1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same intializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/seq_file.h> 99 #include <linux/notifier.h> 100 #include <linux/kallsyms.h> 101 #include <linux/cpu.h> 102 #include <linux/sysctl.h> 103 #include <linux/module.h> 104 #include <linux/rcupdate.h> 105 #include <linux/string.h> 106 #include <linux/uaccess.h> 107 #include <linux/nodemask.h> 108 #include <linux/mempolicy.h> 109 #include <linux/mutex.h> 110 #include <linux/fault-inject.h> 111 #include <linux/rtmutex.h> 112 #include <linux/reciprocal_div.h> 113 114 #include <asm/cacheflush.h> 115 #include <asm/tlbflush.h> 116 #include <asm/page.h> 117 118 /* 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 120 * 0 for faster, smaller code (especially in the critical paths). 121 * 122 * STATS - 1 to collect stats for /proc/slabinfo. 123 * 0 for faster, smaller code (especially in the critical paths). 124 * 125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 126 */ 127 128 #ifdef CONFIG_DEBUG_SLAB 129 #define DEBUG 1 130 #define STATS 1 131 #define FORCED_DEBUG 1 132 #else 133 #define DEBUG 0 134 #define STATS 0 135 #define FORCED_DEBUG 0 136 #endif 137 138 /* Shouldn't this be in a header file somewhere? */ 139 #define BYTES_PER_WORD sizeof(void *) 140 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 141 142 #ifndef cache_line_size 143 #define cache_line_size() L1_CACHE_BYTES 144 #endif 145 146 #ifndef ARCH_KMALLOC_MINALIGN 147 /* 148 * Enforce a minimum alignment for the kmalloc caches. 149 * Usually, the kmalloc caches are cache_line_size() aligned, except when 150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. 151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 152 * alignment larger than the alignment of a 64-bit integer. 153 * ARCH_KMALLOC_MINALIGN allows that. 154 * Note that increasing this value may disable some debug features. 155 */ 156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 157 #endif 158 159 #ifndef ARCH_SLAB_MINALIGN 160 /* 161 * Enforce a minimum alignment for all caches. 162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD 163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. 164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables 165 * some debug features. 166 */ 167 #define ARCH_SLAB_MINALIGN 0 168 #endif 169 170 #ifndef ARCH_KMALLOC_FLAGS 171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 172 #endif 173 174 /* Legal flag mask for kmem_cache_create(). */ 175 #if DEBUG 176 # define CREATE_MASK (SLAB_RED_ZONE | \ 177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \ 178 SLAB_CACHE_DMA | \ 179 SLAB_STORE_USER | \ 180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD) 182 #else 183 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ 184 SLAB_CACHE_DMA | \ 185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD) 187 #endif 188 189 /* 190 * kmem_bufctl_t: 191 * 192 * Bufctl's are used for linking objs within a slab 193 * linked offsets. 194 * 195 * This implementation relies on "struct page" for locating the cache & 196 * slab an object belongs to. 197 * This allows the bufctl structure to be small (one int), but limits 198 * the number of objects a slab (not a cache) can contain when off-slab 199 * bufctls are used. The limit is the size of the largest general cache 200 * that does not use off-slab slabs. 201 * For 32bit archs with 4 kB pages, is this 56. 202 * This is not serious, as it is only for large objects, when it is unwise 203 * to have too many per slab. 204 * Note: This limit can be raised by introducing a general cache whose size 205 * is less than 512 (PAGE_SIZE<<3), but greater than 256. 206 */ 207 208 typedef unsigned int kmem_bufctl_t; 209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) 210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) 211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) 212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) 213 214 /* 215 * struct slab 216 * 217 * Manages the objs in a slab. Placed either at the beginning of mem allocated 218 * for a slab, or allocated from an general cache. 219 * Slabs are chained into three list: fully used, partial, fully free slabs. 220 */ 221 struct slab { 222 struct list_head list; 223 unsigned long colouroff; 224 void *s_mem; /* including colour offset */ 225 unsigned int inuse; /* num of objs active in slab */ 226 kmem_bufctl_t free; 227 unsigned short nodeid; 228 }; 229 230 /* 231 * struct slab_rcu 232 * 233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to 234 * arrange for kmem_freepages to be called via RCU. This is useful if 235 * we need to approach a kernel structure obliquely, from its address 236 * obtained without the usual locking. We can lock the structure to 237 * stabilize it and check it's still at the given address, only if we 238 * can be sure that the memory has not been meanwhile reused for some 239 * other kind of object (which our subsystem's lock might corrupt). 240 * 241 * rcu_read_lock before reading the address, then rcu_read_unlock after 242 * taking the spinlock within the structure expected at that address. 243 * 244 * We assume struct slab_rcu can overlay struct slab when destroying. 245 */ 246 struct slab_rcu { 247 struct rcu_head head; 248 struct kmem_cache *cachep; 249 void *addr; 250 }; 251 252 /* 253 * struct array_cache 254 * 255 * Purpose: 256 * - LIFO ordering, to hand out cache-warm objects from _alloc 257 * - reduce the number of linked list operations 258 * - reduce spinlock operations 259 * 260 * The limit is stored in the per-cpu structure to reduce the data cache 261 * footprint. 262 * 263 */ 264 struct array_cache { 265 unsigned int avail; 266 unsigned int limit; 267 unsigned int batchcount; 268 unsigned int touched; 269 spinlock_t lock; 270 void *entry[0]; /* 271 * Must have this definition in here for the proper 272 * alignment of array_cache. Also simplifies accessing 273 * the entries. 274 * [0] is for gcc 2.95. It should really be []. 275 */ 276 }; 277 278 /* 279 * bootstrap: The caches do not work without cpuarrays anymore, but the 280 * cpuarrays are allocated from the generic caches... 281 */ 282 #define BOOT_CPUCACHE_ENTRIES 1 283 struct arraycache_init { 284 struct array_cache cache; 285 void *entries[BOOT_CPUCACHE_ENTRIES]; 286 }; 287 288 /* 289 * The slab lists for all objects. 290 */ 291 struct kmem_list3 { 292 struct list_head slabs_partial; /* partial list first, better asm code */ 293 struct list_head slabs_full; 294 struct list_head slabs_free; 295 unsigned long free_objects; 296 unsigned int free_limit; 297 unsigned int colour_next; /* Per-node cache coloring */ 298 spinlock_t list_lock; 299 struct array_cache *shared; /* shared per node */ 300 struct array_cache **alien; /* on other nodes */ 301 unsigned long next_reap; /* updated without locking */ 302 int free_touched; /* updated without locking */ 303 }; 304 305 /* 306 * Need this for bootstrapping a per node allocator. 307 */ 308 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1) 309 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; 310 #define CACHE_CACHE 0 311 #define SIZE_AC 1 312 #define SIZE_L3 (1 + MAX_NUMNODES) 313 314 static int drain_freelist(struct kmem_cache *cache, 315 struct kmem_list3 *l3, int tofree); 316 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 317 int node); 318 static int enable_cpucache(struct kmem_cache *cachep); 319 static void cache_reap(struct work_struct *unused); 320 321 /* 322 * This function must be completely optimized away if a constant is passed to 323 * it. Mostly the same as what is in linux/slab.h except it returns an index. 324 */ 325 static __always_inline int index_of(const size_t size) 326 { 327 extern void __bad_size(void); 328 329 if (__builtin_constant_p(size)) { 330 int i = 0; 331 332 #define CACHE(x) \ 333 if (size <=x) \ 334 return i; \ 335 else \ 336 i++; 337 #include "linux/kmalloc_sizes.h" 338 #undef CACHE 339 __bad_size(); 340 } else 341 __bad_size(); 342 return 0; 343 } 344 345 static int slab_early_init = 1; 346 347 #define INDEX_AC index_of(sizeof(struct arraycache_init)) 348 #define INDEX_L3 index_of(sizeof(struct kmem_list3)) 349 350 static void kmem_list3_init(struct kmem_list3 *parent) 351 { 352 INIT_LIST_HEAD(&parent->slabs_full); 353 INIT_LIST_HEAD(&parent->slabs_partial); 354 INIT_LIST_HEAD(&parent->slabs_free); 355 parent->shared = NULL; 356 parent->alien = NULL; 357 parent->colour_next = 0; 358 spin_lock_init(&parent->list_lock); 359 parent->free_objects = 0; 360 parent->free_touched = 0; 361 } 362 363 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 364 do { \ 365 INIT_LIST_HEAD(listp); \ 366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ 367 } while (0) 368 369 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 370 do { \ 371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 374 } while (0) 375 376 /* 377 * struct kmem_cache 378 * 379 * manages a cache. 380 */ 381 382 struct kmem_cache { 383 /* 1) per-cpu data, touched during every alloc/free */ 384 struct array_cache *array[NR_CPUS]; 385 /* 2) Cache tunables. Protected by cache_chain_mutex */ 386 unsigned int batchcount; 387 unsigned int limit; 388 unsigned int shared; 389 390 unsigned int buffer_size; 391 u32 reciprocal_buffer_size; 392 /* 3) touched by every alloc & free from the backend */ 393 394 unsigned int flags; /* constant flags */ 395 unsigned int num; /* # of objs per slab */ 396 397 /* 4) cache_grow/shrink */ 398 /* order of pgs per slab (2^n) */ 399 unsigned int gfporder; 400 401 /* force GFP flags, e.g. GFP_DMA */ 402 gfp_t gfpflags; 403 404 size_t colour; /* cache colouring range */ 405 unsigned int colour_off; /* colour offset */ 406 struct kmem_cache *slabp_cache; 407 unsigned int slab_size; 408 unsigned int dflags; /* dynamic flags */ 409 410 /* constructor func */ 411 void (*ctor) (void *, struct kmem_cache *, unsigned long); 412 413 /* 5) cache creation/removal */ 414 const char *name; 415 struct list_head next; 416 417 /* 6) statistics */ 418 #if STATS 419 unsigned long num_active; 420 unsigned long num_allocations; 421 unsigned long high_mark; 422 unsigned long grown; 423 unsigned long reaped; 424 unsigned long errors; 425 unsigned long max_freeable; 426 unsigned long node_allocs; 427 unsigned long node_frees; 428 unsigned long node_overflow; 429 atomic_t allochit; 430 atomic_t allocmiss; 431 atomic_t freehit; 432 atomic_t freemiss; 433 #endif 434 #if DEBUG 435 /* 436 * If debugging is enabled, then the allocator can add additional 437 * fields and/or padding to every object. buffer_size contains the total 438 * object size including these internal fields, the following two 439 * variables contain the offset to the user object and its size. 440 */ 441 int obj_offset; 442 int obj_size; 443 #endif 444 /* 445 * We put nodelists[] at the end of kmem_cache, because we want to size 446 * this array to nr_node_ids slots instead of MAX_NUMNODES 447 * (see kmem_cache_init()) 448 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache 449 * is statically defined, so we reserve the max number of nodes. 450 */ 451 struct kmem_list3 *nodelists[MAX_NUMNODES]; 452 /* 453 * Do not add fields after nodelists[] 454 */ 455 }; 456 457 #define CFLGS_OFF_SLAB (0x80000000UL) 458 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 459 460 #define BATCHREFILL_LIMIT 16 461 /* 462 * Optimization question: fewer reaps means less probability for unnessary 463 * cpucache drain/refill cycles. 464 * 465 * OTOH the cpuarrays can contain lots of objects, 466 * which could lock up otherwise freeable slabs. 467 */ 468 #define REAPTIMEOUT_CPUC (2*HZ) 469 #define REAPTIMEOUT_LIST3 (4*HZ) 470 471 #if STATS 472 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 473 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 474 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 475 #define STATS_INC_GROWN(x) ((x)->grown++) 476 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 477 #define STATS_SET_HIGH(x) \ 478 do { \ 479 if ((x)->num_active > (x)->high_mark) \ 480 (x)->high_mark = (x)->num_active; \ 481 } while (0) 482 #define STATS_INC_ERR(x) ((x)->errors++) 483 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 484 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 485 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 486 #define STATS_SET_FREEABLE(x, i) \ 487 do { \ 488 if ((x)->max_freeable < i) \ 489 (x)->max_freeable = i; \ 490 } while (0) 491 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 492 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 493 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 494 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 495 #else 496 #define STATS_INC_ACTIVE(x) do { } while (0) 497 #define STATS_DEC_ACTIVE(x) do { } while (0) 498 #define STATS_INC_ALLOCED(x) do { } while (0) 499 #define STATS_INC_GROWN(x) do { } while (0) 500 #define STATS_ADD_REAPED(x,y) do { } while (0) 501 #define STATS_SET_HIGH(x) do { } while (0) 502 #define STATS_INC_ERR(x) do { } while (0) 503 #define STATS_INC_NODEALLOCS(x) do { } while (0) 504 #define STATS_INC_NODEFREES(x) do { } while (0) 505 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 506 #define STATS_SET_FREEABLE(x, i) do { } while (0) 507 #define STATS_INC_ALLOCHIT(x) do { } while (0) 508 #define STATS_INC_ALLOCMISS(x) do { } while (0) 509 #define STATS_INC_FREEHIT(x) do { } while (0) 510 #define STATS_INC_FREEMISS(x) do { } while (0) 511 #endif 512 513 #if DEBUG 514 515 /* 516 * memory layout of objects: 517 * 0 : objp 518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 519 * the end of an object is aligned with the end of the real 520 * allocation. Catches writes behind the end of the allocation. 521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 522 * redzone word. 523 * cachep->obj_offset: The real object. 524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address 526 * [BYTES_PER_WORD long] 527 */ 528 static int obj_offset(struct kmem_cache *cachep) 529 { 530 return cachep->obj_offset; 531 } 532 533 static int obj_size(struct kmem_cache *cachep) 534 { 535 return cachep->obj_size; 536 } 537 538 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 539 { 540 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 541 return (unsigned long long*) (objp + obj_offset(cachep) - 542 sizeof(unsigned long long)); 543 } 544 545 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 546 { 547 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 548 if (cachep->flags & SLAB_STORE_USER) 549 return (unsigned long long *)(objp + cachep->buffer_size - 550 sizeof(unsigned long long) - 551 REDZONE_ALIGN); 552 return (unsigned long long *) (objp + cachep->buffer_size - 553 sizeof(unsigned long long)); 554 } 555 556 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 557 { 558 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 559 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); 560 } 561 562 #else 563 564 #define obj_offset(x) 0 565 #define obj_size(cachep) (cachep->buffer_size) 566 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 567 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 568 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 569 570 #endif 571 572 /* 573 * Do not go above this order unless 0 objects fit into the slab. 574 */ 575 #define BREAK_GFP_ORDER_HI 1 576 #define BREAK_GFP_ORDER_LO 0 577 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; 578 579 /* 580 * Functions for storing/retrieving the cachep and or slab from the page 581 * allocator. These are used to find the slab an obj belongs to. With kfree(), 582 * these are used to find the cache which an obj belongs to. 583 */ 584 static inline void page_set_cache(struct page *page, struct kmem_cache *cache) 585 { 586 page->lru.next = (struct list_head *)cache; 587 } 588 589 static inline struct kmem_cache *page_get_cache(struct page *page) 590 { 591 page = compound_head(page); 592 BUG_ON(!PageSlab(page)); 593 return (struct kmem_cache *)page->lru.next; 594 } 595 596 static inline void page_set_slab(struct page *page, struct slab *slab) 597 { 598 page->lru.prev = (struct list_head *)slab; 599 } 600 601 static inline struct slab *page_get_slab(struct page *page) 602 { 603 BUG_ON(!PageSlab(page)); 604 return (struct slab *)page->lru.prev; 605 } 606 607 static inline struct kmem_cache *virt_to_cache(const void *obj) 608 { 609 struct page *page = virt_to_head_page(obj); 610 return page_get_cache(page); 611 } 612 613 static inline struct slab *virt_to_slab(const void *obj) 614 { 615 struct page *page = virt_to_head_page(obj); 616 return page_get_slab(page); 617 } 618 619 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, 620 unsigned int idx) 621 { 622 return slab->s_mem + cache->buffer_size * idx; 623 } 624 625 /* 626 * We want to avoid an expensive divide : (offset / cache->buffer_size) 627 * Using the fact that buffer_size is a constant for a particular cache, 628 * we can replace (offset / cache->buffer_size) by 629 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 630 */ 631 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 632 const struct slab *slab, void *obj) 633 { 634 u32 offset = (obj - slab->s_mem); 635 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 636 } 637 638 /* 639 * These are the default caches for kmalloc. Custom caches can have other sizes. 