
2576 		if (!shuffled)
2577 			set_free_obj(page, i, i);
2578 	}
2579 }
2580 
2581 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2582 {
2583 	void *objp;
2584 
2585 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2586 	page->active++;
2587 
2588 #if DEBUG
2589 	if (cachep->flags & SLAB_STORE_USER)
2590 		set_store_user_dirty(cachep);
2591 #endif
2592 
2593 	return objp;
2594 }
2595 
2596 static void slab_put_obj(struct kmem_cache *cachep,
2597 			struct page *page, void *objp)
2598 {
2599 	unsigned int objnr = obj_to_index(cachep, page, objp);
2600 #if DEBUG
2601 	unsigned int i;
2602 
2603 	/* Verify double free bug */
2604 	for (i = page->active; i < cachep->num; i++) {
2605 		if (get_free_obj(page, i) == objnr) {
2606 			pr_err("slab: double free detected in cache '%s', objp %px\n",
2607 			       cachep->name, objp);
2608 			BUG();
2609 		}
2610 	}
2611 #endif
2612 	page->active--;
2613 	if (!page->freelist)
2614 		page->freelist = objp + obj_offset(cachep);
2615 
2616 	set_free_obj(page, page->active, objnr);
2617 }
2618 
2619 /*
2620  * Map pages beginning at addr to the given cache and slab. This is required
2621  * for the slab allocator to be able to lookup the cache and slab of a
2622  * virtual address for kfree, ksize, and slab debugging.
2623  */
2624 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2625 			   void *freelist)
2626 {
2627 	page->slab_cache = cache;
2628 	page->freelist = freelist;
2629 }
2630 
2631 /*
2632  * Grow (by 1) the number of slabs within a cache.  This is called by
2633  * kmem_cache_alloc() when there are no active objs left in a cache.
2634  */
2635 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2636 				gfp_t flags, int nodeid)
2637 {
2638 	void *freelist;
2639 	size_t offset;
2640 	gfp_t local_flags;
2641 	int page_node;
2642 	struct kmem_cache_node *n;
2643 	struct page *page;
2644 
2645 	/*
2646 	 * Be lazy and only check for valid flags here,  keeping it out of the
2647 	 * critical path in kmem_cache_alloc().
2648 	 */
2649 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2650 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2651 		flags &= ~GFP_SLAB_BUG_MASK;
2652 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2653 				invalid_mask, &invalid_mask, flags, &flags);
2654 		dump_stack();
2655 	}
2656 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2657 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2658 
2659 	check_irq_off();
2660 	if (gfpflags_allow_blocking(local_flags))
2661 		local_irq_enable();
2662 
2663 	/*
2664 	 * Get mem for the objs.  Attempt to allocate a physical page from
2665 	 * 'nodeid'.
2666 	 */
2667 	page = kmem_getpages(cachep, local_flags, nodeid);
2668 	if (!page)
2669 		goto failed;
2670 
2671 	page_node = page_to_nid(page);
2672 	n = get_node(cachep, page_node);
2673 
2674 	/* Get colour for the slab, and cal the next value. */
2675 	n->colour_next++;
2676 	if (n->colour_next >= cachep->colour)
2677 		n->colour_next = 0;
2678 
2679 	offset = n->colour_next;
2680 	if (offset >= cachep->colour)
2681 		offset = 0;
2682 
2683 	offset *= cachep->colour_off;
2684 
2685 	/*
2686 	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2687 	 * page_address() in the latter returns a non-tagged pointer,
2688 	 * as it should be for slab pages.
2689 	 */
2690 	kasan_poison_slab(page);
2691 
2692 	/* Get slab management. */
2693 	freelist = alloc_slabmgmt(cachep, page, offset,
2694 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2695 	if (OFF_SLAB(cachep) && !freelist)
2696 		goto opps1;
2697 
2698 	slab_map_pages(cachep, page, freelist);
2699 
2700 	cache_init_objs(cachep, page);
2701 
2702 	if (gfpflags_allow_blocking(local_flags))
2703 		local_irq_disable();
2704 
2705 	return page;
2706 
2707 opps1:
2708 	kmem_freepages(cachep, page);
2709 failed:
2710 	if (gfpflags_allow_blocking(local_flags))
2711 		local_irq_disable();
2712 	return NULL;
2713 }
2714 
2715 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2716 {
2717 	struct kmem_cache_node *n;
2718 	void *list = NULL;
2719 
2720 	check_irq_off();
2721 
2722 	if (!page)
2723 		return;
2724 
2725 	INIT_LIST_HEAD(&page->lru);
2726 	n = get_node(cachep, page_to_nid(page));
2727 
2728 	spin_lock(&n->list_lock);
2729 	n->total_slabs++;
2730 	if (!page->active) {
2731 		list_add_tail(&page->lru, &(n->slabs_free));
2732 		n->free_slabs++;
2733 	} else
2734 		fixup_slab_list(cachep, n, page, &list);
2735 
2736 	STATS_INC_GROWN(cachep);
2737 	n->free_objects += cachep->num - page->active;
2738 	spin_unlock(&n->list_lock);
2739 
2740 	fixup_objfreelist_debug(cachep, &list);
2741 }
2742 
2743 #if DEBUG
2744 
2745 /*
2746  * Perform extra freeing checks:
2747  * - detect bad pointers.
2748  * - POISON/RED_ZONE checking
2749  */
2750 static void kfree_debugcheck(const void *objp)
2751 {
2752 	if (!virt_addr_valid(objp)) {
2753 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2754 		       (unsigned long)objp);
2755 		BUG();
2756 	}
2757 }
2758 
2759 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2760 {
2761 	unsigned long long redzone1, redzone2;
2762 
2763 	redzone1 = *dbg_redzone1(cache, obj);
2764 	redzone2 = *dbg_redzone2(cache, obj);
2765 
2766 	/*
2767 	 * Redzone is ok.
