1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/cpu.h> 104 #include <linux/sysctl.h> 105 #include <linux/module.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 #ifdef CONFIG_DEBUG_SLAB_LEAK 366 367 static inline bool is_store_user_clean(struct kmem_cache *cachep) 368 { 369 return atomic_read(&cachep->store_user_clean) == 1; 370 } 371 372 static inline void set_store_user_clean(struct kmem_cache *cachep) 373 { 374 atomic_set(&cachep->store_user_clean, 1); 375 } 376 377 static inline void set_store_user_dirty(struct kmem_cache *cachep) 378 { 379 if (is_store_user_clean(cachep)) 380 atomic_set(&cachep->store_user_clean, 0); 381 } 382 383 #else 384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 385 386 #endif 387 388 /* 389 * Do not go above this order unless 0 objects fit into the slab or 390 * overridden on the command line. 391 */ 392 #define SLAB_MAX_ORDER_HI 1 393 #define SLAB_MAX_ORDER_LO 0 394 static int slab_max_order = SLAB_MAX_ORDER_LO; 395 static bool slab_max_order_set __initdata; 396 397 static inline struct kmem_cache *virt_to_cache(const void *obj) 398 { 399 struct page *page = virt_to_head_page(obj); 400 return page->slab_cache; 401 } 402 403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 404 unsigned int idx) 405 { 406 return page->s_mem + cache->size * idx; 407 } 408 409 #define BOOT_CPUCACHE_ENTRIES 1 410 /* internal cache of cache description objs */ 411 static struct kmem_cache kmem_cache_boot = { 412 .batchcount = 1, 413 .limit = BOOT_CPUCACHE_ENTRIES, 414 .shared = 1, 415 .size = sizeof(struct kmem_cache), 416 .name = "kmem_cache", 417 }; 418 419 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 420 421 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 422 { 423 return this_cpu_ptr(cachep->cpu_cache); 424 } 425 426 /* 427 * Calculate the number of objects and left-over bytes for a given buffer size. 428 */ 429 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 430 slab_flags_t flags, size_t *left_over) 431 { 432 unsigned int num; 433 size_t slab_size = PAGE_SIZE << gfporder; 434 435 /* 436 * The slab management structure can be either off the slab or 437 * on it. For the latter case, the memory allocated for a 438 * slab is used for: 439 * 440 * - @buffer_size bytes for each object 441 * - One freelist_idx_t for each object 442 * 443 * We don't need to consider alignment of freelist because 444 * freelist will be at the end of slab page. The objects will be 445 * at the correct alignment. 446 * 447 * If the slab management structure is off the slab, then the 448 * alignment will already be calculated into the size. Because 449 * the slabs are all pages aligned, the objects will be at the 450 * correct alignment when allocated. 451 */ 452 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 453 num = slab_size / buffer_size; 454 *left_over = slab_size % buffer_size; 455 } else { 456 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 457 *left_over = slab_size % 458 (buffer_size + sizeof(freelist_idx_t)); 459 } 460 461 return num; 462 } 463 464 #if DEBUG 465 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 466 467 static void __slab_error(const char *function, struct kmem_cache *cachep, 468 char *msg) 469 { 470 pr_err("slab error in %s(): cache `%s': %s\n", 471 function, cachep->name, msg); 472 dump_stack(); 473 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 474 } 475 #endif 476 477 /* 478 * By default on NUMA we use alien caches to stage the freeing of 479 * objects allocated from other nodes. This causes massive memory 480 * inefficiencies when using fake NUMA setup to split memory into a 481 * large number of small nodes, so it can be disabled on the command 482 * line 483 */ 484 485 static int use_alien_caches __read_mostly = 1; 486 static int __init noaliencache_setup(char *s) 487 { 488 use_alien_caches = 0; 489 return 1; 490 } 491 __setup("noaliencache", noaliencache_setup); 492 493 static int __init slab_max_order_setup(char *str) 494 { 495 get_option(&str, &slab_max_order); 496 slab_max_order = slab_max_order < 0 ? 0 : 497 min(slab_max_order, MAX_ORDER - 1); 498 slab_max_order_set = true; 499 500 return 1; 501 } 502 __setup("slab_max_order=", slab_max_order_setup); 503 504 #ifdef CONFIG_NUMA 505 /* 506 * Special reaping functions for NUMA systems called from cache_reap(). 507 * These take care of doing round robin flushing of alien caches (containing 508 * objects freed on different nodes from which they were allocated) and the 509 * flushing of remote pcps by calling drain_node_pages. 510 */ 511 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 512 513 static void init_reap_node(int cpu) 514 { 515 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 516 node_online_map); 517 } 518 519 static void next_reap_node(void) 520 { 521 int node = __this_cpu_read(slab_reap_node); 522 523 node = next_node_in(node, node_online_map); 524 __this_cpu_write(slab_reap_node, node); 525 } 526 527 #else 528 #define init_reap_node(cpu) do { } while (0) 529 #define next_reap_node(void) do { } while (0) 530 #endif 531 532 /* 533 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 534 * via the workqueue/eventd. 535 * Add the CPU number into the expiration time to minimize the possibility of 536 * the CPUs getting into lockstep and contending for the global cache chain 537 * lock. 538 */ 539 static void start_cpu_timer(int cpu) 540 { 541 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 542 543 if (reap_work->work.func == NULL) { 544 init_reap_node(cpu); 545 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 546 schedule_delayed_work_on(cpu, reap_work, 547 __round_jiffies_relative(HZ, cpu)); 548 } 549 } 550 551 static void init_arraycache(struct array_cache *ac, int limit, int batch) 552 { 553 if (ac) { 554 ac->avail = 0; 555 ac->limit = limit; 556 ac->batchcount = batch; 557 ac->touched = 0; 558 } 559 } 560 561 static struct array_cache *alloc_arraycache(int node, int entries, 562 int batchcount, gfp_t gfp) 563 { 564 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 565 struct array_cache *ac = NULL; 566 567 ac = kmalloc_node(memsize, gfp, node); 568 /* 569 * The array_cache structures contain pointers to free object. 570 * However, when such objects are allocated or transferred to another 571 * cache the pointers are not cleared and they could be counted as 572 * valid references during a kmemleak scan. Therefore, kmemleak must 573 * not scan such objects. 574 */ 575 kmemleak_no_scan(ac); 576 init_arraycache(ac, entries, batchcount); 577 return ac; 578 } 579 580 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 581 struct page *page, void *objp) 582 { 583 struct kmem_cache_node *n; 584 int page_node; 585 LIST_HEAD(list); 586 587 page_node = page_to_nid(page); 588 n = get_node(cachep, page_node); 589 590 spin_lock(&n->list_lock); 591 free_block(cachep, &objp, 1, page_node, &list); 592 spin_unlock(&n->list_lock); 593 594 slabs_destroy(cachep, &list); 595 } 596 597 /* 598 * Transfer objects in one arraycache to another. 599 * Locking must be handled by the caller. 600 * 601 * Return the number of entries transferred. 602 */ 603 static int transfer_objects(struct array_cache *to, 604 struct array_cache *from, unsigned int max) 605 { 606 /* Figure out how many entries to transfer */ 607 int nr = min3(from->avail, max, to->limit - to->avail); 608 609 if (!nr) 610 return 0; 611 612 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 613 sizeof(void *) *nr); 614 615 from->avail -= nr; 616 to->avail += nr; 617 return nr; 618 } 619 620 #ifndef CONFIG_NUMA 621 622 #define drain_alien_cache(cachep, alien) do { } while (0) 623 #define reap_alien(cachep, n) do { } while (0) 624 625 static inline struct alien_cache **alloc_alien_cache(int node, 626 int limit, gfp_t gfp) 627 { 628 return NULL; 629 } 630 631 static inline void free_alien_cache(struct alien_cache **ac_ptr) 632 { 633 } 634 635 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 636 { 637 return 0; 638 } 639 640 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 641 gfp_t flags) 642 { 643 return NULL; 644 } 645 646 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 647 gfp_t flags, int nodeid) 648 { 649 return NULL; 650 } 651 652 static inline gfp_t gfp_exact_node(gfp_t flags) 653 { 654 return flags & ~__GFP_NOFAIL; 655 } 656 657 #else /* CONFIG_NUMA */ 658 659 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 660 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 661 662 static struct alien_cache *__alloc_alien_cache(int node, int entries, 663 int batch, gfp_t gfp) 664 { 665 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 666 struct alien_cache *alc = NULL; 667 668 alc = kmalloc_node(memsize, gfp, node); 669 if (alc) { 670 kmemleak_no_scan(alc); 671 init_arraycache(&alc->ac, entries, batch); 672 spin_lock_init(&alc->lock); 673 } 674 return alc; 675 } 676 677 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 678 { 679 struct alien_cache **alc_ptr; 680 int i; 681 682 if (limit > 1) 683 limit = 12; 684 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 685 if (!alc_ptr) 686 return NULL; 687 688 for_each_node(i) { 689 if (i == node || !node_online(i)) 690 continue; 691 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 692 if (!alc_ptr[i]) { 693 for (i--; i >= 0; i--) 694 kfree(alc_ptr[i]); 695 kfree(alc_ptr); 696 return NULL; 697 } 698 } 699 return alc_ptr; 700 } 701 702 static void free_alien_cache(struct alien_cache **alc_ptr) 703 { 704 int i; 705 706 if (!alc_ptr) 707 return; 708 for_each_node(i) 709 kfree(alc_ptr[i]); 710 kfree(alc_ptr); 711 } 712 713 static void __drain_alien_cache(struct kmem_cache *cachep, 714 struct array_cache *ac, int node, 715 struct list_head *list) 716 { 717 struct kmem_cache_node *n = get_node(cachep, node); 718 719 if (ac->avail) { 720 spin_lock(&n->list_lock); 721 /* 722 * Stuff objects into the remote nodes shared array first. 723 * That way we could avoid the overhead of putting the objects 724 * into the free lists and getting them back later. 725 */ 726 if (n->shared) 727 transfer_objects(n->shared, ac, ac->limit); 728 729 free_block(cachep, ac->entry, ac->avail, node, list); 730 ac->avail = 0; 731 spin_unlock(&n->list_lock); 732 } 733 } 734 735 /* 736 * Called from cache_reap() to regularly drain alien caches round robin. 737 */ 738 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 739 { 740 int node = __this_cpu_read(slab_reap_node); 741 742 if (n->alien) { 743 struct alien_cache *alc = n->alien[node]; 744 struct array_cache *ac; 745 746 if (alc) { 747 ac = &alc->ac; 748 if (ac->avail && spin_trylock_irq(&alc->lock)) { 749 LIST_HEAD(list); 750 751 __drain_alien_cache(cachep, ac, node, &list); 752 spin_unlock_irq(&alc->lock); 753 slabs_destroy(cachep, &list); 754 } 755 } 756 } 757 } 758 759 static void drain_alien_cache(struct kmem_cache *cachep, 760 struct alien_cache **alien) 761 { 762 int i = 0; 763 struct alien_cache *alc; 764 struct array_cache *ac; 765 unsigned long flags; 766 767 for_each_online_node(i) { 768 alc = alien[i]; 769 if (alc) { 770 LIST_HEAD(list); 771 772 ac = &alc->ac; 773 spin_lock_irqsave(&alc->lock, flags); 774 __drain_alien_cache(cachep, ac, i, &list); 775 spin_unlock_irqrestore(&alc->lock, flags); 776 slabs_destroy(cachep, &list); 777 } 778 } 779 } 780 781 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 782 int node, int page_node) 783 { 784 struct kmem_cache_node *n; 785 struct alien_cache *alien = NULL; 786 struct array_cache *ac; 787 LIST_HEAD(list); 788 789 n = get_node(cachep, node); 790 STATS_INC_NODEFREES(cachep); 791 if (n->alien && n->alien[page_node]) { 792 alien = n->alien[page_node]; 793 ac = &alien->ac; 794 spin_lock(&alien->lock); 795 if (unlikely(ac->avail == ac->limit)) { 796 STATS_INC_ACOVERFLOW(cachep); 797 __drain_alien_cache(cachep, ac, page_node, &list); 798 } 799 ac->entry[ac->avail++] = objp; 800 spin_unlock(&alien->lock); 801 slabs_destroy(cachep, &list); 802 } else { 803 n = get_node(cachep, page_node); 804 spin_lock(&n->list_lock); 805 free_block(cachep, &objp, 1, page_node, &list); 806 spin_unlock(&n->list_lock); 807 slabs_destroy(cachep, &list); 808 } 809 return 1; 810 } 811 812 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 813 { 814 int page_node = page_to_nid(virt_to_page(objp)); 815 int node = numa_mem_id(); 816 /* 817 * Make sure we are not freeing a object from another node to the array 818 * cache on this cpu. 819 */ 820 if (likely(node == page_node)) 821 return 0; 822 823 return __cache_free_alien(cachep, objp, node, page_node); 824 } 825 826 /* 827 * Construct gfp mask to allocate from a specific node but do not reclaim or 828 * warn about failures. 829 */ 830 static inline gfp_t gfp_exact_node(gfp_t flags) 831 { 832 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 833 } 834 #endif 835 836 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 837 { 838 struct kmem_cache_node *n; 839 840 /* 841 * Set up the kmem_cache_node for cpu before we can 842 * begin anything. Make sure some other cpu on this 843 * node has not already allocated this 844 */ 845 n = get_node(cachep, node); 846 if (n) { 847 spin_lock_irq(&n->list_lock); 848 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 849 cachep->num; 850 spin_unlock_irq(&n->list_lock); 851 852 return 0; 853 } 854 855 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 856 if (!n) 857 return -ENOMEM; 858 859 kmem_cache_node_init(n); 860 n->next_reap = jiffies + REAPTIMEOUT_NODE + 861 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 862 863 n->free_limit = 864 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 865 866 /* 867 * The kmem_cache_nodes don't come and go as CPUs 868 * come and go. slab_mutex is sufficient 869 * protection here. 870 */ 871 cachep->node[node] = n; 872 873 return 0; 874 } 875 876 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 877 /* 878 * Allocates and initializes node for a node on each slab cache, used for 879 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 880 * will be allocated off-node since memory is not yet online for the new node. 881 * When hotplugging memory or a cpu, existing node are not replaced if 882 * already in use. 883 * 884 * Must hold slab_mutex. 