xref: /openbmc/linux/mm/slab.c (revision c1d45424)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 /*
161  * true if a page was allocated from pfmemalloc reserves for network-based
162  * swap
163  */
164 static bool pfmemalloc_active __read_mostly;
165 
166 /*
167  * kmem_bufctl_t:
168  *
169  * Bufctl's are used for linking objs within a slab
170  * linked offsets.
171  *
172  * This implementation relies on "struct page" for locating the cache &
173  * slab an object belongs to.
174  * This allows the bufctl structure to be small (one int), but limits
175  * the number of objects a slab (not a cache) can contain when off-slab
176  * bufctls are used. The limit is the size of the largest general cache
177  * that does not use off-slab slabs.
178  * For 32bit archs with 4 kB pages, is this 56.
179  * This is not serious, as it is only for large objects, when it is unwise
180  * to have too many per slab.
181  * Note: This limit can be raised by introducing a general cache whose size
182  * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183  */
184 
185 typedef unsigned int kmem_bufctl_t;
186 #define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
187 #define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
188 #define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
189 #define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
190 
191 /*
192  * struct slab_rcu
193  *
194  * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195  * arrange for kmem_freepages to be called via RCU.  This is useful if
196  * we need to approach a kernel structure obliquely, from its address
197  * obtained without the usual locking.  We can lock the structure to
198  * stabilize it and check it's still at the given address, only if we
199  * can be sure that the memory has not been meanwhile reused for some
200  * other kind of object (which our subsystem's lock might corrupt).
201  *
202  * rcu_read_lock before reading the address, then rcu_read_unlock after
203  * taking the spinlock within the structure expected at that address.
204  */
205 struct slab_rcu {
206 	struct rcu_head head;
207 	struct kmem_cache *cachep;
208 	void *addr;
209 };
210 
211 /*
212  * struct slab
213  *
214  * Manages the objs in a slab. Placed either at the beginning of mem allocated
215  * for a slab, or allocated from an general cache.
216  * Slabs are chained into three list: fully used, partial, fully free slabs.
217  */
218 struct slab {
219 	union {
220 		struct {
221 			struct list_head list;
222 			unsigned long colouroff;
223 			void *s_mem;		/* including colour offset */
224 			unsigned int inuse;	/* num of objs active in slab */
225 			kmem_bufctl_t free;
226 			unsigned short nodeid;
227 		};
228 		struct slab_rcu __slab_cover_slab_rcu;
229 	};
230 };
231 
232 /*
233  * struct array_cache
234  *
235  * Purpose:
236  * - LIFO ordering, to hand out cache-warm objects from _alloc
237  * - reduce the number of linked list operations
238  * - reduce spinlock operations
239  *
240  * The limit is stored in the per-cpu structure to reduce the data cache
241  * footprint.
242  *
243  */
244 struct array_cache {
245 	unsigned int avail;
246 	unsigned int limit;
247 	unsigned int batchcount;
248 	unsigned int touched;
249 	spinlock_t lock;
250 	void *entry[];	/*
251 			 * Must have this definition in here for the proper
252 			 * alignment of array_cache. Also simplifies accessing
253 			 * the entries.
254 			 *
255 			 * Entries should not be directly dereferenced as
256 			 * entries belonging to slabs marked pfmemalloc will
257 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
258 			 */
259 };
260 
261 #define SLAB_OBJ_PFMEMALLOC	1
262 static inline bool is_obj_pfmemalloc(void *objp)
263 {
264 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265 }
266 
267 static inline void set_obj_pfmemalloc(void **objp)
268 {
269 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 	return;
271 }
272 
273 static inline void clear_obj_pfmemalloc(void **objp)
274 {
275 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276 }
277 
278 /*
279  * bootstrap: The caches do not work without cpuarrays anymore, but the
280  * cpuarrays are allocated from the generic caches...
281  */
282 #define BOOT_CPUCACHE_ENTRIES	1
283 struct arraycache_init {
284 	struct array_cache cache;
285 	void *entries[BOOT_CPUCACHE_ENTRIES];
286 };
287 
288 /*
289  * Need this for bootstrapping a per node allocator.
290  */
291 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
292 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
293 #define	CACHE_CACHE 0
294 #define	SIZE_AC MAX_NUMNODES
295 #define	SIZE_NODE (2 * MAX_NUMNODES)
296 
297 static int drain_freelist(struct kmem_cache *cache,
298 			struct kmem_cache_node *n, int tofree);
299 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
300 			int node);
301 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
302 static void cache_reap(struct work_struct *unused);
303 
304 static int slab_early_init = 1;
305 
306 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
307 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
308 
309 static void kmem_cache_node_init(struct kmem_cache_node *parent)
310 {
311 	INIT_LIST_HEAD(&parent->slabs_full);
312 	INIT_LIST_HEAD(&parent->slabs_partial);
313 	INIT_LIST_HEAD(&parent->slabs_free);
314 	parent->shared = NULL;
315 	parent->alien = NULL;
316 	parent->colour_next = 0;
317 	spin_lock_init(&parent->list_lock);
318 	parent->free_objects = 0;
319 	parent->free_touched = 0;
320 }
321 
322 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
323 	do {								\
324 		INIT_LIST_HEAD(listp);					\
325 		list_splice(&(cachep->node[nodeid]->slab), listp);	\
326 	} while (0)
327 
328 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
329 	do {								\
330 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
331 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
332 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
333 	} while (0)
334 
335 #define CFLGS_OFF_SLAB		(0x80000000UL)
336 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
337 
338 #define BATCHREFILL_LIMIT	16
339 /*
340  * Optimization question: fewer reaps means less probability for unnessary
341  * cpucache drain/refill cycles.
342  *
343  * OTOH the cpuarrays can contain lots of objects,
344  * which could lock up otherwise freeable slabs.
345  */
346 #define REAPTIMEOUT_CPUC	(2*HZ)
347 #define REAPTIMEOUT_LIST3	(4*HZ)
348 
349 #if STATS
350 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
351 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
352 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
353 #define	STATS_INC_GROWN(x)	((x)->grown++)
354 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
355 #define	STATS_SET_HIGH(x)						\
356 	do {								\
357 		if ((x)->num_active > (x)->high_mark)			\
358 			(x)->high_mark = (x)->num_active;		\
359 	} while (0)
360 #define	STATS_INC_ERR(x)	((x)->errors++)
361 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
362 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
363 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
364 #define	STATS_SET_FREEABLE(x, i)					\
365 	do {								\
366 		if ((x)->max_freeable < i)				\
367 			(x)->max_freeable = i;				\
368 	} while (0)
369 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
370 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
371 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
372 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
373 #else
374 #define	STATS_INC_ACTIVE(x)	do { } while (0)
375 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
376 #define	STATS_INC_ALLOCED(x)	do { } while (0)
377 #define	STATS_INC_GROWN(x)	do { } while (0)
378 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
379 #define	STATS_SET_HIGH(x)	do { } while (0)
380 #define	STATS_INC_ERR(x)	do { } while (0)
381 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
382 #define	STATS_INC_NODEFREES(x)	do { } while (0)
383 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
384 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
385 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
386 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
387 #define STATS_INC_FREEHIT(x)	do { } while (0)
388 #define STATS_INC_FREEMISS(x)	do { } while (0)
389 #endif
390 
391 #if DEBUG
392 
393 /*
394  * memory layout of objects:
395  * 0		: objp
396  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
397  * 		the end of an object is aligned with the end of the real
398  * 		allocation. Catches writes behind the end of the allocation.
399  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
400  * 		redzone word.
401  * cachep->obj_offset: The real object.
402  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
403  * cachep->size - 1* BYTES_PER_WORD: last caller address
404  *					[BYTES_PER_WORD long]
405  */
406 static int obj_offset(struct kmem_cache *cachep)
407 {
408 	return cachep->obj_offset;
409 }
410 
411 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
412 {
413 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
414 	return (unsigned long long*) (objp + obj_offset(cachep) -
415 				      sizeof(unsigned long long));
416 }
417 
418 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
419 {
420 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
421 	if (cachep->flags & SLAB_STORE_USER)
422 		return (unsigned long long *)(objp + cachep->size -
423 					      sizeof(unsigned long long) -
424 					      REDZONE_ALIGN);
425 	return (unsigned long long *) (objp + cachep->size -
426 				       sizeof(unsigned long long));
427 }
428 
429 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
430 {
431 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
432 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
433 }
434 
435 #else
436 
437 #define obj_offset(x)			0
438 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
439 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
440 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
441 
442 #endif
443 
444 /*
445  * Do not go above this order unless 0 objects fit into the slab or
446  * overridden on the command line.
447  */
448 #define	SLAB_MAX_ORDER_HI	1
449 #define	SLAB_MAX_ORDER_LO	0
450 static int slab_max_order = SLAB_MAX_ORDER_LO;
451 static bool slab_max_order_set __initdata;
452 
453 static inline struct kmem_cache *virt_to_cache(const void *obj)
454 {
455 	struct page *page = virt_to_head_page(obj);
456 	return page->slab_cache;
457 }
458 
459 static inline struct slab *virt_to_slab(const void *obj)
460 {
461 	struct page *page = virt_to_head_page(obj);
462 
463 	VM_BUG_ON(!PageSlab(page));
464 	return page->slab_page;
465 }
466 
467 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
468 				 unsigned int idx)
469 {
470 	return slab->s_mem + cache->size * idx;
471 }
472 
473 /*
474  * We want to avoid an expensive divide : (offset / cache->size)
475  *   Using the fact that size is a constant for a particular cache,
476  *   we can replace (offset / cache->size) by
477  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
478  */
479 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
480 					const struct slab *slab, void *obj)
481 {
482 	u32 offset = (obj - slab->s_mem);
483 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
484 }
485 
486 static struct arraycache_init initarray_generic =
487     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
488 
489 /* internal cache of cache description objs */
490 static struct kmem_cache kmem_cache_boot = {
491 	.batchcount = 1,
492 	.limit = BOOT_CPUCACHE_ENTRIES,
493 	.shared = 1,
494 	.size = sizeof(struct kmem_cache),
495 	.name = "kmem_cache",
496 };
497 
498 #define BAD_ALIEN_MAGIC 0x01020304ul
499 
500 #ifdef CONFIG_LOCKDEP
501 
502 /*
503  * Slab sometimes uses the kmalloc slabs to store the slab headers
504  * for other slabs "off slab".
505  * The locking for this is tricky in that it nests within the locks
506  * of all other slabs in a few places; to deal with this special
507  * locking we put on-slab caches into a separate lock-class.
508  *
509  * We set lock class for alien array caches which are up during init.
510  * The lock annotation will be lost if all cpus of a node goes down and
511  * then comes back up during hotplug
512  */
513 static struct lock_class_key on_slab_l3_key;
514 static struct lock_class_key on_slab_alc_key;
515 
516 static struct lock_class_key debugobj_l3_key;
517 static struct lock_class_key debugobj_alc_key;
518 
519 static void slab_set_lock_classes(struct kmem_cache *cachep,
520 		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
521 		int q)
522 {
523 	struct array_cache **alc;
524 	struct kmem_cache_node *n;
525 	int r;
526 
527 	n = cachep->node[q];
528 	if (!n)
529 		return;
530 
531 	lockdep_set_class(&n->list_lock, l3_key);
532 	alc = n->alien;
533 	/*
534 	 * FIXME: This check for BAD_ALIEN_MAGIC
535 	 * should go away when common slab code is taught to
536 	 * work even without alien caches.
537 	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
538 	 * for alloc_alien_cache,
539 	 */
540 	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
541 		return;
542 	for_each_node(r) {
543 		if (alc[r])
544 			lockdep_set_class(&alc[r]->lock, alc_key);
545 	}
546 }
547 
548 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
549 {
550 	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
551 }
552 
553 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
554 {
555 	int node;
556 
557 	for_each_online_node(node)
558 		slab_set_debugobj_lock_classes_node(cachep, node);
559 }
560 
561 static void init_node_lock_keys(int q)
562 {
563 	int i;
564 
565 	if (slab_state < UP)
566 		return;
567 
568 	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
569 		struct kmem_cache_node *n;
570 		struct kmem_cache *cache = kmalloc_caches[i];
571 
572 		if (!cache)
573 			continue;
574 
575 		n = cache->node[q];
576 		if (!n || OFF_SLAB(cache))
577 			continue;
578 
579 		slab_set_lock_classes(cache, &on_slab_l3_key,
580 				&on_slab_alc_key, q);
581 	}
582 }
583 
584 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
585 {
586 	if (!cachep->node[q])
587 		return;
588 
589 	slab_set_lock_classes(cachep, &on_slab_l3_key,
590 			&on_slab_alc_key, q);
591 }
592 
593 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
594 {
595 	int node;
596 
597 	VM_BUG_ON(OFF_SLAB(cachep));
598 	for_each_node(node)
599 		on_slab_lock_classes_node(cachep, node);
600 }
601 
602 static inline void init_lock_keys(void)
603 {
604 	int node;
605 
606 	for_each_node(node)
607 		init_node_lock_keys(node);
608 }
609 #else
610 static void init_node_lock_keys(int q)
611 {
612 }
613 
614 static inline void init_lock_keys(void)
615 {
616 }
617 
618 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
619 {
620 }
621 
622 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
623 {
624 }
625 
626 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
627 {
628 }
629 
630 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
631 {
632 }
633 #endif
634 
635 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
636 
637 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
638 {
639 	return cachep->array[smp_processor_id()];
640 }
641 
642 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
643 {
644 	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
645 }
646 
647 /*
648  * Calculate the number of objects and left-over bytes for a given buffer size.
