1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/cpu.h> 104 #include <linux/sysctl.h> 105 #include <linux/module.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 /* 366 * Do not go above this order unless 0 objects fit into the slab or 367 * overridden on the command line. 368 */ 369 #define SLAB_MAX_ORDER_HI 1 370 #define SLAB_MAX_ORDER_LO 0 371 static int slab_max_order = SLAB_MAX_ORDER_LO; 372 static bool slab_max_order_set __initdata; 373 374 static inline struct kmem_cache *virt_to_cache(const void *obj) 375 { 376 struct page *page = virt_to_head_page(obj); 377 return page->slab_cache; 378 } 379 380 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 381 unsigned int idx) 382 { 383 return page->s_mem + cache->size * idx; 384 } 385 386 #define BOOT_CPUCACHE_ENTRIES 1 387 /* internal cache of cache description objs */ 388 static struct kmem_cache kmem_cache_boot = { 389 .batchcount = 1, 390 .limit = BOOT_CPUCACHE_ENTRIES, 391 .shared = 1, 392 .size = sizeof(struct kmem_cache), 393 .name = "kmem_cache", 394 }; 395 396 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 397 398 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 399 { 400 return this_cpu_ptr(cachep->cpu_cache); 401 } 402 403 /* 404 * Calculate the number of objects and left-over bytes for a given buffer size. 405 */ 406 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 407 slab_flags_t flags, size_t *left_over) 408 { 409 unsigned int num; 410 size_t slab_size = PAGE_SIZE << gfporder; 411 412 /* 413 * The slab management structure can be either off the slab or 414 * on it. For the latter case, the memory allocated for a 415 * slab is used for: 416 * 417 * - @buffer_size bytes for each object 418 * - One freelist_idx_t for each object 419 * 420 * We don't need to consider alignment of freelist because 421 * freelist will be at the end of slab page. The objects will be 422 * at the correct alignment. 423 * 424 * If the slab management structure is off the slab, then the 425 * alignment will already be calculated into the size. Because 426 * the slabs are all pages aligned, the objects will be at the 427 * correct alignment when allocated. 428 */ 429 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 430 num = slab_size / buffer_size; 431 *left_over = slab_size % buffer_size; 432 } else { 433 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 434 *left_over = slab_size % 435 (buffer_size + sizeof(freelist_idx_t)); 436 } 437 438 return num; 439 } 440 441 #if DEBUG 442 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 443 444 static void __slab_error(const char *function, struct kmem_cache *cachep, 445 char *msg) 446 { 447 pr_err("slab error in %s(): cache `%s': %s\n", 448 function, cachep->name, msg); 449 dump_stack(); 450 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 451 } 452 #endif 453 454 /* 455 * By default on NUMA we use alien caches to stage the freeing of 456 * objects allocated from other nodes. This causes massive memory 457 * inefficiencies when using fake NUMA setup to split memory into a 458 * large number of small nodes, so it can be disabled on the command 459 * line 460 */ 461 462 static int use_alien_caches __read_mostly = 1; 463 static int __init noaliencache_setup(char *s) 464 { 465 use_alien_caches = 0; 466 return 1; 467 } 468 __setup("noaliencache", noaliencache_setup); 469 470 static int __init slab_max_order_setup(char *str) 471 { 472 get_option(&str, &slab_max_order); 473 slab_max_order = slab_max_order < 0 ? 0 : 474 min(slab_max_order, MAX_ORDER - 1); 475 slab_max_order_set = true; 476 477 return 1; 478 } 479 __setup("slab_max_order=", slab_max_order_setup); 480 481 #ifdef CONFIG_NUMA 482 /* 483 * Special reaping functions for NUMA systems called from cache_reap(). 484 * These take care of doing round robin flushing of alien caches (containing 485 * objects freed on different nodes from which they were allocated) and the 486 * flushing of remote pcps by calling drain_node_pages. 487 */ 488 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 489 490 static void init_reap_node(int cpu) 491 { 492 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 493 node_online_map); 494 } 495 496 static void next_reap_node(void) 497 { 498 int node = __this_cpu_read(slab_reap_node); 499 500 node = next_node_in(node, node_online_map); 501 __this_cpu_write(slab_reap_node, node); 502 } 503 504 #else 505 #define init_reap_node(cpu) do { } while (0) 506 #define next_reap_node(void) do { } while (0) 507 #endif 508 509 /* 510 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 511 * via the workqueue/eventd. 512 * Add the CPU number into the expiration time to minimize the possibility of 513 * the CPUs getting into lockstep and contending for the global cache chain 514 * lock. 515 */ 516 static void start_cpu_timer(int cpu) 517 { 518 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 519 520 if (reap_work->work.func == NULL) { 521 init_reap_node(cpu); 522 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 523 schedule_delayed_work_on(cpu, reap_work, 524 __round_jiffies_relative(HZ, cpu)); 525 } 526 } 527 528 static void init_arraycache(struct array_cache *ac, int limit, int batch) 529 { 530 if (ac) { 531 ac->avail = 0; 532 ac->limit = limit; 533 ac->batchcount = batch; 534 ac->touched = 0; 535 } 536 } 537 538 static struct array_cache *alloc_arraycache(int node, int entries, 539 int batchcount, gfp_t gfp) 540 { 541 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 542 struct array_cache *ac = NULL; 543 544 ac = kmalloc_node(memsize, gfp, node); 545 /* 546 * The array_cache structures contain pointers to free object. 547 * However, when such objects are allocated or transferred to another 548 * cache the pointers are not cleared and they could be counted as 549 * valid references during a kmemleak scan. Therefore, kmemleak must 550 * not scan such objects. 551 */ 552 kmemleak_no_scan(ac); 553 init_arraycache(ac, entries, batchcount); 554 return ac; 555 } 556 557 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 558 struct page *page, void *objp) 559 { 560 struct kmem_cache_node *n; 561 int page_node; 562 LIST_HEAD(list); 563 564 page_node = page_to_nid(page); 565 n = get_node(cachep, page_node); 566 567 spin_lock(&n->list_lock); 568 free_block(cachep, &objp, 1, page_node, &list); 569 spin_unlock(&n->list_lock); 570 571 slabs_destroy(cachep, &list); 572 } 573 574 /* 575 * Transfer objects in one arraycache to another. 576 * Locking must be handled by the caller. 577 * 578 * Return the number of entries transferred. 579 */ 580 static int transfer_objects(struct array_cache *to, 581 struct array_cache *from, unsigned int max) 582 { 583 /* Figure out how many entries to transfer */ 584 int nr = min3(from->avail, max, to->limit - to->avail); 585 586 if (!nr) 587 return 0; 588 589 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 590 sizeof(void *) *nr); 591 592 from->avail -= nr; 593 to->avail += nr; 594 return nr; 595 } 596 597 #ifndef CONFIG_NUMA 598 599 #define drain_alien_cache(cachep, alien) do { } while (0) 600 #define reap_alien(cachep, n) do { } while (0) 601 602 static inline struct alien_cache **alloc_alien_cache(int node, 603 int limit, gfp_t gfp) 604 { 605 return NULL; 606 } 607 608 static inline void free_alien_cache(struct alien_cache **ac_ptr) 609 { 610 } 611 612 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 613 { 614 return 0; 615 } 616 617 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 618 gfp_t flags) 619 { 620 return NULL; 621 } 622 623 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 624 gfp_t flags, int nodeid) 625 { 626 return NULL; 627 } 628 629 static inline gfp_t gfp_exact_node(gfp_t flags) 630 { 631 return flags & ~__GFP_NOFAIL; 632 } 633 634 #else /* CONFIG_NUMA */ 635 636 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 637 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 638 639 static struct alien_cache *__alloc_alien_cache(int node, int entries, 640 int batch, gfp_t gfp) 641 { 642 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 643 struct alien_cache *alc = NULL; 644 645 alc = kmalloc_node(memsize, gfp, node); 646 if (alc) { 647 kmemleak_no_scan(alc); 648 init_arraycache(&alc->ac, entries, batch); 649 spin_lock_init(&alc->lock); 650 } 651 return alc; 652 } 653 654 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 655 { 656 struct alien_cache **alc_ptr; 657 int i; 658 659 if (limit > 1) 660 limit = 12; 661 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 662 if (!alc_ptr) 663 return NULL; 664 665 for_each_node(i) { 666 if (i == node || !node_online(i)) 667 continue; 668 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 669 if (!alc_ptr[i]) { 670 for (i--; i >= 0; i--) 671 kfree(alc_ptr[i]); 672 kfree(alc_ptr); 673 return NULL; 674 } 675 } 676 return alc_ptr; 677 } 678 679 static void free_alien_cache(struct alien_cache **alc_ptr) 680 { 681 int i; 682 683 if (!alc_ptr) 684 return; 685 for_each_node(i) 686 kfree(alc_ptr[i]); 687 kfree(alc_ptr); 688 } 689 690 static void __drain_alien_cache(struct kmem_cache *cachep, 691 struct array_cache *ac, int node, 692 struct list_head *list) 693 { 694 struct kmem_cache_node *n = get_node(cachep, node); 695 696 if (ac->avail) { 697 spin_lock(&n->list_lock); 698 /* 699 * Stuff objects into the remote nodes shared array first. 700 * That way we could avoid the overhead of putting the objects 701 * into the free lists and getting them back later. 702 */ 703 if (n->shared) 704 transfer_objects(n->shared, ac, ac->limit); 705 706 free_block(cachep, ac->entry, ac->avail, node, list); 707 ac->avail = 0; 708 spin_unlock(&n->list_lock); 709 } 710 } 711 712 /* 713 * Called from cache_reap() to regularly drain alien caches round robin. 714 */ 715 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 716 { 717 int node = __this_cpu_read(slab_reap_node); 718 719 if (n->alien) { 720 struct alien_cache *alc = n->alien[node]; 721 struct array_cache *ac; 722 723 if (alc) { 724 ac = &alc->ac; 725 if (ac->avail && spin_trylock_irq(&alc->lock)) { 726 LIST_HEAD(list); 727 728 __drain_alien_cache(cachep, ac, node, &list); 729 spin_unlock_irq(&alc->lock); 730 slabs_destroy(cachep, &list); 731 } 732 } 733 } 734 } 735 736 static void drain_alien_cache(struct kmem_cache *cachep, 737 struct alien_cache **alien) 738 { 739 int i = 0; 740 struct alien_cache *alc; 741 struct array_cache *ac; 742 unsigned long flags; 743 744 for_each_online_node(i) { 745 alc = alien[i]; 746 if (alc) { 747 LIST_HEAD(list); 748 749 ac = &alc->ac; 750 spin_lock_irqsave(&alc->lock, flags); 751 __drain_alien_cache(cachep, ac, i, &list); 752 spin_unlock_irqrestore(&alc->lock, flags); 753 slabs_destroy(cachep, &list); 754 } 755 } 756 } 757 758 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 759 int node, int page_node) 760 { 761 struct kmem_cache_node *n; 762 struct alien_cache *alien = NULL; 763 struct array_cache *ac; 764 LIST_HEAD(list); 765 766 n = get_node(cachep, node); 767 STATS_INC_NODEFREES(cachep); 768 if (n->alien && n->alien[page_node]) { 769 alien = n->alien[page_node]; 770 ac = &alien->ac; 771 spin_lock(&alien->lock); 772 if (unlikely(ac->avail == ac->limit)) { 773 STATS_INC_ACOVERFLOW(cachep); 774 __drain_alien_cache(cachep, ac, page_node, &list); 775 } 776 ac->entry[ac->avail++] = objp; 777 spin_unlock(&alien->lock); 778 slabs_destroy(cachep, &list); 779 } else { 780 n = get_node(cachep, page_node); 781 spin_lock(&n->list_lock); 782 free_block(cachep, &objp, 1, page_node, &list); 783 spin_unlock(&n->list_lock); 784 slabs_destroy(cachep, &list); 785 } 786 return 1; 787 } 788 789 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 790 { 791 int page_node = page_to_nid(virt_to_page(objp)); 792 int node = numa_mem_id(); 793 /* 794 * Make sure we are not freeing a object from another node to the array 795 * cache on this cpu. 796 */ 797 if (likely(node == page_node)) 798 return 0; 799 800 return __cache_free_alien(cachep, objp, node, page_node); 801 } 802 803 /* 804 * Construct gfp mask to allocate from a specific node but do not reclaim or 805 * warn about failures. 806 */ 807 static inline gfp_t gfp_exact_node(gfp_t flags) 808 { 809 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 810 } 811 #endif 812 813 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 814 { 815 struct kmem_cache_node *n; 816 817 /* 818 * Set up the kmem_cache_node for cpu before we can 819 * begin anything. Make sure some other cpu on this 820 * node has not already allocated this 821 */ 822 n = get_node(cachep, node); 823 if (n) { 824 spin_lock_irq(&n->list_lock); 825 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 826 cachep->num; 827 spin_unlock_irq(&n->list_lock); 828 829 return 0; 830 } 831 832 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 833 if (!n) 834 return -ENOMEM; 835 836 kmem_cache_node_init(n); 837 n->next_reap = jiffies + REAPTIMEOUT_NODE + 838 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 839 840 n->free_limit = 841 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 842 843 /* 844 * The kmem_cache_nodes don't come and go as CPUs 845 * come and go. slab_mutex is sufficient 846 * protection here. 847 */ 848 cachep->node[node] = n; 849 850 return 0; 851 } 852 853 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 854 /* 855 * Allocates and initializes node for a node on each slab cache, used for 856 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 857 * will be allocated off-node since memory is not yet online for the new node. 858 * When hotplugging memory or a cpu, existing node are not replaced if 859 * already in use. 860 * 861 * Must hold slab_mutex. 