885 */ 886 static int init_cache_node_node(int node) 887 { 888 int ret; 889 struct kmem_cache *cachep; 890 891 list_for_each_entry(cachep, &slab_caches, list) { 892 ret = init_cache_node(cachep, node, GFP_KERNEL); 893 if (ret) 894 return ret; 895 } 896 897 return 0; 898 } 899 #endif 900 901 static int setup_kmem_cache_node(struct kmem_cache *cachep, 902 int node, gfp_t gfp, bool force_change) 903 { 904 int ret = -ENOMEM; 905 struct kmem_cache_node *n; 906 struct array_cache *old_shared = NULL; 907 struct array_cache *new_shared = NULL; 908 struct alien_cache **new_alien = NULL; 909 LIST_HEAD(list); 910 911 if (use_alien_caches) { 912 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 913 if (!new_alien) 914 goto fail; 915 } 916 917 if (cachep->shared) { 918 new_shared = alloc_arraycache(node, 919 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 920 if (!new_shared) 921 goto fail; 922 } 923 924 ret = init_cache_node(cachep, node, gfp); 925 if (ret) 926 goto fail; 927 928 n = get_node(cachep, node); 929 spin_lock_irq(&n->list_lock); 930 if (n->shared && force_change) { 931 free_block(cachep, n->shared->entry, 932 n->shared->avail, node, &list); 933 n->shared->avail = 0; 934 } 935 936 if (!n->shared || force_change) { 937 old_shared = n->shared; 938 n->shared = new_shared; 939 new_shared = NULL; 940 } 941 942 if (!n->alien) { 943 n->alien = new_alien; 944 new_alien = NULL; 945 } 946 947 spin_unlock_irq(&n->list_lock); 948 slabs_destroy(cachep, &list); 949 950 /* 951 * To protect lockless access to n->shared during irq disabled context. 952 * If n->shared isn't NULL in irq disabled context, accessing to it is 953 * guaranteed to be valid until irq is re-enabled, because it will be 954 * freed after synchronize_rcu(). 955 */ 956 if (old_shared && force_change) 957 synchronize_rcu(); 958 959 fail: 960 kfree(old_shared); 961 kfree(new_shared); 962 free_alien_cache(new_alien); 963 964 return ret; 965 } 966 967 #ifdef CONFIG_SMP 968 969 static void cpuup_canceled(long cpu) 970 { 971 struct kmem_cache *cachep; 972 struct kmem_cache_node *n = NULL; 973 int node = cpu_to_mem(cpu); 974 const struct cpumask *mask = cpumask_of_node(node); 975 976 list_for_each_entry(cachep, &slab_caches, list) { 977 struct array_cache *nc; 978 struct array_cache *shared; 979 struct alien_cache **alien; 980 LIST_HEAD(list); 981 982 n = get_node(cachep, node); 983 if (!n) 984 continue; 985 986 spin_lock_irq(&n->list_lock); 987 988 /* Free limit for this kmem_cache_node */ 989 n->free_limit -= cachep->batchcount; 990 991 /* cpu is dead; no one can alloc from it. */ 992 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 993 if (nc) { 994 free_block(cachep, nc->entry, nc->avail, node, &list); 995 nc->avail = 0; 996 } 997 998 if (!cpumask_empty(mask)) { 999 spin_unlock_irq(&n->list_lock); 1000 goto free_slab; 1001 } 1002 1003 shared = n->shared; 1004 if (shared) { 1005 free_block(cachep, shared->entry, 1006 shared->avail, node, &list); 1007 n->shared = NULL; 1008 } 1009 1010 alien = n->alien; 1011 n->alien = NULL; 1012 1013 spin_unlock_irq(&n->list_lock); 1014 1015 kfree(shared); 1016 if (alien) { 1017 drain_alien_cache(cachep, alien); 1018 free_alien_cache(alien); 1019 } 1020 1021 free_slab: 1022 slabs_destroy(cachep, &list); 1023 } 1024 /* 1025 * In the previous loop, all the objects were freed to 1026 * the respective cache's slabs, now we can go ahead and 1027 * shrink each nodelist to its limit. 1028 */ 1029 list_for_each_entry(cachep, &slab_caches, list) { 1030 n = get_node(cachep, node); 1031 if (!n) 1032 continue; 1033 drain_freelist(cachep, n, INT_MAX); 1034 } 1035 } 1036 1037 static int cpuup_prepare(long cpu) 1038 { 1039 struct kmem_cache *cachep; 1040 int node = cpu_to_mem(cpu); 1041 int err; 1042 1043 /* 1044 * We need to do this right in the beginning since 1045 * alloc_arraycache's are going to use this list. 1046 * kmalloc_node allows us to add the slab to the right 1047 * kmem_cache_node and not this cpu's kmem_cache_node 1048 */ 1049 err = init_cache_node_node(node); 1050 if (err < 0) 1051 goto bad; 1052 1053 /* 1054 * Now we can go ahead with allocating the shared arrays and 1055 * array caches 1056 */ 1057 list_for_each_entry(cachep, &slab_caches, list) { 1058 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1059 if (err) 1060 goto bad; 1061 } 1062 1063 return 0; 1064 bad: 1065 cpuup_canceled(cpu); 1066 return -ENOMEM; 1067 } 1068 1069 int slab_prepare_cpu(unsigned int cpu) 1070 { 1071 int err; 1072 1073 mutex_lock(&slab_mutex); 1074 err = cpuup_prepare(cpu); 1075 mutex_unlock(&slab_mutex); 1076 return err; 1077 } 1078 1079 /* 1080 * This is called for a failed online attempt and for a successful 1081 * offline. 1082 * 1083 * Even if all the cpus of a node are down, we don't free the 1084 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1085 * a kmalloc allocation from another cpu for memory from the node of 1086 * the cpu going down. The list3 structure is usually allocated from 1087 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1088 */ 1089 int slab_dead_cpu(unsigned int cpu) 1090 { 1091 mutex_lock(&slab_mutex); 1092 cpuup_canceled(cpu); 1093 mutex_unlock(&slab_mutex); 1094 return 0; 1095 } 1096 #endif 1097 1098 static int slab_online_cpu(unsigned int cpu) 1099 { 1100 start_cpu_timer(cpu); 1101 return 0; 1102 } 1103 1104 static int slab_offline_cpu(unsigned int cpu) 1105 { 1106 /* 1107 * Shutdown cache reaper. Note that the slab_mutex is held so 1108 * that if cache_reap() is invoked it cannot do anything 1109 * expensive but will only modify reap_work and reschedule the 1110 * timer. 1111 */ 1112 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1113 /* Now the cache_reaper is guaranteed to be not running. */ 1114 per_cpu(slab_reap_work, cpu).work.func = NULL; 1115 return 0; 1116 } 1117 1118 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1119 /* 1120 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1121 * Returns -EBUSY if all objects cannot be drained so that the node is not 1122 * removed. 1123 * 1124 * Must hold slab_mutex. 1125 */ 1126 static int __meminit drain_cache_node_node(int node) 1127 { 1128 struct kmem_cache *cachep; 1129 int ret = 0; 1130 1131 list_for_each_entry(cachep, &slab_caches, list) { 1132 struct kmem_cache_node *n; 1133 1134 n = get_node(cachep, node); 1135 if (!n) 1136 continue; 1137 1138 drain_freelist(cachep, n, INT_MAX); 1139 1140 if (!list_empty(&n->slabs_full) || 1141 !list_empty(&n->slabs_partial)) { 1142 ret = -EBUSY; 1143 break; 1144 } 1145 } 1146 return ret; 1147 } 1148 1149 static int __meminit slab_memory_callback(struct notifier_block *self, 1150 unsigned long action, void *arg) 1151 { 1152 struct memory_notify *mnb = arg; 1153 int ret = 0; 1154 int nid; 1155 1156 nid = mnb->status_change_nid; 1157 if (nid < 0) 1158 goto out; 1159 1160 switch (action) { 1161 case MEM_GOING_ONLINE: 1162 mutex_lock(&slab_mutex); 1163 ret = init_cache_node_node(nid); 1164 mutex_unlock(&slab_mutex); 1165 break; 1166 case MEM_GOING_OFFLINE: 1167 mutex_lock(&slab_mutex); 1168 ret = drain_cache_node_node(nid); 1169 mutex_unlock(&slab_mutex); 1170 break; 1171 case MEM_ONLINE: 1172 case MEM_OFFLINE: 1173 case MEM_CANCEL_ONLINE: 1174 case MEM_CANCEL_OFFLINE: 1175 break; 1176 } 1177 out: 1178 return notifier_from_errno(ret); 1179 } 1180 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1181 1182 /* 1183 * swap the static kmem_cache_node with kmalloced memory 1184 */ 1185 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1186 int nodeid) 1187 { 1188 struct kmem_cache_node *ptr; 1189 1190 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1191 BUG_ON(!ptr); 1192 1193 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1194 /* 1195 * Do not assume that spinlocks can be initialized via memcpy: 1196 */ 1197 spin_lock_init(&ptr->list_lock); 1198 1199 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1200 cachep->node[nodeid] = ptr; 1201 } 1202 1203 /* 1204 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1205 * size of kmem_cache_node. 1206 */ 1207 static void __init set_up_node(struct kmem_cache *cachep, int index) 1208 { 1209 int node; 1210 1211 for_each_online_node(node) { 1212 cachep->node[node] = &init_kmem_cache_node[index + node]; 1213 cachep->node[node]->next_reap = jiffies + 1214 REAPTIMEOUT_NODE + 1215 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1216 } 1217 } 1218 1219 /* 1220 * Initialisation. Called after the page allocator have been initialised and 1221 * before smp_init(). 1222 */ 1223 void __init kmem_cache_init(void) 1224 { 1225 int i; 1226 1227 kmem_cache = &kmem_cache_boot; 1228 1229 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1230 use_alien_caches = 0; 1231 1232 for (i = 0; i < NUM_INIT_LISTS; i++) 1233 kmem_cache_node_init(&init_kmem_cache_node[i]); 1234 1235 /* 1236 * Fragmentation resistance on low memory - only use bigger 1237 * page orders on machines with more than 32MB of memory if 1238 * not overridden on the command line. 1239 */ 1240 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1241 slab_max_order = SLAB_MAX_ORDER_HI; 1242 1243 /* Bootstrap is tricky, because several objects are allocated 1244 * from caches that do not exist yet: 1245 * 1) initialize the kmem_cache cache: it contains the struct 1246 * kmem_cache structures of all caches, except kmem_cache itself: 1247 * kmem_cache is statically allocated. 1248 * Initially an __init data area is used for the head array and the 1249 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1250 * array at the end of the bootstrap. 1251 * 2) Create the first kmalloc cache. 1252 * The struct kmem_cache for the new cache is allocated normally. 1253 * An __init data area is used for the head array. 1254 * 3) Create the remaining kmalloc caches, with minimally sized 1255 * head arrays. 1256 * 4) Replace the __init data head arrays for kmem_cache and the first 1257 * kmalloc cache with kmalloc allocated arrays. 1258 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1259 * the other cache's with kmalloc allocated memory. 1260 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1261 */ 1262 1263 /* 1) create the kmem_cache */ 1264 1265 /* 1266 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1267 */ 1268 create_boot_cache(kmem_cache, "kmem_cache", 1269 offsetof(struct kmem_cache, node) + 1270 nr_node_ids * sizeof(struct kmem_cache_node *), 1271 SLAB_HWCACHE_ALIGN, 0, 0); 1272 list_add(&kmem_cache->list, &slab_caches); 1273 memcg_link_cache(kmem_cache); 1274 slab_state = PARTIAL; 1275 1276 /* 1277 * Initialize the caches that provide memory for the kmem_cache_node 1278 * structures first. Without this, further allocations will bug. 1279 */ 1280 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( 1281 kmalloc_info[INDEX_NODE].name, 1282 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS, 1283 0, kmalloc_size(INDEX_NODE)); 1284 slab_state = PARTIAL_NODE; 1285 setup_kmalloc_cache_index_table(); 1286 1287 slab_early_init = 0; 1288 1289 /* 5) Replace the bootstrap kmem_cache_node */ 1290 { 1291 int nid; 1292 1293 for_each_online_node(nid) { 1294 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1295 1296 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1297 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1298 } 1299 } 1300 1301 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1302 } 1303 1304 void __init kmem_cache_init_late(void) 1305 { 1306 struct kmem_cache *cachep; 1307 1308 /* 6) resize the head arrays to their final sizes */ 1309 mutex_lock(&slab_mutex); 1310 list_for_each_entry(cachep, &slab_caches, list) 1311 if (enable_cpucache(cachep, GFP_NOWAIT)) 1312 BUG(); 1313 mutex_unlock(&slab_mutex); 1314 1315 /* Done! */ 1316 slab_state = FULL; 1317 1318 #ifdef CONFIG_NUMA 1319 /* 1320 * Register a memory hotplug callback that initializes and frees 1321 * node. 1322 */ 1323 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1324 #endif 1325 1326 /* 1327 * The reap timers are started later, with a module init call: That part 1328 * of the kernel is not yet operational. 1329 */ 1330 } 1331 1332 static int __init cpucache_init(void) 1333 { 1334 int ret; 1335 1336 /* 1337 * Register the timers that return unneeded pages to the page allocator 1338 */ 1339 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1340 slab_online_cpu, slab_offline_cpu); 1341 WARN_ON(ret < 0); 1342 1343 return 0; 1344 } 1345 __initcall(cpucache_init); 1346 1347 static noinline void 1348 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1349 { 1350 #if DEBUG 1351 struct kmem_cache_node *n; 1352 unsigned long flags; 1353 int node; 1354 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1355 DEFAULT_RATELIMIT_BURST); 1356 1357 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1358 return; 1359 1360 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1361 nodeid, gfpflags, &gfpflags); 1362 pr_warn(" cache: %s, object size: %d, order: %d\n", 1363 cachep->name, cachep->size, cachep->gfporder); 1364 1365 for_each_kmem_cache_node(cachep, node, n) { 1366 unsigned long total_slabs, free_slabs, free_objs; 1367 1368 spin_lock_irqsave(&n->list_lock, flags); 1369 total_slabs = n->total_slabs; 1370 free_slabs = n->free_slabs; 1371 free_objs = n->free_objects; 1372 spin_unlock_irqrestore(&n->list_lock, flags); 1373 1374 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1375 node, total_slabs - free_slabs, total_slabs, 1376 (total_slabs * cachep->num) - free_objs, 1377 total_slabs * cachep->num); 1378 } 1379 #endif 1380 } 1381 1382 /* 1383 * Interface to system's page allocator. No need to hold the 1384 * kmem_cache_node ->list_lock. 1385 * 1386 * If we requested dmaable memory, we will get it. Even if we 1387 * did not request dmaable memory, we might get it, but that 1388 * would be relatively rare and ignorable. 