649  */
650 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
651 			   size_t align, int flags, size_t *left_over,
652 			   unsigned int *num)
653 {
654 	int nr_objs;
655 	size_t mgmt_size;
656 	size_t slab_size = PAGE_SIZE << gfporder;
657 
658 	/*
659 	 * The slab management structure can be either off the slab or
660 	 * on it. For the latter case, the memory allocated for a
661 	 * slab is used for:
662 	 *
663 	 * - The struct slab
664 	 * - One kmem_bufctl_t for each object
665 	 * - Padding to respect alignment of @align
666 	 * - @buffer_size bytes for each object
667 	 *
668 	 * If the slab management structure is off the slab, then the
669 	 * alignment will already be calculated into the size. Because
670 	 * the slabs are all pages aligned, the objects will be at the
671 	 * correct alignment when allocated.
672 	 */
673 	if (flags & CFLGS_OFF_SLAB) {
674 		mgmt_size = 0;
675 		nr_objs = slab_size / buffer_size;
676 
677 		if (nr_objs > SLAB_LIMIT)
678 			nr_objs = SLAB_LIMIT;
679 	} else {
680 		/*
681 		 * Ignore padding for the initial guess. The padding
682 		 * is at most @align-1 bytes, and @buffer_size is at
683 		 * least @align. In the worst case, this result will
684 		 * be one greater than the number of objects that fit
685 		 * into the memory allocation when taking the padding
686 		 * into account.
687 		 */
688 		nr_objs = (slab_size - sizeof(struct slab)) /
689 			  (buffer_size + sizeof(kmem_bufctl_t));
690 
691 		/*
692 		 * This calculated number will be either the right
693 		 * amount, or one greater than what we want.
694 		 */
695 		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
696 		       > slab_size)
697 			nr_objs--;
698 
699 		if (nr_objs > SLAB_LIMIT)
700 			nr_objs = SLAB_LIMIT;
701 
702 		mgmt_size = slab_mgmt_size(nr_objs, align);
703 	}
704 	*num = nr_objs;
705 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
706 }
707 
708 #if DEBUG
709 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
710 
711 static void __slab_error(const char *function, struct kmem_cache *cachep,
712 			char *msg)
713 {
714 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
715 	       function, cachep->name, msg);
716 	dump_stack();
717 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
718 }
719 #endif
720 
721 /*
722  * By default on NUMA we use alien caches to stage the freeing of
723  * objects allocated from other nodes. This causes massive memory
724  * inefficiencies when using fake NUMA setup to split memory into a
725  * large number of small nodes, so it can be disabled on the command
726  * line
727   */
728 
729 static int use_alien_caches __read_mostly = 1;
730 static int __init noaliencache_setup(char *s)
731 {
732 	use_alien_caches = 0;
733 	return 1;
734 }
735 __setup("noaliencache", noaliencache_setup);
736 
737 static int __init slab_max_order_setup(char *str)
738 {
739 	get_option(&str, &slab_max_order);
740 	slab_max_order = slab_max_order < 0 ? 0 :
741 				min(slab_max_order, MAX_ORDER - 1);
742 	slab_max_order_set = true;
743 
744 	return 1;
745 }
746 __setup("slab_max_order=", slab_max_order_setup);
747 
748 #ifdef CONFIG_NUMA
749 /*
750  * Special reaping functions for NUMA systems called from cache_reap().
751  * These take care of doing round robin flushing of alien caches (containing
752  * objects freed on different nodes from which they were allocated) and the
753  * flushing of remote pcps by calling drain_node_pages.
754  */
755 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
756 
757 static void init_reap_node(int cpu)
758 {
759 	int node;
760 
761 	node = next_node(cpu_to_mem(cpu), node_online_map);
762 	if (node == MAX_NUMNODES)
763 		node = first_node(node_online_map);
764 
765 	per_cpu(slab_reap_node, cpu) = node;
766 }
767 
768 static void next_reap_node(void)
769 {
770 	int node = __this_cpu_read(slab_reap_node);
771 
772 	node = next_node(node, node_online_map);
773 	if (unlikely(node >= MAX_NUMNODES))
774 		node = first_node(node_online_map);
775 	__this_cpu_write(slab_reap_node, node);
776 }
777 
778 #else
779 #define init_reap_node(cpu) do { } while (0)
780 #define next_reap_node(void) do { } while (0)
781 #endif
782 
783 /*
784  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
785  * via the workqueue/eventd.
786  * Add the CPU number into the expiration time to minimize the possibility of
787  * the CPUs getting into lockstep and contending for the global cache chain
788  * lock.
789  */
790 static void start_cpu_timer(int cpu)
791 {
792 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
793 
794 	/*
795 	 * When this gets called from do_initcalls via cpucache_init(),
796 	 * init_workqueues() has already run, so keventd will be setup
797 	 * at that time.
798 	 */
799 	if (keventd_up() && reap_work->work.func == NULL) {
800 		init_reap_node(cpu);
801 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
802 		schedule_delayed_work_on(cpu, reap_work,
803 					__round_jiffies_relative(HZ, cpu));
804 	}
805 }
806 
807 static struct array_cache *alloc_arraycache(int node, int entries,
808 					    int batchcount, gfp_t gfp)
809 {
810 	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
811 	struct array_cache *nc = NULL;
812 
813 	nc = kmalloc_node(memsize, gfp, node);
814 	/*
815 	 * The array_cache structures contain pointers to free object.
816 	 * However, when such objects are allocated or transferred to another
817 	 * cache the pointers are not cleared and they could be counted as
818 	 * valid references during a kmemleak scan. Therefore, kmemleak must
819 	 * not scan such objects.
820 	 */
821 	kmemleak_no_scan(nc);
822 	if (nc) {
823 		nc->avail = 0;
824 		nc->limit = entries;
825 		nc->batchcount = batchcount;
826 		nc->touched = 0;
827 		spin_lock_init(&nc->lock);
828 	}
829 	return nc;
830 }
831 
832 static inline bool is_slab_pfmemalloc(struct slab *slabp)
833 {
834 	struct page *page = virt_to_page(slabp->s_mem);
835 
836 	return PageSlabPfmemalloc(page);
837 }
838 
839 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
840 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
841 						struct array_cache *ac)
842 {
843 	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
844 	struct slab *slabp;
845 	unsigned long flags;
846 
847 	if (!pfmemalloc_active)
848 		return;
849 
850 	spin_lock_irqsave(&n->list_lock, flags);
851 	list_for_each_entry(slabp, &n->slabs_full, list)
852 		if (is_slab_pfmemalloc(slabp))
853 			goto out;
854 
855 	list_for_each_entry(slabp, &n->slabs_partial, list)
856 		if (is_slab_pfmemalloc(slabp))
857 			goto out;
858 
859 	list_for_each_entry(slabp, &n->slabs_free, list)
860 		if (is_slab_pfmemalloc(slabp))
861 			goto out;
862 
863 	pfmemalloc_active = false;
864 out:
865 	spin_unlock_irqrestore(&n->list_lock, flags);
866 }
867 
868 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
869 						gfp_t flags, bool force_refill)
870 {
871 	int i;
872 	void *objp = ac->entry[--ac->avail];
873 
874 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
875 	if (unlikely(is_obj_pfmemalloc(objp))) {
876 		struct kmem_cache_node *n;
877 
878 		if (gfp_pfmemalloc_allowed(flags)) {
879 			clear_obj_pfmemalloc(&objp);
880 			return objp;
881 		}
882 
883 		/* The caller cannot use PFMEMALLOC objects, find another one */
884 		for (i = 0; i < ac->avail; i++) {
885 			/* If a !PFMEMALLOC object is found, swap them */
886 			if (!is_obj_pfmemalloc(ac->entry[i])) {
887 				objp = ac->entry[i];
888 				ac->entry[i] = ac->entry[ac->avail];
889 				ac->entry[ac->avail] = objp;
890 				return objp;
891 			}
892 		}
893 
894 		/*
895 		 * If there are empty slabs on the slabs_free list and we are
896 		 * being forced to refill the cache, mark this one !pfmemalloc.
897 		 */
898 		n = cachep->node[numa_mem_id()];
899 		if (!list_empty(&n->slabs_free) && force_refill) {
900 			struct slab *slabp = virt_to_slab(objp);
901 			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
902 			clear_obj_pfmemalloc(&objp);
903 			recheck_pfmemalloc_active(cachep, ac);
904 			return objp;
905 		}
906 
907 		/* No !PFMEMALLOC objects available */
908 		ac->avail++;
909 		objp = NULL;
910 	}
911 
912 	return objp;
913 }
914 
915 static inline void *ac_get_obj(struct kmem_cache *cachep,
916 			struct array_cache *ac, gfp_t flags, bool force_refill)
917 {
918 	void *objp;
919 
920 	if (unlikely(sk_memalloc_socks()))
921 		objp = __ac_get_obj(cachep, ac, flags, force_refill);
922 	else
923 		objp = ac->entry[--ac->avail];
924 
925 	return objp;
926 }
927 
928 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
929 								void *objp)
930 {
931 	if (unlikely(pfmemalloc_active)) {
932 		/* Some pfmemalloc slabs exist, check if this is one */
933 		struct page *page = virt_to_head_page(objp);
934 		if (PageSlabPfmemalloc(page))
935 			set_obj_pfmemalloc(&objp);
936 	}
937 
938 	return objp;
939 }
940 
941 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
942 								void *objp)
943 {
944 	if (unlikely(sk_memalloc_socks()))
945 		objp = __ac_put_obj(cachep, ac, objp);
946 
947 	ac->entry[ac->avail++] = objp;
948 }
949 
950 /*
951  * Transfer objects in one arraycache to another.
952  * Locking must be handled by the caller.
953  *
954  * Return the number of entries transferred.
955  */
956 static int transfer_objects(struct array_cache *to,
957 		struct array_cache *from, unsigned int max)
958 {
959 	/* Figure out how many entries to transfer */
960 	int nr = min3(from->avail, max, to->limit - to->avail);
961 
962 	if (!nr)
963 		return 0;
964 
965 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
966 			sizeof(void *) *nr);
967 
968 	from->avail -= nr;
969 	to->avail += nr;
970 	return nr;
971 }
972 
973 #ifndef CONFIG_NUMA
974 
975 #define drain_alien_cache(cachep, alien) do { } while (0)
976 #define reap_alien(cachep, n) do { } while (0)
977 
978 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
979 {
980 	return (struct array_cache **)BAD_ALIEN_MAGIC;
981 }
982 
983 static inline void free_alien_cache(struct array_cache **ac_ptr)
984 {
985 }
986 
987 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
988 {
989 	return 0;
990 }
991 
992 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
993 		gfp_t flags)
994 {
995 	return NULL;
996 }
997 
998 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
999 		 gfp_t flags, int nodeid)
1000 {
1001 	return NULL;
1002 }
1003 
1004 #else	/* CONFIG_NUMA */
1005 
1006 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1007 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1008 
1009 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1010 {
1011 	struct array_cache **ac_ptr;
1012 	int memsize = sizeof(void *) * nr_node_ids;
1013 	int i;
1014 
1015 	if (limit > 1)
1016 		limit = 12;
1017 	ac_ptr = kzalloc_node(memsize, gfp, node);
1018 	if (ac_ptr) {
1019 		for_each_node(i) {
1020 			if (i == node || !node_online(i))
1021 				continue;
1022 			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1023 			if (!ac_ptr[i]) {
1024 				for (i--; i >= 0; i--)
1025 					kfree(ac_ptr[i]);
1026 				kfree(ac_ptr);
1027 				return NULL;
1028 			}
1029 		}
1030 	}
1031 	return ac_ptr;
1032 }
1033 
1034 static void free_alien_cache(struct array_cache **ac_ptr)
1035 {
1036 	int i;
1037 
1038 	if (!ac_ptr)
1039 		return;
1040 	for_each_node(i)
1041 	    kfree(ac_ptr[i]);
1042 	kfree(ac_ptr);
1043 }
1044 
1045 static void __drain_alien_cache(struct kmem_cache *cachep,
1046 				struct array_cache *ac, int node)
1047 {
1048 	struct kmem_cache_node *n = cachep->node[node];
1049 
1050 	if (ac->avail) {
1051 		spin_lock(&n->list_lock);
1052 		/*
1053 		 * Stuff objects into the remote nodes shared array first.
1054 		 * That way we could avoid the overhead of putting the objects
1055 		 * into the free lists and getting them back later.
