xref: /openbmc/linux/mm/slab.c (revision d003d772)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/slab.c
4  * Written by Mark Hemment, 1996/97.
5  * (markhe@nextd.demon.co.uk)
6  *
7  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8  *
9  * Major cleanup, different bufctl logic, per-cpu arrays
10  *	(c) 2000 Manfred Spraul
11  *
12  * Cleanup, make the head arrays unconditional, preparation for NUMA
13  * 	(c) 2002 Manfred Spraul
14  *
15  * An implementation of the Slab Allocator as described in outline in;
16  *	UNIX Internals: The New Frontiers by Uresh Vahalia
17  *	Pub: Prentice Hall	ISBN 0-13-101908-2
18  * or with a little more detail in;
19  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
20  *	Jeff Bonwick (Sun Microsystems).
21  *	Presented at: USENIX Summer 1994 Technical Conference
22  *
23  * The memory is organized in caches, one cache for each object type.
24  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25  * Each cache consists out of many slabs (they are small (usually one
26  * page long) and always contiguous), and each slab contains multiple
27  * initialized objects.
28  *
29  * This means, that your constructor is used only for newly allocated
30  * slabs and you must pass objects with the same initializations to
31  * kmem_cache_free.
32  *
33  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34  * normal). If you need a special memory type, then must create a new
35  * cache for that memory type.
36  *
37  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38  *   full slabs with 0 free objects
39  *   partial slabs
40  *   empty slabs with no allocated objects
41  *
42  * If partial slabs exist, then new allocations come from these slabs,
43  * otherwise from empty slabs or new slabs are allocated.
44  *
45  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47  *
48  * Each cache has a short per-cpu head array, most allocs
49  * and frees go into that array, and if that array overflows, then 1/2
50  * of the entries in the array are given back into the global cache.
51  * The head array is strictly LIFO and should improve the cache hit rates.
52  * On SMP, it additionally reduces the spinlock operations.
53  *
54  * The c_cpuarray may not be read with enabled local interrupts -
55  * it's changed with a smp_call_function().
56  *
57  * SMP synchronization:
58  *  constructors and destructors are called without any locking.
59  *  Several members in struct kmem_cache and struct slab never change, they
60  *	are accessed without any locking.
61  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
62  *  	and local interrupts are disabled so slab code is preempt-safe.
63  *  The non-constant members are protected with a per-cache irq spinlock.
64  *
65  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66  * in 2000 - many ideas in the current implementation are derived from
67  * his patch.
68  *
69  * Further notes from the original documentation:
70  *
71  * 11 April '97.  Started multi-threading - markhe
72  *	The global cache-chain is protected by the mutex 'slab_mutex'.
73  *	The sem is only needed when accessing/extending the cache-chain, which
74  *	can never happen inside an interrupt (kmem_cache_create(),
75  *	kmem_cache_shrink() and kmem_cache_reap()).
76  *
77  *	At present, each engine can be growing a cache.  This should be blocked.
78  *
79  * 15 March 2005. NUMA slab allocator.
80  *	Shai Fultheim <shai@scalex86.org>.
81  *	Shobhit Dayal <shobhit@calsoftinc.com>
82  *	Alok N Kataria <alokk@calsoftinc.com>
83  *	Christoph Lameter <christoph@lameter.com>
84  *
85  *	Modified the slab allocator to be node aware on NUMA systems.
86  *	Each node has its own list of partial, free and full slabs.
87  *	All object allocations for a node occur from node specific slab lists.
88  */
89 
90 #include	<linux/slab.h>
91 #include	<linux/mm.h>
92 #include	<linux/poison.h>
93 #include	<linux/swap.h>
94 #include	<linux/cache.h>
95 #include	<linux/interrupt.h>
96 #include	<linux/init.h>
97 #include	<linux/compiler.h>
98 #include	<linux/cpuset.h>
99 #include	<linux/proc_fs.h>
100 #include	<linux/seq_file.h>
101 #include	<linux/notifier.h>
102 #include	<linux/kallsyms.h>
103 #include	<linux/cpu.h>
104 #include	<linux/sysctl.h>
105 #include	<linux/module.h>
106 #include	<linux/rcupdate.h>
107 #include	<linux/string.h>
108 #include	<linux/uaccess.h>
109 #include	<linux/nodemask.h>
110 #include	<linux/kmemleak.h>
111 #include	<linux/mempolicy.h>
112 #include	<linux/mutex.h>
113 #include	<linux/fault-inject.h>
114 #include	<linux/rtmutex.h>
115 #include	<linux/reciprocal_div.h>
116 #include	<linux/debugobjects.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 #include	<linux/sched/task_stack.h>
120 
121 #include	<net/sock.h>
122 
123 #include	<asm/cacheflush.h>
124 #include	<asm/tlbflush.h>
125 #include	<asm/page.h>
126 
127 #include <trace/events/kmem.h>
128 
129 #include	"internal.h"
130 
131 #include	"slab.h"
132 
133 /*
134  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135  *		  0 for faster, smaller code (especially in the critical paths).
136  *
137  * STATS	- 1 to collect stats for /proc/slabinfo.
138  *		  0 for faster, smaller code (especially in the critical paths).
139  *
140  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141  */
142 
143 #ifdef CONFIG_DEBUG_SLAB
144 #define	DEBUG		1
145 #define	STATS		1
146 #define	FORCED_DEBUG	1
147 #else
148 #define	DEBUG		0
149 #define	STATS		0
150 #define	FORCED_DEBUG	0
151 #endif
152 
153 /* Shouldn't this be in a header file somewhere? */
154 #define	BYTES_PER_WORD		sizeof(void *)
155 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160 
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169 
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171 
172 /*
173  * struct array_cache
174  *
175  * Purpose:
176  * - LIFO ordering, to hand out cache-warm objects from _alloc
177  * - reduce the number of linked list operations
178  * - reduce spinlock operations
179  *
180  * The limit is stored in the per-cpu structure to reduce the data cache
181  * footprint.
182  *
183  */
184 struct array_cache {
185 	unsigned int avail;
186 	unsigned int limit;
187 	unsigned int batchcount;
188 	unsigned int touched;
189 	void *entry[];	/*
190 			 * Must have this definition in here for the proper
191 			 * alignment of array_cache. Also simplifies accessing
192 			 * the entries.
193 			 */
194 };
195 
196 struct alien_cache {
197 	spinlock_t lock;
198 	struct array_cache ac;
199 };
200 
201 /*
202  * Need this for bootstrapping a per node allocator.
203  */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define	CACHE_CACHE 0
207 #define	SIZE_NODE (MAX_NUMNODES)
208 
209 static int drain_freelist(struct kmem_cache *cache,
210 			struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 			int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216 
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 						void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 				struct kmem_cache_node *n, struct page *page,
221 				void **list);
222 static int slab_early_init = 1;
223 
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 	INIT_LIST_HEAD(&parent->slabs_full);
229 	INIT_LIST_HEAD(&parent->slabs_partial);
230 	INIT_LIST_HEAD(&parent->slabs_free);
231 	parent->total_slabs = 0;
232 	parent->free_slabs = 0;
233 	parent->shared = NULL;
234 	parent->alien = NULL;
235 	parent->colour_next = 0;
236 	spin_lock_init(&parent->list_lock);
237 	parent->free_objects = 0;
238 	parent->free_touched = 0;
239 }
240 
241 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
242 	do {								\
243 		INIT_LIST_HEAD(listp);					\
244 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 	} while (0)
246 
247 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
248 	do {								\
249 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
250 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
252 	} while (0)
253 
254 #define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
258 
259 #define BATCHREFILL_LIMIT	16
260 /*
261  * Optimization question: fewer reaps means less probability for unnessary
262  * cpucache drain/refill cycles.
263  *
264  * OTOH the cpuarrays can contain lots of objects,
265  * which could lock up otherwise freeable slabs.
266  */
267 #define REAPTIMEOUT_AC		(2*HZ)
268 #define REAPTIMEOUT_NODE	(4*HZ)
269 
270 #if STATS
271 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
272 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
273 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
274 #define	STATS_INC_GROWN(x)	((x)->grown++)
275 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
276 #define	STATS_SET_HIGH(x)						\
277 	do {								\
278 		if ((x)->num_active > (x)->high_mark)			\
279 			(x)->high_mark = (x)->num_active;		\
280 	} while (0)
281 #define	STATS_INC_ERR(x)	((x)->errors++)
282 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
285 #define	STATS_SET_FREEABLE(x, i)					\
286 	do {								\
287 		if ((x)->max_freeable < i)				\
288 			(x)->max_freeable = i;				\
289 	} while (0)
290 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
294 #else
295 #define	STATS_INC_ACTIVE(x)	do { } while (0)
296 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
297 #define	STATS_INC_ALLOCED(x)	do { } while (0)
298 #define	STATS_INC_GROWN(x)	do { } while (0)
299 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
300 #define	STATS_SET_HIGH(x)	do { } while (0)
301 #define	STATS_INC_ERR(x)	do { } while (0)
302 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303 #define	STATS_INC_NODEFREES(x)	do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
305 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
307 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
308 #define STATS_INC_FREEHIT(x)	do { } while (0)
309 #define STATS_INC_FREEMISS(x)	do { } while (0)
310 #endif
311 
312 #if DEBUG
313 
314 /*
315  * memory layout of objects:
316  * 0		: objp
317  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318  * 		the end of an object is aligned with the end of the real
319  * 		allocation. Catches writes behind the end of the allocation.
320  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321  * 		redzone word.
322  * cachep->obj_offset: The real object.
323  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324  * cachep->size - 1* BYTES_PER_WORD: last caller address
325  *					[BYTES_PER_WORD long]
326  */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 	return cachep->obj_offset;
330 }
331 
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 	return (unsigned long long*) (objp + obj_offset(cachep) -
336 				      sizeof(unsigned long long));
337 }
338 
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 	if (cachep->flags & SLAB_STORE_USER)
343 		return (unsigned long long *)(objp + cachep->size -
344 					      sizeof(unsigned long long) -
345 					      REDZONE_ALIGN);
346 	return (unsigned long long *) (objp + cachep->size -
347 				       sizeof(unsigned long long));
348 }
349 
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355 
356 #else
357 
358 #define obj_offset(x)			0
359 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
362 
363 #endif
364 
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366 
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 	return atomic_read(&cachep->store_user_clean) == 1;
370 }
371 
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 	atomic_set(&cachep->store_user_clean, 1);
375 }
376 
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 	if (is_store_user_clean(cachep))
380 		atomic_set(&cachep->store_user_clean, 0);
381 }
382 
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385 
386 #endif
387 
388 /*
389  * Do not go above this order unless 0 objects fit into the slab or
390  * overridden on the command line.
391  */
392 #define	SLAB_MAX_ORDER_HI	1
393 #define	SLAB_MAX_ORDER_LO	0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396 
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 	struct page *page = virt_to_head_page(obj);
400 	return page->slab_cache;
401 }
402 
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 				 unsigned int idx)
405 {
406 	return page->s_mem + cache->size * idx;
407 }
408 
409 #define BOOT_CPUCACHE_ENTRIES	1
410 /* internal cache of cache description objs */
411 static struct kmem_cache kmem_cache_boot = {
412 	.batchcount = 1,
413 	.limit = BOOT_CPUCACHE_ENTRIES,
414 	.shared = 1,
415 	.size = sizeof(struct kmem_cache),
416 	.name = "kmem_cache",
417 };
418 
419 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
420 
421 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
422 {
423 	return this_cpu_ptr(cachep->cpu_cache);
424 }
425 
426 /*
427  * Calculate the number of objects and left-over bytes for a given buffer size.
428  */
429 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
430 		slab_flags_t flags, size_t *left_over)
431 {
432 	unsigned int num;
433 	size_t slab_size = PAGE_SIZE << gfporder;
434 
435 	/*
436 	 * The slab management structure can be either off the slab or
437 	 * on it. For the latter case, the memory allocated for a
438 	 * slab is used for:
439 	 *
440 	 * - @buffer_size bytes for each object
441 	 * - One freelist_idx_t for each object
442 	 *
443 	 * We don't need to consider alignment of freelist because
444 	 * freelist will be at the end of slab page. The objects will be
445 	 * at the correct alignment.
446 	 *
447 	 * If the slab management structure is off the slab, then the
448 	 * alignment will already be calculated into the size. Because
449 	 * the slabs are all pages aligned, the objects will be at the
450 	 * correct alignment when allocated.
451 	 */
452 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
453 		num = slab_size / buffer_size;
454 		*left_over = slab_size % buffer_size;
455 	} else {
456 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
457 		*left_over = slab_size %
458 			(buffer_size + sizeof(freelist_idx_t));
459 	}
460 
461 	return num;
462 }
463 
464 #if DEBUG
465 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
466 
467 static void __slab_error(const char *function, struct kmem_cache *cachep,
468 			char *msg)
469 {
470 	pr_err("slab error in %s(): cache `%s': %s\n",
471 	       function, cachep->name, msg);
472 	dump_stack();
473 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
474 }
475 #endif
476 
477 /*
478  * By default on NUMA we use alien caches to stage the freeing of
479  * objects allocated from other nodes. This causes massive memory
480  * inefficiencies when using fake NUMA setup to split memory into a
481  * large number of small nodes, so it can be disabled on the command
482  * line
483   */
484 
485 static int use_alien_caches __read_mostly = 1;
486 static int __init noaliencache_setup(char *s)
487 {
488 	use_alien_caches = 0;
489 	return 1;
490 }
491 __setup("noaliencache", noaliencache_setup);
492 
493 static int __init slab_max_order_setup(char *str)
494 {
495 	get_option(&str, &slab_max_order);
496 	slab_max_order = slab_max_order < 0 ? 0 :
497 				min(slab_max_order, MAX_ORDER - 1);
498 	slab_max_order_set = true;
499 
500 	return 1;
501 }
502 __setup("slab_max_order=", slab_max_order_setup);
503 
504 #ifdef CONFIG_NUMA
505 /*
506  * Special reaping functions for NUMA systems called from cache_reap().
507  * These take care of doing round robin flushing of alien caches (containing
508  * objects freed on different nodes from which they were allocated) and the
509  * flushing of remote pcps by calling drain_node_pages.
510  */
511 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
512 
513 static void init_reap_node(int cpu)
514 {
515 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
516 						    node_online_map);
517 }
518 
519 static void next_reap_node(void)
520 {
521 	int node = __this_cpu_read(slab_reap_node);
522 
523 	node = next_node_in(node, node_online_map);
524 	__this_cpu_write(slab_reap_node, node);
525 }
526 
527 #else
528 #define init_reap_node(cpu) do { } while (0)
529 #define next_reap_node(void) do { } while (0)
530 #endif
531 
532 /*
533  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
534  * via the workqueue/eventd.
535  * Add the CPU number into the expiration time to minimize the possibility of
536  * the CPUs getting into lockstep and contending for the global cache chain
537  * lock.
538  */
539 static void start_cpu_timer(int cpu)
540 {
541 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
542 
543 	if (reap_work->work.func == NULL) {
544 		init_reap_node(cpu);
545 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
546 		schedule_delayed_work_on(cpu, reap_work,
547 					__round_jiffies_relative(HZ, cpu));
548 	}
549 }
550 
551 static void init_arraycache(struct array_cache *ac, int limit, int batch)
552 {
553 	if (ac) {
554 		ac->avail = 0;
555 		ac->limit = limit;
556 		ac->batchcount = batch;
557 		ac->touched = 0;
558 	}
559 }
560 
561 static struct array_cache *alloc_arraycache(int node, int entries,
562 					    int batchcount, gfp_t gfp)
563 {
564 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
565 	struct array_cache *ac = NULL;
566 
567 	ac = kmalloc_node(memsize, gfp, node);
568 	/*
569 	 * The array_cache structures contain pointers to free object.
570 	 * However, when such objects are allocated or transferred to another
571 	 * cache the pointers are not cleared and they could be counted as
572 	 * valid references during a kmemleak scan. Therefore, kmemleak must
573 	 * not scan such objects.
574 	 */
575 	kmemleak_no_scan(ac);
576 	init_arraycache(ac, entries, batchcount);
577 	return ac;
578 }
579 
580 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
581 					struct page *page, void *objp)
582 {
583 	struct kmem_cache_node *n;
584 	int page_node;
585 	LIST_HEAD(list);
586 
587 	page_node = page_to_nid(page);
588 	n = get_node(cachep, page_node);
589 
590 	spin_lock(&n->list_lock);
591 	free_block(cachep, &objp, 1, page_node, &list);
592 	spin_unlock(&n->list_lock);
593 
594 	slabs_destroy(cachep, &list);
595 }
596 
597 /*
598  * Transfer objects in one arraycache to another.
599  * Locking must be handled by the caller.
600  *
601  * Return the number of entries transferred.