2768 	 */
2769 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2770 		return;
2771 
2772 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2773 		slab_error(cache, "double free detected");
2774 	else
2775 		slab_error(cache, "memory outside object was overwritten");
2776 
2777 	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2778 	       obj, redzone1, redzone2);
2779 }
2780 
2781 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2782 				   unsigned long caller)
2783 {
2784 	unsigned int objnr;
2785 	struct page *page;
2786 
2787 	BUG_ON(virt_to_cache(objp) != cachep);
2788 
2789 	objp -= obj_offset(cachep);
2790 	kfree_debugcheck(objp);
2791 	page = virt_to_head_page(objp);
2792 
2793 	if (cachep->flags & SLAB_RED_ZONE) {
2794 		verify_redzone_free(cachep, objp);
2795 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2796 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2797 	}
2798 	if (cachep->flags & SLAB_STORE_USER) {
2799 		set_store_user_dirty(cachep);
2800 		*dbg_userword(cachep, objp) = (void *)caller;
2801 	}
2802 
2803 	objnr = obj_to_index(cachep, page, objp);
2804 
2805 	BUG_ON(objnr >= cachep->num);
2806 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2807 
2808 	if (cachep->flags & SLAB_POISON) {
2809 		poison_obj(cachep, objp, POISON_FREE);
2810 		slab_kernel_map(cachep, objp, 0, caller);
2811 	}
2812 	return objp;
2813 }
2814 
2815 #else
2816 #define kfree_debugcheck(x) do { } while(0)
2817 #define cache_free_debugcheck(x,objp,z) (objp)
2818 #endif
2819 
2820 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2821 						void **list)
2822 {
2823 #if DEBUG
2824 	void *next = *list;
2825 	void *objp;
2826 
2827 	while (next) {
2828 		objp = next - obj_offset(cachep);
2829 		next = *(void **)next;
2830 		poison_obj(cachep, objp, POISON_FREE);
2831 	}
2832 #endif
2833 }
2834 
2835 static inline void fixup_slab_list(struct kmem_cache *cachep,
2836 				struct kmem_cache_node *n, struct page *page,
2837 				void **list)
2838 {
2839 	/* move slabp to correct slabp list: */
2840 	list_del(&page->lru);
2841 	if (page->active == cachep->num) {
2842 		list_add(&page->lru, &n->slabs_full);
2843 		if (OBJFREELIST_SLAB(cachep)) {
2844 #if DEBUG
2845 			/* Poisoning will be done without holding the lock */
2846 			if (cachep->flags & SLAB_POISON) {
2847 				void **objp = page->freelist;
2848 
2849 				*objp = *list;
2850 				*list = objp;
2851 			}
2852 #endif
2853 			page->freelist = NULL;
2854 		}
2855 	} else
2856 		list_add(&page->lru, &n->slabs_partial);
2857 }
2858 
2859 /* Try to find non-pfmemalloc slab if needed */
2860 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2861 					struct page *page, bool pfmemalloc)
2862 {
2863 	if (!page)
2864 		return NULL;
2865 
2866 	if (pfmemalloc)
2867 		return page;
2868 
2869 	if (!PageSlabPfmemalloc(page))
2870 		return page;
2871 
2872 	/* No need to keep pfmemalloc slab if we have enough free objects */
2873 	if (n->free_objects > n->free_limit) {
2874 		ClearPageSlabPfmemalloc(page);
2875 		return page;
2876 	}
2877 
2878 	/* Move pfmemalloc slab to the end of list to speed up next search */
2879 	list_del(&page->lru);
2880 	if (!page->active) {
2881 		list_add_tail(&page->lru, &n->slabs_free);
2882 		n->free_slabs++;
2883 	} else
2884 		list_add_tail(&page->lru, &n->slabs_partial);
2885 
2886 	list_for_each_entry(page, &n->slabs_partial, lru) {
2887 		if (!PageSlabPfmemalloc(page))
2888 			return page;
2889 	}
2890 
2891 	n->free_touched = 1;
2892 	list_for_each_entry(page, &n->slabs_free, lru) {
2893 		if (!PageSlabPfmemalloc(page)) {
2894 			n->free_slabs--;
2895 			return page;
2896 		}
2897 	}
2898 
2899 	return NULL;
2900 }
2901 
2902 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2903 {
2904 	struct page *page;
2905 
2906 	assert_spin_locked(&n->list_lock);
2907 	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2908 	if (!page) {
2909 		n->free_touched = 1;
2910 		page = list_first_entry_or_null(&n->slabs_free, struct page,
2911 						lru);
2912 		if (page)
2913 			n->free_slabs--;
2914 	}
2915 
2916 	if (sk_memalloc_socks())
2917 		page = get_valid_first_slab(n, page, pfmemalloc);
2918 
2919 	return page;
2920 }
2921 
2922 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2923 				struct kmem_cache_node *n, gfp_t flags)
2924 {
2925 	struct page *page;
2926 	void *obj;
2927 	void *list = NULL;
2928 
2929 	if (!gfp_pfmemalloc_allowed(flags))
2930 		return NULL;
2931 
2932 	spin_lock(&n->list_lock);
2933 	page = get_first_slab(n, true);
2934 	if (!page) {
2935 		spin_unlock(&n->list_lock);
2936 		return NULL;
2937 	}
2938 
2939 	obj = slab_get_obj(cachep, page);
2940 	n->free_objects--;
2941 
2942 	fixup_slab_list(cachep, n, page, &list);
2943 
2944 	spin_unlock(&n->list_lock);
2945 	fixup_objfreelist_debug(cachep, &list);
2946 
2947 	return obj;
2948 }
2949 
2950 /*
2951  * Slab list should be fixed up by fixup_slab_list() for existing slab
2952  * or cache_grow_end() for new slab
2953  */
2954 static __always_inline int alloc_block(struct kmem_cache *cachep,
2955 		struct array_cache *ac, struct page *page, int batchcount)
2956 {
2957 	/*
2958 	 * There must be at least one object available for
2959 	 * allocation.
2960 	 */
2961 	BUG_ON(page->active >= cachep->num);
2962 
2963 	while (page->active < cachep->num && batchcount--) {
2964 		STATS_INC_ALLOCED(cachep);
2965 		STATS_INC_ACTIVE(cachep);
2966 		STATS_SET_HIGH(cachep);
2967 
2968 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2969 	}
2970 
2971 	return batchcount;
2972 }
2973 
2974 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2975 {
2976 	int batchcount;
2977 	struct kmem_cache_node *n;
2978 	struct array_cache *ac, *shared;
2979 	int node;
2980 	void *list = NULL;
2981 	struct page *page;
2982 
2983 	check_irq_off();
2984 	node = numa_mem_id();
2985 
2986 	ac = cpu_cache_get(cachep);
2987 	batchcount = ac->batchcount;
2988 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2989 		/*
2990 		 * If there was little recent activity on this cache, then
2991 		 * perform only a partial refill.  Otherwise we could generate
2992 		 * refill bouncing.
2993 		 */
2994 		batchcount = BATCHREFILL_LIMIT;
2995 	}
2996 	n = get_node(cachep, node);
2997 
2998 	BUG_ON(ac->avail > 0 || !n);
2999 	shared = READ_ONCE(n->shared);
3000 	if (!n->free_objects && (!shared || !shared->avail))
3001 		goto direct_grow;
3002 
3003 	spin_lock(&n->list_lock);
3004 	shared = READ_ONCE(n->shared);
3005 
3006 	/* See if we can refill from the shared array */
3007 	if (shared && transfer_objects(ac, shared, batchcount)) {
3008 		shared->touched = 1;
3009 		goto alloc_done;
3010 	}
3011 
3012 	while (batchcount > 0) {
3013 		/* Get slab alloc is to come from. */
3014 		page = get_first_slab(n, false);
3015 		if (!page)
3016 			goto must_grow;
3017 
3018 		check_spinlock_acquired(cachep);
3019 
3020 		batchcount = alloc_block(cachep, ac, page, batchcount);
3021 		fixup_slab_list(cachep, n, page, &list);
3022 	}
3023 
3024 must_grow:
3025 	n->free_objects -= ac->avail;
3026 alloc_done:
3027 	spin_unlock(&n->list_lock);
3028 	fixup_objfreelist_debug(cachep, &list);
3029 
3030 direct_grow:
3031 	if (unlikely(!ac->avail)) {
3032 		/* Check if we can use obj in pfmemalloc slab */
3033 		if (sk_memalloc_socks()) {
3034 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3035 
3036 			if (obj)
3037 				return obj;
3038 		}
3039 
3040 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3041 
3042 		/*
3043 		 * cache_grow_begin() can reenable interrupts,
3044 		 * then ac could change.