1056 		 */
1057 		if (n->shared)
1058 			transfer_objects(n->shared, ac, ac->limit);
1059 
1060 		free_block(cachep, ac->entry, ac->avail, node);
1061 		ac->avail = 0;
1062 		spin_unlock(&n->list_lock);
1063 	}
1064 }
1065 
1066 /*
1067  * Called from cache_reap() to regularly drain alien caches round robin.
1068  */
1069 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1070 {
1071 	int node = __this_cpu_read(slab_reap_node);
1072 
1073 	if (n->alien) {
1074 		struct array_cache *ac = n->alien[node];
1075 
1076 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1077 			__drain_alien_cache(cachep, ac, node);
1078 			spin_unlock_irq(&ac->lock);
1079 		}
1080 	}
1081 }
1082 
1083 static void drain_alien_cache(struct kmem_cache *cachep,
1084 				struct array_cache **alien)
1085 {
1086 	int i = 0;
1087 	struct array_cache *ac;
1088 	unsigned long flags;
1089 
1090 	for_each_online_node(i) {
1091 		ac = alien[i];
1092 		if (ac) {
1093 			spin_lock_irqsave(&ac->lock, flags);
1094 			__drain_alien_cache(cachep, ac, i);
1095 			spin_unlock_irqrestore(&ac->lock, flags);
1096 		}
1097 	}
1098 }
1099 
1100 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1101 {
1102 	struct slab *slabp = virt_to_slab(objp);
1103 	int nodeid = slabp->nodeid;
1104 	struct kmem_cache_node *n;
1105 	struct array_cache *alien = NULL;
1106 	int node;
1107 
1108 	node = numa_mem_id();
1109 
1110 	/*
1111 	 * Make sure we are not freeing a object from another node to the array
1112 	 * cache on this cpu.
1113 	 */
1114 	if (likely(slabp->nodeid == node))
1115 		return 0;
1116 
1117 	n = cachep->node[node];
1118 	STATS_INC_NODEFREES(cachep);
1119 	if (n->alien && n->alien[nodeid]) {
1120 		alien = n->alien[nodeid];
1121 		spin_lock(&alien->lock);
1122 		if (unlikely(alien->avail == alien->limit)) {
1123 			STATS_INC_ACOVERFLOW(cachep);
1124 			__drain_alien_cache(cachep, alien, nodeid);
1125 		}
1126 		ac_put_obj(cachep, alien, objp);
1127 		spin_unlock(&alien->lock);
1128 	} else {
1129 		spin_lock(&(cachep->node[nodeid])->list_lock);
1130 		free_block(cachep, &objp, 1, nodeid);
1131 		spin_unlock(&(cachep->node[nodeid])->list_lock);
1132 	}
1133 	return 1;
1134 }
1135 #endif
1136 
1137 /*
1138  * Allocates and initializes node for a node on each slab cache, used for
1139  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1140  * will be allocated off-node since memory is not yet online for the new node.
1141  * When hotplugging memory or a cpu, existing node are not replaced if
1142  * already in use.
1143  *
1144  * Must hold slab_mutex.
1145  */
1146 static int init_cache_node_node(int node)
1147 {
1148 	struct kmem_cache *cachep;
1149 	struct kmem_cache_node *n;
1150 	const int memsize = sizeof(struct kmem_cache_node);
1151 
1152 	list_for_each_entry(cachep, &slab_caches, list) {
1153 		/*
1154 		 * Set up the size64 kmemlist for cpu before we can
1155 		 * begin anything. Make sure some other cpu on this
1156 		 * node has not already allocated this
1157 		 */
1158 		if (!cachep->node[node]) {
1159 			n = kmalloc_node(memsize, GFP_KERNEL, node);
1160 			if (!n)
1161 				return -ENOMEM;
1162 			kmem_cache_node_init(n);
1163 			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1164 			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1165 
1166 			/*
1167 			 * The l3s don't come and go as CPUs come and
1168 			 * go.  slab_mutex is sufficient
1169 			 * protection here.
1170 			 */
1171 			cachep->node[node] = n;
1172 		}
1173 
1174 		spin_lock_irq(&cachep->node[node]->list_lock);
1175 		cachep->node[node]->free_limit =
1176 			(1 + nr_cpus_node(node)) *
1177 			cachep->batchcount + cachep->num;
1178 		spin_unlock_irq(&cachep->node[node]->list_lock);
1179 	}
1180 	return 0;
1181 }
1182 
1183 static inline int slabs_tofree(struct kmem_cache *cachep,
1184 						struct kmem_cache_node *n)
1185 {
1186 	return (n->free_objects + cachep->num - 1) / cachep->num;
1187 }
1188 
1189 static void cpuup_canceled(long cpu)
1190 {
1191 	struct kmem_cache *cachep;
1192 	struct kmem_cache_node *n = NULL;
1193 	int node = cpu_to_mem(cpu);
1194 	const struct cpumask *mask = cpumask_of_node(node);
1195 
1196 	list_for_each_entry(cachep, &slab_caches, list) {
1197 		struct array_cache *nc;
1198 		struct array_cache *shared;
1199 		struct array_cache **alien;
1200 
1201 		/* cpu is dead; no one can alloc from it. */
1202 		nc = cachep->array[cpu];
1203 		cachep->array[cpu] = NULL;
1204 		n = cachep->node[node];
1205 
1206 		if (!n)
1207 			goto free_array_cache;
1208 
1209 		spin_lock_irq(&n->list_lock);
1210 
1211 		/* Free limit for this kmem_cache_node */
1212 		n->free_limit -= cachep->batchcount;
1213 		if (nc)
1214 			free_block(cachep, nc->entry, nc->avail, node);
1215 
1216 		if (!cpumask_empty(mask)) {
1217 			spin_unlock_irq(&n->list_lock);
1218 			goto free_array_cache;
1219 		}
1220 
1221 		shared = n->shared;
1222 		if (shared) {
1223 			free_block(cachep, shared->entry,
1224 				   shared->avail, node);
1225 			n->shared = NULL;
1226 		}
1227 
1228 		alien = n->alien;
1229 		n->alien = NULL;
1230 
1231 		spin_unlock_irq(&n->list_lock);
1232 
1233 		kfree(shared);
1234 		if (alien) {
1235 			drain_alien_cache(cachep, alien);
1236 			free_alien_cache(alien);
1237 		}
1238 free_array_cache:
1239 		kfree(nc);
1240 	}
1241 	/*
1242 	 * In the previous loop, all the objects were freed to
1243 	 * the respective cache's slabs,  now we can go ahead and
1244 	 * shrink each nodelist to its limit.
1245 	 */
1246 	list_for_each_entry(cachep, &slab_caches, list) {
1247 		n = cachep->node[node];
1248 		if (!n)
1249 			continue;
1250 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1251 	}
1252 }
1253 
1254 static int cpuup_prepare(long cpu)
1255 {
1256 	struct kmem_cache *cachep;
1257 	struct kmem_cache_node *n = NULL;
1258 	int node = cpu_to_mem(cpu);
1259 	int err;
1260 
1261 	/*
1262 	 * We need to do this right in the beginning since
1263 	 * alloc_arraycache's are going to use this list.
1264 	 * kmalloc_node allows us to add the slab to the right
1265 	 * kmem_cache_node and not this cpu's kmem_cache_node
1266 	 */
1267 	err = init_cache_node_node(node);
1268 	if (err < 0)
1269 		goto bad;
1270 
1271 	/*
1272 	 * Now we can go ahead with allocating the shared arrays and
1273 	 * array caches
1274 	 */
1275 	list_for_each_entry(cachep, &slab_caches, list) {
1276 		struct array_cache *nc;
1277 		struct array_cache *shared = NULL;
1278 		struct array_cache **alien = NULL;
1279 
1280 		nc = alloc_arraycache(node, cachep->limit,
1281 					cachep->batchcount, GFP_KERNEL);
1282 		if (!nc)
1283 			goto bad;
1284 		if (cachep->shared) {
1285 			shared = alloc_arraycache(node,
1286 				cachep->shared * cachep->batchcount,
1287 				0xbaadf00d, GFP_KERNEL);
1288 			if (!shared) {
1289 				kfree(nc);
1290 				goto bad;
1291 			}
1292 		}
1293 		if (use_alien_caches) {
1294 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1295 			if (!alien) {
1296 				kfree(shared);
1297 				kfree(nc);
1298 				goto bad;
1299 			}
1300 		}
1301 		cachep->array[cpu] = nc;
1302 		n = cachep->node[node];
1303 		BUG_ON(!n);
1304 
1305 		spin_lock_irq(&n->list_lock);
1306 		if (!n->shared) {
1307 			/*
1308 			 * We are serialised from CPU_DEAD or
1309 			 * CPU_UP_CANCELLED by the cpucontrol lock
1310 			 */
1311 			n->shared = shared;
1312 			shared = NULL;
1313 		}
1314 #ifdef CONFIG_NUMA
1315 		if (!n->alien) {
1316 			n->alien = alien;
1317 			alien = NULL;
1318 		}
1319 #endif
1320 		spin_unlock_irq(&n->list_lock);
1321 		kfree(shared);
1322 		free_alien_cache(alien);
1323 		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1324 			slab_set_debugobj_lock_classes_node(cachep, node);
1325 		else if (!OFF_SLAB(cachep) &&
1326 			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1327 			on_slab_lock_classes_node(cachep, node);
1328 	}
1329 	init_node_lock_keys(node);
1330 
1331 	return 0;
1332 bad:
1333 	cpuup_canceled(cpu);
1334 	return -ENOMEM;
1335 }
1336 
1337 static int cpuup_callback(struct notifier_block *nfb,
1338 				    unsigned long action, void *hcpu)
1339 {
1340 	long cpu = (long)hcpu;
1341 	int err = 0;
1342 
1343 	switch (action) {
1344 	case CPU_UP_PREPARE:
1345 	case CPU_UP_PREPARE_FROZEN:
1346 		mutex_lock(&slab_mutex);
1347 		err = cpuup_prepare(cpu);
1348 		mutex_unlock(&slab_mutex);
1349 		break;
1350 	case CPU_ONLINE:
1351 	case CPU_ONLINE_FROZEN:
1352 		start_cpu_timer(cpu);
1353 		break;
1354 #ifdef CONFIG_HOTPLUG_CPU
1355   	case CPU_DOWN_PREPARE:
1356   	case CPU_DOWN_PREPARE_FROZEN:
1357 		/*
1358 		 * Shutdown cache reaper. Note that the slab_mutex is
1359 		 * held so that if cache_reap() is invoked it cannot do
1360 		 * anything expensive but will only modify reap_work
1361 		 * and reschedule the timer.
1362 		*/
1363 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1364 		/* Now the cache_reaper is guaranteed to be not running. */
1365 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1366   		break;
1367   	case CPU_DOWN_FAILED:
1368   	case CPU_DOWN_FAILED_FROZEN:
1369 		start_cpu_timer(cpu);
1370   		break;
1371 	case CPU_DEAD:
1372 	case CPU_DEAD_FROZEN:
1373 		/*
1374 		 * Even if all the cpus of a node are down, we don't free the
1375 		 * kmem_cache_node of any cache. This to avoid a race between
1376 		 * cpu_down, and a kmalloc allocation from another cpu for
1377 		 * memory from the node of the cpu going down.  The node
1378 		 * structure is usually allocated from kmem_cache_create() and
1379 		 * gets destroyed at kmem_cache_destroy().
1380 		 */
1381 		/* fall through */
1382 #endif
1383 	case CPU_UP_CANCELED:
1384 	case CPU_UP_CANCELED_FROZEN:
1385 		mutex_lock(&slab_mutex);
1386 		cpuup_canceled(cpu);
1387 		mutex_unlock(&slab_mutex);
1388 		break;
1389 	}
1390 	return notifier_from_errno(err);
1391 }
1392 
1393 static struct notifier_block cpucache_notifier = {
1394 	&cpuup_callback, NULL, 0
1395 };
1396 
1397 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1398 /*
1399  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1400  * Returns -EBUSY if all objects cannot be drained so that the node is not
1401  * removed.
1402  *
1403  * Must hold slab_mutex.