602  */
603 static int transfer_objects(struct array_cache *to,
604 		struct array_cache *from, unsigned int max)
605 {
606 	/* Figure out how many entries to transfer */
607 	int nr = min3(from->avail, max, to->limit - to->avail);
608 
609 	if (!nr)
610 		return 0;
611 
612 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
613 			sizeof(void *) *nr);
614 
615 	from->avail -= nr;
616 	to->avail += nr;
617 	return nr;
618 }
619 
620 #ifndef CONFIG_NUMA
621 
622 #define drain_alien_cache(cachep, alien) do { } while (0)
623 #define reap_alien(cachep, n) do { } while (0)
624 
625 static inline struct alien_cache **alloc_alien_cache(int node,
626 						int limit, gfp_t gfp)
627 {
628 	return NULL;
629 }
630 
631 static inline void free_alien_cache(struct alien_cache **ac_ptr)
632 {
633 }
634 
635 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
636 {
637 	return 0;
638 }
639 
640 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
641 		gfp_t flags)
642 {
643 	return NULL;
644 }
645 
646 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
647 		 gfp_t flags, int nodeid)
648 {
649 	return NULL;
650 }
651 
652 static inline gfp_t gfp_exact_node(gfp_t flags)
653 {
654 	return flags & ~__GFP_NOFAIL;
655 }
656 
657 #else	/* CONFIG_NUMA */
658 
659 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
660 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
661 
662 static struct alien_cache *__alloc_alien_cache(int node, int entries,
663 						int batch, gfp_t gfp)
664 {
665 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
666 	struct alien_cache *alc = NULL;
667 
668 	alc = kmalloc_node(memsize, gfp, node);
669 	if (alc) {
670 		kmemleak_no_scan(alc);
671 		init_arraycache(&alc->ac, entries, batch);
672 		spin_lock_init(&alc->lock);
673 	}
674 	return alc;
675 }
676 
677 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
678 {
679 	struct alien_cache **alc_ptr;
680 	int i;
681 
682 	if (limit > 1)
683 		limit = 12;
684 	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
685 	if (!alc_ptr)
686 		return NULL;
687 
688 	for_each_node(i) {
689 		if (i == node || !node_online(i))
690 			continue;
691 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
692 		if (!alc_ptr[i]) {
693 			for (i--; i >= 0; i--)
694 				kfree(alc_ptr[i]);
695 			kfree(alc_ptr);
696 			return NULL;
697 		}
698 	}
699 	return alc_ptr;
700 }
701 
702 static void free_alien_cache(struct alien_cache **alc_ptr)
703 {
704 	int i;
705 
706 	if (!alc_ptr)
707 		return;
708 	for_each_node(i)
709 	    kfree(alc_ptr[i]);
710 	kfree(alc_ptr);
711 }
712 
713 static void __drain_alien_cache(struct kmem_cache *cachep,
714 				struct array_cache *ac, int node,
715 				struct list_head *list)
716 {
717 	struct kmem_cache_node *n = get_node(cachep, node);
718 
719 	if (ac->avail) {
720 		spin_lock(&n->list_lock);
721 		/*
722 		 * Stuff objects into the remote nodes shared array first.
723 		 * That way we could avoid the overhead of putting the objects
724 		 * into the free lists and getting them back later.
725 		 */
726 		if (n->shared)
727 			transfer_objects(n->shared, ac, ac->limit);
728 
729 		free_block(cachep, ac->entry, ac->avail, node, list);
730 		ac->avail = 0;
731 		spin_unlock(&n->list_lock);
732 	}
733 }
734 
735 /*
736  * Called from cache_reap() to regularly drain alien caches round robin.
737  */
738 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
739 {
740 	int node = __this_cpu_read(slab_reap_node);
741 
742 	if (n->alien) {
743 		struct alien_cache *alc = n->alien[node];
744 		struct array_cache *ac;
745 
746 		if (alc) {
747 			ac = &alc->ac;
748 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
749 				LIST_HEAD(list);
750 
751 				__drain_alien_cache(cachep, ac, node, &list);
752 				spin_unlock_irq(&alc->lock);
753 				slabs_destroy(cachep, &list);
754 			}
755 		}
756 	}
757 }
758 
759 static void drain_alien_cache(struct kmem_cache *cachep,
760 				struct alien_cache **alien)
761 {
762 	int i = 0;
763 	struct alien_cache *alc;
764 	struct array_cache *ac;
765 	unsigned long flags;
766 
767 	for_each_online_node(i) {
768 		alc = alien[i];
769 		if (alc) {
770 			LIST_HEAD(list);
771 
772 			ac = &alc->ac;
773 			spin_lock_irqsave(&alc->lock, flags);
774 			__drain_alien_cache(cachep, ac, i, &list);
775 			spin_unlock_irqrestore(&alc->lock, flags);
776 			slabs_destroy(cachep, &list);
777 		}
778 	}
779 }
780 
781 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
782 				int node, int page_node)
783 {
784 	struct kmem_cache_node *n;
785 	struct alien_cache *alien = NULL;
786 	struct array_cache *ac;
787 	LIST_HEAD(list);
788 
789 	n = get_node(cachep, node);
790 	STATS_INC_NODEFREES(cachep);
791 	if (n->alien && n->alien[page_node]) {
792 		alien = n->alien[page_node];
793 		ac = &alien->ac;
794 		spin_lock(&alien->lock);
795 		if (unlikely(ac->avail == ac->limit)) {
796 			STATS_INC_ACOVERFLOW(cachep);
797 			__drain_alien_cache(cachep, ac, page_node, &list);
798 		}
799 		ac->entry[ac->avail++] = objp;
800 		spin_unlock(&alien->lock);
801 		slabs_destroy(cachep, &list);
802 	} else {
803 		n = get_node(cachep, page_node);
804 		spin_lock(&n->list_lock);
805 		free_block(cachep, &objp, 1, page_node, &list);
806 		spin_unlock(&n->list_lock);
807 		slabs_destroy(cachep, &list);
808 	}
809 	return 1;
810 }
811 
812 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
813 {
814 	int page_node = page_to_nid(virt_to_page(objp));
815 	int node = numa_mem_id();
816 	/*
817 	 * Make sure we are not freeing a object from another node to the array
818 	 * cache on this cpu.
819 	 */
820 	if (likely(node == page_node))
821 		return 0;
822 
823 	return __cache_free_alien(cachep, objp, node, page_node);
824 }
825 
826 /*
827  * Construct gfp mask to allocate from a specific node but do not reclaim or
828  * warn about failures.
829  */
830 static inline gfp_t gfp_exact_node(gfp_t flags)
831 {
832 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
833 }
834 #endif
835 
836 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
837 {
838 	struct kmem_cache_node *n;
839 
840 	/*
841 	 * Set up the kmem_cache_node for cpu before we can
842 	 * begin anything. Make sure some other cpu on this
843 	 * node has not already allocated this
844 	 */
845 	n = get_node(cachep, node);
846 	if (n) {
847 		spin_lock_irq(&n->list_lock);
848 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
849 				cachep->num;
850 		spin_unlock_irq(&n->list_lock);
851 
852 		return 0;
853 	}
854 
855 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
856 	if (!n)
857 		return -ENOMEM;
858 
859 	kmem_cache_node_init(n);
860 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
861 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
862 
863 	n->free_limit =
864 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
865 
866 	/*
867 	 * The kmem_cache_nodes don't come and go as CPUs
868 	 * come and go.  slab_mutex is sufficient
869 	 * protection here.
870 	 */
871 	cachep->node[node] = n;
872 
873 	return 0;
874 }
875 
876 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
877 /*
878  * Allocates and initializes node for a node on each slab cache, used for
879  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
880  * will be allocated off-node since memory is not yet online for the new node.
881  * When hotplugging memory or a cpu, existing node are not replaced if
882  * already in use.
883  *
884  * Must hold slab_mutex.
885  */
886 static int init_cache_node_node(int node)
887 {
888 	int ret;
889 	struct kmem_cache *cachep;
890 
891 	list_for_each_entry(cachep, &slab_caches, list) {
892 		ret = init_cache_node(cachep, node, GFP_KERNEL);
893 		if (ret)
894 			return ret;
895 	}
896 
897 	return 0;
898 }
899 #endif
900 
901 static int setup_kmem_cache_node(struct kmem_cache *cachep,
902 				int node, gfp_t gfp, bool force_change)
903 {
904 	int ret = -ENOMEM;
905 	struct kmem_cache_node *n;
906 	struct array_cache *old_shared = NULL;
907 	struct array_cache *new_shared = NULL;
908 	struct alien_cache **new_alien = NULL;
909 	LIST_HEAD(list);
910 
911 	if (use_alien_caches) {
912 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
913 		if (!new_alien)
914 			goto fail;
915 	}
916 
917 	if (cachep->shared) {
918 		new_shared = alloc_arraycache(node,
919 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
920 		if (!new_shared)
921 			goto fail;
922 	}
923 
924 	ret = init_cache_node(cachep, node, gfp);
925 	if (ret)
926 		goto fail;
927 
928 	n = get_node(cachep, node);
929 	spin_lock_irq(&n->list_lock);
930 	if (n->shared && force_change) {
931 		free_block(cachep, n->shared->entry,
932 				n->shared->avail, node, &list);
933 		n->shared->avail = 0;
934 	}
935 
936 	if (!n->shared || force_change) {
937 		old_shared = n->shared;
938 		n->shared = new_shared;
939 		new_shared = NULL;
940 	}
941 
942 	if (!n->alien) {
943 		n->alien = new_alien;
944 		new_alien = NULL;
945 	}
946 
947 	spin_unlock_irq(&n->list_lock);
948 	slabs_destroy(cachep, &list);
949 
950 	/*
951 	 * To protect lockless access to n->shared during irq disabled context.
952 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
953 	 * guaranteed to be valid until irq is re-enabled, because it will be
954 	 * freed after synchronize_rcu().
955 	 */
956 	if (old_shared && force_change)
957 		synchronize_rcu();
958 
959 fail:
960 	kfree(old_shared);
961 	kfree(new_shared);
962 	free_alien_cache(new_alien);
963 
964 	return ret;
965 }
966 
967 #ifdef CONFIG_SMP
968 
969 static void cpuup_canceled(long cpu)
970 {
971 	struct kmem_cache *cachep;
972 	struct kmem_cache_node *n = NULL;
973 	int node = cpu_to_mem(cpu);
974 	const struct cpumask *mask = cpumask_of_node(node);
975 
976 	list_for_each_entry(cachep, &slab_caches, list) {
977 		struct array_cache *nc;
978 		struct array_cache *shared;
979 		struct alien_cache **alien;
980 		LIST_HEAD(list);
981 
982 		n = get_node(cachep, node);
983 		if (!n)
984 			continue;
985 
986 		spin_lock_irq(&n->list_lock);
987 
988 		/* Free limit for this kmem_cache_node */
989 		n->free_limit -= cachep->batchcount;
990 
991 		/* cpu is dead; no one can alloc from it. */
992 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
993 		if (nc) {
994 			free_block(cachep, nc->entry, nc->avail, node, &list);
995 			nc->avail = 0;
996 		}
997 
998 		if (!cpumask_empty(mask)) {
999 			spin_unlock_irq(&n->list_lock);
1000 			goto free_slab;
1001 		}
1002 
1003 		shared = n->shared;
1004 		if (shared) {
1005 			free_block(cachep, shared->entry,
1006 				   shared->avail, node, &list);
1007 			n->shared = NULL;
1008 		}
1009 
1010 		alien = n->alien;
1011 		n->alien = NULL;
1012 
1013 		spin_unlock_irq(&n->list_lock);
1014 
1015 		kfree(shared);
1016 		if (alien) {
1017 			drain_alien_cache(cachep, alien);
1018 			free_alien_cache(alien);
1019 		}
1020 
1021 free_slab:
1022 		slabs_destroy(cachep, &list);
1023 	}
1024 	/*
1025 	 * In the previous loop, all the objects were freed to
1026 	 * the respective cache's slabs,  now we can go ahead and
1027 	 * shrink each nodelist to its limit.
1028 	 */
1029 	list_for_each_entry(cachep, &slab_caches, list) {
1030 		n = get_node(cachep, node);
1031 		if (!n)
1032 			continue;
1033 		drain_freelist(cachep, n, INT_MAX);
1034 	}
1035 }
1036 
1037 static int cpuup_prepare(long cpu)
1038 {
1039 	struct kmem_cache *cachep;
1040 	int node = cpu_to_mem(cpu);
1041 	int err;
1042 
1043 	/*
1044 	 * We need to do this right in the beginning since
1045 	 * alloc_arraycache's are going to use this list.
1046 	 * kmalloc_node allows us to add the slab to the right
1047 	 * kmem_cache_node and not this cpu's kmem_cache_node
1048 	 */
1049 	err = init_cache_node_node(node);
1050 	if (err < 0)
1051 		goto bad;
1052 
1053 	/*
1054 	 * Now we can go ahead with allocating the shared arrays and
1055 	 * array caches
1056 	 */
1057 	list_for_each_entry(cachep, &slab_caches, list) {
1058 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1059 		if (err)
1060 			goto bad;
1061 	}
1062 
1063 	return 0;
1064 bad:
1065 	cpuup_canceled(cpu);
1066 	return -ENOMEM;
1067 }
1068 
1069 int slab_prepare_cpu(unsigned int cpu)
1070 {
1071 	int err;
1072 
1073 	mutex_lock(&slab_mutex);
1074 	err = cpuup_prepare(cpu);
1075 	mutex_unlock(&slab_mutex);
1076 	return err;
1077 }
1078 
1079 /*
1080  * This is called for a failed online attempt and for a successful
1081  * offline.
1082  *
1083  * Even if all the cpus of a node are down, we don't free the
1084  * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1085  * a kmalloc allocation from another cpu for memory from the node of
1086  * the cpu going down.  The list3 structure is usually allocated from
1087  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1088  */
1089 int slab_dead_cpu(unsigned int cpu)
1090 {
1091 	mutex_lock(&slab_mutex);
1092 	cpuup_canceled(cpu);
1093 	mutex_unlock(&slab_mutex);
1094 	return 0;
1095 }
1096 #endif
1097 
1098 static int slab_online_cpu(unsigned int cpu)
1099 {
1100 	start_cpu_timer(cpu);
1101 	return 0;
1102 }
1103 
1104 static int slab_offline_cpu(unsigned int cpu)
1105 {
1106 	/*
1107 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1108 	 * that if cache_reap() is invoked it cannot do anything
1109 	 * expensive but will only modify reap_work and reschedule the
1110 	 * timer.
1111 	 */
1112 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1113 	/* Now the cache_reaper is guaranteed to be not running. */
1114 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1115 	return 0;
1116 }
1117 
1118 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1119 /*
1120  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1121  * Returns -EBUSY if all objects cannot be drained so that the node is not
1122  * removed.
1123  *
1124  * Must hold slab_mutex.
1125  */
1126 static int __meminit drain_cache_node_node(int node)
1127 {
1128 	struct kmem_cache *cachep;
1129 	int ret = 0;
1130 
1131 	list_for_each_entry(cachep, &slab_caches, list) {
1132 		struct kmem_cache_node *n;
1133 
1134 		n = get_node(cachep, node);
1135 		if (!n)
1136 			continue;
1137 
1138 		drain_freelist(cachep, n, INT_MAX);
1139 
1140 		if (!list_empty(&n->slabs_full) ||
1141 		    !list_empty(&n->slabs_partial)) {
1142 			ret = -EBUSY;
1143 			break;
1144 		}
1145 	}
1146 	return ret;
1147 }
1148 
1149 static int __meminit slab_memory_callback(struct notifier_block *self,
1150 					unsigned long action, void *arg)
1151 {
1152 	struct memory_notify *mnb = arg;
1153 	int ret = 0;
1154 	int nid;
1155 
1156 	nid = mnb->status_change_nid;
1157 	if (nid < 0)
1158 		goto out;
1159 
1160 	switch (action) {
1161 	case MEM_GOING_ONLINE:
1162 		mutex_lock(&slab_mutex);
1163 		ret = init_cache_node_node(nid);
1164 		mutex_unlock(&slab_mutex);
1165 		break;
1166 	case MEM_GOING_OFFLINE:
1167 		mutex_lock(&slab_mutex);
1168 		ret = drain_cache_node_node(nid);
1169 		mutex_unlock(&slab_mutex);
1170 		break;
1171 	case MEM_ONLINE:
1172 	case MEM_OFFLINE:
1173 	case MEM_CANCEL_ONLINE:
1174 	case MEM_CANCEL_OFFLINE:
1175 		break;
1176 	}
1177 out:
1178 	return notifier_from_errno(ret);
1179 }
1180 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1181 
1182 /*
1183  * swap the static kmem_cache_node with kmalloced memory
1184  */
1185 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1186 				int nodeid)
1187 {
1188 	struct kmem_cache_node *ptr;
1189 
1190 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1191 	BUG_ON(!ptr);
1192 
1193 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1194 	/*
1195 	 * Do not assume that spinlocks can be initialized via memcpy:
1196 	 */
1197 	spin_lock_init(&ptr->list_lock);
1198 
1199 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1200 	cachep->node[nodeid] = ptr;
1201 }
1202 
1203 /*
1204  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1205  * size of kmem_cache_node.
