xref: /openbmc/linux/mm/slab.c (revision c4ee0af3)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 /*
161  * true if a page was allocated from pfmemalloc reserves for network-based
162  * swap
163  */
164 static bool pfmemalloc_active __read_mostly;
165 
166 /*
167  * struct array_cache
168  *
169  * Purpose:
170  * - LIFO ordering, to hand out cache-warm objects from _alloc
171  * - reduce the number of linked list operations
172  * - reduce spinlock operations
173  *
174  * The limit is stored in the per-cpu structure to reduce the data cache
175  * footprint.
176  *
177  */
178 struct array_cache {
179 	unsigned int avail;
180 	unsigned int limit;
181 	unsigned int batchcount;
182 	unsigned int touched;
183 	spinlock_t lock;
184 	void *entry[];	/*
185 			 * Must have this definition in here for the proper
186 			 * alignment of array_cache. Also simplifies accessing
187 			 * the entries.
188 			 *
189 			 * Entries should not be directly dereferenced as
190 			 * entries belonging to slabs marked pfmemalloc will
191 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
192 			 */
193 };
194 
195 #define SLAB_OBJ_PFMEMALLOC	1
196 static inline bool is_obj_pfmemalloc(void *objp)
197 {
198 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
199 }
200 
201 static inline void set_obj_pfmemalloc(void **objp)
202 {
203 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
204 	return;
205 }
206 
207 static inline void clear_obj_pfmemalloc(void **objp)
208 {
209 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
210 }
211 
212 /*
213  * bootstrap: The caches do not work without cpuarrays anymore, but the
214  * cpuarrays are allocated from the generic caches...
215  */
216 #define BOOT_CPUCACHE_ENTRIES	1
217 struct arraycache_init {
218 	struct array_cache cache;
219 	void *entries[BOOT_CPUCACHE_ENTRIES];
220 };
221 
222 /*
223  * Need this for bootstrapping a per node allocator.
224  */
225 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
226 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
227 #define	CACHE_CACHE 0
228 #define	SIZE_AC MAX_NUMNODES
229 #define	SIZE_NODE (2 * MAX_NUMNODES)
230 
231 static int drain_freelist(struct kmem_cache *cache,
232 			struct kmem_cache_node *n, int tofree);
233 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
234 			int node);
235 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
236 static void cache_reap(struct work_struct *unused);
237 
238 static int slab_early_init = 1;
239 
240 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
241 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
242 
243 static void kmem_cache_node_init(struct kmem_cache_node *parent)
244 {
245 	INIT_LIST_HEAD(&parent->slabs_full);
246 	INIT_LIST_HEAD(&parent->slabs_partial);
247 	INIT_LIST_HEAD(&parent->slabs_free);
248 	parent->shared = NULL;
249 	parent->alien = NULL;
250 	parent->colour_next = 0;
251 	spin_lock_init(&parent->list_lock);
252 	parent->free_objects = 0;
253 	parent->free_touched = 0;
254 }
255 
256 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
257 	do {								\
258 		INIT_LIST_HEAD(listp);					\
259 		list_splice(&(cachep->node[nodeid]->slab), listp);	\
260 	} while (0)
261 
262 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
263 	do {								\
264 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
265 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
266 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
267 	} while (0)
268 
269 #define CFLGS_OFF_SLAB		(0x80000000UL)
270 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
271 
272 #define BATCHREFILL_LIMIT	16
273 /*
274  * Optimization question: fewer reaps means less probability for unnessary
275  * cpucache drain/refill cycles.
276  *
277  * OTOH the cpuarrays can contain lots of objects,
278  * which could lock up otherwise freeable slabs.
279  */
280 #define REAPTIMEOUT_CPUC	(2*HZ)
281 #define REAPTIMEOUT_LIST3	(4*HZ)
282 
283 #if STATS
284 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
285 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
286 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
287 #define	STATS_INC_GROWN(x)	((x)->grown++)
288 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
289 #define	STATS_SET_HIGH(x)						\
290 	do {								\
291 		if ((x)->num_active > (x)->high_mark)			\
292 			(x)->high_mark = (x)->num_active;		\
293 	} while (0)
294 #define	STATS_INC_ERR(x)	((x)->errors++)
295 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
296 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
297 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
298 #define	STATS_SET_FREEABLE(x, i)					\
299 	do {								\
300 		if ((x)->max_freeable < i)				\
301 			(x)->max_freeable = i;				\
302 	} while (0)
303 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
304 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
305 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
306 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
307 #else
308 #define	STATS_INC_ACTIVE(x)	do { } while (0)
309 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
310 #define	STATS_INC_ALLOCED(x)	do { } while (0)
311 #define	STATS_INC_GROWN(x)	do { } while (0)
312 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
313 #define	STATS_SET_HIGH(x)	do { } while (0)
314 #define	STATS_INC_ERR(x)	do { } while (0)
315 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
316 #define	STATS_INC_NODEFREES(x)	do { } while (0)
317 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
318 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
319 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
320 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
321 #define STATS_INC_FREEHIT(x)	do { } while (0)
322 #define STATS_INC_FREEMISS(x)	do { } while (0)
323 #endif
324 
325 #if DEBUG
326 
327 /*
328  * memory layout of objects:
329  * 0		: objp
330  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
331  * 		the end of an object is aligned with the end of the real
332  * 		allocation. Catches writes behind the end of the allocation.
333  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
334  * 		redzone word.
335  * cachep->obj_offset: The real object.
336  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
337  * cachep->size - 1* BYTES_PER_WORD: last caller address
338  *					[BYTES_PER_WORD long]
339  */
340 static int obj_offset(struct kmem_cache *cachep)
341 {
342 	return cachep->obj_offset;
343 }
344 
345 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
346 {
347 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
348 	return (unsigned long long*) (objp + obj_offset(cachep) -
349 				      sizeof(unsigned long long));
350 }
351 
352 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
353 {
354 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
355 	if (cachep->flags & SLAB_STORE_USER)
356 		return (unsigned long long *)(objp + cachep->size -
357 					      sizeof(unsigned long long) -
358 					      REDZONE_ALIGN);
359 	return (unsigned long long *) (objp + cachep->size -
360 				       sizeof(unsigned long long));
361 }
362 
363 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
364 {
365 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
366 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
367 }
368 
369 #else
370 
371 #define obj_offset(x)			0
372 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
373 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
374 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
375 
376 #endif
377 
378 /*
379  * Do not go above this order unless 0 objects fit into the slab or
380  * overridden on the command line.
381  */
382 #define	SLAB_MAX_ORDER_HI	1
383 #define	SLAB_MAX_ORDER_LO	0
384 static int slab_max_order = SLAB_MAX_ORDER_LO;
385 static bool slab_max_order_set __initdata;
386 
387 static inline struct kmem_cache *virt_to_cache(const void *obj)
388 {
389 	struct page *page = virt_to_head_page(obj);
390 	return page->slab_cache;
391 }
392 
393 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
394 				 unsigned int idx)
395 {
396 	return page->s_mem + cache->size * idx;
397 }
398 
399 /*
400  * We want to avoid an expensive divide : (offset / cache->size)
401  *   Using the fact that size is a constant for a particular cache,
402  *   we can replace (offset / cache->size) by
403  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
404  */
405 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
406 					const struct page *page, void *obj)
407 {
408 	u32 offset = (obj - page->s_mem);
409 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
410 }
411 
412 static struct arraycache_init initarray_generic =
413     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
414 
415 /* internal cache of cache description objs */
416 static struct kmem_cache kmem_cache_boot = {
417 	.batchcount = 1,
418 	.limit = BOOT_CPUCACHE_ENTRIES,
419 	.shared = 1,
420 	.size = sizeof(struct kmem_cache),
421 	.name = "kmem_cache",
422 };
423 
424 #define BAD_ALIEN_MAGIC 0x01020304ul
425 
426 #ifdef CONFIG_LOCKDEP
427 
428 /*
429  * Slab sometimes uses the kmalloc slabs to store the slab headers
430  * for other slabs "off slab".
431  * The locking for this is tricky in that it nests within the locks
432  * of all other slabs in a few places; to deal with this special
433  * locking we put on-slab caches into a separate lock-class.
434  *
435  * We set lock class for alien array caches which are up during init.
436  * The lock annotation will be lost if all cpus of a node goes down and
437  * then comes back up during hotplug
438  */
439 static struct lock_class_key on_slab_l3_key;
440 static struct lock_class_key on_slab_alc_key;
441 
442 static struct lock_class_key debugobj_l3_key;
443 static struct lock_class_key debugobj_alc_key;
444 
445 static void slab_set_lock_classes(struct kmem_cache *cachep,
446 		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
447 		int q)
448 {
449 	struct array_cache **alc;
450 	struct kmem_cache_node *n;
451 	int r;
452 
453 	n = cachep->node[q];
454 	if (!n)
455 		return;
456 
457 	lockdep_set_class(&n->list_lock, l3_key);
458 	alc = n->alien;
459 	/*
460 	 * FIXME: This check for BAD_ALIEN_MAGIC
461 	 * should go away when common slab code is taught to
462 	 * work even without alien caches.
463 	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
464 	 * for alloc_alien_cache,
465 	 */
466 	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
467 		return;
468 	for_each_node(r) {
469 		if (alc[r])
470 			lockdep_set_class(&alc[r]->lock, alc_key);
471 	}
472 }
473 
474 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
475 {
476 	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
477 }
478 
479 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
480 {
481 	int node;
482 
483 	for_each_online_node(node)
484 		slab_set_debugobj_lock_classes_node(cachep, node);
485 }
486 
487 static void init_node_lock_keys(int q)
488 {
489 	int i;
490 
491 	if (slab_state < UP)
492 		return;
493 
494 	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
495 		struct kmem_cache_node *n;
496 		struct kmem_cache *cache = kmalloc_caches[i];
497 
498 		if (!cache)
499 			continue;
500 
501 		n = cache->node[q];
502 		if (!n || OFF_SLAB(cache))
503 			continue;
504 
505 		slab_set_lock_classes(cache, &on_slab_l3_key,
506 				&on_slab_alc_key, q);
507 	}
508 }
509 
510 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
511 {
512 	if (!cachep->node[q])
513 		return;
514 
515 	slab_set_lock_classes(cachep, &on_slab_l3_key,
516 			&on_slab_alc_key, q);
517 }
518 
519 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
520 {
521 	int node;
522 
523 	VM_BUG_ON(OFF_SLAB(cachep));
524 	for_each_node(node)
525 		on_slab_lock_classes_node(cachep, node);
526 }
527 
528 static inline void init_lock_keys(void)
529 {
530 	int node;
531 
532 	for_each_node(node)
533 		init_node_lock_keys(node);
534 }
535 #else
536 static void init_node_lock_keys(int q)
537 {
538 }
539 
540 static inline void init_lock_keys(void)
541 {
542 }
543 
544 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
545 {
546 }
547 
548 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
549 {
550 }
551 
552 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
553 {
554 }
555 
556 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
557 {
558 }
559 #endif
560 
561 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
562 
563 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
564 {
565 	return cachep->array[smp_processor_id()];
566 }
567 
568 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
569 {
570 	return ALIGN(nr_objs * sizeof(unsigned int), align);
571 }
572 
573 /*
574  * Calculate the number of objects and left-over bytes for a given buffer size.
575  */
576 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
577 			   size_t align, int flags, size_t *left_over,
578 			   unsigned int *num)
579 {
580 	int nr_objs;
581 	size_t mgmt_size;
582 	size_t slab_size = PAGE_SIZE << gfporder;
583 
584 	/*
585 	 * The slab management structure can be either off the slab or
586 	 * on it. For the latter case, the memory allocated for a
587 	 * slab is used for:
588 	 *
589 	 * - One unsigned int for each object
590 	 * - Padding to respect alignment of @align
591 	 * - @buffer_size bytes for each object
592 	 *
593 	 * If the slab management structure is off the slab, then the
594 	 * alignment will already be calculated into the size. Because
595 	 * the slabs are all pages aligned, the objects will be at the
596 	 * correct alignment when allocated.
597 	 */
598 	if (flags & CFLGS_OFF_SLAB) {
599 		mgmt_size = 0;
600 		nr_objs = slab_size / buffer_size;
601 
602 	} else {
603 		/*
604 		 * Ignore padding for the initial guess. The padding
605 		 * is at most @align-1 bytes, and @buffer_size is at
606 		 * least @align. In the worst case, this result will
607 		 * be one greater than the number of objects that fit
608 		 * into the memory allocation when taking the padding
609 		 * into account.
610 		 */
611 		nr_objs = (slab_size) / (buffer_size + sizeof(unsigned int));
612 
613 		/*
614 		 * This calculated number will be either the right
615 		 * amount, or one greater than what we want.
616 		 */
617 		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
618 		       > slab_size)
619 			nr_objs--;
620 
621 		mgmt_size = slab_mgmt_size(nr_objs, align);
622 	}
623 	*num = nr_objs;
624 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
625 }
626 
627 #if DEBUG
628 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
629 
630 static void __slab_error(const char *function, struct kmem_cache *cachep,
631 			char *msg)
632 {
633 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
634 	       function, cachep->name, msg);
635 	dump_stack();
636 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
637 }
638 #endif
639 
640 /*
641  * By default on NUMA we use alien caches to stage the freeing of
642  * objects allocated from other nodes. This causes massive memory
643  * inefficiencies when using fake NUMA setup to split memory into a
644  * large number of small nodes, so it can be disabled on the command
645  * line
646   */
647 
648 static int use_alien_caches __read_mostly = 1;
649 static int __init noaliencache_setup(char *s)
650 {
651 	use_alien_caches = 0;
652 	return 1;
653 }
654 __setup("noaliencache", noaliencache_setup);
655 
656 static int __init slab_max_order_setup(char *str)
657 {
658 	get_option(&str, &slab_max_order);
659 	slab_max_order = slab_max_order < 0 ? 0 :
660 				min(slab_max_order, MAX_ORDER - 1);
661 	slab_max_order_set = true;
662 
663 	return 1;
664 }
665 __setup("slab_max_order=", slab_max_order_setup);
666 
667 #ifdef CONFIG_NUMA
668 /*
669  * Special reaping functions for NUMA systems called from cache_reap().
670  * These take care of doing round robin flushing of alien caches (containing
671  * objects freed on different nodes from which they were allocated) and the
672  * flushing of remote pcps by calling drain_node_pages.
673  */
674 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
675 
676 static void init_reap_node(int cpu)
677 {
678 	int node;
679 
680 	node = next_node(cpu_to_mem(cpu), node_online_map);
681 	if (node == MAX_NUMNODES)
682 		node = first_node(node_online_map);
683 
684 	per_cpu(slab_reap_node, cpu) = node;
685 }
686 
687 static void next_reap_node(void)
688 {
689 	int node = __this_cpu_read(slab_reap_node);
690 
691 	node = next_node(node, node_online_map);
692 	if (unlikely(node >= MAX_NUMNODES))
693 		node = first_node(node_online_map);
694 	__this_cpu_write(slab_reap_node, node);
695 }
696 
697 #else
698 #define init_reap_node(cpu) do { } while (0)
699 #define next_reap_node(void) do { } while (0)
700 #endif
701 
702 /*
703  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
704  * via the workqueue/eventd.
705  * Add the CPU number into the expiration time to minimize the possibility of
706  * the CPUs getting into lockstep and contending for the global cache chain
707  * lock.
708  */
709 static void start_cpu_timer(int cpu)
710 {
711 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
712 
713 	/*
714 	 * When this gets called from do_initcalls via cpucache_init(),
715 	 * init_workqueues() has already run, so keventd will be setup
716 	 * at that time.
717 	 */
718 	if (keventd_up() && reap_work->work.func == NULL) {
719 		init_reap_node(cpu);
720 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
721 		schedule_delayed_work_on(cpu, reap_work,
722 					__round_jiffies_relative(HZ, cpu));
723 	}
724 }
725 
726 static struct array_cache *alloc_arraycache(int node, int entries,
727 					    int batchcount, gfp_t gfp)
728 {
729 	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
730 	struct array_cache *nc = NULL;
731 
732 	nc = kmalloc_node(memsize, gfp, node);
733 	/*
734 	 * The array_cache structures contain pointers to free object.