3045 		 */
3046 		ac = cpu_cache_get(cachep);
3047 		if (!ac->avail && page)
3048 			alloc_block(cachep, ac, page, batchcount);
3049 		cache_grow_end(cachep, page);
3050 
3051 		if (!ac->avail)
3052 			return NULL;
3053 	}
3054 	ac->touched = 1;
3055 
3056 	return ac->entry[--ac->avail];
3057 }
3058 
3059 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3060 						gfp_t flags)
3061 {
3062 	might_sleep_if(gfpflags_allow_blocking(flags));
3063 }
3064 
3065 #if DEBUG
3066 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3067 				gfp_t flags, void *objp, unsigned long caller)
3068 {
3069 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3070 	if (!objp)
3071 		return objp;
3072 	if (cachep->flags & SLAB_POISON) {
3073 		check_poison_obj(cachep, objp);
3074 		slab_kernel_map(cachep, objp, 1, 0);
3075 		poison_obj(cachep, objp, POISON_INUSE);
3076 	}
3077 	if (cachep->flags & SLAB_STORE_USER)
3078 		*dbg_userword(cachep, objp) = (void *)caller;
3079 
3080 	if (cachep->flags & SLAB_RED_ZONE) {
3081 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3082 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3083 			slab_error(cachep, "double free, or memory outside object was overwritten");
3084 			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3085 			       objp, *dbg_redzone1(cachep, objp),
3086 			       *dbg_redzone2(cachep, objp));
3087 		}
3088 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3089 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3090 	}
3091 
3092 	objp += obj_offset(cachep);
3093 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3094 		cachep->ctor(objp);
3095 	if (ARCH_SLAB_MINALIGN &&
3096 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3097 		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3098 		       objp, (int)ARCH_SLAB_MINALIGN);
3099 	}
3100 	return objp;
3101 }
3102 #else
3103 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3104 #endif
3105 
3106 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3107 {
3108 	void *objp;
3109 	struct array_cache *ac;
3110 
3111 	check_irq_off();
3112 
3113 	ac = cpu_cache_get(cachep);
3114 	if (likely(ac->avail)) {
3115 		ac->touched = 1;
3116 		objp = ac->entry[--ac->avail];
3117 
3118 		STATS_INC_ALLOCHIT(cachep);
3119 		goto out;
3120 	}
3121 
3122 	STATS_INC_ALLOCMISS(cachep);
3123 	objp = cache_alloc_refill(cachep, flags);
3124 	/*
3125 	 * the 'ac' may be updated by cache_alloc_refill(),
3126 	 * and kmemleak_erase() requires its correct value.
3127 	 */
3128 	ac = cpu_cache_get(cachep);
3129 
3130 out:
3131 	/*
3132 	 * To avoid a false negative, if an object that is in one of the
3133 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3134 	 * treat the array pointers as a reference to the object.
3135 	 */
3136 	if (objp)
3137 		kmemleak_erase(&ac->entry[ac->avail]);
3138 	return objp;
3139 }
3140 
3141 #ifdef CONFIG_NUMA
3142 /*
3143  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3144  *
3145  * If we are in_interrupt, then process context, including cpusets and
3146  * mempolicy, may not apply and should not be used for allocation policy.
3147  */
3148 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3149 {
3150 	int nid_alloc, nid_here;
3151 
3152 	if (in_interrupt() || (flags & __GFP_THISNODE))
3153 		return NULL;
3154 	nid_alloc = nid_here = numa_mem_id();
3155 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3156 		nid_alloc = cpuset_slab_spread_node();
3157 	else if (current->mempolicy)
3158 		nid_alloc = mempolicy_slab_node();
3159 	if (nid_alloc != nid_here)
3160 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3161 	return NULL;
3162 }
3163 
3164 /*
3165  * Fallback function if there was no memory available and no objects on a
3166  * certain node and fall back is permitted. First we scan all the
3167  * available node for available objects. If that fails then we
3168  * perform an allocation without specifying a node. This allows the page
3169  * allocator to do its reclaim / fallback magic. We then insert the
3170  * slab into the proper nodelist and then allocate from it.
3171  */
3172 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3173 {
3174 	struct zonelist *zonelist;
3175 	struct zoneref *z;
3176 	struct zone *zone;
3177 	enum zone_type high_zoneidx = gfp_zone(flags);
3178 	void *obj = NULL;
3179 	struct page *page;
3180 	int nid;
3181 	unsigned int cpuset_mems_cookie;
3182 
3183 	if (flags & __GFP_THISNODE)
3184 		return NULL;
3185 
3186 retry_cpuset:
3187 	cpuset_mems_cookie = read_mems_allowed_begin();
3188 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3189 
3190 retry:
3191 	/*
3192 	 * Look through allowed nodes for objects available
3193 	 * from existing per node queues.
3194 	 */
3195 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3196 		nid = zone_to_nid(zone);
3197 
3198 		if (cpuset_zone_allowed(zone, flags) &&
3199 			get_node(cache, nid) &&
3200 			get_node(cache, nid)->free_objects) {
3201 				obj = ____cache_alloc_node(cache,
3202 					gfp_exact_node(flags), nid);
3203 				if (obj)
3204 					break;
3205 		}
3206 	}
3207 
3208 	if (!obj) {
3209 		/*
3210 		 * This allocation will be performed within the constraints
3211 		 * of the current cpuset / memory policy requirements.
3212 		 * We may trigger various forms of reclaim on the allowed
3213 		 * set and go into memory reserves if necessary.
3214 		 */
3215 		page = cache_grow_begin(cache, flags, numa_mem_id());
3216 		cache_grow_end(cache, page);
3217 		if (page) {
3218 			nid = page_to_nid(page);
3219 			obj = ____cache_alloc_node(cache,
3220 				gfp_exact_node(flags), nid);
3221 
3222 			/*
3223 			 * Another processor may allocate the objects in
3224 			 * the slab since we are not holding any locks.
3225 			 */
3226 			if (!obj)
3227 				goto retry;
3228 		}
3229 	}
3230 
3231 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3232 		goto retry_cpuset;
3233 	return obj;
3234 }
3235 
3236 /*
3237  * A interface to enable slab creation on nodeid
3238  */
3239 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3240 				int nodeid)
3241 {
3242 	struct page *page;
3243 	struct kmem_cache_node *n;
3244 	void *obj = NULL;
3245 	void *list = NULL;
3246 
3247 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3248 	n = get_node(cachep, nodeid);
3249 	BUG_ON(!n);
3250 
3251 	check_irq_off();
3252 	spin_lock(&n->list_lock);
3253 	page = get_first_slab(n, false);
3254 	if (!page)
3255 		goto must_grow;
3256 
3257 	check_spinlock_acquired_node(cachep, nodeid);
3258 
3259 	STATS_INC_NODEALLOCS(cachep);
3260 	STATS_INC_ACTIVE(cachep);
3261 	STATS_SET_HIGH(cachep);
3262 
3263 	BUG_ON(page->active == cachep->num);
3264 
3265 	obj = slab_get_obj(cachep, page);
3266 	n->free_objects--;
3267 
3268 	fixup_slab_list(cachep, n, page, &list);
3269 
3270 	spin_unlock(&n->list_lock);
3271 	fixup_objfreelist_debug(cachep, &list);
3272 	return obj;
3273 
3274 must_grow:
3275 	spin_unlock(&n->list_lock);
3276 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3277 	if (page) {
3278 		/* This slab isn't counted yet so don't update free_objects */
3279 		obj = slab_get_obj(cachep, page);
3280 	}
3281 	cache_grow_end(cachep, page);
3282 
3283 	return obj ? obj : fallback_alloc(cachep, flags);
3284 }
3285 
3286 static __always_inline void *
3287 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3288 		   unsigned long caller)
3289 {
3290 	unsigned long save_flags;
3291 	void *ptr;
3292 	int slab_node = numa_mem_id();
3293 
3294 	flags &= gfp_allowed_mask;
3295 	cachep = slab_pre_alloc_hook(cachep, flags);
3296 	if (unlikely(!cachep))
3297 		return NULL;
3298 
3299 	cache_alloc_debugcheck_before(cachep, flags);
3300 	local_irq_save(save_flags);
3301 
3302 	if (nodeid == NUMA_NO_NODE)
3303 		nodeid = slab_node;
3304 
3305 	if (unlikely(!get_node(cachep, nodeid))) {
3306 		/* Node not bootstrapped yet */
3307 		ptr = fallback_alloc(cachep, flags);
3308 		goto out;
3309 	}
3310 
3311 	if (nodeid == slab_node) {
3312 		/*
3313 		 * Use the locally cached objects if possible.