1206  */
1207 static void __init set_up_node(struct kmem_cache *cachep, int index)
1208 {
1209 	int node;
1210 
1211 	for_each_online_node(node) {
1212 		cachep->node[node] = &init_kmem_cache_node[index + node];
1213 		cachep->node[node]->next_reap = jiffies +
1214 		    REAPTIMEOUT_NODE +
1215 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1216 	}
1217 }
1218 
1219 /*
1220  * Initialisation.  Called after the page allocator have been initialised and
1221  * before smp_init().
1222  */
1223 void __init kmem_cache_init(void)
1224 {
1225 	int i;
1226 
1227 	kmem_cache = &kmem_cache_boot;
1228 
1229 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1230 		use_alien_caches = 0;
1231 
1232 	for (i = 0; i < NUM_INIT_LISTS; i++)
1233 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1234 
1235 	/*
1236 	 * Fragmentation resistance on low memory - only use bigger
1237 	 * page orders on machines with more than 32MB of memory if
1238 	 * not overridden on the command line.
1239 	 */
1240 	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1241 		slab_max_order = SLAB_MAX_ORDER_HI;
1242 
1243 	/* Bootstrap is tricky, because several objects are allocated
1244 	 * from caches that do not exist yet:
1245 	 * 1) initialize the kmem_cache cache: it contains the struct
1246 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1247 	 *    kmem_cache is statically allocated.
1248 	 *    Initially an __init data area is used for the head array and the
1249 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1250 	 *    array at the end of the bootstrap.
1251 	 * 2) Create the first kmalloc cache.
1252 	 *    The struct kmem_cache for the new cache is allocated normally.
1253 	 *    An __init data area is used for the head array.
1254 	 * 3) Create the remaining kmalloc caches, with minimally sized
1255 	 *    head arrays.
1256 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1257 	 *    kmalloc cache with kmalloc allocated arrays.
1258 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1259 	 *    the other cache's with kmalloc allocated memory.
1260 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1261 	 */
1262 
1263 	/* 1) create the kmem_cache */
1264 
1265 	/*
1266 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1267 	 */
1268 	create_boot_cache(kmem_cache, "kmem_cache",
1269 		offsetof(struct kmem_cache, node) +
1270 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1271 				  SLAB_HWCACHE_ALIGN, 0, 0);
1272 	list_add(&kmem_cache->list, &slab_caches);
1273 	memcg_link_cache(kmem_cache);
1274 	slab_state = PARTIAL;
1275 
1276 	/*
1277 	 * Initialize the caches that provide memory for the  kmem_cache_node
1278 	 * structures first.  Without this, further allocations will bug.
1279 	 */
1280 	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1281 				kmalloc_info[INDEX_NODE].name,
1282 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1283 				0, kmalloc_size(INDEX_NODE));
1284 	slab_state = PARTIAL_NODE;
1285 	setup_kmalloc_cache_index_table();
1286 
1287 	slab_early_init = 0;
1288 
1289 	/* 5) Replace the bootstrap kmem_cache_node */
1290 	{
1291 		int nid;
1292 
1293 		for_each_online_node(nid) {
1294 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1295 
1296 			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1297 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1298 		}
1299 	}
1300 
1301 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1302 }
1303 
1304 void __init kmem_cache_init_late(void)
1305 {
1306 	struct kmem_cache *cachep;
1307 
1308 	/* 6) resize the head arrays to their final sizes */
1309 	mutex_lock(&slab_mutex);
1310 	list_for_each_entry(cachep, &slab_caches, list)
1311 		if (enable_cpucache(cachep, GFP_NOWAIT))
1312 			BUG();
1313 	mutex_unlock(&slab_mutex);
1314 
1315 	/* Done! */
1316 	slab_state = FULL;
1317 
1318 #ifdef CONFIG_NUMA
1319 	/*
1320 	 * Register a memory hotplug callback that initializes and frees
1321 	 * node.
1322 	 */
1323 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1324 #endif
1325 
1326 	/*
1327 	 * The reap timers are started later, with a module init call: That part
1328 	 * of the kernel is not yet operational.
1329 	 */
1330 }
1331 
1332 static int __init cpucache_init(void)
1333 {
1334 	int ret;
1335 
1336 	/*
1337 	 * Register the timers that return unneeded pages to the page allocator
1338 	 */
1339 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1340 				slab_online_cpu, slab_offline_cpu);
1341 	WARN_ON(ret < 0);
1342 
1343 	return 0;
1344 }
1345 __initcall(cpucache_init);
1346 
1347 static noinline void
1348 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1349 {
1350 #if DEBUG
1351 	struct kmem_cache_node *n;
1352 	unsigned long flags;
1353 	int node;
1354 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1355 				      DEFAULT_RATELIMIT_BURST);
1356 
1357 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1358 		return;
1359 
1360 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1361 		nodeid, gfpflags, &gfpflags);
1362 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1363 		cachep->name, cachep->size, cachep->gfporder);
1364 
1365 	for_each_kmem_cache_node(cachep, node, n) {
1366 		unsigned long total_slabs, free_slabs, free_objs;
1367 
1368 		spin_lock_irqsave(&n->list_lock, flags);
1369 		total_slabs = n->total_slabs;
1370 		free_slabs = n->free_slabs;
1371 		free_objs = n->free_objects;
1372 		spin_unlock_irqrestore(&n->list_lock, flags);
1373 
1374 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1375 			node, total_slabs - free_slabs, total_slabs,
1376 			(total_slabs * cachep->num) - free_objs,
1377 			total_slabs * cachep->num);
1378 	}
1379 #endif
1380 }
1381 
1382 /*
1383  * Interface to system's page allocator. No need to hold the
1384  * kmem_cache_node ->list_lock.
1385  *
1386  * If we requested dmaable memory, we will get it. Even if we
1387  * did not request dmaable memory, we might get it, but that
1388  * would be relatively rare and ignorable.
1389  */
1390 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1391 								int nodeid)
1392 {
1393 	struct page *page;
1394 	int nr_pages;
1395 
1396 	flags |= cachep->allocflags;
1397 
1398 	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1399 	if (!page) {
1400 		slab_out_of_memory(cachep, flags, nodeid);
1401 		return NULL;
1402 	}
1403 
1404 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1405 		__free_pages(page, cachep->gfporder);
1406 		return NULL;
1407 	}
1408 
1409 	nr_pages = (1 << cachep->gfporder);
1410 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1411 		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1412 	else
1413 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1414 
1415 	__SetPageSlab(page);
1416 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1417 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1418 		SetPageSlabPfmemalloc(page);
1419 
1420 	return page;
1421 }
1422 
1423 /*
1424  * Interface to system's page release.
1425  */
1426 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1427 {
1428 	int order = cachep->gfporder;
1429 	unsigned long nr_freed = (1 << order);
1430 
1431 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1432 		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1433 	else
1434 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1435 
1436 	BUG_ON(!PageSlab(page));
1437 	__ClearPageSlabPfmemalloc(page);
1438 	__ClearPageSlab(page);
1439 	page_mapcount_reset(page);
1440 	page->mapping = NULL;
1441 
1442 	if (current->reclaim_state)
1443 		current->reclaim_state->reclaimed_slab += nr_freed;
1444 	memcg_uncharge_slab(page, order, cachep);
1445 	__free_pages(page, order);
1446 }
1447 
1448 static void kmem_rcu_free(struct rcu_head *head)
1449 {
1450 	struct kmem_cache *cachep;
1451 	struct page *page;
1452 
1453 	page = container_of(head, struct page, rcu_head);
1454 	cachep = page->slab_cache;
1455 
1456 	kmem_freepages(cachep, page);
1457 }
1458 
1459 #if DEBUG
1460 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1461 {
1462 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1463 		(cachep->size % PAGE_SIZE) == 0)
1464 		return true;
1465 
1466 	return false;
1467 }
1468 
1469 #ifdef CONFIG_DEBUG_PAGEALLOC
1470 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1471 			    unsigned long caller)
1472 {
1473 	int size = cachep->object_size;
1474 
1475 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1476 
1477 	if (size < 5 * sizeof(unsigned long))
1478 		return;
1479 
1480 	*addr++ = 0x12345678;
1481 	*addr++ = caller;
1482 	*addr++ = smp_processor_id();
1483 	size -= 3 * sizeof(unsigned long);
1484 	{
1485 		unsigned long *sptr = &caller;
1486 		unsigned long svalue;
1487 
1488 		while (!kstack_end(sptr)) {
1489 			svalue = *sptr++;
1490 			if (kernel_text_address(svalue)) {
1491 				*addr++ = svalue;
1492 				size -= sizeof(unsigned long);
1493 				if (size <= sizeof(unsigned long))
1494 					break;
1495 			}
1496 		}
1497 
1498 	}
1499 	*addr++ = 0x87654321;
1500 }
1501 
1502 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1503 				int map, unsigned long caller)
1504 {
1505 	if (!is_debug_pagealloc_cache(cachep))
1506 		return;
1507 
1508 	if (caller)
1509 		store_stackinfo(cachep, objp, caller);
1510 
1511 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1512 }
1513 
1514 #else
1515 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1516 				int map, unsigned long caller) {}
1517 
1518 #endif
1519 
1520 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1521 {
1522 	int size = cachep->object_size;
1523 	addr = &((char *)addr)[obj_offset(cachep)];
1524 
1525 	memset(addr, val, size);
1526 	*(unsigned char *)(addr + size - 1) = POISON_END;
1527 }
1528 
1529 static void dump_line(char *data, int offset, int limit)
1530 {
1531 	int i;
1532 	unsigned char error = 0;
1533 	int bad_count = 0;
1534 
1535 	pr_err("%03x: ", offset);
1536 	for (i = 0; i < limit; i++) {
1537 		if (data[offset + i] != POISON_FREE) {
1538 			error = data[offset + i];
1539 			bad_count++;
1540 		}
1541 	}
1542 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1543 			&data[offset], limit, 1);
1544 
1545 	if (bad_count == 1) {
1546 		error ^= POISON_FREE;
1547 		if (!(error & (error - 1))) {
1548 			pr_err("Single bit error detected. Probably bad RAM.\n");
1549 #ifdef CONFIG_X86
1550 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1551 #else
1552 			pr_err("Run a memory test tool.\n");
1553 #endif
1554 		}
1555 	}
1556 }
1557 #endif
1558 
1559 #if DEBUG
1560 
1561 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1562 {
1563 	int i, size;
1564 	char *realobj;
1565 
1566 	if (cachep->flags & SLAB_RED_ZONE) {
1567 		pr_err("Redzone: 0x%llx/0x%llx\n",
1568 		       *dbg_redzone1(cachep, objp),
1569 		       *dbg_redzone2(cachep, objp));
1570 	}
1571 
1572 	if (cachep->flags & SLAB_STORE_USER)
1573 		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1574 	realobj = (char *)objp + obj_offset(cachep);
1575 	size = cachep->object_size;
1576 	for (i = 0; i < size && lines; i += 16, lines--) {
1577 		int limit;
1578 		limit = 16;
1579 		if (i + limit > size)
1580 			limit = size - i;
1581 		dump_line(realobj, i, limit);
1582 	}
1583 }
1584 
1585 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1586 {
1587 	char *realobj;
1588 	int size, i;
1589 	int lines = 0;
1590 
1591 	if (is_debug_pagealloc_cache(cachep))
1592 		return;
1593 
1594 	realobj = (char *)objp + obj_offset(cachep);
1595 	size = cachep->object_size;
1596 
1597 	for (i = 0; i < size; i++) {
1598 		char exp = POISON_FREE;
1599 		if (i == size - 1)
1600 			exp = POISON_END;
1601 		if (realobj[i] != exp) {
1602 			int limit;
1603 			/* Mismatch ! */
1604 			/* Print header */
1605 			if (lines == 0) {
1606 				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1607 				       print_tainted(), cachep->name,
1608 				       realobj, size);
1609 				print_objinfo(cachep, objp, 0);
1610 			}
1611 			/* Hexdump the affected line */
1612 			i = (i / 16) * 16;
1613 			limit = 16;
1614 			if (i + limit > size)
1615 				limit = size - i;
1616 			dump_line(realobj, i, limit);
1617 			i += 16;
1618 			lines++;
1619 			/* Limit to 5 lines */
1620 			if (lines > 5)
1621 				break;
1622 		}
1623 	}
1624 	if (lines != 0) {
1625 		/* Print some data about the neighboring objects, if they
1626 		 * exist:
1627 		 */
1628 		struct page *page = virt_to_head_page(objp);
1629 		unsigned int objnr;
1630 
1631 		objnr = obj_to_index(cachep, page, objp);
1632 		if (objnr) {
1633 			objp = index_to_obj(cachep, page, objnr - 1);
1634 			realobj = (char *)objp + obj_offset(cachep);
1635 			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1636 			print_objinfo(cachep, objp, 2);
1637 		}
1638 		if (objnr + 1 < cachep->num) {
1639 			objp = index_to_obj(cachep, page, objnr + 1);
1640 			realobj = (char *)objp + obj_offset(cachep);
1641 			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1642 			print_objinfo(cachep, objp, 2);
1643 		}
1644 	}
1645 }
1646 #endif
1647 
1648 #if DEBUG
1649 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1650 						struct page *page)
1651 {
1652 	int i;
1653 
1654 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1655 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1656 			POISON_FREE);
1657 	}
1658 
1659 	for (i = 0; i < cachep->num; i++) {
1660 		void *objp = index_to_obj(cachep, page, i);
1661 
1662 		if (cachep->flags & SLAB_POISON) {
1663 			check_poison_obj(cachep, objp);
1664 			slab_kernel_map(cachep, objp, 1, 0);
1665 		}
1666 		if (cachep->flags & SLAB_RED_ZONE) {
1667 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1668 				slab_error(cachep, "start of a freed object was overwritten");
1669 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1670 				slab_error(cachep, "end of a freed object was overwritten");
1671 		}
1672 	}
1673 }
1674 #else
1675 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1676 						struct page *page)
1677 {
1678 }
1679 #endif
1680 
1681 /**
1682  * slab_destroy - destroy and release all objects in a slab
1683  * @cachep: cache pointer being destroyed
1684  * @page: page pointer being destroyed
1685  *
1686  * Destroy all the objs in a slab page, and release the mem back to the system.
1687  * Before calling the slab page must have been unlinked from the cache. The
1688  * kmem_cache_node ->list_lock is not held/needed.
1689  */
1690 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1691 {
1692 	void *freelist;
1693 
1694 	freelist = page->freelist;
1695 	slab_destroy_debugcheck(cachep, page);
1696 	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1697 		call_rcu(&page->rcu_head, kmem_rcu_free);
1698 	else
1699 		kmem_freepages(cachep, page);
1700 
1701 	/*
1702 	 * From now on, we don't use freelist
1703 	 * although actual page can be freed in rcu context
1704 	 */
1705 	if (OFF_SLAB(cachep))
1706 		kmem_cache_free(cachep->freelist_cache, freelist);
1707 }
1708 
1709 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1710 {
1711 	struct page *page, *n;
1712 
1713 	list_for_each_entry_safe(page, n, list, lru) {
1714 		list_del(&page->lru);
1715 		slab_destroy(cachep, page);
1716 	}
1717 }
1718 
1719 /**
1720  * calculate_slab_order - calculate size (page order) of slabs
1721  * @cachep: pointer to the cache that is being created
1722  * @size: size of objects to be created in this cache.
1723  * @flags: slab allocation flags
1724  *
1725  * Also calculates the number of objects per slab.
1726  *
1727  * This could be made much more intelligent.  For now, try to avoid using
1728  * high order pages for slabs.  When the gfp() functions are more friendly
1729  * towards high-order requests, this should be changed.
1730  *
1731  * Return: number of left-over bytes in a slab
1732  */
1733 static size_t calculate_slab_order(struct kmem_cache *cachep,
1734 				size_t size, slab_flags_t flags)
1735 {
1736 	size_t left_over = 0;
1737 	int gfporder;
1738 
1739 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1740 		unsigned int num;
1741 		size_t remainder;
1742 
1743 		num = cache_estimate(gfporder, size, flags, &remainder);
1744 		if (!num)
1745 			continue;
1746 
1747 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1748 		if (num > SLAB_OBJ_MAX_NUM)
1749 			break;
1750 
1751 		if (flags & CFLGS_OFF_SLAB) {
1752 			struct kmem_cache *freelist_cache;
1753 			size_t freelist_size;
1754 
1755 			freelist_size = num * sizeof(freelist_idx_t);
1756 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1757 			if (!freelist_cache)
1758 				continue;
1759 
1760 			/*
1761 			 * Needed to avoid possible looping condition
1762 			 * in cache_grow_begin()
1763 			 */
1764 			if (OFF_SLAB(freelist_cache))
1765 				continue;
1766 
1767 			/* check if off slab has enough benefit */
1768 			if (freelist_cache->size > cachep->size / 2)
1769 				continue;
1770 		}
1771 
1772 		/* Found something acceptable - save it away */
1773 		cachep->num = num;
1774 		cachep->gfporder = gfporder;
1775 		left_over = remainder;
1776 
1777 		/*
1778 		 * A VFS-reclaimable slab tends to have most allocations
1779 		 * as GFP_NOFS and we really don't want to have to be allocating
1780 		 * higher-order pages when we are unable to shrink dcache.