1389 */ 1390 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1391 int nodeid) 1392 { 1393 struct page *page; 1394 int nr_pages; 1395 1396 flags |= cachep->allocflags; 1397 1398 page = __alloc_pages_node(nodeid, flags, cachep->gfporder); 1399 if (!page) { 1400 slab_out_of_memory(cachep, flags, nodeid); 1401 return NULL; 1402 } 1403 1404 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1405 __free_pages(page, cachep->gfporder); 1406 return NULL; 1407 } 1408 1409 nr_pages = (1 << cachep->gfporder); 1410 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1411 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages); 1412 else 1413 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages); 1414 1415 __SetPageSlab(page); 1416 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1417 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1418 SetPageSlabPfmemalloc(page); 1419 1420 return page; 1421 } 1422 1423 /* 1424 * Interface to system's page release. 1425 */ 1426 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1427 { 1428 int order = cachep->gfporder; 1429 unsigned long nr_freed = (1 << order); 1430 1431 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1432 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed); 1433 else 1434 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed); 1435 1436 BUG_ON(!PageSlab(page)); 1437 __ClearPageSlabPfmemalloc(page); 1438 __ClearPageSlab(page); 1439 page_mapcount_reset(page); 1440 page->mapping = NULL; 1441 1442 if (current->reclaim_state) 1443 current->reclaim_state->reclaimed_slab += nr_freed; 1444 memcg_uncharge_slab(page, order, cachep); 1445 __free_pages(page, order); 1446 } 1447 1448 static void kmem_rcu_free(struct rcu_head *head) 1449 { 1450 struct kmem_cache *cachep; 1451 struct page *page; 1452 1453 page = container_of(head, struct page, rcu_head); 1454 cachep = page->slab_cache; 1455 1456 kmem_freepages(cachep, page); 1457 } 1458 1459 #if DEBUG 1460 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1461 { 1462 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1463 (cachep->size % PAGE_SIZE) == 0) 1464 return true; 1465 1466 return false; 1467 } 1468 1469 #ifdef CONFIG_DEBUG_PAGEALLOC 1470 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1471 unsigned long caller) 1472 { 1473 int size = cachep->object_size; 1474 1475 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1476 1477 if (size < 5 * sizeof(unsigned long)) 1478 return; 1479 1480 *addr++ = 0x12345678; 1481 *addr++ = caller; 1482 *addr++ = smp_processor_id(); 1483 size -= 3 * sizeof(unsigned long); 1484 { 1485 unsigned long *sptr = &caller; 1486 unsigned long svalue; 1487 1488 while (!kstack_end(sptr)) { 1489 svalue = *sptr++; 1490 if (kernel_text_address(svalue)) { 1491 *addr++ = svalue; 1492 size -= sizeof(unsigned long); 1493 if (size <= sizeof(unsigned long)) 1494 break; 1495 } 1496 } 1497 1498 } 1499 *addr++ = 0x87654321; 1500 } 1501 1502 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1503 int map, unsigned long caller) 1504 { 1505 if (!is_debug_pagealloc_cache(cachep)) 1506 return; 1507 1508 if (caller) 1509 store_stackinfo(cachep, objp, caller); 1510 1511 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1512 } 1513 1514 #else 1515 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1516 int map, unsigned long caller) {} 1517 1518 #endif 1519 1520 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1521 { 1522 int size = cachep->object_size; 1523 addr = &((char *)addr)[obj_offset(cachep)]; 1524 1525 memset(addr, val, size); 1526 *(unsigned char *)(addr + size - 1) = POISON_END; 1527 } 1528 1529 static void dump_line(char *data, int offset, int limit) 1530 { 1531 int i; 1532 unsigned char error = 0; 1533 int bad_count = 0; 1534 1535 pr_err("%03x: ", offset); 1536 for (i = 0; i < limit; i++) { 1537 if (data[offset + i] != POISON_FREE) { 1538 error = data[offset + i]; 1539 bad_count++; 1540 } 1541 } 1542 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1543 &data[offset], limit, 1); 1544 1545 if (bad_count == 1) { 1546 error ^= POISON_FREE; 1547 if (!(error & (error - 1))) { 1548 pr_err("Single bit error detected. Probably bad RAM.\n"); 1549 #ifdef CONFIG_X86 1550 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1551 #else 1552 pr_err("Run a memory test tool.\n"); 1553 #endif 1554 } 1555 } 1556 } 1557 #endif 1558 1559 #if DEBUG 1560 1561 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1562 { 1563 int i, size; 1564 char *realobj; 1565 1566 if (cachep->flags & SLAB_RED_ZONE) { 1567 pr_err("Redzone: 0x%llx/0x%llx\n", 1568 *dbg_redzone1(cachep, objp), 1569 *dbg_redzone2(cachep, objp)); 1570 } 1571 1572 if (cachep->flags & SLAB_STORE_USER) 1573 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1574 realobj = (char *)objp + obj_offset(cachep); 1575 size = cachep->object_size; 1576 for (i = 0; i < size && lines; i += 16, lines--) { 1577 int limit; 1578 limit = 16; 1579 if (i + limit > size) 1580 limit = size - i; 1581 dump_line(realobj, i, limit); 1582 } 1583 } 1584 1585 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1586 { 1587 char *realobj; 1588 int size, i; 1589 int lines = 0; 1590 1591 if (is_debug_pagealloc_cache(cachep)) 1592 return; 1593 1594 realobj = (char *)objp + obj_offset(cachep); 1595 size = cachep->object_size; 1596 1597 for (i = 0; i < size; i++) { 1598 char exp = POISON_FREE; 1599 if (i == size - 1) 1600 exp = POISON_END; 1601 if (realobj[i] != exp) { 1602 int limit; 1603 /* Mismatch ! */ 1604 /* Print header */ 1605 if (lines == 0) { 1606 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1607 print_tainted(), cachep->name, 1608 realobj, size); 1609 print_objinfo(cachep, objp, 0); 1610 } 1611 /* Hexdump the affected line */ 1612 i = (i / 16) * 16; 1613 limit = 16; 1614 if (i + limit > size) 1615 limit = size - i; 1616 dump_line(realobj, i, limit); 1617 i += 16; 1618 lines++; 1619 /* Limit to 5 lines */ 1620 if (lines > 5) 1621 break; 1622 } 1623 } 1624 if (lines != 0) { 1625 /* Print some data about the neighboring objects, if they 1626 * exist: 1627 */ 1628 struct page *page = virt_to_head_page(objp); 1629 unsigned int objnr; 1630 1631 objnr = obj_to_index(cachep, page, objp); 1632 if (objnr) { 1633 objp = index_to_obj(cachep, page, objnr - 1); 1634 realobj = (char *)objp + obj_offset(cachep); 1635 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1636 print_objinfo(cachep, objp, 2); 1637 } 1638 if (objnr + 1 < cachep->num) { 1639 objp = index_to_obj(cachep, page, objnr + 1); 1640 realobj = (char *)objp + obj_offset(cachep); 1641 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1642 print_objinfo(cachep, objp, 2); 1643 } 1644 } 1645 } 1646 #endif 1647 1648 #if DEBUG 1649 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1650 struct page *page) 1651 { 1652 int i; 1653 1654 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1655 poison_obj(cachep, page->freelist - obj_offset(cachep), 1656 POISON_FREE); 1657 } 1658 1659 for (i = 0; i < cachep->num; i++) { 1660 void *objp = index_to_obj(cachep, page, i); 1661 1662 if (cachep->flags & SLAB_POISON) { 1663 check_poison_obj(cachep, objp); 1664 slab_kernel_map(cachep, objp, 1, 0); 1665 } 1666 if (cachep->flags & SLAB_RED_ZONE) { 1667 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1668 slab_error(cachep, "start of a freed object was overwritten"); 1669 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1670 slab_error(cachep, "end of a freed object was overwritten"); 1671 } 1672 } 1673 } 1674 #else 1675 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1676 struct page *page) 1677 { 1678 } 1679 #endif 1680 1681 /** 1682 * slab_destroy - destroy and release all objects in a slab 1683 * @cachep: cache pointer being destroyed 1684 * @page: page pointer being destroyed 1685 * 1686 * Destroy all the objs in a slab page, and release the mem back to the system. 1687 * Before calling the slab page must have been unlinked from the cache. The 1688 * kmem_cache_node ->list_lock is not held/needed. 1689 */ 1690 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1691 { 1692 void *freelist; 1693 1694 freelist = page->freelist; 1695 slab_destroy_debugcheck(cachep, page); 1696 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1697 call_rcu(&page->rcu_head, kmem_rcu_free); 1698 else 1699 kmem_freepages(cachep, page); 1700 1701 /* 1702 * From now on, we don't use freelist 1703 * although actual page can be freed in rcu context 1704 */ 1705 if (OFF_SLAB(cachep)) 1706 kmem_cache_free(cachep->freelist_cache, freelist); 1707 } 1708 1709 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1710 { 1711 struct page *page, *n; 1712 1713 list_for_each_entry_safe(page, n, list, lru) { 1714 list_del(&page->lru); 1715 slab_destroy(cachep, page); 1716 } 1717 } 1718 1719 /** 1720 * calculate_slab_order - calculate size (page order) of slabs 1721 * @cachep: pointer to the cache that is being created 1722 * @size: size of objects to be created in this cache. 1723 * @flags: slab allocation flags 1724 * 1725 * Also calculates the number of objects per slab. 1726 * 1727 * This could be made much more intelligent. For now, try to avoid using 1728 * high order pages for slabs. When the gfp() functions are more friendly 1729 * towards high-order requests, this should be changed. 1730 * 1731 * Return: number of left-over bytes in a slab 1732 */ 1733 static size_t calculate_slab_order(struct kmem_cache *cachep, 1734 size_t size, slab_flags_t flags) 1735 { 1736 size_t left_over = 0; 1737 int gfporder; 1738 1739 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1740 unsigned int num; 1741 size_t remainder; 1742 1743 num = cache_estimate(gfporder, size, flags, &remainder); 1744 if (!num) 1745 continue; 1746 1747 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1748 if (num > SLAB_OBJ_MAX_NUM) 1749 break; 1750 1751 if (flags & CFLGS_OFF_SLAB) { 1752 struct kmem_cache *freelist_cache; 1753 size_t freelist_size; 1754 1755 freelist_size = num * sizeof(freelist_idx_t); 1756 freelist_cache = kmalloc_slab(freelist_size, 0u); 1757 if (!freelist_cache) 1758 continue; 1759 1760 /* 1761 * Needed to avoid possible looping condition 1762 * in cache_grow_begin() 1763 */ 1764 if (OFF_SLAB(freelist_cache)) 1765 continue; 1766 1767 /* check if off slab has enough benefit */ 1768 if (freelist_cache->size > cachep->size / 2) 1769 continue; 1770 } 1771 1772 /* Found something acceptable - save it away */ 1773 cachep->num = num; 1774 cachep->gfporder = gfporder; 1775 left_over = remainder; 1776 1777 /* 1778 * A VFS-reclaimable slab tends to have most allocations 1779 * as GFP_NOFS and we really don't want to have to be allocating 1780 * higher-order pages when we are unable to shrink dcache. 1781 */ 1782 if (flags & SLAB_RECLAIM_ACCOUNT) 1783 break; 1784 1785 /* 1786 * Large number of objects is good, but very large slabs are 1787 * currently bad for the gfp()s. 1788 */ 1789 if (gfporder >= slab_max_order) 1790 break; 1791 1792 /* 1793 * Acceptable internal fragmentation? 1794 */ 1795 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1796 break; 1797 } 1798 return left_over; 1799 } 1800 1801 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1802 struct kmem_cache *cachep, int entries, int batchcount) 1803 { 1804 int cpu; 1805 size_t size; 1806 struct array_cache __percpu *cpu_cache; 1807 1808 size = sizeof(void *) * entries + sizeof(struct array_cache); 1809 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1810 1811 if (!cpu_cache) 1812 return NULL; 1813 1814 for_each_possible_cpu(cpu) { 1815 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1816 entries, batchcount); 1817 } 1818 1819 return cpu_cache; 1820 } 1821 1822 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1823 { 1824 if (slab_state >= FULL) 1825 return enable_cpucache(cachep, gfp); 1826 1827 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1828 if (!cachep->cpu_cache) 1829 return 1; 1830 1831 if (slab_state == DOWN) { 1832 /* Creation of first cache (kmem_cache). */ 1833 set_up_node(kmem_cache, CACHE_CACHE); 1834 } else if (slab_state == PARTIAL) { 1835 /* For kmem_cache_node */ 1836 set_up_node(cachep, SIZE_NODE); 1837 } else { 1838 int node; 1839 1840 for_each_online_node(node) { 1841 cachep->node[node] = kmalloc_node( 1842 sizeof(struct kmem_cache_node), gfp, node); 1843 BUG_ON(!cachep->node[node]); 1844 kmem_cache_node_init(cachep->node[node]); 1845 } 1846 } 1847 1848 cachep->node[numa_mem_id()]->next_reap = 1849 jiffies + REAPTIMEOUT_NODE + 1850 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1851 1852 cpu_cache_get(cachep)->avail = 0; 1853 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1854 cpu_cache_get(cachep)->batchcount = 1; 1855 cpu_cache_get(cachep)->touched = 0; 1856 cachep->batchcount = 1; 1857 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1858 return 0; 1859 } 1860 1861 slab_flags_t kmem_cache_flags(unsigned int object_size, 1862 slab_flags_t flags, const char *name, 1863 void (*ctor)(void *)) 1864 { 1865 return flags; 1866 } 1867 1868 struct kmem_cache * 1869 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1870 slab_flags_t flags, void (*ctor)(void *)) 1871 { 1872 struct kmem_cache *cachep; 1873 1874 cachep = find_mergeable(size, align, flags, name, ctor); 1875 if (cachep) { 1876 cachep->refcount++; 1877 1878 /* 1879 * Adjust the object sizes so that we clear 1880 * the complete object on kzalloc. 1881 */ 1882 cachep->object_size = max_t(int, cachep->object_size, size); 1883 } 1884 return cachep; 1885 } 1886 1887 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1888 size_t size, slab_flags_t flags) 1889 { 1890 size_t left; 1891 1892 cachep->num = 0; 1893 1894 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1895 return false; 1896 1897 left = calculate_slab_order(cachep, size, 1898 flags | CFLGS_OBJFREELIST_SLAB); 1899 if (!cachep->num) 1900 return false; 1901 1902 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1903 return false; 1904 1905 cachep->colour = left / cachep->colour_off; 1906 1907 return true; 1908 } 1909 1910 static bool set_off_slab_cache(struct kmem_cache *cachep, 1911 size_t size, slab_flags_t flags) 1912 { 1913 size_t left; 1914 1915 cachep->num = 0; 1916 1917 /* 1918 * Always use on-slab management when SLAB_NOLEAKTRACE 1919 * to avoid recursive calls into kmemleak. 1920 */ 1921 if (flags & SLAB_NOLEAKTRACE) 1922 return false; 1923 1924 /* 1925 * Size is large, assume best to place the slab management obj 1926 * off-slab (should allow better packing of objs). 1927 */ 1928 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1929 if (!cachep->num) 1930 return false; 1931 1932 /* 1933 * If the slab has been placed off-slab, and we have enough space then 1934 * move it on-slab. This is at the expense of any extra colouring. 