640 */ 641 struct cache_sizes malloc_sizes[] = { 642 #define CACHE(x) { .cs_size = (x) }, 643 #include <linux/kmalloc_sizes.h> 644 CACHE(ULONG_MAX) 645 #undef CACHE 646 }; 647 EXPORT_SYMBOL(malloc_sizes); 648 649 /* Must match cache_sizes above. Out of line to keep cache footprint low. */ 650 struct cache_names { 651 char *name; 652 char *name_dma; 653 }; 654 655 static struct cache_names __initdata cache_names[] = { 656 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, 657 #include <linux/kmalloc_sizes.h> 658 {NULL,} 659 #undef CACHE 660 }; 661 662 static struct arraycache_init initarray_cache __initdata = 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 664 static struct arraycache_init initarray_generic = 665 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 666 667 /* internal cache of cache description objs */ 668 static struct kmem_cache cache_cache = { 669 .batchcount = 1, 670 .limit = BOOT_CPUCACHE_ENTRIES, 671 .shared = 1, 672 .buffer_size = sizeof(struct kmem_cache), 673 .name = "kmem_cache", 674 }; 675 676 #define BAD_ALIEN_MAGIC 0x01020304ul 677 678 #ifdef CONFIG_LOCKDEP 679 680 /* 681 * Slab sometimes uses the kmalloc slabs to store the slab headers 682 * for other slabs "off slab". 683 * The locking for this is tricky in that it nests within the locks 684 * of all other slabs in a few places; to deal with this special 685 * locking we put on-slab caches into a separate lock-class. 686 * 687 * We set lock class for alien array caches which are up during init. 688 * The lock annotation will be lost if all cpus of a node goes down and 689 * then comes back up during hotplug 690 */ 691 static struct lock_class_key on_slab_l3_key; 692 static struct lock_class_key on_slab_alc_key; 693 694 static inline void init_lock_keys(void) 695 696 { 697 int q; 698 struct cache_sizes *s = malloc_sizes; 699 700 while (s->cs_size != ULONG_MAX) { 701 for_each_node(q) { 702 struct array_cache **alc; 703 int r; 704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q]; 705 if (!l3 || OFF_SLAB(s->cs_cachep)) 706 continue; 707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key); 708 alc = l3->alien; 709 /* 710 * FIXME: This check for BAD_ALIEN_MAGIC 711 * should go away when common slab code is taught to 712 * work even without alien caches. 713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC 714 * for alloc_alien_cache, 715 */ 716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) 717 continue; 718 for_each_node(r) { 719 if (alc[r]) 720 lockdep_set_class(&alc[r]->lock, 721 &on_slab_alc_key); 722 } 723 } 724 s++; 725 } 726 } 727 #else 728 static inline void init_lock_keys(void) 729 { 730 } 731 #endif 732 733 /* 734 * 1. Guard access to the cache-chain. 735 * 2. Protect sanity of cpu_online_map against cpu hotplug events 736 */ 737 static DEFINE_MUTEX(cache_chain_mutex); 738 static struct list_head cache_chain; 739 740 /* 741 * chicken and egg problem: delay the per-cpu array allocation 742 * until the general caches are up. 743 */ 744 static enum { 745 NONE, 746 PARTIAL_AC, 747 PARTIAL_L3, 748 FULL 749 } g_cpucache_up; 750 751 /* 752 * used by boot code to determine if it can use slab based allocator 753 */ 754 int slab_is_available(void) 755 { 756 return g_cpucache_up == FULL; 757 } 758 759 static DEFINE_PER_CPU(struct delayed_work, reap_work); 760 761 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 762 { 763 return cachep->array[smp_processor_id()]; 764 } 765 766 static inline struct kmem_cache *__find_general_cachep(size_t size, 767 gfp_t gfpflags) 768 { 769 struct cache_sizes *csizep = malloc_sizes; 770 771 #if DEBUG 772 /* This happens if someone tries to call 773 * kmem_cache_create(), or __kmalloc(), before 774 * the generic caches are initialized. 775 */ 776 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); 777 #endif 778 if (!size) 779 return ZERO_SIZE_PTR; 780 781 while (size > csizep->cs_size) 782 csizep++; 783 784 /* 785 * Really subtle: The last entry with cs->cs_size==ULONG_MAX 786 * has cs_{dma,}cachep==NULL. Thus no special case 787 * for large kmalloc calls required. 788 */ 789 #ifdef CONFIG_ZONE_DMA 790 if (unlikely(gfpflags & GFP_DMA)) 791 return csizep->cs_dmacachep; 792 #endif 793 return csizep->cs_cachep; 794 } 795 796 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) 797 { 798 return __find_general_cachep(size, gfpflags); 799 } 800 801 static size_t slab_mgmt_size(size_t nr_objs, size_t align) 802 { 803 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); 804 } 805 806 /* 807 * Calculate the number of objects and left-over bytes for a given buffer size. 808 */ 809 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 810 size_t align, int flags, size_t *left_over, 811 unsigned int *num) 812 { 813 int nr_objs; 814 size_t mgmt_size; 815 size_t slab_size = PAGE_SIZE << gfporder; 816 817 /* 818 * The slab management structure can be either off the slab or 819 * on it. For the latter case, the memory allocated for a 820 * slab is used for: 821 * 822 * - The struct slab 823 * - One kmem_bufctl_t for each object 824 * - Padding to respect alignment of @align 825 * - @buffer_size bytes for each object 826 * 827 * If the slab management structure is off the slab, then the 828 * alignment will already be calculated into the size. Because 829 * the slabs are all pages aligned, the objects will be at the 830 * correct alignment when allocated. 831 */ 832 if (flags & CFLGS_OFF_SLAB) { 833 mgmt_size = 0; 834 nr_objs = slab_size / buffer_size; 835 836 if (nr_objs > SLAB_LIMIT) 837 nr_objs = SLAB_LIMIT; 838 } else { 839 /* 840 * Ignore padding for the initial guess. The padding 841 * is at most @align-1 bytes, and @buffer_size is at 842 * least @align. In the worst case, this result will 843 * be one greater than the number of objects that fit 844 * into the memory allocation when taking the padding 845 * into account. 846 */ 847 nr_objs = (slab_size - sizeof(struct slab)) / 848 (buffer_size + sizeof(kmem_bufctl_t)); 849 850 /* 851 * This calculated number will be either the right 852 * amount, or one greater than what we want. 853 */ 854 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size 855 > slab_size) 856 nr_objs--; 857 858 if (nr_objs > SLAB_LIMIT) 859 nr_objs = SLAB_LIMIT; 860 861 mgmt_size = slab_mgmt_size(nr_objs, align); 862 } 863 *num = nr_objs; 864 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 865 } 866 867 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) 868 869 static void __slab_error(const char *function, struct kmem_cache *cachep, 870 char *msg) 871 { 872 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 873 function, cachep->name, msg); 874 dump_stack(); 875 } 876 877 /* 878 * By default on NUMA we use alien caches to stage the freeing of 879 * objects allocated from other nodes. This causes massive memory 880 * inefficiencies when using fake NUMA setup to split memory into a 881 * large number of small nodes, so it can be disabled on the command 882 * line 883 */ 884 885 static int use_alien_caches __read_mostly = 1; 886 static int __init noaliencache_setup(char *s) 887 { 888 use_alien_caches = 0; 889 return 1; 890 } 891 __setup("noaliencache", noaliencache_setup); 892 893 #ifdef CONFIG_NUMA 894 /* 895 * Special reaping functions for NUMA systems called from cache_reap(). 896 * These take care of doing round robin flushing of alien caches (containing 897 * objects freed on different nodes from which they were allocated) and the 898 * flushing of remote pcps by calling drain_node_pages. 899 */ 900 static DEFINE_PER_CPU(unsigned long, reap_node); 901 902 static void init_reap_node(int cpu) 903 { 904 int node; 905 906 node = next_node(cpu_to_node(cpu), node_online_map); 907 if (node == MAX_NUMNODES) 908 node = first_node(node_online_map); 909 910 per_cpu(reap_node, cpu) = node; 911 } 912 913 static void next_reap_node(void) 914 { 915 int node = __get_cpu_var(reap_node); 916 917 node = next_node(node, node_online_map); 918 if (unlikely(node >= MAX_NUMNODES)) 919 node = first_node(node_online_map); 920 __get_cpu_var(reap_node) = node; 921 } 922 923 #else 924 #define init_reap_node(cpu) do { } while (0) 925 #define next_reap_node(void) do { } while (0) 926 #endif 927 928 /* 929 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 930 * via the workqueue/eventd. 931 * Add the CPU number into the expiration time to minimize the possibility of 932 * the CPUs getting into lockstep and contending for the global cache chain 933 * lock. 934 */ 935 static void __cpuinit start_cpu_timer(int cpu) 936 { 937 struct delayed_work *reap_work = &per_cpu(reap_work, cpu); 938 939 /* 940 * When this gets called from do_initcalls via cpucache_init(), 941 * init_workqueues() has already run, so keventd will be setup 942 * at that time. 943 */ 944 if (keventd_up() && reap_work->work.func == NULL) { 945 init_reap_node(cpu); 946 INIT_DELAYED_WORK(reap_work, cache_reap); 947 schedule_delayed_work_on(cpu, reap_work, 948 __round_jiffies_relative(HZ, cpu)); 949 } 950 } 951 952 static struct array_cache *alloc_arraycache(int node, int entries, 953 int batchcount) 954 { 955 int memsize = sizeof(void *) * entries + sizeof(struct array_cache); 956 struct array_cache *nc = NULL; 957 958 nc = kmalloc_node(memsize, GFP_KERNEL, node); 959 if (nc) { 960 nc->avail = 0; 961 nc->limit = entries; 962 nc->batchcount = batchcount; 963 nc->touched = 0; 964 spin_lock_init(&nc->lock); 965 } 966 return nc; 967 } 968 969 /* 970 * Transfer objects in one arraycache to another. 971 * Locking must be handled by the caller. 972 * 973 * Return the number of entries transferred. 974 */ 975 static int transfer_objects(struct array_cache *to, 976 struct array_cache *from, unsigned int max) 977 { 978 /* Figure out how many entries to transfer */ 979 int nr = min(min(from->avail, max), to->limit - to->avail); 980 981 if (!nr) 982 return 0; 983 984 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 985 sizeof(void *) *nr); 986 987 from->avail -= nr; 988 to->avail += nr; 989 to->touched = 1; 990 return nr; 991 } 992 993 #ifndef CONFIG_NUMA 994 995 #define drain_alien_cache(cachep, alien) do { } while (0) 996 #define reap_alien(cachep, l3) do { } while (0) 997 998 static inline struct array_cache **alloc_alien_cache(int node, int limit) 999 { 1000 return (struct array_cache **)BAD_ALIEN_MAGIC; 1001 } 1002 1003 static inline void free_alien_cache(struct array_cache **ac_ptr) 1004 { 1005 } 1006 1007 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1008 { 1009 return 0; 1010 } 1011 1012 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 1013 gfp_t flags) 1014 { 1015 return NULL; 1016 } 1017 1018 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 1019 gfp_t flags, int nodeid) 1020 { 1021 return NULL; 1022 } 1023 1024 #else /* CONFIG_NUMA */ 1025 1026 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 1027 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 1028 1029 static struct array_cache **alloc_alien_cache(int node, int limit) 1030 { 1031 struct array_cache **ac_ptr; 1032 int memsize = sizeof(void *) * nr_node_ids; 1033 int i; 1034 1035 if (limit > 1) 1036 limit = 12; 1037 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node); 1038 if (ac_ptr) { 1039 for_each_node(i) { 1040 if (i == node || !node_online(i)) { 1041 ac_ptr[i] = NULL; 1042 continue; 1043 } 1044 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); 1045 if (!ac_ptr[i]) { 1046 for (i--; i <= 0; i--) 1047 kfree(ac_ptr[i]); 1048 kfree(ac_ptr); 1049 return NULL; 1050 } 1051 } 1052 } 1053 return ac_ptr; 1054 } 1055 1056 static void free_alien_cache(struct array_cache **ac_ptr) 1057 { 1058 int i; 1059 1060 if (!ac_ptr) 1061 return; 1062 for_each_node(i) 1063 kfree(ac_ptr[i]); 1064 kfree(ac_ptr); 1065 } 1066 1067 static void __drain_alien_cache(struct kmem_cache *cachep, 1068 struct array_cache *ac, int node) 1069 { 1070 struct kmem_list3 *rl3 = cachep->nodelists[node]; 1071 1072 if (ac->avail) { 1073 spin_lock(&rl3->list_lock); 1074 /* 1075 * Stuff objects into the remote nodes shared array first. 1076 * That way we could avoid the overhead of putting the objects 1077 * into the free lists and getting them back later. 1078 */ 1079 if (rl3->shared) 1080 transfer_objects(rl3->shared, ac, ac->limit); 1081 1082 free_block(cachep, ac->entry, ac->avail, node); 1083 ac->avail = 0; 1084 spin_unlock(&rl3->list_lock); 1085 } 1086 } 1087 1088 /* 1089 * Called from cache_reap() to regularly drain alien caches round robin. 