735 	 * However, when such objects are allocated or transferred to another
736 	 * cache the pointers are not cleared and they could be counted as
737 	 * valid references during a kmemleak scan. Therefore, kmemleak must
738 	 * not scan such objects.
739 	 */
740 	kmemleak_no_scan(nc);
741 	if (nc) {
742 		nc->avail = 0;
743 		nc->limit = entries;
744 		nc->batchcount = batchcount;
745 		nc->touched = 0;
746 		spin_lock_init(&nc->lock);
747 	}
748 	return nc;
749 }
750 
751 static inline bool is_slab_pfmemalloc(struct page *page)
752 {
753 	return PageSlabPfmemalloc(page);
754 }
755 
756 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
757 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
758 						struct array_cache *ac)
759 {
760 	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
761 	struct page *page;
762 	unsigned long flags;
763 
764 	if (!pfmemalloc_active)
765 		return;
766 
767 	spin_lock_irqsave(&n->list_lock, flags);
768 	list_for_each_entry(page, &n->slabs_full, lru)
769 		if (is_slab_pfmemalloc(page))
770 			goto out;
771 
772 	list_for_each_entry(page, &n->slabs_partial, lru)
773 		if (is_slab_pfmemalloc(page))
774 			goto out;
775 
776 	list_for_each_entry(page, &n->slabs_free, lru)
777 		if (is_slab_pfmemalloc(page))
778 			goto out;
779 
780 	pfmemalloc_active = false;
781 out:
782 	spin_unlock_irqrestore(&n->list_lock, flags);
783 }
784 
785 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
786 						gfp_t flags, bool force_refill)
787 {
788 	int i;
789 	void *objp = ac->entry[--ac->avail];
790 
791 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
792 	if (unlikely(is_obj_pfmemalloc(objp))) {
793 		struct kmem_cache_node *n;
794 
795 		if (gfp_pfmemalloc_allowed(flags)) {
796 			clear_obj_pfmemalloc(&objp);
797 			return objp;
798 		}
799 
800 		/* The caller cannot use PFMEMALLOC objects, find another one */
801 		for (i = 0; i < ac->avail; i++) {
802 			/* If a !PFMEMALLOC object is found, swap them */
803 			if (!is_obj_pfmemalloc(ac->entry[i])) {
804 				objp = ac->entry[i];
805 				ac->entry[i] = ac->entry[ac->avail];
806 				ac->entry[ac->avail] = objp;
807 				return objp;
808 			}
809 		}
810 
811 		/*
812 		 * If there are empty slabs on the slabs_free list and we are
813 		 * being forced to refill the cache, mark this one !pfmemalloc.
814 		 */
815 		n = cachep->node[numa_mem_id()];
816 		if (!list_empty(&n->slabs_free) && force_refill) {
817 			struct page *page = virt_to_head_page(objp);
818 			ClearPageSlabPfmemalloc(page);
819 			clear_obj_pfmemalloc(&objp);
820 			recheck_pfmemalloc_active(cachep, ac);
821 			return objp;
822 		}
823 
824 		/* No !PFMEMALLOC objects available */
825 		ac->avail++;
826 		objp = NULL;
827 	}
828 
829 	return objp;
830 }
831 
832 static inline void *ac_get_obj(struct kmem_cache *cachep,
833 			struct array_cache *ac, gfp_t flags, bool force_refill)
834 {
835 	void *objp;
836 
837 	if (unlikely(sk_memalloc_socks()))
838 		objp = __ac_get_obj(cachep, ac, flags, force_refill);
839 	else
840 		objp = ac->entry[--ac->avail];
841 
842 	return objp;
843 }
844 
845 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
846 								void *objp)
847 {
848 	if (unlikely(pfmemalloc_active)) {
849 		/* Some pfmemalloc slabs exist, check if this is one */
850 		struct page *page = virt_to_head_page(objp);
851 		if (PageSlabPfmemalloc(page))
852 			set_obj_pfmemalloc(&objp);
853 	}
854 
855 	return objp;
856 }
857 
858 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
859 								void *objp)
860 {
861 	if (unlikely(sk_memalloc_socks()))
862 		objp = __ac_put_obj(cachep, ac, objp);
863 
864 	ac->entry[ac->avail++] = objp;
865 }
866 
867 /*
868  * Transfer objects in one arraycache to another.
869  * Locking must be handled by the caller.
870  *
871  * Return the number of entries transferred.
872  */
873 static int transfer_objects(struct array_cache *to,
874 		struct array_cache *from, unsigned int max)
875 {
876 	/* Figure out how many entries to transfer */
877 	int nr = min3(from->avail, max, to->limit - to->avail);
878 
879 	if (!nr)
880 		return 0;
881 
882 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
883 			sizeof(void *) *nr);
884 
885 	from->avail -= nr;
886 	to->avail += nr;
887 	return nr;
888 }
889 
890 #ifndef CONFIG_NUMA
891 
892 #define drain_alien_cache(cachep, alien) do { } while (0)
893 #define reap_alien(cachep, n) do { } while (0)
894 
895 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
896 {
897 	return (struct array_cache **)BAD_ALIEN_MAGIC;
898 }
899 
900 static inline void free_alien_cache(struct array_cache **ac_ptr)
901 {
902 }
903 
904 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
905 {
906 	return 0;
907 }
908 
909 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
910 		gfp_t flags)
911 {
912 	return NULL;
913 }
914 
915 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
916 		 gfp_t flags, int nodeid)
917 {
918 	return NULL;
919 }
920 
921 #else	/* CONFIG_NUMA */
922 
923 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
924 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
925 
926 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
927 {
928 	struct array_cache **ac_ptr;
929 	int memsize = sizeof(void *) * nr_node_ids;
930 	int i;
931 
932 	if (limit > 1)
933 		limit = 12;
934 	ac_ptr = kzalloc_node(memsize, gfp, node);
935 	if (ac_ptr) {
936 		for_each_node(i) {
937 			if (i == node || !node_online(i))
938 				continue;
939 			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
940 			if (!ac_ptr[i]) {
941 				for (i--; i >= 0; i--)
942 					kfree(ac_ptr[i]);
943 				kfree(ac_ptr);
944 				return NULL;
945 			}
946 		}
947 	}
948 	return ac_ptr;
949 }
950 
951 static void free_alien_cache(struct array_cache **ac_ptr)
952 {
953 	int i;
954 
955 	if (!ac_ptr)
956 		return;
957 	for_each_node(i)
958 	    kfree(ac_ptr[i]);
959 	kfree(ac_ptr);
960 }
961 
962 static void __drain_alien_cache(struct kmem_cache *cachep,
963 				struct array_cache *ac, int node)
964 {
965 	struct kmem_cache_node *n = cachep->node[node];
966 
967 	if (ac->avail) {
968 		spin_lock(&n->list_lock);
969 		/*
970 		 * Stuff objects into the remote nodes shared array first.
971 		 * That way we could avoid the overhead of putting the objects
972 		 * into the free lists and getting them back later.
973 		 */
974 		if (n->shared)
975 			transfer_objects(n->shared, ac, ac->limit);
976 
977 		free_block(cachep, ac->entry, ac->avail, node);
978 		ac->avail = 0;
979 		spin_unlock(&n->list_lock);
980 	}
981 }
982 
983 /*
984  * Called from cache_reap() to regularly drain alien caches round robin.
985  */
986 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
987 {
988 	int node = __this_cpu_read(slab_reap_node);
989 
990 	if (n->alien) {
991 		struct array_cache *ac = n->alien[node];
992 
993 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
994 			__drain_alien_cache(cachep, ac, node);
995 			spin_unlock_irq(&ac->lock);
996 		}
997 	}
998 }
999 
1000 static void drain_alien_cache(struct kmem_cache *cachep,
1001 				struct array_cache **alien)
1002 {
1003 	int i = 0;
1004 	struct array_cache *ac;
1005 	unsigned long flags;
1006 
1007 	for_each_online_node(i) {
1008 		ac = alien[i];
1009 		if (ac) {
1010 			spin_lock_irqsave(&ac->lock, flags);
1011 			__drain_alien_cache(cachep, ac, i);
1012 			spin_unlock_irqrestore(&ac->lock, flags);
1013 		}
1014 	}
1015 }
1016 
1017 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1018 {
1019 	int nodeid = page_to_nid(virt_to_page(objp));
1020 	struct kmem_cache_node *n;
1021 	struct array_cache *alien = NULL;
1022 	int node;
1023 
1024 	node = numa_mem_id();
1025 
1026 	/*
1027 	 * Make sure we are not freeing a object from another node to the array
1028 	 * cache on this cpu.
1029 	 */
1030 	if (likely(nodeid == node))
1031 		return 0;
1032 
1033 	n = cachep->node[node];
1034 	STATS_INC_NODEFREES(cachep);
1035 	if (n->alien && n->alien[nodeid]) {
1036 		alien = n->alien[nodeid];
1037 		spin_lock(&alien->lock);
1038 		if (unlikely(alien->avail == alien->limit)) {
1039 			STATS_INC_ACOVERFLOW(cachep);
1040 			__drain_alien_cache(cachep, alien, nodeid);
1041 		}
1042 		ac_put_obj(cachep, alien, objp);
1043 		spin_unlock(&alien->lock);
1044 	} else {
1045 		spin_lock(&(cachep->node[nodeid])->list_lock);
1046 		free_block(cachep, &objp, 1, nodeid);
1047 		spin_unlock(&(cachep->node[nodeid])->list_lock);
1048 	}
1049 	return 1;
1050 }
1051 #endif
1052 
1053 /*
1054  * Allocates and initializes node for a node on each slab cache, used for
1055  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1056  * will be allocated off-node since memory is not yet online for the new node.
1057  * When hotplugging memory or a cpu, existing node are not replaced if
1058  * already in use.
1059  *
1060  * Must hold slab_mutex.
1061  */
1062 static int init_cache_node_node(int node)
1063 {
1064 	struct kmem_cache *cachep;
1065 	struct kmem_cache_node *n;
1066 	const int memsize = sizeof(struct kmem_cache_node);
1067 
1068 	list_for_each_entry(cachep, &slab_caches, list) {
1069 		/*
1070 		 * Set up the size64 kmemlist for cpu before we can
1071 		 * begin anything. Make sure some other cpu on this
1072 		 * node has not already allocated this
1073 		 */
1074 		if (!cachep->node[node]) {
1075 			n = kmalloc_node(memsize, GFP_KERNEL, node);
1076 			if (!n)
1077 				return -ENOMEM;
1078 			kmem_cache_node_init(n);
1079 			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1080 			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1081 
1082 			/*
1083 			 * The l3s don't come and go as CPUs come and
1084 			 * go.  slab_mutex is sufficient
1085 			 * protection here.
1086 			 */
1087 			cachep->node[node] = n;
1088 		}
1089 
1090 		spin_lock_irq(&cachep->node[node]->list_lock);
1091 		cachep->node[node]->free_limit =
1092 			(1 + nr_cpus_node(node)) *
1093 			cachep->batchcount + cachep->num;
1094 		spin_unlock_irq(&cachep->node[node]->list_lock);
1095 	}
1096 	return 0;
1097 }
1098 
1099 static inline int slabs_tofree(struct kmem_cache *cachep,
1100 						struct kmem_cache_node *n)
1101 {
1102 	return (n->free_objects + cachep->num - 1) / cachep->num;
1103 }
1104 
1105 static void cpuup_canceled(long cpu)
1106 {
1107 	struct kmem_cache *cachep;
1108 	struct kmem_cache_node *n = NULL;
1109 	int node = cpu_to_mem(cpu);
1110 	const struct cpumask *mask = cpumask_of_node(node);
1111 
1112 	list_for_each_entry(cachep, &slab_caches, list) {
1113 		struct array_cache *nc;
1114 		struct array_cache *shared;
1115 		struct array_cache **alien;
1116 
1117 		/* cpu is dead; no one can alloc from it. */
1118 		nc = cachep->array[cpu];
1119 		cachep->array[cpu] = NULL;
1120 		n = cachep->node[node];
1121 
1122 		if (!n)
1123 			goto free_array_cache;
1124 
1125 		spin_lock_irq(&n->list_lock);
1126 
1127 		/* Free limit for this kmem_cache_node */
1128 		n->free_limit -= cachep->batchcount;
1129 		if (nc)
1130 			free_block(cachep, nc->entry, nc->avail, node);
1131 
1132 		if (!cpumask_empty(mask)) {
1133 			spin_unlock_irq(&n->list_lock);
1134 			goto free_array_cache;
1135 		}
1136 
1137 		shared = n->shared;
1138 		if (shared) {
1139 			free_block(cachep, shared->entry,
1140 				   shared->avail, node);
1141 			n->shared = NULL;
1142 		}
1143 
1144 		alien = n->alien;
1145 		n->alien = NULL;
1146 
1147 		spin_unlock_irq(&n->list_lock);
1148 
1149 		kfree(shared);
1150 		if (alien) {
1151 			drain_alien_cache(cachep, alien);
1152 			free_alien_cache(alien);
1153 		}
1154 free_array_cache:
1155 		kfree(nc);
1156 	}
1157 	/*
1158 	 * In the previous loop, all the objects were freed to
1159 	 * the respective cache's slabs,  now we can go ahead and
1160 	 * shrink each nodelist to its limit.
1161 	 */
1162 	list_for_each_entry(cachep, &slab_caches, list) {
1163 		n = cachep->node[node];
1164 		if (!n)
1165 			continue;
1166 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1167 	}
1168 }
1169 
1170 static int cpuup_prepare(long cpu)
1171 {
1172 	struct kmem_cache *cachep;
1173 	struct kmem_cache_node *n = NULL;
1174 	int node = cpu_to_mem(cpu);
1175 	int err;
1176 
1177 	/*
1178 	 * We need to do this right in the beginning since
1179 	 * alloc_arraycache's are going to use this list.
1180 	 * kmalloc_node allows us to add the slab to the right
1181 	 * kmem_cache_node and not this cpu's kmem_cache_node
1182 	 */
1183 	err = init_cache_node_node(node);
1184 	if (err < 0)
1185 		goto bad;
1186 
1187 	/*
1188 	 * Now we can go ahead with allocating the shared arrays and
1189 	 * array caches
1190 	 */
1191 	list_for_each_entry(cachep, &slab_caches, list) {
1192 		struct array_cache *nc;
1193 		struct array_cache *shared = NULL;
1194 		struct array_cache **alien = NULL;
1195 
1196 		nc = alloc_arraycache(node, cachep->limit,
1197 					cachep->batchcount, GFP_KERNEL);
1198 		if (!nc)
1199 			goto bad;
1200 		if (cachep->shared) {
1201 			shared = alloc_arraycache(node,
1202 				cachep->shared * cachep->batchcount,
1203 				0xbaadf00d, GFP_KERNEL);
1204 			if (!shared) {
1205 				kfree(nc);
1206 				goto bad;
1207 			}
1208 		}
1209 		if (use_alien_caches) {
1210 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1211 			if (!alien) {
1212 				kfree(shared);
1213 				kfree(nc);
1214 				goto bad;
1215 			}
1216 		}
1217 		cachep->array[cpu] = nc;
1218 		n = cachep->node[node];
1219 		BUG_ON(!n);
1220 
1221 		spin_lock_irq(&n->list_lock);
1222 		if (!n->shared) {
1223 			/*
1224 			 * We are serialised from CPU_DEAD or
1225 			 * CPU_UP_CANCELLED by the cpucontrol lock
1226 			 */
1227 			n->shared = shared;
1228 			shared = NULL;
1229 		}
1230 #ifdef CONFIG_NUMA
1231 		if (!n->alien) {
1232 			n->alien = alien;
1233 			alien = NULL;
1234 		}
1235 #endif
1236 		spin_unlock_irq(&n->list_lock);
1237 		kfree(shared);
1238 		free_alien_cache(alien);
1239 		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1240 			slab_set_debugobj_lock_classes_node(cachep, node);
1241 		else if (!OFF_SLAB(cachep) &&
1242 			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1243 			on_slab_lock_classes_node(cachep, node);
1244 	}
1245 	init_node_lock_keys(node);
1246 
1247 	return 0;
1248 bad:
1249 	cpuup_canceled(cpu);
1250 	return -ENOMEM;
1251 }
1252 
1253 static int cpuup_callback(struct notifier_block *nfb,
1254 				    unsigned long action, void *hcpu)
1255 {
1256 	long cpu = (long)hcpu;
1257 	int err = 0;
1258 
1259 	switch (action) {
1260 	case CPU_UP_PREPARE:
1261 	case CPU_UP_PREPARE_FROZEN:
1262 		mutex_lock(&slab_mutex);
1263 		err = cpuup_prepare(cpu);
1264 		mutex_unlock(&slab_mutex);
1265 		break;
1266 	case CPU_ONLINE:
1267 	case CPU_ONLINE_FROZEN:
1268 		start_cpu_timer(cpu);
1269 		break;
1270 #ifdef CONFIG_HOTPLUG_CPU
1271   	case CPU_DOWN_PREPARE:
1272   	case CPU_DOWN_PREPARE_FROZEN:
1273 		/*
1274 		 * Shutdown cache reaper. Note that the slab_mutex is
1275 		 * held so that if cache_reap() is invoked it cannot do
1276 		 * anything expensive but will only modify reap_work
1277 		 * and reschedule the timer.