1404  */
1405 static int __meminit drain_cache_node_node(int node)
1406 {
1407 	struct kmem_cache *cachep;
1408 	int ret = 0;
1409 
1410 	list_for_each_entry(cachep, &slab_caches, list) {
1411 		struct kmem_cache_node *n;
1412 
1413 		n = cachep->node[node];
1414 		if (!n)
1415 			continue;
1416 
1417 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1418 
1419 		if (!list_empty(&n->slabs_full) ||
1420 		    !list_empty(&n->slabs_partial)) {
1421 			ret = -EBUSY;
1422 			break;
1423 		}
1424 	}
1425 	return ret;
1426 }
1427 
1428 static int __meminit slab_memory_callback(struct notifier_block *self,
1429 					unsigned long action, void *arg)
1430 {
1431 	struct memory_notify *mnb = arg;
1432 	int ret = 0;
1433 	int nid;
1434 
1435 	nid = mnb->status_change_nid;
1436 	if (nid < 0)
1437 		goto out;
1438 
1439 	switch (action) {
1440 	case MEM_GOING_ONLINE:
1441 		mutex_lock(&slab_mutex);
1442 		ret = init_cache_node_node(nid);
1443 		mutex_unlock(&slab_mutex);
1444 		break;
1445 	case MEM_GOING_OFFLINE:
1446 		mutex_lock(&slab_mutex);
1447 		ret = drain_cache_node_node(nid);
1448 		mutex_unlock(&slab_mutex);
1449 		break;
1450 	case MEM_ONLINE:
1451 	case MEM_OFFLINE:
1452 	case MEM_CANCEL_ONLINE:
1453 	case MEM_CANCEL_OFFLINE:
1454 		break;
1455 	}
1456 out:
1457 	return notifier_from_errno(ret);
1458 }
1459 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1460 
1461 /*
1462  * swap the static kmem_cache_node with kmalloced memory
1463  */
1464 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1465 				int nodeid)
1466 {
1467 	struct kmem_cache_node *ptr;
1468 
1469 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1470 	BUG_ON(!ptr);
1471 
1472 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1473 	/*
1474 	 * Do not assume that spinlocks can be initialized via memcpy:
1475 	 */
1476 	spin_lock_init(&ptr->list_lock);
1477 
1478 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1479 	cachep->node[nodeid] = ptr;
1480 }
1481 
1482 /*
1483  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1484  * size of kmem_cache_node.
1485  */
1486 static void __init set_up_node(struct kmem_cache *cachep, int index)
1487 {
1488 	int node;
1489 
1490 	for_each_online_node(node) {
1491 		cachep->node[node] = &init_kmem_cache_node[index + node];
1492 		cachep->node[node]->next_reap = jiffies +
1493 		    REAPTIMEOUT_LIST3 +
1494 		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1495 	}
1496 }
1497 
1498 /*
1499  * The memory after the last cpu cache pointer is used for the
1500  * the node pointer.
1501  */
1502 static void setup_node_pointer(struct kmem_cache *cachep)
1503 {
1504 	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1505 }
1506 
1507 /*
1508  * Initialisation.  Called after the page allocator have been initialised and
1509  * before smp_init().
1510  */
1511 void __init kmem_cache_init(void)
1512 {
1513 	int i;
1514 
1515 	kmem_cache = &kmem_cache_boot;
1516 	setup_node_pointer(kmem_cache);
1517 
1518 	if (num_possible_nodes() == 1)
1519 		use_alien_caches = 0;
1520 
1521 	for (i = 0; i < NUM_INIT_LISTS; i++)
1522 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1523 
1524 	set_up_node(kmem_cache, CACHE_CACHE);
1525 
1526 	/*
1527 	 * Fragmentation resistance on low memory - only use bigger
1528 	 * page orders on machines with more than 32MB of memory if
1529 	 * not overridden on the command line.
1530 	 */
1531 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1532 		slab_max_order = SLAB_MAX_ORDER_HI;
1533 
1534 	/* Bootstrap is tricky, because several objects are allocated
1535 	 * from caches that do not exist yet:
1536 	 * 1) initialize the kmem_cache cache: it contains the struct
1537 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1538 	 *    kmem_cache is statically allocated.
1539 	 *    Initially an __init data area is used for the head array and the
1540 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1541 	 *    array at the end of the bootstrap.
1542 	 * 2) Create the first kmalloc cache.
1543 	 *    The struct kmem_cache for the new cache is allocated normally.
1544 	 *    An __init data area is used for the head array.
1545 	 * 3) Create the remaining kmalloc caches, with minimally sized
1546 	 *    head arrays.
1547 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1548 	 *    kmalloc cache with kmalloc allocated arrays.
1549 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1550 	 *    the other cache's with kmalloc allocated memory.
1551 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1552 	 */
1553 
1554 	/* 1) create the kmem_cache */
1555 
1556 	/*
1557 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1558 	 */
1559 	create_boot_cache(kmem_cache, "kmem_cache",
1560 		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1561 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1562 				  SLAB_HWCACHE_ALIGN);
1563 	list_add(&kmem_cache->list, &slab_caches);
1564 
1565 	/* 2+3) create the kmalloc caches */
1566 
1567 	/*
1568 	 * Initialize the caches that provide memory for the array cache and the
1569 	 * kmem_cache_node structures first.  Without this, further allocations will
1570 	 * bug.
1571 	 */
1572 
1573 	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1574 					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1575 
1576 	if (INDEX_AC != INDEX_NODE)
1577 		kmalloc_caches[INDEX_NODE] =
1578 			create_kmalloc_cache("kmalloc-node",
1579 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1580 
1581 	slab_early_init = 0;
1582 
1583 	/* 4) Replace the bootstrap head arrays */
1584 	{
1585 		struct array_cache *ptr;
1586 
1587 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1588 
1589 		memcpy(ptr, cpu_cache_get(kmem_cache),
1590 		       sizeof(struct arraycache_init));
1591 		/*
1592 		 * Do not assume that spinlocks can be initialized via memcpy:
1593 		 */
1594 		spin_lock_init(&ptr->lock);
1595 
1596 		kmem_cache->array[smp_processor_id()] = ptr;
1597 
1598 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1599 
1600 		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1601 		       != &initarray_generic.cache);
1602 		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1603 		       sizeof(struct arraycache_init));
1604 		/*
1605 		 * Do not assume that spinlocks can be initialized via memcpy:
1606 		 */
1607 		spin_lock_init(&ptr->lock);
1608 
1609 		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1610 	}
1611 	/* 5) Replace the bootstrap kmem_cache_node */
1612 	{
1613 		int nid;
1614 
1615 		for_each_online_node(nid) {
1616 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1617 
1618 			init_list(kmalloc_caches[INDEX_AC],
1619 				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1620 
1621 			if (INDEX_AC != INDEX_NODE) {
1622 				init_list(kmalloc_caches[INDEX_NODE],
1623 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1624 			}
1625 		}
1626 	}
1627 
1628 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1629 }
1630 
1631 void __init kmem_cache_init_late(void)
1632 {
1633 	struct kmem_cache *cachep;
1634 
1635 	slab_state = UP;
1636 
1637 	/* 6) resize the head arrays to their final sizes */
1638 	mutex_lock(&slab_mutex);
1639 	list_for_each_entry(cachep, &slab_caches, list)
1640 		if (enable_cpucache(cachep, GFP_NOWAIT))
1641 			BUG();
1642 	mutex_unlock(&slab_mutex);
1643 
1644 	/* Annotate slab for lockdep -- annotate the malloc caches */
1645 	init_lock_keys();
1646 
1647 	/* Done! */
1648 	slab_state = FULL;
1649 
1650 	/*
1651 	 * Register a cpu startup notifier callback that initializes
1652 	 * cpu_cache_get for all new cpus
1653 	 */
1654 	register_cpu_notifier(&cpucache_notifier);
1655 
1656 #ifdef CONFIG_NUMA
1657 	/*
1658 	 * Register a memory hotplug callback that initializes and frees
1659 	 * node.
1660 	 */
1661 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1662 #endif
1663 
1664 	/*
1665 	 * The reap timers are started later, with a module init call: That part
1666 	 * of the kernel is not yet operational.
1667 	 */
1668 }
1669 
1670 static int __init cpucache_init(void)
1671 {
1672 	int cpu;
1673 
1674 	/*
1675 	 * Register the timers that return unneeded pages to the page allocator
1676 	 */
1677 	for_each_online_cpu(cpu)
1678 		start_cpu_timer(cpu);
1679 
1680 	/* Done! */
1681 	slab_state = FULL;
1682 	return 0;
1683 }
1684 __initcall(cpucache_init);
1685 
1686 static noinline void
1687 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1688 {
1689 	struct kmem_cache_node *n;
1690 	struct slab *slabp;
1691 	unsigned long flags;
1692 	int node;
1693 
1694 	printk(KERN_WARNING
1695 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1696 		nodeid, gfpflags);
1697 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1698 		cachep->name, cachep->size, cachep->gfporder);
1699 
1700 	for_each_online_node(node) {
1701 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1702 		unsigned long active_slabs = 0, num_slabs = 0;
1703 
1704 		n = cachep->node[node];
1705 		if (!n)
1706 			continue;
1707 
1708 		spin_lock_irqsave(&n->list_lock, flags);
1709 		list_for_each_entry(slabp, &n->slabs_full, list) {
1710 			active_objs += cachep->num;
1711 			active_slabs++;
1712 		}
1713 		list_for_each_entry(slabp, &n->slabs_partial, list) {
1714 			active_objs += slabp->inuse;
1715 			active_slabs++;
1716 		}
1717 		list_for_each_entry(slabp, &n->slabs_free, list)
1718 			num_slabs++;
1719 
1720 		free_objects += n->free_objects;
1721 		spin_unlock_irqrestore(&n->list_lock, flags);
1722 
1723 		num_slabs += active_slabs;
1724 		num_objs = num_slabs * cachep->num;
1725 		printk(KERN_WARNING
1726 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1727 			node, active_slabs, num_slabs, active_objs, num_objs,
1728 			free_objects);
1729 	}
1730 }
1731 
1732 /*
1733  * Interface to system's page allocator. No need to hold the cache-lock.
1734  *
1735  * If we requested dmaable memory, we will get it. Even if we
1736  * did not request dmaable memory, we might get it, but that
1737  * would be relatively rare and ignorable.
1738  */
1739 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1740 {
1741 	struct page *page;
1742 	int nr_pages;
1743 	int i;
1744 
1745 #ifndef CONFIG_MMU
1746 	/*
1747 	 * Nommu uses slab's for process anonymous memory allocations, and thus
1748 	 * requires __GFP_COMP to properly refcount higher order allocations
1749 	 */
1750 	flags |= __GFP_COMP;
1751 #endif
1752 
1753 	flags |= cachep->allocflags;
1754 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1755 		flags |= __GFP_RECLAIMABLE;
1756 
1757 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1758 	if (!page) {
1759 		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1760 			slab_out_of_memory(cachep, flags, nodeid);
1761 		return NULL;
1762 	}
1763 
1764 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1765 	if (unlikely(page->pfmemalloc))
1766 		pfmemalloc_active = true;
1767 
1768 	nr_pages = (1 << cachep->gfporder);
1769 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1770 		add_zone_page_state(page_zone(page),
1771 			NR_SLAB_RECLAIMABLE, nr_pages);
1772 	else
1773 		add_zone_page_state(page_zone(page),
1774 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1775 	for (i = 0; i < nr_pages; i++) {
1776 		__SetPageSlab(page + i);
1777 
1778 		if (page->pfmemalloc)
1779 			SetPageSlabPfmemalloc(page + i);
1780 	}
1781 	memcg_bind_pages(cachep, cachep->gfporder);
1782 
1783 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1784 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1785 
1786 		if (cachep->ctor)
1787 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1788 		else
1789 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1790 	}
1791 
1792 	return page_address(page);
1793 }
1794 
1795 /*
1796  * Interface to system's page release.