1090 */ 1091 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) 1092 { 1093 int node = __get_cpu_var(reap_node); 1094 1095 if (l3->alien) { 1096 struct array_cache *ac = l3->alien[node]; 1097 1098 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { 1099 __drain_alien_cache(cachep, ac, node); 1100 spin_unlock_irq(&ac->lock); 1101 } 1102 } 1103 } 1104 1105 static void drain_alien_cache(struct kmem_cache *cachep, 1106 struct array_cache **alien) 1107 { 1108 int i = 0; 1109 struct array_cache *ac; 1110 unsigned long flags; 1111 1112 for_each_online_node(i) { 1113 ac = alien[i]; 1114 if (ac) { 1115 spin_lock_irqsave(&ac->lock, flags); 1116 __drain_alien_cache(cachep, ac, i); 1117 spin_unlock_irqrestore(&ac->lock, flags); 1118 } 1119 } 1120 } 1121 1122 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1123 { 1124 struct slab *slabp = virt_to_slab(objp); 1125 int nodeid = slabp->nodeid; 1126 struct kmem_list3 *l3; 1127 struct array_cache *alien = NULL; 1128 int node; 1129 1130 node = numa_node_id(); 1131 1132 /* 1133 * Make sure we are not freeing a object from another node to the array 1134 * cache on this cpu. 1135 */ 1136 if (likely(slabp->nodeid == node)) 1137 return 0; 1138 1139 l3 = cachep->nodelists[node]; 1140 STATS_INC_NODEFREES(cachep); 1141 if (l3->alien && l3->alien[nodeid]) { 1142 alien = l3->alien[nodeid]; 1143 spin_lock(&alien->lock); 1144 if (unlikely(alien->avail == alien->limit)) { 1145 STATS_INC_ACOVERFLOW(cachep); 1146 __drain_alien_cache(cachep, alien, nodeid); 1147 } 1148 alien->entry[alien->avail++] = objp; 1149 spin_unlock(&alien->lock); 1150 } else { 1151 spin_lock(&(cachep->nodelists[nodeid])->list_lock); 1152 free_block(cachep, &objp, 1, nodeid); 1153 spin_unlock(&(cachep->nodelists[nodeid])->list_lock); 1154 } 1155 return 1; 1156 } 1157 #endif 1158 1159 static int __cpuinit cpuup_callback(struct notifier_block *nfb, 1160 unsigned long action, void *hcpu) 1161 { 1162 long cpu = (long)hcpu; 1163 struct kmem_cache *cachep; 1164 struct kmem_list3 *l3 = NULL; 1165 int node = cpu_to_node(cpu); 1166 const int memsize = sizeof(struct kmem_list3); 1167 1168 switch (action) { 1169 case CPU_LOCK_ACQUIRE: 1170 mutex_lock(&cache_chain_mutex); 1171 break; 1172 case CPU_UP_PREPARE: 1173 case CPU_UP_PREPARE_FROZEN: 1174 /* 1175 * We need to do this right in the beginning since 1176 * alloc_arraycache's are going to use this list. 1177 * kmalloc_node allows us to add the slab to the right 1178 * kmem_list3 and not this cpu's kmem_list3 1179 */ 1180 1181 list_for_each_entry(cachep, &cache_chain, next) { 1182 /* 1183 * Set up the size64 kmemlist for cpu before we can 1184 * begin anything. Make sure some other cpu on this 1185 * node has not already allocated this 1186 */ 1187 if (!cachep->nodelists[node]) { 1188 l3 = kmalloc_node(memsize, GFP_KERNEL, node); 1189 if (!l3) 1190 goto bad; 1191 kmem_list3_init(l3); 1192 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 1193 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1194 1195 /* 1196 * The l3s don't come and go as CPUs come and 1197 * go. cache_chain_mutex is sufficient 1198 * protection here. 1199 */ 1200 cachep->nodelists[node] = l3; 1201 } 1202 1203 spin_lock_irq(&cachep->nodelists[node]->list_lock); 1204 cachep->nodelists[node]->free_limit = 1205 (1 + nr_cpus_node(node)) * 1206 cachep->batchcount + cachep->num; 1207 spin_unlock_irq(&cachep->nodelists[node]->list_lock); 1208 } 1209 1210 /* 1211 * Now we can go ahead with allocating the shared arrays and 1212 * array caches 1213 */ 1214 list_for_each_entry(cachep, &cache_chain, next) { 1215 struct array_cache *nc; 1216 struct array_cache *shared = NULL; 1217 struct array_cache **alien = NULL; 1218 1219 nc = alloc_arraycache(node, cachep->limit, 1220 cachep->batchcount); 1221 if (!nc) 1222 goto bad; 1223 if (cachep->shared) { 1224 shared = alloc_arraycache(node, 1225 cachep->shared * cachep->batchcount, 1226 0xbaadf00d); 1227 if (!shared) 1228 goto bad; 1229 } 1230 if (use_alien_caches) { 1231 alien = alloc_alien_cache(node, cachep->limit); 1232 if (!alien) 1233 goto bad; 1234 } 1235 cachep->array[cpu] = nc; 1236 l3 = cachep->nodelists[node]; 1237 BUG_ON(!l3); 1238 1239 spin_lock_irq(&l3->list_lock); 1240 if (!l3->shared) { 1241 /* 1242 * We are serialised from CPU_DEAD or 1243 * CPU_UP_CANCELLED by the cpucontrol lock 1244 */ 1245 l3->shared = shared; 1246 shared = NULL; 1247 } 1248 #ifdef CONFIG_NUMA 1249 if (!l3->alien) { 1250 l3->alien = alien; 1251 alien = NULL; 1252 } 1253 #endif 1254 spin_unlock_irq(&l3->list_lock); 1255 kfree(shared); 1256 free_alien_cache(alien); 1257 } 1258 break; 1259 case CPU_ONLINE: 1260 case CPU_ONLINE_FROZEN: 1261 start_cpu_timer(cpu); 1262 break; 1263 #ifdef CONFIG_HOTPLUG_CPU 1264 case CPU_DOWN_PREPARE: 1265 case CPU_DOWN_PREPARE_FROZEN: 1266 /* 1267 * Shutdown cache reaper. Note that the cache_chain_mutex is 1268 * held so that if cache_reap() is invoked it cannot do 1269 * anything expensive but will only modify reap_work 1270 * and reschedule the timer. 1271 */ 1272 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu)); 1273 /* Now the cache_reaper is guaranteed to be not running. */ 1274 per_cpu(reap_work, cpu).work.func = NULL; 1275 break; 1276 case CPU_DOWN_FAILED: 1277 case CPU_DOWN_FAILED_FROZEN: 1278 start_cpu_timer(cpu); 1279 break; 1280 case CPU_DEAD: 1281 case CPU_DEAD_FROZEN: 1282 /* 1283 * Even if all the cpus of a node are down, we don't free the 1284 * kmem_list3 of any cache. This to avoid a race between 1285 * cpu_down, and a kmalloc allocation from another cpu for 1286 * memory from the node of the cpu going down. The list3 1287 * structure is usually allocated from kmem_cache_create() and 1288 * gets destroyed at kmem_cache_destroy(). 1289 */ 1290 /* fall thru */ 1291 #endif 1292 case CPU_UP_CANCELED: 1293 case CPU_UP_CANCELED_FROZEN: 1294 list_for_each_entry(cachep, &cache_chain, next) { 1295 struct array_cache *nc; 1296 struct array_cache *shared; 1297 struct array_cache **alien; 1298 cpumask_t mask; 1299 1300 mask = node_to_cpumask(node); 1301 /* cpu is dead; no one can alloc from it. */ 1302 nc = cachep->array[cpu]; 1303 cachep->array[cpu] = NULL; 1304 l3 = cachep->nodelists[node]; 1305 1306 if (!l3) 1307 goto free_array_cache; 1308 1309 spin_lock_irq(&l3->list_lock); 1310 1311 /* Free limit for this kmem_list3 */ 1312 l3->free_limit -= cachep->batchcount; 1313 if (nc) 1314 free_block(cachep, nc->entry, nc->avail, node); 1315 1316 if (!cpus_empty(mask)) { 1317 spin_unlock_irq(&l3->list_lock); 1318 goto free_array_cache; 1319 } 1320 1321 shared = l3->shared; 1322 if (shared) { 1323 free_block(cachep, shared->entry, 1324 shared->avail, node); 1325 l3->shared = NULL; 1326 } 1327 1328 alien = l3->alien; 1329 l3->alien = NULL; 1330 1331 spin_unlock_irq(&l3->list_lock); 1332 1333 kfree(shared); 1334 if (alien) { 1335 drain_alien_cache(cachep, alien); 1336 free_alien_cache(alien); 1337 } 1338 free_array_cache: 1339 kfree(nc); 1340 } 1341 /* 1342 * In the previous loop, all the objects were freed to 1343 * the respective cache's slabs, now we can go ahead and 1344 * shrink each nodelist to its limit. 1345 */ 1346 list_for_each_entry(cachep, &cache_chain, next) { 1347 l3 = cachep->nodelists[node]; 1348 if (!l3) 1349 continue; 1350 drain_freelist(cachep, l3, l3->free_objects); 1351 } 1352 break; 1353 case CPU_LOCK_RELEASE: 1354 mutex_unlock(&cache_chain_mutex); 1355 break; 1356 } 1357 return NOTIFY_OK; 1358 bad: 1359 return NOTIFY_BAD; 1360 } 1361 1362 static struct notifier_block __cpuinitdata cpucache_notifier = { 1363 &cpuup_callback, NULL, 0 1364 }; 1365 1366 /* 1367 * swap the static kmem_list3 with kmalloced memory 1368 */ 1369 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, 1370 int nodeid) 1371 { 1372 struct kmem_list3 *ptr; 1373 1374 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid); 1375 BUG_ON(!ptr); 1376 1377 local_irq_disable(); 1378 memcpy(ptr, list, sizeof(struct kmem_list3)); 1379 /* 1380 * Do not assume that spinlocks can be initialized via memcpy: 1381 */ 1382 spin_lock_init(&ptr->list_lock); 1383 1384 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1385 cachep->nodelists[nodeid] = ptr; 1386 local_irq_enable(); 1387 } 1388 1389 /* 1390 * Initialisation. Called after the page allocator have been initialised and 1391 * before smp_init(). 1392 */ 1393 void __init kmem_cache_init(void) 1394 { 1395 size_t left_over; 1396 struct cache_sizes *sizes; 1397 struct cache_names *names; 1398 int i; 1399 int order; 1400 int node; 1401 1402 if (num_possible_nodes() == 1) 1403 use_alien_caches = 0; 1404 1405 for (i = 0; i < NUM_INIT_LISTS; i++) { 1406 kmem_list3_init(&initkmem_list3[i]); 1407 if (i < MAX_NUMNODES) 1408 cache_cache.nodelists[i] = NULL; 1409 } 1410 1411 /* 1412 * Fragmentation resistance on low memory - only use bigger 1413 * page orders on machines with more than 32MB of memory. 1414 */ 1415 if (num_physpages > (32 << 20) >> PAGE_SHIFT) 1416 slab_break_gfp_order = BREAK_GFP_ORDER_HI; 1417 1418 /* Bootstrap is tricky, because several objects are allocated 1419 * from caches that do not exist yet: 1420 * 1) initialize the cache_cache cache: it contains the struct 1421 * kmem_cache structures of all caches, except cache_cache itself: 1422 * cache_cache is statically allocated. 1423 * Initially an __init data area is used for the head array and the 1424 * kmem_list3 structures, it's replaced with a kmalloc allocated 1425 * array at the end of the bootstrap. 1426 * 2) Create the first kmalloc cache. 1427 * The struct kmem_cache for the new cache is allocated normally. 1428 * An __init data area is used for the head array. 1429 * 3) Create the remaining kmalloc caches, with minimally sized 1430 * head arrays. 1431 * 4) Replace the __init data head arrays for cache_cache and the first 1432 * kmalloc cache with kmalloc allocated arrays. 1433 * 5) Replace the __init data for kmem_list3 for cache_cache and 1434 * the other cache's with kmalloc allocated memory. 1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1436 */ 1437 1438 node = numa_node_id(); 1439 1440 /* 1) create the cache_cache */ 1441 INIT_LIST_HEAD(&cache_chain); 1442 list_add(&cache_cache.next, &cache_chain); 1443 cache_cache.colour_off = cache_line_size(); 1444 cache_cache.array[smp_processor_id()] = &initarray_cache.cache; 1445 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE]; 1446 1447 /* 1448 * struct kmem_cache size depends on nr_node_ids, which 1449 * can be less than MAX_NUMNODES. 1450 */ 1451 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) + 1452 nr_node_ids * sizeof(struct kmem_list3 *); 1453 #if DEBUG 1454 cache_cache.obj_size = cache_cache.buffer_size; 1455 #endif 1456 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, 1457 cache_line_size()); 1458 cache_cache.reciprocal_buffer_size = 1459 reciprocal_value(cache_cache.buffer_size); 1460 1461 for (order = 0; order < MAX_ORDER; order++) { 1462 cache_estimate(order, cache_cache.buffer_size, 1463 cache_line_size(), 0, &left_over, &cache_cache.num); 1464 if (cache_cache.num) 1465 break; 1466 } 1467 BUG_ON(!cache_cache.num); 1468 cache_cache.gfporder = order; 1469 cache_cache.colour = left_over / cache_cache.colour_off; 1470 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + 1471 sizeof(struct slab), cache_line_size()); 1472 1473 /* 2+3) create the kmalloc caches */ 1474 sizes = malloc_sizes; 1475 names = cache_names; 1476 1477 /* 1478 * Initialize the caches that provide memory for the array cache and the 1479 * kmem_list3 structures first. Without this, further allocations will 1480 * bug. 1481 */ 1482 1483 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, 1484 sizes[INDEX_AC].cs_size, 1485 ARCH_KMALLOC_MINALIGN, 1486 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1487 NULL); 1488 1489 if (INDEX_AC != INDEX_L3) { 1490 sizes[INDEX_L3].cs_cachep = 1491 kmem_cache_create(names[INDEX_L3].name, 1492 sizes[INDEX_L3].cs_size, 1493 ARCH_KMALLOC_MINALIGN, 1494 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1495 NULL); 1496 } 1497 1498 slab_early_init = 0; 1499 1500 while (sizes->cs_size != ULONG_MAX) { 1501 /* 1502 * For performance, all the general caches are L1 aligned. 1503 * This should be particularly beneficial on SMP boxes, as it 1504 * eliminates "false sharing". 1505 * Note for systems short on memory removing the alignment will 1506 * allow tighter packing of the smaller caches. 1507 */ 1508 if (!sizes->cs_cachep) { 1509 sizes->cs_cachep = kmem_cache_create(names->name, 1510 sizes->cs_size, 1511 ARCH_KMALLOC_MINALIGN, 1512 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1513 NULL); 1514 } 1515 #ifdef CONFIG_ZONE_DMA 1516 sizes->cs_dmacachep = kmem_cache_create( 1517 names->name_dma, 1518 sizes->cs_size, 1519 ARCH_KMALLOC_MINALIGN, 1520 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| 1521 SLAB_PANIC, 1522 NULL); 1523 #endif 1524 sizes++; 1525 names++; 1526 } 1527 /* 4) Replace the bootstrap head arrays */ 1528 { 1529 struct array_cache *ptr; 1530 1531 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 1532 1533 local_irq_disable(); 1534 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); 1535 memcpy(ptr, cpu_cache_get(&cache_cache), 1536 sizeof(struct arraycache_init)); 1537 /* 1538 * Do not assume that spinlocks can be initialized via memcpy: 1539 */ 1540 spin_lock_init(&ptr->lock); 1541 1542 cache_cache.array[smp_processor_id()] = ptr; 1543 local_irq_enable(); 1544 1545 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 1546 1547 local_irq_disable(); 1548 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) 1549 != &initarray_generic.cache); 1550 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), 1551 sizeof(struct arraycache_init)); 1552 /* 1553 * Do not assume that spinlocks can be initialized via memcpy: 1554 */ 1555 spin_lock_init(&ptr->lock); 1556 1557 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = 1558 ptr; 1559 local_irq_enable(); 1560 } 1561 /* 5) Replace the bootstrap kmem_list3's */ 1562 { 1563 int nid; 1564 1565 /* Replace the static kmem_list3 structures for the boot cpu */ 1566 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node); 1567 1568 for_each_online_node(nid) { 1569 init_list(malloc_sizes[INDEX_AC].cs_cachep, 1570 &initkmem_list3[SIZE_AC + nid], nid); 1571 1572 if (INDEX_AC != INDEX_L3) { 1573 init_list(malloc_sizes[INDEX_L3].cs_cachep, 1574 &initkmem_list3[SIZE_L3 + nid], nid); 1575 } 1576 } 1577 } 1578 1579 /* 6) resize the head arrays to their final sizes */ 1580 { 1581 struct kmem_cache *cachep; 1582 mutex_lock(&cache_chain_mutex); 1583 list_for_each_entry(cachep, &cache_chain, next) 1584 if (enable_cpucache(cachep)) 1585 BUG(); 1586 mutex_unlock(&cache_chain_mutex); 1587 } 1588 1589 /* Annotate slab for lockdep -- annotate the malloc caches */ 1590 init_lock_keys(); 1591 1592 1593 /* Done! */ 1594 g_cpucache_up = FULL; 1595 1596 /* 1597 * Register a cpu startup notifier callback that initializes 1598 * cpu_cache_get for all new cpus 1599 */ 1600 register_cpu_notifier(&cpucache_notifier); 1601 1602 /* 1603 * The reap timers are started later, with a module init call: That part 1604 * of the kernel is not yet operational. 1605 */ 1606 } 1607 1608 static int __init cpucache_init(void) 1609 { 1610 int cpu; 1611 1612 /* 1613 * Register the timers that return unneeded pages to the page allocator 1614 */ 1615 for_each_online_cpu(cpu) 1616 start_cpu_timer(cpu); 1617 return 0; 1618 } 1619 __initcall(cpucache_init); 1620 1621 /* 1622 * Interface to system's page allocator. No need to hold the cache-lock. 1623 * 1624 * If we requested dmaable memory, we will get it. Even if we 1625 * did not request dmaable memory, we might get it, but that 1626 * would be relatively rare and ignorable. 1627 */ 1628 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) 1629 { 1630 struct page *page; 1631 int nr_pages; 1632 int i; 1633 1634 #ifndef CONFIG_MMU 1635 /* 1636 * Nommu uses slab's for process anonymous memory allocations, and thus 1637 * requires __GFP_COMP to properly refcount higher order allocations 1638 */ 1639 flags |= __GFP_COMP; 1640 #endif 1641 1642 flags |= cachep->gfpflags; 1643 1644 page = alloc_pages_node(nodeid, flags, cachep->gfporder); 1645 if (!page) 1646 return NULL; 1647 1648 nr_pages = (1 << cachep->gfporder); 1649 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1650 add_zone_page_state(page_zone(page), 1651 NR_SLAB_RECLAIMABLE, nr_pages); 1652 else 1653 add_zone_page_state(page_zone(page), 1654 NR_SLAB_UNRECLAIMABLE, nr_pages); 1655 for (i = 0; i < nr_pages; i++) 1656 __SetPageSlab(page + i); 1657 return page_address(page); 1658 } 1659 1660 /* 1661 * Interface to system's page release. 