1278 		*/
1279 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1280 		/* Now the cache_reaper is guaranteed to be not running. */
1281 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1282   		break;
1283   	case CPU_DOWN_FAILED:
1284   	case CPU_DOWN_FAILED_FROZEN:
1285 		start_cpu_timer(cpu);
1286   		break;
1287 	case CPU_DEAD:
1288 	case CPU_DEAD_FROZEN:
1289 		/*
1290 		 * Even if all the cpus of a node are down, we don't free the
1291 		 * kmem_cache_node of any cache. This to avoid a race between
1292 		 * cpu_down, and a kmalloc allocation from another cpu for
1293 		 * memory from the node of the cpu going down.  The node
1294 		 * structure is usually allocated from kmem_cache_create() and
1295 		 * gets destroyed at kmem_cache_destroy().
1296 		 */
1297 		/* fall through */
1298 #endif
1299 	case CPU_UP_CANCELED:
1300 	case CPU_UP_CANCELED_FROZEN:
1301 		mutex_lock(&slab_mutex);
1302 		cpuup_canceled(cpu);
1303 		mutex_unlock(&slab_mutex);
1304 		break;
1305 	}
1306 	return notifier_from_errno(err);
1307 }
1308 
1309 static struct notifier_block cpucache_notifier = {
1310 	&cpuup_callback, NULL, 0
1311 };
1312 
1313 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1314 /*
1315  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1316  * Returns -EBUSY if all objects cannot be drained so that the node is not
1317  * removed.
1318  *
1319  * Must hold slab_mutex.
1320  */
1321 static int __meminit drain_cache_node_node(int node)
1322 {
1323 	struct kmem_cache *cachep;
1324 	int ret = 0;
1325 
1326 	list_for_each_entry(cachep, &slab_caches, list) {
1327 		struct kmem_cache_node *n;
1328 
1329 		n = cachep->node[node];
1330 		if (!n)
1331 			continue;
1332 
1333 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1334 
1335 		if (!list_empty(&n->slabs_full) ||
1336 		    !list_empty(&n->slabs_partial)) {
1337 			ret = -EBUSY;
1338 			break;
1339 		}
1340 	}
1341 	return ret;
1342 }
1343 
1344 static int __meminit slab_memory_callback(struct notifier_block *self,
1345 					unsigned long action, void *arg)
1346 {
1347 	struct memory_notify *mnb = arg;
1348 	int ret = 0;
1349 	int nid;
1350 
1351 	nid = mnb->status_change_nid;
1352 	if (nid < 0)
1353 		goto out;
1354 
1355 	switch (action) {
1356 	case MEM_GOING_ONLINE:
1357 		mutex_lock(&slab_mutex);
1358 		ret = init_cache_node_node(nid);
1359 		mutex_unlock(&slab_mutex);
1360 		break;
1361 	case MEM_GOING_OFFLINE:
1362 		mutex_lock(&slab_mutex);
1363 		ret = drain_cache_node_node(nid);
1364 		mutex_unlock(&slab_mutex);
1365 		break;
1366 	case MEM_ONLINE:
1367 	case MEM_OFFLINE:
1368 	case MEM_CANCEL_ONLINE:
1369 	case MEM_CANCEL_OFFLINE:
1370 		break;
1371 	}
1372 out:
1373 	return notifier_from_errno(ret);
1374 }
1375 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1376 
1377 /*
1378  * swap the static kmem_cache_node with kmalloced memory
1379  */
1380 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1381 				int nodeid)
1382 {
1383 	struct kmem_cache_node *ptr;
1384 
1385 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1386 	BUG_ON(!ptr);
1387 
1388 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1389 	/*
1390 	 * Do not assume that spinlocks can be initialized via memcpy:
1391 	 */
1392 	spin_lock_init(&ptr->list_lock);
1393 
1394 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1395 	cachep->node[nodeid] = ptr;
1396 }
1397 
1398 /*
1399  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1400  * size of kmem_cache_node.
1401  */
1402 static void __init set_up_node(struct kmem_cache *cachep, int index)
1403 {
1404 	int node;
1405 
1406 	for_each_online_node(node) {
1407 		cachep->node[node] = &init_kmem_cache_node[index + node];
1408 		cachep->node[node]->next_reap = jiffies +
1409 		    REAPTIMEOUT_LIST3 +
1410 		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1411 	}
1412 }
1413 
1414 /*
1415  * The memory after the last cpu cache pointer is used for the
1416  * the node pointer.
1417  */
1418 static void setup_node_pointer(struct kmem_cache *cachep)
1419 {
1420 	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1421 }
1422 
1423 /*
1424  * Initialisation.  Called after the page allocator have been initialised and
1425  * before smp_init().
1426  */
1427 void __init kmem_cache_init(void)
1428 {
1429 	int i;
1430 
1431 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1432 					sizeof(struct rcu_head));
1433 	kmem_cache = &kmem_cache_boot;
1434 	setup_node_pointer(kmem_cache);
1435 
1436 	if (num_possible_nodes() == 1)
1437 		use_alien_caches = 0;
1438 
1439 	for (i = 0; i < NUM_INIT_LISTS; i++)
1440 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1441 
1442 	set_up_node(kmem_cache, CACHE_CACHE);
1443 
1444 	/*
1445 	 * Fragmentation resistance on low memory - only use bigger
1446 	 * page orders on machines with more than 32MB of memory if
1447 	 * not overridden on the command line.
1448 	 */
1449 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1450 		slab_max_order = SLAB_MAX_ORDER_HI;
1451 
1452 	/* Bootstrap is tricky, because several objects are allocated
1453 	 * from caches that do not exist yet:
1454 	 * 1) initialize the kmem_cache cache: it contains the struct
1455 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1456 	 *    kmem_cache is statically allocated.
1457 	 *    Initially an __init data area is used for the head array and the
1458 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1459 	 *    array at the end of the bootstrap.
1460 	 * 2) Create the first kmalloc cache.
1461 	 *    The struct kmem_cache for the new cache is allocated normally.
1462 	 *    An __init data area is used for the head array.
1463 	 * 3) Create the remaining kmalloc caches, with minimally sized
1464 	 *    head arrays.
1465 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1466 	 *    kmalloc cache with kmalloc allocated arrays.
1467 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1468 	 *    the other cache's with kmalloc allocated memory.
1469 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1470 	 */
1471 
1472 	/* 1) create the kmem_cache */
1473 
1474 	/*
1475 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1476 	 */
1477 	create_boot_cache(kmem_cache, "kmem_cache",
1478 		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1479 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1480 				  SLAB_HWCACHE_ALIGN);
1481 	list_add(&kmem_cache->list, &slab_caches);
1482 
1483 	/* 2+3) create the kmalloc caches */
1484 
1485 	/*
1486 	 * Initialize the caches that provide memory for the array cache and the
1487 	 * kmem_cache_node structures first.  Without this, further allocations will
1488 	 * bug.
1489 	 */
1490 
1491 	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1492 					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1493 
1494 	if (INDEX_AC != INDEX_NODE)
1495 		kmalloc_caches[INDEX_NODE] =
1496 			create_kmalloc_cache("kmalloc-node",
1497 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1498 
1499 	slab_early_init = 0;
1500 
1501 	/* 4) Replace the bootstrap head arrays */
1502 	{
1503 		struct array_cache *ptr;
1504 
1505 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1506 
1507 		memcpy(ptr, cpu_cache_get(kmem_cache),
1508 		       sizeof(struct arraycache_init));
1509 		/*
1510 		 * Do not assume that spinlocks can be initialized via memcpy:
1511 		 */
1512 		spin_lock_init(&ptr->lock);
1513 
1514 		kmem_cache->array[smp_processor_id()] = ptr;
1515 
1516 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1517 
1518 		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1519 		       != &initarray_generic.cache);
1520 		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1521 		       sizeof(struct arraycache_init));
1522 		/*
1523 		 * Do not assume that spinlocks can be initialized via memcpy:
1524 		 */
1525 		spin_lock_init(&ptr->lock);
1526 
1527 		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1528 	}
1529 	/* 5) Replace the bootstrap kmem_cache_node */
1530 	{
1531 		int nid;
1532 
1533 		for_each_online_node(nid) {
1534 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1535 
1536 			init_list(kmalloc_caches[INDEX_AC],
1537 				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1538 
1539 			if (INDEX_AC != INDEX_NODE) {
1540 				init_list(kmalloc_caches[INDEX_NODE],
1541 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1542 			}
1543 		}
1544 	}
1545 
1546 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1547 }
1548 
1549 void __init kmem_cache_init_late(void)
1550 {
1551 	struct kmem_cache *cachep;
1552 
1553 	slab_state = UP;
1554 
1555 	/* 6) resize the head arrays to their final sizes */
1556 	mutex_lock(&slab_mutex);
1557 	list_for_each_entry(cachep, &slab_caches, list)
1558 		if (enable_cpucache(cachep, GFP_NOWAIT))
1559 			BUG();
1560 	mutex_unlock(&slab_mutex);
1561 
1562 	/* Annotate slab for lockdep -- annotate the malloc caches */
1563 	init_lock_keys();
1564 
1565 	/* Done! */
1566 	slab_state = FULL;
1567 
1568 	/*
1569 	 * Register a cpu startup notifier callback that initializes
1570 	 * cpu_cache_get for all new cpus
1571 	 */
1572 	register_cpu_notifier(&cpucache_notifier);
1573 
1574 #ifdef CONFIG_NUMA
1575 	/*
1576 	 * Register a memory hotplug callback that initializes and frees
1577 	 * node.
1578 	 */
1579 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1580 #endif
1581 
1582 	/*
1583 	 * The reap timers are started later, with a module init call: That part
1584 	 * of the kernel is not yet operational.
1585 	 */
1586 }
1587 
1588 static int __init cpucache_init(void)
1589 {
1590 	int cpu;
1591 
1592 	/*
1593 	 * Register the timers that return unneeded pages to the page allocator
1594 	 */
1595 	for_each_online_cpu(cpu)
1596 		start_cpu_timer(cpu);
1597 
1598 	/* Done! */
1599 	slab_state = FULL;
1600 	return 0;
1601 }
1602 __initcall(cpucache_init);
1603 
1604 static noinline void
1605 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1606 {
1607 	struct kmem_cache_node *n;
1608 	struct page *page;
1609 	unsigned long flags;
1610 	int node;
1611 
1612 	printk(KERN_WARNING
1613 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1614 		nodeid, gfpflags);
1615 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1616 		cachep->name, cachep->size, cachep->gfporder);
1617 
1618 	for_each_online_node(node) {
1619 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1620 		unsigned long active_slabs = 0, num_slabs = 0;
1621 
1622 		n = cachep->node[node];
1623 		if (!n)
1624 			continue;
1625 
1626 		spin_lock_irqsave(&n->list_lock, flags);
1627 		list_for_each_entry(page, &n->slabs_full, lru) {
1628 			active_objs += cachep->num;
1629 			active_slabs++;
1630 		}
1631 		list_for_each_entry(page, &n->slabs_partial, lru) {
1632 			active_objs += page->active;
1633 			active_slabs++;
1634 		}
1635 		list_for_each_entry(page, &n->slabs_free, lru)
1636 			num_slabs++;
1637 
1638 		free_objects += n->free_objects;
1639 		spin_unlock_irqrestore(&n->list_lock, flags);
1640 
1641 		num_slabs += active_slabs;
1642 		num_objs = num_slabs * cachep->num;
1643 		printk(KERN_WARNING
1644 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1645 			node, active_slabs, num_slabs, active_objs, num_objs,
1646 			free_objects);
1647 	}
1648 }
1649 
1650 /*
1651  * Interface to system's page allocator. No need to hold the cache-lock.
1652  *
1653  * If we requested dmaable memory, we will get it. Even if we
1654  * did not request dmaable memory, we might get it, but that
1655  * would be relatively rare and ignorable.
1656  */
1657 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1658 								int nodeid)
1659 {
1660 	struct page *page;
1661 	int nr_pages;
1662 
1663 	flags |= cachep->allocflags;
1664 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1665 		flags |= __GFP_RECLAIMABLE;
1666 
1667 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1668 	if (!page) {
1669 		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1670 			slab_out_of_memory(cachep, flags, nodeid);
1671 		return NULL;
1672 	}
1673 
1674 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1675 	if (unlikely(page->pfmemalloc))
1676 		pfmemalloc_active = true;
1677 
1678 	nr_pages = (1 << cachep->gfporder);
1679 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1680 		add_zone_page_state(page_zone(page),
1681 			NR_SLAB_RECLAIMABLE, nr_pages);
1682 	else
1683 		add_zone_page_state(page_zone(page),
1684 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1685 	__SetPageSlab(page);
1686 	if (page->pfmemalloc)
1687 		SetPageSlabPfmemalloc(page);
1688 	memcg_bind_pages(cachep, cachep->gfporder);
1689 
1690 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1691 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1692 
1693 		if (cachep->ctor)
1694 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1695 		else
1696 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1697 	}
1698 
1699 	return page;
1700 }
1701 
1702 /*
1703  * Interface to system's page release.