1797  */
1798 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1799 {
1800 	unsigned long i = (1 << cachep->gfporder);
1801 	struct page *page = virt_to_page(addr);
1802 	const unsigned long nr_freed = i;
1803 
1804 	kmemcheck_free_shadow(page, cachep->gfporder);
1805 
1806 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1807 		sub_zone_page_state(page_zone(page),
1808 				NR_SLAB_RECLAIMABLE, nr_freed);
1809 	else
1810 		sub_zone_page_state(page_zone(page),
1811 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1812 	while (i--) {
1813 		BUG_ON(!PageSlab(page));
1814 		__ClearPageSlabPfmemalloc(page);
1815 		__ClearPageSlab(page);
1816 		page++;
1817 	}
1818 
1819 	memcg_release_pages(cachep, cachep->gfporder);
1820 	if (current->reclaim_state)
1821 		current->reclaim_state->reclaimed_slab += nr_freed;
1822 	free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1823 }
1824 
1825 static void kmem_rcu_free(struct rcu_head *head)
1826 {
1827 	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1828 	struct kmem_cache *cachep = slab_rcu->cachep;
1829 
1830 	kmem_freepages(cachep, slab_rcu->addr);
1831 	if (OFF_SLAB(cachep))
1832 		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1833 }
1834 
1835 #if DEBUG
1836 
1837 #ifdef CONFIG_DEBUG_PAGEALLOC
1838 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1839 			    unsigned long caller)
1840 {
1841 	int size = cachep->object_size;
1842 
1843 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1844 
1845 	if (size < 5 * sizeof(unsigned long))
1846 		return;
1847 
1848 	*addr++ = 0x12345678;
1849 	*addr++ = caller;
1850 	*addr++ = smp_processor_id();
1851 	size -= 3 * sizeof(unsigned long);
1852 	{
1853 		unsigned long *sptr = &caller;
1854 		unsigned long svalue;
1855 
1856 		while (!kstack_end(sptr)) {
1857 			svalue = *sptr++;
1858 			if (kernel_text_address(svalue)) {
1859 				*addr++ = svalue;
1860 				size -= sizeof(unsigned long);
1861 				if (size <= sizeof(unsigned long))
1862 					break;
1863 			}
1864 		}
1865 
1866 	}
1867 	*addr++ = 0x87654321;
1868 }
1869 #endif
1870 
1871 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1872 {
1873 	int size = cachep->object_size;
1874 	addr = &((char *)addr)[obj_offset(cachep)];
1875 
1876 	memset(addr, val, size);
1877 	*(unsigned char *)(addr + size - 1) = POISON_END;
1878 }
1879 
1880 static void dump_line(char *data, int offset, int limit)
1881 {
1882 	int i;
1883 	unsigned char error = 0;
1884 	int bad_count = 0;
1885 
1886 	printk(KERN_ERR "%03x: ", offset);
1887 	for (i = 0; i < limit; i++) {
1888 		if (data[offset + i] != POISON_FREE) {
1889 			error = data[offset + i];
1890 			bad_count++;
1891 		}
1892 	}
1893 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1894 			&data[offset], limit, 1);
1895 
1896 	if (bad_count == 1) {
1897 		error ^= POISON_FREE;
1898 		if (!(error & (error - 1))) {
1899 			printk(KERN_ERR "Single bit error detected. Probably "
1900 					"bad RAM.\n");
1901 #ifdef CONFIG_X86
1902 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1903 					"test tool.\n");
1904 #else
1905 			printk(KERN_ERR "Run a memory test tool.\n");
1906 #endif
1907 		}
1908 	}
1909 }
1910 #endif
1911 
1912 #if DEBUG
1913 
1914 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1915 {
1916 	int i, size;
1917 	char *realobj;
1918 
1919 	if (cachep->flags & SLAB_RED_ZONE) {
1920 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1921 			*dbg_redzone1(cachep, objp),
1922 			*dbg_redzone2(cachep, objp));
1923 	}
1924 
1925 	if (cachep->flags & SLAB_STORE_USER) {
1926 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1927 		       *dbg_userword(cachep, objp),
1928 		       *dbg_userword(cachep, objp));
1929 	}
1930 	realobj = (char *)objp + obj_offset(cachep);
1931 	size = cachep->object_size;
1932 	for (i = 0; i < size && lines; i += 16, lines--) {
1933 		int limit;
1934 		limit = 16;
1935 		if (i + limit > size)
1936 			limit = size - i;
1937 		dump_line(realobj, i, limit);
1938 	}
1939 }
1940 
1941 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1942 {
1943 	char *realobj;
1944 	int size, i;
1945 	int lines = 0;
1946 
1947 	realobj = (char *)objp + obj_offset(cachep);
1948 	size = cachep->object_size;
1949 
1950 	for (i = 0; i < size; i++) {
1951 		char exp = POISON_FREE;
1952 		if (i == size - 1)
1953 			exp = POISON_END;
1954 		if (realobj[i] != exp) {
1955 			int limit;
1956 			/* Mismatch ! */
1957 			/* Print header */
1958 			if (lines == 0) {
1959 				printk(KERN_ERR
1960 					"Slab corruption (%s): %s start=%p, len=%d\n",
1961 					print_tainted(), cachep->name, realobj, size);
1962 				print_objinfo(cachep, objp, 0);
1963 			}
1964 			/* Hexdump the affected line */
1965 			i = (i / 16) * 16;
1966 			limit = 16;
1967 			if (i + limit > size)
1968 				limit = size - i;
1969 			dump_line(realobj, i, limit);
1970 			i += 16;
1971 			lines++;
1972 			/* Limit to 5 lines */
1973 			if (lines > 5)
1974 				break;
1975 		}
1976 	}
1977 	if (lines != 0) {
1978 		/* Print some data about the neighboring objects, if they
1979 		 * exist:
1980 		 */
1981 		struct slab *slabp = virt_to_slab(objp);
1982 		unsigned int objnr;
1983 
1984 		objnr = obj_to_index(cachep, slabp, objp);
1985 		if (objnr) {
1986 			objp = index_to_obj(cachep, slabp, objnr - 1);
1987 			realobj = (char *)objp + obj_offset(cachep);
1988 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1989 			       realobj, size);
1990 			print_objinfo(cachep, objp, 2);
1991 		}
1992 		if (objnr + 1 < cachep->num) {
1993 			objp = index_to_obj(cachep, slabp, objnr + 1);
1994 			realobj = (char *)objp + obj_offset(cachep);
1995 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1996 			       realobj, size);
1997 			print_objinfo(cachep, objp, 2);
1998 		}
1999 	}
2000 }
2001 #endif
2002 
2003 #if DEBUG
2004 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2005 {
2006 	int i;
2007 	for (i = 0; i < cachep->num; i++) {
2008 		void *objp = index_to_obj(cachep, slabp, i);
2009 
2010 		if (cachep->flags & SLAB_POISON) {
2011 #ifdef CONFIG_DEBUG_PAGEALLOC
2012 			if (cachep->size % PAGE_SIZE == 0 &&
2013 					OFF_SLAB(cachep))
2014 				kernel_map_pages(virt_to_page(objp),
2015 					cachep->size / PAGE_SIZE, 1);
2016 			else
2017 				check_poison_obj(cachep, objp);
2018 #else
2019 			check_poison_obj(cachep, objp);
2020 #endif
2021 		}
2022 		if (cachep->flags & SLAB_RED_ZONE) {
2023 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2024 				slab_error(cachep, "start of a freed object "
2025 					   "was overwritten");
2026 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2027 				slab_error(cachep, "end of a freed object "
2028 					   "was overwritten");
2029 		}
2030 	}
2031 }
2032 #else
2033 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2034 {
2035 }
2036 #endif
2037 
2038 /**
2039  * slab_destroy - destroy and release all objects in a slab
2040  * @cachep: cache pointer being destroyed
2041  * @slabp: slab pointer being destroyed
2042  *
2043  * Destroy all the objs in a slab, and release the mem back to the system.
2044  * Before calling the slab must have been unlinked from the cache.  The
2045  * cache-lock is not held/needed.
2046  */
2047 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2048 {
2049 	void *addr = slabp->s_mem - slabp->colouroff;
2050 
2051 	slab_destroy_debugcheck(cachep, slabp);
2052 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2053 		struct slab_rcu *slab_rcu;
2054 
2055 		slab_rcu = (struct slab_rcu *)slabp;
2056 		slab_rcu->cachep = cachep;
2057 		slab_rcu->addr = addr;
2058 		call_rcu(&slab_rcu->head, kmem_rcu_free);
2059 	} else {
2060 		kmem_freepages(cachep, addr);
2061 		if (OFF_SLAB(cachep))
2062 			kmem_cache_free(cachep->slabp_cache, slabp);
2063 	}
2064 }
2065 
2066 /**
2067  * calculate_slab_order - calculate size (page order) of slabs
2068  * @cachep: pointer to the cache that is being created
2069  * @size: size of objects to be created in this cache.
2070  * @align: required alignment for the objects.
2071  * @flags: slab allocation flags
2072  *
2073  * Also calculates the number of objects per slab.
2074  *
2075  * This could be made much more intelligent.  For now, try to avoid using
2076  * high order pages for slabs.  When the gfp() functions are more friendly
2077  * towards high-order requests, this should be changed.
2078  */
2079 static size_t calculate_slab_order(struct kmem_cache *cachep,
2080 			size_t size, size_t align, unsigned long flags)
2081 {
2082 	unsigned long offslab_limit;
2083 	size_t left_over = 0;
2084 	int gfporder;
2085 
2086 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2087 		unsigned int num;
2088 		size_t remainder;
2089 
2090 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2091 		if (!num)
2092 			continue;
2093 
2094 		if (flags & CFLGS_OFF_SLAB) {
2095 			/*
2096 			 * Max number of objs-per-slab for caches which
2097 			 * use off-slab slabs. Needed to avoid a possible
2098 			 * looping condition in cache_grow().
2099 			 */
2100 			offslab_limit = size - sizeof(struct slab);
2101 			offslab_limit /= sizeof(kmem_bufctl_t);
2102 
2103  			if (num > offslab_limit)
2104 				break;
2105 		}
2106 
2107 		/* Found something acceptable - save it away */
2108 		cachep->num = num;
2109 		cachep->gfporder = gfporder;
2110 		left_over = remainder;
2111 
2112 		/*
2113 		 * A VFS-reclaimable slab tends to have most allocations
2114 		 * as GFP_NOFS and we really don't want to have to be allocating
2115 		 * higher-order pages when we are unable to shrink dcache.
2116 		 */
2117 		if (flags & SLAB_RECLAIM_ACCOUNT)
2118 			break;
2119 
2120 		/*
2121 		 * Large number of objects is good, but very large slabs are
2122 		 * currently bad for the gfp()s.
2123 		 */
2124 		if (gfporder >= slab_max_order)
2125 			break;
2126 
2127 		/*
2128 		 * Acceptable internal fragmentation?
2129 		 */
2130 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2131 			break;
2132 	}
2133 	return left_over;
2134 }
2135 
2136 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2137 {
2138 	if (slab_state >= FULL)
2139 		return enable_cpucache(cachep, gfp);
2140 
2141 	if (slab_state == DOWN) {
2142 		/*
2143 		 * Note: Creation of first cache (kmem_cache).
2144 		 * The setup_node is taken care
2145 		 * of by the caller of __kmem_cache_create
2146 		 */
2147 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2148 		slab_state = PARTIAL;
2149 	} else if (slab_state == PARTIAL) {
2150 		/*
2151 		 * Note: the second kmem_cache_create must create the cache
2152 		 * that's used by kmalloc(24), otherwise the creation of
2153 		 * further caches will BUG().
2154 		 */
2155 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2156 
2157 		/*
2158 		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2159 		 * the second cache, then we need to set up all its node/,
2160 		 * otherwise the creation of further caches will BUG().
2161 		 */
2162 		set_up_node(cachep, SIZE_AC);
2163 		if (INDEX_AC == INDEX_NODE)
2164 			slab_state = PARTIAL_NODE;
2165 		else
2166 			slab_state = PARTIAL_ARRAYCACHE;
2167 	} else {
2168 		/* Remaining boot caches */
2169 		cachep->array[smp_processor_id()] =
2170 			kmalloc(sizeof(struct arraycache_init), gfp);
2171 
2172 		if (slab_state == PARTIAL_ARRAYCACHE) {
2173 			set_up_node(cachep, SIZE_NODE);
2174 			slab_state = PARTIAL_NODE;
2175 		} else {
2176 			int node;
2177 			for_each_online_node(node) {
2178 				cachep->node[node] =
2179 				    kmalloc_node(sizeof(struct kmem_cache_node),
2180 						gfp, node);
2181 				BUG_ON(!cachep->node[node]);
2182 				kmem_cache_node_init(cachep->node[node]);
2183 			}
2184 		}
2185 	}
2186 	cachep->node[numa_mem_id()]->next_reap =
2187 			jiffies + REAPTIMEOUT_LIST3 +
2188 			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2189 
2190 	cpu_cache_get(cachep)->avail = 0;
2191 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2192 	cpu_cache_get(cachep)->batchcount = 1;
2193 	cpu_cache_get(cachep)->touched = 0;
2194 	cachep->batchcount = 1;
2195 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2196 	return 0;
2197 }
2198 
2199 /**
2200  * __kmem_cache_create - Create a cache.
2201  * @cachep: cache management descriptor
2202  * @flags: SLAB flags
2203  *
2204  * Returns a ptr to the cache on success, NULL on failure.
2205  * Cannot be called within a int, but can be interrupted.
2206  * The @ctor is run when new pages are allocated by the cache.
2207  *
2208  * The flags are
2209  *
2210  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2211  * to catch references to uninitialised memory.
2212  *
2213  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2214  * for buffer overruns.
2215  *
2216  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2217  * cacheline.  This can be beneficial if you're counting cycles as closely
2218  * as davem.
2219  */
2220 int
2221 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2222 {
2223 	size_t left_over, slab_size, ralign;
2224 	gfp_t gfp;
2225 	int err;
2226 	size_t size = cachep->size;
2227 
2228 #if DEBUG
2229 #if FORCED_DEBUG
2230 	/*
2231 	 * Enable redzoning and last user accounting, except for caches with
2232 	 * large objects, if the increased size would increase the object size
2233 	 * above the next power of two: caches with object sizes just above a
2234 	 * power of two have a significant amount of internal fragmentation.
2235 	 */
2236 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2237 						2 * sizeof(unsigned long long)))
2238 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2239 	if (!(flags & SLAB_DESTROY_BY_RCU))
2240 		flags |= SLAB_POISON;
2241 #endif
2242 	if (flags & SLAB_DESTROY_BY_RCU)
2243 		BUG_ON(flags & SLAB_POISON);
2244 #endif
2245 
2246 	/*
2247 	 * Check that size is in terms of words.  This is needed to avoid
2248 	 * unaligned accesses for some archs when redzoning is used, and makes
2249 	 * sure any on-slab bufctl's are also correctly aligned.