1781 		 */
1782 		if (flags & SLAB_RECLAIM_ACCOUNT)
1783 			break;
1784 
1785 		/*
1786 		 * Large number of objects is good, but very large slabs are
1787 		 * currently bad for the gfp()s.
1788 		 */
1789 		if (gfporder >= slab_max_order)
1790 			break;
1791 
1792 		/*
1793 		 * Acceptable internal fragmentation?
1794 		 */
1795 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1796 			break;
1797 	}
1798 	return left_over;
1799 }
1800 
1801 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1802 		struct kmem_cache *cachep, int entries, int batchcount)
1803 {
1804 	int cpu;
1805 	size_t size;
1806 	struct array_cache __percpu *cpu_cache;
1807 
1808 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1809 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1810 
1811 	if (!cpu_cache)
1812 		return NULL;
1813 
1814 	for_each_possible_cpu(cpu) {
1815 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1816 				entries, batchcount);
1817 	}
1818 
1819 	return cpu_cache;
1820 }
1821 
1822 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1823 {
1824 	if (slab_state >= FULL)
1825 		return enable_cpucache(cachep, gfp);
1826 
1827 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1828 	if (!cachep->cpu_cache)
1829 		return 1;
1830 
1831 	if (slab_state == DOWN) {
1832 		/* Creation of first cache (kmem_cache). */
1833 		set_up_node(kmem_cache, CACHE_CACHE);
1834 	} else if (slab_state == PARTIAL) {
1835 		/* For kmem_cache_node */
1836 		set_up_node(cachep, SIZE_NODE);
1837 	} else {
1838 		int node;
1839 
1840 		for_each_online_node(node) {
1841 			cachep->node[node] = kmalloc_node(
1842 				sizeof(struct kmem_cache_node), gfp, node);
1843 			BUG_ON(!cachep->node[node]);
1844 			kmem_cache_node_init(cachep->node[node]);
1845 		}
1846 	}
1847 
1848 	cachep->node[numa_mem_id()]->next_reap =
1849 			jiffies + REAPTIMEOUT_NODE +
1850 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1851 
1852 	cpu_cache_get(cachep)->avail = 0;
1853 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1854 	cpu_cache_get(cachep)->batchcount = 1;
1855 	cpu_cache_get(cachep)->touched = 0;
1856 	cachep->batchcount = 1;
1857 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1858 	return 0;
1859 }
1860 
1861 slab_flags_t kmem_cache_flags(unsigned int object_size,
1862 	slab_flags_t flags, const char *name,
1863 	void (*ctor)(void *))
1864 {
1865 	return flags;
1866 }
1867 
1868 struct kmem_cache *
1869 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1870 		   slab_flags_t flags, void (*ctor)(void *))
1871 {
1872 	struct kmem_cache *cachep;
1873 
1874 	cachep = find_mergeable(size, align, flags, name, ctor);
1875 	if (cachep) {
1876 		cachep->refcount++;
1877 
1878 		/*
1879 		 * Adjust the object sizes so that we clear
1880 		 * the complete object on kzalloc.
1881 		 */
1882 		cachep->object_size = max_t(int, cachep->object_size, size);
1883 	}
1884 	return cachep;
1885 }
1886 
1887 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1888 			size_t size, slab_flags_t flags)
1889 {
1890 	size_t left;
1891 
1892 	cachep->num = 0;
1893 
1894 	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1895 		return false;
1896 
1897 	left = calculate_slab_order(cachep, size,
1898 			flags | CFLGS_OBJFREELIST_SLAB);
1899 	if (!cachep->num)
1900 		return false;
1901 
1902 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1903 		return false;
1904 
1905 	cachep->colour = left / cachep->colour_off;
1906 
1907 	return true;
1908 }
1909 
1910 static bool set_off_slab_cache(struct kmem_cache *cachep,
1911 			size_t size, slab_flags_t flags)
1912 {
1913 	size_t left;
1914 
1915 	cachep->num = 0;
1916 
1917 	/*
1918 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1919 	 * to avoid recursive calls into kmemleak.
1920 	 */
1921 	if (flags & SLAB_NOLEAKTRACE)
1922 		return false;
1923 
1924 	/*
1925 	 * Size is large, assume best to place the slab management obj
1926 	 * off-slab (should allow better packing of objs).
1927 	 */
1928 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1929 	if (!cachep->num)
1930 		return false;
1931 
1932 	/*
1933 	 * If the slab has been placed off-slab, and we have enough space then
1934 	 * move it on-slab. This is at the expense of any extra colouring.
1935 	 */
1936 	if (left >= cachep->num * sizeof(freelist_idx_t))
1937 		return false;
1938 
1939 	cachep->colour = left / cachep->colour_off;
1940 
1941 	return true;
1942 }
1943 
1944 static bool set_on_slab_cache(struct kmem_cache *cachep,
1945 			size_t size, slab_flags_t flags)
1946 {
1947 	size_t left;
1948 
1949 	cachep->num = 0;
1950 
1951 	left = calculate_slab_order(cachep, size, flags);
1952 	if (!cachep->num)
1953 		return false;
1954 
1955 	cachep->colour = left / cachep->colour_off;
1956 
1957 	return true;
1958 }
1959 
1960 /**
1961  * __kmem_cache_create - Create a cache.
1962  * @cachep: cache management descriptor
1963  * @flags: SLAB flags
1964  *
1965  * Returns a ptr to the cache on success, NULL on failure.
1966  * Cannot be called within a int, but can be interrupted.
1967  * The @ctor is run when new pages are allocated by the cache.
1968  *
1969  * The flags are
1970  *
1971  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1972  * to catch references to uninitialised memory.
1973  *
1974  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1975  * for buffer overruns.
1976  *
1977  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1978  * cacheline.  This can be beneficial if you're counting cycles as closely
1979  * as davem.
1980  *
1981  * Return: a pointer to the created cache or %NULL in case of error
1982  */
1983 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1984 {
1985 	size_t ralign = BYTES_PER_WORD;
1986 	gfp_t gfp;
1987 	int err;
1988 	unsigned int size = cachep->size;
1989 
1990 #if DEBUG
1991 #if FORCED_DEBUG
1992 	/*
1993 	 * Enable redzoning and last user accounting, except for caches with
1994 	 * large objects, if the increased size would increase the object size
1995 	 * above the next power of two: caches with object sizes just above a
1996 	 * power of two have a significant amount of internal fragmentation.
1997 	 */
1998 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1999 						2 * sizeof(unsigned long long)))
2000 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2001 	if (!(flags & SLAB_TYPESAFE_BY_RCU))
2002 		flags |= SLAB_POISON;
2003 #endif
2004 #endif
2005 
2006 	/*
2007 	 * Check that size is in terms of words.  This is needed to avoid
2008 	 * unaligned accesses for some archs when redzoning is used, and makes
2009 	 * sure any on-slab bufctl's are also correctly aligned.
2010 	 */
2011 	size = ALIGN(size, BYTES_PER_WORD);
2012 
2013 	if (flags & SLAB_RED_ZONE) {
2014 		ralign = REDZONE_ALIGN;
2015 		/* If redzoning, ensure that the second redzone is suitably
2016 		 * aligned, by adjusting the object size accordingly. */
2017 		size = ALIGN(size, REDZONE_ALIGN);
2018 	}
2019 
2020 	/* 3) caller mandated alignment */
2021 	if (ralign < cachep->align) {
2022 		ralign = cachep->align;
2023 	}
2024 	/* disable debug if necessary */
2025 	if (ralign > __alignof__(unsigned long long))
2026 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2027 	/*
2028 	 * 4) Store it.
2029 	 */
2030 	cachep->align = ralign;
2031 	cachep->colour_off = cache_line_size();
2032 	/* Offset must be a multiple of the alignment. */
2033 	if (cachep->colour_off < cachep->align)
2034 		cachep->colour_off = cachep->align;
2035 
2036 	if (slab_is_available())
2037 		gfp = GFP_KERNEL;
2038 	else
2039 		gfp = GFP_NOWAIT;
2040 
2041 #if DEBUG
2042 
2043 	/*
2044 	 * Both debugging options require word-alignment which is calculated
2045 	 * into align above.
2046 	 */
2047 	if (flags & SLAB_RED_ZONE) {
2048 		/* add space for red zone words */
2049 		cachep->obj_offset += sizeof(unsigned long long);
2050 		size += 2 * sizeof(unsigned long long);
2051 	}
2052 	if (flags & SLAB_STORE_USER) {
2053 		/* user store requires one word storage behind the end of
2054 		 * the real object. But if the second red zone needs to be
2055 		 * aligned to 64 bits, we must allow that much space.
2056 		 */
2057 		if (flags & SLAB_RED_ZONE)
2058 			size += REDZONE_ALIGN;
2059 		else
2060 			size += BYTES_PER_WORD;
2061 	}
2062 #endif
2063 
2064 	kasan_cache_create(cachep, &size, &flags);
2065 
2066 	size = ALIGN(size, cachep->align);
2067 	/*
2068 	 * We should restrict the number of objects in a slab to implement
2069 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2070 	 */
2071 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2072 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2073 
2074 #if DEBUG
2075 	/*
2076 	 * To activate debug pagealloc, off-slab management is necessary
2077 	 * requirement. In early phase of initialization, small sized slab
2078 	 * doesn't get initialized so it would not be possible. So, we need
2079 	 * to check size >= 256. It guarantees that all necessary small
2080 	 * sized slab is initialized in current slab initialization sequence.
2081 	 */
2082 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2083 		size >= 256 && cachep->object_size > cache_line_size()) {
2084 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2085 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2086 
2087 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2088 				flags |= CFLGS_OFF_SLAB;
2089 				cachep->obj_offset += tmp_size - size;
2090 				size = tmp_size;
2091 				goto done;
2092 			}
2093 		}
2094 	}
2095 #endif
2096 
2097 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2098 		flags |= CFLGS_OBJFREELIST_SLAB;
2099 		goto done;
2100 	}
2101 
2102 	if (set_off_slab_cache(cachep, size, flags)) {
2103 		flags |= CFLGS_OFF_SLAB;
2104 		goto done;
2105 	}
2106 
2107 	if (set_on_slab_cache(cachep, size, flags))
2108 		goto done;
2109 
2110 	return -E2BIG;
2111 
2112 done:
2113 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2114 	cachep->flags = flags;
2115 	cachep->allocflags = __GFP_COMP;
2116 	if (flags & SLAB_CACHE_DMA)
2117 		cachep->allocflags |= GFP_DMA;
2118 	if (flags & SLAB_CACHE_DMA32)
2119 		cachep->allocflags |= GFP_DMA32;
2120 	if (flags & SLAB_RECLAIM_ACCOUNT)
2121 		cachep->allocflags |= __GFP_RECLAIMABLE;
2122 	cachep->size = size;
2123 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2124 
2125 #if DEBUG
2126 	/*
2127 	 * If we're going to use the generic kernel_map_pages()
2128 	 * poisoning, then it's going to smash the contents of
2129 	 * the redzone and userword anyhow, so switch them off.
2130 	 */
2131 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2132 		(cachep->flags & SLAB_POISON) &&
2133 		is_debug_pagealloc_cache(cachep))
2134 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2135 #endif
2136 
2137 	if (OFF_SLAB(cachep)) {
2138 		cachep->freelist_cache =
2139 			kmalloc_slab(cachep->freelist_size, 0u);
2140 	}
2141 
2142 	err = setup_cpu_cache(cachep, gfp);
2143 	if (err) {
2144 		__kmem_cache_release(cachep);
2145 		return err;
2146 	}
2147 
2148 	return 0;
2149 }
2150 
2151 #if DEBUG
2152 static void check_irq_off(void)
2153 {
2154 	BUG_ON(!irqs_disabled());
2155 }
2156 
2157 static void check_irq_on(void)
2158 {
2159 	BUG_ON(irqs_disabled());
2160 }
2161 
2162 static void check_mutex_acquired(void)
2163 {
2164 	BUG_ON(!mutex_is_locked(&slab_mutex));
2165 }
2166 
2167 static void check_spinlock_acquired(struct kmem_cache *cachep)
2168 {
2169 #ifdef CONFIG_SMP
2170 	check_irq_off();
2171 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2172 #endif
2173 }
2174 
2175 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2176 {
2177 #ifdef CONFIG_SMP
2178 	check_irq_off();
2179 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2180 #endif
2181 }
2182 
2183 #else
2184 #define check_irq_off()	do { } while(0)
2185 #define check_irq_on()	do { } while(0)
2186 #define check_mutex_acquired()	do { } while(0)
2187 #define check_spinlock_acquired(x) do { } while(0)
2188 #define check_spinlock_acquired_node(x, y) do { } while(0)
2189 #endif
2190 
2191 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2192 				int node, bool free_all, struct list_head *list)
2193 {
2194 	int tofree;
2195 
2196 	if (!ac || !ac->avail)
2197 		return;
2198 
2199 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2200 	if (tofree > ac->avail)
2201 		tofree = (ac->avail + 1) / 2;
2202 
2203 	free_block(cachep, ac->entry, tofree, node, list);
2204 	ac->avail -= tofree;
2205 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2206 }
2207 
2208 static void do_drain(void *arg)
2209 {
2210 	struct kmem_cache *cachep = arg;
2211 	struct array_cache *ac;
2212 	int node = numa_mem_id();
2213 	struct kmem_cache_node *n;
2214 	LIST_HEAD(list);
2215 
2216 	check_irq_off();
2217 	ac = cpu_cache_get(cachep);
2218 	n = get_node(cachep, node);
2219 	spin_lock(&n->list_lock);
2220 	free_block(cachep, ac->entry, ac->avail, node, &list);
2221 	spin_unlock(&n->list_lock);
2222 	slabs_destroy(cachep, &list);
2223 	ac->avail = 0;
2224 }
2225 
2226 static void drain_cpu_caches(struct kmem_cache *cachep)
2227 {
2228 	struct kmem_cache_node *n;
2229 	int node;
2230 	LIST_HEAD(list);
2231 
2232 	on_each_cpu(do_drain, cachep, 1);
2233 	check_irq_on();
2234 	for_each_kmem_cache_node(cachep, node, n)
2235 		if (n->alien)
2236 			drain_alien_cache(cachep, n->alien);
2237 
2238 	for_each_kmem_cache_node(cachep, node, n) {
2239 		spin_lock_irq(&n->list_lock);
2240 		drain_array_locked(cachep, n->shared, node, true, &list);
2241 		spin_unlock_irq(&n->list_lock);
2242 
2243 		slabs_destroy(cachep, &list);
2244 	}
2245 }
2246 
2247 /*
2248  * Remove slabs from the list of free slabs.
2249  * Specify the number of slabs to drain in tofree.
2250  *
2251  * Returns the actual number of slabs released.
2252  */
2253 static int drain_freelist(struct kmem_cache *cache,
2254 			struct kmem_cache_node *n, int tofree)
2255 {
2256 	struct list_head *p;
2257 	int nr_freed;
2258 	struct page *page;
2259 
2260 	nr_freed = 0;
2261 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2262 
2263 		spin_lock_irq(&n->list_lock);
2264 		p = n->slabs_free.prev;
2265 		if (p == &n->slabs_free) {
2266 			spin_unlock_irq(&n->list_lock);
2267 			goto out;
2268 		}
2269 
2270 		page = list_entry(p, struct page, lru);
2271 		list_del(&page->lru);
2272 		n->free_slabs--;
2273 		n->total_slabs--;
2274 		/*
2275 		 * Safe to drop the lock. The slab is no longer linked
2276 		 * to the cache.