1704  */
1705 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1706 {
1707 	const unsigned long nr_freed = (1 << cachep->gfporder);
1708 
1709 	kmemcheck_free_shadow(page, cachep->gfporder);
1710 
1711 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1712 		sub_zone_page_state(page_zone(page),
1713 				NR_SLAB_RECLAIMABLE, nr_freed);
1714 	else
1715 		sub_zone_page_state(page_zone(page),
1716 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1717 
1718 	BUG_ON(!PageSlab(page));
1719 	__ClearPageSlabPfmemalloc(page);
1720 	__ClearPageSlab(page);
1721 	page_mapcount_reset(page);
1722 	page->mapping = NULL;
1723 
1724 	memcg_release_pages(cachep, cachep->gfporder);
1725 	if (current->reclaim_state)
1726 		current->reclaim_state->reclaimed_slab += nr_freed;
1727 	__free_memcg_kmem_pages(page, cachep->gfporder);
1728 }
1729 
1730 static void kmem_rcu_free(struct rcu_head *head)
1731 {
1732 	struct kmem_cache *cachep;
1733 	struct page *page;
1734 
1735 	page = container_of(head, struct page, rcu_head);
1736 	cachep = page->slab_cache;
1737 
1738 	kmem_freepages(cachep, page);
1739 }
1740 
1741 #if DEBUG
1742 
1743 #ifdef CONFIG_DEBUG_PAGEALLOC
1744 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1745 			    unsigned long caller)
1746 {
1747 	int size = cachep->object_size;
1748 
1749 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1750 
1751 	if (size < 5 * sizeof(unsigned long))
1752 		return;
1753 
1754 	*addr++ = 0x12345678;
1755 	*addr++ = caller;
1756 	*addr++ = smp_processor_id();
1757 	size -= 3 * sizeof(unsigned long);
1758 	{
1759 		unsigned long *sptr = &caller;
1760 		unsigned long svalue;
1761 
1762 		while (!kstack_end(sptr)) {
1763 			svalue = *sptr++;
1764 			if (kernel_text_address(svalue)) {
1765 				*addr++ = svalue;
1766 				size -= sizeof(unsigned long);
1767 				if (size <= sizeof(unsigned long))
1768 					break;
1769 			}
1770 		}
1771 
1772 	}
1773 	*addr++ = 0x87654321;
1774 }
1775 #endif
1776 
1777 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1778 {
1779 	int size = cachep->object_size;
1780 	addr = &((char *)addr)[obj_offset(cachep)];
1781 
1782 	memset(addr, val, size);
1783 	*(unsigned char *)(addr + size - 1) = POISON_END;
1784 }
1785 
1786 static void dump_line(char *data, int offset, int limit)
1787 {
1788 	int i;
1789 	unsigned char error = 0;
1790 	int bad_count = 0;
1791 
1792 	printk(KERN_ERR "%03x: ", offset);
1793 	for (i = 0; i < limit; i++) {
1794 		if (data[offset + i] != POISON_FREE) {
1795 			error = data[offset + i];
1796 			bad_count++;
1797 		}
1798 	}
1799 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1800 			&data[offset], limit, 1);
1801 
1802 	if (bad_count == 1) {
1803 		error ^= POISON_FREE;
1804 		if (!(error & (error - 1))) {
1805 			printk(KERN_ERR "Single bit error detected. Probably "
1806 					"bad RAM.\n");
1807 #ifdef CONFIG_X86
1808 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1809 					"test tool.\n");
1810 #else
1811 			printk(KERN_ERR "Run a memory test tool.\n");
1812 #endif
1813 		}
1814 	}
1815 }
1816 #endif
1817 
1818 #if DEBUG
1819 
1820 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1821 {
1822 	int i, size;
1823 	char *realobj;
1824 
1825 	if (cachep->flags & SLAB_RED_ZONE) {
1826 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1827 			*dbg_redzone1(cachep, objp),
1828 			*dbg_redzone2(cachep, objp));
1829 	}
1830 
1831 	if (cachep->flags & SLAB_STORE_USER) {
1832 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1833 		       *dbg_userword(cachep, objp),
1834 		       *dbg_userword(cachep, objp));
1835 	}
1836 	realobj = (char *)objp + obj_offset(cachep);
1837 	size = cachep->object_size;
1838 	for (i = 0; i < size && lines; i += 16, lines--) {
1839 		int limit;
1840 		limit = 16;
1841 		if (i + limit > size)
1842 			limit = size - i;
1843 		dump_line(realobj, i, limit);
1844 	}
1845 }
1846 
1847 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1848 {
1849 	char *realobj;
1850 	int size, i;
1851 	int lines = 0;
1852 
1853 	realobj = (char *)objp + obj_offset(cachep);
1854 	size = cachep->object_size;
1855 
1856 	for (i = 0; i < size; i++) {
1857 		char exp = POISON_FREE;
1858 		if (i == size - 1)
1859 			exp = POISON_END;
1860 		if (realobj[i] != exp) {
1861 			int limit;
1862 			/* Mismatch ! */
1863 			/* Print header */
1864 			if (lines == 0) {
1865 				printk(KERN_ERR
1866 					"Slab corruption (%s): %s start=%p, len=%d\n",
1867 					print_tainted(), cachep->name, realobj, size);
1868 				print_objinfo(cachep, objp, 0);
1869 			}
1870 			/* Hexdump the affected line */
1871 			i = (i / 16) * 16;
1872 			limit = 16;
1873 			if (i + limit > size)
1874 				limit = size - i;
1875 			dump_line(realobj, i, limit);
1876 			i += 16;
1877 			lines++;
1878 			/* Limit to 5 lines */
1879 			if (lines > 5)
1880 				break;
1881 		}
1882 	}
1883 	if (lines != 0) {
1884 		/* Print some data about the neighboring objects, if they
1885 		 * exist:
1886 		 */
1887 		struct page *page = virt_to_head_page(objp);
1888 		unsigned int objnr;
1889 
1890 		objnr = obj_to_index(cachep, page, objp);
1891 		if (objnr) {
1892 			objp = index_to_obj(cachep, page, objnr - 1);
1893 			realobj = (char *)objp + obj_offset(cachep);
1894 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1895 			       realobj, size);
1896 			print_objinfo(cachep, objp, 2);
1897 		}
1898 		if (objnr + 1 < cachep->num) {
1899 			objp = index_to_obj(cachep, page, objnr + 1);
1900 			realobj = (char *)objp + obj_offset(cachep);
1901 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1902 			       realobj, size);
1903 			print_objinfo(cachep, objp, 2);
1904 		}
1905 	}
1906 }
1907 #endif
1908 
1909 #if DEBUG
1910 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1911 						struct page *page)
1912 {
1913 	int i;
1914 	for (i = 0; i < cachep->num; i++) {
1915 		void *objp = index_to_obj(cachep, page, i);
1916 
1917 		if (cachep->flags & SLAB_POISON) {
1918 #ifdef CONFIG_DEBUG_PAGEALLOC
1919 			if (cachep->size % PAGE_SIZE == 0 &&
1920 					OFF_SLAB(cachep))
1921 				kernel_map_pages(virt_to_page(objp),
1922 					cachep->size / PAGE_SIZE, 1);
1923 			else
1924 				check_poison_obj(cachep, objp);
1925 #else
1926 			check_poison_obj(cachep, objp);
1927 #endif
1928 		}
1929 		if (cachep->flags & SLAB_RED_ZONE) {
1930 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1931 				slab_error(cachep, "start of a freed object "
1932 					   "was overwritten");
1933 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1934 				slab_error(cachep, "end of a freed object "
1935 					   "was overwritten");
1936 		}
1937 	}
1938 }
1939 #else
1940 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1941 						struct page *page)
1942 {
1943 }
1944 #endif
1945 
1946 /**
1947  * slab_destroy - destroy and release all objects in a slab
1948  * @cachep: cache pointer being destroyed
1949  * @slabp: slab pointer being destroyed
1950  *
1951  * Destroy all the objs in a slab, and release the mem back to the system.
1952  * Before calling the slab must have been unlinked from the cache.  The
1953  * cache-lock is not held/needed.
1954  */
1955 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1956 {
1957 	void *freelist;
1958 
1959 	freelist = page->freelist;
1960 	slab_destroy_debugcheck(cachep, page);
1961 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1962 		struct rcu_head *head;
1963 
1964 		/*
1965 		 * RCU free overloads the RCU head over the LRU.
1966 		 * slab_page has been overloeaded over the LRU,
1967 		 * however it is not used from now on so that
1968 		 * we can use it safely.
1969 		 */
1970 		head = (void *)&page->rcu_head;
1971 		call_rcu(head, kmem_rcu_free);
1972 
1973 	} else {
1974 		kmem_freepages(cachep, page);
1975 	}
1976 
1977 	/*
1978 	 * From now on, we don't use freelist
1979 	 * although actual page can be freed in rcu context
1980 	 */
1981 	if (OFF_SLAB(cachep))
1982 		kmem_cache_free(cachep->freelist_cache, freelist);
1983 }
1984 
1985 /**
1986  * calculate_slab_order - calculate size (page order) of slabs
1987  * @cachep: pointer to the cache that is being created
1988  * @size: size of objects to be created in this cache.
1989  * @align: required alignment for the objects.
1990  * @flags: slab allocation flags
1991  *
1992  * Also calculates the number of objects per slab.
1993  *
1994  * This could be made much more intelligent.  For now, try to avoid using
1995  * high order pages for slabs.  When the gfp() functions are more friendly
1996  * towards high-order requests, this should be changed.
1997  */
1998 static size_t calculate_slab_order(struct kmem_cache *cachep,
1999 			size_t size, size_t align, unsigned long flags)
2000 {
2001 	unsigned long offslab_limit;
2002 	size_t left_over = 0;
2003 	int gfporder;
2004 
2005 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2006 		unsigned int num;
2007 		size_t remainder;
2008 
2009 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2010 		if (!num)
2011 			continue;
2012 
2013 		if (flags & CFLGS_OFF_SLAB) {
2014 			/*
2015 			 * Max number of objs-per-slab for caches which
2016 			 * use off-slab slabs. Needed to avoid a possible
2017 			 * looping condition in cache_grow().
2018 			 */
2019 			offslab_limit = size;
2020 			offslab_limit /= sizeof(unsigned int);
2021 
2022  			if (num > offslab_limit)
2023 				break;
2024 		}
2025 
2026 		/* Found something acceptable - save it away */
2027 		cachep->num = num;
2028 		cachep->gfporder = gfporder;
2029 		left_over = remainder;
2030 
2031 		/*
2032 		 * A VFS-reclaimable slab tends to have most allocations
2033 		 * as GFP_NOFS and we really don't want to have to be allocating
2034 		 * higher-order pages when we are unable to shrink dcache.
2035 		 */
2036 		if (flags & SLAB_RECLAIM_ACCOUNT)
2037 			break;
2038 
2039 		/*
2040 		 * Large number of objects is good, but very large slabs are
2041 		 * currently bad for the gfp()s.
2042 		 */
2043 		if (gfporder >= slab_max_order)
2044 			break;
2045 
2046 		/*
2047 		 * Acceptable internal fragmentation?
2048 		 */
2049 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2050 			break;
2051 	}
2052 	return left_over;
2053 }
2054 
2055 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2056 {
2057 	if (slab_state >= FULL)
2058 		return enable_cpucache(cachep, gfp);
2059 
2060 	if (slab_state == DOWN) {
2061 		/*
2062 		 * Note: Creation of first cache (kmem_cache).
2063 		 * The setup_node is taken care
2064 		 * of by the caller of __kmem_cache_create
2065 		 */
2066 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2067 		slab_state = PARTIAL;
2068 	} else if (slab_state == PARTIAL) {
2069 		/*
2070 		 * Note: the second kmem_cache_create must create the cache
2071 		 * that's used by kmalloc(24), otherwise the creation of
2072 		 * further caches will BUG().
2073 		 */
2074 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2075 
2076 		/*
2077 		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2078 		 * the second cache, then we need to set up all its node/,
2079 		 * otherwise the creation of further caches will BUG().
2080 		 */
2081 		set_up_node(cachep, SIZE_AC);
2082 		if (INDEX_AC == INDEX_NODE)
2083 			slab_state = PARTIAL_NODE;
2084 		else
2085 			slab_state = PARTIAL_ARRAYCACHE;
2086 	} else {
2087 		/* Remaining boot caches */
2088 		cachep->array[smp_processor_id()] =
2089 			kmalloc(sizeof(struct arraycache_init), gfp);
2090 
2091 		if (slab_state == PARTIAL_ARRAYCACHE) {
2092 			set_up_node(cachep, SIZE_NODE);
2093 			slab_state = PARTIAL_NODE;
2094 		} else {
2095 			int node;
2096 			for_each_online_node(node) {
2097 				cachep->node[node] =
2098 				    kmalloc_node(sizeof(struct kmem_cache_node),
2099 						gfp, node);
2100 				BUG_ON(!cachep->node[node]);
2101 				kmem_cache_node_init(cachep->node[node]);
2102 			}
2103 		}
2104 	}
2105 	cachep->node[numa_mem_id()]->next_reap =
2106 			jiffies + REAPTIMEOUT_LIST3 +
2107 			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2108 
2109 	cpu_cache_get(cachep)->avail = 0;
2110 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2111 	cpu_cache_get(cachep)->batchcount = 1;
2112 	cpu_cache_get(cachep)->touched = 0;
2113 	cachep->batchcount = 1;
2114 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2115 	return 0;
2116 }
2117 
2118 /**
2119  * __kmem_cache_create - Create a cache.
2120  * @cachep: cache management descriptor
2121  * @flags: SLAB flags
2122  *
2123  * Returns a ptr to the cache on success, NULL on failure.
2124  * Cannot be called within a int, but can be interrupted.
2125  * The @ctor is run when new pages are allocated by the cache.
2126  *
2127  * The flags are
2128  *
2129  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2130  * to catch references to uninitialised memory.
2131  *
2132  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2133  * for buffer overruns.
2134  *
2135  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2136  * cacheline.  This can be beneficial if you're counting cycles as closely
2137  * as davem.
2138  */
2139 int
2140 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2141 {
2142 	size_t left_over, freelist_size, ralign;
2143 	gfp_t gfp;
2144 	int err;
2145 	size_t size = cachep->size;
2146 
2147 #if DEBUG
2148 #if FORCED_DEBUG
2149 	/*
2150 	 * Enable redzoning and last user accounting, except for caches with
2151 	 * large objects, if the increased size would increase the object size
2152 	 * above the next power of two: caches with object sizes just above a
2153 	 * power of two have a significant amount of internal fragmentation.
2154 	 */
2155 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2156 						2 * sizeof(unsigned long long)))
2157 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2158 	if (!(flags & SLAB_DESTROY_BY_RCU))
2159 		flags |= SLAB_POISON;
2160 #endif
2161 	if (flags & SLAB_DESTROY_BY_RCU)
2162 		BUG_ON(flags & SLAB_POISON);
2163 #endif
2164 
2165 	/*
2166 	 * Check that size is in terms of words.  This is needed to avoid
2167 	 * unaligned accesses for some archs when redzoning is used, and makes
2168 	 * sure any on-slab bufctl's are also correctly aligned.
2169 	 */
2170 	if (size & (BYTES_PER_WORD - 1)) {
2171 		size += (BYTES_PER_WORD - 1);
2172 		size &= ~(BYTES_PER_WORD - 1);
2173 	}
2174 
2175 	/*
2176 	 * Redzoning and user store require word alignment or possibly larger.
2177 	 * Note this will be overridden by architecture or caller mandated
2178 	 * alignment if either is greater than BYTES_PER_WORD.
2179 	 */
2180 	if (flags & SLAB_STORE_USER)
2181 		ralign = BYTES_PER_WORD;
2182 
2183 	if (flags & SLAB_RED_ZONE) {
2184 		ralign = REDZONE_ALIGN;
2185 		/* If redzoning, ensure that the second redzone is suitably
2186 		 * aligned, by adjusting the object size accordingly. */
2187 		size += REDZONE_ALIGN - 1;
2188 		size &= ~(REDZONE_ALIGN - 1);
2189 	}
2190 
2191 	/* 3) caller mandated alignment */
2192 	if (ralign < cachep->align) {
2193 		ralign = cachep->align;
2194 	}
2195 	/* disable debug if necessary */
2196 	if (ralign > __alignof__(unsigned long long))
2197 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2198 	/*
2199 	 * 4) Store it.
2200 	 */
2201 	cachep->align = ralign;
2202 
2203 	if (slab_is_available())
2204 		gfp = GFP_KERNEL;
2205 	else
2206 		gfp = GFP_NOWAIT;
2207 
2208 	setup_node_pointer(cachep);
2209 #if DEBUG
2210 
2211 	/*
2212 	 * Both debugging options require word-alignment which is calculated
2213 	 * into align above.
2214 	 */
2215 	if (flags & SLAB_RED_ZONE) {
2216 		/* add space for red zone words */
2217 		cachep->obj_offset += sizeof(unsigned long long);
2218 		size += 2 * sizeof(unsigned long long);
2219 	}
2220 	if (flags & SLAB_STORE_USER) {
2221 		/* user store requires one word storage behind the end of
2222 		 * the real object. But if the second red zone needs to be
2223 		 * aligned to 64 bits, we must allow that much space.
2224 		 */
2225 		if (flags & SLAB_RED_ZONE)
2226 			size += REDZONE_ALIGN;
2227 		else
2228 			size += BYTES_PER_WORD;
2229 	}
2230 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2231 	if (size >= kmalloc_size(INDEX_NODE + 1)
2232 	    && cachep->object_size > cache_line_size()
2233 	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
2234 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2235 		size = PAGE_SIZE;
2236 	}
2237 #endif
2238 #endif
2239 
2240 	/*
2241 	 * Determine if the slab management is 'on' or 'off' slab.
2242 	 * (bootstrapping cannot cope with offslab caches so don't do
2243 	 * it too early on. Always use on-slab management when
2244 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2245 	 */
2246 	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2247 	    !(flags & SLAB_NOLEAKTRACE))
2248 		/*
2249 		 * Size is large, assume best to place the slab management obj
2250 		 * off-slab (should allow better packing of objs).
2251 		 */
2252 		flags |= CFLGS_OFF_SLAB;
2253 
2254 	size = ALIGN(size, cachep->align);
2255 
2256 	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2257 
2258 	if (!cachep->num)
2259 		return -E2BIG;
2260 
2261 	freelist_size =
2262 		ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
2263 
2264 	/*
2265 	 * If the slab has been placed off-slab, and we have enough space then
2266 	 * move it on-slab. This is at the expense of any extra colouring.