1662 */ 1663 static void kmem_freepages(struct kmem_cache *cachep, void *addr) 1664 { 1665 unsigned long i = (1 << cachep->gfporder); 1666 struct page *page = virt_to_page(addr); 1667 const unsigned long nr_freed = i; 1668 1669 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1670 sub_zone_page_state(page_zone(page), 1671 NR_SLAB_RECLAIMABLE, nr_freed); 1672 else 1673 sub_zone_page_state(page_zone(page), 1674 NR_SLAB_UNRECLAIMABLE, nr_freed); 1675 while (i--) { 1676 BUG_ON(!PageSlab(page)); 1677 __ClearPageSlab(page); 1678 page++; 1679 } 1680 if (current->reclaim_state) 1681 current->reclaim_state->reclaimed_slab += nr_freed; 1682 free_pages((unsigned long)addr, cachep->gfporder); 1683 } 1684 1685 static void kmem_rcu_free(struct rcu_head *head) 1686 { 1687 struct slab_rcu *slab_rcu = (struct slab_rcu *)head; 1688 struct kmem_cache *cachep = slab_rcu->cachep; 1689 1690 kmem_freepages(cachep, slab_rcu->addr); 1691 if (OFF_SLAB(cachep)) 1692 kmem_cache_free(cachep->slabp_cache, slab_rcu); 1693 } 1694 1695 #if DEBUG 1696 1697 #ifdef CONFIG_DEBUG_PAGEALLOC 1698 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1699 unsigned long caller) 1700 { 1701 int size = obj_size(cachep); 1702 1703 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1704 1705 if (size < 5 * sizeof(unsigned long)) 1706 return; 1707 1708 *addr++ = 0x12345678; 1709 *addr++ = caller; 1710 *addr++ = smp_processor_id(); 1711 size -= 3 * sizeof(unsigned long); 1712 { 1713 unsigned long *sptr = &caller; 1714 unsigned long svalue; 1715 1716 while (!kstack_end(sptr)) { 1717 svalue = *sptr++; 1718 if (kernel_text_address(svalue)) { 1719 *addr++ = svalue; 1720 size -= sizeof(unsigned long); 1721 if (size <= sizeof(unsigned long)) 1722 break; 1723 } 1724 } 1725 1726 } 1727 *addr++ = 0x87654321; 1728 } 1729 #endif 1730 1731 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1732 { 1733 int size = obj_size(cachep); 1734 addr = &((char *)addr)[obj_offset(cachep)]; 1735 1736 memset(addr, val, size); 1737 *(unsigned char *)(addr + size - 1) = POISON_END; 1738 } 1739 1740 static void dump_line(char *data, int offset, int limit) 1741 { 1742 int i; 1743 unsigned char error = 0; 1744 int bad_count = 0; 1745 1746 printk(KERN_ERR "%03x:", offset); 1747 for (i = 0; i < limit; i++) { 1748 if (data[offset + i] != POISON_FREE) { 1749 error = data[offset + i]; 1750 bad_count++; 1751 } 1752 printk(" %02x", (unsigned char)data[offset + i]); 1753 } 1754 printk("\n"); 1755 1756 if (bad_count == 1) { 1757 error ^= POISON_FREE; 1758 if (!(error & (error - 1))) { 1759 printk(KERN_ERR "Single bit error detected. Probably " 1760 "bad RAM.\n"); 1761 #ifdef CONFIG_X86 1762 printk(KERN_ERR "Run memtest86+ or a similar memory " 1763 "test tool.\n"); 1764 #else 1765 printk(KERN_ERR "Run a memory test tool.\n"); 1766 #endif 1767 } 1768 } 1769 } 1770 #endif 1771 1772 #if DEBUG 1773 1774 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1775 { 1776 int i, size; 1777 char *realobj; 1778 1779 if (cachep->flags & SLAB_RED_ZONE) { 1780 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 1781 *dbg_redzone1(cachep, objp), 1782 *dbg_redzone2(cachep, objp)); 1783 } 1784 1785 if (cachep->flags & SLAB_STORE_USER) { 1786 printk(KERN_ERR "Last user: [<%p>]", 1787 *dbg_userword(cachep, objp)); 1788 print_symbol("(%s)", 1789 (unsigned long)*dbg_userword(cachep, objp)); 1790 printk("\n"); 1791 } 1792 realobj = (char *)objp + obj_offset(cachep); 1793 size = obj_size(cachep); 1794 for (i = 0; i < size && lines; i += 16, lines--) { 1795 int limit; 1796 limit = 16; 1797 if (i + limit > size) 1798 limit = size - i; 1799 dump_line(realobj, i, limit); 1800 } 1801 } 1802 1803 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1804 { 1805 char *realobj; 1806 int size, i; 1807 int lines = 0; 1808 1809 realobj = (char *)objp + obj_offset(cachep); 1810 size = obj_size(cachep); 1811 1812 for (i = 0; i < size; i++) { 1813 char exp = POISON_FREE; 1814 if (i == size - 1) 1815 exp = POISON_END; 1816 if (realobj[i] != exp) { 1817 int limit; 1818 /* Mismatch ! */ 1819 /* Print header */ 1820 if (lines == 0) { 1821 printk(KERN_ERR 1822 "Slab corruption: %s start=%p, len=%d\n", 1823 cachep->name, realobj, size); 1824 print_objinfo(cachep, objp, 0); 1825 } 1826 /* Hexdump the affected line */ 1827 i = (i / 16) * 16; 1828 limit = 16; 1829 if (i + limit > size) 1830 limit = size - i; 1831 dump_line(realobj, i, limit); 1832 i += 16; 1833 lines++; 1834 /* Limit to 5 lines */ 1835 if (lines > 5) 1836 break; 1837 } 1838 } 1839 if (lines != 0) { 1840 /* Print some data about the neighboring objects, if they 1841 * exist: 1842 */ 1843 struct slab *slabp = virt_to_slab(objp); 1844 unsigned int objnr; 1845 1846 objnr = obj_to_index(cachep, slabp, objp); 1847 if (objnr) { 1848 objp = index_to_obj(cachep, slabp, objnr - 1); 1849 realobj = (char *)objp + obj_offset(cachep); 1850 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1851 realobj, size); 1852 print_objinfo(cachep, objp, 2); 1853 } 1854 if (objnr + 1 < cachep->num) { 1855 objp = index_to_obj(cachep, slabp, objnr + 1); 1856 realobj = (char *)objp + obj_offset(cachep); 1857 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1858 realobj, size); 1859 print_objinfo(cachep, objp, 2); 1860 } 1861 } 1862 } 1863 #endif 1864 1865 #if DEBUG 1866 /** 1867 * slab_destroy_objs - destroy a slab and its objects 1868 * @cachep: cache pointer being destroyed 1869 * @slabp: slab pointer being destroyed 1870 * 1871 * Call the registered destructor for each object in a slab that is being 1872 * destroyed. 1873 */ 1874 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) 1875 { 1876 int i; 1877 for (i = 0; i < cachep->num; i++) { 1878 void *objp = index_to_obj(cachep, slabp, i); 1879 1880 if (cachep->flags & SLAB_POISON) { 1881 #ifdef CONFIG_DEBUG_PAGEALLOC 1882 if (cachep->buffer_size % PAGE_SIZE == 0 && 1883 OFF_SLAB(cachep)) 1884 kernel_map_pages(virt_to_page(objp), 1885 cachep->buffer_size / PAGE_SIZE, 1); 1886 else 1887 check_poison_obj(cachep, objp); 1888 #else 1889 check_poison_obj(cachep, objp); 1890 #endif 1891 } 1892 if (cachep->flags & SLAB_RED_ZONE) { 1893 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1894 slab_error(cachep, "start of a freed object " 1895 "was overwritten"); 1896 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1897 slab_error(cachep, "end of a freed object " 1898 "was overwritten"); 1899 } 1900 } 1901 } 1902 #else 1903 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) 1904 { 1905 } 1906 #endif 1907 1908 /** 1909 * slab_destroy - destroy and release all objects in a slab 1910 * @cachep: cache pointer being destroyed 1911 * @slabp: slab pointer being destroyed 1912 * 1913 * Destroy all the objs in a slab, and release the mem back to the system. 1914 * Before calling the slab must have been unlinked from the cache. The 1915 * cache-lock is not held/needed. 1916 */ 1917 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) 1918 { 1919 void *addr = slabp->s_mem - slabp->colouroff; 1920 1921 slab_destroy_objs(cachep, slabp); 1922 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 1923 struct slab_rcu *slab_rcu; 1924 1925 slab_rcu = (struct slab_rcu *)slabp; 1926 slab_rcu->cachep = cachep; 1927 slab_rcu->addr = addr; 1928 call_rcu(&slab_rcu->head, kmem_rcu_free); 1929 } else { 1930 kmem_freepages(cachep, addr); 1931 if (OFF_SLAB(cachep)) 1932 kmem_cache_free(cachep->slabp_cache, slabp); 1933 } 1934 } 1935 1936 /* 1937 * For setting up all the kmem_list3s for cache whose buffer_size is same as 1938 * size of kmem_list3. 1939 */ 1940 static void __init set_up_list3s(struct kmem_cache *cachep, int index) 1941 { 1942 int node; 1943 1944 for_each_online_node(node) { 1945 cachep->nodelists[node] = &initkmem_list3[index + node]; 1946 cachep->nodelists[node]->next_reap = jiffies + 1947 REAPTIMEOUT_LIST3 + 1948 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1949 } 1950 } 1951 1952 static void __kmem_cache_destroy(struct kmem_cache *cachep) 1953 { 1954 int i; 1955 struct kmem_list3 *l3; 1956 1957 for_each_online_cpu(i) 1958 kfree(cachep->array[i]); 1959 1960 /* NUMA: free the list3 structures */ 1961 for_each_online_node(i) { 1962 l3 = cachep->nodelists[i]; 1963 if (l3) { 1964 kfree(l3->shared); 1965 free_alien_cache(l3->alien); 1966 kfree(l3); 1967 } 1968 } 1969 kmem_cache_free(&cache_cache, cachep); 1970 } 1971 1972 1973 /** 1974 * calculate_slab_order - calculate size (page order) of slabs 1975 * @cachep: pointer to the cache that is being created 1976 * @size: size of objects to be created in this cache. 1977 * @align: required alignment for the objects. 1978 * @flags: slab allocation flags 1979 * 1980 * Also calculates the number of objects per slab. 1981 * 1982 * This could be made much more intelligent. For now, try to avoid using 1983 * high order pages for slabs. When the gfp() functions are more friendly 1984 * towards high-order requests, this should be changed. 1985 */ 1986 static size_t calculate_slab_order(struct kmem_cache *cachep, 1987 size_t size, size_t align, unsigned long flags) 1988 { 1989 unsigned long offslab_limit; 1990 size_t left_over = 0; 1991 int gfporder; 1992 1993 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1994 unsigned int num; 1995 size_t remainder; 1996 1997 cache_estimate(gfporder, size, align, flags, &remainder, &num); 1998 if (!num) 1999 continue; 2000 2001 if (flags & CFLGS_OFF_SLAB) { 2002 /* 2003 * Max number of objs-per-slab for caches which 2004 * use off-slab slabs. Needed to avoid a possible 2005 * looping condition in cache_grow(). 2006 */ 2007 offslab_limit = size - sizeof(struct slab); 2008 offslab_limit /= sizeof(kmem_bufctl_t); 2009 2010 if (num > offslab_limit) 2011 break; 2012 } 2013 2014 /* Found something acceptable - save it away */ 2015 cachep->num = num; 2016 cachep->gfporder = gfporder; 2017 left_over = remainder; 2018 2019 /* 2020 * A VFS-reclaimable slab tends to have most allocations 2021 * as GFP_NOFS and we really don't want to have to be allocating 2022 * higher-order pages when we are unable to shrink dcache. 2023 */ 2024 if (flags & SLAB_RECLAIM_ACCOUNT) 2025 break; 2026 2027 /* 2028 * Large number of objects is good, but very large slabs are 2029 * currently bad for the gfp()s. 2030 */ 2031 if (gfporder >= slab_break_gfp_order) 2032 break; 2033 2034 /* 2035 * Acceptable internal fragmentation? 2036 */ 2037 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 2038 break; 2039 } 2040 return left_over; 2041 } 2042 2043 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep) 2044 { 2045 if (g_cpucache_up == FULL) 2046 return enable_cpucache(cachep); 2047 2048 if (g_cpucache_up == NONE) { 2049 /* 2050 * Note: the first kmem_cache_create must create the cache 2051 * that's used by kmalloc(24), otherwise the creation of 2052 * further caches will BUG(). 2053 */ 2054 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2055 2056 /* 2057 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is 2058 * the first cache, then we need to set up all its list3s, 2059 * otherwise the creation of further caches will BUG(). 2060 */ 2061 set_up_list3s(cachep, SIZE_AC); 2062 if (INDEX_AC == INDEX_L3) 2063 g_cpucache_up = PARTIAL_L3; 2064 else 2065 g_cpucache_up = PARTIAL_AC; 2066 } else { 2067 cachep->array[smp_processor_id()] = 2068 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 2069 2070 if (g_cpucache_up == PARTIAL_AC) { 2071 set_up_list3s(cachep, SIZE_L3); 2072 g_cpucache_up = PARTIAL_L3; 2073 } else { 2074 int node; 2075 for_each_online_node(node) { 2076 cachep->nodelists[node] = 2077 kmalloc_node(sizeof(struct kmem_list3), 2078 GFP_KERNEL, node); 2079 BUG_ON(!cachep->nodelists[node]); 2080 kmem_list3_init(cachep->nodelists[node]); 2081 } 2082 } 2083 } 2084 cachep->nodelists[numa_node_id()]->next_reap = 2085 jiffies + REAPTIMEOUT_LIST3 + 2086 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 2087 2088 cpu_cache_get(cachep)->avail = 0; 2089 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2090 cpu_cache_get(cachep)->batchcount = 1; 2091 cpu_cache_get(cachep)->touched = 0; 2092 cachep->batchcount = 1; 2093 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2094 return 0; 2095 } 2096 2097 /** 2098 * kmem_cache_create - Create a cache. 2099 * @name: A string which is used in /proc/slabinfo to identify this cache. 2100 * @size: The size of objects to be created in this cache. 2101 * @align: The required alignment for the objects. 2102 * @flags: SLAB flags 2103 * @ctor: A constructor for the objects. 2104 * 2105 * Returns a ptr to the cache on success, NULL on failure. 2106 * Cannot be called within a int, but can be interrupted. 2107 * The @ctor is run when new pages are allocated by the cache. 2108 * 2109 * @name must be valid until the cache is destroyed. This implies that 2110 * the module calling this has to destroy the cache before getting unloaded. 2111 * 2112 * The flags are 2113 * 2114 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2115 * to catch references to uninitialised memory. 2116 * 2117 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2118 * for buffer overruns. 2119 * 2120 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2121 * cacheline. This can be beneficial if you're counting cycles as closely 2122 * as davem. 2123 */ 2124 struct kmem_cache * 2125 kmem_cache_create (const char *name, size_t size, size_t align, 2126 unsigned long flags, 2127 void (*ctor)(void*, struct kmem_cache *, unsigned long)) 2128 { 2129 size_t left_over, slab_size, ralign; 2130 struct kmem_cache *cachep = NULL, *pc; 2131 2132 /* 2133 * Sanity checks... these are all serious usage bugs. 2134 */ 2135 if (!name || in_interrupt() || (size < BYTES_PER_WORD) || 2136 size > KMALLOC_MAX_SIZE) { 2137 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__, 2138 name); 2139 BUG(); 2140 } 2141 2142 /* 2143 * We use cache_chain_mutex to ensure a consistent view of 2144 * cpu_online_map as well. Please see cpuup_callback 2145 */ 2146 mutex_lock(&cache_chain_mutex); 2147 2148 list_for_each_entry(pc, &cache_chain, next) { 2149 char tmp; 2150 int res; 2151 2152 /* 2153 * This happens when the module gets unloaded and doesn't 2154 * destroy its slab cache and no-one else reuses the vmalloc 2155 * area of the module. Print a warning. 2156 */ 2157 res = probe_kernel_address(pc->name, tmp); 2158 if (res) { 2159 printk(KERN_ERR 2160 "SLAB: cache with size %d has lost its name\n", 2161 pc->buffer_size); 2162 continue; 2163 } 2164 2165 if (!strcmp(pc->name, name)) { 2166 printk(KERN_ERR 2167 "kmem_cache_create: duplicate cache %s\n", name); 2168 dump_stack(); 2169 goto oops; 2170 } 2171 } 2172 2173 #if DEBUG 2174 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 2175 #if FORCED_DEBUG 2176 /* 2177 * Enable redzoning and last user accounting, except for caches with 2178 * large objects, if the increased size would increase the object size 2179 * above the next power of two: caches with object sizes just above a 2180 * power of two have a significant amount of internal fragmentation. 2181 */ 2182 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2183 2 * sizeof(unsigned long long))) 2184 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2185 if (!(flags & SLAB_DESTROY_BY_RCU)) 2186 flags |= SLAB_POISON; 2187 #endif 2188 if (flags & SLAB_DESTROY_BY_RCU) 2189 BUG_ON(flags & SLAB_POISON); 2190 #endif 2191 /* 2192 * Always checks flags, a caller might be expecting debug support which 2193 * isn't available. 2194 */ 2195 BUG_ON(flags & ~CREATE_MASK); 2196 2197 /* 2198 * Check that size is in terms of words. This is needed to avoid 2199 * unaligned accesses for some archs when redzoning is used, and makes 2200 * sure any on-slab bufctl's are also correctly aligned. 2201 */ 2202 if (size & (BYTES_PER_WORD - 1)) { 2203 size += (BYTES_PER_WORD - 1); 2204 size &= ~(BYTES_PER_WORD - 1); 2205 } 2206 2207 /* calculate the final buffer alignment: */ 2208 2209 /* 1) arch recommendation: can be overridden for debug */ 2210 if (flags & SLAB_HWCACHE_ALIGN) { 2211 /* 2212 * Default alignment: as specified by the arch code. Except if 2213 * an object is really small, then squeeze multiple objects into 2214 * one cacheline. 2215 */ 2216 ralign = cache_line_size(); 2217 while (size <= ralign / 2) 2218 ralign /= 2; 2219 } else { 2220 ralign = BYTES_PER_WORD; 2221 } 2222 2223 /* 2224 * Redzoning and user store require word alignment or possibly larger. 