3314 		 * However ____cache_alloc does not allow fallback
3315 		 * to other nodes. It may fail while we still have
3316 		 * objects on other nodes available.
3317 		 */
3318 		ptr = ____cache_alloc(cachep, flags);
3319 		if (ptr)
3320 			goto out;
3321 	}
3322 	/* ___cache_alloc_node can fall back to other nodes */
3323 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3324   out:
3325 	local_irq_restore(save_flags);
3326 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3327 
3328 	if (unlikely(flags & __GFP_ZERO) && ptr)
3329 		memset(ptr, 0, cachep->object_size);
3330 
3331 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3332 	return ptr;
3333 }
3334 
3335 static __always_inline void *
3336 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3337 {
3338 	void *objp;
3339 
3340 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3341 		objp = alternate_node_alloc(cache, flags);
3342 		if (objp)
3343 			goto out;
3344 	}
3345 	objp = ____cache_alloc(cache, flags);
3346 
3347 	/*
3348 	 * We may just have run out of memory on the local node.
3349 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3350 	 */
3351 	if (!objp)
3352 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3353 
3354   out:
3355 	return objp;
3356 }
3357 #else
3358 
3359 static __always_inline void *
3360 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3361 {
3362 	return ____cache_alloc(cachep, flags);
3363 }
3364 
3365 #endif /* CONFIG_NUMA */
3366 
3367 static __always_inline void *
3368 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3369 {
3370 	unsigned long save_flags;
3371 	void *objp;
3372 
3373 	flags &= gfp_allowed_mask;
3374 	cachep = slab_pre_alloc_hook(cachep, flags);
3375 	if (unlikely(!cachep))
3376 		return NULL;
3377 
3378 	cache_alloc_debugcheck_before(cachep, flags);
3379 	local_irq_save(save_flags);
3380 	objp = __do_cache_alloc(cachep, flags);
3381 	local_irq_restore(save_flags);
3382 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3383 	prefetchw(objp);
3384 
3385 	if (unlikely(flags & __GFP_ZERO) && objp)
3386 		memset(objp, 0, cachep->object_size);
3387 
3388 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3389 	return objp;
3390 }
3391 
3392 /*
3393  * Caller needs to acquire correct kmem_cache_node's list_lock
3394  * @list: List of detached free slabs should be freed by caller
3395  */
3396 static void free_block(struct kmem_cache *cachep, void **objpp,
3397 			int nr_objects, int node, struct list_head *list)
3398 {
3399 	int i;
3400 	struct kmem_cache_node *n = get_node(cachep, node);
3401 	struct page *page;
3402 
3403 	n->free_objects += nr_objects;
3404 
3405 	for (i = 0; i < nr_objects; i++) {
3406 		void *objp;
3407 		struct page *page;
3408 
3409 		objp = objpp[i];
3410 
3411 		page = virt_to_head_page(objp);
3412 		list_del(&page->lru);
3413 		check_spinlock_acquired_node(cachep, node);
3414 		slab_put_obj(cachep, page, objp);
3415 		STATS_DEC_ACTIVE(cachep);
3416 
3417 		/* fixup slab chains */
3418 		if (page->active == 0) {
3419 			list_add(&page->lru, &n->slabs_free);
3420 			n->free_slabs++;
3421 		} else {
3422 			/* Unconditionally move a slab to the end of the
3423 			 * partial list on free - maximum time for the
3424 			 * other objects to be freed, too.
3425 			 */
3426 			list_add_tail(&page->lru, &n->slabs_partial);
3427 		}
3428 	}
3429 
3430 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3431 		n->free_objects -= cachep->num;
3432 
3433 		page = list_last_entry(&n->slabs_free, struct page, lru);
3434 		list_move(&page->lru, list);
3435 		n->free_slabs--;
3436 		n->total_slabs--;
3437 	}
3438 }
3439 
3440 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3441 {
3442 	int batchcount;
3443 	struct kmem_cache_node *n;
3444 	int node = numa_mem_id();
3445 	LIST_HEAD(list);
3446 
3447 	batchcount = ac->batchcount;
3448 
3449 	check_irq_off();
3450 	n = get_node(cachep, node);
3451 	spin_lock(&n->list_lock);
3452 	if (n->shared) {
3453 		struct array_cache *shared_array = n->shared;
3454 		int max = shared_array->limit - shared_array->avail;
3455 		if (max) {
3456 			if (batchcount > max)
3457 				batchcount = max;
3458 			memcpy(&(shared_array->entry[shared_array->avail]),
3459 			       ac->entry, sizeof(void *) * batchcount);
3460 			shared_array->avail += batchcount;
3461 			goto free_done;
3462 		}
3463 	}
3464 
3465 	free_block(cachep, ac->entry, batchcount, node, &list);
3466 free_done:
3467 #if STATS
3468 	{
3469 		int i = 0;
3470 		struct page *page;
3471 
3472 		list_for_each_entry(page, &n->slabs_free, lru) {
3473 			BUG_ON(page->active);
3474 
3475 			i++;
3476 		}
3477 		STATS_SET_FREEABLE(cachep, i);
3478 	}
3479 #endif
3480 	spin_unlock(&n->list_lock);
3481 	slabs_destroy(cachep, &list);
3482 	ac->avail -= batchcount;
3483 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3484 }
3485 
3486 /*
3487  * Release an obj back to its cache. If the obj has a constructed state, it must
3488  * be in this state _before_ it is released.  Called with disabled ints.
3489  */
3490 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3491 					 unsigned long caller)
3492 {
3493 	/* Put the object into the quarantine, don't touch it for now. */
3494 	if (kasan_slab_free(cachep, objp, _RET_IP_))
3495 		return;
3496 
3497 	___cache_free(cachep, objp, caller);
3498 }
3499 
3500 void ___cache_free(struct kmem_cache *cachep, void *objp,
3501 		unsigned long caller)
3502 {
3503 	struct array_cache *ac = cpu_cache_get(cachep);
3504 
3505 	check_irq_off();
3506 	kmemleak_free_recursive(objp, cachep->flags);
3507 	objp = cache_free_debugcheck(cachep, objp, caller);
3508 
3509 	/*
3510 	 * Skip calling cache_free_alien() when the platform is not numa.
3511 	 * This will avoid cache misses that happen while accessing slabp (which
3512 	 * is per page memory  reference) to get nodeid. Instead use a global
3513 	 * variable to skip the call, which is mostly likely to be present in
3514 	 * the cache.