2267 	 */
2268 	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2269 		flags &= ~CFLGS_OFF_SLAB;
2270 		left_over -= freelist_size;
2271 	}
2272 
2273 	if (flags & CFLGS_OFF_SLAB) {
2274 		/* really off slab. No need for manual alignment */
2275 		freelist_size = cachep->num * sizeof(unsigned int);
2276 
2277 #ifdef CONFIG_PAGE_POISONING
2278 		/* If we're going to use the generic kernel_map_pages()
2279 		 * poisoning, then it's going to smash the contents of
2280 		 * the redzone and userword anyhow, so switch them off.
2281 		 */
2282 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2283 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2284 #endif
2285 	}
2286 
2287 	cachep->colour_off = cache_line_size();
2288 	/* Offset must be a multiple of the alignment. */
2289 	if (cachep->colour_off < cachep->align)
2290 		cachep->colour_off = cachep->align;
2291 	cachep->colour = left_over / cachep->colour_off;
2292 	cachep->freelist_size = freelist_size;
2293 	cachep->flags = flags;
2294 	cachep->allocflags = __GFP_COMP;
2295 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2296 		cachep->allocflags |= GFP_DMA;
2297 	cachep->size = size;
2298 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2299 
2300 	if (flags & CFLGS_OFF_SLAB) {
2301 		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2302 		/*
2303 		 * This is a possibility for one of the malloc_sizes caches.
2304 		 * But since we go off slab only for object size greater than
2305 		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2306 		 * this should not happen at all.
2307 		 * But leave a BUG_ON for some lucky dude.
2308 		 */
2309 		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2310 	}
2311 
2312 	err = setup_cpu_cache(cachep, gfp);
2313 	if (err) {
2314 		__kmem_cache_shutdown(cachep);
2315 		return err;
2316 	}
2317 
2318 	if (flags & SLAB_DEBUG_OBJECTS) {
2319 		/*
2320 		 * Would deadlock through slab_destroy()->call_rcu()->
2321 		 * debug_object_activate()->kmem_cache_alloc().
2322 		 */
2323 		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2324 
2325 		slab_set_debugobj_lock_classes(cachep);
2326 	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2327 		on_slab_lock_classes(cachep);
2328 
2329 	return 0;
2330 }
2331 
2332 #if DEBUG
2333 static void check_irq_off(void)
2334 {
2335 	BUG_ON(!irqs_disabled());
2336 }
2337 
2338 static void check_irq_on(void)
2339 {
2340 	BUG_ON(irqs_disabled());
2341 }
2342 
2343 static void check_spinlock_acquired(struct kmem_cache *cachep)
2344 {
2345 #ifdef CONFIG_SMP
2346 	check_irq_off();
2347 	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2348 #endif
2349 }
2350 
2351 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2352 {
2353 #ifdef CONFIG_SMP
2354 	check_irq_off();
2355 	assert_spin_locked(&cachep->node[node]->list_lock);
2356 #endif
2357 }
2358 
2359 #else
2360 #define check_irq_off()	do { } while(0)
2361 #define check_irq_on()	do { } while(0)
2362 #define check_spinlock_acquired(x) do { } while(0)
2363 #define check_spinlock_acquired_node(x, y) do { } while(0)
2364 #endif
2365 
2366 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2367 			struct array_cache *ac,
2368 			int force, int node);
2369 
2370 static void do_drain(void *arg)
2371 {
2372 	struct kmem_cache *cachep = arg;
2373 	struct array_cache *ac;
2374 	int node = numa_mem_id();
2375 
2376 	check_irq_off();
2377 	ac = cpu_cache_get(cachep);
2378 	spin_lock(&cachep->node[node]->list_lock);
2379 	free_block(cachep, ac->entry, ac->avail, node);
2380 	spin_unlock(&cachep->node[node]->list_lock);
2381 	ac->avail = 0;
2382 }
2383 
2384 static void drain_cpu_caches(struct kmem_cache *cachep)
2385 {
2386 	struct kmem_cache_node *n;
2387 	int node;
2388 
2389 	on_each_cpu(do_drain, cachep, 1);
2390 	check_irq_on();
2391 	for_each_online_node(node) {
2392 		n = cachep->node[node];
2393 		if (n && n->alien)
2394 			drain_alien_cache(cachep, n->alien);
2395 	}
2396 
2397 	for_each_online_node(node) {
2398 		n = cachep->node[node];
2399 		if (n)
2400 			drain_array(cachep, n, n->shared, 1, node);
2401 	}
2402 }
2403 
2404 /*
2405  * Remove slabs from the list of free slabs.
2406  * Specify the number of slabs to drain in tofree.
2407  *
2408  * Returns the actual number of slabs released.
2409  */
2410 static int drain_freelist(struct kmem_cache *cache,
2411 			struct kmem_cache_node *n, int tofree)
2412 {
2413 	struct list_head *p;
2414 	int nr_freed;
2415 	struct page *page;
2416 
2417 	nr_freed = 0;
2418 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2419 
2420 		spin_lock_irq(&n->list_lock);
2421 		p = n->slabs_free.prev;
2422 		if (p == &n->slabs_free) {
2423 			spin_unlock_irq(&n->list_lock);
2424 			goto out;
2425 		}
2426 
2427 		page = list_entry(p, struct page, lru);
2428 #if DEBUG
2429 		BUG_ON(page->active);
2430 #endif
2431 		list_del(&page->lru);
2432 		/*
2433 		 * Safe to drop the lock. The slab is no longer linked
2434 		 * to the cache.
2435 		 */
2436 		n->free_objects -= cache->num;
2437 		spin_unlock_irq(&n->list_lock);
2438 		slab_destroy(cache, page);
2439 		nr_freed++;
2440 	}
2441 out:
2442 	return nr_freed;
2443 }
2444 
2445 /* Called with slab_mutex held to protect against cpu hotplug */
2446 static int __cache_shrink(struct kmem_cache *cachep)
2447 {
2448 	int ret = 0, i = 0;
2449 	struct kmem_cache_node *n;
2450 
2451 	drain_cpu_caches(cachep);
2452 
2453 	check_irq_on();
2454 	for_each_online_node(i) {
2455 		n = cachep->node[i];
2456 		if (!n)
2457 			continue;
2458 
2459 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2460 
2461 		ret += !list_empty(&n->slabs_full) ||
2462 			!list_empty(&n->slabs_partial);
2463 	}
2464 	return (ret ? 1 : 0);
2465 }
2466 
2467 /**
2468  * kmem_cache_shrink - Shrink a cache.
2469  * @cachep: The cache to shrink.
2470  *
2471  * Releases as many slabs as possible for a cache.
2472  * To help debugging, a zero exit status indicates all slabs were released.
2473  */
2474 int kmem_cache_shrink(struct kmem_cache *cachep)
2475 {
2476 	int ret;
2477 	BUG_ON(!cachep || in_interrupt());
2478 
2479 	get_online_cpus();
2480 	mutex_lock(&slab_mutex);
2481 	ret = __cache_shrink(cachep);
2482 	mutex_unlock(&slab_mutex);
2483 	put_online_cpus();
2484 	return ret;
2485 }
2486 EXPORT_SYMBOL(kmem_cache_shrink);
2487 
2488 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2489 {
2490 	int i;
2491 	struct kmem_cache_node *n;
2492 	int rc = __cache_shrink(cachep);
2493 
2494 	if (rc)
2495 		return rc;
2496 
2497 	for_each_online_cpu(i)
2498 	    kfree(cachep->array[i]);
2499 
2500 	/* NUMA: free the node structures */
2501 	for_each_online_node(i) {
2502 		n = cachep->node[i];
2503 		if (n) {
2504 			kfree(n->shared);
2505 			free_alien_cache(n->alien);
2506 			kfree(n);
2507 		}
2508 	}
2509 	return 0;
2510 }
2511 
2512 /*
2513  * Get the memory for a slab management obj.
2514  * For a slab cache when the slab descriptor is off-slab, slab descriptors
2515  * always come from malloc_sizes caches.  The slab descriptor cannot
2516  * come from the same cache which is getting created because,
2517  * when we are searching for an appropriate cache for these
2518  * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2519  * If we are creating a malloc_sizes cache here it would not be visible to
2520  * kmem_find_general_cachep till the initialization is complete.
2521  * Hence we cannot have freelist_cache same as the original cache.
2522  */
2523 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2524 				   struct page *page, int colour_off,
2525 				   gfp_t local_flags, int nodeid)
2526 {
2527 	void *freelist;
2528 	void *addr = page_address(page);
2529 
2530 	if (OFF_SLAB(cachep)) {
2531 		/* Slab management obj is off-slab. */
2532 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2533 					      local_flags, nodeid);
2534 		if (!freelist)
2535 			return NULL;
2536 	} else {
2537 		freelist = addr + colour_off;
2538 		colour_off += cachep->freelist_size;
2539 	}
2540 	page->active = 0;
2541 	page->s_mem = addr + colour_off;
2542 	return freelist;
2543 }
2544 
2545 static inline unsigned int *slab_freelist(struct page *page)
2546 {
2547 	return (unsigned int *)(page->freelist);
2548 }
2549 
2550 static void cache_init_objs(struct kmem_cache *cachep,
2551 			    struct page *page)
2552 {
2553 	int i;
2554 
2555 	for (i = 0; i < cachep->num; i++) {
2556 		void *objp = index_to_obj(cachep, page, i);
2557 #if DEBUG
2558 		/* need to poison the objs? */
2559 		if (cachep->flags & SLAB_POISON)
2560 			poison_obj(cachep, objp, POISON_FREE);
2561 		if (cachep->flags & SLAB_STORE_USER)
2562 			*dbg_userword(cachep, objp) = NULL;
2563 
2564 		if (cachep->flags & SLAB_RED_ZONE) {
2565 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2566 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2567 		}
2568 		/*
2569 		 * Constructors are not allowed to allocate memory from the same
2570 		 * cache which they are a constructor for.  Otherwise, deadlock.
2571 		 * They must also be threaded.
2572 		 */
2573 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2574 			cachep->ctor(objp + obj_offset(cachep));
2575 
2576 		if (cachep->flags & SLAB_RED_ZONE) {
2577 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2578 				slab_error(cachep, "constructor overwrote the"
2579 					   " end of an object");
2580 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2581 				slab_error(cachep, "constructor overwrote the"
2582 					   " start of an object");
2583 		}
2584 		if ((cachep->size % PAGE_SIZE) == 0 &&
2585 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2586 			kernel_map_pages(virt_to_page(objp),
2587 					 cachep->size / PAGE_SIZE, 0);
2588 #else
2589 		if (cachep->ctor)
2590 			cachep->ctor(objp);
2591 #endif
2592 		slab_freelist(page)[i] = i;
2593 	}
2594 }
2595 
2596 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2597 {
2598 	if (CONFIG_ZONE_DMA_FLAG) {
2599 		if (flags & GFP_DMA)
2600 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2601 		else
2602 			BUG_ON(cachep->allocflags & GFP_DMA);
2603 	}
2604 }
2605 
2606 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2607 				int nodeid)
2608 {
2609 	void *objp;
2610 
2611 	objp = index_to_obj(cachep, page, slab_freelist(page)[page->active]);
2612 	page->active++;
2613 #if DEBUG
2614 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2615 #endif
2616 
2617 	return objp;
2618 }
2619 
2620 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2621 				void *objp, int nodeid)
2622 {
2623 	unsigned int objnr = obj_to_index(cachep, page, objp);
2624 #if DEBUG
2625 	unsigned int i;
2626 
2627 	/* Verify that the slab belongs to the intended node */
2628 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2629 
2630 	/* Verify double free bug */
2631 	for (i = page->active; i < cachep->num; i++) {
2632 		if (slab_freelist(page)[i] == objnr) {
2633 			printk(KERN_ERR "slab: double free detected in cache "
2634 					"'%s', objp %p\n", cachep->name, objp);
2635 			BUG();
2636 		}
2637 	}
2638 #endif
2639 	page->active--;
2640 	slab_freelist(page)[page->active] = objnr;
2641 }
2642 
2643 /*
2644  * Map pages beginning at addr to the given cache and slab. This is required
2645  * for the slab allocator to be able to lookup the cache and slab of a
2646  * virtual address for kfree, ksize, and slab debugging.
2647  */
2648 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2649 			   void *freelist)
2650 {
2651 	page->slab_cache = cache;
2652 	page->freelist = freelist;
2653 }
2654 
2655 /*
2656  * Grow (by 1) the number of slabs within a cache.  This is called by
2657  * kmem_cache_alloc() when there are no active objs left in a cache.
2658  */
2659 static int cache_grow(struct kmem_cache *cachep,
2660 		gfp_t flags, int nodeid, struct page *page)
2661 {
2662 	void *freelist;
2663 	size_t offset;
2664 	gfp_t local_flags;
2665 	struct kmem_cache_node *n;
2666 
2667 	/*
2668 	 * Be lazy and only check for valid flags here,  keeping it out of the
2669 	 * critical path in kmem_cache_alloc().
2670 	 */
2671 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2672 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2673 
2674 	/* Take the node list lock to change the colour_next on this node */
2675 	check_irq_off();
2676 	n = cachep->node[nodeid];
2677 	spin_lock(&n->list_lock);
2678 
2679 	/* Get colour for the slab, and cal the next value. */
2680 	offset = n->colour_next;
2681 	n->colour_next++;
2682 	if (n->colour_next >= cachep->colour)
2683 		n->colour_next = 0;
2684 	spin_unlock(&n->list_lock);
2685 
2686 	offset *= cachep->colour_off;
2687 
2688 	if (local_flags & __GFP_WAIT)
2689 		local_irq_enable();
2690 
2691 	/*
2692 	 * The test for missing atomic flag is performed here, rather than
2693 	 * the more obvious place, simply to reduce the critical path length
2694 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2695 	 * will eventually be caught here (where it matters).
2696 	 */
2697 	kmem_flagcheck(cachep, flags);
2698 
2699 	/*
2700 	 * Get mem for the objs.  Attempt to allocate a physical page from
2701 	 * 'nodeid'.
2702 	 */
2703 	if (!page)
2704 		page = kmem_getpages(cachep, local_flags, nodeid);
2705 	if (!page)
2706 		goto failed;
2707 
2708 	/* Get slab management. */
2709 	freelist = alloc_slabmgmt(cachep, page, offset,
2710 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2711 	if (!freelist)
2712 		goto opps1;
2713 
2714 	slab_map_pages(cachep, page, freelist);
2715 
2716 	cache_init_objs(cachep, page);
2717 
2718 	if (local_flags & __GFP_WAIT)
2719 		local_irq_disable();
2720 	check_irq_off();
2721 	spin_lock(&n->list_lock);
2722 
2723 	/* Make slab active. */
2724 	list_add_tail(&page->lru, &(n->slabs_free));
2725 	STATS_INC_GROWN(cachep);
2726 	n->free_objects += cachep->num;
2727 	spin_unlock(&n->list_lock);
2728 	return 1;
2729 opps1:
2730 	kmem_freepages(cachep, page);
2731 failed:
2732 	if (local_flags & __GFP_WAIT)
2733 		local_irq_disable();
2734 	return 0;
2735 }
2736 
2737 #if DEBUG
2738 
2739 /*
2740  * Perform extra freeing checks:
2741  * - detect bad pointers.
2742  * - POISON/RED_ZONE checking
2743  */
2744 static void kfree_debugcheck(const void *objp)
2745 {
2746 	if (!virt_addr_valid(objp)) {
2747 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2748 		       (unsigned long)objp);
2749 		BUG();
2750 	}
2751 }
2752 
2753 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2754 {
2755 	unsigned long long redzone1, redzone2;
2756 
2757 	redzone1 = *dbg_redzone1(cache, obj);
2758 	redzone2 = *dbg_redzone2(cache, obj);
2759 
2760 	/*
2761 	 * Redzone is ok.