2277 		 */
2278 		n->free_objects -= cache->num;
2279 		spin_unlock_irq(&n->list_lock);
2280 		slab_destroy(cache, page);
2281 		nr_freed++;
2282 	}
2283 out:
2284 	return nr_freed;
2285 }
2286 
2287 bool __kmem_cache_empty(struct kmem_cache *s)
2288 {
2289 	int node;
2290 	struct kmem_cache_node *n;
2291 
2292 	for_each_kmem_cache_node(s, node, n)
2293 		if (!list_empty(&n->slabs_full) ||
2294 		    !list_empty(&n->slabs_partial))
2295 			return false;
2296 	return true;
2297 }
2298 
2299 int __kmem_cache_shrink(struct kmem_cache *cachep)
2300 {
2301 	int ret = 0;
2302 	int node;
2303 	struct kmem_cache_node *n;
2304 
2305 	drain_cpu_caches(cachep);
2306 
2307 	check_irq_on();
2308 	for_each_kmem_cache_node(cachep, node, n) {
2309 		drain_freelist(cachep, n, INT_MAX);
2310 
2311 		ret += !list_empty(&n->slabs_full) ||
2312 			!list_empty(&n->slabs_partial);
2313 	}
2314 	return (ret ? 1 : 0);
2315 }
2316 
2317 #ifdef CONFIG_MEMCG
2318 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2319 {
2320 	__kmem_cache_shrink(cachep);
2321 }
2322 #endif
2323 
2324 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2325 {
2326 	return __kmem_cache_shrink(cachep);
2327 }
2328 
2329 void __kmem_cache_release(struct kmem_cache *cachep)
2330 {
2331 	int i;
2332 	struct kmem_cache_node *n;
2333 
2334 	cache_random_seq_destroy(cachep);
2335 
2336 	free_percpu(cachep->cpu_cache);
2337 
2338 	/* NUMA: free the node structures */
2339 	for_each_kmem_cache_node(cachep, i, n) {
2340 		kfree(n->shared);
2341 		free_alien_cache(n->alien);
2342 		kfree(n);
2343 		cachep->node[i] = NULL;
2344 	}
2345 }
2346 
2347 /*
2348  * Get the memory for a slab management obj.
2349  *
2350  * For a slab cache when the slab descriptor is off-slab, the
2351  * slab descriptor can't come from the same cache which is being created,
2352  * Because if it is the case, that means we defer the creation of
2353  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2354  * And we eventually call down to __kmem_cache_create(), which
2355  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2356  * This is a "chicken-and-egg" problem.
2357  *
2358  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2359  * which are all initialized during kmem_cache_init().
2360  */
2361 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2362 				   struct page *page, int colour_off,
2363 				   gfp_t local_flags, int nodeid)
2364 {
2365 	void *freelist;
2366 	void *addr = page_address(page);
2367 
2368 	page->s_mem = addr + colour_off;
2369 	page->active = 0;
2370 
2371 	if (OBJFREELIST_SLAB(cachep))
2372 		freelist = NULL;
2373 	else if (OFF_SLAB(cachep)) {
2374 		/* Slab management obj is off-slab. */
2375 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2376 					      local_flags, nodeid);
2377 		freelist = kasan_reset_tag(freelist);
2378 		if (!freelist)
2379 			return NULL;
2380 	} else {
2381 		/* We will use last bytes at the slab for freelist */
2382 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2383 				cachep->freelist_size;
2384 	}
2385 
2386 	return freelist;
2387 }
2388 
2389 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2390 {
2391 	return ((freelist_idx_t *)page->freelist)[idx];
2392 }
2393 
2394 static inline void set_free_obj(struct page *page,
2395 					unsigned int idx, freelist_idx_t val)
2396 {
2397 	((freelist_idx_t *)(page->freelist))[idx] = val;
2398 }
2399 
2400 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2401 {
2402 #if DEBUG
2403 	int i;
2404 
2405 	for (i = 0; i < cachep->num; i++) {
2406 		void *objp = index_to_obj(cachep, page, i);
2407 
2408 		if (cachep->flags & SLAB_STORE_USER)
2409 			*dbg_userword(cachep, objp) = NULL;
2410 
2411 		if (cachep->flags & SLAB_RED_ZONE) {
2412 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2413 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2414 		}
2415 		/*
2416 		 * Constructors are not allowed to allocate memory from the same
2417 		 * cache which they are a constructor for.  Otherwise, deadlock.
2418 		 * They must also be threaded.
2419 		 */
2420 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2421 			kasan_unpoison_object_data(cachep,
2422 						   objp + obj_offset(cachep));
2423 			cachep->ctor(objp + obj_offset(cachep));
2424 			kasan_poison_object_data(
2425 				cachep, objp + obj_offset(cachep));
2426 		}
2427 
2428 		if (cachep->flags & SLAB_RED_ZONE) {
2429 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2430 				slab_error(cachep, "constructor overwrote the end of an object");
2431 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2432 				slab_error(cachep, "constructor overwrote the start of an object");
2433 		}
2434 		/* need to poison the objs? */
2435 		if (cachep->flags & SLAB_POISON) {
2436 			poison_obj(cachep, objp, POISON_FREE);
2437 			slab_kernel_map(cachep, objp, 0, 0);
2438 		}
2439 	}
2440 #endif
2441 }
2442 
2443 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2444 /* Hold information during a freelist initialization */
2445 union freelist_init_state {
2446 	struct {
2447 		unsigned int pos;
2448 		unsigned int *list;
2449 		unsigned int count;
2450 	};
2451 	struct rnd_state rnd_state;
2452 };
2453 
2454 /*
2455  * Initialize the state based on the randomization methode available.
2456  * return true if the pre-computed list is available, false otherwize.
2457  */
2458 static bool freelist_state_initialize(union freelist_init_state *state,
2459 				struct kmem_cache *cachep,
2460 				unsigned int count)
2461 {
2462 	bool ret;
2463 	unsigned int rand;
2464 
2465 	/* Use best entropy available to define a random shift */
2466 	rand = get_random_int();
2467 
2468 	/* Use a random state if the pre-computed list is not available */
2469 	if (!cachep->random_seq) {
2470 		prandom_seed_state(&state->rnd_state, rand);
2471 		ret = false;
2472 	} else {
2473 		state->list = cachep->random_seq;
2474 		state->count = count;
2475 		state->pos = rand % count;
2476 		ret = true;
2477 	}
2478 	return ret;
2479 }
2480 
2481 /* Get the next entry on the list and randomize it using a random shift */
2482 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2483 {
2484 	if (state->pos >= state->count)
2485 		state->pos = 0;
2486 	return state->list[state->pos++];
2487 }
2488 
2489 /* Swap two freelist entries */
2490 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2491 {
2492 	swap(((freelist_idx_t *)page->freelist)[a],
2493 		((freelist_idx_t *)page->freelist)[b]);
2494 }
2495 
2496 /*
2497  * Shuffle the freelist initialization state based on pre-computed lists.
2498  * return true if the list was successfully shuffled, false otherwise.
2499  */
2500 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2501 {
2502 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2503 	union freelist_init_state state;
2504 	bool precomputed;
2505 
2506 	if (count < 2)
2507 		return false;
2508 
2509 	precomputed = freelist_state_initialize(&state, cachep, count);
2510 
2511 	/* Take a random entry as the objfreelist */
2512 	if (OBJFREELIST_SLAB(cachep)) {
2513 		if (!precomputed)
2514 			objfreelist = count - 1;
2515 		else
2516 			objfreelist = next_random_slot(&state);
2517 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2518 						obj_offset(cachep);
2519 		count--;
2520 	}
2521 
2522 	/*
2523 	 * On early boot, generate the list dynamically.
2524 	 * Later use a pre-computed list for speed.
2525 	 */
2526 	if (!precomputed) {
2527 		for (i = 0; i < count; i++)
2528 			set_free_obj(page, i, i);
2529 
2530 		/* Fisher-Yates shuffle */
2531 		for (i = count - 1; i > 0; i--) {
2532 			rand = prandom_u32_state(&state.rnd_state);
2533 			rand %= (i + 1);
2534 			swap_free_obj(page, i, rand);
2535 		}
2536 	} else {
2537 		for (i = 0; i < count; i++)
2538 			set_free_obj(page, i, next_random_slot(&state));
2539 	}
2540 
2541 	if (OBJFREELIST_SLAB(cachep))
2542 		set_free_obj(page, cachep->num - 1, objfreelist);
2543 
2544 	return true;
2545 }
2546 #else
2547 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2548 				struct page *page)
2549 {
2550 	return false;
2551 }
2552 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2553 
2554 static void cache_init_objs(struct kmem_cache *cachep,
2555 			    struct page *page)
2556 {
2557 	int i;
2558 	void *objp;
2559 	bool shuffled;
2560 
2561 	cache_init_objs_debug(cachep, page);
2562 
2563 	/* Try to randomize the freelist if enabled */
2564 	shuffled = shuffle_freelist(cachep, page);
2565 
2566 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2567 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2568 						obj_offset(cachep);
2569 	}
2570 
2571 	for (i = 0; i < cachep->num; i++) {
2572 		objp = index_to_obj(cachep, page, i);
2573 		objp = kasan_init_slab_obj(cachep, objp);
2574 
2575 		/* constructor could break poison info */
2576 		if (DEBUG == 0 && cachep->ctor) {
2577 			kasan_unpoison_object_data(cachep, objp);
2578 			cachep->ctor(objp);
2579 			kasan_poison_object_data(cachep, objp);
2580 		}
2581 
2582 		if (!shuffled)
2583 			set_free_obj(page, i, i);
2584 	}
2585 }
2586 
2587 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2588 {
2589 	void *objp;
2590 
2591 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2592 	page->active++;
2593 
2594 #if DEBUG
2595 	if (cachep->flags & SLAB_STORE_USER)
2596 		set_store_user_dirty(cachep);
2597 #endif
2598 
2599 	return objp;
2600 }
2601 
2602 static void slab_put_obj(struct kmem_cache *cachep,
2603 			struct page *page, void *objp)
2604 {
2605 	unsigned int objnr = obj_to_index(cachep, page, objp);
2606 #if DEBUG
2607 	unsigned int i;
2608 
2609 	/* Verify double free bug */
2610 	for (i = page->active; i < cachep->num; i++) {
2611 		if (get_free_obj(page, i) == objnr) {
2612 			pr_err("slab: double free detected in cache '%s', objp %px\n",
2613 			       cachep->name, objp);
2614 			BUG();
2615 		}
2616 	}
2617 #endif
2618 	page->active--;
2619 	if (!page->freelist)
2620 		page->freelist = objp + obj_offset(cachep);
2621 
2622 	set_free_obj(page, page->active, objnr);
2623 }
2624 
2625 /*
2626  * Map pages beginning at addr to the given cache and slab. This is required
2627  * for the slab allocator to be able to lookup the cache and slab of a
2628  * virtual address for kfree, ksize, and slab debugging.
2629  */
2630 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2631 			   void *freelist)
2632 {
2633 	page->slab_cache = cache;
2634 	page->freelist = freelist;
2635 }
2636 
2637 /*
2638  * Grow (by 1) the number of slabs within a cache.  This is called by
2639  * kmem_cache_alloc() when there are no active objs left in a cache.
2640  */
2641 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2642 				gfp_t flags, int nodeid)
2643 {
2644 	void *freelist;
2645 	size_t offset;
2646 	gfp_t local_flags;
2647 	int page_node;
2648 	struct kmem_cache_node *n;
2649 	struct page *page;
2650 
2651 	/*
2652 	 * Be lazy and only check for valid flags here,  keeping it out of the
2653 	 * critical path in kmem_cache_alloc().
2654 	 */
2655 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2656 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2657 		flags &= ~GFP_SLAB_BUG_MASK;
2658 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2659 				invalid_mask, &invalid_mask, flags, &flags);
2660 		dump_stack();
2661 	}
2662 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2663 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2664 
2665 	check_irq_off();
2666 	if (gfpflags_allow_blocking(local_flags))
2667 		local_irq_enable();
2668 
2669 	/*
2670 	 * Get mem for the objs.  Attempt to allocate a physical page from
2671 	 * 'nodeid'.
2672 	 */
2673 	page = kmem_getpages(cachep, local_flags, nodeid);
2674 	if (!page)
2675 		goto failed;
2676 
2677 	page_node = page_to_nid(page);
2678 	n = get_node(cachep, page_node);
2679 
2680 	/* Get colour for the slab, and cal the next value. */
2681 	n->colour_next++;
2682 	if (n->colour_next >= cachep->colour)
2683 		n->colour_next = 0;
2684 
2685 	offset = n->colour_next;
2686 	if (offset >= cachep->colour)
2687 		offset = 0;
2688 
2689 	offset *= cachep->colour_off;
2690 
2691 	/*
2692 	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2693 	 * page_address() in the latter returns a non-tagged pointer,
2694 	 * as it should be for slab pages.
2695 	 */
2696 	kasan_poison_slab(page);
2697 
2698 	/* Get slab management. */
2699 	freelist = alloc_slabmgmt(cachep, page, offset,
2700 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2701 	if (OFF_SLAB(cachep) && !freelist)
2702 		goto opps1;
2703 
2704 	slab_map_pages(cachep, page, freelist);
2705 
2706 	cache_init_objs(cachep, page);
2707 
2708 	if (gfpflags_allow_blocking(local_flags))
2709 		local_irq_disable();
2710 
2711 	return page;
2712 
2713 opps1:
2714 	kmem_freepages(cachep, page);
2715 failed:
2716 	if (gfpflags_allow_blocking(local_flags))
2717 		local_irq_disable();
2718 	return NULL;
2719 }
2720 
2721 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2722 {
2723 	struct kmem_cache_node *n;
2724 	void *list = NULL;
2725 
2726 	check_irq_off();
2727 
2728 	if (!page)
2729 		return;
2730 
2731 	INIT_LIST_HEAD(&page->lru);
2732 	n = get_node(cachep, page_to_nid(page));
2733 
2734 	spin_lock(&n->list_lock);
2735 	n->total_slabs++;
2736 	if (!page->active) {
2737 		list_add_tail(&page->lru, &(n->slabs_free));
2738 		n->free_slabs++;
2739 	} else
2740 		fixup_slab_list(cachep, n, page, &list);
2741 
2742 	STATS_INC_GROWN(cachep);
2743 	n->free_objects += cachep->num - page->active;
2744 	spin_unlock(&n->list_lock);
2745 
2746 	fixup_objfreelist_debug(cachep, &list);
2747 }
2748 
2749 #if DEBUG
2750 
2751 /*
2752  * Perform extra freeing checks:
2753  * - detect bad pointers.
2754  * - POISON/RED_ZONE checking
2755  */
2756 static void kfree_debugcheck(const void *objp)
2757 {
2758 	if (!virt_addr_valid(objp)) {
2759 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2760 		       (unsigned long)objp);
2761 		BUG();
2762 	}
2763 }
2764 
2765 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2766 {
2767 	unsigned long long redzone1, redzone2;
2768 
2769 	redzone1 = *dbg_redzone1(cache, obj);
2770 	redzone2 = *dbg_redzone2(cache, obj);
2771 
2772 	/*
2773 	 * Redzone is ok.