2225 * Note this will be overridden by architecture or caller mandated 2226 * alignment if either is greater than BYTES_PER_WORD. 2227 */ 2228 if (flags & SLAB_STORE_USER) 2229 ralign = BYTES_PER_WORD; 2230 2231 if (flags & SLAB_RED_ZONE) { 2232 ralign = REDZONE_ALIGN; 2233 /* If redzoning, ensure that the second redzone is suitably 2234 * aligned, by adjusting the object size accordingly. */ 2235 size += REDZONE_ALIGN - 1; 2236 size &= ~(REDZONE_ALIGN - 1); 2237 } 2238 2239 /* 2) arch mandated alignment */ 2240 if (ralign < ARCH_SLAB_MINALIGN) { 2241 ralign = ARCH_SLAB_MINALIGN; 2242 } 2243 /* 3) caller mandated alignment */ 2244 if (ralign < align) { 2245 ralign = align; 2246 } 2247 /* disable debug if necessary */ 2248 if (ralign > __alignof__(unsigned long long)) 2249 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2250 /* 2251 * 4) Store it. 2252 */ 2253 align = ralign; 2254 2255 /* Get cache's description obj. */ 2256 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL); 2257 if (!cachep) 2258 goto oops; 2259 2260 #if DEBUG 2261 cachep->obj_size = size; 2262 2263 /* 2264 * Both debugging options require word-alignment which is calculated 2265 * into align above. 2266 */ 2267 if (flags & SLAB_RED_ZONE) { 2268 /* add space for red zone words */ 2269 cachep->obj_offset += sizeof(unsigned long long); 2270 size += 2 * sizeof(unsigned long long); 2271 } 2272 if (flags & SLAB_STORE_USER) { 2273 /* user store requires one word storage behind the end of 2274 * the real object. But if the second red zone needs to be 2275 * aligned to 64 bits, we must allow that much space. 2276 */ 2277 if (flags & SLAB_RED_ZONE) 2278 size += REDZONE_ALIGN; 2279 else 2280 size += BYTES_PER_WORD; 2281 } 2282 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2283 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size 2284 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { 2285 cachep->obj_offset += PAGE_SIZE - size; 2286 size = PAGE_SIZE; 2287 } 2288 #endif 2289 #endif 2290 2291 /* 2292 * Determine if the slab management is 'on' or 'off' slab. 2293 * (bootstrapping cannot cope with offslab caches so don't do 2294 * it too early on.) 2295 */ 2296 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init) 2297 /* 2298 * Size is large, assume best to place the slab management obj 2299 * off-slab (should allow better packing of objs). 2300 */ 2301 flags |= CFLGS_OFF_SLAB; 2302 2303 size = ALIGN(size, align); 2304 2305 left_over = calculate_slab_order(cachep, size, align, flags); 2306 2307 if (!cachep->num) { 2308 printk(KERN_ERR 2309 "kmem_cache_create: couldn't create cache %s.\n", name); 2310 kmem_cache_free(&cache_cache, cachep); 2311 cachep = NULL; 2312 goto oops; 2313 } 2314 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) 2315 + sizeof(struct slab), align); 2316 2317 /* 2318 * If the slab has been placed off-slab, and we have enough space then 2319 * move it on-slab. This is at the expense of any extra colouring. 2320 */ 2321 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { 2322 flags &= ~CFLGS_OFF_SLAB; 2323 left_over -= slab_size; 2324 } 2325 2326 if (flags & CFLGS_OFF_SLAB) { 2327 /* really off slab. No need for manual alignment */ 2328 slab_size = 2329 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); 2330 } 2331 2332 cachep->colour_off = cache_line_size(); 2333 /* Offset must be a multiple of the alignment. */ 2334 if (cachep->colour_off < align) 2335 cachep->colour_off = align; 2336 cachep->colour = left_over / cachep->colour_off; 2337 cachep->slab_size = slab_size; 2338 cachep->flags = flags; 2339 cachep->gfpflags = 0; 2340 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2341 cachep->gfpflags |= GFP_DMA; 2342 cachep->buffer_size = size; 2343 cachep->reciprocal_buffer_size = reciprocal_value(size); 2344 2345 if (flags & CFLGS_OFF_SLAB) { 2346 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); 2347 /* 2348 * This is a possibility for one of the malloc_sizes caches. 2349 * But since we go off slab only for object size greater than 2350 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, 2351 * this should not happen at all. 2352 * But leave a BUG_ON for some lucky dude. 2353 */ 2354 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); 2355 } 2356 cachep->ctor = ctor; 2357 cachep->name = name; 2358 2359 if (setup_cpu_cache(cachep)) { 2360 __kmem_cache_destroy(cachep); 2361 cachep = NULL; 2362 goto oops; 2363 } 2364 2365 /* cache setup completed, link it into the list */ 2366 list_add(&cachep->next, &cache_chain); 2367 oops: 2368 if (!cachep && (flags & SLAB_PANIC)) 2369 panic("kmem_cache_create(): failed to create slab `%s'\n", 2370 name); 2371 mutex_unlock(&cache_chain_mutex); 2372 return cachep; 2373 } 2374 EXPORT_SYMBOL(kmem_cache_create); 2375 2376 #if DEBUG 2377 static void check_irq_off(void) 2378 { 2379 BUG_ON(!irqs_disabled()); 2380 } 2381 2382 static void check_irq_on(void) 2383 { 2384 BUG_ON(irqs_disabled()); 2385 } 2386 2387 static void check_spinlock_acquired(struct kmem_cache *cachep) 2388 { 2389 #ifdef CONFIG_SMP 2390 check_irq_off(); 2391 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); 2392 #endif 2393 } 2394 2395 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2396 { 2397 #ifdef CONFIG_SMP 2398 check_irq_off(); 2399 assert_spin_locked(&cachep->nodelists[node]->list_lock); 2400 #endif 2401 } 2402 2403 #else 2404 #define check_irq_off() do { } while(0) 2405 #define check_irq_on() do { } while(0) 2406 #define check_spinlock_acquired(x) do { } while(0) 2407 #define check_spinlock_acquired_node(x, y) do { } while(0) 2408 #endif 2409 2410 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 2411 struct array_cache *ac, 2412 int force, int node); 2413 2414 static void do_drain(void *arg) 2415 { 2416 struct kmem_cache *cachep = arg; 2417 struct array_cache *ac; 2418 int node = numa_node_id(); 2419 2420 check_irq_off(); 2421 ac = cpu_cache_get(cachep); 2422 spin_lock(&cachep->nodelists[node]->list_lock); 2423 free_block(cachep, ac->entry, ac->avail, node); 2424 spin_unlock(&cachep->nodelists[node]->list_lock); 2425 ac->avail = 0; 2426 } 2427 2428 static void drain_cpu_caches(struct kmem_cache *cachep) 2429 { 2430 struct kmem_list3 *l3; 2431 int node; 2432 2433 on_each_cpu(do_drain, cachep, 1, 1); 2434 check_irq_on(); 2435 for_each_online_node(node) { 2436 l3 = cachep->nodelists[node]; 2437 if (l3 && l3->alien) 2438 drain_alien_cache(cachep, l3->alien); 2439 } 2440 2441 for_each_online_node(node) { 2442 l3 = cachep->nodelists[node]; 2443 if (l3) 2444 drain_array(cachep, l3, l3->shared, 1, node); 2445 } 2446 } 2447 2448 /* 2449 * Remove slabs from the list of free slabs. 2450 * Specify the number of slabs to drain in tofree. 2451 * 2452 * Returns the actual number of slabs released. 2453 */ 2454 static int drain_freelist(struct kmem_cache *cache, 2455 struct kmem_list3 *l3, int tofree) 2456 { 2457 struct list_head *p; 2458 int nr_freed; 2459 struct slab *slabp; 2460 2461 nr_freed = 0; 2462 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { 2463 2464 spin_lock_irq(&l3->list_lock); 2465 p = l3->slabs_free.prev; 2466 if (p == &l3->slabs_free) { 2467 spin_unlock_irq(&l3->list_lock); 2468 goto out; 2469 } 2470 2471 slabp = list_entry(p, struct slab, list); 2472 #if DEBUG 2473 BUG_ON(slabp->inuse); 2474 #endif 2475 list_del(&slabp->list); 2476 /* 2477 * Safe to drop the lock. The slab is no longer linked 2478 * to the cache. 2479 */ 2480 l3->free_objects -= cache->num; 2481 spin_unlock_irq(&l3->list_lock); 2482 slab_destroy(cache, slabp); 2483 nr_freed++; 2484 } 2485 out: 2486 return nr_freed; 2487 } 2488 2489 /* Called with cache_chain_mutex held to protect against cpu hotplug */ 2490 static int __cache_shrink(struct kmem_cache *cachep) 2491 { 2492 int ret = 0, i = 0; 2493 struct kmem_list3 *l3; 2494 2495 drain_cpu_caches(cachep); 2496 2497 check_irq_on(); 2498 for_each_online_node(i) { 2499 l3 = cachep->nodelists[i]; 2500 if (!l3) 2501 continue; 2502 2503 drain_freelist(cachep, l3, l3->free_objects); 2504 2505 ret += !list_empty(&l3->slabs_full) || 2506 !list_empty(&l3->slabs_partial); 2507 } 2508 return (ret ? 1 : 0); 2509 } 2510 2511 /** 2512 * kmem_cache_shrink - Shrink a cache. 2513 * @cachep: The cache to shrink. 2514 * 2515 * Releases as many slabs as possible for a cache. 2516 * To help debugging, a zero exit status indicates all slabs were released. 2517 */ 2518 int kmem_cache_shrink(struct kmem_cache *cachep) 2519 { 2520 int ret; 2521 BUG_ON(!cachep || in_interrupt()); 2522 2523 mutex_lock(&cache_chain_mutex); 2524 ret = __cache_shrink(cachep); 2525 mutex_unlock(&cache_chain_mutex); 2526 return ret; 2527 } 2528 EXPORT_SYMBOL(kmem_cache_shrink); 2529 2530 /** 2531 * kmem_cache_destroy - delete a cache 2532 * @cachep: the cache to destroy 2533 * 2534 * Remove a &struct kmem_cache object from the slab cache. 2535 * 2536 * It is expected this function will be called by a module when it is 2537 * unloaded. This will remove the cache completely, and avoid a duplicate 2538 * cache being allocated each time a module is loaded and unloaded, if the 2539 * module doesn't have persistent in-kernel storage across loads and unloads. 2540 * 2541 * The cache must be empty before calling this function. 2542 * 2543 * The caller must guarantee that noone will allocate memory from the cache 2544 * during the kmem_cache_destroy(). 2545 */ 2546 void kmem_cache_destroy(struct kmem_cache *cachep) 2547 { 2548 BUG_ON(!cachep || in_interrupt()); 2549 2550 /* Find the cache in the chain of caches. */ 2551 mutex_lock(&cache_chain_mutex); 2552 /* 2553 * the chain is never empty, cache_cache is never destroyed 2554 */ 2555 list_del(&cachep->next); 2556 if (__cache_shrink(cachep)) { 2557 slab_error(cachep, "Can't free all objects"); 2558 list_add(&cachep->next, &cache_chain); 2559 mutex_unlock(&cache_chain_mutex); 2560 return; 2561 } 2562 2563 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 2564 synchronize_rcu(); 2565 2566 __kmem_cache_destroy(cachep); 2567 mutex_unlock(&cache_chain_mutex); 2568 } 2569 EXPORT_SYMBOL(kmem_cache_destroy); 2570 2571 /* 2572 * Get the memory for a slab management obj. 2573 * For a slab cache when the slab descriptor is off-slab, slab descriptors 2574 * always come from malloc_sizes caches. The slab descriptor cannot 2575 * come from the same cache which is getting created because, 2576 * when we are searching for an appropriate cache for these 2577 * descriptors in kmem_cache_create, we search through the malloc_sizes array. 2578 * If we are creating a malloc_sizes cache here it would not be visible to 2579 * kmem_find_general_cachep till the initialization is complete. 2580 * Hence we cannot have slabp_cache same as the original cache. 2581 */ 2582 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, 2583 int colour_off, gfp_t local_flags, 2584 int nodeid) 2585 { 2586 struct slab *slabp; 2587 2588 if (OFF_SLAB(cachep)) { 2589 /* Slab management obj is off-slab. */ 2590 slabp = kmem_cache_alloc_node(cachep->slabp_cache, 2591 local_flags & ~GFP_THISNODE, nodeid); 2592 if (!slabp) 2593 return NULL; 2594 } else { 2595 slabp = objp + colour_off; 2596 colour_off += cachep->slab_size; 2597 } 2598 slabp->inuse = 0; 2599 slabp->colouroff = colour_off; 2600 slabp->s_mem = objp + colour_off; 2601 slabp->nodeid = nodeid; 2602 return slabp; 2603 } 2604 2605 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) 2606 { 2607 return (kmem_bufctl_t *) (slabp + 1); 2608 } 2609 2610 static void cache_init_objs(struct kmem_cache *cachep, 2611 struct slab *slabp) 2612 { 2613 int i; 2614 2615 for (i = 0; i < cachep->num; i++) { 2616 void *objp = index_to_obj(cachep, slabp, i); 2617 #if DEBUG 2618 /* need to poison the objs? */ 2619 if (cachep->flags & SLAB_POISON) 2620 poison_obj(cachep, objp, POISON_FREE); 2621 if (cachep->flags & SLAB_STORE_USER) 2622 *dbg_userword(cachep, objp) = NULL; 2623 2624 if (cachep->flags & SLAB_RED_ZONE) { 2625 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2626 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2627 } 2628 /* 2629 * Constructors are not allowed to allocate memory from the same 2630 * cache which they are a constructor for. Otherwise, deadlock. 2631 * They must also be threaded. 2632 */ 2633 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2634 cachep->ctor(objp + obj_offset(cachep), cachep, 2635 0); 2636 2637 if (cachep->flags & SLAB_RED_ZONE) { 2638 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2639 slab_error(cachep, "constructor overwrote the" 2640 " end of an object"); 2641 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2642 slab_error(cachep, "constructor overwrote the" 2643 " start of an object"); 2644 } 2645 if ((cachep->buffer_size % PAGE_SIZE) == 0 && 2646 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2647 kernel_map_pages(virt_to_page(objp), 2648 cachep->buffer_size / PAGE_SIZE, 0); 2649 #else 2650 if (cachep->ctor) 2651 cachep->ctor(objp, cachep, 0); 2652 #endif 2653 slab_bufctl(slabp)[i] = i + 1; 2654 } 2655 slab_bufctl(slabp)[i - 1] = BUFCTL_END; 2656 slabp->free = 0; 2657 } 2658 2659 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2660 { 2661 if (CONFIG_ZONE_DMA_FLAG) { 2662 if (flags & GFP_DMA) 2663 BUG_ON(!(cachep->gfpflags & GFP_DMA)); 2664 else 2665 BUG_ON(cachep->gfpflags & GFP_DMA); 2666 } 2667 } 2668 2669 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, 2670 int nodeid) 2671 { 2672 void *objp = index_to_obj(cachep, slabp, slabp->free); 2673 kmem_bufctl_t next; 2674 2675 slabp->inuse++; 2676 next = slab_bufctl(slabp)[slabp->free]; 2677 #if DEBUG 2678 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; 2679 WARN_ON(slabp->nodeid != nodeid); 2680 #endif 2681 slabp->free = next; 2682 2683 return objp; 2684 } 2685 2686 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, 2687 void *objp, int nodeid) 2688 { 2689 unsigned int objnr = obj_to_index(cachep, slabp, objp); 2690 2691 #if DEBUG 2692 /* Verify that the slab belongs to the intended node */ 2693 WARN_ON(slabp->nodeid != nodeid); 2694 2695 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { 2696 printk(KERN_ERR "slab: double free detected in cache " 2697 "'%s', objp %p\n", cachep->name, objp); 2698 BUG(); 2699 } 2700 #endif 2701 slab_bufctl(slabp)[objnr] = slabp->free; 2702 slabp->free = objnr; 2703 slabp->inuse--; 2704 } 2705 2706 /* 2707 * Map pages beginning at addr to the given cache and slab. This is required 2708 * for the slab allocator to be able to lookup the cache and slab of a 2709 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging. 2710 */ 2711 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, 2712 void *addr) 2713 { 2714 int nr_pages; 2715 struct page *page; 2716 2717 page = virt_to_page(addr); 2718 2719 nr_pages = 1; 2720 if (likely(!PageCompound(page))) 2721 nr_pages <<= cache->gfporder; 2722 2723 do { 2724 page_set_cache(page, cache); 2725 page_set_slab(page, slab); 2726 page++; 2727 } while (--nr_pages); 2728 } 2729 2730 /* 2731 * Grow (by 1) the number of slabs within a cache. This is called by 2732 * kmem_cache_alloc() when there are no active objs left in a cache. 2733 */ 2734 static int cache_grow(struct kmem_cache *cachep, 2735 gfp_t flags, int nodeid, void *objp) 2736 { 2737 struct slab *slabp; 2738 size_t offset; 2739 gfp_t local_flags; 2740 struct kmem_list3 *l3; 2741 2742 /* 2743 * Be lazy and only check for valid flags here, keeping it out of the 2744 * critical path in kmem_cache_alloc(). 