862 */ 863 static int init_cache_node_node(int node) 864 { 865 int ret; 866 struct kmem_cache *cachep; 867 868 list_for_each_entry(cachep, &slab_caches, list) { 869 ret = init_cache_node(cachep, node, GFP_KERNEL); 870 if (ret) 871 return ret; 872 } 873 874 return 0; 875 } 876 #endif 877 878 static int setup_kmem_cache_node(struct kmem_cache *cachep, 879 int node, gfp_t gfp, bool force_change) 880 { 881 int ret = -ENOMEM; 882 struct kmem_cache_node *n; 883 struct array_cache *old_shared = NULL; 884 struct array_cache *new_shared = NULL; 885 struct alien_cache **new_alien = NULL; 886 LIST_HEAD(list); 887 888 if (use_alien_caches) { 889 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 890 if (!new_alien) 891 goto fail; 892 } 893 894 if (cachep->shared) { 895 new_shared = alloc_arraycache(node, 896 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 897 if (!new_shared) 898 goto fail; 899 } 900 901 ret = init_cache_node(cachep, node, gfp); 902 if (ret) 903 goto fail; 904 905 n = get_node(cachep, node); 906 spin_lock_irq(&n->list_lock); 907 if (n->shared && force_change) { 908 free_block(cachep, n->shared->entry, 909 n->shared->avail, node, &list); 910 n->shared->avail = 0; 911 } 912 913 if (!n->shared || force_change) { 914 old_shared = n->shared; 915 n->shared = new_shared; 916 new_shared = NULL; 917 } 918 919 if (!n->alien) { 920 n->alien = new_alien; 921 new_alien = NULL; 922 } 923 924 spin_unlock_irq(&n->list_lock); 925 slabs_destroy(cachep, &list); 926 927 /* 928 * To protect lockless access to n->shared during irq disabled context. 929 * If n->shared isn't NULL in irq disabled context, accessing to it is 930 * guaranteed to be valid until irq is re-enabled, because it will be 931 * freed after synchronize_rcu(). 932 */ 933 if (old_shared && force_change) 934 synchronize_rcu(); 935 936 fail: 937 kfree(old_shared); 938 kfree(new_shared); 939 free_alien_cache(new_alien); 940 941 return ret; 942 } 943 944 #ifdef CONFIG_SMP 945 946 static void cpuup_canceled(long cpu) 947 { 948 struct kmem_cache *cachep; 949 struct kmem_cache_node *n = NULL; 950 int node = cpu_to_mem(cpu); 951 const struct cpumask *mask = cpumask_of_node(node); 952 953 list_for_each_entry(cachep, &slab_caches, list) { 954 struct array_cache *nc; 955 struct array_cache *shared; 956 struct alien_cache **alien; 957 LIST_HEAD(list); 958 959 n = get_node(cachep, node); 960 if (!n) 961 continue; 962 963 spin_lock_irq(&n->list_lock); 964 965 /* Free limit for this kmem_cache_node */ 966 n->free_limit -= cachep->batchcount; 967 968 /* cpu is dead; no one can alloc from it. */ 969 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 970 free_block(cachep, nc->entry, nc->avail, node, &list); 971 nc->avail = 0; 972 973 if (!cpumask_empty(mask)) { 974 spin_unlock_irq(&n->list_lock); 975 goto free_slab; 976 } 977 978 shared = n->shared; 979 if (shared) { 980 free_block(cachep, shared->entry, 981 shared->avail, node, &list); 982 n->shared = NULL; 983 } 984 985 alien = n->alien; 986 n->alien = NULL; 987 988 spin_unlock_irq(&n->list_lock); 989 990 kfree(shared); 991 if (alien) { 992 drain_alien_cache(cachep, alien); 993 free_alien_cache(alien); 994 } 995 996 free_slab: 997 slabs_destroy(cachep, &list); 998 } 999 /* 1000 * In the previous loop, all the objects were freed to 1001 * the respective cache's slabs, now we can go ahead and 1002 * shrink each nodelist to its limit. 1003 */ 1004 list_for_each_entry(cachep, &slab_caches, list) { 1005 n = get_node(cachep, node); 1006 if (!n) 1007 continue; 1008 drain_freelist(cachep, n, INT_MAX); 1009 } 1010 } 1011 1012 static int cpuup_prepare(long cpu) 1013 { 1014 struct kmem_cache *cachep; 1015 int node = cpu_to_mem(cpu); 1016 int err; 1017 1018 /* 1019 * We need to do this right in the beginning since 1020 * alloc_arraycache's are going to use this list. 1021 * kmalloc_node allows us to add the slab to the right 1022 * kmem_cache_node and not this cpu's kmem_cache_node 1023 */ 1024 err = init_cache_node_node(node); 1025 if (err < 0) 1026 goto bad; 1027 1028 /* 1029 * Now we can go ahead with allocating the shared arrays and 1030 * array caches 1031 */ 1032 list_for_each_entry(cachep, &slab_caches, list) { 1033 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1034 if (err) 1035 goto bad; 1036 } 1037 1038 return 0; 1039 bad: 1040 cpuup_canceled(cpu); 1041 return -ENOMEM; 1042 } 1043 1044 int slab_prepare_cpu(unsigned int cpu) 1045 { 1046 int err; 1047 1048 mutex_lock(&slab_mutex); 1049 err = cpuup_prepare(cpu); 1050 mutex_unlock(&slab_mutex); 1051 return err; 1052 } 1053 1054 /* 1055 * This is called for a failed online attempt and for a successful 1056 * offline. 1057 * 1058 * Even if all the cpus of a node are down, we don't free the 1059 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1060 * a kmalloc allocation from another cpu for memory from the node of 1061 * the cpu going down. The list3 structure is usually allocated from 1062 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1063 */ 1064 int slab_dead_cpu(unsigned int cpu) 1065 { 1066 mutex_lock(&slab_mutex); 1067 cpuup_canceled(cpu); 1068 mutex_unlock(&slab_mutex); 1069 return 0; 1070 } 1071 #endif 1072 1073 static int slab_online_cpu(unsigned int cpu) 1074 { 1075 start_cpu_timer(cpu); 1076 return 0; 1077 } 1078 1079 static int slab_offline_cpu(unsigned int cpu) 1080 { 1081 /* 1082 * Shutdown cache reaper. Note that the slab_mutex is held so 1083 * that if cache_reap() is invoked it cannot do anything 1084 * expensive but will only modify reap_work and reschedule the 1085 * timer. 1086 */ 1087 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1088 /* Now the cache_reaper is guaranteed to be not running. */ 1089 per_cpu(slab_reap_work, cpu).work.func = NULL; 1090 return 0; 1091 } 1092 1093 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1094 /* 1095 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1096 * Returns -EBUSY if all objects cannot be drained so that the node is not 1097 * removed. 1098 * 1099 * Must hold slab_mutex. 1100 */ 1101 static int __meminit drain_cache_node_node(int node) 1102 { 1103 struct kmem_cache *cachep; 1104 int ret = 0; 1105 1106 list_for_each_entry(cachep, &slab_caches, list) { 1107 struct kmem_cache_node *n; 1108 1109 n = get_node(cachep, node); 1110 if (!n) 1111 continue; 1112 1113 drain_freelist(cachep, n, INT_MAX); 1114 1115 if (!list_empty(&n->slabs_full) || 1116 !list_empty(&n->slabs_partial)) { 1117 ret = -EBUSY; 1118 break; 1119 } 1120 } 1121 return ret; 1122 } 1123 1124 static int __meminit slab_memory_callback(struct notifier_block *self, 1125 unsigned long action, void *arg) 1126 { 1127 struct memory_notify *mnb = arg; 1128 int ret = 0; 1129 int nid; 1130 1131 nid = mnb->status_change_nid; 1132 if (nid < 0) 1133 goto out; 1134 1135 switch (action) { 1136 case MEM_GOING_ONLINE: 1137 mutex_lock(&slab_mutex); 1138 ret = init_cache_node_node(nid); 1139 mutex_unlock(&slab_mutex); 1140 break; 1141 case MEM_GOING_OFFLINE: 1142 mutex_lock(&slab_mutex); 1143 ret = drain_cache_node_node(nid); 1144 mutex_unlock(&slab_mutex); 1145 break; 1146 case MEM_ONLINE: 1147 case MEM_OFFLINE: 1148 case MEM_CANCEL_ONLINE: 1149 case MEM_CANCEL_OFFLINE: 1150 break; 1151 } 1152 out: 1153 return notifier_from_errno(ret); 1154 } 1155 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1156 1157 /* 1158 * swap the static kmem_cache_node with kmalloced memory 1159 */ 1160 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1161 int nodeid) 1162 { 1163 struct kmem_cache_node *ptr; 1164 1165 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1166 BUG_ON(!ptr); 1167 1168 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1169 /* 1170 * Do not assume that spinlocks can be initialized via memcpy: 1171 */ 1172 spin_lock_init(&ptr->list_lock); 1173 1174 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1175 cachep->node[nodeid] = ptr; 1176 } 1177 1178 /* 1179 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1180 * size of kmem_cache_node. 1181 */ 1182 static void __init set_up_node(struct kmem_cache *cachep, int index) 1183 { 1184 int node; 1185 1186 for_each_online_node(node) { 1187 cachep->node[node] = &init_kmem_cache_node[index + node]; 1188 cachep->node[node]->next_reap = jiffies + 1189 REAPTIMEOUT_NODE + 1190 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1191 } 1192 } 1193 1194 /* 1195 * Initialisation. Called after the page allocator have been initialised and 1196 * before smp_init(). 1197 */ 1198 void __init kmem_cache_init(void) 1199 { 1200 int i; 1201 1202 kmem_cache = &kmem_cache_boot; 1203 1204 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1205 use_alien_caches = 0; 1206 1207 for (i = 0; i < NUM_INIT_LISTS; i++) 1208 kmem_cache_node_init(&init_kmem_cache_node[i]); 1209 1210 /* 1211 * Fragmentation resistance on low memory - only use bigger 1212 * page orders on machines with more than 32MB of memory if 1213 * not overridden on the command line. 1214 */ 1215 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1216 slab_max_order = SLAB_MAX_ORDER_HI; 1217 1218 /* Bootstrap is tricky, because several objects are allocated 1219 * from caches that do not exist yet: 1220 * 1) initialize the kmem_cache cache: it contains the struct 1221 * kmem_cache structures of all caches, except kmem_cache itself: 1222 * kmem_cache is statically allocated. 1223 * Initially an __init data area is used for the head array and the 1224 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1225 * array at the end of the bootstrap. 1226 * 2) Create the first kmalloc cache. 1227 * The struct kmem_cache for the new cache is allocated normally. 1228 * An __init data area is used for the head array. 1229 * 3) Create the remaining kmalloc caches, with minimally sized 1230 * head arrays. 1231 * 4) Replace the __init data head arrays for kmem_cache and the first 1232 * kmalloc cache with kmalloc allocated arrays. 1233 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1234 * the other cache's with kmalloc allocated memory. 1235 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1236 */ 1237 1238 /* 1) create the kmem_cache */ 1239 1240 /* 1241 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1242 */ 1243 create_boot_cache(kmem_cache, "kmem_cache", 1244 offsetof(struct kmem_cache, node) + 1245 nr_node_ids * sizeof(struct kmem_cache_node *), 1246 SLAB_HWCACHE_ALIGN, 0, 0); 1247 list_add(&kmem_cache->list, &slab_caches); 1248 memcg_link_cache(kmem_cache); 1249 slab_state = PARTIAL; 1250 1251 /* 1252 * Initialize the caches that provide memory for the kmem_cache_node 1253 * structures first. Without this, further allocations will bug. 1254 */ 1255 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( 1256 kmalloc_info[INDEX_NODE].name, 1257 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS, 1258 0, kmalloc_size(INDEX_NODE)); 1259 slab_state = PARTIAL_NODE; 1260 setup_kmalloc_cache_index_table(); 1261 1262 slab_early_init = 0; 1263 1264 /* 5) Replace the bootstrap kmem_cache_node */ 1265 { 1266 int nid; 1267 1268 for_each_online_node(nid) { 1269 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1270 1271 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1272 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1273 } 1274 } 1275 1276 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1277 } 1278 1279 void __init kmem_cache_init_late(void) 1280 { 1281 struct kmem_cache *cachep; 1282 1283 /* 6) resize the head arrays to their final sizes */ 1284 mutex_lock(&slab_mutex); 1285 list_for_each_entry(cachep, &slab_caches, list) 1286 if (enable_cpucache(cachep, GFP_NOWAIT)) 1287 BUG(); 1288 mutex_unlock(&slab_mutex); 1289 1290 /* Done! */ 1291 slab_state = FULL; 1292 1293 #ifdef CONFIG_NUMA 1294 /* 1295 * Register a memory hotplug callback that initializes and frees 1296 * node. 1297 */ 1298 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1299 #endif 1300 1301 /* 1302 * The reap timers are started later, with a module init call: That part 1303 * of the kernel is not yet operational. 1304 */ 1305 } 1306 1307 static int __init cpucache_init(void) 1308 { 1309 int ret; 1310 1311 /* 1312 * Register the timers that return unneeded pages to the page allocator 1313 */ 1314 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1315 slab_online_cpu, slab_offline_cpu); 1316 WARN_ON(ret < 0); 1317 1318 return 0; 1319 } 1320 __initcall(cpucache_init); 1321 1322 static noinline void 1323 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1324 { 1325 #if DEBUG 1326 struct kmem_cache_node *n; 1327 unsigned long flags; 1328 int node; 1329 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1330 DEFAULT_RATELIMIT_BURST); 1331 1332 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1333 return; 1334 1335 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1336 nodeid, gfpflags, &gfpflags); 1337 pr_warn(" cache: %s, object size: %d, order: %d\n", 1338 cachep->name, cachep->size, cachep->gfporder); 1339 1340 for_each_kmem_cache_node(cachep, node, n) { 1341 unsigned long total_slabs, free_slabs, free_objs; 1342 1343 spin_lock_irqsave(&n->list_lock, flags); 1344 total_slabs = n->total_slabs; 1345 free_slabs = n->free_slabs; 1346 free_objs = n->free_objects; 1347 spin_unlock_irqrestore(&n->list_lock, flags); 1348 1349 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1350 node, total_slabs - free_slabs, total_slabs, 1351 (total_slabs * cachep->num) - free_objs, 1352 total_slabs * cachep->num); 1353 } 1354 #endif 1355 } 1356 1357 /* 1358 * Interface to system's page allocator. No need to hold the 1359 * kmem_cache_node ->list_lock. 1360 * 1361 * If we requested dmaable memory, we will get it. Even if we 1362 * did not request dmaable memory, we might get it, but that 1363 * would be relatively rare and ignorable. 