2774 	 */
2775 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2776 		return;
2777 
2778 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2779 		slab_error(cache, "double free detected");
2780 	else
2781 		slab_error(cache, "memory outside object was overwritten");
2782 
2783 	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2784 	       obj, redzone1, redzone2);
2785 }
2786 
2787 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2788 				   unsigned long caller)
2789 {
2790 	unsigned int objnr;
2791 	struct page *page;
2792 
2793 	BUG_ON(virt_to_cache(objp) != cachep);
2794 
2795 	objp -= obj_offset(cachep);
2796 	kfree_debugcheck(objp);
2797 	page = virt_to_head_page(objp);
2798 
2799 	if (cachep->flags & SLAB_RED_ZONE) {
2800 		verify_redzone_free(cachep, objp);
2801 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2802 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2803 	}
2804 	if (cachep->flags & SLAB_STORE_USER) {
2805 		set_store_user_dirty(cachep);
2806 		*dbg_userword(cachep, objp) = (void *)caller;
2807 	}
2808 
2809 	objnr = obj_to_index(cachep, page, objp);
2810 
2811 	BUG_ON(objnr >= cachep->num);
2812 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2813 
2814 	if (cachep->flags & SLAB_POISON) {
2815 		poison_obj(cachep, objp, POISON_FREE);
2816 		slab_kernel_map(cachep, objp, 0, caller);
2817 	}
2818 	return objp;
2819 }
2820 
2821 #else
2822 #define kfree_debugcheck(x) do { } while(0)
2823 #define cache_free_debugcheck(x,objp,z) (objp)
2824 #endif
2825 
2826 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2827 						void **list)
2828 {
2829 #if DEBUG
2830 	void *next = *list;
2831 	void *objp;
2832 
2833 	while (next) {
2834 		objp = next - obj_offset(cachep);
2835 		next = *(void **)next;
2836 		poison_obj(cachep, objp, POISON_FREE);
2837 	}
2838 #endif
2839 }
2840 
2841 static inline void fixup_slab_list(struct kmem_cache *cachep,
2842 				struct kmem_cache_node *n, struct page *page,
2843 				void **list)
2844 {
2845 	/* move slabp to correct slabp list: */
2846 	list_del(&page->lru);
2847 	if (page->active == cachep->num) {
2848 		list_add(&page->lru, &n->slabs_full);
2849 		if (OBJFREELIST_SLAB(cachep)) {
2850 #if DEBUG
2851 			/* Poisoning will be done without holding the lock */
2852 			if (cachep->flags & SLAB_POISON) {
2853 				void **objp = page->freelist;
2854 
2855 				*objp = *list;
2856 				*list = objp;
2857 			}
2858 #endif
2859 			page->freelist = NULL;
2860 		}
2861 	} else
2862 		list_add(&page->lru, &n->slabs_partial);
2863 }
2864 
2865 /* Try to find non-pfmemalloc slab if needed */
2866 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2867 					struct page *page, bool pfmemalloc)
2868 {
2869 	if (!page)
2870 		return NULL;
2871 
2872 	if (pfmemalloc)
2873 		return page;
2874 
2875 	if (!PageSlabPfmemalloc(page))
2876 		return page;
2877 
2878 	/* No need to keep pfmemalloc slab if we have enough free objects */
2879 	if (n->free_objects > n->free_limit) {
2880 		ClearPageSlabPfmemalloc(page);
2881 		return page;
2882 	}
2883 
2884 	/* Move pfmemalloc slab to the end of list to speed up next search */
2885 	list_del(&page->lru);
2886 	if (!page->active) {
2887 		list_add_tail(&page->lru, &n->slabs_free);
2888 		n->free_slabs++;
2889 	} else
2890 		list_add_tail(&page->lru, &n->slabs_partial);
2891 
2892 	list_for_each_entry(page, &n->slabs_partial, lru) {
2893 		if (!PageSlabPfmemalloc(page))
2894 			return page;
2895 	}
2896 
2897 	n->free_touched = 1;
2898 	list_for_each_entry(page, &n->slabs_free, lru) {
2899 		if (!PageSlabPfmemalloc(page)) {
2900 			n->free_slabs--;
2901 			return page;
2902 		}
2903 	}
2904 
2905 	return NULL;
2906 }
2907 
2908 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2909 {
2910 	struct page *page;
2911 
2912 	assert_spin_locked(&n->list_lock);
2913 	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2914 	if (!page) {
2915 		n->free_touched = 1;
2916 		page = list_first_entry_or_null(&n->slabs_free, struct page,
2917 						lru);
2918 		if (page)
2919 			n->free_slabs--;
2920 	}
2921 
2922 	if (sk_memalloc_socks())
2923 		page = get_valid_first_slab(n, page, pfmemalloc);
2924 
2925 	return page;
2926 }
2927 
2928 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2929 				struct kmem_cache_node *n, gfp_t flags)
2930 {
2931 	struct page *page;
2932 	void *obj;
2933 	void *list = NULL;
2934 
2935 	if (!gfp_pfmemalloc_allowed(flags))
2936 		return NULL;
2937 
2938 	spin_lock(&n->list_lock);
2939 	page = get_first_slab(n, true);
2940 	if (!page) {
2941 		spin_unlock(&n->list_lock);
2942 		return NULL;
2943 	}
2944 
2945 	obj = slab_get_obj(cachep, page);
2946 	n->free_objects--;
2947 
2948 	fixup_slab_list(cachep, n, page, &list);
2949 
2950 	spin_unlock(&n->list_lock);
2951 	fixup_objfreelist_debug(cachep, &list);
2952 
2953 	return obj;
2954 }
2955 
2956 /*
2957  * Slab list should be fixed up by fixup_slab_list() for existing slab
2958  * or cache_grow_end() for new slab
2959  */
2960 static __always_inline int alloc_block(struct kmem_cache *cachep,
2961 		struct array_cache *ac, struct page *page, int batchcount)
2962 {
2963 	/*
2964 	 * There must be at least one object available for
2965 	 * allocation.
2966 	 */
2967 	BUG_ON(page->active >= cachep->num);
2968 
2969 	while (page->active < cachep->num && batchcount--) {
2970 		STATS_INC_ALLOCED(cachep);
2971 		STATS_INC_ACTIVE(cachep);
2972 		STATS_SET_HIGH(cachep);
2973 
2974 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2975 	}
2976 
2977 	return batchcount;
2978 }
2979 
2980 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2981 {
2982 	int batchcount;
2983 	struct kmem_cache_node *n;
2984 	struct array_cache *ac, *shared;
2985 	int node;
2986 	void *list = NULL;
2987 	struct page *page;
2988 
2989 	check_irq_off();
2990 	node = numa_mem_id();
2991 
2992 	ac = cpu_cache_get(cachep);
2993 	batchcount = ac->batchcount;
2994 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2995 		/*
2996 		 * If there was little recent activity on this cache, then
2997 		 * perform only a partial refill.  Otherwise we could generate
2998 		 * refill bouncing.
2999 		 */
3000 		batchcount = BATCHREFILL_LIMIT;
3001 	}
3002 	n = get_node(cachep, node);
3003 
3004 	BUG_ON(ac->avail > 0 || !n);
3005 	shared = READ_ONCE(n->shared);
3006 	if (!n->free_objects && (!shared || !shared->avail))
3007 		goto direct_grow;
3008 
3009 	spin_lock(&n->list_lock);
3010 	shared = READ_ONCE(n->shared);
3011 
3012 	/* See if we can refill from the shared array */
3013 	if (shared && transfer_objects(ac, shared, batchcount)) {
3014 		shared->touched = 1;
3015 		goto alloc_done;
3016 	}
3017 
3018 	while (batchcount > 0) {
3019 		/* Get slab alloc is to come from. */
3020 		page = get_first_slab(n, false);
3021 		if (!page)
3022 			goto must_grow;
3023 
3024 		check_spinlock_acquired(cachep);
3025 
3026 		batchcount = alloc_block(cachep, ac, page, batchcount);
3027 		fixup_slab_list(cachep, n, page, &list);
3028 	}
3029 
3030 must_grow:
3031 	n->free_objects -= ac->avail;
3032 alloc_done:
3033 	spin_unlock(&n->list_lock);
3034 	fixup_objfreelist_debug(cachep, &list);
3035 
3036 direct_grow:
3037 	if (unlikely(!ac->avail)) {
3038 		/* Check if we can use obj in pfmemalloc slab */
3039 		if (sk_memalloc_socks()) {
3040 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3041 
3042 			if (obj)
3043 				return obj;
3044 		}
3045 
3046 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3047 
3048 		/*
3049 		 * cache_grow_begin() can reenable interrupts,
3050 		 * then ac could change.
3051 		 */
3052 		ac = cpu_cache_get(cachep);
3053 		if (!ac->avail && page)
3054 			alloc_block(cachep, ac, page, batchcount);
3055 		cache_grow_end(cachep, page);
3056 
3057 		if (!ac->avail)
3058 			return NULL;
3059 	}
3060 	ac->touched = 1;
3061 
3062 	return ac->entry[--ac->avail];
3063 }
3064 
3065 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3066 						gfp_t flags)
3067 {
3068 	might_sleep_if(gfpflags_allow_blocking(flags));
3069 }
3070 
3071 #if DEBUG
3072 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3073 				gfp_t flags, void *objp, unsigned long caller)
3074 {
3075 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3076 	if (!objp)
3077 		return objp;
3078 	if (cachep->flags & SLAB_POISON) {
3079 		check_poison_obj(cachep, objp);
3080 		slab_kernel_map(cachep, objp, 1, 0);
3081 		poison_obj(cachep, objp, POISON_INUSE);
3082 	}
3083 	if (cachep->flags & SLAB_STORE_USER)
3084 		*dbg_userword(cachep, objp) = (void *)caller;
3085 
3086 	if (cachep->flags & SLAB_RED_ZONE) {
3087 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3088 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3089 			slab_error(cachep, "double free, or memory outside object was overwritten");
3090 			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3091 			       objp, *dbg_redzone1(cachep, objp),
3092 			       *dbg_redzone2(cachep, objp));
3093 		}
3094 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3095 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3096 	}
3097 
3098 	objp += obj_offset(cachep);
3099 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3100 		cachep->ctor(objp);
3101 	if (ARCH_SLAB_MINALIGN &&
3102 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3103 		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3104 		       objp, (int)ARCH_SLAB_MINALIGN);
3105 	}
3106 	return objp;
3107 }
3108 #else
3109 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3110 #endif
3111 
3112 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3113 {
3114 	void *objp;
3115 	struct array_cache *ac;
3116 
3117 	check_irq_off();
3118 
3119 	ac = cpu_cache_get(cachep);
3120 	if (likely(ac->avail)) {
3121 		ac->touched = 1;
3122 		objp = ac->entry[--ac->avail];
3123 
3124 		STATS_INC_ALLOCHIT(cachep);
3125 		goto out;
3126 	}
3127 
3128 	STATS_INC_ALLOCMISS(cachep);
3129 	objp = cache_alloc_refill(cachep, flags);
3130 	/*
3131 	 * the 'ac' may be updated by cache_alloc_refill(),
3132 	 * and kmemleak_erase() requires its correct value.
3133 	 */
3134 	ac = cpu_cache_get(cachep);
3135 
3136 out:
3137 	/*
3138 	 * To avoid a false negative, if an object that is in one of the
3139 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3140 	 * treat the array pointers as a reference to the object.
3141 	 */
3142 	if (objp)
3143 		kmemleak_erase(&ac->entry[ac->avail]);
3144 	return objp;
3145 }
3146 
3147 #ifdef CONFIG_NUMA
3148 /*
3149  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3150  *
3151  * If we are in_interrupt, then process context, including cpusets and
3152  * mempolicy, may not apply and should not be used for allocation policy.
3153  */
3154 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3155 {
3156 	int nid_alloc, nid_here;
3157 
3158 	if (in_interrupt() || (flags & __GFP_THISNODE))
3159 		return NULL;
3160 	nid_alloc = nid_here = numa_mem_id();
3161 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3162 		nid_alloc = cpuset_slab_spread_node();
3163 	else if (current->mempolicy)
3164 		nid_alloc = mempolicy_slab_node();
3165 	if (nid_alloc != nid_here)
3166 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3167 	return NULL;
3168 }
3169 
3170 /*
3171  * Fallback function if there was no memory available and no objects on a
3172  * certain node and fall back is permitted. First we scan all the
3173  * available node for available objects. If that fails then we
3174  * perform an allocation without specifying a node. This allows the page
3175  * allocator to do its reclaim / fallback magic. We then insert the
3176  * slab into the proper nodelist and then allocate from it.
3177  */
3178 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3179 {
3180 	struct zonelist *zonelist;
3181 	struct zoneref *z;
3182 	struct zone *zone;
3183 	enum zone_type high_zoneidx = gfp_zone(flags);
3184 	void *obj = NULL;
3185 	struct page *page;
3186 	int nid;
3187 	unsigned int cpuset_mems_cookie;
3188 
3189 	if (flags & __GFP_THISNODE)
3190 		return NULL;
3191 
3192 retry_cpuset:
3193 	cpuset_mems_cookie = read_mems_allowed_begin();
3194 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3195 
3196 retry:
3197 	/*
3198 	 * Look through allowed nodes for objects available
3199 	 * from existing per node queues.
3200 	 */
3201 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3202 		nid = zone_to_nid(zone);
3203 
3204 		if (cpuset_zone_allowed(zone, flags) &&
3205 			get_node(cache, nid) &&
3206 			get_node(cache, nid)->free_objects) {
3207 				obj = ____cache_alloc_node(cache,
3208 					gfp_exact_node(flags), nid);
3209 				if (obj)
3210 					break;
3211 		}
3212 	}
3213 
3214 	if (!obj) {
3215 		/*
3216 		 * This allocation will be performed within the constraints
3217 		 * of the current cpuset / memory policy requirements.
3218 		 * We may trigger various forms of reclaim on the allowed
3219 		 * set and go into memory reserves if necessary.
3220 		 */
3221 		page = cache_grow_begin(cache, flags, numa_mem_id());
3222 		cache_grow_end(cache, page);
3223 		if (page) {
3224 			nid = page_to_nid(page);
3225 			obj = ____cache_alloc_node(cache,
3226 				gfp_exact_node(flags), nid);
3227 
3228 			/*
3229 			 * Another processor may allocate the objects in
3230 			 * the slab since we are not holding any locks.
3231 			 */
3232 			if (!obj)
3233 				goto retry;
3234 		}
3235 	}
3236 
3237 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3238 		goto retry_cpuset;
3239 	return obj;
3240 }
3241 
3242 /*
3243  * A interface to enable slab creation on nodeid
3244  */
3245 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3246 				int nodeid)
3247 {
3248 	struct page *page;
3249 	struct kmem_cache_node *n;
3250 	void *obj = NULL;
3251 	void *list = NULL;
3252 
3253 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3254 	n = get_node(cachep, nodeid);
3255 	BUG_ON(!n);
3256 
3257 	check_irq_off();
3258 	spin_lock(&n->list_lock);
3259 	page = get_first_slab(n, false);
3260 	if (!page)
3261 		goto must_grow;
3262 
3263 	check_spinlock_acquired_node(cachep, nodeid);
3264 
3265 	STATS_INC_NODEALLOCS(cachep);
3266 	STATS_INC_ACTIVE(cachep);
3267 	STATS_SET_HIGH(cachep);
3268 
3269 	BUG_ON(page->active == cachep->num);
3270 
3271 	obj = slab_get_obj(cachep, page);
3272 	n->free_objects--;
3273 
3274 	fixup_slab_list(cachep, n, page, &list);
3275 
3276 	spin_unlock(&n->list_lock);
3277 	fixup_objfreelist_debug(cachep, &list);
3278 	return obj;
3279 
3280 must_grow:
3281 	spin_unlock(&n->list_lock);
3282 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3283 	if (page) {
3284 		/* This slab isn't counted yet so don't update free_objects */
3285 		obj = slab_get_obj(cachep, page);
3286 	}
3287 	cache_grow_end(cachep, page);
3288 
3289 	return obj ? obj : fallback_alloc(cachep, flags);
3290 }
3291 
3292 static __always_inline void *
3293 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3294 		   unsigned long caller)
3295 {
3296 	unsigned long save_flags;
3297 	void *ptr;
3298 	int slab_node = numa_mem_id();
3299 
3300 	flags &= gfp_allowed_mask;
3301 	cachep = slab_pre_alloc_hook(cachep, flags);
3302 	if (unlikely(!cachep))
3303 		return NULL;
3304 
3305 	cache_alloc_debugcheck_before(cachep, flags);
3306 	local_irq_save(save_flags);
3307 
3308 	if (nodeid == NUMA_NO_NODE)
3309 		nodeid = slab_node;
3310 
3311 	if (unlikely(!get_node(cachep, nodeid))) {
3312 		/* Node not bootstrapped yet */
3313 		ptr = fallback_alloc(cachep, flags);
3314 		goto out;
3315 	}
3316 
3317 	if (nodeid == slab_node) {
3318 		/*
3319 		 * Use the locally cached objects if possible.
3320 		 * However ____cache_alloc does not allow fallback
3321 		 * to other nodes. It may fail while we still have
3322 		 * objects on other nodes available.
3323 		 */
3324 		ptr = ____cache_alloc(cachep, flags);
3325 		if (ptr)
3326 			goto out;
3327 	}
3328 	/* ___cache_alloc_node can fall back to other nodes */
3329 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3330   out:
3331 	local_irq_restore(save_flags);
3332 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3333 
3334 	if (unlikely(flags & __GFP_ZERO) && ptr)
3335 		memset(ptr, 0, cachep->object_size);
3336 
3337 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3338 	return ptr;
3339 }
3340 
3341 static __always_inline void *
3342 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3343 {
3344 	void *objp;
3345 
3346 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3347 		objp = alternate_node_alloc(cache, flags);
3348 		if (objp)
3349 			goto out;
3350 	}
3351 	objp = ____cache_alloc(cache, flags);
3352 
3353 	/*
3354 	 * We may just have run out of memory on the local node.
3355 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3356 	 */
3357 	if (!objp)
3358 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3359 
3360   out:
3361 	return objp;
3362 }
3363 #else
3364 
3365 static __always_inline void *
3366 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3367 {
3368 	return ____cache_alloc(cachep, flags);
3369 }
3370 
3371 #endif /* CONFIG_NUMA */
3372 
3373 static __always_inline void *
3374 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3375 {
3376 	unsigned long save_flags;
3377 	void *objp;
3378 
3379 	flags &= gfp_allowed_mask;
3380 	cachep = slab_pre_alloc_hook(cachep, flags);
3381 	if (unlikely(!cachep))
3382 		return NULL;
3383 
3384 	cache_alloc_debugcheck_before(cachep, flags);
3385 	local_irq_save(save_flags);
3386 	objp = __do_cache_alloc(cachep, flags);
3387 	local_irq_restore(save_flags);
3388 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3389 	prefetchw(objp);
3390 
3391 	if (unlikely(flags & __GFP_ZERO) && objp)
3392 		memset(objp, 0, cachep->object_size);
3393 
3394 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3395 	return objp;
3396 }
3397 
3398 /*
3399  * Caller needs to acquire correct kmem_cache_node's list_lock
3400  * @list: List of detached free slabs should be freed by caller
3401  */
3402 static void free_block(struct kmem_cache *cachep, void **objpp,
3403 			int nr_objects, int node, struct list_head *list)
3404 {
3405 	int i;
3406 	struct kmem_cache_node *n = get_node(cachep, node);
3407 	struct page *page;
3408 
3409 	n->free_objects += nr_objects;
3410 
3411 	for (i = 0; i < nr_objects; i++) {
3412 		void *objp;
3413 		struct page *page;
3414 
3415 		objp = objpp[i];
3416 
3417 		page = virt_to_head_page(objp);
3418 		list_del(&page->lru);
3419 		check_spinlock_acquired_node(cachep, node);
3420 		slab_put_obj(cachep, page, objp);
3421 		STATS_DEC_ACTIVE(cachep);
3422 
3423 		/* fixup slab chains */
3424 		if (page->active == 0) {
3425 			list_add(&page->lru, &n->slabs_free);
3426 			n->free_slabs++;
3427 		} else {
3428 			/* Unconditionally move a slab to the end of the
3429 			 * partial list on free - maximum time for the
3430 			 * other objects to be freed, too.