2762 	 */
2763 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2764 		return;
2765 
2766 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2767 		slab_error(cache, "double free detected");
2768 	else
2769 		slab_error(cache, "memory outside object was overwritten");
2770 
2771 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2772 			obj, redzone1, redzone2);
2773 }
2774 
2775 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2776 				   unsigned long caller)
2777 {
2778 	unsigned int objnr;
2779 	struct page *page;
2780 
2781 	BUG_ON(virt_to_cache(objp) != cachep);
2782 
2783 	objp -= obj_offset(cachep);
2784 	kfree_debugcheck(objp);
2785 	page = virt_to_head_page(objp);
2786 
2787 	if (cachep->flags & SLAB_RED_ZONE) {
2788 		verify_redzone_free(cachep, objp);
2789 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2790 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2791 	}
2792 	if (cachep->flags & SLAB_STORE_USER)
2793 		*dbg_userword(cachep, objp) = (void *)caller;
2794 
2795 	objnr = obj_to_index(cachep, page, objp);
2796 
2797 	BUG_ON(objnr >= cachep->num);
2798 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2799 
2800 	if (cachep->flags & SLAB_POISON) {
2801 #ifdef CONFIG_DEBUG_PAGEALLOC
2802 		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2803 			store_stackinfo(cachep, objp, caller);
2804 			kernel_map_pages(virt_to_page(objp),
2805 					 cachep->size / PAGE_SIZE, 0);
2806 		} else {
2807 			poison_obj(cachep, objp, POISON_FREE);
2808 		}
2809 #else
2810 		poison_obj(cachep, objp, POISON_FREE);
2811 #endif
2812 	}
2813 	return objp;
2814 }
2815 
2816 #else
2817 #define kfree_debugcheck(x) do { } while(0)
2818 #define cache_free_debugcheck(x,objp,z) (objp)
2819 #endif
2820 
2821 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2822 							bool force_refill)
2823 {
2824 	int batchcount;
2825 	struct kmem_cache_node *n;
2826 	struct array_cache *ac;
2827 	int node;
2828 
2829 	check_irq_off();
2830 	node = numa_mem_id();
2831 	if (unlikely(force_refill))
2832 		goto force_grow;
2833 retry:
2834 	ac = cpu_cache_get(cachep);
2835 	batchcount = ac->batchcount;
2836 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2837 		/*
2838 		 * If there was little recent activity on this cache, then
2839 		 * perform only a partial refill.  Otherwise we could generate
2840 		 * refill bouncing.
2841 		 */
2842 		batchcount = BATCHREFILL_LIMIT;
2843 	}
2844 	n = cachep->node[node];
2845 
2846 	BUG_ON(ac->avail > 0 || !n);
2847 	spin_lock(&n->list_lock);
2848 
2849 	/* See if we can refill from the shared array */
2850 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2851 		n->shared->touched = 1;
2852 		goto alloc_done;
2853 	}
2854 
2855 	while (batchcount > 0) {
2856 		struct list_head *entry;
2857 		struct page *page;
2858 		/* Get slab alloc is to come from. */
2859 		entry = n->slabs_partial.next;
2860 		if (entry == &n->slabs_partial) {
2861 			n->free_touched = 1;
2862 			entry = n->slabs_free.next;
2863 			if (entry == &n->slabs_free)
2864 				goto must_grow;
2865 		}
2866 
2867 		page = list_entry(entry, struct page, lru);
2868 		check_spinlock_acquired(cachep);
2869 
2870 		/*
2871 		 * The slab was either on partial or free list so
2872 		 * there must be at least one object available for
2873 		 * allocation.
2874 		 */
2875 		BUG_ON(page->active >= cachep->num);
2876 
2877 		while (page->active < cachep->num && batchcount--) {
2878 			STATS_INC_ALLOCED(cachep);
2879 			STATS_INC_ACTIVE(cachep);
2880 			STATS_SET_HIGH(cachep);
2881 
2882 			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2883 									node));
2884 		}
2885 
2886 		/* move slabp to correct slabp list: */
2887 		list_del(&page->lru);
2888 		if (page->active == cachep->num)
2889 			list_add(&page->list, &n->slabs_full);
2890 		else
2891 			list_add(&page->list, &n->slabs_partial);
2892 	}
2893 
2894 must_grow:
2895 	n->free_objects -= ac->avail;
2896 alloc_done:
2897 	spin_unlock(&n->list_lock);
2898 
2899 	if (unlikely(!ac->avail)) {
2900 		int x;
2901 force_grow:
2902 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2903 
2904 		/* cache_grow can reenable interrupts, then ac could change. */
2905 		ac = cpu_cache_get(cachep);
2906 		node = numa_mem_id();
2907 
2908 		/* no objects in sight? abort */
2909 		if (!x && (ac->avail == 0 || force_refill))
2910 			return NULL;
2911 
2912 		if (!ac->avail)		/* objects refilled by interrupt? */
2913 			goto retry;
2914 	}
2915 	ac->touched = 1;
2916 
2917 	return ac_get_obj(cachep, ac, flags, force_refill);
2918 }
2919 
2920 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2921 						gfp_t flags)
2922 {
2923 	might_sleep_if(flags & __GFP_WAIT);
2924 #if DEBUG
2925 	kmem_flagcheck(cachep, flags);
2926 #endif
2927 }
2928 
2929 #if DEBUG
2930 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2931 				gfp_t flags, void *objp, unsigned long caller)
2932 {
2933 	if (!objp)
2934 		return objp;
2935 	if (cachep->flags & SLAB_POISON) {
2936 #ifdef CONFIG_DEBUG_PAGEALLOC
2937 		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2938 			kernel_map_pages(virt_to_page(objp),
2939 					 cachep->size / PAGE_SIZE, 1);
2940 		else
2941 			check_poison_obj(cachep, objp);
2942 #else
2943 		check_poison_obj(cachep, objp);
2944 #endif
2945 		poison_obj(cachep, objp, POISON_INUSE);
2946 	}
2947 	if (cachep->flags & SLAB_STORE_USER)
2948 		*dbg_userword(cachep, objp) = (void *)caller;
2949 
2950 	if (cachep->flags & SLAB_RED_ZONE) {
2951 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2952 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2953 			slab_error(cachep, "double free, or memory outside"
2954 						" object was overwritten");
2955 			printk(KERN_ERR
2956 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2957 				objp, *dbg_redzone1(cachep, objp),
2958 				*dbg_redzone2(cachep, objp));
2959 		}
2960 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2961 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2962 	}
2963 	objp += obj_offset(cachep);
2964 	if (cachep->ctor && cachep->flags & SLAB_POISON)
2965 		cachep->ctor(objp);
2966 	if (ARCH_SLAB_MINALIGN &&
2967 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2968 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2969 		       objp, (int)ARCH_SLAB_MINALIGN);
2970 	}
2971 	return objp;
2972 }
2973 #else
2974 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2975 #endif
2976 
2977 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2978 {
2979 	if (cachep == kmem_cache)
2980 		return false;
2981 
2982 	return should_failslab(cachep->object_size, flags, cachep->flags);
2983 }
2984 
2985 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2986 {
2987 	void *objp;
2988 	struct array_cache *ac;
2989 	bool force_refill = false;
2990 
2991 	check_irq_off();
2992 
2993 	ac = cpu_cache_get(cachep);
2994 	if (likely(ac->avail)) {
2995 		ac->touched = 1;
2996 		objp = ac_get_obj(cachep, ac, flags, false);
2997 
2998 		/*
2999 		 * Allow for the possibility all avail objects are not allowed
3000 		 * by the current flags
3001 		 */
3002 		if (objp) {
3003 			STATS_INC_ALLOCHIT(cachep);
3004 			goto out;
3005 		}
3006 		force_refill = true;
3007 	}
3008 
3009 	STATS_INC_ALLOCMISS(cachep);
3010 	objp = cache_alloc_refill(cachep, flags, force_refill);
3011 	/*
3012 	 * the 'ac' may be updated by cache_alloc_refill(),
3013 	 * and kmemleak_erase() requires its correct value.
3014 	 */
3015 	ac = cpu_cache_get(cachep);
3016 
3017 out:
3018 	/*
3019 	 * To avoid a false negative, if an object that is in one of the
3020 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3021 	 * treat the array pointers as a reference to the object.
3022 	 */
3023 	if (objp)
3024 		kmemleak_erase(&ac->entry[ac->avail]);
3025 	return objp;
3026 }
3027 
3028 #ifdef CONFIG_NUMA
3029 /*
3030  * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3031  *
3032  * If we are in_interrupt, then process context, including cpusets and
3033  * mempolicy, may not apply and should not be used for allocation policy.
3034  */
3035 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3036 {
3037 	int nid_alloc, nid_here;
3038 
3039 	if (in_interrupt() || (flags & __GFP_THISNODE))
3040 		return NULL;
3041 	nid_alloc = nid_here = numa_mem_id();
3042 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3043 		nid_alloc = cpuset_slab_spread_node();
3044 	else if (current->mempolicy)
3045 		nid_alloc = slab_node();
3046 	if (nid_alloc != nid_here)
3047 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3048 	return NULL;
3049 }
3050 
3051 /*
3052  * Fallback function if there was no memory available and no objects on a
3053  * certain node and fall back is permitted. First we scan all the
3054  * available node for available objects. If that fails then we
3055  * perform an allocation without specifying a node. This allows the page
3056  * allocator to do its reclaim / fallback magic. We then insert the
3057  * slab into the proper nodelist and then allocate from it.
3058  */
3059 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3060 {
3061 	struct zonelist *zonelist;
3062 	gfp_t local_flags;
3063 	struct zoneref *z;
3064 	struct zone *zone;
3065 	enum zone_type high_zoneidx = gfp_zone(flags);
3066 	void *obj = NULL;
3067 	int nid;
3068 	unsigned int cpuset_mems_cookie;
3069 
3070 	if (flags & __GFP_THISNODE)
3071 		return NULL;
3072 
3073 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3074 
3075 retry_cpuset:
3076 	cpuset_mems_cookie = get_mems_allowed();
3077 	zonelist = node_zonelist(slab_node(), flags);
3078 
3079 retry:
3080 	/*
3081 	 * Look through allowed nodes for objects available
3082 	 * from existing per node queues.
3083 	 */
3084 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3085 		nid = zone_to_nid(zone);
3086 
3087 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3088 			cache->node[nid] &&
3089 			cache->node[nid]->free_objects) {
3090 				obj = ____cache_alloc_node(cache,
3091 					flags | GFP_THISNODE, nid);
3092 				if (obj)
3093 					break;
3094 		}
3095 	}
3096 
3097 	if (!obj) {
3098 		/*
3099 		 * This allocation will be performed within the constraints
3100 		 * of the current cpuset / memory policy requirements.
3101 		 * We may trigger various forms of reclaim on the allowed
3102 		 * set and go into memory reserves if necessary.
3103 		 */
3104 		struct page *page;
3105 
3106 		if (local_flags & __GFP_WAIT)
3107 			local_irq_enable();
3108 		kmem_flagcheck(cache, flags);
3109 		page = kmem_getpages(cache, local_flags, numa_mem_id());
3110 		if (local_flags & __GFP_WAIT)
3111 			local_irq_disable();
3112 		if (page) {
3113 			/*
3114 			 * Insert into the appropriate per node queues
3115 			 */
3116 			nid = page_to_nid(page);
3117 			if (cache_grow(cache, flags, nid, page)) {
3118 				obj = ____cache_alloc_node(cache,
3119 					flags | GFP_THISNODE, nid);
3120 				if (!obj)
3121 					/*
3122 					 * Another processor may allocate the
3123 					 * objects in the slab since we are
3124 					 * not holding any locks.
3125 					 */
3126 					goto retry;
3127 			} else {
3128 				/* cache_grow already freed obj */
3129 				obj = NULL;
3130 			}
3131 		}
3132 	}
3133 
3134 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3135 		goto retry_cpuset;
3136 	return obj;
3137 }
3138 
3139 /*
3140  * A interface to enable slab creation on nodeid
3141  */
3142 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3143 				int nodeid)
3144 {
3145 	struct list_head *entry;
3146 	struct page *page;
3147 	struct kmem_cache_node *n;
3148 	void *obj;
3149 	int x;
3150 
3151 	VM_BUG_ON(nodeid > num_online_nodes());
3152 	n = cachep->node[nodeid];
3153 	BUG_ON(!n);
3154 
3155 retry:
3156 	check_irq_off();
3157 	spin_lock(&n->list_lock);
3158 	entry = n->slabs_partial.next;
3159 	if (entry == &n->slabs_partial) {
3160 		n->free_touched = 1;
3161 		entry = n->slabs_free.next;
3162 		if (entry == &n->slabs_free)
3163 			goto must_grow;
3164 	}
3165 
3166 	page = list_entry(entry, struct page, lru);
3167 	check_spinlock_acquired_node(cachep, nodeid);
3168 
3169 	STATS_INC_NODEALLOCS(cachep);
3170 	STATS_INC_ACTIVE(cachep);
3171 	STATS_SET_HIGH(cachep);
3172 
3173 	BUG_ON(page->active == cachep->num);
3174 
3175 	obj = slab_get_obj(cachep, page, nodeid);
3176 	n->free_objects--;
3177 	/* move slabp to correct slabp list: */
3178 	list_del(&page->lru);
3179 
3180 	if (page->active == cachep->num)
3181 		list_add(&page->lru, &n->slabs_full);
3182 	else
3183 		list_add(&page->lru, &n->slabs_partial);
3184 
3185 	spin_unlock(&n->list_lock);
3186 	goto done;
3187 
3188 must_grow:
3189 	spin_unlock(&n->list_lock);
3190 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3191 	if (x)
3192 		goto retry;
3193 
3194 	return fallback_alloc(cachep, flags);
3195 
3196 done:
3197 	return obj;
3198 }
3199 
3200 static __always_inline void *
3201 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3202 		   unsigned long caller)
3203 {
3204 	unsigned long save_flags;
3205 	void *ptr;
3206 	int slab_node = numa_mem_id();
3207 
3208 	flags &= gfp_allowed_mask;
3209 
3210 	lockdep_trace_alloc(flags);
3211 
3212 	if (slab_should_failslab(cachep, flags))
3213 		return NULL;
3214 
3215 	cachep = memcg_kmem_get_cache(cachep, flags);
3216 
3217 	cache_alloc_debugcheck_before(cachep, flags);
3218 	local_irq_save(save_flags);
3219 
3220 	if (nodeid == NUMA_NO_NODE)
3221 		nodeid = slab_node;
3222 
3223 	if (unlikely(!cachep->node[nodeid])) {
3224 		/* Node not bootstrapped yet */
3225 		ptr = fallback_alloc(cachep, flags);
3226 		goto out;
3227 	}
3228 
3229 	if (nodeid == slab_node) {
3230 		/*
3231 		 * Use the locally cached objects if possible.
3232 		 * However ____cache_alloc does not allow fallback
3233 		 * to other nodes. It may fail while we still have
3234 		 * objects on other nodes available.
3235 		 */
3236 		ptr = ____cache_alloc(cachep, flags);
3237 		if (ptr)
3238 			goto out;
3239 	}
3240 	/* ___cache_alloc_node can fall back to other nodes */
3241 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3242   out:
3243 	local_irq_restore(save_flags);
3244 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3245 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3246 				 flags);
3247 
3248 	if (likely(ptr))
3249 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3250 
3251 	if (unlikely((flags & __GFP_ZERO) && ptr))
3252 		memset(ptr, 0, cachep->object_size);
3253 
3254 	return ptr;
3255 }
3256 
3257 static __always_inline void *
3258 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3259 {
3260 	void *objp;
3261 
3262 	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3263 		objp = alternate_node_alloc(cache, flags);
3264 		if (objp)
3265 			goto out;
3266 	}
3267 	objp = ____cache_alloc(cache, flags);
3268 
3269 	/*
3270 	 * We may just have run out of memory on the local node.