3515 	 */
3516 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3517 		return;
3518 
3519 	if (ac->avail < ac->limit) {
3520 		STATS_INC_FREEHIT(cachep);
3521 	} else {
3522 		STATS_INC_FREEMISS(cachep);
3523 		cache_flusharray(cachep, ac);
3524 	}
3525 
3526 	if (sk_memalloc_socks()) {
3527 		struct page *page = virt_to_head_page(objp);
3528 
3529 		if (unlikely(PageSlabPfmemalloc(page))) {
3530 			cache_free_pfmemalloc(cachep, page, objp);
3531 			return;
3532 		}
3533 	}
3534 
3535 	ac->entry[ac->avail++] = objp;
3536 }
3537 
3538 /**
3539  * kmem_cache_alloc - Allocate an object
3540  * @cachep: The cache to allocate from.
3541  * @flags: See kmalloc().
3542  *
3543  * Allocate an object from this cache.  The flags are only relevant
3544  * if the cache has no available objects.
3545  */
3546 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3547 {
3548 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3549 
3550 	trace_kmem_cache_alloc(_RET_IP_, ret,
3551 			       cachep->object_size, cachep->size, flags);
3552 
3553 	return ret;
3554 }
3555 EXPORT_SYMBOL(kmem_cache_alloc);
3556 
3557 static __always_inline void
3558 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3559 				  size_t size, void **p, unsigned long caller)
3560 {
3561 	size_t i;
3562 
3563 	for (i = 0; i < size; i++)
3564 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3565 }
3566 
3567 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3568 			  void **p)
3569 {
3570 	size_t i;
3571 
3572 	s = slab_pre_alloc_hook(s, flags);
3573 	if (!s)
3574 		return 0;
3575 
3576 	cache_alloc_debugcheck_before(s, flags);
3577 
3578 	local_irq_disable();
3579 	for (i = 0; i < size; i++) {
3580 		void *objp = __do_cache_alloc(s, flags);
3581 
3582 		if (unlikely(!objp))
3583 			goto error;
3584 		p[i] = objp;
3585 	}
3586 	local_irq_enable();
3587 
3588 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3589 
3590 	/* Clear memory outside IRQ disabled section */
3591 	if (unlikely(flags & __GFP_ZERO))
3592 		for (i = 0; i < size; i++)
3593 			memset(p[i], 0, s->object_size);
3594 
3595 	slab_post_alloc_hook(s, flags, size, p);
3596 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3597 	return size;
3598 error:
3599 	local_irq_enable();
3600 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3601 	slab_post_alloc_hook(s, flags, i, p);
3602 	__kmem_cache_free_bulk(s, i, p);
3603 	return 0;
3604 }
3605 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3606 
3607 #ifdef CONFIG_TRACING
3608 void *
3609 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3610 {
3611 	void *ret;
3612 
3613 	ret = slab_alloc(cachep, flags, _RET_IP_);
3614 
3615 	ret = kasan_kmalloc(cachep, ret, size, flags);
3616 	trace_kmalloc(_RET_IP_, ret,
3617 		      size, cachep->size, flags);
3618 	return ret;
3619 }
3620 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3621 #endif
3622 
3623 #ifdef CONFIG_NUMA
3624 /**
3625  * kmem_cache_alloc_node - Allocate an object on the specified node
3626  * @cachep: The cache to allocate from.
3627  * @flags: See kmalloc().
3628  * @nodeid: node number of the target node.
3629  *
3630  * Identical to kmem_cache_alloc but it will allocate memory on the given
3631  * node, which can improve the performance for cpu bound structures.
3632  *
3633  * Fallback to other node is possible if __GFP_THISNODE is not set.
3634  */
3635 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3636 {
3637 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3638 
3639 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3640 				    cachep->object_size, cachep->size,
3641 				    flags, nodeid);
3642 
3643 	return ret;
3644 }
3645 EXPORT_SYMBOL(kmem_cache_alloc_node);
3646 
3647 #ifdef CONFIG_TRACING
3648 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3649 				  gfp_t flags,
3650 				  int nodeid,
3651 				  size_t size)
3652 {
3653 	void *ret;
3654 
3655 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3656 
3657 	ret = kasan_kmalloc(cachep, ret, size, flags);
3658 	trace_kmalloc_node(_RET_IP_, ret,
3659 			   size, cachep->size,
3660 			   flags, nodeid);
3661 	return ret;
3662 }
3663 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3664 #endif
3665 
3666 static __always_inline void *
3667 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3668 {
3669 	struct kmem_cache *cachep;
3670 	void *ret;
3671 
3672 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3673 		return NULL;
3674 	cachep = kmalloc_slab(size, flags);
3675 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3676 		return cachep;
3677 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3678 	ret = kasan_kmalloc(cachep, ret, size, flags);
3679 
3680 	return ret;
3681 }
3682 
3683 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3684 {
3685 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3686 }
3687 EXPORT_SYMBOL(__kmalloc_node);
3688 
3689 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3690 		int node, unsigned long caller)
3691 {
3692 	return __do_kmalloc_node(size, flags, node, caller);
3693 }
3694 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3695 #endif /* CONFIG_NUMA */
3696 
3697 /**
3698  * __do_kmalloc - allocate memory
3699  * @size: how many bytes of memory are required.
3700  * @flags: the type of memory to allocate (see kmalloc).
3701  * @caller: function caller for debug tracking of the caller
3702  */
3703 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3704 					  unsigned long caller)
3705 {
3706 	struct kmem_cache *cachep;
3707 	void *ret;
3708 
3709 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3710 		return NULL;
3711 	cachep = kmalloc_slab(size, flags);
3712 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3713 		return cachep;
3714 	ret = slab_alloc(cachep, flags, caller);
3715 
3716 	ret = kasan_kmalloc(cachep, ret, size, flags);
3717 	trace_kmalloc(caller, ret,
3718 		      size, cachep->size, flags);
3719 
3720 	return ret;
3721 }
3722 
3723 void *__kmalloc(size_t size, gfp_t flags)
3724 {
3725 	return __do_kmalloc(size, flags, _RET_IP_);
3726 }
3727 EXPORT_SYMBOL(__kmalloc);
3728 
3729 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3730 {
3731 	return __do_kmalloc(size, flags, caller);
3732 }
3733 EXPORT_SYMBOL(__kmalloc_track_caller);
3734 
3735 /**
3736  * kmem_cache_free - Deallocate an object
3737  * @cachep: The cache the allocation was from.
3738  * @objp: The previously allocated object.
3739  *
3740  * Free an object which was previously allocated from this
3741  * cache.
3742  */
3743 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3744 {
3745 	unsigned long flags;
3746 	cachep = cache_from_obj(cachep, objp);
3747 	if (!cachep)
3748 		return;
3749 
3750 	local_irq_save(flags);
3751 	debug_check_no_locks_freed(objp, cachep->object_size);
3752 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3753 		debug_check_no_obj_freed(objp, cachep->object_size);
3754 	__cache_free(cachep, objp, _RET_IP_);
3755 	local_irq_restore(flags);
3756 
3757 	trace_kmem_cache_free(_RET_IP_, objp);
3758 }
3759 EXPORT_SYMBOL(kmem_cache_free);
3760 
3761 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3762 {
3763 	struct kmem_cache *s;
3764 	size_t i;
3765 
3766 	local_irq_disable();
3767 	for (i = 0; i < size; i++) {
3768 		void *objp = p[i];
3769 
3770 		if (!orig_s) /* called via kfree_bulk */
3771 			s = virt_to_cache(objp);
3772 		else
3773 			s = cache_from_obj(orig_s, objp);
3774 
3775 		debug_check_no_locks_freed(objp, s->object_size);
3776 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3777 			debug_check_no_obj_freed(objp, s->object_size);
3778 
3779 		__cache_free(s, objp, _RET_IP_);
3780 	}
3781 	local_irq_enable();
3782 
3783 	/* FIXME: add tracing */
3784 }
3785 EXPORT_SYMBOL(kmem_cache_free_bulk);
3786 
3787 /**
3788  * kfree - free previously allocated memory
3789  * @objp: pointer returned by kmalloc.