1364 */ 1365 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1366 int nodeid) 1367 { 1368 struct page *page; 1369 int nr_pages; 1370 1371 flags |= cachep->allocflags; 1372 1373 page = __alloc_pages_node(nodeid, flags, cachep->gfporder); 1374 if (!page) { 1375 slab_out_of_memory(cachep, flags, nodeid); 1376 return NULL; 1377 } 1378 1379 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1380 __free_pages(page, cachep->gfporder); 1381 return NULL; 1382 } 1383 1384 nr_pages = (1 << cachep->gfporder); 1385 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1386 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages); 1387 else 1388 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages); 1389 1390 __SetPageSlab(page); 1391 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1392 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1393 SetPageSlabPfmemalloc(page); 1394 1395 return page; 1396 } 1397 1398 /* 1399 * Interface to system's page release. 1400 */ 1401 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1402 { 1403 int order = cachep->gfporder; 1404 unsigned long nr_freed = (1 << order); 1405 1406 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1407 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed); 1408 else 1409 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed); 1410 1411 BUG_ON(!PageSlab(page)); 1412 __ClearPageSlabPfmemalloc(page); 1413 __ClearPageSlab(page); 1414 page_mapcount_reset(page); 1415 page->mapping = NULL; 1416 1417 if (current->reclaim_state) 1418 current->reclaim_state->reclaimed_slab += nr_freed; 1419 memcg_uncharge_slab(page, order, cachep); 1420 __free_pages(page, order); 1421 } 1422 1423 static void kmem_rcu_free(struct rcu_head *head) 1424 { 1425 struct kmem_cache *cachep; 1426 struct page *page; 1427 1428 page = container_of(head, struct page, rcu_head); 1429 cachep = page->slab_cache; 1430 1431 kmem_freepages(cachep, page); 1432 } 1433 1434 #if DEBUG 1435 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1436 { 1437 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1438 (cachep->size % PAGE_SIZE) == 0) 1439 return true; 1440 1441 return false; 1442 } 1443 1444 #ifdef CONFIG_DEBUG_PAGEALLOC 1445 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1446 { 1447 if (!is_debug_pagealloc_cache(cachep)) 1448 return; 1449 1450 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1451 } 1452 1453 #else 1454 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1455 int map) {} 1456 1457 #endif 1458 1459 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1460 { 1461 int size = cachep->object_size; 1462 addr = &((char *)addr)[obj_offset(cachep)]; 1463 1464 memset(addr, val, size); 1465 *(unsigned char *)(addr + size - 1) = POISON_END; 1466 } 1467 1468 static void dump_line(char *data, int offset, int limit) 1469 { 1470 int i; 1471 unsigned char error = 0; 1472 int bad_count = 0; 1473 1474 pr_err("%03x: ", offset); 1475 for (i = 0; i < limit; i++) { 1476 if (data[offset + i] != POISON_FREE) { 1477 error = data[offset + i]; 1478 bad_count++; 1479 } 1480 } 1481 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1482 &data[offset], limit, 1); 1483 1484 if (bad_count == 1) { 1485 error ^= POISON_FREE; 1486 if (!(error & (error - 1))) { 1487 pr_err("Single bit error detected. Probably bad RAM.\n"); 1488 #ifdef CONFIG_X86 1489 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1490 #else 1491 pr_err("Run a memory test tool.\n"); 1492 #endif 1493 } 1494 } 1495 } 1496 #endif 1497 1498 #if DEBUG 1499 1500 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1501 { 1502 int i, size; 1503 char *realobj; 1504 1505 if (cachep->flags & SLAB_RED_ZONE) { 1506 pr_err("Redzone: 0x%llx/0x%llx\n", 1507 *dbg_redzone1(cachep, objp), 1508 *dbg_redzone2(cachep, objp)); 1509 } 1510 1511 if (cachep->flags & SLAB_STORE_USER) 1512 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1513 realobj = (char *)objp + obj_offset(cachep); 1514 size = cachep->object_size; 1515 for (i = 0; i < size && lines; i += 16, lines--) { 1516 int limit; 1517 limit = 16; 1518 if (i + limit > size) 1519 limit = size - i; 1520 dump_line(realobj, i, limit); 1521 } 1522 } 1523 1524 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1525 { 1526 char *realobj; 1527 int size, i; 1528 int lines = 0; 1529 1530 if (is_debug_pagealloc_cache(cachep)) 1531 return; 1532 1533 realobj = (char *)objp + obj_offset(cachep); 1534 size = cachep->object_size; 1535 1536 for (i = 0; i < size; i++) { 1537 char exp = POISON_FREE; 1538 if (i == size - 1) 1539 exp = POISON_END; 1540 if (realobj[i] != exp) { 1541 int limit; 1542 /* Mismatch ! */ 1543 /* Print header */ 1544 if (lines == 0) { 1545 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1546 print_tainted(), cachep->name, 1547 realobj, size); 1548 print_objinfo(cachep, objp, 0); 1549 } 1550 /* Hexdump the affected line */ 1551 i = (i / 16) * 16; 1552 limit = 16; 1553 if (i + limit > size) 1554 limit = size - i; 1555 dump_line(realobj, i, limit); 1556 i += 16; 1557 lines++; 1558 /* Limit to 5 lines */ 1559 if (lines > 5) 1560 break; 1561 } 1562 } 1563 if (lines != 0) { 1564 /* Print some data about the neighboring objects, if they 1565 * exist: 1566 */ 1567 struct page *page = virt_to_head_page(objp); 1568 unsigned int objnr; 1569 1570 objnr = obj_to_index(cachep, page, objp); 1571 if (objnr) { 1572 objp = index_to_obj(cachep, page, objnr - 1); 1573 realobj = (char *)objp + obj_offset(cachep); 1574 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1575 print_objinfo(cachep, objp, 2); 1576 } 1577 if (objnr + 1 < cachep->num) { 1578 objp = index_to_obj(cachep, page, objnr + 1); 1579 realobj = (char *)objp + obj_offset(cachep); 1580 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1581 print_objinfo(cachep, objp, 2); 1582 } 1583 } 1584 } 1585 #endif 1586 1587 #if DEBUG 1588 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1589 struct page *page) 1590 { 1591 int i; 1592 1593 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1594 poison_obj(cachep, page->freelist - obj_offset(cachep), 1595 POISON_FREE); 1596 } 1597 1598 for (i = 0; i < cachep->num; i++) { 1599 void *objp = index_to_obj(cachep, page, i); 1600 1601 if (cachep->flags & SLAB_POISON) { 1602 check_poison_obj(cachep, objp); 1603 slab_kernel_map(cachep, objp, 1); 1604 } 1605 if (cachep->flags & SLAB_RED_ZONE) { 1606 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1607 slab_error(cachep, "start of a freed object was overwritten"); 1608 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1609 slab_error(cachep, "end of a freed object was overwritten"); 1610 } 1611 } 1612 } 1613 #else 1614 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1615 struct page *page) 1616 { 1617 } 1618 #endif 1619 1620 /** 1621 * slab_destroy - destroy and release all objects in a slab 1622 * @cachep: cache pointer being destroyed 1623 * @page: page pointer being destroyed 1624 * 1625 * Destroy all the objs in a slab page, and release the mem back to the system. 1626 * Before calling the slab page must have been unlinked from the cache. The 1627 * kmem_cache_node ->list_lock is not held/needed. 1628 */ 1629 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1630 { 1631 void *freelist; 1632 1633 freelist = page->freelist; 1634 slab_destroy_debugcheck(cachep, page); 1635 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1636 call_rcu(&page->rcu_head, kmem_rcu_free); 1637 else 1638 kmem_freepages(cachep, page); 1639 1640 /* 1641 * From now on, we don't use freelist 1642 * although actual page can be freed in rcu context 1643 */ 1644 if (OFF_SLAB(cachep)) 1645 kmem_cache_free(cachep->freelist_cache, freelist); 1646 } 1647 1648 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1649 { 1650 struct page *page, *n; 1651 1652 list_for_each_entry_safe(page, n, list, slab_list) { 1653 list_del(&page->slab_list); 1654 slab_destroy(cachep, page); 1655 } 1656 } 1657 1658 /** 1659 * calculate_slab_order - calculate size (page order) of slabs 1660 * @cachep: pointer to the cache that is being created 1661 * @size: size of objects to be created in this cache. 1662 * @flags: slab allocation flags 1663 * 1664 * Also calculates the number of objects per slab. 1665 * 1666 * This could be made much more intelligent. For now, try to avoid using 1667 * high order pages for slabs. When the gfp() functions are more friendly 1668 * towards high-order requests, this should be changed. 1669 * 1670 * Return: number of left-over bytes in a slab 1671 */ 1672 static size_t calculate_slab_order(struct kmem_cache *cachep, 1673 size_t size, slab_flags_t flags) 1674 { 1675 size_t left_over = 0; 1676 int gfporder; 1677 1678 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1679 unsigned int num; 1680 size_t remainder; 1681 1682 num = cache_estimate(gfporder, size, flags, &remainder); 1683 if (!num) 1684 continue; 1685 1686 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1687 if (num > SLAB_OBJ_MAX_NUM) 1688 break; 1689 1690 if (flags & CFLGS_OFF_SLAB) { 1691 struct kmem_cache *freelist_cache; 1692 size_t freelist_size; 1693 1694 freelist_size = num * sizeof(freelist_idx_t); 1695 freelist_cache = kmalloc_slab(freelist_size, 0u); 1696 if (!freelist_cache) 1697 continue; 1698 1699 /* 1700 * Needed to avoid possible looping condition 1701 * in cache_grow_begin() 1702 */ 1703 if (OFF_SLAB(freelist_cache)) 1704 continue; 1705 1706 /* check if off slab has enough benefit */ 1707 if (freelist_cache->size > cachep->size / 2) 1708 continue; 1709 } 1710 1711 /* Found something acceptable - save it away */ 1712 cachep->num = num; 1713 cachep->gfporder = gfporder; 1714 left_over = remainder; 1715 1716 /* 1717 * A VFS-reclaimable slab tends to have most allocations 1718 * as GFP_NOFS and we really don't want to have to be allocating 1719 * higher-order pages when we are unable to shrink dcache. 1720 */ 1721 if (flags & SLAB_RECLAIM_ACCOUNT) 1722 break; 1723 1724 /* 1725 * Large number of objects is good, but very large slabs are 1726 * currently bad for the gfp()s. 1727 */ 1728 if (gfporder >= slab_max_order) 1729 break; 1730 1731 /* 1732 * Acceptable internal fragmentation? 1733 */ 1734 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1735 break; 1736 } 1737 return left_over; 1738 } 1739 1740 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1741 struct kmem_cache *cachep, int entries, int batchcount) 1742 { 1743 int cpu; 1744 size_t size; 1745 struct array_cache __percpu *cpu_cache; 1746 1747 size = sizeof(void *) * entries + sizeof(struct array_cache); 1748 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1749 1750 if (!cpu_cache) 1751 return NULL; 1752 1753 for_each_possible_cpu(cpu) { 1754 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1755 entries, batchcount); 1756 } 1757 1758 return cpu_cache; 1759 } 1760 1761 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1762 { 1763 if (slab_state >= FULL) 1764 return enable_cpucache(cachep, gfp); 1765 1766 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1767 if (!cachep->cpu_cache) 1768 return 1; 1769 1770 if (slab_state == DOWN) { 1771 /* Creation of first cache (kmem_cache). */ 1772 set_up_node(kmem_cache, CACHE_CACHE); 1773 } else if (slab_state == PARTIAL) { 1774 /* For kmem_cache_node */ 1775 set_up_node(cachep, SIZE_NODE); 1776 } else { 1777 int node; 1778 1779 for_each_online_node(node) { 1780 cachep->node[node] = kmalloc_node( 1781 sizeof(struct kmem_cache_node), gfp, node); 1782 BUG_ON(!cachep->node[node]); 1783 kmem_cache_node_init(cachep->node[node]); 1784 } 1785 } 1786 1787 cachep->node[numa_mem_id()]->next_reap = 1788 jiffies + REAPTIMEOUT_NODE + 1789 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1790 1791 cpu_cache_get(cachep)->avail = 0; 1792 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1793 cpu_cache_get(cachep)->batchcount = 1; 1794 cpu_cache_get(cachep)->touched = 0; 1795 cachep->batchcount = 1; 1796 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1797 return 0; 1798 } 1799 1800 slab_flags_t kmem_cache_flags(unsigned int object_size, 1801 slab_flags_t flags, const char *name, 1802 void (*ctor)(void *)) 1803 { 1804 return flags; 1805 } 1806 1807 struct kmem_cache * 1808 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1809 slab_flags_t flags, void (*ctor)(void *)) 1810 { 1811 struct kmem_cache *cachep; 1812 1813 cachep = find_mergeable(size, align, flags, name, ctor); 1814 if (cachep) { 1815 cachep->refcount++; 1816 1817 /* 1818 * Adjust the object sizes so that we clear 1819 * the complete object on kzalloc. 