3271 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3272 	 */
3273 	if (!objp)
3274 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3275 
3276   out:
3277 	return objp;
3278 }
3279 #else
3280 
3281 static __always_inline void *
3282 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3283 {
3284 	return ____cache_alloc(cachep, flags);
3285 }
3286 
3287 #endif /* CONFIG_NUMA */
3288 
3289 static __always_inline void *
3290 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3291 {
3292 	unsigned long save_flags;
3293 	void *objp;
3294 
3295 	flags &= gfp_allowed_mask;
3296 
3297 	lockdep_trace_alloc(flags);
3298 
3299 	if (slab_should_failslab(cachep, flags))
3300 		return NULL;
3301 
3302 	cachep = memcg_kmem_get_cache(cachep, flags);
3303 
3304 	cache_alloc_debugcheck_before(cachep, flags);
3305 	local_irq_save(save_flags);
3306 	objp = __do_cache_alloc(cachep, flags);
3307 	local_irq_restore(save_flags);
3308 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3309 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3310 				 flags);
3311 	prefetchw(objp);
3312 
3313 	if (likely(objp))
3314 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3315 
3316 	if (unlikely((flags & __GFP_ZERO) && objp))
3317 		memset(objp, 0, cachep->object_size);
3318 
3319 	return objp;
3320 }
3321 
3322 /*
3323  * Caller needs to acquire correct kmem_list's list_lock
3324  */
3325 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3326 		       int node)
3327 {
3328 	int i;
3329 	struct kmem_cache_node *n;
3330 
3331 	for (i = 0; i < nr_objects; i++) {
3332 		void *objp;
3333 		struct page *page;
3334 
3335 		clear_obj_pfmemalloc(&objpp[i]);
3336 		objp = objpp[i];
3337 
3338 		page = virt_to_head_page(objp);
3339 		n = cachep->node[node];
3340 		list_del(&page->lru);
3341 		check_spinlock_acquired_node(cachep, node);
3342 		slab_put_obj(cachep, page, objp, node);
3343 		STATS_DEC_ACTIVE(cachep);
3344 		n->free_objects++;
3345 
3346 		/* fixup slab chains */
3347 		if (page->active == 0) {
3348 			if (n->free_objects > n->free_limit) {
3349 				n->free_objects -= cachep->num;
3350 				/* No need to drop any previously held
3351 				 * lock here, even if we have a off-slab slab
3352 				 * descriptor it is guaranteed to come from
3353 				 * a different cache, refer to comments before
3354 				 * alloc_slabmgmt.
3355 				 */
3356 				slab_destroy(cachep, page);
3357 			} else {
3358 				list_add(&page->lru, &n->slabs_free);
3359 			}
3360 		} else {
3361 			/* Unconditionally move a slab to the end of the
3362 			 * partial list on free - maximum time for the
3363 			 * other objects to be freed, too.
3364 			 */
3365 			list_add_tail(&page->lru, &n->slabs_partial);
3366 		}
3367 	}
3368 }
3369 
3370 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3371 {
3372 	int batchcount;
3373 	struct kmem_cache_node *n;
3374 	int node = numa_mem_id();
3375 
3376 	batchcount = ac->batchcount;
3377 #if DEBUG
3378 	BUG_ON(!batchcount || batchcount > ac->avail);
3379 #endif
3380 	check_irq_off();
3381 	n = cachep->node[node];
3382 	spin_lock(&n->list_lock);
3383 	if (n->shared) {
3384 		struct array_cache *shared_array = n->shared;
3385 		int max = shared_array->limit - shared_array->avail;
3386 		if (max) {
3387 			if (batchcount > max)
3388 				batchcount = max;
3389 			memcpy(&(shared_array->entry[shared_array->avail]),
3390 			       ac->entry, sizeof(void *) * batchcount);
3391 			shared_array->avail += batchcount;
3392 			goto free_done;
3393 		}
3394 	}
3395 
3396 	free_block(cachep, ac->entry, batchcount, node);
3397 free_done:
3398 #if STATS
3399 	{
3400 		int i = 0;
3401 		struct list_head *p;
3402 
3403 		p = n->slabs_free.next;
3404 		while (p != &(n->slabs_free)) {
3405 			struct page *page;
3406 
3407 			page = list_entry(p, struct page, lru);
3408 			BUG_ON(page->active);
3409 
3410 			i++;
3411 			p = p->next;
3412 		}
3413 		STATS_SET_FREEABLE(cachep, i);
3414 	}
3415 #endif
3416 	spin_unlock(&n->list_lock);
3417 	ac->avail -= batchcount;
3418 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3419 }
3420 
3421 /*
3422  * Release an obj back to its cache. If the obj has a constructed state, it must
3423  * be in this state _before_ it is released.  Called with disabled ints.
3424  */
3425 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3426 				unsigned long caller)
3427 {
3428 	struct array_cache *ac = cpu_cache_get(cachep);
3429 
3430 	check_irq_off();
3431 	kmemleak_free_recursive(objp, cachep->flags);
3432 	objp = cache_free_debugcheck(cachep, objp, caller);
3433 
3434 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3435 
3436 	/*
3437 	 * Skip calling cache_free_alien() when the platform is not numa.
3438 	 * This will avoid cache misses that happen while accessing slabp (which
3439 	 * is per page memory  reference) to get nodeid. Instead use a global
3440 	 * variable to skip the call, which is mostly likely to be present in
3441 	 * the cache.
3442 	 */
3443 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3444 		return;
3445 
3446 	if (likely(ac->avail < ac->limit)) {
3447 		STATS_INC_FREEHIT(cachep);
3448 	} else {
3449 		STATS_INC_FREEMISS(cachep);
3450 		cache_flusharray(cachep, ac);
3451 	}
3452 
3453 	ac_put_obj(cachep, ac, objp);
3454 }
3455 
3456 /**
3457  * kmem_cache_alloc - Allocate an object
3458  * @cachep: The cache to allocate from.
3459  * @flags: See kmalloc().
3460  *
3461  * Allocate an object from this cache.  The flags are only relevant
3462  * if the cache has no available objects.
3463  */
3464 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3465 {
3466 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3467 
3468 	trace_kmem_cache_alloc(_RET_IP_, ret,
3469 			       cachep->object_size, cachep->size, flags);
3470 
3471 	return ret;
3472 }
3473 EXPORT_SYMBOL(kmem_cache_alloc);
3474 
3475 #ifdef CONFIG_TRACING
3476 void *
3477 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3478 {
3479 	void *ret;
3480 
3481 	ret = slab_alloc(cachep, flags, _RET_IP_);
3482 
3483 	trace_kmalloc(_RET_IP_, ret,
3484 		      size, cachep->size, flags);
3485 	return ret;
3486 }
3487 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3488 #endif
3489 
3490 #ifdef CONFIG_NUMA
3491 /**
3492  * kmem_cache_alloc_node - Allocate an object on the specified node
3493  * @cachep: The cache to allocate from.
3494  * @flags: See kmalloc().
3495  * @nodeid: node number of the target node.
3496  *
3497  * Identical to kmem_cache_alloc but it will allocate memory on the given
3498  * node, which can improve the performance for cpu bound structures.
3499  *
3500  * Fallback to other node is possible if __GFP_THISNODE is not set.
3501  */
3502 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3503 {
3504 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3505 
3506 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3507 				    cachep->object_size, cachep->size,
3508 				    flags, nodeid);
3509 
3510 	return ret;
3511 }
3512 EXPORT_SYMBOL(kmem_cache_alloc_node);
3513 
3514 #ifdef CONFIG_TRACING
3515 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3516 				  gfp_t flags,
3517 				  int nodeid,
3518 				  size_t size)
3519 {
3520 	void *ret;
3521 
3522 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3523 
3524 	trace_kmalloc_node(_RET_IP_, ret,
3525 			   size, cachep->size,
3526 			   flags, nodeid);
3527 	return ret;
3528 }
3529 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3530 #endif
3531 
3532 static __always_inline void *
3533 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3534 {
3535 	struct kmem_cache *cachep;
3536 
3537 	cachep = kmalloc_slab(size, flags);
3538 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3539 		return cachep;
3540 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3541 }
3542 
3543 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3544 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3545 {
3546 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3547 }
3548 EXPORT_SYMBOL(__kmalloc_node);
3549 
3550 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3551 		int node, unsigned long caller)
3552 {
3553 	return __do_kmalloc_node(size, flags, node, caller);
3554 }
3555 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3556 #else
3557 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3558 {
3559 	return __do_kmalloc_node(size, flags, node, 0);
3560 }
3561 EXPORT_SYMBOL(__kmalloc_node);
3562 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3563 #endif /* CONFIG_NUMA */
3564 
3565 /**
3566  * __do_kmalloc - allocate memory
3567  * @size: how many bytes of memory are required.
3568  * @flags: the type of memory to allocate (see kmalloc).
3569  * @caller: function caller for debug tracking of the caller
3570  */
3571 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3572 					  unsigned long caller)
3573 {
3574 	struct kmem_cache *cachep;
3575 	void *ret;
3576 
3577 	/* If you want to save a few bytes .text space: replace
3578 	 * __ with kmem_.
3579 	 * Then kmalloc uses the uninlined functions instead of the inline
3580 	 * functions.
3581 	 */
3582 	cachep = kmalloc_slab(size, flags);
3583 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3584 		return cachep;
3585 	ret = slab_alloc(cachep, flags, caller);
3586 
3587 	trace_kmalloc(caller, ret,
3588 		      size, cachep->size, flags);
3589 
3590 	return ret;
3591 }
3592 
3593 
3594 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3595 void *__kmalloc(size_t size, gfp_t flags)
3596 {
3597 	return __do_kmalloc(size, flags, _RET_IP_);
3598 }
3599 EXPORT_SYMBOL(__kmalloc);
3600 
3601 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3602 {
3603 	return __do_kmalloc(size, flags, caller);
3604 }
3605 EXPORT_SYMBOL(__kmalloc_track_caller);
3606 
3607 #else
3608 void *__kmalloc(size_t size, gfp_t flags)
3609 {
3610 	return __do_kmalloc(size, flags, 0);
3611 }
3612 EXPORT_SYMBOL(__kmalloc);
3613 #endif
3614 
3615 /**
3616  * kmem_cache_free - Deallocate an object
3617  * @cachep: The cache the allocation was from.
3618  * @objp: The previously allocated object.
3619  *
3620  * Free an object which was previously allocated from this
3621  * cache.
3622  */
3623 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3624 {
3625 	unsigned long flags;
3626 	cachep = cache_from_obj(cachep, objp);
3627 	if (!cachep)
3628 		return;
3629 
3630 	local_irq_save(flags);
3631 	debug_check_no_locks_freed(objp, cachep->object_size);
3632 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3633 		debug_check_no_obj_freed(objp, cachep->object_size);
3634 	__cache_free(cachep, objp, _RET_IP_);
3635 	local_irq_restore(flags);
3636 
3637 	trace_kmem_cache_free(_RET_IP_, objp);
3638 }
3639 EXPORT_SYMBOL(kmem_cache_free);
3640 
3641 /**
3642  * kfree - free previously allocated memory
3643  * @objp: pointer returned by kmalloc.
3644  *
3645  * If @objp is NULL, no operation is performed.
3646  *
3647  * Don't free memory not originally allocated by kmalloc()
3648  * or you will run into trouble.
3649  */
3650 void kfree(const void *objp)
3651 {
3652 	struct kmem_cache *c;
3653 	unsigned long flags;
3654 
3655 	trace_kfree(_RET_IP_, objp);
3656 
3657 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3658 		return;
3659 	local_irq_save(flags);
3660 	kfree_debugcheck(objp);
3661 	c = virt_to_cache(objp);
3662 	debug_check_no_locks_freed(objp, c->object_size);
3663 
3664 	debug_check_no_obj_freed(objp, c->object_size);
3665 	__cache_free(c, (void *)objp, _RET_IP_);
3666 	local_irq_restore(flags);
3667 }
3668 EXPORT_SYMBOL(kfree);
3669 
3670 /*
3671  * This initializes kmem_cache_node or resizes various caches for all nodes.
3672  */
3673 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3674 {
3675 	int node;
3676 	struct kmem_cache_node *n;
3677 	struct array_cache *new_shared;
3678 	struct array_cache **new_alien = NULL;
3679 
3680 	for_each_online_node(node) {
3681 
3682                 if (use_alien_caches) {
3683                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3684                         if (!new_alien)
3685                                 goto fail;
3686                 }
3687 
3688 		new_shared = NULL;
3689 		if (cachep->shared) {
3690 			new_shared = alloc_arraycache(node,
3691 				cachep->shared*cachep->batchcount,
3692 					0xbaadf00d, gfp);
3693 			if (!new_shared) {
3694 				free_alien_cache(new_alien);
3695 				goto fail;
3696 			}
3697 		}
3698 
3699 		n = cachep->node[node];
3700 		if (n) {
3701 			struct array_cache *shared = n->shared;
3702 
3703 			spin_lock_irq(&n->list_lock);
3704 
3705 			if (shared)
3706 				free_block(cachep, shared->entry,
3707 						shared->avail, node);
3708 
3709 			n->shared = new_shared;
3710 			if (!n->alien) {
3711 				n->alien = new_alien;
3712 				new_alien = NULL;
3713 			}
3714 			n->free_limit = (1 + nr_cpus_node(node)) *
3715 					cachep->batchcount + cachep->num;
3716 			spin_unlock_irq(&n->list_lock);
3717 			kfree(shared);
3718 			free_alien_cache(new_alien);
3719 			continue;
3720 		}
3721 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3722 		if (!n) {
3723 			free_alien_cache(new_alien);
3724 			kfree(new_shared);
3725 			goto fail;
3726 		}
3727 
3728 		kmem_cache_node_init(n);
3729 		n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3730 				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3731 		n->shared = new_shared;
3732 		n->alien = new_alien;
3733 		n->free_limit = (1 + nr_cpus_node(node)) *
3734 					cachep->batchcount + cachep->num;
3735 		cachep->node[node] = n;
3736 	}
3737 	return 0;
3738 
3739 fail:
3740 	if (!cachep->list.next) {
3741 		/* Cache is not active yet. Roll back what we did */
3742 		node--;
3743 		while (node >= 0) {
3744 			if (cachep->node[node]) {
3745 				n = cachep->node[node];
3746 
3747 				kfree(n->shared);
3748 				free_alien_cache(n->alien);
3749 				kfree(n);
3750 				cachep->node[node] = NULL;
3751 			}
3752 			node--;
3753 		}
3754 	}
3755 	return -ENOMEM;
3756 }
3757 
3758 struct ccupdate_struct {
3759 	struct kmem_cache *cachep;
3760 	struct array_cache *new[0];
3761 };
3762 
3763 static void do_ccupdate_local(void *info)
3764 {
3765 	struct ccupdate_struct *new = info;
3766 	struct array_cache *old;
3767 
3768 	check_irq_off();
3769 	old = cpu_cache_get(new->cachep);
3770 
3771 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3772 	new->new[smp_processor_id()] = old;
3773 }
3774 
3775 /* Always called with the slab_mutex held */
3776 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3777 				int batchcount, int shared, gfp_t gfp)
3778 {
3779 	struct ccupdate_struct *new;
3780 	int i;
3781 
3782 	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3783 		      gfp);
3784 	if (!new)
3785 		return -ENOMEM;
3786 
3787 	for_each_online_cpu(i) {
3788 		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3789 						batchcount, gfp);
3790 		if (!new->new[i]) {
3791 			for (i--; i >= 0; i--)
3792 				kfree(new->new[i]);
3793 			kfree(new);
3794 			return -ENOMEM;
3795 		}
3796 	}
3797 	new->cachep = cachep;
3798 
3799 	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3800 
3801 	check_irq_on();
3802 	cachep->batchcount = batchcount;
3803 	cachep->limit = limit;
3804 	cachep->shared = shared;
3805 
3806 	for_each_online_cpu(i) {
3807 		struct array_cache *ccold = new->new[i];
3808 		if (!ccold)
3809 			continue;
3810 		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3811 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3812 		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3813 		kfree(ccold);
3814 	}
3815 	kfree(new);
3816 	return alloc_kmemlist(cachep, gfp);
3817 }
3818 
3819 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3820 				int batchcount, int shared, gfp_t gfp)
3821 {
3822 	int ret;
3823 	struct kmem_cache *c = NULL;
3824 	int i = 0;
3825 
3826 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3827 
3828 	if (slab_state < FULL)
3829 		return ret;
3830 
3831 	if ((ret < 0) || !is_root_cache(cachep))
3832 		return ret;
3833 
3834 	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3835 	for_each_memcg_cache_index(i) {
3836 		c = cache_from_memcg_idx(cachep, i);
3837 		if (c)
3838 			/* return value determined by the parent cache only */
3839 			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3840 	}
3841 
3842 	return ret;
3843 }
3844 
3845 /* Called with slab_mutex held always */
3846 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3847 {
3848 	int err;
3849 	int limit = 0;
3850 	int shared = 0;
3851 	int batchcount = 0;
3852 
3853 	if (!is_root_cache(cachep)) {
3854 		struct kmem_cache *root = memcg_root_cache(cachep);
3855 		limit = root->limit;
3856 		shared = root->shared;
3857 		batchcount = root->batchcount;
3858 	}
3859 
3860 	if (limit && shared && batchcount)
3861 		goto skip_setup;
3862 	/*
3863 	 * The head array serves three purposes:
3864 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3865 	 * - reduce the number of spinlock operations.