2250 	 */
2251 	if (size & (BYTES_PER_WORD - 1)) {
2252 		size += (BYTES_PER_WORD - 1);
2253 		size &= ~(BYTES_PER_WORD - 1);
2254 	}
2255 
2256 	/*
2257 	 * Redzoning and user store require word alignment or possibly larger.
2258 	 * Note this will be overridden by architecture or caller mandated
2259 	 * alignment if either is greater than BYTES_PER_WORD.
2260 	 */
2261 	if (flags & SLAB_STORE_USER)
2262 		ralign = BYTES_PER_WORD;
2263 
2264 	if (flags & SLAB_RED_ZONE) {
2265 		ralign = REDZONE_ALIGN;
2266 		/* If redzoning, ensure that the second redzone is suitably
2267 		 * aligned, by adjusting the object size accordingly. */
2268 		size += REDZONE_ALIGN - 1;
2269 		size &= ~(REDZONE_ALIGN - 1);
2270 	}
2271 
2272 	/* 3) caller mandated alignment */
2273 	if (ralign < cachep->align) {
2274 		ralign = cachep->align;
2275 	}
2276 	/* disable debug if necessary */
2277 	if (ralign > __alignof__(unsigned long long))
2278 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2279 	/*
2280 	 * 4) Store it.
2281 	 */
2282 	cachep->align = ralign;
2283 
2284 	if (slab_is_available())
2285 		gfp = GFP_KERNEL;
2286 	else
2287 		gfp = GFP_NOWAIT;
2288 
2289 	setup_node_pointer(cachep);
2290 #if DEBUG
2291 
2292 	/*
2293 	 * Both debugging options require word-alignment which is calculated
2294 	 * into align above.
2295 	 */
2296 	if (flags & SLAB_RED_ZONE) {
2297 		/* add space for red zone words */
2298 		cachep->obj_offset += sizeof(unsigned long long);
2299 		size += 2 * sizeof(unsigned long long);
2300 	}
2301 	if (flags & SLAB_STORE_USER) {
2302 		/* user store requires one word storage behind the end of
2303 		 * the real object. But if the second red zone needs to be
2304 		 * aligned to 64 bits, we must allow that much space.
2305 		 */
2306 		if (flags & SLAB_RED_ZONE)
2307 			size += REDZONE_ALIGN;
2308 		else
2309 			size += BYTES_PER_WORD;
2310 	}
2311 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2312 	if (size >= kmalloc_size(INDEX_NODE + 1)
2313 	    && cachep->object_size > cache_line_size()
2314 	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
2315 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2316 		size = PAGE_SIZE;
2317 	}
2318 #endif
2319 #endif
2320 
2321 	/*
2322 	 * Determine if the slab management is 'on' or 'off' slab.
2323 	 * (bootstrapping cannot cope with offslab caches so don't do
2324 	 * it too early on. Always use on-slab management when
2325 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2326 	 */
2327 	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2328 	    !(flags & SLAB_NOLEAKTRACE))
2329 		/*
2330 		 * Size is large, assume best to place the slab management obj
2331 		 * off-slab (should allow better packing of objs).
2332 		 */
2333 		flags |= CFLGS_OFF_SLAB;
2334 
2335 	size = ALIGN(size, cachep->align);
2336 
2337 	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2338 
2339 	if (!cachep->num)
2340 		return -E2BIG;
2341 
2342 	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2343 			  + sizeof(struct slab), cachep->align);
2344 
2345 	/*
2346 	 * If the slab has been placed off-slab, and we have enough space then
2347 	 * move it on-slab. This is at the expense of any extra colouring.
2348 	 */
2349 	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2350 		flags &= ~CFLGS_OFF_SLAB;
2351 		left_over -= slab_size;
2352 	}
2353 
2354 	if (flags & CFLGS_OFF_SLAB) {
2355 		/* really off slab. No need for manual alignment */
2356 		slab_size =
2357 		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2358 
2359 #ifdef CONFIG_PAGE_POISONING
2360 		/* If we're going to use the generic kernel_map_pages()
2361 		 * poisoning, then it's going to smash the contents of
2362 		 * the redzone and userword anyhow, so switch them off.
2363 		 */
2364 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2365 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2366 #endif
2367 	}
2368 
2369 	cachep->colour_off = cache_line_size();
2370 	/* Offset must be a multiple of the alignment. */
2371 	if (cachep->colour_off < cachep->align)
2372 		cachep->colour_off = cachep->align;
2373 	cachep->colour = left_over / cachep->colour_off;
2374 	cachep->slab_size = slab_size;
2375 	cachep->flags = flags;
2376 	cachep->allocflags = 0;
2377 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2378 		cachep->allocflags |= GFP_DMA;
2379 	cachep->size = size;
2380 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2381 
2382 	if (flags & CFLGS_OFF_SLAB) {
2383 		cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2384 		/*
2385 		 * This is a possibility for one of the malloc_sizes caches.
2386 		 * But since we go off slab only for object size greater than
2387 		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2388 		 * this should not happen at all.
2389 		 * But leave a BUG_ON for some lucky dude.
2390 		 */
2391 		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2392 	}
2393 
2394 	err = setup_cpu_cache(cachep, gfp);
2395 	if (err) {
2396 		__kmem_cache_shutdown(cachep);
2397 		return err;
2398 	}
2399 
2400 	if (flags & SLAB_DEBUG_OBJECTS) {
2401 		/*
2402 		 * Would deadlock through slab_destroy()->call_rcu()->
2403 		 * debug_object_activate()->kmem_cache_alloc().
2404 		 */
2405 		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2406 
2407 		slab_set_debugobj_lock_classes(cachep);
2408 	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2409 		on_slab_lock_classes(cachep);
2410 
2411 	return 0;
2412 }
2413 
2414 #if DEBUG
2415 static void check_irq_off(void)
2416 {
2417 	BUG_ON(!irqs_disabled());
2418 }
2419 
2420 static void check_irq_on(void)
2421 {
2422 	BUG_ON(irqs_disabled());
2423 }
2424 
2425 static void check_spinlock_acquired(struct kmem_cache *cachep)
2426 {
2427 #ifdef CONFIG_SMP
2428 	check_irq_off();
2429 	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2430 #endif
2431 }
2432 
2433 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2434 {
2435 #ifdef CONFIG_SMP
2436 	check_irq_off();
2437 	assert_spin_locked(&cachep->node[node]->list_lock);
2438 #endif
2439 }
2440 
2441 #else
2442 #define check_irq_off()	do { } while(0)
2443 #define check_irq_on()	do { } while(0)
2444 #define check_spinlock_acquired(x) do { } while(0)
2445 #define check_spinlock_acquired_node(x, y) do { } while(0)
2446 #endif
2447 
2448 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2449 			struct array_cache *ac,
2450 			int force, int node);
2451 
2452 static void do_drain(void *arg)
2453 {
2454 	struct kmem_cache *cachep = arg;
2455 	struct array_cache *ac;
2456 	int node = numa_mem_id();
2457 
2458 	check_irq_off();
2459 	ac = cpu_cache_get(cachep);
2460 	spin_lock(&cachep->node[node]->list_lock);
2461 	free_block(cachep, ac->entry, ac->avail, node);
2462 	spin_unlock(&cachep->node[node]->list_lock);
2463 	ac->avail = 0;
2464 }
2465 
2466 static void drain_cpu_caches(struct kmem_cache *cachep)
2467 {
2468 	struct kmem_cache_node *n;
2469 	int node;
2470 
2471 	on_each_cpu(do_drain, cachep, 1);
2472 	check_irq_on();
2473 	for_each_online_node(node) {
2474 		n = cachep->node[node];
2475 		if (n && n->alien)
2476 			drain_alien_cache(cachep, n->alien);
2477 	}
2478 
2479 	for_each_online_node(node) {
2480 		n = cachep->node[node];
2481 		if (n)
2482 			drain_array(cachep, n, n->shared, 1, node);
2483 	}
2484 }
2485 
2486 /*
2487  * Remove slabs from the list of free slabs.
2488  * Specify the number of slabs to drain in tofree.
2489  *
2490  * Returns the actual number of slabs released.
2491  */
2492 static int drain_freelist(struct kmem_cache *cache,
2493 			struct kmem_cache_node *n, int tofree)
2494 {
2495 	struct list_head *p;
2496 	int nr_freed;
2497 	struct slab *slabp;
2498 
2499 	nr_freed = 0;
2500 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2501 
2502 		spin_lock_irq(&n->list_lock);
2503 		p = n->slabs_free.prev;
2504 		if (p == &n->slabs_free) {
2505 			spin_unlock_irq(&n->list_lock);
2506 			goto out;
2507 		}
2508 
2509 		slabp = list_entry(p, struct slab, list);
2510 #if DEBUG
2511 		BUG_ON(slabp->inuse);
2512 #endif
2513 		list_del(&slabp->list);
2514 		/*
2515 		 * Safe to drop the lock. The slab is no longer linked
2516 		 * to the cache.
2517 		 */
2518 		n->free_objects -= cache->num;
2519 		spin_unlock_irq(&n->list_lock);
2520 		slab_destroy(cache, slabp);
2521 		nr_freed++;
2522 	}
2523 out:
2524 	return nr_freed;
2525 }
2526 
2527 /* Called with slab_mutex held to protect against cpu hotplug */
2528 static int __cache_shrink(struct kmem_cache *cachep)
2529 {
2530 	int ret = 0, i = 0;
2531 	struct kmem_cache_node *n;
2532 
2533 	drain_cpu_caches(cachep);
2534 
2535 	check_irq_on();
2536 	for_each_online_node(i) {
2537 		n = cachep->node[i];
2538 		if (!n)
2539 			continue;
2540 
2541 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2542 
2543 		ret += !list_empty(&n->slabs_full) ||
2544 			!list_empty(&n->slabs_partial);
2545 	}
2546 	return (ret ? 1 : 0);
2547 }
2548 
2549 /**
2550  * kmem_cache_shrink - Shrink a cache.
2551  * @cachep: The cache to shrink.
2552  *
2553  * Releases as many slabs as possible for a cache.
2554  * To help debugging, a zero exit status indicates all slabs were released.
2555  */
2556 int kmem_cache_shrink(struct kmem_cache *cachep)
2557 {
2558 	int ret;
2559 	BUG_ON(!cachep || in_interrupt());
2560 
2561 	get_online_cpus();
2562 	mutex_lock(&slab_mutex);
2563 	ret = __cache_shrink(cachep);
2564 	mutex_unlock(&slab_mutex);
2565 	put_online_cpus();
2566 	return ret;
2567 }
2568 EXPORT_SYMBOL(kmem_cache_shrink);
2569 
2570 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2571 {
2572 	int i;
2573 	struct kmem_cache_node *n;
2574 	int rc = __cache_shrink(cachep);
2575 
2576 	if (rc)
2577 		return rc;
2578 
2579 	for_each_online_cpu(i)
2580 	    kfree(cachep->array[i]);
2581 
2582 	/* NUMA: free the node structures */
2583 	for_each_online_node(i) {
2584 		n = cachep->node[i];
2585 		if (n) {
2586 			kfree(n->shared);
2587 			free_alien_cache(n->alien);
2588 			kfree(n);
2589 		}
2590 	}
2591 	return 0;
2592 }
2593 
2594 /*
2595  * Get the memory for a slab management obj.
2596  * For a slab cache when the slab descriptor is off-slab, slab descriptors
2597  * always come from malloc_sizes caches.  The slab descriptor cannot
2598  * come from the same cache which is getting created because,
2599  * when we are searching for an appropriate cache for these
2600  * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2601  * If we are creating a malloc_sizes cache here it would not be visible to
2602  * kmem_find_general_cachep till the initialization is complete.
2603  * Hence we cannot have slabp_cache same as the original cache.
2604  */
2605 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2606 				   int colour_off, gfp_t local_flags,
2607 				   int nodeid)
2608 {
2609 	struct slab *slabp;
2610 
2611 	if (OFF_SLAB(cachep)) {
2612 		/* Slab management obj is off-slab. */
2613 		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2614 					      local_flags, nodeid);
2615 		/*
2616 		 * If the first object in the slab is leaked (it's allocated
2617 		 * but no one has a reference to it), we want to make sure
2618 		 * kmemleak does not treat the ->s_mem pointer as a reference
2619 		 * to the object. Otherwise we will not report the leak.
2620 		 */
2621 		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2622 				   local_flags);
2623 		if (!slabp)
2624 			return NULL;
2625 	} else {
2626 		slabp = objp + colour_off;
2627 		colour_off += cachep->slab_size;
2628 	}
2629 	slabp->inuse = 0;
2630 	slabp->colouroff = colour_off;
2631 	slabp->s_mem = objp + colour_off;
2632 	slabp->nodeid = nodeid;
2633 	slabp->free = 0;
2634 	return slabp;
2635 }
2636 
2637 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2638 {
2639 	return (kmem_bufctl_t *) (slabp + 1);
2640 }
2641 
2642 static void cache_init_objs(struct kmem_cache *cachep,
2643 			    struct slab *slabp)
2644 {
2645 	int i;
2646 
2647 	for (i = 0; i < cachep->num; i++) {
2648 		void *objp = index_to_obj(cachep, slabp, i);
2649 #if DEBUG
2650 		/* need to poison the objs? */
2651 		if (cachep->flags & SLAB_POISON)
2652 			poison_obj(cachep, objp, POISON_FREE);
2653 		if (cachep->flags & SLAB_STORE_USER)
2654 			*dbg_userword(cachep, objp) = NULL;
2655 
2656 		if (cachep->flags & SLAB_RED_ZONE) {
2657 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2658 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2659 		}
2660 		/*
2661 		 * Constructors are not allowed to allocate memory from the same
2662 		 * cache which they are a constructor for.  Otherwise, deadlock.