1935 */ 1936 if (left >= cachep->num * sizeof(freelist_idx_t)) 1937 return false; 1938 1939 cachep->colour = left / cachep->colour_off; 1940 1941 return true; 1942 } 1943 1944 static bool set_on_slab_cache(struct kmem_cache *cachep, 1945 size_t size, slab_flags_t flags) 1946 { 1947 size_t left; 1948 1949 cachep->num = 0; 1950 1951 left = calculate_slab_order(cachep, size, flags); 1952 if (!cachep->num) 1953 return false; 1954 1955 cachep->colour = left / cachep->colour_off; 1956 1957 return true; 1958 } 1959 1960 /** 1961 * __kmem_cache_create - Create a cache. 1962 * @cachep: cache management descriptor 1963 * @flags: SLAB flags 1964 * 1965 * Returns a ptr to the cache on success, NULL on failure. 1966 * Cannot be called within a int, but can be interrupted. 1967 * The @ctor is run when new pages are allocated by the cache. 1968 * 1969 * The flags are 1970 * 1971 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1972 * to catch references to uninitialised memory. 1973 * 1974 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1975 * for buffer overruns. 1976 * 1977 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1978 * cacheline. This can be beneficial if you're counting cycles as closely 1979 * as davem. 1980 * 1981 * Return: a pointer to the created cache or %NULL in case of error 1982 */ 1983 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1984 { 1985 size_t ralign = BYTES_PER_WORD; 1986 gfp_t gfp; 1987 int err; 1988 unsigned int size = cachep->size; 1989 1990 #if DEBUG 1991 #if FORCED_DEBUG 1992 /* 1993 * Enable redzoning and last user accounting, except for caches with 1994 * large objects, if the increased size would increase the object size 1995 * above the next power of two: caches with object sizes just above a 1996 * power of two have a significant amount of internal fragmentation. 1997 */ 1998 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1999 2 * sizeof(unsigned long long))) 2000 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2001 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 2002 flags |= SLAB_POISON; 2003 #endif 2004 #endif 2005 2006 /* 2007 * Check that size is in terms of words. This is needed to avoid 2008 * unaligned accesses for some archs when redzoning is used, and makes 2009 * sure any on-slab bufctl's are also correctly aligned. 2010 */ 2011 size = ALIGN(size, BYTES_PER_WORD); 2012 2013 if (flags & SLAB_RED_ZONE) { 2014 ralign = REDZONE_ALIGN; 2015 /* If redzoning, ensure that the second redzone is suitably 2016 * aligned, by adjusting the object size accordingly. */ 2017 size = ALIGN(size, REDZONE_ALIGN); 2018 } 2019 2020 /* 3) caller mandated alignment */ 2021 if (ralign < cachep->align) { 2022 ralign = cachep->align; 2023 } 2024 /* disable debug if necessary */ 2025 if (ralign > __alignof__(unsigned long long)) 2026 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2027 /* 2028 * 4) Store it. 2029 */ 2030 cachep->align = ralign; 2031 cachep->colour_off = cache_line_size(); 2032 /* Offset must be a multiple of the alignment. */ 2033 if (cachep->colour_off < cachep->align) 2034 cachep->colour_off = cachep->align; 2035 2036 if (slab_is_available()) 2037 gfp = GFP_KERNEL; 2038 else 2039 gfp = GFP_NOWAIT; 2040 2041 #if DEBUG 2042 2043 /* 2044 * Both debugging options require word-alignment which is calculated 2045 * into align above. 2046 */ 2047 if (flags & SLAB_RED_ZONE) { 2048 /* add space for red zone words */ 2049 cachep->obj_offset += sizeof(unsigned long long); 2050 size += 2 * sizeof(unsigned long long); 2051 } 2052 if (flags & SLAB_STORE_USER) { 2053 /* user store requires one word storage behind the end of 2054 * the real object. But if the second red zone needs to be 2055 * aligned to 64 bits, we must allow that much space. 2056 */ 2057 if (flags & SLAB_RED_ZONE) 2058 size += REDZONE_ALIGN; 2059 else 2060 size += BYTES_PER_WORD; 2061 } 2062 #endif 2063 2064 kasan_cache_create(cachep, &size, &flags); 2065 2066 size = ALIGN(size, cachep->align); 2067 /* 2068 * We should restrict the number of objects in a slab to implement 2069 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2070 */ 2071 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2072 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2073 2074 #if DEBUG 2075 /* 2076 * To activate debug pagealloc, off-slab management is necessary 2077 * requirement. In early phase of initialization, small sized slab 2078 * doesn't get initialized so it would not be possible. So, we need 2079 * to check size >= 256. It guarantees that all necessary small 2080 * sized slab is initialized in current slab initialization sequence. 2081 */ 2082 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2083 size >= 256 && cachep->object_size > cache_line_size()) { 2084 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2085 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2086 2087 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2088 flags |= CFLGS_OFF_SLAB; 2089 cachep->obj_offset += tmp_size - size; 2090 size = tmp_size; 2091 goto done; 2092 } 2093 } 2094 } 2095 #endif 2096 2097 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2098 flags |= CFLGS_OBJFREELIST_SLAB; 2099 goto done; 2100 } 2101 2102 if (set_off_slab_cache(cachep, size, flags)) { 2103 flags |= CFLGS_OFF_SLAB; 2104 goto done; 2105 } 2106 2107 if (set_on_slab_cache(cachep, size, flags)) 2108 goto done; 2109 2110 return -E2BIG; 2111 2112 done: 2113 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2114 cachep->flags = flags; 2115 cachep->allocflags = __GFP_COMP; 2116 if (flags & SLAB_CACHE_DMA) 2117 cachep->allocflags |= GFP_DMA; 2118 if (flags & SLAB_CACHE_DMA32) 2119 cachep->allocflags |= GFP_DMA32; 2120 if (flags & SLAB_RECLAIM_ACCOUNT) 2121 cachep->allocflags |= __GFP_RECLAIMABLE; 2122 cachep->size = size; 2123 cachep->reciprocal_buffer_size = reciprocal_value(size); 2124 2125 #if DEBUG 2126 /* 2127 * If we're going to use the generic kernel_map_pages() 2128 * poisoning, then it's going to smash the contents of 2129 * the redzone and userword anyhow, so switch them off. 2130 */ 2131 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2132 (cachep->flags & SLAB_POISON) && 2133 is_debug_pagealloc_cache(cachep)) 2134 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2135 #endif 2136 2137 if (OFF_SLAB(cachep)) { 2138 cachep->freelist_cache = 2139 kmalloc_slab(cachep->freelist_size, 0u); 2140 } 2141 2142 err = setup_cpu_cache(cachep, gfp); 2143 if (err) { 2144 __kmem_cache_release(cachep); 2145 return err; 2146 } 2147 2148 return 0; 2149 } 2150 2151 #if DEBUG 2152 static void check_irq_off(void) 2153 { 2154 BUG_ON(!irqs_disabled()); 2155 } 2156 2157 static void check_irq_on(void) 2158 { 2159 BUG_ON(irqs_disabled()); 2160 } 2161 2162 static void check_mutex_acquired(void) 2163 { 2164 BUG_ON(!mutex_is_locked(&slab_mutex)); 2165 } 2166 2167 static void check_spinlock_acquired(struct kmem_cache *cachep) 2168 { 2169 #ifdef CONFIG_SMP 2170 check_irq_off(); 2171 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2172 #endif 2173 } 2174 2175 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2176 { 2177 #ifdef CONFIG_SMP 2178 check_irq_off(); 2179 assert_spin_locked(&get_node(cachep, node)->list_lock); 2180 #endif 2181 } 2182 2183 #else 2184 #define check_irq_off() do { } while(0) 2185 #define check_irq_on() do { } while(0) 2186 #define check_mutex_acquired() do { } while(0) 2187 #define check_spinlock_acquired(x) do { } while(0) 2188 #define check_spinlock_acquired_node(x, y) do { } while(0) 2189 #endif 2190 2191 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2192 int node, bool free_all, struct list_head *list) 2193 { 2194 int tofree; 2195 2196 if (!ac || !ac->avail) 2197 return; 2198 2199 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2200 if (tofree > ac->avail) 2201 tofree = (ac->avail + 1) / 2; 2202 2203 free_block(cachep, ac->entry, tofree, node, list); 2204 ac->avail -= tofree; 2205 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2206 } 2207 2208 static void do_drain(void *arg) 2209 { 2210 struct kmem_cache *cachep = arg; 2211 struct array_cache *ac; 2212 int node = numa_mem_id(); 2213 struct kmem_cache_node *n; 2214 LIST_HEAD(list); 2215 2216 check_irq_off(); 2217 ac = cpu_cache_get(cachep); 2218 n = get_node(cachep, node); 2219 spin_lock(&n->list_lock); 2220 free_block(cachep, ac->entry, ac->avail, node, &list); 2221 spin_unlock(&n->list_lock); 2222 slabs_destroy(cachep, &list); 2223 ac->avail = 0; 2224 } 2225 2226 static void drain_cpu_caches(struct kmem_cache *cachep) 2227 { 2228 struct kmem_cache_node *n; 2229 int node; 2230 LIST_HEAD(list); 2231 2232 on_each_cpu(do_drain, cachep, 1); 2233 check_irq_on(); 2234 for_each_kmem_cache_node(cachep, node, n) 2235 if (n->alien) 2236 drain_alien_cache(cachep, n->alien); 2237 2238 for_each_kmem_cache_node(cachep, node, n) { 2239 spin_lock_irq(&n->list_lock); 2240 drain_array_locked(cachep, n->shared, node, true, &list); 2241 spin_unlock_irq(&n->list_lock); 2242 2243 slabs_destroy(cachep, &list); 2244 } 2245 } 2246 2247 /* 2248 * Remove slabs from the list of free slabs. 2249 * Specify the number of slabs to drain in tofree. 2250 * 2251 * Returns the actual number of slabs released. 2252 */ 2253 static int drain_freelist(struct kmem_cache *cache, 2254 struct kmem_cache_node *n, int tofree) 2255 { 2256 struct list_head *p; 2257 int nr_freed; 2258 struct page *page; 2259 2260 nr_freed = 0; 2261 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2262 2263 spin_lock_irq(&n->list_lock); 2264 p = n->slabs_free.prev; 2265 if (p == &n->slabs_free) { 2266 spin_unlock_irq(&n->list_lock); 2267 goto out; 2268 } 2269 2270 page = list_entry(p, struct page, lru); 2271 list_del(&page->lru); 2272 n->free_slabs--; 2273 n->total_slabs--; 2274 /* 2275 * Safe to drop the lock. The slab is no longer linked 2276 * to the cache. 2277 */ 2278 n->free_objects -= cache->num; 2279 spin_unlock_irq(&n->list_lock); 2280 slab_destroy(cache, page); 2281 nr_freed++; 2282 } 2283 out: 2284 return nr_freed; 2285 } 2286 2287 bool __kmem_cache_empty(struct kmem_cache *s) 2288 { 2289 int node; 2290 struct kmem_cache_node *n; 2291 2292 for_each_kmem_cache_node(s, node, n) 2293 if (!list_empty(&n->slabs_full) || 2294 !list_empty(&n->slabs_partial)) 2295 return false; 2296 return true; 2297 } 2298 2299 int __kmem_cache_shrink(struct kmem_cache *cachep) 2300 { 2301 int ret = 0; 2302 int node; 2303 struct kmem_cache_node *n; 2304 2305 drain_cpu_caches(cachep); 2306 2307 check_irq_on(); 2308 for_each_kmem_cache_node(cachep, node, n) { 2309 drain_freelist(cachep, n, INT_MAX); 2310 2311 ret += !list_empty(&n->slabs_full) || 2312 !list_empty(&n->slabs_partial); 2313 } 2314 return (ret ? 1 : 0); 2315 } 2316 2317 #ifdef CONFIG_MEMCG 2318 void __kmemcg_cache_deactivate(struct kmem_cache *cachep) 2319 { 2320 __kmem_cache_shrink(cachep); 2321 } 2322 #endif 2323 2324 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2325 { 2326 return __kmem_cache_shrink(cachep); 2327 } 2328 2329 void __kmem_cache_release(struct kmem_cache *cachep) 2330 { 2331 int i; 2332 struct kmem_cache_node *n; 2333 2334 cache_random_seq_destroy(cachep); 2335 2336 free_percpu(cachep->cpu_cache); 2337 2338 /* NUMA: free the node structures */ 2339 for_each_kmem_cache_node(cachep, i, n) { 2340 kfree(n->shared); 2341 free_alien_cache(n->alien); 2342 kfree(n); 2343 cachep->node[i] = NULL; 2344 } 2345 } 2346 2347 /* 2348 * Get the memory for a slab management obj. 2349 * 2350 * For a slab cache when the slab descriptor is off-slab, the 2351 * slab descriptor can't come from the same cache which is being created, 2352 * Because if it is the case, that means we defer the creation of 2353 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2354 * And we eventually call down to __kmem_cache_create(), which 2355 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2356 * This is a "chicken-and-egg" problem. 2357 * 2358 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2359 * which are all initialized during kmem_cache_init(). 2360 */ 2361 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2362 struct page *page, int colour_off, 2363 gfp_t local_flags, int nodeid) 2364 { 2365 void *freelist; 2366 void *addr = page_address(page); 2367 2368 page->s_mem = addr + colour_off; 2369 page->active = 0; 2370 2371 if (OBJFREELIST_SLAB(cachep)) 2372 freelist = NULL; 2373 else if (OFF_SLAB(cachep)) { 2374 /* Slab management obj is off-slab. */ 2375 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2376 local_flags, nodeid); 2377 freelist = kasan_reset_tag(freelist); 2378 if (!freelist) 2379 return NULL; 2380 } else { 2381 /* We will use last bytes at the slab for freelist */ 2382 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2383 cachep->freelist_size; 2384 } 2385 2386 return freelist; 2387 } 2388 2389 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2390 { 2391 return ((freelist_idx_t *)page->freelist)[idx]; 2392 } 2393 2394 static inline void set_free_obj(struct page *page, 2395 unsigned int idx, freelist_idx_t val) 2396 { 2397 ((freelist_idx_t *)(page->freelist))[idx] = val; 2398 } 2399 2400 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2401 { 2402 #if DEBUG 2403 int i; 2404 2405 for (i = 0; i < cachep->num; i++) { 2406 void *objp = index_to_obj(cachep, page, i); 2407 2408 if (cachep->flags & SLAB_STORE_USER) 2409 *dbg_userword(cachep, objp) = NULL; 2410 2411 if (cachep->flags & SLAB_RED_ZONE) { 2412 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2413 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2414 } 2415 /* 2416 * Constructors are not allowed to allocate memory from the same 2417 * cache which they are a constructor for. Otherwise, deadlock. 2418 * They must also be threaded. 