2745 */ 2746 BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK)); 2747 2748 local_flags = (flags & GFP_LEVEL_MASK); 2749 /* Take the l3 list lock to change the colour_next on this node */ 2750 check_irq_off(); 2751 l3 = cachep->nodelists[nodeid]; 2752 spin_lock(&l3->list_lock); 2753 2754 /* Get colour for the slab, and cal the next value. */ 2755 offset = l3->colour_next; 2756 l3->colour_next++; 2757 if (l3->colour_next >= cachep->colour) 2758 l3->colour_next = 0; 2759 spin_unlock(&l3->list_lock); 2760 2761 offset *= cachep->colour_off; 2762 2763 if (local_flags & __GFP_WAIT) 2764 local_irq_enable(); 2765 2766 /* 2767 * The test for missing atomic flag is performed here, rather than 2768 * the more obvious place, simply to reduce the critical path length 2769 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2770 * will eventually be caught here (where it matters). 2771 */ 2772 kmem_flagcheck(cachep, flags); 2773 2774 /* 2775 * Get mem for the objs. Attempt to allocate a physical page from 2776 * 'nodeid'. 2777 */ 2778 if (!objp) 2779 objp = kmem_getpages(cachep, local_flags, nodeid); 2780 if (!objp) 2781 goto failed; 2782 2783 /* Get slab management. */ 2784 slabp = alloc_slabmgmt(cachep, objp, offset, 2785 local_flags & ~GFP_THISNODE, nodeid); 2786 if (!slabp) 2787 goto opps1; 2788 2789 slabp->nodeid = nodeid; 2790 slab_map_pages(cachep, slabp, objp); 2791 2792 cache_init_objs(cachep, slabp); 2793 2794 if (local_flags & __GFP_WAIT) 2795 local_irq_disable(); 2796 check_irq_off(); 2797 spin_lock(&l3->list_lock); 2798 2799 /* Make slab active. */ 2800 list_add_tail(&slabp->list, &(l3->slabs_free)); 2801 STATS_INC_GROWN(cachep); 2802 l3->free_objects += cachep->num; 2803 spin_unlock(&l3->list_lock); 2804 return 1; 2805 opps1: 2806 kmem_freepages(cachep, objp); 2807 failed: 2808 if (local_flags & __GFP_WAIT) 2809 local_irq_disable(); 2810 return 0; 2811 } 2812 2813 #if DEBUG 2814 2815 /* 2816 * Perform extra freeing checks: 2817 * - detect bad pointers. 2818 * - POISON/RED_ZONE checking 2819 */ 2820 static void kfree_debugcheck(const void *objp) 2821 { 2822 if (!virt_addr_valid(objp)) { 2823 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2824 (unsigned long)objp); 2825 BUG(); 2826 } 2827 } 2828 2829 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2830 { 2831 unsigned long long redzone1, redzone2; 2832 2833 redzone1 = *dbg_redzone1(cache, obj); 2834 redzone2 = *dbg_redzone2(cache, obj); 2835 2836 /* 2837 * Redzone is ok. 2838 */ 2839 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2840 return; 2841 2842 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2843 slab_error(cache, "double free detected"); 2844 else 2845 slab_error(cache, "memory outside object was overwritten"); 2846 2847 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 2848 obj, redzone1, redzone2); 2849 } 2850 2851 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2852 void *caller) 2853 { 2854 struct page *page; 2855 unsigned int objnr; 2856 struct slab *slabp; 2857 2858 objp -= obj_offset(cachep); 2859 kfree_debugcheck(objp); 2860 page = virt_to_head_page(objp); 2861 2862 slabp = page_get_slab(page); 2863 2864 if (cachep->flags & SLAB_RED_ZONE) { 2865 verify_redzone_free(cachep, objp); 2866 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2867 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2868 } 2869 if (cachep->flags & SLAB_STORE_USER) 2870 *dbg_userword(cachep, objp) = caller; 2871 2872 objnr = obj_to_index(cachep, slabp, objp); 2873 2874 BUG_ON(objnr >= cachep->num); 2875 BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); 2876 2877 #ifdef CONFIG_DEBUG_SLAB_LEAK 2878 slab_bufctl(slabp)[objnr] = BUFCTL_FREE; 2879 #endif 2880 if (cachep->flags & SLAB_POISON) { 2881 #ifdef CONFIG_DEBUG_PAGEALLOC 2882 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 2883 store_stackinfo(cachep, objp, (unsigned long)caller); 2884 kernel_map_pages(virt_to_page(objp), 2885 cachep->buffer_size / PAGE_SIZE, 0); 2886 } else { 2887 poison_obj(cachep, objp, POISON_FREE); 2888 } 2889 #else 2890 poison_obj(cachep, objp, POISON_FREE); 2891 #endif 2892 } 2893 return objp; 2894 } 2895 2896 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) 2897 { 2898 kmem_bufctl_t i; 2899 int entries = 0; 2900 2901 /* Check slab's freelist to see if this obj is there. */ 2902 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { 2903 entries++; 2904 if (entries > cachep->num || i >= cachep->num) 2905 goto bad; 2906 } 2907 if (entries != cachep->num - slabp->inuse) { 2908 bad: 2909 printk(KERN_ERR "slab: Internal list corruption detected in " 2910 "cache '%s'(%d), slabp %p(%d). Hexdump:\n", 2911 cachep->name, cachep->num, slabp, slabp->inuse); 2912 for (i = 0; 2913 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); 2914 i++) { 2915 if (i % 16 == 0) 2916 printk("\n%03x:", i); 2917 printk(" %02x", ((unsigned char *)slabp)[i]); 2918 } 2919 printk("\n"); 2920 BUG(); 2921 } 2922 } 2923 #else 2924 #define kfree_debugcheck(x) do { } while(0) 2925 #define cache_free_debugcheck(x,objp,z) (objp) 2926 #define check_slabp(x,y) do { } while(0) 2927 #endif 2928 2929 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2930 { 2931 int batchcount; 2932 struct kmem_list3 *l3; 2933 struct array_cache *ac; 2934 int node; 2935 2936 node = numa_node_id(); 2937 2938 check_irq_off(); 2939 ac = cpu_cache_get(cachep); 2940 retry: 2941 batchcount = ac->batchcount; 2942 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2943 /* 2944 * If there was little recent activity on this cache, then 2945 * perform only a partial refill. Otherwise we could generate 2946 * refill bouncing. 2947 */ 2948 batchcount = BATCHREFILL_LIMIT; 2949 } 2950 l3 = cachep->nodelists[node]; 2951 2952 BUG_ON(ac->avail > 0 || !l3); 2953 spin_lock(&l3->list_lock); 2954 2955 /* See if we can refill from the shared array */ 2956 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) 2957 goto alloc_done; 2958 2959 while (batchcount > 0) { 2960 struct list_head *entry; 2961 struct slab *slabp; 2962 /* Get slab alloc is to come from. */ 2963 entry = l3->slabs_partial.next; 2964 if (entry == &l3->slabs_partial) { 2965 l3->free_touched = 1; 2966 entry = l3->slabs_free.next; 2967 if (entry == &l3->slabs_free) 2968 goto must_grow; 2969 } 2970 2971 slabp = list_entry(entry, struct slab, list); 2972 check_slabp(cachep, slabp); 2973 check_spinlock_acquired(cachep); 2974 2975 /* 2976 * The slab was either on partial or free list so 2977 * there must be at least one object available for 2978 * allocation. 2979 */ 2980 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num); 2981 2982 while (slabp->inuse < cachep->num && batchcount--) { 2983 STATS_INC_ALLOCED(cachep); 2984 STATS_INC_ACTIVE(cachep); 2985 STATS_SET_HIGH(cachep); 2986 2987 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, 2988 node); 2989 } 2990 check_slabp(cachep, slabp); 2991 2992 /* move slabp to correct slabp list: */ 2993 list_del(&slabp->list); 2994 if (slabp->free == BUFCTL_END) 2995 list_add(&slabp->list, &l3->slabs_full); 2996 else 2997 list_add(&slabp->list, &l3->slabs_partial); 2998 } 2999 3000 must_grow: 3001 l3->free_objects -= ac->avail; 3002 alloc_done: 3003 spin_unlock(&l3->list_lock); 3004 3005 if (unlikely(!ac->avail)) { 3006 int x; 3007 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 3008 3009 /* cache_grow can reenable interrupts, then ac could change. */ 3010 ac = cpu_cache_get(cachep); 3011 if (!x && ac->avail == 0) /* no objects in sight? abort */ 3012 return NULL; 3013 3014 if (!ac->avail) /* objects refilled by interrupt? */ 3015 goto retry; 3016 } 3017 ac->touched = 1; 3018 return ac->entry[--ac->avail]; 3019 } 3020 3021 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3022 gfp_t flags) 3023 { 3024 might_sleep_if(flags & __GFP_WAIT); 3025 #if DEBUG 3026 kmem_flagcheck(cachep, flags); 3027 #endif 3028 } 3029 3030 #if DEBUG 3031 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3032 gfp_t flags, void *objp, void *caller) 3033 { 3034 if (!objp) 3035 return objp; 3036 if (cachep->flags & SLAB_POISON) { 3037 #ifdef CONFIG_DEBUG_PAGEALLOC 3038 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 3039 kernel_map_pages(virt_to_page(objp), 3040 cachep->buffer_size / PAGE_SIZE, 1); 3041 else 3042 check_poison_obj(cachep, objp); 3043 #else 3044 check_poison_obj(cachep, objp); 3045 #endif 3046 poison_obj(cachep, objp, POISON_INUSE); 3047 } 3048 if (cachep->flags & SLAB_STORE_USER) 3049 *dbg_userword(cachep, objp) = caller; 3050 3051 if (cachep->flags & SLAB_RED_ZONE) { 3052 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3053 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3054 slab_error(cachep, "double free, or memory outside" 3055 " object was overwritten"); 3056 printk(KERN_ERR 3057 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3058 objp, *dbg_redzone1(cachep, objp), 3059 *dbg_redzone2(cachep, objp)); 3060 } 3061 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3062 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3063 } 3064 #ifdef CONFIG_DEBUG_SLAB_LEAK 3065 { 3066 struct slab *slabp; 3067 unsigned objnr; 3068 3069 slabp = page_get_slab(virt_to_head_page(objp)); 3070 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; 3071 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; 3072 } 3073 #endif 3074 objp += obj_offset(cachep); 3075 if (cachep->ctor && cachep->flags & SLAB_POISON) 3076 cachep->ctor(objp, cachep, 0); 3077 #if ARCH_SLAB_MINALIGN 3078 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { 3079 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3080 objp, ARCH_SLAB_MINALIGN); 3081 } 3082 #endif 3083 return objp; 3084 } 3085 #else 3086 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3087 #endif 3088 3089 #ifdef CONFIG_FAILSLAB 3090 3091 static struct failslab_attr { 3092 3093 struct fault_attr attr; 3094 3095 u32 ignore_gfp_wait; 3096 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3097 struct dentry *ignore_gfp_wait_file; 3098 #endif 3099 3100 } failslab = { 3101 .attr = FAULT_ATTR_INITIALIZER, 3102 .ignore_gfp_wait = 1, 3103 }; 3104 3105 static int __init setup_failslab(char *str) 3106 { 3107 return setup_fault_attr(&failslab.attr, str); 3108 } 3109 __setup("failslab=", setup_failslab); 3110 3111 static int should_failslab(struct kmem_cache *cachep, gfp_t flags) 3112 { 3113 if (cachep == &cache_cache) 3114 return 0; 3115 if (flags & __GFP_NOFAIL) 3116 return 0; 3117 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT)) 3118 return 0; 3119 3120 return should_fail(&failslab.attr, obj_size(cachep)); 3121 } 3122 3123 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3124 3125 static int __init failslab_debugfs(void) 3126 { 3127 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 3128 struct dentry *dir; 3129 int err; 3130 3131 err = init_fault_attr_dentries(&failslab.attr, "failslab"); 3132 if (err) 3133 return err; 3134 dir = failslab.attr.dentries.dir; 3135 3136 failslab.ignore_gfp_wait_file = 3137 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3138 &failslab.ignore_gfp_wait); 3139 3140 if (!failslab.ignore_gfp_wait_file) { 3141 err = -ENOMEM; 3142 debugfs_remove(failslab.ignore_gfp_wait_file); 3143 cleanup_fault_attr_dentries(&failslab.attr); 3144 } 3145 3146 return err; 3147 } 3148 3149 late_initcall(failslab_debugfs); 3150 3151 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3152 3153 #else /* CONFIG_FAILSLAB */ 3154 3155 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags) 3156 { 3157 return 0; 3158 } 3159 3160 #endif /* CONFIG_FAILSLAB */ 3161 3162 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3163 { 3164 void *objp; 3165 struct array_cache *ac; 3166 3167 check_irq_off(); 3168 3169 ac = cpu_cache_get(cachep); 3170 if (likely(ac->avail)) { 3171 STATS_INC_ALLOCHIT(cachep); 3172 ac->touched = 1; 3173 objp = ac->entry[--ac->avail]; 3174 } else { 3175 STATS_INC_ALLOCMISS(cachep); 3176 objp = cache_alloc_refill(cachep, flags); 3177 } 3178 return objp; 3179 } 3180 3181 #ifdef CONFIG_NUMA 3182 /* 3183 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. 3184 * 3185 * If we are in_interrupt, then process context, including cpusets and 3186 * mempolicy, may not apply and should not be used for allocation policy. 3187 */ 3188 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3189 { 3190 int nid_alloc, nid_here; 3191 3192 if (in_interrupt() || (flags & __GFP_THISNODE)) 3193 return NULL; 3194 nid_alloc = nid_here = numa_node_id(); 3195 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3196 nid_alloc = cpuset_mem_spread_node(); 3197 else if (current->mempolicy) 3198 nid_alloc = slab_node(current->mempolicy); 3199 if (nid_alloc != nid_here) 3200 return ____cache_alloc_node(cachep, flags, nid_alloc); 3201 return NULL; 3202 } 3203 3204 /* 3205 * Fallback function if there was no memory available and no objects on a 3206 * certain node and fall back is permitted. First we scan all the 3207 * available nodelists for available objects. If that fails then we 3208 * perform an allocation without specifying a node. This allows the page 3209 * allocator to do its reclaim / fallback magic. We then insert the 3210 * slab into the proper nodelist and then allocate from it. 3211 */ 3212 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3213 { 3214 struct zonelist *zonelist; 3215 gfp_t local_flags; 3216 struct zone **z; 3217 void *obj = NULL; 3218 int nid; 3219 3220 if (flags & __GFP_THISNODE) 3221 return NULL; 3222 3223 zonelist = &NODE_DATA(slab_node(current->mempolicy)) 3224 ->node_zonelists[gfp_zone(flags)]; 3225 local_flags = (flags & GFP_LEVEL_MASK); 3226 3227 retry: 3228 /* 3229 * Look through allowed nodes for objects available 3230 * from existing per node queues. 3231 */ 3232 for (z = zonelist->zones; *z && !obj; z++) { 3233 nid = zone_to_nid(*z); 3234 3235 if (cpuset_zone_allowed_hardwall(*z, flags) && 3236 cache->nodelists[nid] && 3237 cache->nodelists[nid]->free_objects) 3238 obj = ____cache_alloc_node(cache, 3239 flags | GFP_THISNODE, nid); 3240 } 3241 3242 if (!obj) { 3243 /* 3244 * This allocation will be performed within the constraints 3245 * of the current cpuset / memory policy requirements. 3246 * We may trigger various forms of reclaim on the allowed 3247 * set and go into memory reserves if necessary. 3248 */ 3249 if (local_flags & __GFP_WAIT) 3250 local_irq_enable(); 3251 kmem_flagcheck(cache, flags); 3252 obj = kmem_getpages(cache, flags, -1); 3253 if (local_flags & __GFP_WAIT) 3254 local_irq_disable(); 3255 if (obj) { 3256 /* 3257 * Insert into the appropriate per node queues 3258 */ 3259 nid = page_to_nid(virt_to_page(obj)); 3260 if (cache_grow(cache, flags, nid, obj)) { 3261 obj = ____cache_alloc_node(cache, 3262 flags | GFP_THISNODE, nid); 3263 if (!obj) 3264 /* 3265 * Another processor may allocate the 3266 * objects in the slab since we are 3267 * not holding any locks. 3268 */ 3269 goto retry; 3270 } else { 3271 /* cache_grow already freed obj */ 3272 obj = NULL; 3273 } 3274 } 3275 } 3276 return obj; 3277 } 3278 3279 /* 3280 * A interface to enable slab creation on nodeid 3281 */ 3282 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3283 int nodeid) 3284 { 3285 struct list_head *entry; 3286 struct slab *slabp; 3287 struct kmem_list3 *l3; 3288 void *obj; 3289 int x; 3290 3291 l3 = cachep->nodelists[nodeid]; 3292 BUG_ON(!l3); 3293 3294 retry: 3295 check_irq_off(); 3296 spin_lock(&l3->list_lock); 3297 entry = l3->slabs_partial.next; 3298 if (entry == &l3->slabs_partial) { 3299 l3->free_touched = 1; 3300 entry = l3->slabs_free.next; 3301 if (entry == &l3->slabs_free) 3302 goto must_grow; 3303 } 3304 3305 slabp = list_entry(entry, struct slab, list); 3306 check_spinlock_acquired_node(cachep, nodeid); 3307 check_slabp(cachep, slabp); 3308 3309 STATS_INC_NODEALLOCS(cachep); 3310 STATS_INC_ACTIVE(cachep); 3311 STATS_SET_HIGH(cachep); 3312 3313 BUG_ON(slabp->inuse == cachep->num); 3314 3315 obj = slab_get_obj(cachep, slabp, nodeid); 3316 check_slabp(cachep, slabp); 3317 l3->free_objects--; 3318 /* move slabp to correct slabp list: */ 3319 list_del(&slabp->list); 3320 3321 if (slabp->free == BUFCTL_END) 3322 list_add(&slabp->list, &l3->slabs_full); 3323 else 3324 list_add(&slabp->list, &l3->slabs_partial); 3325 3326 spin_unlock(&l3->list_lock); 3327 goto done; 3328 3329 must_grow: 3330 spin_unlock(&l3->list_lock); 3331 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3332 if (x) 3333 goto retry; 3334 3335 return fallback_alloc(cachep, flags); 3336 3337 done: 3338 return obj; 3339 } 3340 3341 /** 3342 * kmem_cache_alloc_node - Allocate an object on the specified node 3343 * @cachep: The cache to allocate from. 3344 * @flags: See kmalloc(). 