3431 			 */
3432 			list_add_tail(&page->lru, &n->slabs_partial);
3433 		}
3434 	}
3435 
3436 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3437 		n->free_objects -= cachep->num;
3438 
3439 		page = list_last_entry(&n->slabs_free, struct page, lru);
3440 		list_move(&page->lru, list);
3441 		n->free_slabs--;
3442 		n->total_slabs--;
3443 	}
3444 }
3445 
3446 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3447 {
3448 	int batchcount;
3449 	struct kmem_cache_node *n;
3450 	int node = numa_mem_id();
3451 	LIST_HEAD(list);
3452 
3453 	batchcount = ac->batchcount;
3454 
3455 	check_irq_off();
3456 	n = get_node(cachep, node);
3457 	spin_lock(&n->list_lock);
3458 	if (n->shared) {
3459 		struct array_cache *shared_array = n->shared;
3460 		int max = shared_array->limit - shared_array->avail;
3461 		if (max) {
3462 			if (batchcount > max)
3463 				batchcount = max;
3464 			memcpy(&(shared_array->entry[shared_array->avail]),
3465 			       ac->entry, sizeof(void *) * batchcount);
3466 			shared_array->avail += batchcount;
3467 			goto free_done;
3468 		}
3469 	}
3470 
3471 	free_block(cachep, ac->entry, batchcount, node, &list);
3472 free_done:
3473 #if STATS
3474 	{
3475 		int i = 0;
3476 		struct page *page;
3477 
3478 		list_for_each_entry(page, &n->slabs_free, lru) {
3479 			BUG_ON(page->active);
3480 
3481 			i++;
3482 		}
3483 		STATS_SET_FREEABLE(cachep, i);
3484 	}
3485 #endif
3486 	spin_unlock(&n->list_lock);
3487 	slabs_destroy(cachep, &list);
3488 	ac->avail -= batchcount;
3489 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3490 }
3491 
3492 /*
3493  * Release an obj back to its cache. If the obj has a constructed state, it must
3494  * be in this state _before_ it is released.  Called with disabled ints.
3495  */
3496 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3497 					 unsigned long caller)
3498 {
3499 	/* Put the object into the quarantine, don't touch it for now. */
3500 	if (kasan_slab_free(cachep, objp, _RET_IP_))
3501 		return;
3502 
3503 	___cache_free(cachep, objp, caller);
3504 }
3505 
3506 void ___cache_free(struct kmem_cache *cachep, void *objp,
3507 		unsigned long caller)
3508 {
3509 	struct array_cache *ac = cpu_cache_get(cachep);
3510 
3511 	check_irq_off();
3512 	kmemleak_free_recursive(objp, cachep->flags);
3513 	objp = cache_free_debugcheck(cachep, objp, caller);
3514 
3515 	/*
3516 	 * Skip calling cache_free_alien() when the platform is not numa.
3517 	 * This will avoid cache misses that happen while accessing slabp (which
3518 	 * is per page memory  reference) to get nodeid. Instead use a global
3519 	 * variable to skip the call, which is mostly likely to be present in
3520 	 * the cache.
3521 	 */
3522 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3523 		return;
3524 
3525 	if (ac->avail < ac->limit) {
3526 		STATS_INC_FREEHIT(cachep);
3527 	} else {
3528 		STATS_INC_FREEMISS(cachep);
3529 		cache_flusharray(cachep, ac);
3530 	}
3531 
3532 	if (sk_memalloc_socks()) {
3533 		struct page *page = virt_to_head_page(objp);
3534 
3535 		if (unlikely(PageSlabPfmemalloc(page))) {
3536 			cache_free_pfmemalloc(cachep, page, objp);
3537 			return;
3538 		}
3539 	}
3540 
3541 	ac->entry[ac->avail++] = objp;
3542 }
3543 
3544 /**
3545  * kmem_cache_alloc - Allocate an object
3546  * @cachep: The cache to allocate from.
3547  * @flags: See kmalloc().
3548  *
3549  * Allocate an object from this cache.  The flags are only relevant
3550  * if the cache has no available objects.
3551  *
3552  * Return: pointer to the new object or %NULL in case of error
3553  */
3554 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3555 {
3556 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3557 
3558 	trace_kmem_cache_alloc(_RET_IP_, ret,
3559 			       cachep->object_size, cachep->size, flags);
3560 
3561 	return ret;
3562 }
3563 EXPORT_SYMBOL(kmem_cache_alloc);
3564 
3565 static __always_inline void
3566 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3567 				  size_t size, void **p, unsigned long caller)
3568 {
3569 	size_t i;
3570 
3571 	for (i = 0; i < size; i++)
3572 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3573 }
3574 
3575 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3576 			  void **p)
3577 {
3578 	size_t i;
3579 
3580 	s = slab_pre_alloc_hook(s, flags);
3581 	if (!s)
3582 		return 0;
3583 
3584 	cache_alloc_debugcheck_before(s, flags);
3585 
3586 	local_irq_disable();
3587 	for (i = 0; i < size; i++) {
3588 		void *objp = __do_cache_alloc(s, flags);
3589 
3590 		if (unlikely(!objp))
3591 			goto error;
3592 		p[i] = objp;
3593 	}
3594 	local_irq_enable();
3595 
3596 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3597 
3598 	/* Clear memory outside IRQ disabled section */
3599 	if (unlikely(flags & __GFP_ZERO))
3600 		for (i = 0; i < size; i++)
3601 			memset(p[i], 0, s->object_size);
3602 
3603 	slab_post_alloc_hook(s, flags, size, p);
3604 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3605 	return size;
3606 error:
3607 	local_irq_enable();
3608 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3609 	slab_post_alloc_hook(s, flags, i, p);
3610 	__kmem_cache_free_bulk(s, i, p);
3611 	return 0;
3612 }
3613 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3614 
3615 #ifdef CONFIG_TRACING
3616 void *
3617 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3618 {
3619 	void *ret;
3620 
3621 	ret = slab_alloc(cachep, flags, _RET_IP_);
3622 
3623 	ret = kasan_kmalloc(cachep, ret, size, flags);
3624 	trace_kmalloc(_RET_IP_, ret,
3625 		      size, cachep->size, flags);
3626 	return ret;
3627 }
3628 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3629 #endif
3630 
3631 #ifdef CONFIG_NUMA
3632 /**
3633  * kmem_cache_alloc_node - Allocate an object on the specified node
3634  * @cachep: The cache to allocate from.
3635  * @flags: See kmalloc().
3636  * @nodeid: node number of the target node.
3637  *
3638  * Identical to kmem_cache_alloc but it will allocate memory on the given
3639  * node, which can improve the performance for cpu bound structures.
3640  *
3641  * Fallback to other node is possible if __GFP_THISNODE is not set.
3642  *
3643  * Return: pointer to the new object or %NULL in case of error
3644  */
3645 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3646 {
3647 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3648 
3649 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3650 				    cachep->object_size, cachep->size,
3651 				    flags, nodeid);
3652 
3653 	return ret;
3654 }
3655 EXPORT_SYMBOL(kmem_cache_alloc_node);
3656 
3657 #ifdef CONFIG_TRACING
3658 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3659 				  gfp_t flags,
3660 				  int nodeid,
3661 				  size_t size)
3662 {
3663 	void *ret;
3664 
3665 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3666 
3667 	ret = kasan_kmalloc(cachep, ret, size, flags);
3668 	trace_kmalloc_node(_RET_IP_, ret,
3669 			   size, cachep->size,
3670 			   flags, nodeid);
3671 	return ret;
3672 }
3673 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3674 #endif
3675 
3676 static __always_inline void *
3677 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3678 {
3679 	struct kmem_cache *cachep;
3680 	void *ret;
3681 
3682 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3683 		return NULL;
3684 	cachep = kmalloc_slab(size, flags);
3685 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3686 		return cachep;
3687 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3688 	ret = kasan_kmalloc(cachep, ret, size, flags);
3689 
3690 	return ret;
3691 }
3692 
3693 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3694 {
3695 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3696 }
3697 EXPORT_SYMBOL(__kmalloc_node);
3698 
3699 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3700 		int node, unsigned long caller)
3701 {
3702 	return __do_kmalloc_node(size, flags, node, caller);
3703 }
3704 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3705 #endif /* CONFIG_NUMA */
3706 
3707 /**
3708  * __do_kmalloc - allocate memory
3709  * @size: how many bytes of memory are required.
3710  * @flags: the type of memory to allocate (see kmalloc).
3711  * @caller: function caller for debug tracking of the caller
3712  *
3713  * Return: pointer to the allocated memory or %NULL in case of error
3714  */
3715 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3716 					  unsigned long caller)
3717 {
3718 	struct kmem_cache *cachep;
3719 	void *ret;
3720 
3721 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3722 		return NULL;
3723 	cachep = kmalloc_slab(size, flags);
3724 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3725 		return cachep;
3726 	ret = slab_alloc(cachep, flags, caller);
3727 
3728 	ret = kasan_kmalloc(cachep, ret, size, flags);
3729 	trace_kmalloc(caller, ret,
3730 		      size, cachep->size, flags);
3731 
3732 	return ret;
3733 }
3734 
3735 void *__kmalloc(size_t size, gfp_t flags)
3736 {
3737 	return __do_kmalloc(size, flags, _RET_IP_);
3738 }
3739 EXPORT_SYMBOL(__kmalloc);
3740 
3741 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3742 {
3743 	return __do_kmalloc(size, flags, caller);
3744 }
3745 EXPORT_SYMBOL(__kmalloc_track_caller);
3746 
3747 /**
3748  * kmem_cache_free - Deallocate an object
3749  * @cachep: The cache the allocation was from.
3750  * @objp: The previously allocated object.
3751  *
3752  * Free an object which was previously allocated from this
3753  * cache.
3754  */
3755 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3756 {
3757 	unsigned long flags;
3758 	cachep = cache_from_obj(cachep, objp);
3759 	if (!cachep)
3760 		return;
3761 
3762 	local_irq_save(flags);
3763 	debug_check_no_locks_freed(objp, cachep->object_size);
3764 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3765 		debug_check_no_obj_freed(objp, cachep->object_size);
3766 	__cache_free(cachep, objp, _RET_IP_);
3767 	local_irq_restore(flags);
3768 
3769 	trace_kmem_cache_free(_RET_IP_, objp);
3770 }
3771 EXPORT_SYMBOL(kmem_cache_free);
3772 
3773 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3774 {
3775 	struct kmem_cache *s;
3776 	size_t i;
3777 
3778 	local_irq_disable();
3779 	for (i = 0; i < size; i++) {
3780 		void *objp = p[i];
3781 
3782 		if (!orig_s) /* called via kfree_bulk */
3783 			s = virt_to_cache(objp);
3784 		else
3785 			s = cache_from_obj(orig_s, objp);
3786 
3787 		debug_check_no_locks_freed(objp, s->object_size);
3788 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3789 			debug_check_no_obj_freed(objp, s->object_size);
3790 
3791 		__cache_free(s, objp, _RET_IP_);
3792 	}
3793 	local_irq_enable();
3794 
3795 	/* FIXME: add tracing */
3796 }
3797 EXPORT_SYMBOL(kmem_cache_free_bulk);
3798 
3799 /**
3800  * kfree - free previously allocated memory
3801  * @objp: pointer returned by kmalloc.
3802  *
3803  * If @objp is NULL, no operation is performed.
3804  *
3805  * Don't free memory not originally allocated by kmalloc()
3806  * or you will run into trouble.
3807  */
3808 void kfree(const void *objp)
3809 {
3810 	struct kmem_cache *c;
3811 	unsigned long flags;
3812 
3813 	trace_kfree(_RET_IP_, objp);
3814 
3815 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3816 		return;
3817 	local_irq_save(flags);
3818 	kfree_debugcheck(objp);
3819 	c = virt_to_cache(objp);
3820 	debug_check_no_locks_freed(objp, c->object_size);
3821 
3822 	debug_check_no_obj_freed(objp, c->object_size);
3823 	__cache_free(c, (void *)objp, _RET_IP_);
3824 	local_irq_restore(flags);
3825 }
3826 EXPORT_SYMBOL(kfree);
3827 
3828 /*
3829  * This initializes kmem_cache_node or resizes various caches for all nodes.
3830  */
3831 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3832 {
3833 	int ret;
3834 	int node;
3835 	struct kmem_cache_node *n;
3836 
3837 	for_each_online_node(node) {
3838 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3839 		if (ret)
3840 			goto fail;
3841 
3842 	}
3843 
3844 	return 0;
3845 
3846 fail:
3847 	if (!cachep->list.next) {
3848 		/* Cache is not active yet. Roll back what we did */
3849 		node--;
3850 		while (node >= 0) {
3851 			n = get_node(cachep, node);
3852 			if (n) {
3853 				kfree(n->shared);
3854 				free_alien_cache(n->alien);
3855 				kfree(n);
3856 				cachep->node[node] = NULL;
3857 			}
3858 			node--;
3859 		}
3860 	}
3861 	return -ENOMEM;
3862 }
3863 
3864 /* Always called with the slab_mutex held */
3865 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3866 				int batchcount, int shared, gfp_t gfp)
3867 {
3868 	struct array_cache __percpu *cpu_cache, *prev;
3869 	int cpu;
3870 
3871 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3872 	if (!cpu_cache)
3873 		return -ENOMEM;
3874 
3875 	prev = cachep->cpu_cache;
3876 	cachep->cpu_cache = cpu_cache;
3877 	/*
3878 	 * Without a previous cpu_cache there's no need to synchronize remote
3879 	 * cpus, so skip the IPIs.
3880 	 */
3881 	if (prev)
3882 		kick_all_cpus_sync();
3883 
3884 	check_irq_on();
3885 	cachep->batchcount = batchcount;
3886 	cachep->limit = limit;
3887 	cachep->shared = shared;
3888 
3889 	if (!prev)
3890 		goto setup_node;
3891 
3892 	for_each_online_cpu(cpu) {
3893 		LIST_HEAD(list);
3894 		int node;
3895 		struct kmem_cache_node *n;
3896 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3897 
3898 		node = cpu_to_mem(cpu);
3899 		n = get_node(cachep, node);
3900 		spin_lock_irq(&n->list_lock);
3901 		free_block(cachep, ac->entry, ac->avail, node, &list);
3902 		spin_unlock_irq(&n->list_lock);
3903 		slabs_destroy(cachep, &list);
3904 	}
3905 	free_percpu(prev);
3906 
3907 setup_node:
3908 	return setup_kmem_cache_nodes(cachep, gfp);
3909 }
3910 
3911 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3912 				int batchcount, int shared, gfp_t gfp)
3913 {
3914 	int ret;
3915 	struct kmem_cache *c;
3916 
3917 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3918 
3919 	if (slab_state < FULL)
3920 		return ret;
3921 
3922 	if ((ret < 0) || !is_root_cache(cachep))
3923 		return ret;
3924 
3925 	lockdep_assert_held(&slab_mutex);
3926 	for_each_memcg_cache(c, cachep) {
3927 		/* return value determined by the root cache only */
3928 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3929 	}
3930 
3931 	return ret;
3932 }
3933 
3934 /* Called with slab_mutex held always */
3935 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3936 {
3937 	int err;
3938 	int limit = 0;
3939 	int shared = 0;
3940 	int batchcount = 0;
3941 
3942 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3943 	if (err)
3944 		goto end;
3945 
3946 	if (!is_root_cache(cachep)) {
3947 		struct kmem_cache *root = memcg_root_cache(cachep);
3948 		limit = root->limit;
3949 		shared = root->shared;
3950 		batchcount = root->batchcount;
3951 	}
3952 
3953 	if (limit && shared && batchcount)
3954 		goto skip_setup;
3955 	/*
3956 	 * The head array serves three purposes:
3957 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3958 	 * - reduce the number of spinlock operations.
3959 	 * - reduce the number of linked list operations on the slab and
3960 	 *   bufctl chains: array operations are cheaper.