2419 */ 2420 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2421 kasan_unpoison_object_data(cachep, 2422 objp + obj_offset(cachep)); 2423 cachep->ctor(objp + obj_offset(cachep)); 2424 kasan_poison_object_data( 2425 cachep, objp + obj_offset(cachep)); 2426 } 2427 2428 if (cachep->flags & SLAB_RED_ZONE) { 2429 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2430 slab_error(cachep, "constructor overwrote the end of an object"); 2431 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2432 slab_error(cachep, "constructor overwrote the start of an object"); 2433 } 2434 /* need to poison the objs? */ 2435 if (cachep->flags & SLAB_POISON) { 2436 poison_obj(cachep, objp, POISON_FREE); 2437 slab_kernel_map(cachep, objp, 0, 0); 2438 } 2439 } 2440 #endif 2441 } 2442 2443 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2444 /* Hold information during a freelist initialization */ 2445 union freelist_init_state { 2446 struct { 2447 unsigned int pos; 2448 unsigned int *list; 2449 unsigned int count; 2450 }; 2451 struct rnd_state rnd_state; 2452 }; 2453 2454 /* 2455 * Initialize the state based on the randomization methode available. 2456 * return true if the pre-computed list is available, false otherwize. 2457 */ 2458 static bool freelist_state_initialize(union freelist_init_state *state, 2459 struct kmem_cache *cachep, 2460 unsigned int count) 2461 { 2462 bool ret; 2463 unsigned int rand; 2464 2465 /* Use best entropy available to define a random shift */ 2466 rand = get_random_int(); 2467 2468 /* Use a random state if the pre-computed list is not available */ 2469 if (!cachep->random_seq) { 2470 prandom_seed_state(&state->rnd_state, rand); 2471 ret = false; 2472 } else { 2473 state->list = cachep->random_seq; 2474 state->count = count; 2475 state->pos = rand % count; 2476 ret = true; 2477 } 2478 return ret; 2479 } 2480 2481 /* Get the next entry on the list and randomize it using a random shift */ 2482 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2483 { 2484 if (state->pos >= state->count) 2485 state->pos = 0; 2486 return state->list[state->pos++]; 2487 } 2488 2489 /* Swap two freelist entries */ 2490 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2491 { 2492 swap(((freelist_idx_t *)page->freelist)[a], 2493 ((freelist_idx_t *)page->freelist)[b]); 2494 } 2495 2496 /* 2497 * Shuffle the freelist initialization state based on pre-computed lists. 2498 * return true if the list was successfully shuffled, false otherwise. 2499 */ 2500 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2501 { 2502 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2503 union freelist_init_state state; 2504 bool precomputed; 2505 2506 if (count < 2) 2507 return false; 2508 2509 precomputed = freelist_state_initialize(&state, cachep, count); 2510 2511 /* Take a random entry as the objfreelist */ 2512 if (OBJFREELIST_SLAB(cachep)) { 2513 if (!precomputed) 2514 objfreelist = count - 1; 2515 else 2516 objfreelist = next_random_slot(&state); 2517 page->freelist = index_to_obj(cachep, page, objfreelist) + 2518 obj_offset(cachep); 2519 count--; 2520 } 2521 2522 /* 2523 * On early boot, generate the list dynamically. 2524 * Later use a pre-computed list for speed. 2525 */ 2526 if (!precomputed) { 2527 for (i = 0; i < count; i++) 2528 set_free_obj(page, i, i); 2529 2530 /* Fisher-Yates shuffle */ 2531 for (i = count - 1; i > 0; i--) { 2532 rand = prandom_u32_state(&state.rnd_state); 2533 rand %= (i + 1); 2534 swap_free_obj(page, i, rand); 2535 } 2536 } else { 2537 for (i = 0; i < count; i++) 2538 set_free_obj(page, i, next_random_slot(&state)); 2539 } 2540 2541 if (OBJFREELIST_SLAB(cachep)) 2542 set_free_obj(page, cachep->num - 1, objfreelist); 2543 2544 return true; 2545 } 2546 #else 2547 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2548 struct page *page) 2549 { 2550 return false; 2551 } 2552 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2553 2554 static void cache_init_objs(struct kmem_cache *cachep, 2555 struct page *page) 2556 { 2557 int i; 2558 void *objp; 2559 bool shuffled; 2560 2561 cache_init_objs_debug(cachep, page); 2562 2563 /* Try to randomize the freelist if enabled */ 2564 shuffled = shuffle_freelist(cachep, page); 2565 2566 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2567 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2568 obj_offset(cachep); 2569 } 2570 2571 for (i = 0; i < cachep->num; i++) { 2572 objp = index_to_obj(cachep, page, i); 2573 objp = kasan_init_slab_obj(cachep, objp); 2574 2575 /* constructor could break poison info */ 2576 if (DEBUG == 0 && cachep->ctor) { 2577 kasan_unpoison_object_data(cachep, objp); 2578 cachep->ctor(objp); 2579 kasan_poison_object_data(cachep, objp); 2580 } 2581 2582 if (!shuffled) 2583 set_free_obj(page, i, i); 2584 } 2585 } 2586 2587 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2588 { 2589 void *objp; 2590 2591 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2592 page->active++; 2593 2594 #if DEBUG 2595 if (cachep->flags & SLAB_STORE_USER) 2596 set_store_user_dirty(cachep); 2597 #endif 2598 2599 return objp; 2600 } 2601 2602 static void slab_put_obj(struct kmem_cache *cachep, 2603 struct page *page, void *objp) 2604 { 2605 unsigned int objnr = obj_to_index(cachep, page, objp); 2606 #if DEBUG 2607 unsigned int i; 2608 2609 /* Verify double free bug */ 2610 for (i = page->active; i < cachep->num; i++) { 2611 if (get_free_obj(page, i) == objnr) { 2612 pr_err("slab: double free detected in cache '%s', objp %px\n", 2613 cachep->name, objp); 2614 BUG(); 2615 } 2616 } 2617 #endif 2618 page->active--; 2619 if (!page->freelist) 2620 page->freelist = objp + obj_offset(cachep); 2621 2622 set_free_obj(page, page->active, objnr); 2623 } 2624 2625 /* 2626 * Map pages beginning at addr to the given cache and slab. This is required 2627 * for the slab allocator to be able to lookup the cache and slab of a 2628 * virtual address for kfree, ksize, and slab debugging. 2629 */ 2630 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2631 void *freelist) 2632 { 2633 page->slab_cache = cache; 2634 page->freelist = freelist; 2635 } 2636 2637 /* 2638 * Grow (by 1) the number of slabs within a cache. This is called by 2639 * kmem_cache_alloc() when there are no active objs left in a cache. 2640 */ 2641 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2642 gfp_t flags, int nodeid) 2643 { 2644 void *freelist; 2645 size_t offset; 2646 gfp_t local_flags; 2647 int page_node; 2648 struct kmem_cache_node *n; 2649 struct page *page; 2650 2651 /* 2652 * Be lazy and only check for valid flags here, keeping it out of the 2653 * critical path in kmem_cache_alloc(). 2654 */ 2655 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2656 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2657 flags &= ~GFP_SLAB_BUG_MASK; 2658 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2659 invalid_mask, &invalid_mask, flags, &flags); 2660 dump_stack(); 2661 } 2662 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2663 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2664 2665 check_irq_off(); 2666 if (gfpflags_allow_blocking(local_flags)) 2667 local_irq_enable(); 2668 2669 /* 2670 * Get mem for the objs. Attempt to allocate a physical page from 2671 * 'nodeid'. 2672 */ 2673 page = kmem_getpages(cachep, local_flags, nodeid); 2674 if (!page) 2675 goto failed; 2676 2677 page_node = page_to_nid(page); 2678 n = get_node(cachep, page_node); 2679 2680 /* Get colour for the slab, and cal the next value. */ 2681 n->colour_next++; 2682 if (n->colour_next >= cachep->colour) 2683 n->colour_next = 0; 2684 2685 offset = n->colour_next; 2686 if (offset >= cachep->colour) 2687 offset = 0; 2688 2689 offset *= cachep->colour_off; 2690 2691 /* 2692 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2693 * page_address() in the latter returns a non-tagged pointer, 2694 * as it should be for slab pages. 2695 */ 2696 kasan_poison_slab(page); 2697 2698 /* Get slab management. */ 2699 freelist = alloc_slabmgmt(cachep, page, offset, 2700 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2701 if (OFF_SLAB(cachep) && !freelist) 2702 goto opps1; 2703 2704 slab_map_pages(cachep, page, freelist); 2705 2706 cache_init_objs(cachep, page); 2707 2708 if (gfpflags_allow_blocking(local_flags)) 2709 local_irq_disable(); 2710 2711 return page; 2712 2713 opps1: 2714 kmem_freepages(cachep, page); 2715 failed: 2716 if (gfpflags_allow_blocking(local_flags)) 2717 local_irq_disable(); 2718 return NULL; 2719 } 2720 2721 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2722 { 2723 struct kmem_cache_node *n; 2724 void *list = NULL; 2725 2726 check_irq_off(); 2727 2728 if (!page) 2729 return; 2730 2731 INIT_LIST_HEAD(&page->lru); 2732 n = get_node(cachep, page_to_nid(page)); 2733 2734 spin_lock(&n->list_lock); 2735 n->total_slabs++; 2736 if (!page->active) { 2737 list_add_tail(&page->lru, &(n->slabs_free)); 2738 n->free_slabs++; 2739 } else 2740 fixup_slab_list(cachep, n, page, &list); 2741 2742 STATS_INC_GROWN(cachep); 2743 n->free_objects += cachep->num - page->active; 2744 spin_unlock(&n->list_lock); 2745 2746 fixup_objfreelist_debug(cachep, &list); 2747 } 2748 2749 #if DEBUG 2750 2751 /* 2752 * Perform extra freeing checks: 2753 * - detect bad pointers. 2754 * - POISON/RED_ZONE checking 2755 */ 2756 static void kfree_debugcheck(const void *objp) 2757 { 2758 if (!virt_addr_valid(objp)) { 2759 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2760 (unsigned long)objp); 2761 BUG(); 2762 } 2763 } 2764 2765 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2766 { 2767 unsigned long long redzone1, redzone2; 2768 2769 redzone1 = *dbg_redzone1(cache, obj); 2770 redzone2 = *dbg_redzone2(cache, obj); 2771 2772 /* 2773 * Redzone is ok. 2774 */ 2775 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2776 return; 2777 2778 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2779 slab_error(cache, "double free detected"); 2780 else 2781 slab_error(cache, "memory outside object was overwritten"); 2782 2783 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2784 obj, redzone1, redzone2); 2785 } 2786 2787 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2788 unsigned long caller) 2789 { 2790 unsigned int objnr; 2791 struct page *page; 2792 2793 BUG_ON(virt_to_cache(objp) != cachep); 2794 2795 objp -= obj_offset(cachep); 2796 kfree_debugcheck(objp); 2797 page = virt_to_head_page(objp); 2798 2799 if (cachep->flags & SLAB_RED_ZONE) { 2800 verify_redzone_free(cachep, objp); 2801 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2802 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2803 } 2804 if (cachep->flags & SLAB_STORE_USER) { 2805 set_store_user_dirty(cachep); 2806 *dbg_userword(cachep, objp) = (void *)caller; 2807 } 2808 2809 objnr = obj_to_index(cachep, page, objp); 2810 2811 BUG_ON(objnr >= cachep->num); 2812 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2813 2814 if (cachep->flags & SLAB_POISON) { 2815 poison_obj(cachep, objp, POISON_FREE); 2816 slab_kernel_map(cachep, objp, 0, caller); 2817 } 2818 return objp; 2819 } 2820 2821 #else 2822 #define kfree_debugcheck(x) do { } while(0) 2823 #define cache_free_debugcheck(x,objp,z) (objp) 2824 #endif 2825 2826 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2827 void **list) 2828 { 2829 #if DEBUG 2830 void *next = *list; 2831 void *objp; 2832 2833 while (next) { 2834 objp = next - obj_offset(cachep); 2835 next = *(void **)next; 2836 poison_obj(cachep, objp, POISON_FREE); 2837 } 2838 #endif 2839 } 2840 2841 static inline void fixup_slab_list(struct kmem_cache *cachep, 2842 struct kmem_cache_node *n, struct page *page, 2843 void **list) 2844 { 2845 /* move slabp to correct slabp list: */ 2846 list_del(&page->lru); 2847 if (page->active == cachep->num) { 2848 list_add(&page->lru, &n->slabs_full); 2849 if (OBJFREELIST_SLAB(cachep)) { 2850 #if DEBUG 2851 /* Poisoning will be done without holding the lock */ 2852 if (cachep->flags & SLAB_POISON) { 2853 void **objp = page->freelist; 2854 2855 *objp = *list; 2856 *list = objp; 2857 } 2858 #endif 2859 page->freelist = NULL; 2860 } 2861 } else 2862 list_add(&page->lru, &n->slabs_partial); 2863 } 2864 2865 /* Try to find non-pfmemalloc slab if needed */ 2866 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2867 struct page *page, bool pfmemalloc) 2868 { 2869 if (!page) 2870 return NULL; 2871 2872 if (pfmemalloc) 2873 return page; 2874 2875 if (!PageSlabPfmemalloc(page)) 2876 return page; 2877 2878 /* No need to keep pfmemalloc slab if we have enough free objects */ 2879 if (n->free_objects > n->free_limit) { 2880 ClearPageSlabPfmemalloc(page); 2881 return page; 2882 } 2883 2884 /* Move pfmemalloc slab to the end of list to speed up next search */ 2885 list_del(&page->lru); 2886 if (!page->active) { 2887 list_add_tail(&page->lru, &n->slabs_free); 2888 n->free_slabs++; 2889 } else 2890 list_add_tail(&page->lru, &n->slabs_partial); 2891 2892 list_for_each_entry(page, &n->slabs_partial, lru) { 2893 if (!PageSlabPfmemalloc(page)) 2894 return page; 2895 } 2896 2897 n->free_touched = 1; 2898 list_for_each_entry(page, &n->slabs_free, lru) { 2899 if (!PageSlabPfmemalloc(page)) { 2900 n->free_slabs--; 2901 return page; 2902 } 2903 } 2904 2905 return NULL; 2906 } 2907 2908 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2909 { 2910 struct page *page; 2911 2912 assert_spin_locked(&n->list_lock); 2913 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru); 2914 if (!page) { 2915 n->free_touched = 1; 2916 page = list_first_entry_or_null(&n->slabs_free, struct page, 2917 lru); 2918 if (page) 2919 n->free_slabs--; 2920 } 2921 2922 if (sk_memalloc_socks()) 2923 page = get_valid_first_slab(n, page, pfmemalloc); 2924 2925 return page; 2926 } 2927 2928 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2929 struct kmem_cache_node *n, gfp_t flags) 2930 { 2931 struct page *page; 2932 void *obj; 2933 void *list = NULL; 2934 2935 if (!gfp_pfmemalloc_allowed(flags)) 2936 return NULL; 2937 2938 spin_lock(&n->list_lock); 2939 page = get_first_slab(n, true); 2940 if (!page) { 2941 spin_unlock(&n->list_lock); 2942 return NULL; 2943 } 2944 2945 obj = slab_get_obj(cachep, page); 2946 n->free_objects--; 2947 2948 fixup_slab_list(cachep, n, page, &list); 2949 2950 spin_unlock(&n->list_lock); 2951 fixup_objfreelist_debug(cachep, &list); 2952 2953 return obj; 2954 } 2955 2956 /* 2957 * Slab list should be fixed up by fixup_slab_list() for existing slab 2958 * or cache_grow_end() for new slab 2959 */ 2960 static __always_inline int alloc_block(struct kmem_cache *cachep, 2961 struct array_cache *ac, struct page *page, int batchcount) 2962 { 2963 /* 2964 * There must be at least one object available for 2965 * allocation. 