3345 * @nodeid: node number of the target node. 3346 * @caller: return address of caller, used for debug information 3347 * 3348 * Identical to kmem_cache_alloc but it will allocate memory on the given 3349 * node, which can improve the performance for cpu bound structures. 3350 * 3351 * Fallback to other node is possible if __GFP_THISNODE is not set. 3352 */ 3353 static __always_inline void * 3354 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3355 void *caller) 3356 { 3357 unsigned long save_flags; 3358 void *ptr; 3359 3360 if (should_failslab(cachep, flags)) 3361 return NULL; 3362 3363 cache_alloc_debugcheck_before(cachep, flags); 3364 local_irq_save(save_flags); 3365 3366 if (unlikely(nodeid == -1)) 3367 nodeid = numa_node_id(); 3368 3369 if (unlikely(!cachep->nodelists[nodeid])) { 3370 /* Node not bootstrapped yet */ 3371 ptr = fallback_alloc(cachep, flags); 3372 goto out; 3373 } 3374 3375 if (nodeid == numa_node_id()) { 3376 /* 3377 * Use the locally cached objects if possible. 3378 * However ____cache_alloc does not allow fallback 3379 * to other nodes. It may fail while we still have 3380 * objects on other nodes available. 3381 */ 3382 ptr = ____cache_alloc(cachep, flags); 3383 if (ptr) 3384 goto out; 3385 } 3386 /* ___cache_alloc_node can fall back to other nodes */ 3387 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3388 out: 3389 local_irq_restore(save_flags); 3390 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3391 3392 if (unlikely((flags & __GFP_ZERO) && ptr)) 3393 memset(ptr, 0, obj_size(cachep)); 3394 3395 return ptr; 3396 } 3397 3398 static __always_inline void * 3399 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3400 { 3401 void *objp; 3402 3403 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { 3404 objp = alternate_node_alloc(cache, flags); 3405 if (objp) 3406 goto out; 3407 } 3408 objp = ____cache_alloc(cache, flags); 3409 3410 /* 3411 * We may just have run out of memory on the local node. 3412 * ____cache_alloc_node() knows how to locate memory on other nodes 3413 */ 3414 if (!objp) 3415 objp = ____cache_alloc_node(cache, flags, numa_node_id()); 3416 3417 out: 3418 return objp; 3419 } 3420 #else 3421 3422 static __always_inline void * 3423 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3424 { 3425 return ____cache_alloc(cachep, flags); 3426 } 3427 3428 #endif /* CONFIG_NUMA */ 3429 3430 static __always_inline void * 3431 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) 3432 { 3433 unsigned long save_flags; 3434 void *objp; 3435 3436 if (should_failslab(cachep, flags)) 3437 return NULL; 3438 3439 cache_alloc_debugcheck_before(cachep, flags); 3440 local_irq_save(save_flags); 3441 objp = __do_cache_alloc(cachep, flags); 3442 local_irq_restore(save_flags); 3443 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3444 prefetchw(objp); 3445 3446 if (unlikely((flags & __GFP_ZERO) && objp)) 3447 memset(objp, 0, obj_size(cachep)); 3448 3449 return objp; 3450 } 3451 3452 /* 3453 * Caller needs to acquire correct kmem_list's list_lock 3454 */ 3455 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, 3456 int node) 3457 { 3458 int i; 3459 struct kmem_list3 *l3; 3460 3461 for (i = 0; i < nr_objects; i++) { 3462 void *objp = objpp[i]; 3463 struct slab *slabp; 3464 3465 slabp = virt_to_slab(objp); 3466 l3 = cachep->nodelists[node]; 3467 list_del(&slabp->list); 3468 check_spinlock_acquired_node(cachep, node); 3469 check_slabp(cachep, slabp); 3470 slab_put_obj(cachep, slabp, objp, node); 3471 STATS_DEC_ACTIVE(cachep); 3472 l3->free_objects++; 3473 check_slabp(cachep, slabp); 3474 3475 /* fixup slab chains */ 3476 if (slabp->inuse == 0) { 3477 if (l3->free_objects > l3->free_limit) { 3478 l3->free_objects -= cachep->num; 3479 /* No need to drop any previously held 3480 * lock here, even if we have a off-slab slab 3481 * descriptor it is guaranteed to come from 3482 * a different cache, refer to comments before 3483 * alloc_slabmgmt. 3484 */ 3485 slab_destroy(cachep, slabp); 3486 } else { 3487 list_add(&slabp->list, &l3->slabs_free); 3488 } 3489 } else { 3490 /* Unconditionally move a slab to the end of the 3491 * partial list on free - maximum time for the 3492 * other objects to be freed, too. 3493 */ 3494 list_add_tail(&slabp->list, &l3->slabs_partial); 3495 } 3496 } 3497 } 3498 3499 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3500 { 3501 int batchcount; 3502 struct kmem_list3 *l3; 3503 int node = numa_node_id(); 3504 3505 batchcount = ac->batchcount; 3506 #if DEBUG 3507 BUG_ON(!batchcount || batchcount > ac->avail); 3508 #endif 3509 check_irq_off(); 3510 l3 = cachep->nodelists[node]; 3511 spin_lock(&l3->list_lock); 3512 if (l3->shared) { 3513 struct array_cache *shared_array = l3->shared; 3514 int max = shared_array->limit - shared_array->avail; 3515 if (max) { 3516 if (batchcount > max) 3517 batchcount = max; 3518 memcpy(&(shared_array->entry[shared_array->avail]), 3519 ac->entry, sizeof(void *) * batchcount); 3520 shared_array->avail += batchcount; 3521 goto free_done; 3522 } 3523 } 3524 3525 free_block(cachep, ac->entry, batchcount, node); 3526 free_done: 3527 #if STATS 3528 { 3529 int i = 0; 3530 struct list_head *p; 3531 3532 p = l3->slabs_free.next; 3533 while (p != &(l3->slabs_free)) { 3534 struct slab *slabp; 3535 3536 slabp = list_entry(p, struct slab, list); 3537 BUG_ON(slabp->inuse); 3538 3539 i++; 3540 p = p->next; 3541 } 3542 STATS_SET_FREEABLE(cachep, i); 3543 } 3544 #endif 3545 spin_unlock(&l3->list_lock); 3546 ac->avail -= batchcount; 3547 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3548 } 3549 3550 /* 3551 * Release an obj back to its cache. If the obj has a constructed state, it must 3552 * be in this state _before_ it is released. Called with disabled ints. 3553 */ 3554 static inline void __cache_free(struct kmem_cache *cachep, void *objp) 3555 { 3556 struct array_cache *ac = cpu_cache_get(cachep); 3557 3558 check_irq_off(); 3559 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); 3560 3561 if (cache_free_alien(cachep, objp)) 3562 return; 3563 3564 if (likely(ac->avail < ac->limit)) { 3565 STATS_INC_FREEHIT(cachep); 3566 ac->entry[ac->avail++] = objp; 3567 return; 3568 } else { 3569 STATS_INC_FREEMISS(cachep); 3570 cache_flusharray(cachep, ac); 3571 ac->entry[ac->avail++] = objp; 3572 } 3573 } 3574 3575 /** 3576 * kmem_cache_alloc - Allocate an object 3577 * @cachep: The cache to allocate from. 3578 * @flags: See kmalloc(). 3579 * 3580 * Allocate an object from this cache. The flags are only relevant 3581 * if the cache has no available objects. 3582 */ 3583 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3584 { 3585 return __cache_alloc(cachep, flags, __builtin_return_address(0)); 3586 } 3587 EXPORT_SYMBOL(kmem_cache_alloc); 3588 3589 /** 3590 * kmem_ptr_validate - check if an untrusted pointer might 3591 * be a slab entry. 3592 * @cachep: the cache we're checking against 3593 * @ptr: pointer to validate 3594 * 3595 * This verifies that the untrusted pointer looks sane: 3596 * it is _not_ a guarantee that the pointer is actually 3597 * part of the slab cache in question, but it at least 3598 * validates that the pointer can be dereferenced and 3599 * looks half-way sane. 3600 * 3601 * Currently only used for dentry validation. 3602 */ 3603 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr) 3604 { 3605 unsigned long addr = (unsigned long)ptr; 3606 unsigned long min_addr = PAGE_OFFSET; 3607 unsigned long align_mask = BYTES_PER_WORD - 1; 3608 unsigned long size = cachep->buffer_size; 3609 struct page *page; 3610 3611 if (unlikely(addr < min_addr)) 3612 goto out; 3613 if (unlikely(addr > (unsigned long)high_memory - size)) 3614 goto out; 3615 if (unlikely(addr & align_mask)) 3616 goto out; 3617 if (unlikely(!kern_addr_valid(addr))) 3618 goto out; 3619 if (unlikely(!kern_addr_valid(addr + size - 1))) 3620 goto out; 3621 page = virt_to_page(ptr); 3622 if (unlikely(!PageSlab(page))) 3623 goto out; 3624 if (unlikely(page_get_cache(page) != cachep)) 3625 goto out; 3626 return 1; 3627 out: 3628 return 0; 3629 } 3630 3631 #ifdef CONFIG_NUMA 3632 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3633 { 3634 return __cache_alloc_node(cachep, flags, nodeid, 3635 __builtin_return_address(0)); 3636 } 3637 EXPORT_SYMBOL(kmem_cache_alloc_node); 3638 3639 static __always_inline void * 3640 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) 3641 { 3642 struct kmem_cache *cachep; 3643 3644 cachep = kmem_find_general_cachep(size, flags); 3645 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3646 return cachep; 3647 return kmem_cache_alloc_node(cachep, flags, node); 3648 } 3649 3650 #ifdef CONFIG_DEBUG_SLAB 3651 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3652 { 3653 return __do_kmalloc_node(size, flags, node, 3654 __builtin_return_address(0)); 3655 } 3656 EXPORT_SYMBOL(__kmalloc_node); 3657 3658 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3659 int node, void *caller) 3660 { 3661 return __do_kmalloc_node(size, flags, node, caller); 3662 } 3663 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3664 #else 3665 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3666 { 3667 return __do_kmalloc_node(size, flags, node, NULL); 3668 } 3669 EXPORT_SYMBOL(__kmalloc_node); 3670 #endif /* CONFIG_DEBUG_SLAB */ 3671 #endif /* CONFIG_NUMA */ 3672 3673 /** 3674 * __do_kmalloc - allocate memory 3675 * @size: how many bytes of memory are required. 3676 * @flags: the type of memory to allocate (see kmalloc). 3677 * @caller: function caller for debug tracking of the caller 3678 */ 3679 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3680 void *caller) 3681 { 3682 struct kmem_cache *cachep; 3683 3684 /* If you want to save a few bytes .text space: replace 3685 * __ with kmem_. 3686 * Then kmalloc uses the uninlined functions instead of the inline 3687 * functions. 3688 */ 3689 cachep = __find_general_cachep(size, flags); 3690 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3691 return cachep; 3692 return __cache_alloc(cachep, flags, caller); 3693 } 3694 3695 3696 #ifdef CONFIG_DEBUG_SLAB 3697 void *__kmalloc(size_t size, gfp_t flags) 3698 { 3699 return __do_kmalloc(size, flags, __builtin_return_address(0)); 3700 } 3701 EXPORT_SYMBOL(__kmalloc); 3702 3703 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller) 3704 { 3705 return __do_kmalloc(size, flags, caller); 3706 } 3707 EXPORT_SYMBOL(__kmalloc_track_caller); 3708 3709 #else 3710 void *__kmalloc(size_t size, gfp_t flags) 3711 { 3712 return __do_kmalloc(size, flags, NULL); 3713 } 3714 EXPORT_SYMBOL(__kmalloc); 3715 #endif 3716 3717 /** 3718 * kmem_cache_free - Deallocate an object 3719 * @cachep: The cache the allocation was from. 3720 * @objp: The previously allocated object. 3721 * 3722 * Free an object which was previously allocated from this 3723 * cache. 3724 */ 3725 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3726 { 3727 unsigned long flags; 3728 3729 BUG_ON(virt_to_cache(objp) != cachep); 3730 3731 local_irq_save(flags); 3732 debug_check_no_locks_freed(objp, obj_size(cachep)); 3733 __cache_free(cachep, objp); 3734 local_irq_restore(flags); 3735 } 3736 EXPORT_SYMBOL(kmem_cache_free); 3737 3738 /** 3739 * kfree - free previously allocated memory 3740 * @objp: pointer returned by kmalloc. 3741 * 3742 * If @objp is NULL, no operation is performed. 3743 * 3744 * Don't free memory not originally allocated by kmalloc() 3745 * or you will run into trouble. 3746 */ 3747 void kfree(const void *objp) 3748 { 3749 struct kmem_cache *c; 3750 unsigned long flags; 3751 3752 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3753 return; 3754 local_irq_save(flags); 3755 kfree_debugcheck(objp); 3756 c = virt_to_cache(objp); 3757 debug_check_no_locks_freed(objp, obj_size(c)); 3758 __cache_free(c, (void *)objp); 3759 local_irq_restore(flags); 3760 } 3761 EXPORT_SYMBOL(kfree); 3762 3763 unsigned int kmem_cache_size(struct kmem_cache *cachep) 3764 { 3765 return obj_size(cachep); 3766 } 3767 EXPORT_SYMBOL(kmem_cache_size); 3768 3769 const char *kmem_cache_name(struct kmem_cache *cachep) 3770 { 3771 return cachep->name; 3772 } 3773 EXPORT_SYMBOL_GPL(kmem_cache_name); 3774 3775 /* 3776 * This initializes kmem_list3 or resizes varioius caches for all nodes. 3777 */ 3778 static int alloc_kmemlist(struct kmem_cache *cachep) 3779 { 3780 int node; 3781 struct kmem_list3 *l3; 3782 struct array_cache *new_shared; 3783 struct array_cache **new_alien = NULL; 3784 3785 for_each_online_node(node) { 3786 3787 if (use_alien_caches) { 3788 new_alien = alloc_alien_cache(node, cachep->limit); 3789 if (!new_alien) 3790 goto fail; 3791 } 3792 3793 new_shared = NULL; 3794 if (cachep->shared) { 3795 new_shared = alloc_arraycache(node, 3796 cachep->shared*cachep->batchcount, 3797 0xbaadf00d); 3798 if (!new_shared) { 3799 free_alien_cache(new_alien); 3800 goto fail; 3801 } 3802 } 3803 3804 l3 = cachep->nodelists[node]; 3805 if (l3) { 3806 struct array_cache *shared = l3->shared; 3807 3808 spin_lock_irq(&l3->list_lock); 3809 3810 if (shared) 3811 free_block(cachep, shared->entry, 3812 shared->avail, node); 3813 3814 l3->shared = new_shared; 3815 if (!l3->alien) { 3816 l3->alien = new_alien; 3817 new_alien = NULL; 3818 } 3819 l3->free_limit = (1 + nr_cpus_node(node)) * 3820 cachep->batchcount + cachep->num; 3821 spin_unlock_irq(&l3->list_lock); 3822 kfree(shared); 3823 free_alien_cache(new_alien); 3824 continue; 3825 } 3826 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node); 3827 if (!l3) { 3828 free_alien_cache(new_alien); 3829 kfree(new_shared); 3830 goto fail; 3831 } 3832 3833 kmem_list3_init(l3); 3834 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 3835 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 3836 l3->shared = new_shared; 3837 l3->alien = new_alien; 3838 l3->free_limit = (1 + nr_cpus_node(node)) * 3839 cachep->batchcount + cachep->num; 3840 cachep->nodelists[node] = l3; 3841 } 3842 return 0; 3843 3844 fail: 3845 if (!cachep->next.next) { 3846 /* Cache is not active yet. Roll back what we did */ 3847 node--; 3848 while (node >= 0) { 3849 if (cachep->nodelists[node]) { 3850 l3 = cachep->nodelists[node]; 3851 3852 kfree(l3->shared); 3853 free_alien_cache(l3->alien); 3854 kfree(l3); 3855 cachep->nodelists[node] = NULL; 3856 } 3857 node--; 3858 } 3859 } 3860 return -ENOMEM; 3861 } 3862 3863 struct ccupdate_struct { 3864 struct kmem_cache *cachep; 3865 struct array_cache *new[NR_CPUS]; 3866 }; 3867 3868 static void do_ccupdate_local(void *info) 3869 { 3870 struct ccupdate_struct *new = info; 3871 struct array_cache *old; 3872 3873 check_irq_off(); 3874 old = cpu_cache_get(new->cachep); 3875 3876 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 3877 new->new[smp_processor_id()] = old; 3878 } 3879 3880 /* Always called with the cache_chain_mutex held */ 3881 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3882 int batchcount, int shared) 3883 { 3884 struct ccupdate_struct *new; 3885 int i; 3886 3887 new = kzalloc(sizeof(*new), GFP_KERNEL); 3888 if (!new) 3889 return -ENOMEM; 3890 3891 for_each_online_cpu(i) { 3892 new->new[i] = alloc_arraycache(cpu_to_node(i), limit, 3893 batchcount); 3894 if (!new->new[i]) { 3895 for (i--; i >= 0; i--) 3896 kfree(new->new[i]); 3897 kfree(new); 3898 return -ENOMEM; 3899 } 3900 } 3901 new->cachep = cachep; 3902 3903 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1); 3904 3905 check_irq_on(); 3906 cachep->batchcount = batchcount; 3907 cachep->limit = limit; 3908 cachep->shared = shared; 3909 3910 for_each_online_cpu(i) { 3911 struct array_cache *ccold = new->new[i]; 3912 if (!ccold) 3913 continue; 3914 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); 3915 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i)); 3916 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); 3917 kfree(ccold); 3918 } 3919 kfree(new); 3920 return alloc_kmemlist(cachep); 3921 } 3922 3923 /* Called with cache_chain_mutex held always */ 3924 static int enable_cpucache(struct kmem_cache *cachep) 3925 { 3926 int err; 3927 int limit, shared; 3928 3929 /* 3930 * The head array serves three purposes: 3931 * - create a LIFO ordering, i.e. return objects that are cache-warm 3932 * - reduce the number of spinlock operations. 