1820 */ 1821 cachep->object_size = max_t(int, cachep->object_size, size); 1822 } 1823 return cachep; 1824 } 1825 1826 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1827 size_t size, slab_flags_t flags) 1828 { 1829 size_t left; 1830 1831 cachep->num = 0; 1832 1833 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1834 return false; 1835 1836 left = calculate_slab_order(cachep, size, 1837 flags | CFLGS_OBJFREELIST_SLAB); 1838 if (!cachep->num) 1839 return false; 1840 1841 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1842 return false; 1843 1844 cachep->colour = left / cachep->colour_off; 1845 1846 return true; 1847 } 1848 1849 static bool set_off_slab_cache(struct kmem_cache *cachep, 1850 size_t size, slab_flags_t flags) 1851 { 1852 size_t left; 1853 1854 cachep->num = 0; 1855 1856 /* 1857 * Always use on-slab management when SLAB_NOLEAKTRACE 1858 * to avoid recursive calls into kmemleak. 1859 */ 1860 if (flags & SLAB_NOLEAKTRACE) 1861 return false; 1862 1863 /* 1864 * Size is large, assume best to place the slab management obj 1865 * off-slab (should allow better packing of objs). 1866 */ 1867 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1868 if (!cachep->num) 1869 return false; 1870 1871 /* 1872 * If the slab has been placed off-slab, and we have enough space then 1873 * move it on-slab. This is at the expense of any extra colouring. 1874 */ 1875 if (left >= cachep->num * sizeof(freelist_idx_t)) 1876 return false; 1877 1878 cachep->colour = left / cachep->colour_off; 1879 1880 return true; 1881 } 1882 1883 static bool set_on_slab_cache(struct kmem_cache *cachep, 1884 size_t size, slab_flags_t flags) 1885 { 1886 size_t left; 1887 1888 cachep->num = 0; 1889 1890 left = calculate_slab_order(cachep, size, flags); 1891 if (!cachep->num) 1892 return false; 1893 1894 cachep->colour = left / cachep->colour_off; 1895 1896 return true; 1897 } 1898 1899 /** 1900 * __kmem_cache_create - Create a cache. 1901 * @cachep: cache management descriptor 1902 * @flags: SLAB flags 1903 * 1904 * Returns a ptr to the cache on success, NULL on failure. 1905 * Cannot be called within a int, but can be interrupted. 1906 * The @ctor is run when new pages are allocated by the cache. 1907 * 1908 * The flags are 1909 * 1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1911 * to catch references to uninitialised memory. 1912 * 1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1914 * for buffer overruns. 1915 * 1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1917 * cacheline. This can be beneficial if you're counting cycles as closely 1918 * as davem. 1919 * 1920 * Return: a pointer to the created cache or %NULL in case of error 1921 */ 1922 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1923 { 1924 size_t ralign = BYTES_PER_WORD; 1925 gfp_t gfp; 1926 int err; 1927 unsigned int size = cachep->size; 1928 1929 #if DEBUG 1930 #if FORCED_DEBUG 1931 /* 1932 * Enable redzoning and last user accounting, except for caches with 1933 * large objects, if the increased size would increase the object size 1934 * above the next power of two: caches with object sizes just above a 1935 * power of two have a significant amount of internal fragmentation. 1936 */ 1937 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1938 2 * sizeof(unsigned long long))) 1939 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1940 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1941 flags |= SLAB_POISON; 1942 #endif 1943 #endif 1944 1945 /* 1946 * Check that size is in terms of words. This is needed to avoid 1947 * unaligned accesses for some archs when redzoning is used, and makes 1948 * sure any on-slab bufctl's are also correctly aligned. 1949 */ 1950 size = ALIGN(size, BYTES_PER_WORD); 1951 1952 if (flags & SLAB_RED_ZONE) { 1953 ralign = REDZONE_ALIGN; 1954 /* If redzoning, ensure that the second redzone is suitably 1955 * aligned, by adjusting the object size accordingly. */ 1956 size = ALIGN(size, REDZONE_ALIGN); 1957 } 1958 1959 /* 3) caller mandated alignment */ 1960 if (ralign < cachep->align) { 1961 ralign = cachep->align; 1962 } 1963 /* disable debug if necessary */ 1964 if (ralign > __alignof__(unsigned long long)) 1965 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1966 /* 1967 * 4) Store it. 1968 */ 1969 cachep->align = ralign; 1970 cachep->colour_off = cache_line_size(); 1971 /* Offset must be a multiple of the alignment. */ 1972 if (cachep->colour_off < cachep->align) 1973 cachep->colour_off = cachep->align; 1974 1975 if (slab_is_available()) 1976 gfp = GFP_KERNEL; 1977 else 1978 gfp = GFP_NOWAIT; 1979 1980 #if DEBUG 1981 1982 /* 1983 * Both debugging options require word-alignment which is calculated 1984 * into align above. 1985 */ 1986 if (flags & SLAB_RED_ZONE) { 1987 /* add space for red zone words */ 1988 cachep->obj_offset += sizeof(unsigned long long); 1989 size += 2 * sizeof(unsigned long long); 1990 } 1991 if (flags & SLAB_STORE_USER) { 1992 /* user store requires one word storage behind the end of 1993 * the real object. But if the second red zone needs to be 1994 * aligned to 64 bits, we must allow that much space. 1995 */ 1996 if (flags & SLAB_RED_ZONE) 1997 size += REDZONE_ALIGN; 1998 else 1999 size += BYTES_PER_WORD; 2000 } 2001 #endif 2002 2003 kasan_cache_create(cachep, &size, &flags); 2004 2005 size = ALIGN(size, cachep->align); 2006 /* 2007 * We should restrict the number of objects in a slab to implement 2008 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2009 */ 2010 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2011 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2012 2013 #if DEBUG 2014 /* 2015 * To activate debug pagealloc, off-slab management is necessary 2016 * requirement. In early phase of initialization, small sized slab 2017 * doesn't get initialized so it would not be possible. So, we need 2018 * to check size >= 256. It guarantees that all necessary small 2019 * sized slab is initialized in current slab initialization sequence. 2020 */ 2021 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2022 size >= 256 && cachep->object_size > cache_line_size()) { 2023 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2024 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2025 2026 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2027 flags |= CFLGS_OFF_SLAB; 2028 cachep->obj_offset += tmp_size - size; 2029 size = tmp_size; 2030 goto done; 2031 } 2032 } 2033 } 2034 #endif 2035 2036 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2037 flags |= CFLGS_OBJFREELIST_SLAB; 2038 goto done; 2039 } 2040 2041 if (set_off_slab_cache(cachep, size, flags)) { 2042 flags |= CFLGS_OFF_SLAB; 2043 goto done; 2044 } 2045 2046 if (set_on_slab_cache(cachep, size, flags)) 2047 goto done; 2048 2049 return -E2BIG; 2050 2051 done: 2052 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2053 cachep->flags = flags; 2054 cachep->allocflags = __GFP_COMP; 2055 if (flags & SLAB_CACHE_DMA) 2056 cachep->allocflags |= GFP_DMA; 2057 if (flags & SLAB_CACHE_DMA32) 2058 cachep->allocflags |= GFP_DMA32; 2059 if (flags & SLAB_RECLAIM_ACCOUNT) 2060 cachep->allocflags |= __GFP_RECLAIMABLE; 2061 cachep->size = size; 2062 cachep->reciprocal_buffer_size = reciprocal_value(size); 2063 2064 #if DEBUG 2065 /* 2066 * If we're going to use the generic kernel_map_pages() 2067 * poisoning, then it's going to smash the contents of 2068 * the redzone and userword anyhow, so switch them off. 2069 */ 2070 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2071 (cachep->flags & SLAB_POISON) && 2072 is_debug_pagealloc_cache(cachep)) 2073 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2074 #endif 2075 2076 if (OFF_SLAB(cachep)) { 2077 cachep->freelist_cache = 2078 kmalloc_slab(cachep->freelist_size, 0u); 2079 } 2080 2081 err = setup_cpu_cache(cachep, gfp); 2082 if (err) { 2083 __kmem_cache_release(cachep); 2084 return err; 2085 } 2086 2087 return 0; 2088 } 2089 2090 #if DEBUG 2091 static void check_irq_off(void) 2092 { 2093 BUG_ON(!irqs_disabled()); 2094 } 2095 2096 static void check_irq_on(void) 2097 { 2098 BUG_ON(irqs_disabled()); 2099 } 2100 2101 static void check_mutex_acquired(void) 2102 { 2103 BUG_ON(!mutex_is_locked(&slab_mutex)); 2104 } 2105 2106 static void check_spinlock_acquired(struct kmem_cache *cachep) 2107 { 2108 #ifdef CONFIG_SMP 2109 check_irq_off(); 2110 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2111 #endif 2112 } 2113 2114 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2115 { 2116 #ifdef CONFIG_SMP 2117 check_irq_off(); 2118 assert_spin_locked(&get_node(cachep, node)->list_lock); 2119 #endif 2120 } 2121 2122 #else 2123 #define check_irq_off() do { } while(0) 2124 #define check_irq_on() do { } while(0) 2125 #define check_mutex_acquired() do { } while(0) 2126 #define check_spinlock_acquired(x) do { } while(0) 2127 #define check_spinlock_acquired_node(x, y) do { } while(0) 2128 #endif 2129 2130 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2131 int node, bool free_all, struct list_head *list) 2132 { 2133 int tofree; 2134 2135 if (!ac || !ac->avail) 2136 return; 2137 2138 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2139 if (tofree > ac->avail) 2140 tofree = (ac->avail + 1) / 2; 2141 2142 free_block(cachep, ac->entry, tofree, node, list); 2143 ac->avail -= tofree; 2144 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2145 } 2146 2147 static void do_drain(void *arg) 2148 { 2149 struct kmem_cache *cachep = arg; 2150 struct array_cache *ac; 2151 int node = numa_mem_id(); 2152 struct kmem_cache_node *n; 2153 LIST_HEAD(list); 2154 2155 check_irq_off(); 2156 ac = cpu_cache_get(cachep); 2157 n = get_node(cachep, node); 2158 spin_lock(&n->list_lock); 2159 free_block(cachep, ac->entry, ac->avail, node, &list); 2160 spin_unlock(&n->list_lock); 2161 slabs_destroy(cachep, &list); 2162 ac->avail = 0; 2163 } 2164 2165 static void drain_cpu_caches(struct kmem_cache *cachep) 2166 { 2167 struct kmem_cache_node *n; 2168 int node; 2169 LIST_HEAD(list); 2170 2171 on_each_cpu(do_drain, cachep, 1); 2172 check_irq_on(); 2173 for_each_kmem_cache_node(cachep, node, n) 2174 if (n->alien) 2175 drain_alien_cache(cachep, n->alien); 2176 2177 for_each_kmem_cache_node(cachep, node, n) { 2178 spin_lock_irq(&n->list_lock); 2179 drain_array_locked(cachep, n->shared, node, true, &list); 2180 spin_unlock_irq(&n->list_lock); 2181 2182 slabs_destroy(cachep, &list); 2183 } 2184 } 2185 2186 /* 2187 * Remove slabs from the list of free slabs. 2188 * Specify the number of slabs to drain in tofree. 2189 * 2190 * Returns the actual number of slabs released. 2191 */ 2192 static int drain_freelist(struct kmem_cache *cache, 2193 struct kmem_cache_node *n, int tofree) 2194 { 2195 struct list_head *p; 2196 int nr_freed; 2197 struct page *page; 2198 2199 nr_freed = 0; 2200 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2201 2202 spin_lock_irq(&n->list_lock); 2203 p = n->slabs_free.prev; 2204 if (p == &n->slabs_free) { 2205 spin_unlock_irq(&n->list_lock); 2206 goto out; 2207 } 2208 2209 page = list_entry(p, struct page, slab_list); 2210 list_del(&page->slab_list); 2211 n->free_slabs--; 2212 n->total_slabs--; 2213 /* 2214 * Safe to drop the lock. The slab is no longer linked 2215 * to the cache. 2216 */ 2217 n->free_objects -= cache->num; 2218 spin_unlock_irq(&n->list_lock); 2219 slab_destroy(cache, page); 2220 nr_freed++; 2221 } 2222 out: 2223 return nr_freed; 2224 } 2225 2226 bool __kmem_cache_empty(struct kmem_cache *s) 2227 { 2228 int node; 2229 struct kmem_cache_node *n; 2230 2231 for_each_kmem_cache_node(s, node, n) 2232 if (!list_empty(&n->slabs_full) || 2233 !list_empty(&n->slabs_partial)) 2234 return false; 2235 return true; 2236 } 2237 2238 int __kmem_cache_shrink(struct kmem_cache *cachep) 2239 { 2240 int ret = 0; 2241 int node; 2242 struct kmem_cache_node *n; 2243 2244 drain_cpu_caches(cachep); 2245 2246 check_irq_on(); 2247 for_each_kmem_cache_node(cachep, node, n) { 2248 drain_freelist(cachep, n, INT_MAX); 2249 2250 ret += !list_empty(&n->slabs_full) || 2251 !list_empty(&n->slabs_partial); 2252 } 2253 return (ret ? 1 : 0); 2254 } 2255 2256 #ifdef CONFIG_MEMCG 2257 void __kmemcg_cache_deactivate(struct kmem_cache *cachep) 2258 { 2259 __kmem_cache_shrink(cachep); 2260 } 2261 #endif 2262 2263 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2264 { 2265 return __kmem_cache_shrink(cachep); 2266 } 2267 2268 void __kmem_cache_release(struct kmem_cache *cachep) 2269 { 2270 int i; 2271 struct kmem_cache_node *n; 2272 2273 cache_random_seq_destroy(cachep); 2274 2275 free_percpu(cachep->cpu_cache); 2276 2277 /* NUMA: free the node structures */ 2278 for_each_kmem_cache_node(cachep, i, n) { 2279 kfree(n->shared); 2280 free_alien_cache(n->alien); 2281 kfree(n); 2282 cachep->node[i] = NULL; 2283 } 2284 } 2285 2286 /* 2287 * Get the memory for a slab management obj. 2288 * 2289 * For a slab cache when the slab descriptor is off-slab, the 2290 * slab descriptor can't come from the same cache which is being created, 2291 * Because if it is the case, that means we defer the creation of 2292 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2293 * And we eventually call down to __kmem_cache_create(), which 2294 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2295 * This is a "chicken-and-egg" problem. 2296 * 2297 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2298 * which are all initialized during kmem_cache_init(). 