2966 */ 2967 BUG_ON(page->active >= cachep->num); 2968 2969 while (page->active < cachep->num && batchcount--) { 2970 STATS_INC_ALLOCED(cachep); 2971 STATS_INC_ACTIVE(cachep); 2972 STATS_SET_HIGH(cachep); 2973 2974 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2975 } 2976 2977 return batchcount; 2978 } 2979 2980 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2981 { 2982 int batchcount; 2983 struct kmem_cache_node *n; 2984 struct array_cache *ac, *shared; 2985 int node; 2986 void *list = NULL; 2987 struct page *page; 2988 2989 check_irq_off(); 2990 node = numa_mem_id(); 2991 2992 ac = cpu_cache_get(cachep); 2993 batchcount = ac->batchcount; 2994 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2995 /* 2996 * If there was little recent activity on this cache, then 2997 * perform only a partial refill. Otherwise we could generate 2998 * refill bouncing. 2999 */ 3000 batchcount = BATCHREFILL_LIMIT; 3001 } 3002 n = get_node(cachep, node); 3003 3004 BUG_ON(ac->avail > 0 || !n); 3005 shared = READ_ONCE(n->shared); 3006 if (!n->free_objects && (!shared || !shared->avail)) 3007 goto direct_grow; 3008 3009 spin_lock(&n->list_lock); 3010 shared = READ_ONCE(n->shared); 3011 3012 /* See if we can refill from the shared array */ 3013 if (shared && transfer_objects(ac, shared, batchcount)) { 3014 shared->touched = 1; 3015 goto alloc_done; 3016 } 3017 3018 while (batchcount > 0) { 3019 /* Get slab alloc is to come from. */ 3020 page = get_first_slab(n, false); 3021 if (!page) 3022 goto must_grow; 3023 3024 check_spinlock_acquired(cachep); 3025 3026 batchcount = alloc_block(cachep, ac, page, batchcount); 3027 fixup_slab_list(cachep, n, page, &list); 3028 } 3029 3030 must_grow: 3031 n->free_objects -= ac->avail; 3032 alloc_done: 3033 spin_unlock(&n->list_lock); 3034 fixup_objfreelist_debug(cachep, &list); 3035 3036 direct_grow: 3037 if (unlikely(!ac->avail)) { 3038 /* Check if we can use obj in pfmemalloc slab */ 3039 if (sk_memalloc_socks()) { 3040 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 3041 3042 if (obj) 3043 return obj; 3044 } 3045 3046 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 3047 3048 /* 3049 * cache_grow_begin() can reenable interrupts, 3050 * then ac could change. 3051 */ 3052 ac = cpu_cache_get(cachep); 3053 if (!ac->avail && page) 3054 alloc_block(cachep, ac, page, batchcount); 3055 cache_grow_end(cachep, page); 3056 3057 if (!ac->avail) 3058 return NULL; 3059 } 3060 ac->touched = 1; 3061 3062 return ac->entry[--ac->avail]; 3063 } 3064 3065 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3066 gfp_t flags) 3067 { 3068 might_sleep_if(gfpflags_allow_blocking(flags)); 3069 } 3070 3071 #if DEBUG 3072 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3073 gfp_t flags, void *objp, unsigned long caller) 3074 { 3075 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 3076 if (!objp) 3077 return objp; 3078 if (cachep->flags & SLAB_POISON) { 3079 check_poison_obj(cachep, objp); 3080 slab_kernel_map(cachep, objp, 1, 0); 3081 poison_obj(cachep, objp, POISON_INUSE); 3082 } 3083 if (cachep->flags & SLAB_STORE_USER) 3084 *dbg_userword(cachep, objp) = (void *)caller; 3085 3086 if (cachep->flags & SLAB_RED_ZONE) { 3087 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3088 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3089 slab_error(cachep, "double free, or memory outside object was overwritten"); 3090 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 3091 objp, *dbg_redzone1(cachep, objp), 3092 *dbg_redzone2(cachep, objp)); 3093 } 3094 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3095 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3096 } 3097 3098 objp += obj_offset(cachep); 3099 if (cachep->ctor && cachep->flags & SLAB_POISON) 3100 cachep->ctor(objp); 3101 if (ARCH_SLAB_MINALIGN && 3102 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3103 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3104 objp, (int)ARCH_SLAB_MINALIGN); 3105 } 3106 return objp; 3107 } 3108 #else 3109 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3110 #endif 3111 3112 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3113 { 3114 void *objp; 3115 struct array_cache *ac; 3116 3117 check_irq_off(); 3118 3119 ac = cpu_cache_get(cachep); 3120 if (likely(ac->avail)) { 3121 ac->touched = 1; 3122 objp = ac->entry[--ac->avail]; 3123 3124 STATS_INC_ALLOCHIT(cachep); 3125 goto out; 3126 } 3127 3128 STATS_INC_ALLOCMISS(cachep); 3129 objp = cache_alloc_refill(cachep, flags); 3130 /* 3131 * the 'ac' may be updated by cache_alloc_refill(), 3132 * and kmemleak_erase() requires its correct value. 3133 */ 3134 ac = cpu_cache_get(cachep); 3135 3136 out: 3137 /* 3138 * To avoid a false negative, if an object that is in one of the 3139 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3140 * treat the array pointers as a reference to the object. 3141 */ 3142 if (objp) 3143 kmemleak_erase(&ac->entry[ac->avail]); 3144 return objp; 3145 } 3146 3147 #ifdef CONFIG_NUMA 3148 /* 3149 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3150 * 3151 * If we are in_interrupt, then process context, including cpusets and 3152 * mempolicy, may not apply and should not be used for allocation policy. 3153 */ 3154 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3155 { 3156 int nid_alloc, nid_here; 3157 3158 if (in_interrupt() || (flags & __GFP_THISNODE)) 3159 return NULL; 3160 nid_alloc = nid_here = numa_mem_id(); 3161 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3162 nid_alloc = cpuset_slab_spread_node(); 3163 else if (current->mempolicy) 3164 nid_alloc = mempolicy_slab_node(); 3165 if (nid_alloc != nid_here) 3166 return ____cache_alloc_node(cachep, flags, nid_alloc); 3167 return NULL; 3168 } 3169 3170 /* 3171 * Fallback function if there was no memory available and no objects on a 3172 * certain node and fall back is permitted. First we scan all the 3173 * available node for available objects. If that fails then we 3174 * perform an allocation without specifying a node. This allows the page 3175 * allocator to do its reclaim / fallback magic. We then insert the 3176 * slab into the proper nodelist and then allocate from it. 3177 */ 3178 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3179 { 3180 struct zonelist *zonelist; 3181 struct zoneref *z; 3182 struct zone *zone; 3183 enum zone_type high_zoneidx = gfp_zone(flags); 3184 void *obj = NULL; 3185 struct page *page; 3186 int nid; 3187 unsigned int cpuset_mems_cookie; 3188 3189 if (flags & __GFP_THISNODE) 3190 return NULL; 3191 3192 retry_cpuset: 3193 cpuset_mems_cookie = read_mems_allowed_begin(); 3194 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3195 3196 retry: 3197 /* 3198 * Look through allowed nodes for objects available 3199 * from existing per node queues. 3200 */ 3201 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3202 nid = zone_to_nid(zone); 3203 3204 if (cpuset_zone_allowed(zone, flags) && 3205 get_node(cache, nid) && 3206 get_node(cache, nid)->free_objects) { 3207 obj = ____cache_alloc_node(cache, 3208 gfp_exact_node(flags), nid); 3209 if (obj) 3210 break; 3211 } 3212 } 3213 3214 if (!obj) { 3215 /* 3216 * This allocation will be performed within the constraints 3217 * of the current cpuset / memory policy requirements. 3218 * We may trigger various forms of reclaim on the allowed 3219 * set and go into memory reserves if necessary. 3220 */ 3221 page = cache_grow_begin(cache, flags, numa_mem_id()); 3222 cache_grow_end(cache, page); 3223 if (page) { 3224 nid = page_to_nid(page); 3225 obj = ____cache_alloc_node(cache, 3226 gfp_exact_node(flags), nid); 3227 3228 /* 3229 * Another processor may allocate the objects in 3230 * the slab since we are not holding any locks. 3231 */ 3232 if (!obj) 3233 goto retry; 3234 } 3235 } 3236 3237 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3238 goto retry_cpuset; 3239 return obj; 3240 } 3241 3242 /* 3243 * A interface to enable slab creation on nodeid 3244 */ 3245 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3246 int nodeid) 3247 { 3248 struct page *page; 3249 struct kmem_cache_node *n; 3250 void *obj = NULL; 3251 void *list = NULL; 3252 3253 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3254 n = get_node(cachep, nodeid); 3255 BUG_ON(!n); 3256 3257 check_irq_off(); 3258 spin_lock(&n->list_lock); 3259 page = get_first_slab(n, false); 3260 if (!page) 3261 goto must_grow; 3262 3263 check_spinlock_acquired_node(cachep, nodeid); 3264 3265 STATS_INC_NODEALLOCS(cachep); 3266 STATS_INC_ACTIVE(cachep); 3267 STATS_SET_HIGH(cachep); 3268 3269 BUG_ON(page->active == cachep->num); 3270 3271 obj = slab_get_obj(cachep, page); 3272 n->free_objects--; 3273 3274 fixup_slab_list(cachep, n, page, &list); 3275 3276 spin_unlock(&n->list_lock); 3277 fixup_objfreelist_debug(cachep, &list); 3278 return obj; 3279 3280 must_grow: 3281 spin_unlock(&n->list_lock); 3282 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3283 if (page) { 3284 /* This slab isn't counted yet so don't update free_objects */ 3285 obj = slab_get_obj(cachep, page); 3286 } 3287 cache_grow_end(cachep, page); 3288 3289 return obj ? obj : fallback_alloc(cachep, flags); 3290 } 3291 3292 static __always_inline void * 3293 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3294 unsigned long caller) 3295 { 3296 unsigned long save_flags; 3297 void *ptr; 3298 int slab_node = numa_mem_id(); 3299 3300 flags &= gfp_allowed_mask; 3301 cachep = slab_pre_alloc_hook(cachep, flags); 3302 if (unlikely(!cachep)) 3303 return NULL; 3304 3305 cache_alloc_debugcheck_before(cachep, flags); 3306 local_irq_save(save_flags); 3307 3308 if (nodeid == NUMA_NO_NODE) 3309 nodeid = slab_node; 3310 3311 if (unlikely(!get_node(cachep, nodeid))) { 3312 /* Node not bootstrapped yet */ 3313 ptr = fallback_alloc(cachep, flags); 3314 goto out; 3315 } 3316 3317 if (nodeid == slab_node) { 3318 /* 3319 * Use the locally cached objects if possible. 3320 * However ____cache_alloc does not allow fallback 3321 * to other nodes. It may fail while we still have 3322 * objects on other nodes available. 3323 */ 3324 ptr = ____cache_alloc(cachep, flags); 3325 if (ptr) 3326 goto out; 3327 } 3328 /* ___cache_alloc_node can fall back to other nodes */ 3329 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3330 out: 3331 local_irq_restore(save_flags); 3332 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3333 3334 if (unlikely(flags & __GFP_ZERO) && ptr) 3335 memset(ptr, 0, cachep->object_size); 3336 3337 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3338 return ptr; 3339 } 3340 3341 static __always_inline void * 3342 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3343 { 3344 void *objp; 3345 3346 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3347 objp = alternate_node_alloc(cache, flags); 3348 if (objp) 3349 goto out; 3350 } 3351 objp = ____cache_alloc(cache, flags); 3352 3353 /* 3354 * We may just have run out of memory on the local node. 3355 * ____cache_alloc_node() knows how to locate memory on other nodes 3356 */ 3357 if (!objp) 3358 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3359 3360 out: 3361 return objp; 3362 } 3363 #else 3364 3365 static __always_inline void * 3366 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3367 { 3368 return ____cache_alloc(cachep, flags); 3369 } 3370 3371 #endif /* CONFIG_NUMA */ 3372 3373 static __always_inline void * 3374 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3375 { 3376 unsigned long save_flags; 3377 void *objp; 3378 3379 flags &= gfp_allowed_mask; 3380 cachep = slab_pre_alloc_hook(cachep, flags); 3381 if (unlikely(!cachep)) 3382 return NULL; 3383 3384 cache_alloc_debugcheck_before(cachep, flags); 3385 local_irq_save(save_flags); 3386 objp = __do_cache_alloc(cachep, flags); 3387 local_irq_restore(save_flags); 3388 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3389 prefetchw(objp); 3390 3391 if (unlikely(flags & __GFP_ZERO) && objp) 3392 memset(objp, 0, cachep->object_size); 3393 3394 slab_post_alloc_hook(cachep, flags, 1, &objp); 3395 return objp; 3396 } 3397 3398 /* 3399 * Caller needs to acquire correct kmem_cache_node's list_lock 3400 * @list: List of detached free slabs should be freed by caller 3401 */ 3402 static void free_block(struct kmem_cache *cachep, void **objpp, 3403 int nr_objects, int node, struct list_head *list) 3404 { 3405 int i; 3406 struct kmem_cache_node *n = get_node(cachep, node); 3407 struct page *page; 3408 3409 n->free_objects += nr_objects; 3410 3411 for (i = 0; i < nr_objects; i++) { 3412 void *objp; 3413 struct page *page; 3414 3415 objp = objpp[i]; 3416 3417 page = virt_to_head_page(objp); 3418 list_del(&page->lru); 3419 check_spinlock_acquired_node(cachep, node); 3420 slab_put_obj(cachep, page, objp); 3421 STATS_DEC_ACTIVE(cachep); 3422 3423 /* fixup slab chains */ 3424 if (page->active == 0) { 3425 list_add(&page->lru, &n->slabs_free); 3426 n->free_slabs++; 3427 } else { 3428 /* Unconditionally move a slab to the end of the 3429 * partial list on free - maximum time for the 3430 * other objects to be freed, too. 3431 */ 3432 list_add_tail(&page->lru, &n->slabs_partial); 3433 } 3434 } 3435 3436 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3437 n->free_objects -= cachep->num; 3438 3439 page = list_last_entry(&n->slabs_free, struct page, lru); 3440 list_move(&page->lru, list); 3441 n->free_slabs--; 3442 n->total_slabs--; 3443 } 3444 } 3445 3446 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3447 { 3448 int batchcount; 3449 struct kmem_cache_node *n; 3450 int node = numa_mem_id(); 3451 LIST_HEAD(list); 3452 3453 batchcount = ac->batchcount; 3454 3455 check_irq_off(); 3456 n = get_node(cachep, node); 3457 spin_lock(&n->list_lock); 3458 if (n->shared) { 3459 struct array_cache *shared_array = n->shared; 3460 int max = shared_array->limit - shared_array->avail; 3461 if (max) { 3462 if (batchcount > max) 3463 batchcount = max; 3464 memcpy(&(shared_array->entry[shared_array->avail]), 3465 ac->entry, sizeof(void *) * batchcount); 3466 shared_array->avail += batchcount; 3467 goto free_done; 3468 } 3469 } 3470 3471 free_block(cachep, ac->entry, batchcount, node, &list); 3472 free_done: 3473 #if STATS 3474 { 3475 int i = 0; 3476 struct page *page; 3477 3478 list_for_each_entry(page, &n->slabs_free, lru) { 3479 BUG_ON(page->active); 3480 3481 i++; 3482 } 3483 STATS_SET_FREEABLE(cachep, i); 3484 } 3485 #endif 3486 spin_unlock(&n->list_lock); 3487 slabs_destroy(cachep, &list); 3488 ac->avail -= batchcount; 3489 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3490 } 3491 3492 /* 3493 * Release an obj back to its cache. If the obj has a constructed state, it must 3494 * be in this state _before_ it is released. Called with disabled ints. 3495 */ 3496 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3497 unsigned long caller) 3498 { 3499 /* Put the object into the quarantine, don't touch it for now. */ 3500 if (kasan_slab_free(cachep, objp, _RET_IP_)) 3501 return; 3502 3503 ___cache_free(cachep, objp, caller); 3504 } 3505 3506 void ___cache_free(struct kmem_cache *cachep, void *objp, 3507 unsigned long caller) 3508 { 3509 struct array_cache *ac = cpu_cache_get(cachep); 3510 3511 check_irq_off(); 3512 kmemleak_free_recursive(objp, cachep->flags); 3513 objp = cache_free_debugcheck(cachep, objp, caller); 3514 3515 /* 3516 * Skip calling cache_free_alien() when the platform is not numa. 3517 * This will avoid cache misses that happen while accessing slabp (which 3518 * is per page memory reference) to get nodeid. Instead use a global 3519 * variable to skip the call, which is mostly likely to be present in 3520 * the cache. 