2663 		 * They must also be threaded.
2664 		 */
2665 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2666 			cachep->ctor(objp + obj_offset(cachep));
2667 
2668 		if (cachep->flags & SLAB_RED_ZONE) {
2669 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2670 				slab_error(cachep, "constructor overwrote the"
2671 					   " end of an object");
2672 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2673 				slab_error(cachep, "constructor overwrote the"
2674 					   " start of an object");
2675 		}
2676 		if ((cachep->size % PAGE_SIZE) == 0 &&
2677 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2678 			kernel_map_pages(virt_to_page(objp),
2679 					 cachep->size / PAGE_SIZE, 0);
2680 #else
2681 		if (cachep->ctor)
2682 			cachep->ctor(objp);
2683 #endif
2684 		slab_bufctl(slabp)[i] = i + 1;
2685 	}
2686 	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2687 }
2688 
2689 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2690 {
2691 	if (CONFIG_ZONE_DMA_FLAG) {
2692 		if (flags & GFP_DMA)
2693 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2694 		else
2695 			BUG_ON(cachep->allocflags & GFP_DMA);
2696 	}
2697 }
2698 
2699 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2700 				int nodeid)
2701 {
2702 	void *objp = index_to_obj(cachep, slabp, slabp->free);
2703 	kmem_bufctl_t next;
2704 
2705 	slabp->inuse++;
2706 	next = slab_bufctl(slabp)[slabp->free];
2707 #if DEBUG
2708 	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2709 	WARN_ON(slabp->nodeid != nodeid);
2710 #endif
2711 	slabp->free = next;
2712 
2713 	return objp;
2714 }
2715 
2716 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2717 				void *objp, int nodeid)
2718 {
2719 	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2720 
2721 #if DEBUG
2722 	/* Verify that the slab belongs to the intended node */
2723 	WARN_ON(slabp->nodeid != nodeid);
2724 
2725 	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2726 		printk(KERN_ERR "slab: double free detected in cache "
2727 				"'%s', objp %p\n", cachep->name, objp);
2728 		BUG();
2729 	}
2730 #endif
2731 	slab_bufctl(slabp)[objnr] = slabp->free;
2732 	slabp->free = objnr;
2733 	slabp->inuse--;
2734 }
2735 
2736 /*
2737  * Map pages beginning at addr to the given cache and slab. This is required
2738  * for the slab allocator to be able to lookup the cache and slab of a
2739  * virtual address for kfree, ksize, and slab debugging.
2740  */
2741 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2742 			   void *addr)
2743 {
2744 	int nr_pages;
2745 	struct page *page;
2746 
2747 	page = virt_to_page(addr);
2748 
2749 	nr_pages = 1;
2750 	if (likely(!PageCompound(page)))
2751 		nr_pages <<= cache->gfporder;
2752 
2753 	do {
2754 		page->slab_cache = cache;
2755 		page->slab_page = slab;
2756 		page++;
2757 	} while (--nr_pages);
2758 }
2759 
2760 /*
2761  * Grow (by 1) the number of slabs within a cache.  This is called by
2762  * kmem_cache_alloc() when there are no active objs left in a cache.
2763  */
2764 static int cache_grow(struct kmem_cache *cachep,
2765 		gfp_t flags, int nodeid, void *objp)
2766 {
2767 	struct slab *slabp;
2768 	size_t offset;
2769 	gfp_t local_flags;
2770 	struct kmem_cache_node *n;
2771 
2772 	/*
2773 	 * Be lazy and only check for valid flags here,  keeping it out of the
2774 	 * critical path in kmem_cache_alloc().
2775 	 */
2776 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2777 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2778 
2779 	/* Take the node list lock to change the colour_next on this node */
2780 	check_irq_off();
2781 	n = cachep->node[nodeid];
2782 	spin_lock(&n->list_lock);
2783 
2784 	/* Get colour for the slab, and cal the next value. */
2785 	offset = n->colour_next;
2786 	n->colour_next++;
2787 	if (n->colour_next >= cachep->colour)
2788 		n->colour_next = 0;
2789 	spin_unlock(&n->list_lock);
2790 
2791 	offset *= cachep->colour_off;
2792 
2793 	if (local_flags & __GFP_WAIT)
2794 		local_irq_enable();
2795 
2796 	/*
2797 	 * The test for missing atomic flag is performed here, rather than
2798 	 * the more obvious place, simply to reduce the critical path length
2799 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2800 	 * will eventually be caught here (where it matters).
2801 	 */
2802 	kmem_flagcheck(cachep, flags);
2803 
2804 	/*
2805 	 * Get mem for the objs.  Attempt to allocate a physical page from
2806 	 * 'nodeid'.
2807 	 */
2808 	if (!objp)
2809 		objp = kmem_getpages(cachep, local_flags, nodeid);
2810 	if (!objp)
2811 		goto failed;
2812 
2813 	/* Get slab management. */
2814 	slabp = alloc_slabmgmt(cachep, objp, offset,
2815 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2816 	if (!slabp)
2817 		goto opps1;
2818 
2819 	slab_map_pages(cachep, slabp, objp);
2820 
2821 	cache_init_objs(cachep, slabp);
2822 
2823 	if (local_flags & __GFP_WAIT)
2824 		local_irq_disable();
2825 	check_irq_off();
2826 	spin_lock(&n->list_lock);
2827 
2828 	/* Make slab active. */
2829 	list_add_tail(&slabp->list, &(n->slabs_free));
2830 	STATS_INC_GROWN(cachep);
2831 	n->free_objects += cachep->num;
2832 	spin_unlock(&n->list_lock);
2833 	return 1;
2834 opps1:
2835 	kmem_freepages(cachep, objp);
2836 failed:
2837 	if (local_flags & __GFP_WAIT)
2838 		local_irq_disable();
2839 	return 0;
2840 }
2841 
2842 #if DEBUG
2843 
2844 /*
2845  * Perform extra freeing checks:
2846  * - detect bad pointers.
2847  * - POISON/RED_ZONE checking
2848  */
2849 static void kfree_debugcheck(const void *objp)
2850 {
2851 	if (!virt_addr_valid(objp)) {
2852 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2853 		       (unsigned long)objp);
2854 		BUG();
2855 	}
2856 }
2857 
2858 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2859 {
2860 	unsigned long long redzone1, redzone2;
2861 
2862 	redzone1 = *dbg_redzone1(cache, obj);
2863 	redzone2 = *dbg_redzone2(cache, obj);
2864 
2865 	/*
2866 	 * Redzone is ok.
2867 	 */
2868 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2869 		return;
2870 
2871 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2872 		slab_error(cache, "double free detected");
2873 	else
2874 		slab_error(cache, "memory outside object was overwritten");
2875 
2876 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2877 			obj, redzone1, redzone2);
2878 }
2879 
2880 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2881 				   unsigned long caller)
2882 {
2883 	struct page *page;
2884 	unsigned int objnr;
2885 	struct slab *slabp;
2886 
2887 	BUG_ON(virt_to_cache(objp) != cachep);
2888 
2889 	objp -= obj_offset(cachep);
2890 	kfree_debugcheck(objp);
2891 	page = virt_to_head_page(objp);
2892 
2893 	slabp = page->slab_page;
2894 
2895 	if (cachep->flags & SLAB_RED_ZONE) {
2896 		verify_redzone_free(cachep, objp);
2897 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2898 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2899 	}
2900 	if (cachep->flags & SLAB_STORE_USER)
2901 		*dbg_userword(cachep, objp) = (void *)caller;
2902 
2903 	objnr = obj_to_index(cachep, slabp, objp);
2904 
2905 	BUG_ON(objnr >= cachep->num);
2906 	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2907 
2908 #ifdef CONFIG_DEBUG_SLAB_LEAK
2909 	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2910 #endif
2911 	if (cachep->flags & SLAB_POISON) {
2912 #ifdef CONFIG_DEBUG_PAGEALLOC
2913 		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2914 			store_stackinfo(cachep, objp, caller);
2915 			kernel_map_pages(virt_to_page(objp),
2916 					 cachep->size / PAGE_SIZE, 0);
2917 		} else {
2918 			poison_obj(cachep, objp, POISON_FREE);
2919 		}
2920 #else
2921 		poison_obj(cachep, objp, POISON_FREE);
2922 #endif
2923 	}
2924 	return objp;
2925 }
2926 
2927 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2928 {
2929 	kmem_bufctl_t i;
2930 	int entries = 0;
2931 
2932 	/* Check slab's freelist to see if this obj is there. */
2933 	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2934 		entries++;
2935 		if (entries > cachep->num || i >= cachep->num)
2936 			goto bad;
2937 	}
2938 	if (entries != cachep->num - slabp->inuse) {
2939 bad:
2940 		printk(KERN_ERR "slab: Internal list corruption detected in "
2941 			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2942 			cachep->name, cachep->num, slabp, slabp->inuse,
2943 			print_tainted());
2944 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2945 			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2946 			1);
2947 		BUG();
2948 	}
2949 }
2950 #else
2951 #define kfree_debugcheck(x) do { } while(0)
2952 #define cache_free_debugcheck(x,objp,z) (objp)
2953 #define check_slabp(x,y) do { } while(0)
2954 #endif
2955 
2956 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2957 							bool force_refill)
2958 {
2959 	int batchcount;
2960 	struct kmem_cache_node *n;
2961 	struct array_cache *ac;
2962 	int node;
2963 
2964 	check_irq_off();
2965 	node = numa_mem_id();
2966 	if (unlikely(force_refill))
2967 		goto force_grow;
2968 retry:
2969 	ac = cpu_cache_get(cachep);
2970 	batchcount = ac->batchcount;
2971 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2972 		/*
2973 		 * If there was little recent activity on this cache, then
2974 		 * perform only a partial refill.  Otherwise we could generate
2975 		 * refill bouncing.
2976 		 */
2977 		batchcount = BATCHREFILL_LIMIT;
2978 	}
2979 	n = cachep->node[node];
2980 
2981 	BUG_ON(ac->avail > 0 || !n);
2982 	spin_lock(&n->list_lock);
2983 
2984 	/* See if we can refill from the shared array */
2985 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2986 		n->shared->touched = 1;
2987 		goto alloc_done;
2988 	}
2989 
2990 	while (batchcount > 0) {
2991 		struct list_head *entry;
2992 		struct slab *slabp;
2993 		/* Get slab alloc is to come from. */
2994 		entry = n->slabs_partial.next;
2995 		if (entry == &n->slabs_partial) {
2996 			n->free_touched = 1;
2997 			entry = n->slabs_free.next;
2998 			if (entry == &n->slabs_free)
2999 				goto must_grow;
3000 		}
3001 
3002 		slabp = list_entry(entry, struct slab, list);
3003 		check_slabp(cachep, slabp);
3004 		check_spinlock_acquired(cachep);
3005 
3006 		/*
3007 		 * The slab was either on partial or free list so
3008 		 * there must be at least one object available for
3009 		 * allocation.