3933 * - reduce the number of linked list operations on the slab and 3934 * bufctl chains: array operations are cheaper. 3935 * The numbers are guessed, we should auto-tune as described by 3936 * Bonwick. 3937 */ 3938 if (cachep->buffer_size > 131072) 3939 limit = 1; 3940 else if (cachep->buffer_size > PAGE_SIZE) 3941 limit = 8; 3942 else if (cachep->buffer_size > 1024) 3943 limit = 24; 3944 else if (cachep->buffer_size > 256) 3945 limit = 54; 3946 else 3947 limit = 120; 3948 3949 /* 3950 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3951 * allocation behaviour: Most allocs on one cpu, most free operations 3952 * on another cpu. For these cases, an efficient object passing between 3953 * cpus is necessary. This is provided by a shared array. The array 3954 * replaces Bonwick's magazine layer. 3955 * On uniprocessor, it's functionally equivalent (but less efficient) 3956 * to a larger limit. Thus disabled by default. 3957 */ 3958 shared = 0; 3959 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1) 3960 shared = 8; 3961 3962 #if DEBUG 3963 /* 3964 * With debugging enabled, large batchcount lead to excessively long 3965 * periods with disabled local interrupts. Limit the batchcount 3966 */ 3967 if (limit > 32) 3968 limit = 32; 3969 #endif 3970 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared); 3971 if (err) 3972 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 3973 cachep->name, -err); 3974 return err; 3975 } 3976 3977 /* 3978 * Drain an array if it contains any elements taking the l3 lock only if 3979 * necessary. Note that the l3 listlock also protects the array_cache 3980 * if drain_array() is used on the shared array. 3981 */ 3982 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 3983 struct array_cache *ac, int force, int node) 3984 { 3985 int tofree; 3986 3987 if (!ac || !ac->avail) 3988 return; 3989 if (ac->touched && !force) { 3990 ac->touched = 0; 3991 } else { 3992 spin_lock_irq(&l3->list_lock); 3993 if (ac->avail) { 3994 tofree = force ? ac->avail : (ac->limit + 4) / 5; 3995 if (tofree > ac->avail) 3996 tofree = (ac->avail + 1) / 2; 3997 free_block(cachep, ac->entry, tofree, node); 3998 ac->avail -= tofree; 3999 memmove(ac->entry, &(ac->entry[tofree]), 4000 sizeof(void *) * ac->avail); 4001 } 4002 spin_unlock_irq(&l3->list_lock); 4003 } 4004 } 4005 4006 /** 4007 * cache_reap - Reclaim memory from caches. 4008 * @w: work descriptor 4009 * 4010 * Called from workqueue/eventd every few seconds. 4011 * Purpose: 4012 * - clear the per-cpu caches for this CPU. 4013 * - return freeable pages to the main free memory pool. 4014 * 4015 * If we cannot acquire the cache chain mutex then just give up - we'll try 4016 * again on the next iteration. 4017 */ 4018 static void cache_reap(struct work_struct *w) 4019 { 4020 struct kmem_cache *searchp; 4021 struct kmem_list3 *l3; 4022 int node = numa_node_id(); 4023 struct delayed_work *work = 4024 container_of(w, struct delayed_work, work); 4025 4026 if (!mutex_trylock(&cache_chain_mutex)) 4027 /* Give up. Setup the next iteration. */ 4028 goto out; 4029 4030 list_for_each_entry(searchp, &cache_chain, next) { 4031 check_irq_on(); 4032 4033 /* 4034 * We only take the l3 lock if absolutely necessary and we 4035 * have established with reasonable certainty that 4036 * we can do some work if the lock was obtained. 4037 */ 4038 l3 = searchp->nodelists[node]; 4039 4040 reap_alien(searchp, l3); 4041 4042 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); 4043 4044 /* 4045 * These are racy checks but it does not matter 4046 * if we skip one check or scan twice. 4047 */ 4048 if (time_after(l3->next_reap, jiffies)) 4049 goto next; 4050 4051 l3->next_reap = jiffies + REAPTIMEOUT_LIST3; 4052 4053 drain_array(searchp, l3, l3->shared, 0, node); 4054 4055 if (l3->free_touched) 4056 l3->free_touched = 0; 4057 else { 4058 int freed; 4059 4060 freed = drain_freelist(searchp, l3, (l3->free_limit + 4061 5 * searchp->num - 1) / (5 * searchp->num)); 4062 STATS_ADD_REAPED(searchp, freed); 4063 } 4064 next: 4065 cond_resched(); 4066 } 4067 check_irq_on(); 4068 mutex_unlock(&cache_chain_mutex); 4069 next_reap_node(); 4070 out: 4071 /* Set up the next iteration */ 4072 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); 4073 } 4074 4075 #ifdef CONFIG_PROC_FS 4076 4077 static void print_slabinfo_header(struct seq_file *m) 4078 { 4079 /* 4080 * Output format version, so at least we can change it 4081 * without _too_ many complaints. 4082 */ 4083 #if STATS 4084 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 4085 #else 4086 seq_puts(m, "slabinfo - version: 2.1\n"); 4087 #endif 4088 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4089 "<objperslab> <pagesperslab>"); 4090 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4091 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4092 #if STATS 4093 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " 4094 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 4095 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 4096 #endif 4097 seq_putc(m, '\n'); 4098 } 4099 4100 static void *s_start(struct seq_file *m, loff_t *pos) 4101 { 4102 loff_t n = *pos; 4103 4104 mutex_lock(&cache_chain_mutex); 4105 if (!n) 4106 print_slabinfo_header(m); 4107 4108 return seq_list_start(&cache_chain, *pos); 4109 } 4110 4111 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4112 { 4113 return seq_list_next(p, &cache_chain, pos); 4114 } 4115 4116 static void s_stop(struct seq_file *m, void *p) 4117 { 4118 mutex_unlock(&cache_chain_mutex); 4119 } 4120 4121 static int s_show(struct seq_file *m, void *p) 4122 { 4123 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4124 struct slab *slabp; 4125 unsigned long active_objs; 4126 unsigned long num_objs; 4127 unsigned long active_slabs = 0; 4128 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4129 const char *name; 4130 char *error = NULL; 4131 int node; 4132 struct kmem_list3 *l3; 4133 4134 active_objs = 0; 4135 num_slabs = 0; 4136 for_each_online_node(node) { 4137 l3 = cachep->nodelists[node]; 4138 if (!l3) 4139 continue; 4140 4141 check_irq_on(); 4142 spin_lock_irq(&l3->list_lock); 4143 4144 list_for_each_entry(slabp, &l3->slabs_full, list) { 4145 if (slabp->inuse != cachep->num && !error) 4146 error = "slabs_full accounting error"; 4147 active_objs += cachep->num; 4148 active_slabs++; 4149 } 4150 list_for_each_entry(slabp, &l3->slabs_partial, list) { 4151 if (slabp->inuse == cachep->num && !error) 4152 error = "slabs_partial inuse accounting error"; 4153 if (!slabp->inuse && !error) 4154 error = "slabs_partial/inuse accounting error"; 4155 active_objs += slabp->inuse; 4156 active_slabs++; 4157 } 4158 list_for_each_entry(slabp, &l3->slabs_free, list) { 4159 if (slabp->inuse && !error) 4160 error = "slabs_free/inuse accounting error"; 4161 num_slabs++; 4162 } 4163 free_objects += l3->free_objects; 4164 if (l3->shared) 4165 shared_avail += l3->shared->avail; 4166 4167 spin_unlock_irq(&l3->list_lock); 4168 } 4169 num_slabs += active_slabs; 4170 num_objs = num_slabs * cachep->num; 4171 if (num_objs - active_objs != free_objects && !error) 4172 error = "free_objects accounting error"; 4173 4174 name = cachep->name; 4175 if (error) 4176 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 4177 4178 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 4179 name, active_objs, num_objs, cachep->buffer_size, 4180 cachep->num, (1 << cachep->gfporder)); 4181 seq_printf(m, " : tunables %4u %4u %4u", 4182 cachep->limit, cachep->batchcount, cachep->shared); 4183 seq_printf(m, " : slabdata %6lu %6lu %6lu", 4184 active_slabs, num_slabs, shared_avail); 4185 #if STATS 4186 { /* list3 stats */ 4187 unsigned long high = cachep->high_mark; 4188 unsigned long allocs = cachep->num_allocations; 4189 unsigned long grown = cachep->grown; 4190 unsigned long reaped = cachep->reaped; 4191 unsigned long errors = cachep->errors; 4192 unsigned long max_freeable = cachep->max_freeable; 4193 unsigned long node_allocs = cachep->node_allocs; 4194 unsigned long node_frees = cachep->node_frees; 4195 unsigned long overflows = cachep->node_overflow; 4196 4197 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ 4198 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown, 4199 reaped, errors, max_freeable, node_allocs, 4200 node_frees, overflows); 4201 } 4202 /* cpu stats */ 4203 { 4204 unsigned long allochit = atomic_read(&cachep->allochit); 4205 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4206 unsigned long freehit = atomic_read(&cachep->freehit); 4207 unsigned long freemiss = atomic_read(&cachep->freemiss); 4208 4209 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4210 allochit, allocmiss, freehit, freemiss); 4211 } 4212 #endif 4213 seq_putc(m, '\n'); 4214 return 0; 4215 } 4216 4217 /* 4218 * slabinfo_op - iterator that generates /proc/slabinfo 4219 * 4220 * Output layout: 4221 * cache-name 4222 * num-active-objs 4223 * total-objs 4224 * object size 4225 * num-active-slabs 4226 * total-slabs 4227 * num-pages-per-slab 4228 * + further values on SMP and with statistics enabled 4229 */ 4230 4231 const struct seq_operations slabinfo_op = { 4232 .start = s_start, 4233 .next = s_next, 4234 .stop = s_stop, 4235 .show = s_show, 4236 }; 4237 4238 #define MAX_SLABINFO_WRITE 128 4239 /** 4240 * slabinfo_write - Tuning for the slab allocator 4241 * @file: unused 4242 * @buffer: user buffer 4243 * @count: data length 4244 * @ppos: unused 4245 */ 4246 ssize_t slabinfo_write(struct file *file, const char __user * buffer, 4247 size_t count, loff_t *ppos) 4248 { 4249 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4250 int limit, batchcount, shared, res; 4251 struct kmem_cache *cachep; 4252 4253 if (count > MAX_SLABINFO_WRITE) 4254 return -EINVAL; 4255 if (copy_from_user(&kbuf, buffer, count)) 4256 return -EFAULT; 4257 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4258 4259 tmp = strchr(kbuf, ' '); 4260 if (!tmp) 4261 return -EINVAL; 4262 *tmp = '\0'; 4263 tmp++; 4264 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4265 return -EINVAL; 4266 4267 /* Find the cache in the chain of caches. */ 4268 mutex_lock(&cache_chain_mutex); 4269 res = -EINVAL; 4270 list_for_each_entry(cachep, &cache_chain, next) { 4271 if (!strcmp(cachep->name, kbuf)) { 4272 if (limit < 1 || batchcount < 1 || 4273 batchcount > limit || shared < 0) { 4274 res = 0; 4275 } else { 4276 res = do_tune_cpucache(cachep, limit, 4277 batchcount, shared); 4278 } 4279 break; 4280 } 4281 } 4282 mutex_unlock(&cache_chain_mutex); 4283 if (res >= 0) 4284 res = count; 4285 return res; 4286 } 4287 4288 #ifdef CONFIG_DEBUG_SLAB_LEAK 4289 4290 static void *leaks_start(struct seq_file *m, loff_t *pos) 4291 { 4292 mutex_lock(&cache_chain_mutex); 4293 return seq_list_start(&cache_chain, *pos); 4294 } 4295 4296 static inline int add_caller(unsigned long *n, unsigned long v) 4297 { 4298 unsigned long *p; 4299 int l; 4300 if (!v) 4301 return 1; 4302 l = n[1]; 4303 p = n + 2; 4304 while (l) { 4305 int i = l/2; 4306 unsigned long *q = p + 2 * i; 4307 if (*q == v) { 4308 q[1]++; 4309 return 1; 4310 } 4311 if (*q > v) { 4312 l = i; 4313 } else { 4314 p = q + 2; 4315 l -= i + 1; 4316 } 4317 } 4318 if (++n[1] == n[0]) 4319 return 0; 4320 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4321 p[0] = v; 4322 p[1] = 1; 4323 return 1; 4324 } 4325 4326 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) 4327 { 4328 void *p; 4329 int i; 4330 if (n[0] == n[1]) 4331 return; 4332 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { 4333 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) 4334 continue; 4335 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4336 return; 4337 } 4338 } 4339 4340 static void show_symbol(struct seq_file *m, unsigned long address) 4341 { 4342 #ifdef CONFIG_KALLSYMS 4343 unsigned long offset, size; 4344 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4345 4346 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4347 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4348 if (modname[0]) 4349 seq_printf(m, " [%s]", modname); 4350 return; 4351 } 4352 #endif 4353 seq_printf(m, "%p", (void *)address); 4354 } 4355 4356 static int leaks_show(struct seq_file *m, void *p) 4357 { 4358 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4359 struct slab *slabp; 4360 struct kmem_list3 *l3; 4361 const char *name; 4362 unsigned long *n = m->private; 4363 int node; 4364 int i; 4365 4366 if (!(cachep->flags & SLAB_STORE_USER)) 4367 return 0; 4368 if (!(cachep->flags & SLAB_RED_ZONE)) 4369 return 0; 4370 4371 /* OK, we can do it */ 4372 4373 n[1] = 0; 4374 4375 for_each_online_node(node) { 4376 l3 = cachep->nodelists[node]; 4377 if (!l3) 4378 continue; 4379 4380 check_irq_on(); 4381 spin_lock_irq(&l3->list_lock); 4382 4383 list_for_each_entry(slabp, &l3->slabs_full, list) 4384 handle_slab(n, cachep, slabp); 4385 list_for_each_entry(slabp, &l3->slabs_partial, list) 4386 handle_slab(n, cachep, slabp); 4387 spin_unlock_irq(&l3->list_lock); 4388 } 4389 name = cachep->name; 4390 if (n[0] == n[1]) { 4391 /* Increase the buffer size */ 4392 mutex_unlock(&cache_chain_mutex); 4393 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4394 if (!m->private) { 4395 /* Too bad, we are really out */ 4396 m->private = n; 4397 mutex_lock(&cache_chain_mutex); 4398 return -ENOMEM; 4399 } 4400 *(unsigned long *)m->private = n[0] * 2; 4401 kfree(n); 4402 mutex_lock(&cache_chain_mutex); 4403 /* Now make sure this entry will be retried */ 4404 m->count = m->size; 4405 return 0; 4406 } 4407 for (i = 0; i < n[1]; i++) { 4408 seq_printf(m, "%s: %lu ", name, n[2*i+3]); 4409 show_symbol(m, n[2*i+2]); 4410 seq_putc(m, '\n'); 4411 } 4412 4413 return 0; 4414 } 4415 4416 const struct seq_operations slabstats_op = { 4417 .start = leaks_start, 4418 .next = s_next, 4419 .stop = s_stop, 4420 .show = leaks_show, 4421 }; 4422 #endif 4423 #endif 4424 4425 /** 4426 * ksize - get the actual amount of memory allocated for a given object 4427 * @objp: Pointer to the object 4428 * 4429 * kmalloc may internally round up allocations and return more memory 4430 * than requested. ksize() can be used to determine the actual amount of 4431 * memory allocated. The caller may use this additional memory, even though 4432 * a smaller amount of memory was initially specified with the kmalloc call. 4433 * The caller must guarantee that objp points to a valid object previously 4434 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4435 * must not be freed during the duration of the call. 4436 */ 4437 size_t ksize(const void *objp) 4438 { 4439 if (unlikely(ZERO_OR_NULL_PTR(objp))) 4440 return 0; 4441 4442 return obj_size(virt_to_cache(objp)); 4443 } 4444