3866 	 * - reduce the number of linked list operations on the slab and
3867 	 *   bufctl chains: array operations are cheaper.
3868 	 * The numbers are guessed, we should auto-tune as described by
3869 	 * Bonwick.
3870 	 */
3871 	if (cachep->size > 131072)
3872 		limit = 1;
3873 	else if (cachep->size > PAGE_SIZE)
3874 		limit = 8;
3875 	else if (cachep->size > 1024)
3876 		limit = 24;
3877 	else if (cachep->size > 256)
3878 		limit = 54;
3879 	else
3880 		limit = 120;
3881 
3882 	/*
3883 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3884 	 * allocation behaviour: Most allocs on one cpu, most free operations
3885 	 * on another cpu. For these cases, an efficient object passing between
3886 	 * cpus is necessary. This is provided by a shared array. The array
3887 	 * replaces Bonwick's magazine layer.
3888 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3889 	 * to a larger limit. Thus disabled by default.
3890 	 */
3891 	shared = 0;
3892 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3893 		shared = 8;
3894 
3895 #if DEBUG
3896 	/*
3897 	 * With debugging enabled, large batchcount lead to excessively long
3898 	 * periods with disabled local interrupts. Limit the batchcount
3899 	 */
3900 	if (limit > 32)
3901 		limit = 32;
3902 #endif
3903 	batchcount = (limit + 1) / 2;
3904 skip_setup:
3905 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3906 	if (err)
3907 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3908 		       cachep->name, -err);
3909 	return err;
3910 }
3911 
3912 /*
3913  * Drain an array if it contains any elements taking the node lock only if
3914  * necessary. Note that the node listlock also protects the array_cache
3915  * if drain_array() is used on the shared array.
3916  */
3917 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3918 			 struct array_cache *ac, int force, int node)
3919 {
3920 	int tofree;
3921 
3922 	if (!ac || !ac->avail)
3923 		return;
3924 	if (ac->touched && !force) {
3925 		ac->touched = 0;
3926 	} else {
3927 		spin_lock_irq(&n->list_lock);
3928 		if (ac->avail) {
3929 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3930 			if (tofree > ac->avail)
3931 				tofree = (ac->avail + 1) / 2;
3932 			free_block(cachep, ac->entry, tofree, node);
3933 			ac->avail -= tofree;
3934 			memmove(ac->entry, &(ac->entry[tofree]),
3935 				sizeof(void *) * ac->avail);
3936 		}
3937 		spin_unlock_irq(&n->list_lock);
3938 	}
3939 }
3940 
3941 /**
3942  * cache_reap - Reclaim memory from caches.
3943  * @w: work descriptor
3944  *
3945  * Called from workqueue/eventd every few seconds.
3946  * Purpose:
3947  * - clear the per-cpu caches for this CPU.
3948  * - return freeable pages to the main free memory pool.
3949  *
3950  * If we cannot acquire the cache chain mutex then just give up - we'll try
3951  * again on the next iteration.
3952  */
3953 static void cache_reap(struct work_struct *w)
3954 {
3955 	struct kmem_cache *searchp;
3956 	struct kmem_cache_node *n;
3957 	int node = numa_mem_id();
3958 	struct delayed_work *work = to_delayed_work(w);
3959 
3960 	if (!mutex_trylock(&slab_mutex))
3961 		/* Give up. Setup the next iteration. */
3962 		goto out;
3963 
3964 	list_for_each_entry(searchp, &slab_caches, list) {
3965 		check_irq_on();
3966 
3967 		/*
3968 		 * We only take the node lock if absolutely necessary and we
3969 		 * have established with reasonable certainty that
3970 		 * we can do some work if the lock was obtained.
3971 		 */
3972 		n = searchp->node[node];
3973 
3974 		reap_alien(searchp, n);
3975 
3976 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3977 
3978 		/*
3979 		 * These are racy checks but it does not matter
3980 		 * if we skip one check or scan twice.
3981 		 */
3982 		if (time_after(n->next_reap, jiffies))
3983 			goto next;
3984 
3985 		n->next_reap = jiffies + REAPTIMEOUT_LIST3;
3986 
3987 		drain_array(searchp, n, n->shared, 0, node);
3988 
3989 		if (n->free_touched)
3990 			n->free_touched = 0;
3991 		else {
3992 			int freed;
3993 
3994 			freed = drain_freelist(searchp, n, (n->free_limit +
3995 				5 * searchp->num - 1) / (5 * searchp->num));
3996 			STATS_ADD_REAPED(searchp, freed);
3997 		}
3998 next:
3999 		cond_resched();
4000 	}
4001 	check_irq_on();
4002 	mutex_unlock(&slab_mutex);
4003 	next_reap_node();
4004 out:
4005 	/* Set up the next iteration */
4006 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4007 }
4008 
4009 #ifdef CONFIG_SLABINFO
4010 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4011 {
4012 	struct page *page;
4013 	unsigned long active_objs;
4014 	unsigned long num_objs;
4015 	unsigned long active_slabs = 0;
4016 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4017 	const char *name;
4018 	char *error = NULL;
4019 	int node;
4020 	struct kmem_cache_node *n;
4021 
4022 	active_objs = 0;
4023 	num_slabs = 0;
4024 	for_each_online_node(node) {
4025 		n = cachep->node[node];
4026 		if (!n)
4027 			continue;
4028 
4029 		check_irq_on();
4030 		spin_lock_irq(&n->list_lock);
4031 
4032 		list_for_each_entry(page, &n->slabs_full, lru) {
4033 			if (page->active != cachep->num && !error)
4034 				error = "slabs_full accounting error";
4035 			active_objs += cachep->num;
4036 			active_slabs++;
4037 		}
4038 		list_for_each_entry(page, &n->slabs_partial, lru) {
4039 			if (page->active == cachep->num && !error)
4040 				error = "slabs_partial accounting error";
4041 			if (!page->active && !error)
4042 				error = "slabs_partial accounting error";
4043 			active_objs += page->active;
4044 			active_slabs++;
4045 		}
4046 		list_for_each_entry(page, &n->slabs_free, lru) {
4047 			if (page->active && !error)
4048 				error = "slabs_free accounting error";
4049 			num_slabs++;
4050 		}
4051 		free_objects += n->free_objects;
4052 		if (n->shared)
4053 			shared_avail += n->shared->avail;
4054 
4055 		spin_unlock_irq(&n->list_lock);
4056 	}
4057 	num_slabs += active_slabs;
4058 	num_objs = num_slabs * cachep->num;
4059 	if (num_objs - active_objs != free_objects && !error)
4060 		error = "free_objects accounting error";
4061 
4062 	name = cachep->name;
4063 	if (error)
4064 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4065 
4066 	sinfo->active_objs = active_objs;
4067 	sinfo->num_objs = num_objs;
4068 	sinfo->active_slabs = active_slabs;
4069 	sinfo->num_slabs = num_slabs;
4070 	sinfo->shared_avail = shared_avail;
4071 	sinfo->limit = cachep->limit;
4072 	sinfo->batchcount = cachep->batchcount;
4073 	sinfo->shared = cachep->shared;
4074 	sinfo->objects_per_slab = cachep->num;
4075 	sinfo->cache_order = cachep->gfporder;
4076 }
4077 
4078 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4079 {
4080 #if STATS
4081 	{			/* node stats */
4082 		unsigned long high = cachep->high_mark;
4083 		unsigned long allocs = cachep->num_allocations;
4084 		unsigned long grown = cachep->grown;
4085 		unsigned long reaped = cachep->reaped;
4086 		unsigned long errors = cachep->errors;
4087 		unsigned long max_freeable = cachep->max_freeable;
4088 		unsigned long node_allocs = cachep->node_allocs;
4089 		unsigned long node_frees = cachep->node_frees;
4090 		unsigned long overflows = cachep->node_overflow;
4091 
4092 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4093 			   "%4lu %4lu %4lu %4lu %4lu",
4094 			   allocs, high, grown,
4095 			   reaped, errors, max_freeable, node_allocs,
4096 			   node_frees, overflows);
4097 	}
4098 	/* cpu stats */
4099 	{
4100 		unsigned long allochit = atomic_read(&cachep->allochit);
4101 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4102 		unsigned long freehit = atomic_read(&cachep->freehit);
4103 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4104 
4105 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4106 			   allochit, allocmiss, freehit, freemiss);
4107 	}
4108 #endif
4109 }
4110 
4111 #define MAX_SLABINFO_WRITE 128
4112 /**
4113  * slabinfo_write - Tuning for the slab allocator
4114  * @file: unused
4115  * @buffer: user buffer
4116  * @count: data length
4117  * @ppos: unused
4118  */
4119 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4120 		       size_t count, loff_t *ppos)
4121 {
4122 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4123 	int limit, batchcount, shared, res;
4124 	struct kmem_cache *cachep;
4125 
4126 	if (count > MAX_SLABINFO_WRITE)
4127 		return -EINVAL;
4128 	if (copy_from_user(&kbuf, buffer, count))
4129 		return -EFAULT;
4130 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4131 
4132 	tmp = strchr(kbuf, ' ');
4133 	if (!tmp)
4134 		return -EINVAL;
4135 	*tmp = '\0';
4136 	tmp++;
4137 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4138 		return -EINVAL;
4139 
4140 	/* Find the cache in the chain of caches. */
4141 	mutex_lock(&slab_mutex);
4142 	res = -EINVAL;
4143 	list_for_each_entry(cachep, &slab_caches, list) {
4144 		if (!strcmp(cachep->name, kbuf)) {
4145 			if (limit < 1 || batchcount < 1 ||
4146 					batchcount > limit || shared < 0) {
4147 				res = 0;
4148 			} else {
4149 				res = do_tune_cpucache(cachep, limit,
4150 						       batchcount, shared,
4151 						       GFP_KERNEL);
4152 			}
4153 			break;
4154 		}
4155 	}
4156 	mutex_unlock(&slab_mutex);
4157 	if (res >= 0)
4158 		res = count;
4159 	return res;
4160 }
4161 
4162 #ifdef CONFIG_DEBUG_SLAB_LEAK
4163 
4164 static void *leaks_start(struct seq_file *m, loff_t *pos)
4165 {
4166 	mutex_lock(&slab_mutex);
4167 	return seq_list_start(&slab_caches, *pos);
4168 }
4169 
4170 static inline int add_caller(unsigned long *n, unsigned long v)
4171 {
4172 	unsigned long *p;
4173 	int l;
4174 	if (!v)
4175 		return 1;
4176 	l = n[1];
4177 	p = n + 2;
4178 	while (l) {
4179 		int i = l/2;
4180 		unsigned long *q = p + 2 * i;
4181 		if (*q == v) {
4182 			q[1]++;
4183 			return 1;
4184 		}
4185 		if (*q > v) {
4186 			l = i;
4187 		} else {
4188 			p = q + 2;
4189 			l -= i + 1;
4190 		}
4191 	}
4192 	if (++n[1] == n[0])
4193 		return 0;
4194 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4195 	p[0] = v;
4196 	p[1] = 1;
4197 	return 1;
4198 }
4199 
4200 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4201 						struct page *page)
4202 {
4203 	void *p;
4204 	int i, j;
4205 
4206 	if (n[0] == n[1])
4207 		return;
4208 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4209 		bool active = true;
4210 
4211 		for (j = page->active; j < c->num; j++) {
4212 			/* Skip freed item */
4213 			if (slab_freelist(page)[j] == i) {
4214 				active = false;
4215 				break;
4216 			}
4217 		}
4218 		if (!active)
4219 			continue;
4220 
4221 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4222 			return;
4223 	}
4224 }
4225 
4226 static void show_symbol(struct seq_file *m, unsigned long address)
4227 {
4228 #ifdef CONFIG_KALLSYMS
4229 	unsigned long offset, size;
4230 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4231 
4232 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4233 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4234 		if (modname[0])
4235 			seq_printf(m, " [%s]", modname);
4236 		return;
4237 	}
4238 #endif
4239 	seq_printf(m, "%p", (void *)address);
4240 }
4241 
4242 static int leaks_show(struct seq_file *m, void *p)
4243 {
4244 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4245 	struct page *page;
4246 	struct kmem_cache_node *n;
4247 	const char *name;
4248 	unsigned long *x = m->private;
4249 	int node;
4250 	int i;
4251 
4252 	if (!(cachep->flags & SLAB_STORE_USER))
4253 		return 0;
4254 	if (!(cachep->flags & SLAB_RED_ZONE))
4255 		return 0;
4256 
4257 	/* OK, we can do it */
4258 
4259 	x[1] = 0;
4260 
4261 	for_each_online_node(node) {
4262 		n = cachep->node[node];
4263 		if (!n)
4264 			continue;
4265 
4266 		check_irq_on();
4267 		spin_lock_irq(&n->list_lock);
4268 
4269 		list_for_each_entry(page, &n->slabs_full, lru)
4270 			handle_slab(x, cachep, page);
4271 		list_for_each_entry(page, &n->slabs_partial, lru)
4272 			handle_slab(x, cachep, page);
4273 		spin_unlock_irq(&n->list_lock);
4274 	}
4275 	name = cachep->name;
4276 	if (x[0] == x[1]) {
4277 		/* Increase the buffer size */
4278 		mutex_unlock(&slab_mutex);
4279 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4280 		if (!m->private) {
4281 			/* Too bad, we are really out */
4282 			m->private = x;
4283 			mutex_lock(&slab_mutex);
4284 			return -ENOMEM;
4285 		}
4286 		*(unsigned long *)m->private = x[0] * 2;
4287 		kfree(x);
4288 		mutex_lock(&slab_mutex);
4289 		/* Now make sure this entry will be retried */
4290 		m->count = m->size;
4291 		return 0;
4292 	}
4293 	for (i = 0; i < x[1]; i++) {
4294 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4295 		show_symbol(m, x[2*i+2]);
4296 		seq_putc(m, '\n');
4297 	}
4298 
4299 	return 0;
4300 }
4301 
4302 static const struct seq_operations slabstats_op = {
4303 	.start = leaks_start,
4304 	.next = slab_next,
4305 	.stop = slab_stop,
4306 	.show = leaks_show,
4307 };
4308 
4309 static int slabstats_open(struct inode *inode, struct file *file)
4310 {
4311 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4312 	int ret = -ENOMEM;
4313 	if (n) {
4314 		ret = seq_open(file, &slabstats_op);
4315 		if (!ret) {
4316 			struct seq_file *m = file->private_data;
4317 			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4318 			m->private = n;
4319 			n = NULL;
4320 		}
4321 		kfree(n);
4322 	}
4323 	return ret;
4324 }
4325 
4326 static const struct file_operations proc_slabstats_operations = {
4327 	.open		= slabstats_open,
4328 	.read		= seq_read,
4329 	.llseek		= seq_lseek,
4330 	.release	= seq_release_private,
4331 };
4332 #endif
4333 
4334 static int __init slab_proc_init(void)
4335 {
4336 #ifdef CONFIG_DEBUG_SLAB_LEAK
4337 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4338 #endif
4339 	return 0;
4340 }
4341 module_init(slab_proc_init);
4342 #endif
4343 
4344 /**
4345  * ksize - get the actual amount of memory allocated for a given object
4346  * @objp: Pointer to the object
4347  *
4348  * kmalloc may internally round up allocations and return more memory
4349  * than requested. ksize() can be used to determine the actual amount of
4350  * memory allocated. The caller may use this additional memory, even though
4351  * a smaller amount of memory was initially specified with the kmalloc call.
4352  * The caller must guarantee that objp points to a valid object previously
4353  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4354  * must not be freed during the duration of the call.
4355  */
4356 size_t ksize(const void *objp)
4357 {
4358 	BUG_ON(!objp);
4359 	if (unlikely(objp == ZERO_SIZE_PTR))
4360 		return 0;
4361 
4362 	return virt_to_cache(objp)->object_size;
4363 }
4364 EXPORT_SYMBOL(ksize);
4365