3790  *
3791  * If @objp is NULL, no operation is performed.
3792  *
3793  * Don't free memory not originally allocated by kmalloc()
3794  * or you will run into trouble.
3795  */
3796 void kfree(const void *objp)
3797 {
3798 	struct kmem_cache *c;
3799 	unsigned long flags;
3800 
3801 	trace_kfree(_RET_IP_, objp);
3802 
3803 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3804 		return;
3805 	local_irq_save(flags);
3806 	kfree_debugcheck(objp);
3807 	c = virt_to_cache(objp);
3808 	debug_check_no_locks_freed(objp, c->object_size);
3809 
3810 	debug_check_no_obj_freed(objp, c->object_size);
3811 	__cache_free(c, (void *)objp, _RET_IP_);
3812 	local_irq_restore(flags);
3813 }
3814 EXPORT_SYMBOL(kfree);
3815 
3816 /*
3817  * This initializes kmem_cache_node or resizes various caches for all nodes.
3818  */
3819 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3820 {
3821 	int ret;
3822 	int node;
3823 	struct kmem_cache_node *n;
3824 
3825 	for_each_online_node(node) {
3826 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3827 		if (ret)
3828 			goto fail;
3829 
3830 	}
3831 
3832 	return 0;
3833 
3834 fail:
3835 	if (!cachep->list.next) {
3836 		/* Cache is not active yet. Roll back what we did */
3837 		node--;
3838 		while (node >= 0) {
3839 			n = get_node(cachep, node);
3840 			if (n) {
3841 				kfree(n->shared);
3842 				free_alien_cache(n->alien);
3843 				kfree(n);
3844 				cachep->node[node] = NULL;
3845 			}
3846 			node--;
3847 		}
3848 	}
3849 	return -ENOMEM;
3850 }
3851 
3852 /* Always called with the slab_mutex held */
3853 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3854 				int batchcount, int shared, gfp_t gfp)
3855 {
3856 	struct array_cache __percpu *cpu_cache, *prev;
3857 	int cpu;
3858 
3859 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3860 	if (!cpu_cache)
3861 		return -ENOMEM;
3862 
3863 	prev = cachep->cpu_cache;
3864 	cachep->cpu_cache = cpu_cache;
3865 	/*
3866 	 * Without a previous cpu_cache there's no need to synchronize remote
3867 	 * cpus, so skip the IPIs.
3868 	 */
3869 	if (prev)
3870 		kick_all_cpus_sync();
3871 
3872 	check_irq_on();
3873 	cachep->batchcount = batchcount;
3874 	cachep->limit = limit;
3875 	cachep->shared = shared;
3876 
3877 	if (!prev)
3878 		goto setup_node;
3879 
3880 	for_each_online_cpu(cpu) {
3881 		LIST_HEAD(list);
3882 		int node;
3883 		struct kmem_cache_node *n;
3884 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3885 
3886 		node = cpu_to_mem(cpu);
3887 		n = get_node(cachep, node);
3888 		spin_lock_irq(&n->list_lock);
3889 		free_block(cachep, ac->entry, ac->avail, node, &list);
3890 		spin_unlock_irq(&n->list_lock);
3891 		slabs_destroy(cachep, &list);
3892 	}
3893 	free_percpu(prev);
3894 
3895 setup_node:
3896 	return setup_kmem_cache_nodes(cachep, gfp);
3897 }
3898 
3899 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3900 				int batchcount, int shared, gfp_t gfp)
3901 {
3902 	int ret;
3903 	struct kmem_cache *c;
3904 
3905 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3906 
3907 	if (slab_state < FULL)
3908 		return ret;
3909 
3910 	if ((ret < 0) || !is_root_cache(cachep))
3911 		return ret;
3912 
3913 	lockdep_assert_held(&slab_mutex);
3914 	for_each_memcg_cache(c, cachep) {
3915 		/* return value determined by the root cache only */
3916 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3917 	}
3918 
3919 	return ret;
3920 }
3921 
3922 /* Called with slab_mutex held always */
3923 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3924 {
3925 	int err;
3926 	int limit = 0;
3927 	int shared = 0;
3928 	int batchcount = 0;
3929 
3930 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3931 	if (err)
3932 		goto end;
3933 
3934 	if (!is_root_cache(cachep)) {
3935 		struct kmem_cache *root = memcg_root_cache(cachep);
3936 		limit = root->limit;
3937 		shared = root->shared;
3938 		batchcount = root->batchcount;
3939 	}
3940 
3941 	if (limit && shared && batchcount)
3942 		goto skip_setup;
3943 	/*
3944 	 * The head array serves three purposes:
3945 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3946 	 * - reduce the number of spinlock operations.
3947 	 * - reduce the number of linked list operations on the slab and
3948 	 *   bufctl chains: array operations are cheaper.
3949 	 * The numbers are guessed, we should auto-tune as described by
3950 	 * Bonwick.
3951 	 */
3952 	if (cachep->size > 131072)
3953 		limit = 1;
3954 	else if (cachep->size > PAGE_SIZE)
3955 		limit = 8;
3956 	else if (cachep->size > 1024)
3957 		limit = 24;
3958 	else if (cachep->size > 256)
3959 		limit = 54;
3960 	else
3961 		limit = 120;
3962 
3963 	/*
3964 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3965 	 * allocation behaviour: Most allocs on one cpu, most free operations
3966 	 * on another cpu. For these cases, an efficient object passing between
3967 	 * cpus is necessary. This is provided by a shared array. The array
3968 	 * replaces Bonwick's magazine layer.
3969 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3970 	 * to a larger limit. Thus disabled by default.
3971 	 */
3972 	shared = 0;
3973 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3974 		shared = 8;
3975 
3976 #if DEBUG
3977 	/*
3978 	 * With debugging enabled, large batchcount lead to excessively long
3979 	 * periods with disabled local interrupts. Limit the batchcount
3980 	 */
3981 	if (limit > 32)
3982 		limit = 32;
3983 #endif
3984 	batchcount = (limit + 1) / 2;
3985 skip_setup:
3986 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3987 end:
3988 	if (err)
3989 		pr_err("enable_cpucache failed for %s, error %d\n",
3990 		       cachep->name, -err);
3991 	return err;
3992 }
3993 
3994 /*
3995  * Drain an array if it contains any elements taking the node lock only if
3996  * necessary. Note that the node listlock also protects the array_cache
3997  * if drain_array() is used on the shared array.
3998  */
3999 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4000 			 struct array_cache *ac, int node)
4001 {
4002 	LIST_HEAD(list);
4003 
4004 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
4005 	check_mutex_acquired();
4006 
4007 	if (!ac || !ac->avail)
4008 		return;
4009 
4010 	if (ac->touched) {
4011 		ac->touched = 0;
4012 		return;
4013 	}
4014 
4015 	spin_lock_irq(&n->list_lock);
4016 	drain_array_locked(cachep, ac, node, false, &list);
4017 	spin_unlock_irq(&n->list_lock);
4018 
4019 	slabs_destroy(cachep, &list);
4020 }
4021 
4022 /**
4023  * cache_reap - Reclaim memory from caches.