2299 */ 2300 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2301 struct page *page, int colour_off, 2302 gfp_t local_flags, int nodeid) 2303 { 2304 void *freelist; 2305 void *addr = page_address(page); 2306 2307 page->s_mem = addr + colour_off; 2308 page->active = 0; 2309 2310 if (OBJFREELIST_SLAB(cachep)) 2311 freelist = NULL; 2312 else if (OFF_SLAB(cachep)) { 2313 /* Slab management obj is off-slab. */ 2314 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2315 local_flags, nodeid); 2316 if (!freelist) 2317 return NULL; 2318 } else { 2319 /* We will use last bytes at the slab for freelist */ 2320 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2321 cachep->freelist_size; 2322 } 2323 2324 return freelist; 2325 } 2326 2327 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2328 { 2329 return ((freelist_idx_t *)page->freelist)[idx]; 2330 } 2331 2332 static inline void set_free_obj(struct page *page, 2333 unsigned int idx, freelist_idx_t val) 2334 { 2335 ((freelist_idx_t *)(page->freelist))[idx] = val; 2336 } 2337 2338 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2339 { 2340 #if DEBUG 2341 int i; 2342 2343 for (i = 0; i < cachep->num; i++) { 2344 void *objp = index_to_obj(cachep, page, i); 2345 2346 if (cachep->flags & SLAB_STORE_USER) 2347 *dbg_userword(cachep, objp) = NULL; 2348 2349 if (cachep->flags & SLAB_RED_ZONE) { 2350 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2351 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2352 } 2353 /* 2354 * Constructors are not allowed to allocate memory from the same 2355 * cache which they are a constructor for. Otherwise, deadlock. 2356 * They must also be threaded. 2357 */ 2358 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2359 kasan_unpoison_object_data(cachep, 2360 objp + obj_offset(cachep)); 2361 cachep->ctor(objp + obj_offset(cachep)); 2362 kasan_poison_object_data( 2363 cachep, objp + obj_offset(cachep)); 2364 } 2365 2366 if (cachep->flags & SLAB_RED_ZONE) { 2367 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2368 slab_error(cachep, "constructor overwrote the end of an object"); 2369 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2370 slab_error(cachep, "constructor overwrote the start of an object"); 2371 } 2372 /* need to poison the objs? */ 2373 if (cachep->flags & SLAB_POISON) { 2374 poison_obj(cachep, objp, POISON_FREE); 2375 slab_kernel_map(cachep, objp, 0); 2376 } 2377 } 2378 #endif 2379 } 2380 2381 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2382 /* Hold information during a freelist initialization */ 2383 union freelist_init_state { 2384 struct { 2385 unsigned int pos; 2386 unsigned int *list; 2387 unsigned int count; 2388 }; 2389 struct rnd_state rnd_state; 2390 }; 2391 2392 /* 2393 * Initialize the state based on the randomization methode available. 2394 * return true if the pre-computed list is available, false otherwize. 2395 */ 2396 static bool freelist_state_initialize(union freelist_init_state *state, 2397 struct kmem_cache *cachep, 2398 unsigned int count) 2399 { 2400 bool ret; 2401 unsigned int rand; 2402 2403 /* Use best entropy available to define a random shift */ 2404 rand = get_random_int(); 2405 2406 /* Use a random state if the pre-computed list is not available */ 2407 if (!cachep->random_seq) { 2408 prandom_seed_state(&state->rnd_state, rand); 2409 ret = false; 2410 } else { 2411 state->list = cachep->random_seq; 2412 state->count = count; 2413 state->pos = rand % count; 2414 ret = true; 2415 } 2416 return ret; 2417 } 2418 2419 /* Get the next entry on the list and randomize it using a random shift */ 2420 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2421 { 2422 if (state->pos >= state->count) 2423 state->pos = 0; 2424 return state->list[state->pos++]; 2425 } 2426 2427 /* Swap two freelist entries */ 2428 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2429 { 2430 swap(((freelist_idx_t *)page->freelist)[a], 2431 ((freelist_idx_t *)page->freelist)[b]); 2432 } 2433 2434 /* 2435 * Shuffle the freelist initialization state based on pre-computed lists. 2436 * return true if the list was successfully shuffled, false otherwise. 2437 */ 2438 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2439 { 2440 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2441 union freelist_init_state state; 2442 bool precomputed; 2443 2444 if (count < 2) 2445 return false; 2446 2447 precomputed = freelist_state_initialize(&state, cachep, count); 2448 2449 /* Take a random entry as the objfreelist */ 2450 if (OBJFREELIST_SLAB(cachep)) { 2451 if (!precomputed) 2452 objfreelist = count - 1; 2453 else 2454 objfreelist = next_random_slot(&state); 2455 page->freelist = index_to_obj(cachep, page, objfreelist) + 2456 obj_offset(cachep); 2457 count--; 2458 } 2459 2460 /* 2461 * On early boot, generate the list dynamically. 2462 * Later use a pre-computed list for speed. 2463 */ 2464 if (!precomputed) { 2465 for (i = 0; i < count; i++) 2466 set_free_obj(page, i, i); 2467 2468 /* Fisher-Yates shuffle */ 2469 for (i = count - 1; i > 0; i--) { 2470 rand = prandom_u32_state(&state.rnd_state); 2471 rand %= (i + 1); 2472 swap_free_obj(page, i, rand); 2473 } 2474 } else { 2475 for (i = 0; i < count; i++) 2476 set_free_obj(page, i, next_random_slot(&state)); 2477 } 2478 2479 if (OBJFREELIST_SLAB(cachep)) 2480 set_free_obj(page, cachep->num - 1, objfreelist); 2481 2482 return true; 2483 } 2484 #else 2485 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2486 struct page *page) 2487 { 2488 return false; 2489 } 2490 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2491 2492 static void cache_init_objs(struct kmem_cache *cachep, 2493 struct page *page) 2494 { 2495 int i; 2496 void *objp; 2497 bool shuffled; 2498 2499 cache_init_objs_debug(cachep, page); 2500 2501 /* Try to randomize the freelist if enabled */ 2502 shuffled = shuffle_freelist(cachep, page); 2503 2504 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2505 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2506 obj_offset(cachep); 2507 } 2508 2509 for (i = 0; i < cachep->num; i++) { 2510 objp = index_to_obj(cachep, page, i); 2511 objp = kasan_init_slab_obj(cachep, objp); 2512 2513 /* constructor could break poison info */ 2514 if (DEBUG == 0 && cachep->ctor) { 2515 kasan_unpoison_object_data(cachep, objp); 2516 cachep->ctor(objp); 2517 kasan_poison_object_data(cachep, objp); 2518 } 2519 2520 if (!shuffled) 2521 set_free_obj(page, i, i); 2522 } 2523 } 2524 2525 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2526 { 2527 void *objp; 2528 2529 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2530 page->active++; 2531 2532 return objp; 2533 } 2534 2535 static void slab_put_obj(struct kmem_cache *cachep, 2536 struct page *page, void *objp) 2537 { 2538 unsigned int objnr = obj_to_index(cachep, page, objp); 2539 #if DEBUG 2540 unsigned int i; 2541 2542 /* Verify double free bug */ 2543 for (i = page->active; i < cachep->num; i++) { 2544 if (get_free_obj(page, i) == objnr) { 2545 pr_err("slab: double free detected in cache '%s', objp %px\n", 2546 cachep->name, objp); 2547 BUG(); 2548 } 2549 } 2550 #endif 2551 page->active--; 2552 if (!page->freelist) 2553 page->freelist = objp + obj_offset(cachep); 2554 2555 set_free_obj(page, page->active, objnr); 2556 } 2557 2558 /* 2559 * Map pages beginning at addr to the given cache and slab. This is required 2560 * for the slab allocator to be able to lookup the cache and slab of a 2561 * virtual address for kfree, ksize, and slab debugging. 2562 */ 2563 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2564 void *freelist) 2565 { 2566 page->slab_cache = cache; 2567 page->freelist = freelist; 2568 } 2569 2570 /* 2571 * Grow (by 1) the number of slabs within a cache. This is called by 2572 * kmem_cache_alloc() when there are no active objs left in a cache. 2573 */ 2574 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2575 gfp_t flags, int nodeid) 2576 { 2577 void *freelist; 2578 size_t offset; 2579 gfp_t local_flags; 2580 int page_node; 2581 struct kmem_cache_node *n; 2582 struct page *page; 2583 2584 /* 2585 * Be lazy and only check for valid flags here, keeping it out of the 2586 * critical path in kmem_cache_alloc(). 2587 */ 2588 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2589 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2590 flags &= ~GFP_SLAB_BUG_MASK; 2591 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2592 invalid_mask, &invalid_mask, flags, &flags); 2593 dump_stack(); 2594 } 2595 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2596 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2597 2598 check_irq_off(); 2599 if (gfpflags_allow_blocking(local_flags)) 2600 local_irq_enable(); 2601 2602 /* 2603 * Get mem for the objs. Attempt to allocate a physical page from 2604 * 'nodeid'. 2605 */ 2606 page = kmem_getpages(cachep, local_flags, nodeid); 2607 if (!page) 2608 goto failed; 2609 2610 page_node = page_to_nid(page); 2611 n = get_node(cachep, page_node); 2612 2613 /* Get colour for the slab, and cal the next value. */ 2614 n->colour_next++; 2615 if (n->colour_next >= cachep->colour) 2616 n->colour_next = 0; 2617 2618 offset = n->colour_next; 2619 if (offset >= cachep->colour) 2620 offset = 0; 2621 2622 offset *= cachep->colour_off; 2623 2624 /* 2625 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2626 * page_address() in the latter returns a non-tagged pointer, 2627 * as it should be for slab pages. 2628 */ 2629 kasan_poison_slab(page); 2630 2631 /* Get slab management. */ 2632 freelist = alloc_slabmgmt(cachep, page, offset, 2633 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2634 if (OFF_SLAB(cachep) && !freelist) 2635 goto opps1; 2636 2637 slab_map_pages(cachep, page, freelist); 2638 2639 cache_init_objs(cachep, page); 2640 2641 if (gfpflags_allow_blocking(local_flags)) 2642 local_irq_disable(); 2643 2644 return page; 2645 2646 opps1: 2647 kmem_freepages(cachep, page); 2648 failed: 2649 if (gfpflags_allow_blocking(local_flags)) 2650 local_irq_disable(); 2651 return NULL; 2652 } 2653 2654 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2655 { 2656 struct kmem_cache_node *n; 2657 void *list = NULL; 2658 2659 check_irq_off(); 2660 2661 if (!page) 2662 return; 2663 2664 INIT_LIST_HEAD(&page->slab_list); 2665 n = get_node(cachep, page_to_nid(page)); 2666 2667 spin_lock(&n->list_lock); 2668 n->total_slabs++; 2669 if (!page->active) { 2670 list_add_tail(&page->slab_list, &n->slabs_free); 2671 n->free_slabs++; 2672 } else 2673 fixup_slab_list(cachep, n, page, &list); 2674 2675 STATS_INC_GROWN(cachep); 2676 n->free_objects += cachep->num - page->active; 2677 spin_unlock(&n->list_lock); 2678 2679 fixup_objfreelist_debug(cachep, &list); 2680 } 2681 2682 #if DEBUG 2683 2684 /* 2685 * Perform extra freeing checks: 2686 * - detect bad pointers. 2687 * - POISON/RED_ZONE checking 2688 */ 2689 static void kfree_debugcheck(const void *objp) 2690 { 2691 if (!virt_addr_valid(objp)) { 2692 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2693 (unsigned long)objp); 2694 BUG(); 2695 } 2696 } 2697 2698 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2699 { 2700 unsigned long long redzone1, redzone2; 2701 2702 redzone1 = *dbg_redzone1(cache, obj); 2703 redzone2 = *dbg_redzone2(cache, obj); 2704 2705 /* 2706 * Redzone is ok. 2707 */ 2708 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2709 return; 2710 2711 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2712 slab_error(cache, "double free detected"); 2713 else 2714 slab_error(cache, "memory outside object was overwritten"); 2715 2716 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2717 obj, redzone1, redzone2); 2718 } 2719 2720 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2721 unsigned long caller) 2722 { 2723 unsigned int objnr; 2724 struct page *page; 2725 2726 BUG_ON(virt_to_cache(objp) != cachep); 2727 2728 objp -= obj_offset(cachep); 2729 kfree_debugcheck(objp); 2730 page = virt_to_head_page(objp); 2731 2732 if (cachep->flags & SLAB_RED_ZONE) { 2733 verify_redzone_free(cachep, objp); 2734 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2735 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2736 } 2737 if (cachep->flags & SLAB_STORE_USER) 2738 *dbg_userword(cachep, objp) = (void *)caller; 2739 2740 objnr = obj_to_index(cachep, page, objp); 2741 2742 BUG_ON(objnr >= cachep->num); 2743 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2744 2745 if (cachep->flags & SLAB_POISON) { 2746 poison_obj(cachep, objp, POISON_FREE); 2747 slab_kernel_map(cachep, objp, 0); 2748 } 2749 return objp; 2750 } 2751 2752 #else 2753 #define kfree_debugcheck(x) do { } while(0) 2754 #define cache_free_debugcheck(x,objp,z) (objp) 2755 #endif 2756 2757 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2758 void **list) 2759 { 2760 #if DEBUG 2761 void *next = *list; 2762 void *objp; 2763 2764 while (next) { 2765 objp = next - obj_offset(cachep); 2766 next = *(void **)next; 2767 poison_obj(cachep, objp, POISON_FREE); 2768 } 2769 #endif 2770 } 2771 2772 static inline void fixup_slab_list(struct kmem_cache *cachep, 2773 struct kmem_cache_node *n, struct page *page, 2774 void **list) 2775 { 2776 /* move slabp to correct slabp list: */ 2777 list_del(&page->slab_list); 2778 if (page->active == cachep->num) { 2779 list_add(&page->slab_list, &n->slabs_full); 2780 if (OBJFREELIST_SLAB(cachep)) { 2781 #if DEBUG 2782 /* Poisoning will be done without holding the lock */ 2783 if (cachep->flags & SLAB_POISON) { 2784 void **objp = page->freelist; 2785 2786 *objp = *list; 2787 *list = objp; 2788 } 2789 #endif 2790 page->freelist = NULL; 2791 } 2792 } else 2793 list_add(&page->slab_list, &n->slabs_partial); 2794 } 2795 2796 /* Try to find non-pfmemalloc slab if needed */ 2797 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2798 struct page *page, bool pfmemalloc) 2799 { 2800 if (!page) 2801 return NULL; 2802 2803 if (pfmemalloc) 2804 return page; 2805 2806 if (!PageSlabPfmemalloc(page)) 2807 return page; 2808 2809 /* No need to keep pfmemalloc slab if we have enough free objects */ 2810 if (n->free_objects > n->free_limit) { 2811 ClearPageSlabPfmemalloc(page); 2812 return page; 2813 } 2814 2815 /* Move pfmemalloc slab to the end of list to speed up next search */ 2816 list_del(&page->slab_list); 2817 if (!page->active) { 2818 list_add_tail(&page->slab_list, &n->slabs_free); 2819 n->free_slabs++; 2820 } else 2821 list_add_tail(&page->slab_list, &n->slabs_partial); 2822 2823 list_for_each_entry(page, &n->slabs_partial, slab_list) { 2824 if (!PageSlabPfmemalloc(page)) 2825 return page; 2826 } 2827 2828 n->free_touched = 1; 2829 list_for_each_entry(page, &n->slabs_free, slab_list) { 2830 if (!PageSlabPfmemalloc(page)) { 2831 n->free_slabs--; 2832 return page; 2833 } 2834 } 2835 2836 return NULL; 2837 } 2838 2839 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2840 { 2841 struct page *page; 2842 2843 assert_spin_locked(&n->list_lock); 2844 page = list_first_entry_or_null(&n->slabs_partial, struct page, 2845 slab_list); 2846 if (!page) { 2847 n->free_touched = 1; 2848 page = list_first_entry_or_null(&n->slabs_free, struct page, 2849 slab_list); 2850 if (page) 2851 n->free_slabs--; 2852 } 2853 2854 if (sk_memalloc_socks()) 2855 page = get_valid_first_slab(n, page, pfmemalloc); 2856 2857 return page; 2858 } 2859 2860 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2861 struct kmem_cache_node *n, gfp_t flags) 2862 { 2863 struct page *page; 2864 void *obj; 2865 void *list = NULL; 2866 2867 if (!gfp_pfmemalloc_allowed(flags)) 2868 return NULL; 2869 2870 spin_lock(&n->list_lock); 2871 page = get_first_slab(n, true); 2872 if (!page) { 2873 spin_unlock(&n->list_lock); 2874 return NULL; 2875 } 2876 2877 obj = slab_get_obj(cachep, page); 2878 n->free_objects--; 2879 2880 fixup_slab_list(cachep, n, page, &list); 2881 2882 spin_unlock(&n->list_lock); 2883 fixup_objfreelist_debug(cachep, &list); 2884 2885 return obj; 2886 } 2887 2888 /* 2889 * Slab list should be fixed up by fixup_slab_list() for existing slab 2890 * or cache_grow_end() for new slab 2891 */ 2892 static __always_inline int alloc_block(struct kmem_cache *cachep, 2893 struct array_cache *ac, struct page *page, int batchcount) 2894 { 2895 /* 2896 * There must be at least one object available for 2897 * allocation. 2898 */ 2899 BUG_ON(page->active >= cachep->num); 2900 2901 while (page->active < cachep->num && batchcount--) { 2902 STATS_INC_ALLOCED(cachep); 2903 STATS_INC_ACTIVE(cachep); 2904 STATS_SET_HIGH(cachep); 2905 2906 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2907 } 2908 2909 return batchcount; 2910 } 2911 2912 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2913 { 2914 int batchcount; 2915 struct kmem_cache_node *n; 2916 struct array_cache *ac, *shared; 2917 int node; 2918 void *list = NULL; 2919 struct page *page; 2920 2921 check_irq_off(); 2922 node = numa_mem_id(); 2923 2924 ac = cpu_cache_get(cachep); 2925 batchcount = ac->batchcount; 2926 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2927 /* 2928 * If there was little recent activity on this cache, then 2929 * perform only a partial refill. Otherwise we could generate 2930 * refill bouncing. 2931 */ 2932 batchcount = BATCHREFILL_LIMIT; 2933 } 2934 n = get_node(cachep, node); 2935 2936 BUG_ON(ac->avail > 0 || !n); 2937 shared = READ_ONCE(n->shared); 2938 if (!n->free_objects && (!shared || !shared->avail)) 2939 goto direct_grow; 2940 2941 spin_lock(&n->list_lock); 2942 shared = READ_ONCE(n->shared); 2943 2944 /* See if we can refill from the shared array */ 2945 if (shared && transfer_objects(ac, shared, batchcount)) { 2946 shared->touched = 1; 2947 goto alloc_done; 2948 } 2949 2950 while (batchcount > 0) { 2951 /* Get slab alloc is to come from. */ 2952 page = get_first_slab(n, false); 2953 if (!page) 2954 goto must_grow; 2955 2956 check_spinlock_acquired(cachep); 2957 2958 batchcount = alloc_block(cachep, ac, page, batchcount); 2959 fixup_slab_list(cachep, n, page, &list); 2960 } 2961 2962 must_grow: 2963 n->free_objects -= ac->avail; 2964 alloc_done: 2965 spin_unlock(&n->list_lock); 2966 fixup_objfreelist_debug(cachep, &list); 2967 2968 direct_grow: 2969 if (unlikely(!ac->avail)) { 2970 /* Check if we can use obj in pfmemalloc slab */ 2971 if (sk_memalloc_socks()) { 2972 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2973 2974 if (obj) 2975 return obj; 2976 } 2977 2978 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 2979 2980 /* 2981 * cache_grow_begin() can reenable interrupts, 2982 * then ac could change. 2983 */ 2984 ac = cpu_cache_get(cachep); 2985 if (!ac->avail && page) 2986 alloc_block(cachep, ac, page, batchcount); 2987 cache_grow_end(cachep, page); 2988 2989 if (!ac->avail) 2990 return NULL; 2991 } 2992 ac->touched = 1; 2993 2994 return ac->entry[--ac->avail]; 2995 } 2996 2997 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 2998 gfp_t flags) 2999 { 3000 might_sleep_if(gfpflags_allow_blocking(flags)); 3001 } 3002 3003 #if DEBUG 3004 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3005 gfp_t flags, void *objp, unsigned long caller) 3006 { 3007 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 3008 if (!objp) 3009 return objp; 3010 if (cachep->flags & SLAB_POISON) { 3011 check_poison_obj(cachep, objp); 3012 slab_kernel_map(cachep, objp, 1); 3013 poison_obj(cachep, objp, POISON_INUSE); 3014 } 3015 if (cachep->flags & SLAB_STORE_USER) 3016 *dbg_userword(cachep, objp) = (void *)caller; 3017 3018 if (cachep->flags & SLAB_RED_ZONE) { 3019 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3020 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3021 slab_error(cachep, "double free, or memory outside object was overwritten"); 3022 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 3023 objp, *dbg_redzone1(cachep, objp), 3024 *dbg_redzone2(cachep, objp)); 3025 } 3026 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3027 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3028 } 3029 3030 objp += obj_offset(cachep); 3031 if (cachep->ctor && cachep->flags & SLAB_POISON) 3032 cachep->ctor(objp); 3033 if (ARCH_SLAB_MINALIGN && 3034 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3035 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3036 objp, (int)ARCH_SLAB_MINALIGN); 3037 } 3038 return objp; 3039 } 3040 #else 3041 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3042 #endif 3043 3044 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3045 { 3046 void *objp; 3047 struct array_cache *ac; 3048 3049 check_irq_off(); 3050 3051 ac = cpu_cache_get(cachep); 3052 if (likely(ac->avail)) { 3053 ac->touched = 1; 3054 objp = ac->entry[--ac->avail]; 3055 3056 STATS_INC_ALLOCHIT(cachep); 3057 goto out; 3058 } 3059 3060 STATS_INC_ALLOCMISS(cachep); 3061 objp = cache_alloc_refill(cachep, flags); 3062 /* 3063 * the 'ac' may be updated by cache_alloc_refill(), 3064 * and kmemleak_erase() requires its correct value. 3065 */ 3066 ac = cpu_cache_get(cachep); 3067 3068 out: 3069 /* 3070 * To avoid a false negative, if an object that is in one of the 3071 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3072 * treat the array pointers as a reference to the object. 3073 */ 3074 if (objp) 3075 kmemleak_erase(&ac->entry[ac->avail]); 3076 return objp; 3077 } 3078 3079 #ifdef CONFIG_NUMA 3080 /* 3081 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3082 * 3083 * If we are in_interrupt, then process context, including cpusets and 3084 * mempolicy, may not apply and should not be used for allocation policy. 3085 */ 3086 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3087 { 3088 int nid_alloc, nid_here; 3089 3090 if (in_interrupt() || (flags & __GFP_THISNODE)) 3091 return NULL; 3092 nid_alloc = nid_here = numa_mem_id(); 3093 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3094 nid_alloc = cpuset_slab_spread_node(); 3095 else if (current->mempolicy) 3096 nid_alloc = mempolicy_slab_node(); 3097 if (nid_alloc != nid_here) 3098 return ____cache_alloc_node(cachep, flags, nid_alloc); 3099 return NULL; 3100 } 3101 3102 /* 3103 * Fallback function if there was no memory available and no objects on a 3104 * certain node and fall back is permitted. First we scan all the 3105 * available node for available objects. If that fails then we 3106 * perform an allocation without specifying a node. This allows the page 3107 * allocator to do its reclaim / fallback magic. We then insert the 3108 * slab into the proper nodelist and then allocate from it. 3109 */ 3110 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3111 { 3112 struct zonelist *zonelist; 3113 struct zoneref *z; 3114 struct zone *zone; 3115 enum zone_type high_zoneidx = gfp_zone(flags); 3116 void *obj = NULL; 3117 struct page *page; 3118 int nid; 3119 unsigned int cpuset_mems_cookie; 3120 3121 if (flags & __GFP_THISNODE) 3122 return NULL; 3123 3124 retry_cpuset: 3125 cpuset_mems_cookie = read_mems_allowed_begin(); 3126 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3127 3128 retry: 3129 /* 3130 * Look through allowed nodes for objects available 3131 * from existing per node queues. 3132 */ 3133 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3134 nid = zone_to_nid(zone); 3135 3136 if (cpuset_zone_allowed(zone, flags) && 3137 get_node(cache, nid) && 3138 get_node(cache, nid)->free_objects) { 3139 obj = ____cache_alloc_node(cache, 3140 gfp_exact_node(flags), nid); 3141 if (obj) 3142 break; 3143 } 3144 } 3145 3146 if (!obj) { 3147 /* 3148 * This allocation will be performed within the constraints 3149 * of the current cpuset / memory policy requirements. 3150 * We may trigger various forms of reclaim on the allowed 3151 * set and go into memory reserves if necessary. 3152 */ 3153 page = cache_grow_begin(cache, flags, numa_mem_id()); 3154 cache_grow_end(cache, page); 3155 if (page) { 3156 nid = page_to_nid(page); 3157 obj = ____cache_alloc_node(cache, 3158 gfp_exact_node(flags), nid); 3159 3160 /* 3161 * Another processor may allocate the objects in 3162 * the slab since we are not holding any locks. 3163 */ 3164 if (!obj) 3165 goto retry; 3166 } 3167 } 3168 3169 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3170 goto retry_cpuset; 3171 return obj; 3172 } 3173 3174 /* 3175 * A interface to enable slab creation on nodeid 3176 */ 3177 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3178 int nodeid) 3179 { 3180 struct page *page; 3181 struct kmem_cache_node *n; 3182 void *obj = NULL; 3183 void *list = NULL; 3184 3185 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3186 n = get_node(cachep, nodeid); 3187 BUG_ON(!n); 3188 3189 check_irq_off(); 3190 spin_lock(&n->list_lock); 3191 page = get_first_slab(n, false); 3192 if (!page) 3193 goto must_grow; 3194 3195 check_spinlock_acquired_node(cachep, nodeid); 3196 3197 STATS_INC_NODEALLOCS(cachep); 3198 STATS_INC_ACTIVE(cachep); 3199 STATS_SET_HIGH(cachep); 3200 3201 BUG_ON(page->active == cachep->num); 3202 3203 obj = slab_get_obj(cachep, page); 3204 n->free_objects--; 3205 3206 fixup_slab_list(cachep, n, page, &list); 3207 3208 spin_unlock(&n->list_lock); 3209 fixup_objfreelist_debug(cachep, &list); 3210 return obj; 3211 3212 must_grow: 3213 spin_unlock(&n->list_lock); 3214 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3215 if (page) { 3216 /* This slab isn't counted yet so don't update free_objects */ 3217 obj = slab_get_obj(cachep, page); 3218 } 3219 cache_grow_end(cachep, page); 3220 3221 return obj ? obj : fallback_alloc(cachep, flags); 3222 } 3223 3224 static __always_inline void * 3225 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3226 unsigned long caller) 3227 { 3228 unsigned long save_flags; 3229 void *ptr; 3230 int slab_node = numa_mem_id(); 3231 3232 flags &= gfp_allowed_mask; 3233 cachep = slab_pre_alloc_hook(cachep, flags); 3234 if (unlikely(!cachep)) 3235 return NULL; 3236 3237 cache_alloc_debugcheck_before(cachep, flags); 3238 local_irq_save(save_flags); 3239 3240 if (nodeid == NUMA_NO_NODE) 3241 nodeid = slab_node; 3242 3243 if (unlikely(!get_node(cachep, nodeid))) { 3244 /* Node not bootstrapped yet */ 3245 ptr = fallback_alloc(cachep, flags); 3246 goto out; 3247 } 3248 3249 if (nodeid == slab_node) { 3250 /* 3251 * Use the locally cached objects if possible. 3252 * However ____cache_alloc does not allow fallback 3253 * to other nodes. It may fail while we still have 3254 * objects on other nodes available. 