3521 */ 3522 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3523 return; 3524 3525 if (ac->avail < ac->limit) { 3526 STATS_INC_FREEHIT(cachep); 3527 } else { 3528 STATS_INC_FREEMISS(cachep); 3529 cache_flusharray(cachep, ac); 3530 } 3531 3532 if (sk_memalloc_socks()) { 3533 struct page *page = virt_to_head_page(objp); 3534 3535 if (unlikely(PageSlabPfmemalloc(page))) { 3536 cache_free_pfmemalloc(cachep, page, objp); 3537 return; 3538 } 3539 } 3540 3541 ac->entry[ac->avail++] = objp; 3542 } 3543 3544 /** 3545 * kmem_cache_alloc - Allocate an object 3546 * @cachep: The cache to allocate from. 3547 * @flags: See kmalloc(). 3548 * 3549 * Allocate an object from this cache. The flags are only relevant 3550 * if the cache has no available objects. 3551 * 3552 * Return: pointer to the new object or %NULL in case of error 3553 */ 3554 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3555 { 3556 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3557 3558 trace_kmem_cache_alloc(_RET_IP_, ret, 3559 cachep->object_size, cachep->size, flags); 3560 3561 return ret; 3562 } 3563 EXPORT_SYMBOL(kmem_cache_alloc); 3564 3565 static __always_inline void 3566 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3567 size_t size, void **p, unsigned long caller) 3568 { 3569 size_t i; 3570 3571 for (i = 0; i < size; i++) 3572 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3573 } 3574 3575 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3576 void **p) 3577 { 3578 size_t i; 3579 3580 s = slab_pre_alloc_hook(s, flags); 3581 if (!s) 3582 return 0; 3583 3584 cache_alloc_debugcheck_before(s, flags); 3585 3586 local_irq_disable(); 3587 for (i = 0; i < size; i++) { 3588 void *objp = __do_cache_alloc(s, flags); 3589 3590 if (unlikely(!objp)) 3591 goto error; 3592 p[i] = objp; 3593 } 3594 local_irq_enable(); 3595 3596 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3597 3598 /* Clear memory outside IRQ disabled section */ 3599 if (unlikely(flags & __GFP_ZERO)) 3600 for (i = 0; i < size; i++) 3601 memset(p[i], 0, s->object_size); 3602 3603 slab_post_alloc_hook(s, flags, size, p); 3604 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3605 return size; 3606 error: 3607 local_irq_enable(); 3608 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3609 slab_post_alloc_hook(s, flags, i, p); 3610 __kmem_cache_free_bulk(s, i, p); 3611 return 0; 3612 } 3613 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3614 3615 #ifdef CONFIG_TRACING 3616 void * 3617 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3618 { 3619 void *ret; 3620 3621 ret = slab_alloc(cachep, flags, _RET_IP_); 3622 3623 ret = kasan_kmalloc(cachep, ret, size, flags); 3624 trace_kmalloc(_RET_IP_, ret, 3625 size, cachep->size, flags); 3626 return ret; 3627 } 3628 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3629 #endif 3630 3631 #ifdef CONFIG_NUMA 3632 /** 3633 * kmem_cache_alloc_node - Allocate an object on the specified node 3634 * @cachep: The cache to allocate from. 3635 * @flags: See kmalloc(). 3636 * @nodeid: node number of the target node. 3637 * 3638 * Identical to kmem_cache_alloc but it will allocate memory on the given 3639 * node, which can improve the performance for cpu bound structures. 3640 * 3641 * Fallback to other node is possible if __GFP_THISNODE is not set. 3642 * 3643 * Return: pointer to the new object or %NULL in case of error 3644 */ 3645 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3646 { 3647 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3648 3649 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3650 cachep->object_size, cachep->size, 3651 flags, nodeid); 3652 3653 return ret; 3654 } 3655 EXPORT_SYMBOL(kmem_cache_alloc_node); 3656 3657 #ifdef CONFIG_TRACING 3658 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3659 gfp_t flags, 3660 int nodeid, 3661 size_t size) 3662 { 3663 void *ret; 3664 3665 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3666 3667 ret = kasan_kmalloc(cachep, ret, size, flags); 3668 trace_kmalloc_node(_RET_IP_, ret, 3669 size, cachep->size, 3670 flags, nodeid); 3671 return ret; 3672 } 3673 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3674 #endif 3675 3676 static __always_inline void * 3677 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3678 { 3679 struct kmem_cache *cachep; 3680 void *ret; 3681 3682 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3683 return NULL; 3684 cachep = kmalloc_slab(size, flags); 3685 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3686 return cachep; 3687 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3688 ret = kasan_kmalloc(cachep, ret, size, flags); 3689 3690 return ret; 3691 } 3692 3693 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3694 { 3695 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3696 } 3697 EXPORT_SYMBOL(__kmalloc_node); 3698 3699 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3700 int node, unsigned long caller) 3701 { 3702 return __do_kmalloc_node(size, flags, node, caller); 3703 } 3704 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3705 #endif /* CONFIG_NUMA */ 3706 3707 /** 3708 * __do_kmalloc - allocate memory 3709 * @size: how many bytes of memory are required. 3710 * @flags: the type of memory to allocate (see kmalloc). 3711 * @caller: function caller for debug tracking of the caller 3712 * 3713 * Return: pointer to the allocated memory or %NULL in case of error 3714 */ 3715 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3716 unsigned long caller) 3717 { 3718 struct kmem_cache *cachep; 3719 void *ret; 3720 3721 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3722 return NULL; 3723 cachep = kmalloc_slab(size, flags); 3724 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3725 return cachep; 3726 ret = slab_alloc(cachep, flags, caller); 3727 3728 ret = kasan_kmalloc(cachep, ret, size, flags); 3729 trace_kmalloc(caller, ret, 3730 size, cachep->size, flags); 3731 3732 return ret; 3733 } 3734 3735 void *__kmalloc(size_t size, gfp_t flags) 3736 { 3737 return __do_kmalloc(size, flags, _RET_IP_); 3738 } 3739 EXPORT_SYMBOL(__kmalloc); 3740 3741 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3742 { 3743 return __do_kmalloc(size, flags, caller); 3744 } 3745 EXPORT_SYMBOL(__kmalloc_track_caller); 3746 3747 /** 3748 * kmem_cache_free - Deallocate an object 3749 * @cachep: The cache the allocation was from. 3750 * @objp: The previously allocated object. 3751 * 3752 * Free an object which was previously allocated from this 3753 * cache. 3754 */ 3755 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3756 { 3757 unsigned long flags; 3758 cachep = cache_from_obj(cachep, objp); 3759 if (!cachep) 3760 return; 3761 3762 local_irq_save(flags); 3763 debug_check_no_locks_freed(objp, cachep->object_size); 3764 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3765 debug_check_no_obj_freed(objp, cachep->object_size); 3766 __cache_free(cachep, objp, _RET_IP_); 3767 local_irq_restore(flags); 3768 3769 trace_kmem_cache_free(_RET_IP_, objp); 3770 } 3771 EXPORT_SYMBOL(kmem_cache_free); 3772 3773 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3774 { 3775 struct kmem_cache *s; 3776 size_t i; 3777 3778 local_irq_disable(); 3779 for (i = 0; i < size; i++) { 3780 void *objp = p[i]; 3781 3782 if (!orig_s) /* called via kfree_bulk */ 3783 s = virt_to_cache(objp); 3784 else 3785 s = cache_from_obj(orig_s, objp); 3786 3787 debug_check_no_locks_freed(objp, s->object_size); 3788 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3789 debug_check_no_obj_freed(objp, s->object_size); 3790 3791 __cache_free(s, objp, _RET_IP_); 3792 } 3793 local_irq_enable(); 3794 3795 /* FIXME: add tracing */ 3796 } 3797 EXPORT_SYMBOL(kmem_cache_free_bulk); 3798 3799 /** 3800 * kfree - free previously allocated memory 3801 * @objp: pointer returned by kmalloc. 3802 * 3803 * If @objp is NULL, no operation is performed. 3804 * 3805 * Don't free memory not originally allocated by kmalloc() 3806 * or you will run into trouble. 3807 */ 3808 void kfree(const void *objp) 3809 { 3810 struct kmem_cache *c; 3811 unsigned long flags; 3812 3813 trace_kfree(_RET_IP_, objp); 3814 3815 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3816 return; 3817 local_irq_save(flags); 3818 kfree_debugcheck(objp); 3819 c = virt_to_cache(objp); 3820 debug_check_no_locks_freed(objp, c->object_size); 3821 3822 debug_check_no_obj_freed(objp, c->object_size); 3823 __cache_free(c, (void *)objp, _RET_IP_); 3824 local_irq_restore(flags); 3825 } 3826 EXPORT_SYMBOL(kfree); 3827 3828 /* 3829 * This initializes kmem_cache_node or resizes various caches for all nodes. 3830 */ 3831 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3832 { 3833 int ret; 3834 int node; 3835 struct kmem_cache_node *n; 3836 3837 for_each_online_node(node) { 3838 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3839 if (ret) 3840 goto fail; 3841 3842 } 3843 3844 return 0; 3845 3846 fail: 3847 if (!cachep->list.next) { 3848 /* Cache is not active yet. Roll back what we did */ 3849 node--; 3850 while (node >= 0) { 3851 n = get_node(cachep, node); 3852 if (n) { 3853 kfree(n->shared); 3854 free_alien_cache(n->alien); 3855 kfree(n); 3856 cachep->node[node] = NULL; 3857 } 3858 node--; 3859 } 3860 } 3861 return -ENOMEM; 3862 } 3863 3864 /* Always called with the slab_mutex held */ 3865 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3866 int batchcount, int shared, gfp_t gfp) 3867 { 3868 struct array_cache __percpu *cpu_cache, *prev; 3869 int cpu; 3870 3871 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3872 if (!cpu_cache) 3873 return -ENOMEM; 3874 3875 prev = cachep->cpu_cache; 3876 cachep->cpu_cache = cpu_cache; 3877 /* 3878 * Without a previous cpu_cache there's no need to synchronize remote 3879 * cpus, so skip the IPIs. 3880 */ 3881 if (prev) 3882 kick_all_cpus_sync(); 3883 3884 check_irq_on(); 3885 cachep->batchcount = batchcount; 3886 cachep->limit = limit; 3887 cachep->shared = shared; 3888 3889 if (!prev) 3890 goto setup_node; 3891 3892 for_each_online_cpu(cpu) { 3893 LIST_HEAD(list); 3894 int node; 3895 struct kmem_cache_node *n; 3896 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3897 3898 node = cpu_to_mem(cpu); 3899 n = get_node(cachep, node); 3900 spin_lock_irq(&n->list_lock); 3901 free_block(cachep, ac->entry, ac->avail, node, &list); 3902 spin_unlock_irq(&n->list_lock); 3903 slabs_destroy(cachep, &list); 3904 } 3905 free_percpu(prev); 3906 3907 setup_node: 3908 return setup_kmem_cache_nodes(cachep, gfp); 3909 } 3910 3911 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3912 int batchcount, int shared, gfp_t gfp) 3913 { 3914 int ret; 3915 struct kmem_cache *c; 3916 3917 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3918 3919 if (slab_state < FULL) 3920 return ret; 3921 3922 if ((ret < 0) || !is_root_cache(cachep)) 3923 return ret; 3924 3925 lockdep_assert_held(&slab_mutex); 3926 for_each_memcg_cache(c, cachep) { 3927 /* return value determined by the root cache only */ 3928 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3929 } 3930 3931 return ret; 3932 } 3933 3934 /* Called with slab_mutex held always */ 3935 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3936 { 3937 int err; 3938 int limit = 0; 3939 int shared = 0; 3940 int batchcount = 0; 3941 3942 err = cache_random_seq_create(cachep, cachep->num, gfp); 3943 if (err) 3944 goto end; 3945 3946 if (!is_root_cache(cachep)) { 3947 struct kmem_cache *root = memcg_root_cache(cachep); 3948 limit = root->limit; 3949 shared = root->shared; 3950 batchcount = root->batchcount; 3951 } 3952 3953 if (limit && shared && batchcount) 3954 goto skip_setup; 3955 /* 3956 * The head array serves three purposes: 3957 * - create a LIFO ordering, i.e. return objects that are cache-warm 3958 * - reduce the number of spinlock operations. 3959 * - reduce the number of linked list operations on the slab and 3960 * bufctl chains: array operations are cheaper. 3961 * The numbers are guessed, we should auto-tune as described by 3962 * Bonwick. 3963 */ 3964 if (cachep->size > 131072) 3965 limit = 1; 3966 else if (cachep->size > PAGE_SIZE) 3967 limit = 8; 3968 else if (cachep->size > 1024) 3969 limit = 24; 3970 else if (cachep->size > 256) 3971 limit = 54; 3972 else 3973 limit = 120; 3974 3975 /* 3976 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3977 * allocation behaviour: Most allocs on one cpu, most free operations 3978 * on another cpu. For these cases, an efficient object passing between 3979 * cpus is necessary. This is provided by a shared array. The array 3980 * replaces Bonwick's magazine layer. 3981 * On uniprocessor, it's functionally equivalent (but less efficient) 3982 * to a larger limit. Thus disabled by default. 