4024  * @w: work descriptor
4025  *
4026  * Called from workqueue/eventd every few seconds.
4027  * Purpose:
4028  * - clear the per-cpu caches for this CPU.
4029  * - return freeable pages to the main free memory pool.
4030  *
4031  * If we cannot acquire the cache chain mutex then just give up - we'll try
4032  * again on the next iteration.
4033  */
4034 static void cache_reap(struct work_struct *w)
4035 {
4036 	struct kmem_cache *searchp;
4037 	struct kmem_cache_node *n;
4038 	int node = numa_mem_id();
4039 	struct delayed_work *work = to_delayed_work(w);
4040 
4041 	if (!mutex_trylock(&slab_mutex))
4042 		/* Give up. Setup the next iteration. */
4043 		goto out;
4044 
4045 	list_for_each_entry(searchp, &slab_caches, list) {
4046 		check_irq_on();
4047 
4048 		/*
4049 		 * We only take the node lock if absolutely necessary and we
4050 		 * have established with reasonable certainty that
4051 		 * we can do some work if the lock was obtained.
4052 		 */
4053 		n = get_node(searchp, node);
4054 
4055 		reap_alien(searchp, n);
4056 
4057 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4058 
4059 		/*
4060 		 * These are racy checks but it does not matter
4061 		 * if we skip one check or scan twice.
4062 		 */
4063 		if (time_after(n->next_reap, jiffies))
4064 			goto next;
4065 
4066 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4067 
4068 		drain_array(searchp, n, n->shared, node);
4069 
4070 		if (n->free_touched)
4071 			n->free_touched = 0;
4072 		else {
4073 			int freed;
4074 
4075 			freed = drain_freelist(searchp, n, (n->free_limit +
4076 				5 * searchp->num - 1) / (5 * searchp->num));
4077 			STATS_ADD_REAPED(searchp, freed);
4078 		}
4079 next:
4080 		cond_resched();
4081 	}
4082 	check_irq_on();
4083 	mutex_unlock(&slab_mutex);
4084 	next_reap_node();
4085 out:
4086 	/* Set up the next iteration */
4087 	schedule_delayed_work_on(smp_processor_id(), work,
4088 				round_jiffies_relative(REAPTIMEOUT_AC));
4089 }
4090 
4091 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4092 {
4093 	unsigned long active_objs, num_objs, active_slabs;
4094 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4095 	unsigned long free_slabs = 0;
4096 	int node;
4097 	struct kmem_cache_node *n;
4098 
4099 	for_each_kmem_cache_node(cachep, node, n) {
4100 		check_irq_on();
4101 		spin_lock_irq(&n->list_lock);
4102 
4103 		total_slabs += n->total_slabs;
4104 		free_slabs += n->free_slabs;
4105 		free_objs += n->free_objects;
4106 
4107 		if (n->shared)
4108 			shared_avail += n->shared->avail;
4109 
4110 		spin_unlock_irq(&n->list_lock);
4111 	}
4112 	num_objs = total_slabs * cachep->num;
4113 	active_slabs = total_slabs - free_slabs;
4114 	active_objs = num_objs - free_objs;
4115 
4116 	sinfo->active_objs = active_objs;
4117 	sinfo->num_objs = num_objs;
4118 	sinfo->active_slabs = active_slabs;
4119 	sinfo->num_slabs = total_slabs;
4120 	sinfo->shared_avail = shared_avail;
4121 	sinfo->limit = cachep->limit;
4122 	sinfo->batchcount = cachep->batchcount;
4123 	sinfo->shared = cachep->shared;
4124 	sinfo->objects_per_slab = cachep->num;
4125 	sinfo->cache_order = cachep->gfporder;
4126 }
4127 
4128 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4129 {
4130 #if STATS
4131 	{			/* node stats */
4132 		unsigned long high = cachep->high_mark;
4133 		unsigned long allocs = cachep->num_allocations;
4134 		unsigned long grown = cachep->grown;
4135 		unsigned long reaped = cachep->reaped;
4136 		unsigned long errors = cachep->errors;
4137 		unsigned long max_freeable = cachep->max_freeable;
4138 		unsigned long node_allocs = cachep->node_allocs;
4139 		unsigned long node_frees = cachep->node_frees;
4140 		unsigned long overflows = cachep->node_overflow;
4141 
4142 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4143 			   allocs, high, grown,
4144 			   reaped, errors, max_freeable, node_allocs,
4145 			   node_frees, overflows);
4146 	}
4147 	/* cpu stats */
4148 	{
4149 		unsigned long allochit = atomic_read(&cachep->allochit);
4150 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4151 		unsigned long freehit = atomic_read(&cachep->freehit);
4152 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4153 
4154 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4155 			   allochit, allocmiss, freehit, freemiss);
4156 	}
4157 #endif
4158 }
4159 
4160 #define MAX_SLABINFO_WRITE 128
4161 /**
4162  * slabinfo_write - Tuning for the slab allocator
4163  * @file: unused
4164  * @buffer: user buffer
4165  * @count: data length
4166  * @ppos: unused
4167  */
4168 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4169 		       size_t count, loff_t *ppos)
4170 {
4171 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4172 	int limit, batchcount, shared, res;
4173 	struct kmem_cache *cachep;
4174 
4175 	if (count > MAX_SLABINFO_WRITE)
4176 		return -EINVAL;
4177 	if (copy_from_user(&kbuf, buffer, count))
4178 		return -EFAULT;
4179 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4180 
4181 	tmp = strchr(kbuf, ' ');
4182 	if (!tmp)
4183 		return -EINVAL;
4184 	*tmp = '\0';
4185 	tmp++;
4186 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4187 		return -EINVAL;
4188 
4189 	/* Find the cache in the chain of caches. */
4190 	mutex_lock(&slab_mutex);
4191 	res = -EINVAL;
4192 	list_for_each_entry(cachep, &slab_caches, list) {
4193 		if (!strcmp(cachep->name, kbuf)) {
4194 			if (limit < 1 || batchcount < 1 ||
4195 					batchcount > limit || shared < 0) {
4196 				res = 0;
4197 			} else {
4198 				res = do_tune_cpucache(cachep, limit,
4199 						       batchcount, shared,
4200 						       GFP_KERNEL);
4201 			}
4202 			break;
4203 		}
4204 	}
4205 	mutex_unlock(&slab_mutex);
4206 	if (res >= 0)
4207 		res = count;
4208 	return res;
4209 }
4210 
4211 #ifdef CONFIG_DEBUG_SLAB_LEAK
4212 
4213 static inline int add_caller(unsigned long *n, unsigned long v)
4214 {
4215 	unsigned long *p;
4216 	int l;
4217 	if (!v)
4218 		return 1;
4219 	l = n[1];
4220 	p = n + 2;
4221 	while (l) {
4222 		int i = l/2;
4223 		unsigned long *q = p + 2 * i;
4224 		if (*q == v) {
4225 			q[1]++;
4226 			return 1;
4227 		}
4228 		if (*q > v) {
4229 			l = i;
4230 		} else {
4231 			p = q + 2;
4232 			l -= i + 1;
4233 		}
4234 	}
4235 	if (++n[1] == n[0])
4236 		return 0;
4237 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4238 	p[0] = v;
4239 	p[1] = 1;
4240 	return 1;
4241 }
4242 
4243 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4244 						struct page *page)
4245 {
4246 	void *p;
4247 	int i, j;
4248 	unsigned long v;
4249 
4250 	if (n[0] == n[1])
4251 		return;
4252 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4253 		bool active = true;
4254 
4255 		for (j = page->active; j < c->num; j++) {
4256 			if (get_free_obj(page, j) == i) {
4257 				active = false;
4258 				break;
4259 			}
4260 		}
4261 
4262 		if (!active)
4263 			continue;
4264 
4265 		/*
4266 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4267 		 * mapping is established when actual object allocation and
4268 		 * we could mistakenly access the unmapped object in the cpu
4269 		 * cache.