3255 */ 3256 ptr = ____cache_alloc(cachep, flags); 3257 if (ptr) 3258 goto out; 3259 } 3260 /* ___cache_alloc_node can fall back to other nodes */ 3261 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3262 out: 3263 local_irq_restore(save_flags); 3264 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3265 3266 if (unlikely(flags & __GFP_ZERO) && ptr) 3267 memset(ptr, 0, cachep->object_size); 3268 3269 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3270 return ptr; 3271 } 3272 3273 static __always_inline void * 3274 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3275 { 3276 void *objp; 3277 3278 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3279 objp = alternate_node_alloc(cache, flags); 3280 if (objp) 3281 goto out; 3282 } 3283 objp = ____cache_alloc(cache, flags); 3284 3285 /* 3286 * We may just have run out of memory on the local node. 3287 * ____cache_alloc_node() knows how to locate memory on other nodes 3288 */ 3289 if (!objp) 3290 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3291 3292 out: 3293 return objp; 3294 } 3295 #else 3296 3297 static __always_inline void * 3298 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3299 { 3300 return ____cache_alloc(cachep, flags); 3301 } 3302 3303 #endif /* CONFIG_NUMA */ 3304 3305 static __always_inline void * 3306 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3307 { 3308 unsigned long save_flags; 3309 void *objp; 3310 3311 flags &= gfp_allowed_mask; 3312 cachep = slab_pre_alloc_hook(cachep, flags); 3313 if (unlikely(!cachep)) 3314 return NULL; 3315 3316 cache_alloc_debugcheck_before(cachep, flags); 3317 local_irq_save(save_flags); 3318 objp = __do_cache_alloc(cachep, flags); 3319 local_irq_restore(save_flags); 3320 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3321 prefetchw(objp); 3322 3323 if (unlikely(flags & __GFP_ZERO) && objp) 3324 memset(objp, 0, cachep->object_size); 3325 3326 slab_post_alloc_hook(cachep, flags, 1, &objp); 3327 return objp; 3328 } 3329 3330 /* 3331 * Caller needs to acquire correct kmem_cache_node's list_lock 3332 * @list: List of detached free slabs should be freed by caller 3333 */ 3334 static void free_block(struct kmem_cache *cachep, void **objpp, 3335 int nr_objects, int node, struct list_head *list) 3336 { 3337 int i; 3338 struct kmem_cache_node *n = get_node(cachep, node); 3339 struct page *page; 3340 3341 n->free_objects += nr_objects; 3342 3343 for (i = 0; i < nr_objects; i++) { 3344 void *objp; 3345 struct page *page; 3346 3347 objp = objpp[i]; 3348 3349 page = virt_to_head_page(objp); 3350 list_del(&page->slab_list); 3351 check_spinlock_acquired_node(cachep, node); 3352 slab_put_obj(cachep, page, objp); 3353 STATS_DEC_ACTIVE(cachep); 3354 3355 /* fixup slab chains */ 3356 if (page->active == 0) { 3357 list_add(&page->slab_list, &n->slabs_free); 3358 n->free_slabs++; 3359 } else { 3360 /* Unconditionally move a slab to the end of the 3361 * partial list on free - maximum time for the 3362 * other objects to be freed, too. 3363 */ 3364 list_add_tail(&page->slab_list, &n->slabs_partial); 3365 } 3366 } 3367 3368 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3369 n->free_objects -= cachep->num; 3370 3371 page = list_last_entry(&n->slabs_free, struct page, slab_list); 3372 list_move(&page->slab_list, list); 3373 n->free_slabs--; 3374 n->total_slabs--; 3375 } 3376 } 3377 3378 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3379 { 3380 int batchcount; 3381 struct kmem_cache_node *n; 3382 int node = numa_mem_id(); 3383 LIST_HEAD(list); 3384 3385 batchcount = ac->batchcount; 3386 3387 check_irq_off(); 3388 n = get_node(cachep, node); 3389 spin_lock(&n->list_lock); 3390 if (n->shared) { 3391 struct array_cache *shared_array = n->shared; 3392 int max = shared_array->limit - shared_array->avail; 3393 if (max) { 3394 if (batchcount > max) 3395 batchcount = max; 3396 memcpy(&(shared_array->entry[shared_array->avail]), 3397 ac->entry, sizeof(void *) * batchcount); 3398 shared_array->avail += batchcount; 3399 goto free_done; 3400 } 3401 } 3402 3403 free_block(cachep, ac->entry, batchcount, node, &list); 3404 free_done: 3405 #if STATS 3406 { 3407 int i = 0; 3408 struct page *page; 3409 3410 list_for_each_entry(page, &n->slabs_free, slab_list) { 3411 BUG_ON(page->active); 3412 3413 i++; 3414 } 3415 STATS_SET_FREEABLE(cachep, i); 3416 } 3417 #endif 3418 spin_unlock(&n->list_lock); 3419 slabs_destroy(cachep, &list); 3420 ac->avail -= batchcount; 3421 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3422 } 3423 3424 /* 3425 * Release an obj back to its cache. If the obj has a constructed state, it must 3426 * be in this state _before_ it is released. Called with disabled ints. 3427 */ 3428 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3429 unsigned long caller) 3430 { 3431 /* Put the object into the quarantine, don't touch it for now. */ 3432 if (kasan_slab_free(cachep, objp, _RET_IP_)) 3433 return; 3434 3435 ___cache_free(cachep, objp, caller); 3436 } 3437 3438 void ___cache_free(struct kmem_cache *cachep, void *objp, 3439 unsigned long caller) 3440 { 3441 struct array_cache *ac = cpu_cache_get(cachep); 3442 3443 check_irq_off(); 3444 kmemleak_free_recursive(objp, cachep->flags); 3445 objp = cache_free_debugcheck(cachep, objp, caller); 3446 3447 /* 3448 * Skip calling cache_free_alien() when the platform is not numa. 3449 * This will avoid cache misses that happen while accessing slabp (which 3450 * is per page memory reference) to get nodeid. Instead use a global 3451 * variable to skip the call, which is mostly likely to be present in 3452 * the cache. 3453 */ 3454 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3455 return; 3456 3457 if (ac->avail < ac->limit) { 3458 STATS_INC_FREEHIT(cachep); 3459 } else { 3460 STATS_INC_FREEMISS(cachep); 3461 cache_flusharray(cachep, ac); 3462 } 3463 3464 if (sk_memalloc_socks()) { 3465 struct page *page = virt_to_head_page(objp); 3466 3467 if (unlikely(PageSlabPfmemalloc(page))) { 3468 cache_free_pfmemalloc(cachep, page, objp); 3469 return; 3470 } 3471 } 3472 3473 ac->entry[ac->avail++] = objp; 3474 } 3475 3476 /** 3477 * kmem_cache_alloc - Allocate an object 3478 * @cachep: The cache to allocate from. 3479 * @flags: See kmalloc(). 3480 * 3481 * Allocate an object from this cache. The flags are only relevant 3482 * if the cache has no available objects. 3483 * 3484 * Return: pointer to the new object or %NULL in case of error 3485 */ 3486 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3487 { 3488 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3489 3490 trace_kmem_cache_alloc(_RET_IP_, ret, 3491 cachep->object_size, cachep->size, flags); 3492 3493 return ret; 3494 } 3495 EXPORT_SYMBOL(kmem_cache_alloc); 3496 3497 static __always_inline void 3498 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3499 size_t size, void **p, unsigned long caller) 3500 { 3501 size_t i; 3502 3503 for (i = 0; i < size; i++) 3504 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3505 } 3506 3507 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3508 void **p) 3509 { 3510 size_t i; 3511 3512 s = slab_pre_alloc_hook(s, flags); 3513 if (!s) 3514 return 0; 3515 3516 cache_alloc_debugcheck_before(s, flags); 3517 3518 local_irq_disable(); 3519 for (i = 0; i < size; i++) { 3520 void *objp = __do_cache_alloc(s, flags); 3521 3522 if (unlikely(!objp)) 3523 goto error; 3524 p[i] = objp; 3525 } 3526 local_irq_enable(); 3527 3528 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3529 3530 /* Clear memory outside IRQ disabled section */ 3531 if (unlikely(flags & __GFP_ZERO)) 3532 for (i = 0; i < size; i++) 3533 memset(p[i], 0, s->object_size); 3534 3535 slab_post_alloc_hook(s, flags, size, p); 3536 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3537 return size; 3538 error: 3539 local_irq_enable(); 3540 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3541 slab_post_alloc_hook(s, flags, i, p); 3542 __kmem_cache_free_bulk(s, i, p); 3543 return 0; 3544 } 3545 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3546 3547 #ifdef CONFIG_TRACING 3548 void * 3549 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3550 { 3551 void *ret; 3552 3553 ret = slab_alloc(cachep, flags, _RET_IP_); 3554 3555 ret = kasan_kmalloc(cachep, ret, size, flags); 3556 trace_kmalloc(_RET_IP_, ret, 3557 size, cachep->size, flags); 3558 return ret; 3559 } 3560 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3561 #endif 3562 3563 #ifdef CONFIG_NUMA 3564 /** 3565 * kmem_cache_alloc_node - Allocate an object on the specified node 3566 * @cachep: The cache to allocate from. 3567 * @flags: See kmalloc(). 3568 * @nodeid: node number of the target node. 3569 * 3570 * Identical to kmem_cache_alloc but it will allocate memory on the given 3571 * node, which can improve the performance for cpu bound structures. 3572 * 3573 * Fallback to other node is possible if __GFP_THISNODE is not set. 3574 * 3575 * Return: pointer to the new object or %NULL in case of error 3576 */ 3577 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3578 { 3579 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3580 3581 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3582 cachep->object_size, cachep->size, 3583 flags, nodeid); 3584 3585 return ret; 3586 } 3587 EXPORT_SYMBOL(kmem_cache_alloc_node); 3588 3589 #ifdef CONFIG_TRACING 3590 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3591 gfp_t flags, 3592 int nodeid, 3593 size_t size) 3594 { 3595 void *ret; 3596 3597 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3598 3599 ret = kasan_kmalloc(cachep, ret, size, flags); 3600 trace_kmalloc_node(_RET_IP_, ret, 3601 size, cachep->size, 3602 flags, nodeid); 3603 return ret; 3604 } 3605 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3606 #endif 3607 3608 static __always_inline void * 3609 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3610 { 3611 struct kmem_cache *cachep; 3612 void *ret; 3613 3614 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3615 return NULL; 3616 cachep = kmalloc_slab(size, flags); 3617 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3618 return cachep; 3619 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3620 ret = kasan_kmalloc(cachep, ret, size, flags); 3621 3622 return ret; 3623 } 3624 3625 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3626 { 3627 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3628 } 3629 EXPORT_SYMBOL(__kmalloc_node); 3630 3631 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3632 int node, unsigned long caller) 3633 { 3634 return __do_kmalloc_node(size, flags, node, caller); 3635 } 3636 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3637 #endif /* CONFIG_NUMA */ 3638 3639 /** 3640 * __do_kmalloc - allocate memory 3641 * @size: how many bytes of memory are required. 3642 * @flags: the type of memory to allocate (see kmalloc). 3643 * @caller: function caller for debug tracking of the caller 3644 * 3645 * Return: pointer to the allocated memory or %NULL in case of error 3646 */ 3647 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3648 unsigned long caller) 3649 { 3650 struct kmem_cache *cachep; 3651 void *ret; 3652 3653 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3654 return NULL; 3655 cachep = kmalloc_slab(size, flags); 3656 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3657 return cachep; 3658 ret = slab_alloc(cachep, flags, caller); 3659 3660 ret = kasan_kmalloc(cachep, ret, size, flags); 3661 trace_kmalloc(caller, ret, 3662 size, cachep->size, flags); 3663 3664 return ret; 3665 } 3666 3667 void *__kmalloc(size_t size, gfp_t flags) 3668 { 3669 return __do_kmalloc(size, flags, _RET_IP_); 3670 } 3671 EXPORT_SYMBOL(__kmalloc); 3672 3673 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3674 { 3675 return __do_kmalloc(size, flags, caller); 3676 } 3677 EXPORT_SYMBOL(__kmalloc_track_caller); 3678 3679 /** 3680 * kmem_cache_free - Deallocate an object 3681 * @cachep: The cache the allocation was from. 3682 * @objp: The previously allocated object. 3683 * 3684 * Free an object which was previously allocated from this 3685 * cache. 3686 */ 3687 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3688 { 3689 unsigned long flags; 3690 cachep = cache_from_obj(cachep, objp); 3691 if (!cachep) 3692 return; 3693 3694 local_irq_save(flags); 3695 debug_check_no_locks_freed(objp, cachep->object_size); 3696 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3697 debug_check_no_obj_freed(objp, cachep->object_size); 3698 __cache_free(cachep, objp, _RET_IP_); 3699 local_irq_restore(flags); 3700 3701 trace_kmem_cache_free(_RET_IP_, objp); 3702 } 3703 EXPORT_SYMBOL(kmem_cache_free); 3704 3705 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3706 { 3707 struct kmem_cache *s; 3708 size_t i; 3709 3710 local_irq_disable(); 3711 for (i = 0; i < size; i++) { 3712 void *objp = p[i]; 3713 3714 if (!orig_s) /* called via kfree_bulk */ 3715 s = virt_to_cache(objp); 3716 else 3717 s = cache_from_obj(orig_s, objp); 3718 3719 debug_check_no_locks_freed(objp, s->object_size); 3720 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3721 debug_check_no_obj_freed(objp, s->object_size); 3722 3723 __cache_free(s, objp, _RET_IP_); 3724 } 3725 local_irq_enable(); 3726 3727 /* FIXME: add tracing */ 3728 } 3729 EXPORT_SYMBOL(kmem_cache_free_bulk); 3730 3731 /** 3732 * kfree - free previously allocated memory 3733 * @objp: pointer returned by kmalloc. 3734 * 3735 * If @objp is NULL, no operation is performed. 3736 * 3737 * Don't free memory not originally allocated by kmalloc() 3738 * or you will run into trouble. 3739 */ 3740 void kfree(const void *objp) 3741 { 3742 struct kmem_cache *c; 3743 unsigned long flags; 3744 3745 trace_kfree(_RET_IP_, objp); 3746 3747 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3748 return; 3749 local_irq_save(flags); 3750 kfree_debugcheck(objp); 3751 c = virt_to_cache(objp); 3752 debug_check_no_locks_freed(objp, c->object_size); 3753 3754 debug_check_no_obj_freed(objp, c->object_size); 3755 __cache_free(c, (void *)objp, _RET_IP_); 3756 local_irq_restore(flags); 3757 } 3758 EXPORT_SYMBOL(kfree); 3759 3760 /* 3761 * This initializes kmem_cache_node or resizes various caches for all nodes. 