3983 */ 3984 shared = 0; 3985 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3986 shared = 8; 3987 3988 #if DEBUG 3989 /* 3990 * With debugging enabled, large batchcount lead to excessively long 3991 * periods with disabled local interrupts. Limit the batchcount 3992 */ 3993 if (limit > 32) 3994 limit = 32; 3995 #endif 3996 batchcount = (limit + 1) / 2; 3997 skip_setup: 3998 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3999 end: 4000 if (err) 4001 pr_err("enable_cpucache failed for %s, error %d\n", 4002 cachep->name, -err); 4003 return err; 4004 } 4005 4006 /* 4007 * Drain an array if it contains any elements taking the node lock only if 4008 * necessary. Note that the node listlock also protects the array_cache 4009 * if drain_array() is used on the shared array. 4010 */ 4011 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 4012 struct array_cache *ac, int node) 4013 { 4014 LIST_HEAD(list); 4015 4016 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 4017 check_mutex_acquired(); 4018 4019 if (!ac || !ac->avail) 4020 return; 4021 4022 if (ac->touched) { 4023 ac->touched = 0; 4024 return; 4025 } 4026 4027 spin_lock_irq(&n->list_lock); 4028 drain_array_locked(cachep, ac, node, false, &list); 4029 spin_unlock_irq(&n->list_lock); 4030 4031 slabs_destroy(cachep, &list); 4032 } 4033 4034 /** 4035 * cache_reap - Reclaim memory from caches. 4036 * @w: work descriptor 4037 * 4038 * Called from workqueue/eventd every few seconds. 4039 * Purpose: 4040 * - clear the per-cpu caches for this CPU. 4041 * - return freeable pages to the main free memory pool. 4042 * 4043 * If we cannot acquire the cache chain mutex then just give up - we'll try 4044 * again on the next iteration. 4045 */ 4046 static void cache_reap(struct work_struct *w) 4047 { 4048 struct kmem_cache *searchp; 4049 struct kmem_cache_node *n; 4050 int node = numa_mem_id(); 4051 struct delayed_work *work = to_delayed_work(w); 4052 4053 if (!mutex_trylock(&slab_mutex)) 4054 /* Give up. Setup the next iteration. */ 4055 goto out; 4056 4057 list_for_each_entry(searchp, &slab_caches, list) { 4058 check_irq_on(); 4059 4060 /* 4061 * We only take the node lock if absolutely necessary and we 4062 * have established with reasonable certainty that 4063 * we can do some work if the lock was obtained. 4064 */ 4065 n = get_node(searchp, node); 4066 4067 reap_alien(searchp, n); 4068 4069 drain_array(searchp, n, cpu_cache_get(searchp), node); 4070 4071 /* 4072 * These are racy checks but it does not matter 4073 * if we skip one check or scan twice. 4074 */ 4075 if (time_after(n->next_reap, jiffies)) 4076 goto next; 4077 4078 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4079 4080 drain_array(searchp, n, n->shared, node); 4081 4082 if (n->free_touched) 4083 n->free_touched = 0; 4084 else { 4085 int freed; 4086 4087 freed = drain_freelist(searchp, n, (n->free_limit + 4088 5 * searchp->num - 1) / (5 * searchp->num)); 4089 STATS_ADD_REAPED(searchp, freed); 4090 } 4091 next: 4092 cond_resched(); 4093 } 4094 check_irq_on(); 4095 mutex_unlock(&slab_mutex); 4096 next_reap_node(); 4097 out: 4098 /* Set up the next iteration */ 4099 schedule_delayed_work_on(smp_processor_id(), work, 4100 round_jiffies_relative(REAPTIMEOUT_AC)); 4101 } 4102 4103 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4104 { 4105 unsigned long active_objs, num_objs, active_slabs; 4106 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4107 unsigned long free_slabs = 0; 4108 int node; 4109 struct kmem_cache_node *n; 4110 4111 for_each_kmem_cache_node(cachep, node, n) { 4112 check_irq_on(); 4113 spin_lock_irq(&n->list_lock); 4114 4115 total_slabs += n->total_slabs; 4116 free_slabs += n->free_slabs; 4117 free_objs += n->free_objects; 4118 4119 if (n->shared) 4120 shared_avail += n->shared->avail; 4121 4122 spin_unlock_irq(&n->list_lock); 4123 } 4124 num_objs = total_slabs * cachep->num; 4125 active_slabs = total_slabs - free_slabs; 4126 active_objs = num_objs - free_objs; 4127 4128 sinfo->active_objs = active_objs; 4129 sinfo->num_objs = num_objs; 4130 sinfo->active_slabs = active_slabs; 4131 sinfo->num_slabs = total_slabs; 4132 sinfo->shared_avail = shared_avail; 4133 sinfo->limit = cachep->limit; 4134 sinfo->batchcount = cachep->batchcount; 4135 sinfo->shared = cachep->shared; 4136 sinfo->objects_per_slab = cachep->num; 4137 sinfo->cache_order = cachep->gfporder; 4138 } 4139 4140 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4141 { 4142 #if STATS 4143 { /* node stats */ 4144 unsigned long high = cachep->high_mark; 4145 unsigned long allocs = cachep->num_allocations; 4146 unsigned long grown = cachep->grown; 4147 unsigned long reaped = cachep->reaped; 4148 unsigned long errors = cachep->errors; 4149 unsigned long max_freeable = cachep->max_freeable; 4150 unsigned long node_allocs = cachep->node_allocs; 4151 unsigned long node_frees = cachep->node_frees; 4152 unsigned long overflows = cachep->node_overflow; 4153 4154 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4155 allocs, high, grown, 4156 reaped, errors, max_freeable, node_allocs, 4157 node_frees, overflows); 4158 } 4159 /* cpu stats */ 4160 { 4161 unsigned long allochit = atomic_read(&cachep->allochit); 4162 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4163 unsigned long freehit = atomic_read(&cachep->freehit); 4164 unsigned long freemiss = atomic_read(&cachep->freemiss); 4165 4166 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4167 allochit, allocmiss, freehit, freemiss); 4168 } 4169 #endif 4170 } 4171 4172 #define MAX_SLABINFO_WRITE 128 4173 /** 4174 * slabinfo_write - Tuning for the slab allocator 4175 * @file: unused 4176 * @buffer: user buffer 4177 * @count: data length 4178 * @ppos: unused 4179 * 4180 * Return: %0 on success, negative error code otherwise. 4181 */ 4182 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4183 size_t count, loff_t *ppos) 4184 { 4185 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4186 int limit, batchcount, shared, res; 4187 struct kmem_cache *cachep; 4188 4189 if (count > MAX_SLABINFO_WRITE) 4190 return -EINVAL; 4191 if (copy_from_user(&kbuf, buffer, count)) 4192 return -EFAULT; 4193 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4194 4195 tmp = strchr(kbuf, ' '); 4196 if (!tmp) 4197 return -EINVAL; 4198 *tmp = '\0'; 4199 tmp++; 4200 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4201 return -EINVAL; 4202 4203 /* Find the cache in the chain of caches. */ 4204 mutex_lock(&slab_mutex); 4205 res = -EINVAL; 4206 list_for_each_entry(cachep, &slab_caches, list) { 4207 if (!strcmp(cachep->name, kbuf)) { 4208 if (limit < 1 || batchcount < 1 || 4209 batchcount > limit || shared < 0) { 4210 res = 0; 4211 } else { 4212 res = do_tune_cpucache(cachep, limit, 4213 batchcount, shared, 4214 GFP_KERNEL); 4215 } 4216 break; 4217 } 4218 } 4219 mutex_unlock(&slab_mutex); 4220 if (res >= 0) 4221 res = count; 4222 return res; 4223 } 4224 4225 #ifdef CONFIG_DEBUG_SLAB_LEAK 4226 4227 static inline int add_caller(unsigned long *n, unsigned long v) 4228 { 4229 unsigned long *p; 4230 int l; 4231 if (!v) 4232 return 1; 4233 l = n[1]; 4234 p = n + 2; 4235 while (l) { 4236 int i = l/2; 4237 unsigned long *q = p + 2 * i; 4238 if (*q == v) { 4239 q[1]++; 4240 return 1; 4241 } 4242 if (*q > v) { 4243 l = i; 4244 } else { 4245 p = q + 2; 4246 l -= i + 1; 4247 } 4248 } 4249 if (++n[1] == n[0]) 4250 return 0; 4251 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4252 p[0] = v; 4253 p[1] = 1; 4254 return 1; 4255 } 4256 4257 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4258 struct page *page) 4259 { 4260 void *p; 4261 int i, j; 4262 unsigned long v; 4263 4264 if (n[0] == n[1]) 4265 return; 4266 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4267 bool active = true; 4268 4269 for (j = page->active; j < c->num; j++) { 4270 if (get_free_obj(page, j) == i) { 4271 active = false; 4272 break; 4273 } 4274 } 4275 4276 if (!active) 4277 continue; 4278 4279 /* 4280 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4281 * mapping is established when actual object allocation and 4282 * we could mistakenly access the unmapped object in the cpu 4283 * cache. 4284 */ 4285 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4286 continue; 4287 4288 if (!add_caller(n, v)) 4289 return; 4290 } 4291 } 4292 4293 static void show_symbol(struct seq_file *m, unsigned long address) 4294 { 4295 #ifdef CONFIG_KALLSYMS 4296 unsigned long offset, size; 4297 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4298 4299 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4300 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4301 if (modname[0]) 4302 seq_printf(m, " [%s]", modname); 4303 return; 4304 } 4305 #endif 4306 seq_printf(m, "%px", (void *)address); 4307 } 4308 4309 static int leaks_show(struct seq_file *m, void *p) 4310 { 4311 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, 4312 root_caches_node); 4313 struct page *page; 4314 struct kmem_cache_node *n; 4315 const char *name; 4316 unsigned long *x = m->private; 4317 int node; 4318 int i; 4319 4320 if (!(cachep->flags & SLAB_STORE_USER)) 4321 return 0; 4322 if (!(cachep->flags & SLAB_RED_ZONE)) 4323 return 0; 4324 4325 /* 4326 * Set store_user_clean and start to grab stored user information 4327 * for all objects on this cache. If some alloc/free requests comes 4328 * during the processing, information would be wrong so restart 4329 * whole processing. 4330 */ 4331 do { 4332 set_store_user_clean(cachep); 4333 drain_cpu_caches(cachep); 4334 4335 x[1] = 0; 4336 4337 for_each_kmem_cache_node(cachep, node, n) { 4338 4339 check_irq_on(); 4340 spin_lock_irq(&n->list_lock); 4341 4342 list_for_each_entry(page, &n->slabs_full, lru) 4343 handle_slab(x, cachep, page); 4344 list_for_each_entry(page, &n->slabs_partial, lru) 4345 handle_slab(x, cachep, page); 4346 spin_unlock_irq(&n->list_lock); 4347 } 4348 } while (!is_store_user_clean(cachep)); 4349 4350 name = cachep->name; 4351 if (x[0] == x[1]) { 4352 /* Increase the buffer size */ 4353 mutex_unlock(&slab_mutex); 4354 m->private = kcalloc(x[0] * 4, sizeof(unsigned long), 4355 GFP_KERNEL); 4356 if (!m->private) { 4357 /* Too bad, we are really out */ 4358 m->private = x; 4359 mutex_lock(&slab_mutex); 4360 return -ENOMEM; 4361 } 4362 *(unsigned long *)m->private = x[0] * 2; 4363 kfree(x); 4364 mutex_lock(&slab_mutex); 4365 /* Now make sure this entry will be retried */ 4366 m->count = m->size; 4367 return 0; 4368 } 4369 for (i = 0; i < x[1]; i++) { 4370 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4371 show_symbol(m, x[2*i+2]); 4372 seq_putc(m, '\n'); 4373 } 4374 4375 return 0; 4376 } 4377 4378 static const struct seq_operations slabstats_op = { 4379 .start = slab_start, 4380 .next = slab_next, 4381 .stop = slab_stop, 4382 .show = leaks_show, 4383 }; 4384 4385 static int slabstats_open(struct inode *inode, struct file *file) 4386 { 4387 unsigned long *n; 4388 4389 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4390 if (!n) 4391 return -ENOMEM; 4392 4393 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4394 4395 return 0; 4396 } 4397 4398 static const struct file_operations proc_slabstats_operations = { 4399 .open = slabstats_open, 4400 .read = seq_read, 4401 .llseek = seq_lseek, 4402 .release = seq_release_private, 4403 }; 4404 #endif 4405 4406 static int __init slab_proc_init(void) 4407 { 4408 #ifdef CONFIG_DEBUG_SLAB_LEAK 4409 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4410 #endif 4411 return 0; 4412 } 4413 module_init(slab_proc_init); 4414 4415 #ifdef CONFIG_HARDENED_USERCOPY 4416 /* 4417 * Rejects incorrectly sized objects and objects that are to be copied 4418 * to/from userspace but do not fall entirely within the containing slab 4419 * cache's usercopy region. 4420 * 4421 * Returns NULL if check passes, otherwise const char * to name of cache 4422 * to indicate an error. 4423 */ 4424 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4425 bool to_user) 4426 { 4427 struct kmem_cache *cachep; 4428 unsigned int objnr; 4429 unsigned long offset; 4430 4431 ptr = kasan_reset_tag(ptr); 4432 4433 /* Find and validate object. */ 4434 cachep = page->slab_cache; 4435 objnr = obj_to_index(cachep, page, (void *)ptr); 4436 BUG_ON(objnr >= cachep->num); 4437 4438 /* Find offset within object. */ 4439 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4440 4441 /* Allow address range falling entirely within usercopy region. */ 4442 if (offset >= cachep->useroffset && 4443 offset - cachep->useroffset <= cachep->usersize && 4444 n <= cachep->useroffset - offset + cachep->usersize) 4445 return; 4446 4447 /* 4448 * If the copy is still within the allocated object, produce 4449 * a warning instead of rejecting the copy. This is intended 4450 * to be a temporary method to find any missing usercopy 4451 * whitelists. 4452 */ 4453 if (usercopy_fallback && 4454 offset <= cachep->object_size && 4455 n <= cachep->object_size - offset) { 4456 usercopy_warn("SLAB object", cachep->name, to_user, offset, n); 4457 return; 4458 } 4459 4460 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4461 } 4462 #endif /* CONFIG_HARDENED_USERCOPY */ 4463 4464 /** 4465 * ksize - get the actual amount of memory allocated for a given object 4466 * @objp: Pointer to the object 4467 * 4468 * kmalloc may internally round up allocations and return more memory 4469 * than requested. ksize() can be used to determine the actual amount of 4470 * memory allocated. The caller may use this additional memory, even though 4471 * a smaller amount of memory was initially specified with the kmalloc call. 4472 * The caller must guarantee that objp points to a valid object previously 4473 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4474 * must not be freed during the duration of the call. 4475 * 4476 * Return: size of the actual memory used by @objp in bytes 4477 */ 4478 size_t ksize(const void *objp) 4479 { 4480 size_t size; 4481 4482 BUG_ON(!objp); 4483 if (unlikely(objp == ZERO_SIZE_PTR)) 4484 return 0; 4485 4486 size = virt_to_cache(objp)->object_size; 4487 /* We assume that ksize callers could use the whole allocated area, 4488 * so we need to unpoison this area. 4489 */ 4490 kasan_unpoison_shadow(objp, size); 4491 4492 return size; 4493 } 4494 EXPORT_SYMBOL(ksize); 4495