4270 		 */
4271 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4272 			continue;
4273 
4274 		if (!add_caller(n, v))
4275 			return;
4276 	}
4277 }
4278 
4279 static void show_symbol(struct seq_file *m, unsigned long address)
4280 {
4281 #ifdef CONFIG_KALLSYMS
4282 	unsigned long offset, size;
4283 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4284 
4285 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4286 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4287 		if (modname[0])
4288 			seq_printf(m, " [%s]", modname);
4289 		return;
4290 	}
4291 #endif
4292 	seq_printf(m, "%px", (void *)address);
4293 }
4294 
4295 static int leaks_show(struct seq_file *m, void *p)
4296 {
4297 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4298 	struct page *page;
4299 	struct kmem_cache_node *n;
4300 	const char *name;
4301 	unsigned long *x = m->private;
4302 	int node;
4303 	int i;
4304 
4305 	if (!(cachep->flags & SLAB_STORE_USER))
4306 		return 0;
4307 	if (!(cachep->flags & SLAB_RED_ZONE))
4308 		return 0;
4309 
4310 	/*
4311 	 * Set store_user_clean and start to grab stored user information
4312 	 * for all objects on this cache. If some alloc/free requests comes
4313 	 * during the processing, information would be wrong so restart
4314 	 * whole processing.
4315 	 */
4316 	do {
4317 		set_store_user_clean(cachep);
4318 		drain_cpu_caches(cachep);
4319 
4320 		x[1] = 0;
4321 
4322 		for_each_kmem_cache_node(cachep, node, n) {
4323 
4324 			check_irq_on();
4325 			spin_lock_irq(&n->list_lock);
4326 
4327 			list_for_each_entry(page, &n->slabs_full, lru)
4328 				handle_slab(x, cachep, page);
4329 			list_for_each_entry(page, &n->slabs_partial, lru)
4330 				handle_slab(x, cachep, page);
4331 			spin_unlock_irq(&n->list_lock);
4332 		}
4333 	} while (!is_store_user_clean(cachep));
4334 
4335 	name = cachep->name;
4336 	if (x[0] == x[1]) {
4337 		/* Increase the buffer size */
4338 		mutex_unlock(&slab_mutex);
4339 		m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
4340 				     GFP_KERNEL);
4341 		if (!m->private) {
4342 			/* Too bad, we are really out */
4343 			m->private = x;
4344 			mutex_lock(&slab_mutex);
4345 			return -ENOMEM;
4346 		}
4347 		*(unsigned long *)m->private = x[0] * 2;
4348 		kfree(x);
4349 		mutex_lock(&slab_mutex);
4350 		/* Now make sure this entry will be retried */
4351 		m->count = m->size;
4352 		return 0;
4353 	}
4354 	for (i = 0; i < x[1]; i++) {
4355 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4356 		show_symbol(m, x[2*i+2]);
4357 		seq_putc(m, '\n');
4358 	}
4359 
4360 	return 0;
4361 }
4362 
4363 static const struct seq_operations slabstats_op = {
4364 	.start = slab_start,
4365 	.next = slab_next,
4366 	.stop = slab_stop,
4367 	.show = leaks_show,
4368 };
4369 
4370 static int slabstats_open(struct inode *inode, struct file *file)
4371 {
4372 	unsigned long *n;
4373 
4374 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4375 	if (!n)
4376 		return -ENOMEM;
4377 
4378 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4379 
4380 	return 0;
4381 }
4382 
4383 static const struct file_operations proc_slabstats_operations = {
4384 	.open		= slabstats_open,
4385 	.read		= seq_read,
4386 	.llseek		= seq_lseek,
4387 	.release	= seq_release_private,
4388 };
4389 #endif
4390 
4391 static int __init slab_proc_init(void)
4392 {
4393 #ifdef CONFIG_DEBUG_SLAB_LEAK
4394 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4395 #endif
4396 	return 0;
4397 }
4398 module_init(slab_proc_init);
4399 
4400 #ifdef CONFIG_HARDENED_USERCOPY
4401 /*
4402  * Rejects incorrectly sized objects and objects that are to be copied
4403  * to/from userspace but do not fall entirely within the containing slab
4404  * cache's usercopy region.
4405  *
4406  * Returns NULL if check passes, otherwise const char * to name of cache
4407  * to indicate an error.
4408  */
4409 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4410 			 bool to_user)
4411 {
4412 	struct kmem_cache *cachep;
4413 	unsigned int objnr;
4414 	unsigned long offset;
4415 
4416 	ptr = kasan_reset_tag(ptr);
4417 
4418 	/* Find and validate object. */
4419 	cachep = page->slab_cache;
4420 	objnr = obj_to_index(cachep, page, (void *)ptr);
4421 	BUG_ON(objnr >= cachep->num);
4422 
4423 	/* Find offset within object. */
4424 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4425 
4426 	/* Allow address range falling entirely within usercopy region. */
4427 	if (offset >= cachep->useroffset &&
4428 	    offset - cachep->useroffset <= cachep->usersize &&
4429 	    n <= cachep->useroffset - offset + cachep->usersize)
4430 		return;
4431 
4432 	/*
4433 	 * If the copy is still within the allocated object, produce
4434 	 * a warning instead of rejecting the copy. This is intended
4435 	 * to be a temporary method to find any missing usercopy
4436 	 * whitelists.
4437 	 */
4438 	if (usercopy_fallback &&
4439 	    offset <= cachep->object_size &&
4440 	    n <= cachep->object_size - offset) {
4441 		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4442 		return;
4443 	}
4444 
4445 	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4446 }
4447 #endif /* CONFIG_HARDENED_USERCOPY */
4448 
4449 /**
4450  * ksize - get the actual amount of memory allocated for a given object
4451  * @objp: Pointer to the object
4452  *
4453  * kmalloc may internally round up allocations and return more memory
4454  * than requested. ksize() can be used to determine the actual amount of
4455  * memory allocated. The caller may use this additional memory, even though
4456  * a smaller amount of memory was initially specified with the kmalloc call.
4457  * The caller must guarantee that objp points to a valid object previously
4458  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4459  * must not be freed during the duration of the call.
4460  */
4461 size_t ksize(const void *objp)
4462 {
4463 	size_t size;
4464 
4465 	BUG_ON(!objp);
4466 	if (unlikely(objp == ZERO_SIZE_PTR))
4467 		return 0;
4468 
4469 	size = virt_to_cache(objp)->object_size;
4470 	/* We assume that ksize callers could use the whole allocated area,
4471 	 * so we need to unpoison this area.
4472 	 */
4473 	kasan_unpoison_shadow(objp, size);
4474 
4475 	return size;
4476 }
4477 EXPORT_SYMBOL(ksize);
4478