3961 	 * The numbers are guessed, we should auto-tune as described by
3962 	 * Bonwick.
3963 	 */
3964 	if (cachep->size > 131072)
3965 		limit = 1;
3966 	else if (cachep->size > PAGE_SIZE)
3967 		limit = 8;
3968 	else if (cachep->size > 1024)
3969 		limit = 24;
3970 	else if (cachep->size > 256)
3971 		limit = 54;
3972 	else
3973 		limit = 120;
3974 
3975 	/*
3976 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3977 	 * allocation behaviour: Most allocs on one cpu, most free operations
3978 	 * on another cpu. For these cases, an efficient object passing between
3979 	 * cpus is necessary. This is provided by a shared array. The array
3980 	 * replaces Bonwick's magazine layer.
3981 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3982 	 * to a larger limit. Thus disabled by default.
3983 	 */
3984 	shared = 0;
3985 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3986 		shared = 8;
3987 
3988 #if DEBUG
3989 	/*
3990 	 * With debugging enabled, large batchcount lead to excessively long
3991 	 * periods with disabled local interrupts. Limit the batchcount
3992 	 */
3993 	if (limit > 32)
3994 		limit = 32;
3995 #endif
3996 	batchcount = (limit + 1) / 2;
3997 skip_setup:
3998 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3999 end:
4000 	if (err)
4001 		pr_err("enable_cpucache failed for %s, error %d\n",
4002 		       cachep->name, -err);
4003 	return err;
4004 }
4005 
4006 /*
4007  * Drain an array if it contains any elements taking the node lock only if
4008  * necessary. Note that the node listlock also protects the array_cache
4009  * if drain_array() is used on the shared array.
4010  */
4011 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4012 			 struct array_cache *ac, int node)
4013 {
4014 	LIST_HEAD(list);
4015 
4016 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
4017 	check_mutex_acquired();
4018 
4019 	if (!ac || !ac->avail)
4020 		return;
4021 
4022 	if (ac->touched) {
4023 		ac->touched = 0;
4024 		return;
4025 	}
4026 
4027 	spin_lock_irq(&n->list_lock);
4028 	drain_array_locked(cachep, ac, node, false, &list);
4029 	spin_unlock_irq(&n->list_lock);
4030 
4031 	slabs_destroy(cachep, &list);
4032 }
4033 
4034 /**
4035  * cache_reap - Reclaim memory from caches.
4036  * @w: work descriptor
4037  *
4038  * Called from workqueue/eventd every few seconds.
4039  * Purpose:
4040  * - clear the per-cpu caches for this CPU.
4041  * - return freeable pages to the main free memory pool.
4042  *
4043  * If we cannot acquire the cache chain mutex then just give up - we'll try
4044  * again on the next iteration.
4045  */
4046 static void cache_reap(struct work_struct *w)
4047 {
4048 	struct kmem_cache *searchp;
4049 	struct kmem_cache_node *n;
4050 	int node = numa_mem_id();
4051 	struct delayed_work *work = to_delayed_work(w);
4052 
4053 	if (!mutex_trylock(&slab_mutex))
4054 		/* Give up. Setup the next iteration. */
4055 		goto out;
4056 
4057 	list_for_each_entry(searchp, &slab_caches, list) {
4058 		check_irq_on();
4059 
4060 		/*
4061 		 * We only take the node lock if absolutely necessary and we
4062 		 * have established with reasonable certainty that
4063 		 * we can do some work if the lock was obtained.
4064 		 */
4065 		n = get_node(searchp, node);
4066 
4067 		reap_alien(searchp, n);
4068 
4069 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4070 
4071 		/*
4072 		 * These are racy checks but it does not matter
4073 		 * if we skip one check or scan twice.
4074 		 */
4075 		if (time_after(n->next_reap, jiffies))
4076 			goto next;
4077 
4078 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4079 
4080 		drain_array(searchp, n, n->shared, node);
4081 
4082 		if (n->free_touched)
4083 			n->free_touched = 0;
4084 		else {
4085 			int freed;
4086 
4087 			freed = drain_freelist(searchp, n, (n->free_limit +
4088 				5 * searchp->num - 1) / (5 * searchp->num));
4089 			STATS_ADD_REAPED(searchp, freed);
4090 		}
4091 next:
4092 		cond_resched();
4093 	}
4094 	check_irq_on();
4095 	mutex_unlock(&slab_mutex);
4096 	next_reap_node();
4097 out:
4098 	/* Set up the next iteration */
4099 	schedule_delayed_work_on(smp_processor_id(), work,
4100 				round_jiffies_relative(REAPTIMEOUT_AC));
4101 }
4102 
4103 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4104 {
4105 	unsigned long active_objs, num_objs, active_slabs;
4106 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4107 	unsigned long free_slabs = 0;
4108 	int node;
4109 	struct kmem_cache_node *n;
4110 
4111 	for_each_kmem_cache_node(cachep, node, n) {
4112 		check_irq_on();
4113 		spin_lock_irq(&n->list_lock);
4114 
4115 		total_slabs += n->total_slabs;
4116 		free_slabs += n->free_slabs;
4117 		free_objs += n->free_objects;
4118 
4119 		if (n->shared)
4120 			shared_avail += n->shared->avail;
4121 
4122 		spin_unlock_irq(&n->list_lock);
4123 	}
4124 	num_objs = total_slabs * cachep->num;
4125 	active_slabs = total_slabs - free_slabs;
4126 	active_objs = num_objs - free_objs;
4127 
4128 	sinfo->active_objs = active_objs;
4129 	sinfo->num_objs = num_objs;
4130 	sinfo->active_slabs = active_slabs;
4131 	sinfo->num_slabs = total_slabs;
4132 	sinfo->shared_avail = shared_avail;
4133 	sinfo->limit = cachep->limit;
4134 	sinfo->batchcount = cachep->batchcount;
4135 	sinfo->shared = cachep->shared;
4136 	sinfo->objects_per_slab = cachep->num;
4137 	sinfo->cache_order = cachep->gfporder;
4138 }
4139 
4140 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4141 {
4142 #if STATS
4143 	{			/* node stats */
4144 		unsigned long high = cachep->high_mark;
4145 		unsigned long allocs = cachep->num_allocations;
4146 		unsigned long grown = cachep->grown;
4147 		unsigned long reaped = cachep->reaped;
4148 		unsigned long errors = cachep->errors;
4149 		unsigned long max_freeable = cachep->max_freeable;
4150 		unsigned long node_allocs = cachep->node_allocs;
4151 		unsigned long node_frees = cachep->node_frees;
4152 		unsigned long overflows = cachep->node_overflow;
4153 
4154 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4155 			   allocs, high, grown,
4156 			   reaped, errors, max_freeable, node_allocs,
4157 			   node_frees, overflows);
4158 	}
4159 	/* cpu stats */
4160 	{
4161 		unsigned long allochit = atomic_read(&cachep->allochit);
4162 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4163 		unsigned long freehit = atomic_read(&cachep->freehit);
4164 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4165 
4166 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4167 			   allochit, allocmiss, freehit, freemiss);
4168 	}
4169 #endif
4170 }
4171 
4172 #define MAX_SLABINFO_WRITE 128
4173 /**
4174  * slabinfo_write - Tuning for the slab allocator
4175  * @file: unused
4176  * @buffer: user buffer
4177  * @count: data length
4178  * @ppos: unused
4179  *
4180  * Return: %0 on success, negative error code otherwise.
4181  */
4182 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4183 		       size_t count, loff_t *ppos)
4184 {
4185 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4186 	int limit, batchcount, shared, res;
4187 	struct kmem_cache *cachep;
4188 
4189 	if (count > MAX_SLABINFO_WRITE)
4190 		return -EINVAL;
4191 	if (copy_from_user(&kbuf, buffer, count))
4192 		return -EFAULT;
4193 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4194 
4195 	tmp = strchr(kbuf, ' ');
4196 	if (!tmp)
4197 		return -EINVAL;
4198 	*tmp = '\0';
4199 	tmp++;
4200 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4201 		return -EINVAL;
4202 
4203 	/* Find the cache in the chain of caches. */
4204 	mutex_lock(&slab_mutex);
4205 	res = -EINVAL;
4206 	list_for_each_entry(cachep, &slab_caches, list) {
4207 		if (!strcmp(cachep->name, kbuf)) {
4208 			if (limit < 1 || batchcount < 1 ||
4209 					batchcount > limit || shared < 0) {
4210 				res = 0;
4211 			} else {
4212 				res = do_tune_cpucache(cachep, limit,
4213 						       batchcount, shared,
4214 						       GFP_KERNEL);
4215 			}
4216 			break;
4217 		}
4218 	}
4219 	mutex_unlock(&slab_mutex);
4220 	if (res >= 0)
4221 		res = count;
4222 	return res;
4223 }
4224 
4225 #ifdef CONFIG_DEBUG_SLAB_LEAK
4226 
4227 static inline int add_caller(unsigned long *n, unsigned long v)
4228 {
4229 	unsigned long *p;
4230 	int l;
4231 	if (!v)
4232 		return 1;
4233 	l = n[1];
4234 	p = n + 2;
4235 	while (l) {
4236 		int i = l/2;
4237 		unsigned long *q = p + 2 * i;
4238 		if (*q == v) {
4239 			q[1]++;
4240 			return 1;
4241 		}
4242 		if (*q > v) {
4243 			l = i;
4244 		} else {
4245 			p = q + 2;
4246 			l -= i + 1;
4247 		}
4248 	}
4249 	if (++n[1] == n[0])
4250 		return 0;
4251 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4252 	p[0] = v;
4253 	p[1] = 1;
4254 	return 1;
4255 }
4256 
4257 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4258 						struct page *page)
4259 {
4260 	void *p;
4261 	int i, j;
4262 	unsigned long v;
4263 
4264 	if (n[0] == n[1])
4265 		return;
4266 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4267 		bool active = true;
4268 
4269 		for (j = page->active; j < c->num; j++) {
4270 			if (get_free_obj(page, j) == i) {
4271 				active = false;
4272 				break;
4273 			}
4274 		}
4275 
4276 		if (!active)
4277 			continue;
4278 
4279 		/*
4280 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4281 		 * mapping is established when actual object allocation and
4282 		 * we could mistakenly access the unmapped object in the cpu
4283 		 * cache.
4284 		 */
4285 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4286 			continue;
4287 
4288 		if (!add_caller(n, v))
4289 			return;
4290 	}
4291 }
4292 
4293 static void show_symbol(struct seq_file *m, unsigned long address)
4294 {
4295 #ifdef CONFIG_KALLSYMS
4296 	unsigned long offset, size;
4297 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4298 
4299 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4300 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4301 		if (modname[0])
4302 			seq_printf(m, " [%s]", modname);
4303 		return;
4304 	}
4305 #endif
4306 	seq_printf(m, "%px", (void *)address);
4307 }
4308 
4309 static int leaks_show(struct seq_file *m, void *p)
4310 {
4311 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
4312 					       root_caches_node);
4313 	struct page *page;
4314 	struct kmem_cache_node *n;
4315 	const char *name;
4316 	unsigned long *x = m->private;
4317 	int node;
4318 	int i;
4319 
4320 	if (!(cachep->flags & SLAB_STORE_USER))
4321 		return 0;
4322 	if (!(cachep->flags & SLAB_RED_ZONE))
4323 		return 0;
4324 
4325 	/*
4326 	 * Set store_user_clean and start to grab stored user information
4327 	 * for all objects on this cache. If some alloc/free requests comes
4328 	 * during the processing, information would be wrong so restart
4329 	 * whole processing.
4330 	 */
4331 	do {
4332 		set_store_user_clean(cachep);
4333 		drain_cpu_caches(cachep);
4334 
4335 		x[1] = 0;
4336 
4337 		for_each_kmem_cache_node(cachep, node, n) {
4338 
4339 			check_irq_on();
4340 			spin_lock_irq(&n->list_lock);
4341 
4342 			list_for_each_entry(page, &n->slabs_full, lru)
4343 				handle_slab(x, cachep, page);
4344 			list_for_each_entry(page, &n->slabs_partial, lru)
4345 				handle_slab(x, cachep, page);
4346 			spin_unlock_irq(&n->list_lock);
4347 		}
4348 	} while (!is_store_user_clean(cachep));
4349 
4350 	name = cachep->name;
4351 	if (x[0] == x[1]) {
4352 		/* Increase the buffer size */
4353 		mutex_unlock(&slab_mutex);
4354 		m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
4355 				     GFP_KERNEL);
4356 		if (!m->private) {
4357 			/* Too bad, we are really out */
4358 			m->private = x;
4359 			mutex_lock(&slab_mutex);
4360 			return -ENOMEM;
4361 		}
4362 		*(unsigned long *)m->private = x[0] * 2;
4363 		kfree(x);
4364 		mutex_lock(&slab_mutex);
4365 		/* Now make sure this entry will be retried */
4366 		m->count = m->size;
4367 		return 0;
4368 	}
4369 	for (i = 0; i < x[1]; i++) {
4370 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4371 		show_symbol(m, x[2*i+2]);
4372 		seq_putc(m, '\n');
4373 	}
4374 
4375 	return 0;
4376 }
4377 
4378 static const struct seq_operations slabstats_op = {
4379 	.start = slab_start,
4380 	.next = slab_next,
4381 	.stop = slab_stop,
4382 	.show = leaks_show,
4383 };
4384 
4385 static int slabstats_open(struct inode *inode, struct file *file)
4386 {
4387 	unsigned long *n;
4388 
4389 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4390 	if (!n)
4391 		return -ENOMEM;
4392 
4393 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4394 
4395 	return 0;
4396 }
4397 
4398 static const struct file_operations proc_slabstats_operations = {
4399 	.open		= slabstats_open,
4400 	.read		= seq_read,
4401 	.llseek		= seq_lseek,
4402 	.release	= seq_release_private,
4403 };
4404 #endif
4405 
4406 static int __init slab_proc_init(void)
4407 {
4408 #ifdef CONFIG_DEBUG_SLAB_LEAK
4409 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4410 #endif
4411 	return 0;
4412 }
4413 module_init(slab_proc_init);
4414 
4415 #ifdef CONFIG_HARDENED_USERCOPY
4416 /*
4417  * Rejects incorrectly sized objects and objects that are to be copied
4418  * to/from userspace but do not fall entirely within the containing slab
4419  * cache's usercopy region.
4420  *
4421  * Returns NULL if check passes, otherwise const char * to name of cache
4422  * to indicate an error.
4423  */
4424 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4425 			 bool to_user)
4426 {
4427 	struct kmem_cache *cachep;
4428 	unsigned int objnr;
4429 	unsigned long offset;
4430 
4431 	ptr = kasan_reset_tag(ptr);
4432 
4433 	/* Find and validate object. */
4434 	cachep = page->slab_cache;
4435 	objnr = obj_to_index(cachep, page, (void *)ptr);
4436 	BUG_ON(objnr >= cachep->num);
4437 
4438 	/* Find offset within object. */
4439 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4440 
4441 	/* Allow address range falling entirely within usercopy region. */
4442 	if (offset >= cachep->useroffset &&
4443 	    offset - cachep->useroffset <= cachep->usersize &&
4444 	    n <= cachep->useroffset - offset + cachep->usersize)
4445 		return;
4446 
4447 	/*
4448 	 * If the copy is still within the allocated object, produce
4449 	 * a warning instead of rejecting the copy. This is intended
4450 	 * to be a temporary method to find any missing usercopy
4451 	 * whitelists.
4452 	 */
4453 	if (usercopy_fallback &&
4454 	    offset <= cachep->object_size &&
4455 	    n <= cachep->object_size - offset) {
4456 		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4457 		return;
4458 	}
4459 
4460 	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4461 }
4462 #endif /* CONFIG_HARDENED_USERCOPY */
4463 
4464 /**
4465  * ksize - get the actual amount of memory allocated for a given object
4466  * @objp: Pointer to the object
4467  *
4468  * kmalloc may internally round up allocations and return more memory
4469  * than requested. ksize() can be used to determine the actual amount of
4470  * memory allocated. The caller may use this additional memory, even though
4471  * a smaller amount of memory was initially specified with the kmalloc call.
4472  * The caller must guarantee that objp points to a valid object previously
4473  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4474  * must not be freed during the duration of the call.
4475  *
4476  * Return: size of the actual memory used by @objp in bytes
4477  */
4478 size_t ksize(const void *objp)
4479 {
4480 	size_t size;
4481 
4482 	BUG_ON(!objp);
4483 	if (unlikely(objp == ZERO_SIZE_PTR))
4484 		return 0;
4485 
4486 	size = virt_to_cache(objp)->object_size;
4487 	/* We assume that ksize callers could use the whole allocated area,
4488 	 * so we need to unpoison this area.
4489 	 */
4490 	kasan_unpoison_shadow(objp, size);
4491 
4492 	return size;
4493 }
4494 EXPORT_SYMBOL(ksize);
4495