3762 */ 3763 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3764 { 3765 int ret; 3766 int node; 3767 struct kmem_cache_node *n; 3768 3769 for_each_online_node(node) { 3770 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3771 if (ret) 3772 goto fail; 3773 3774 } 3775 3776 return 0; 3777 3778 fail: 3779 if (!cachep->list.next) { 3780 /* Cache is not active yet. Roll back what we did */ 3781 node--; 3782 while (node >= 0) { 3783 n = get_node(cachep, node); 3784 if (n) { 3785 kfree(n->shared); 3786 free_alien_cache(n->alien); 3787 kfree(n); 3788 cachep->node[node] = NULL; 3789 } 3790 node--; 3791 } 3792 } 3793 return -ENOMEM; 3794 } 3795 3796 /* Always called with the slab_mutex held */ 3797 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3798 int batchcount, int shared, gfp_t gfp) 3799 { 3800 struct array_cache __percpu *cpu_cache, *prev; 3801 int cpu; 3802 3803 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3804 if (!cpu_cache) 3805 return -ENOMEM; 3806 3807 prev = cachep->cpu_cache; 3808 cachep->cpu_cache = cpu_cache; 3809 /* 3810 * Without a previous cpu_cache there's no need to synchronize remote 3811 * cpus, so skip the IPIs. 3812 */ 3813 if (prev) 3814 kick_all_cpus_sync(); 3815 3816 check_irq_on(); 3817 cachep->batchcount = batchcount; 3818 cachep->limit = limit; 3819 cachep->shared = shared; 3820 3821 if (!prev) 3822 goto setup_node; 3823 3824 for_each_online_cpu(cpu) { 3825 LIST_HEAD(list); 3826 int node; 3827 struct kmem_cache_node *n; 3828 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3829 3830 node = cpu_to_mem(cpu); 3831 n = get_node(cachep, node); 3832 spin_lock_irq(&n->list_lock); 3833 free_block(cachep, ac->entry, ac->avail, node, &list); 3834 spin_unlock_irq(&n->list_lock); 3835 slabs_destroy(cachep, &list); 3836 } 3837 free_percpu(prev); 3838 3839 setup_node: 3840 return setup_kmem_cache_nodes(cachep, gfp); 3841 } 3842 3843 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3844 int batchcount, int shared, gfp_t gfp) 3845 { 3846 int ret; 3847 struct kmem_cache *c; 3848 3849 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3850 3851 if (slab_state < FULL) 3852 return ret; 3853 3854 if ((ret < 0) || !is_root_cache(cachep)) 3855 return ret; 3856 3857 lockdep_assert_held(&slab_mutex); 3858 for_each_memcg_cache(c, cachep) { 3859 /* return value determined by the root cache only */ 3860 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3861 } 3862 3863 return ret; 3864 } 3865 3866 /* Called with slab_mutex held always */ 3867 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3868 { 3869 int err; 3870 int limit = 0; 3871 int shared = 0; 3872 int batchcount = 0; 3873 3874 err = cache_random_seq_create(cachep, cachep->num, gfp); 3875 if (err) 3876 goto end; 3877 3878 if (!is_root_cache(cachep)) { 3879 struct kmem_cache *root = memcg_root_cache(cachep); 3880 limit = root->limit; 3881 shared = root->shared; 3882 batchcount = root->batchcount; 3883 } 3884 3885 if (limit && shared && batchcount) 3886 goto skip_setup; 3887 /* 3888 * The head array serves three purposes: 3889 * - create a LIFO ordering, i.e. return objects that are cache-warm 3890 * - reduce the number of spinlock operations. 3891 * - reduce the number of linked list operations on the slab and 3892 * bufctl chains: array operations are cheaper. 3893 * The numbers are guessed, we should auto-tune as described by 3894 * Bonwick. 3895 */ 3896 if (cachep->size > 131072) 3897 limit = 1; 3898 else if (cachep->size > PAGE_SIZE) 3899 limit = 8; 3900 else if (cachep->size > 1024) 3901 limit = 24; 3902 else if (cachep->size > 256) 3903 limit = 54; 3904 else 3905 limit = 120; 3906 3907 /* 3908 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3909 * allocation behaviour: Most allocs on one cpu, most free operations 3910 * on another cpu. For these cases, an efficient object passing between 3911 * cpus is necessary. This is provided by a shared array. The array 3912 * replaces Bonwick's magazine layer. 3913 * On uniprocessor, it's functionally equivalent (but less efficient) 3914 * to a larger limit. Thus disabled by default. 3915 */ 3916 shared = 0; 3917 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3918 shared = 8; 3919 3920 #if DEBUG 3921 /* 3922 * With debugging enabled, large batchcount lead to excessively long 3923 * periods with disabled local interrupts. Limit the batchcount 3924 */ 3925 if (limit > 32) 3926 limit = 32; 3927 #endif 3928 batchcount = (limit + 1) / 2; 3929 skip_setup: 3930 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3931 end: 3932 if (err) 3933 pr_err("enable_cpucache failed for %s, error %d\n", 3934 cachep->name, -err); 3935 return err; 3936 } 3937 3938 /* 3939 * Drain an array if it contains any elements taking the node lock only if 3940 * necessary. Note that the node listlock also protects the array_cache 3941 * if drain_array() is used on the shared array. 3942 */ 3943 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3944 struct array_cache *ac, int node) 3945 { 3946 LIST_HEAD(list); 3947 3948 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3949 check_mutex_acquired(); 3950 3951 if (!ac || !ac->avail) 3952 return; 3953 3954 if (ac->touched) { 3955 ac->touched = 0; 3956 return; 3957 } 3958 3959 spin_lock_irq(&n->list_lock); 3960 drain_array_locked(cachep, ac, node, false, &list); 3961 spin_unlock_irq(&n->list_lock); 3962 3963 slabs_destroy(cachep, &list); 3964 } 3965 3966 /** 3967 * cache_reap - Reclaim memory from caches. 3968 * @w: work descriptor 3969 * 3970 * Called from workqueue/eventd every few seconds. 3971 * Purpose: 3972 * - clear the per-cpu caches for this CPU. 3973 * - return freeable pages to the main free memory pool. 3974 * 3975 * If we cannot acquire the cache chain mutex then just give up - we'll try 3976 * again on the next iteration. 3977 */ 3978 static void cache_reap(struct work_struct *w) 3979 { 3980 struct kmem_cache *searchp; 3981 struct kmem_cache_node *n; 3982 int node = numa_mem_id(); 3983 struct delayed_work *work = to_delayed_work(w); 3984 3985 if (!mutex_trylock(&slab_mutex)) 3986 /* Give up. Setup the next iteration. */ 3987 goto out; 3988 3989 list_for_each_entry(searchp, &slab_caches, list) { 3990 check_irq_on(); 3991 3992 /* 3993 * We only take the node lock if absolutely necessary and we 3994 * have established with reasonable certainty that 3995 * we can do some work if the lock was obtained. 3996 */ 3997 n = get_node(searchp, node); 3998 3999 reap_alien(searchp, n); 4000 4001 drain_array(searchp, n, cpu_cache_get(searchp), node); 4002 4003 /* 4004 * These are racy checks but it does not matter 4005 * if we skip one check or scan twice. 4006 */ 4007 if (time_after(n->next_reap, jiffies)) 4008 goto next; 4009 4010 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4011 4012 drain_array(searchp, n, n->shared, node); 4013 4014 if (n->free_touched) 4015 n->free_touched = 0; 4016 else { 4017 int freed; 4018 4019 freed = drain_freelist(searchp, n, (n->free_limit + 4020 5 * searchp->num - 1) / (5 * searchp->num)); 4021 STATS_ADD_REAPED(searchp, freed); 4022 } 4023 next: 4024 cond_resched(); 4025 } 4026 check_irq_on(); 4027 mutex_unlock(&slab_mutex); 4028 next_reap_node(); 4029 out: 4030 /* Set up the next iteration */ 4031 schedule_delayed_work_on(smp_processor_id(), work, 4032 round_jiffies_relative(REAPTIMEOUT_AC)); 4033 } 4034 4035 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4036 { 4037 unsigned long active_objs, num_objs, active_slabs; 4038 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4039 unsigned long free_slabs = 0; 4040 int node; 4041 struct kmem_cache_node *n; 4042 4043 for_each_kmem_cache_node(cachep, node, n) { 4044 check_irq_on(); 4045 spin_lock_irq(&n->list_lock); 4046 4047 total_slabs += n->total_slabs; 4048 free_slabs += n->free_slabs; 4049 free_objs += n->free_objects; 4050 4051 if (n->shared) 4052 shared_avail += n->shared->avail; 4053 4054 spin_unlock_irq(&n->list_lock); 4055 } 4056 num_objs = total_slabs * cachep->num; 4057 active_slabs = total_slabs - free_slabs; 4058 active_objs = num_objs - free_objs; 4059 4060 sinfo->active_objs = active_objs; 4061 sinfo->num_objs = num_objs; 4062 sinfo->active_slabs = active_slabs; 4063 sinfo->num_slabs = total_slabs; 4064 sinfo->shared_avail = shared_avail; 4065 sinfo->limit = cachep->limit; 4066 sinfo->batchcount = cachep->batchcount; 4067 sinfo->shared = cachep->shared; 4068 sinfo->objects_per_slab = cachep->num; 4069 sinfo->cache_order = cachep->gfporder; 4070 } 4071 4072 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4073 { 4074 #if STATS 4075 { /* node stats */ 4076 unsigned long high = cachep->high_mark; 4077 unsigned long allocs = cachep->num_allocations; 4078 unsigned long grown = cachep->grown; 4079 unsigned long reaped = cachep->reaped; 4080 unsigned long errors = cachep->errors; 4081 unsigned long max_freeable = cachep->max_freeable; 4082 unsigned long node_allocs = cachep->node_allocs; 4083 unsigned long node_frees = cachep->node_frees; 4084 unsigned long overflows = cachep->node_overflow; 4085 4086 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4087 allocs, high, grown, 4088 reaped, errors, max_freeable, node_allocs, 4089 node_frees, overflows); 4090 } 4091 /* cpu stats */ 4092 { 4093 unsigned long allochit = atomic_read(&cachep->allochit); 4094 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4095 unsigned long freehit = atomic_read(&cachep->freehit); 4096 unsigned long freemiss = atomic_read(&cachep->freemiss); 4097 4098 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4099 allochit, allocmiss, freehit, freemiss); 4100 } 4101 #endif 4102 } 4103 4104 #define MAX_SLABINFO_WRITE 128 4105 /** 4106 * slabinfo_write - Tuning for the slab allocator 4107 * @file: unused 4108 * @buffer: user buffer 4109 * @count: data length 4110 * @ppos: unused 4111 * 4112 * Return: %0 on success, negative error code otherwise. 4113 */ 4114 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4115 size_t count, loff_t *ppos) 4116 { 4117 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4118 int limit, batchcount, shared, res; 4119 struct kmem_cache *cachep; 4120 4121 if (count > MAX_SLABINFO_WRITE) 4122 return -EINVAL; 4123 if (copy_from_user(&kbuf, buffer, count)) 4124 return -EFAULT; 4125 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4126 4127 tmp = strchr(kbuf, ' '); 4128 if (!tmp) 4129 return -EINVAL; 4130 *tmp = '\0'; 4131 tmp++; 4132 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4133 return -EINVAL; 4134 4135 /* Find the cache in the chain of caches. */ 4136 mutex_lock(&slab_mutex); 4137 res = -EINVAL; 4138 list_for_each_entry(cachep, &slab_caches, list) { 4139 if (!strcmp(cachep->name, kbuf)) { 4140 if (limit < 1 || batchcount < 1 || 4141 batchcount > limit || shared < 0) { 4142 res = 0; 4143 } else { 4144 res = do_tune_cpucache(cachep, limit, 4145 batchcount, shared, 4146 GFP_KERNEL); 4147 } 4148 break; 4149 } 4150 } 4151 mutex_unlock(&slab_mutex); 4152 if (res >= 0) 4153 res = count; 4154 return res; 4155 } 4156 4157 #ifdef CONFIG_HARDENED_USERCOPY 4158 /* 4159 * Rejects incorrectly sized objects and objects that are to be copied 4160 * to/from userspace but do not fall entirely within the containing slab 4161 * cache's usercopy region. 4162 * 4163 * Returns NULL if check passes, otherwise const char * to name of cache 4164 * to indicate an error. 4165 */ 4166 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4167 bool to_user) 4168 { 4169 struct kmem_cache *cachep; 4170 unsigned int objnr; 4171 unsigned long offset; 4172 4173 ptr = kasan_reset_tag(ptr); 4174 4175 /* Find and validate object. */ 4176 cachep = page->slab_cache; 4177 objnr = obj_to_index(cachep, page, (void *)ptr); 4178 BUG_ON(objnr >= cachep->num); 4179 4180 /* Find offset within object. */ 4181 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4182 4183 /* Allow address range falling entirely within usercopy region. */ 4184 if (offset >= cachep->useroffset && 4185 offset - cachep->useroffset <= cachep->usersize && 4186 n <= cachep->useroffset - offset + cachep->usersize) 4187 return; 4188 4189 /* 4190 * If the copy is still within the allocated object, produce 4191 * a warning instead of rejecting the copy. This is intended 4192 * to be a temporary method to find any missing usercopy 4193 * whitelists. 4194 */ 4195 if (usercopy_fallback && 4196 offset <= cachep->object_size && 4197 n <= cachep->object_size - offset) { 4198 usercopy_warn("SLAB object", cachep->name, to_user, offset, n); 4199 return; 4200 } 4201 4202 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4203 } 4204 #endif /* CONFIG_HARDENED_USERCOPY */ 4205 4206 /** 4207 * ksize - get the actual amount of memory allocated for a given object 4208 * @objp: Pointer to the object 4209 * 4210 * kmalloc may internally round up allocations and return more memory 4211 * than requested. ksize() can be used to determine the actual amount of 4212 * memory allocated. The caller may use this additional memory, even though 4213 * a smaller amount of memory was initially specified with the kmalloc call. 4214 * The caller must guarantee that objp points to a valid object previously 4215 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4216 * must not be freed during the duration of the call. 4217 * 4218 * Return: size of the actual memory used by @objp in bytes 4219 */ 4220 size_t ksize(const void *objp) 4221 { 4222 size_t size; 4223 4224 BUG_ON(!objp); 4225 if (unlikely(objp == ZERO_SIZE_PTR)) 4226 return 0; 4227 4228 size = virt_to_cache(objp)->object_size; 4229 /* We assume that ksize callers could use the whole allocated area, 4230 * so we need to unpoison this area. 4231 */ 4232 kasan_unpoison_shadow(objp, size); 4233 4234 return size; 4235 } 4236 EXPORT_SYMBOL(ksize); 4237