3010 		 */
3011 		BUG_ON(slabp->inuse >= cachep->num);
3012 
3013 		while (slabp->inuse < cachep->num && batchcount--) {
3014 			STATS_INC_ALLOCED(cachep);
3015 			STATS_INC_ACTIVE(cachep);
3016 			STATS_SET_HIGH(cachep);
3017 
3018 			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3019 									node));
3020 		}
3021 		check_slabp(cachep, slabp);
3022 
3023 		/* move slabp to correct slabp list: */
3024 		list_del(&slabp->list);
3025 		if (slabp->free == BUFCTL_END)
3026 			list_add(&slabp->list, &n->slabs_full);
3027 		else
3028 			list_add(&slabp->list, &n->slabs_partial);
3029 	}
3030 
3031 must_grow:
3032 	n->free_objects -= ac->avail;
3033 alloc_done:
3034 	spin_unlock(&n->list_lock);
3035 
3036 	if (unlikely(!ac->avail)) {
3037 		int x;
3038 force_grow:
3039 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3040 
3041 		/* cache_grow can reenable interrupts, then ac could change. */
3042 		ac = cpu_cache_get(cachep);
3043 		node = numa_mem_id();
3044 
3045 		/* no objects in sight? abort */
3046 		if (!x && (ac->avail == 0 || force_refill))
3047 			return NULL;
3048 
3049 		if (!ac->avail)		/* objects refilled by interrupt? */
3050 			goto retry;
3051 	}
3052 	ac->touched = 1;
3053 
3054 	return ac_get_obj(cachep, ac, flags, force_refill);
3055 }
3056 
3057 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3058 						gfp_t flags)
3059 {
3060 	might_sleep_if(flags & __GFP_WAIT);
3061 #if DEBUG
3062 	kmem_flagcheck(cachep, flags);
3063 #endif
3064 }
3065 
3066 #if DEBUG
3067 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3068 				gfp_t flags, void *objp, unsigned long caller)
3069 {
3070 	if (!objp)
3071 		return objp;
3072 	if (cachep->flags & SLAB_POISON) {
3073 #ifdef CONFIG_DEBUG_PAGEALLOC
3074 		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3075 			kernel_map_pages(virt_to_page(objp),
3076 					 cachep->size / PAGE_SIZE, 1);
3077 		else
3078 			check_poison_obj(cachep, objp);
3079 #else
3080 		check_poison_obj(cachep, objp);
3081 #endif
3082 		poison_obj(cachep, objp, POISON_INUSE);
3083 	}
3084 	if (cachep->flags & SLAB_STORE_USER)
3085 		*dbg_userword(cachep, objp) = (void *)caller;
3086 
3087 	if (cachep->flags & SLAB_RED_ZONE) {
3088 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3089 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3090 			slab_error(cachep, "double free, or memory outside"
3091 						" object was overwritten");
3092 			printk(KERN_ERR
3093 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3094 				objp, *dbg_redzone1(cachep, objp),
3095 				*dbg_redzone2(cachep, objp));
3096 		}
3097 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3098 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3099 	}
3100 #ifdef CONFIG_DEBUG_SLAB_LEAK
3101 	{
3102 		struct slab *slabp;
3103 		unsigned objnr;
3104 
3105 		slabp = virt_to_head_page(objp)->slab_page;
3106 		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3107 		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3108 	}
3109 #endif
3110 	objp += obj_offset(cachep);
3111 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3112 		cachep->ctor(objp);
3113 	if (ARCH_SLAB_MINALIGN &&
3114 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3115 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3116 		       objp, (int)ARCH_SLAB_MINALIGN);
3117 	}
3118 	return objp;
3119 }
3120 #else
3121 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3122 #endif
3123 
3124 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3125 {
3126 	if (cachep == kmem_cache)
3127 		return false;
3128 
3129 	return should_failslab(cachep->object_size, flags, cachep->flags);
3130 }
3131 
3132 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3133 {
3134 	void *objp;
3135 	struct array_cache *ac;
3136 	bool force_refill = false;
3137 
3138 	check_irq_off();
3139 
3140 	ac = cpu_cache_get(cachep);
3141 	if (likely(ac->avail)) {
3142 		ac->touched = 1;
3143 		objp = ac_get_obj(cachep, ac, flags, false);
3144 
3145 		/*
3146 		 * Allow for the possibility all avail objects are not allowed
3147 		 * by the current flags
3148 		 */
3149 		if (objp) {
3150 			STATS_INC_ALLOCHIT(cachep);
3151 			goto out;
3152 		}
3153 		force_refill = true;
3154 	}
3155 
3156 	STATS_INC_ALLOCMISS(cachep);
3157 	objp = cache_alloc_refill(cachep, flags, force_refill);
3158 	/*
3159 	 * the 'ac' may be updated by cache_alloc_refill(),
3160 	 * and kmemleak_erase() requires its correct value.
3161 	 */
3162 	ac = cpu_cache_get(cachep);
3163 
3164 out:
3165 	/*
3166 	 * To avoid a false negative, if an object that is in one of the
3167 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3168 	 * treat the array pointers as a reference to the object.
3169 	 */
3170 	if (objp)
3171 		kmemleak_erase(&ac->entry[ac->avail]);
3172 	return objp;
3173 }
3174 
3175 #ifdef CONFIG_NUMA
3176 /*
3177  * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3178  *
3179  * If we are in_interrupt, then process context, including cpusets and
3180  * mempolicy, may not apply and should not be used for allocation policy.
3181  */
3182 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3183 {
3184 	int nid_alloc, nid_here;
3185 
3186 	if (in_interrupt() || (flags & __GFP_THISNODE))
3187 		return NULL;
3188 	nid_alloc = nid_here = numa_mem_id();
3189 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3190 		nid_alloc = cpuset_slab_spread_node();
3191 	else if (current->mempolicy)
3192 		nid_alloc = slab_node();
3193 	if (nid_alloc != nid_here)
3194 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3195 	return NULL;
3196 }
3197 
3198 /*
3199  * Fallback function if there was no memory available and no objects on a
3200  * certain node and fall back is permitted. First we scan all the
3201  * available node for available objects. If that fails then we
3202  * perform an allocation without specifying a node. This allows the page
3203  * allocator to do its reclaim / fallback magic. We then insert the
3204  * slab into the proper nodelist and then allocate from it.
3205  */
3206 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3207 {
3208 	struct zonelist *zonelist;
3209 	gfp_t local_flags;
3210 	struct zoneref *z;
3211 	struct zone *zone;
3212 	enum zone_type high_zoneidx = gfp_zone(flags);
3213 	void *obj = NULL;
3214 	int nid;
3215 	unsigned int cpuset_mems_cookie;
3216 
3217 	if (flags & __GFP_THISNODE)
3218 		return NULL;
3219 
3220 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3221 
3222 retry_cpuset:
3223 	cpuset_mems_cookie = get_mems_allowed();
3224 	zonelist = node_zonelist(slab_node(), flags);
3225 
3226 retry:
3227 	/*
3228 	 * Look through allowed nodes for objects available
3229 	 * from existing per node queues.
3230 	 */
3231 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3232 		nid = zone_to_nid(zone);
3233 
3234 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3235 			cache->node[nid] &&
3236 			cache->node[nid]->free_objects) {
3237 				obj = ____cache_alloc_node(cache,
3238 					flags | GFP_THISNODE, nid);
3239 				if (obj)
3240 					break;
3241 		}
3242 	}
3243 
3244 	if (!obj) {
3245 		/*
3246 		 * This allocation will be performed within the constraints
3247 		 * of the current cpuset / memory policy requirements.
3248 		 * We may trigger various forms of reclaim on the allowed
3249 		 * set and go into memory reserves if necessary.
3250 		 */
3251 		if (local_flags & __GFP_WAIT)
3252 			local_irq_enable();
3253 		kmem_flagcheck(cache, flags);
3254 		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3255 		if (local_flags & __GFP_WAIT)
3256 			local_irq_disable();
3257 		if (obj) {
3258 			/*
3259 			 * Insert into the appropriate per node queues
3260 			 */
3261 			nid = page_to_nid(virt_to_page(obj));
3262 			if (cache_grow(cache, flags, nid, obj)) {
3263 				obj = ____cache_alloc_node(cache,
3264 					flags | GFP_THISNODE, nid);
3265 				if (!obj)
3266 					/*
3267 					 * Another processor may allocate the
3268 					 * objects in the slab since we are
3269 					 * not holding any locks.
3270 					 */
3271 					goto retry;
3272 			} else {
3273 				/* cache_grow already freed obj */
3274 				obj = NULL;
3275 			}
3276 		}
3277 	}
3278 
3279 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3280 		goto retry_cpuset;
3281 	return obj;
3282 }
3283 
3284 /*
3285  * A interface to enable slab creation on nodeid
3286  */
3287 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3288 				int nodeid)
3289 {
3290 	struct list_head *entry;
3291 	struct slab *slabp;
3292 	struct kmem_cache_node *n;
3293 	void *obj;
3294 	int x;
3295 
3296 	VM_BUG_ON(nodeid > num_online_nodes());
3297 	n = cachep->node[nodeid];
3298 	BUG_ON(!n);
3299 
3300 retry:
3301 	check_irq_off();
3302 	spin_lock(&n->list_lock);
3303 	entry = n->slabs_partial.next;
3304 	if (entry == &n->slabs_partial) {
3305 		n->free_touched = 1;
3306 		entry = n->slabs_free.next;
3307 		if (entry == &n->slabs_free)
3308 			goto must_grow;
3309 	}
3310 
3311 	slabp = list_entry(entry, struct slab, list);
3312 	check_spinlock_acquired_node(cachep, nodeid);
3313 	check_slabp(cachep, slabp);
3314 
3315 	STATS_INC_NODEALLOCS(cachep);
3316 	STATS_INC_ACTIVE(cachep);
3317 	STATS_SET_HIGH(cachep);
3318 
3319 	BUG_ON(slabp->inuse == cachep->num);
3320 
3321 	obj = slab_get_obj(cachep, slabp, nodeid);
3322 	check_slabp(cachep, slabp);
3323 	n->free_objects--;
3324 	/* move slabp to correct slabp list: */
3325 	list_del(&slabp->list);
3326 
3327 	if (slabp->free == BUFCTL_END)
3328 		list_add(&slabp->list, &n->slabs_full);
3329 	else
3330 		list_add(&slabp->list, &n->slabs_partial);
3331 
3332 	spin_unlock(&n->list_lock);
3333 	goto done;
3334 
3335 must_grow:
3336 	spin_unlock(&n->list_lock);
3337 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3338 	if (x)
3339 		goto retry;
3340 
3341 	return fallback_alloc(cachep, flags);
3342 
3343 done:
3344 	return obj;
3345 }
3346 
3347 static __always_inline void *
3348 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3349 		   unsigned long caller)
3350 {
3351 	unsigned long save_flags;
3352 	void *ptr;
3353 	int slab_node = numa_mem_id();
3354 
3355 	flags &= gfp_allowed_mask;
3356 
3357 	lockdep_trace_alloc(flags);
3358 
3359 	if (slab_should_failslab(cachep, flags))
3360 		return NULL;
3361 
3362 	cachep = memcg_kmem_get_cache(cachep, flags);
3363 
3364 	cache_alloc_debugcheck_before(cachep, flags);
3365 	local_irq_save(save_flags);
3366 
3367 	if (nodeid == NUMA_NO_NODE)
3368 		nodeid = slab_node;
3369 
3370 	if (unlikely(!cachep->node[nodeid])) {
3371 		/* Node not bootstrapped yet */
3372 		ptr = fallback_alloc(cachep, flags);
3373 		goto out;
3374 	}
3375 
3376 	if (nodeid == slab_node) {
3377 		/*
3378 		 * Use the locally cached objects if possible.
3379 		 * However ____cache_alloc does not allow fallback
3380 		 * to other nodes. It may fail while we still have
3381 		 * objects on other nodes available.
3382 		 */
3383 		ptr = ____cache_alloc(cachep, flags);
3384 		if (ptr)
3385 			goto out;
3386 	}
3387 	/* ___cache_alloc_node can fall back to other nodes */
3388 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3389   out:
3390 	local_irq_restore(save_flags);
3391 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3392 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3393 				 flags);
3394 
3395 	if (likely(ptr))
3396 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3397 
3398 	if (unlikely((flags & __GFP_ZERO) && ptr))
3399 		memset(ptr, 0, cachep->object_size);
3400 
3401 	return ptr;
3402 }
3403 
3404 static __always_inline void *
3405 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3406 {
3407 	void *objp;
3408 
3409 	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3410 		objp = alternate_node_alloc(cache, flags);
3411 		if (objp)
3412 			goto out;
3413 	}
3414 	objp = ____cache_alloc(cache, flags);
3415 
3416 	/*
3417 	 * We may just have run out of memory on the local node.
3418 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3419 	 */
3420 	if (!objp)
3421 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3422 
3423   out:
3424 	return objp;
3425 }
3426 #else
3427 
3428 static __always_inline void *
3429 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3430 {
3431 	return ____cache_alloc(cachep, flags);
3432 }
3433 
3434 #endif /* CONFIG_NUMA */
3435 
3436 static __always_inline void *
3437 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3438 {
3439 	unsigned long save_flags;
3440 	void *objp;
3441 
3442 	flags &= gfp_allowed_mask;
3443 
3444 	lockdep_trace_alloc(flags);
3445 
3446 	if (slab_should_failslab(cachep, flags))
3447 		return NULL;
3448 
3449 	cachep = memcg_kmem_get_cache(cachep, flags);
3450 
3451 	cache_alloc_debugcheck_before(cachep, flags);
3452 	local_irq_save(save_flags);
3453 	objp = __do_cache_alloc(cachep, flags);
3454 	local_irq_restore(save_flags);
3455 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3456 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3457 				 flags);
3458 	prefetchw(objp);
3459 
3460 	if (likely(objp))
3461 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3462 
3463 	if (unlikely((flags & __GFP_ZERO) && objp))
3464 		memset(objp, 0, cachep->object_size);
3465 
3466 	return objp;
3467 }
3468 
3469 /*
3470  * Caller needs to acquire correct kmem_list's list_lock
3471  */
3472 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3473 		       int node)
3474 {
3475 	int i;
3476 	struct kmem_cache_node *n;
3477 
3478 	for (i = 0; i < nr_objects; i++) {
3479 		void *objp;
3480 		struct slab *slabp;
3481 
3482 		clear_obj_pfmemalloc(&objpp[i]);
3483 		objp = objpp[i];
3484 
3485 		slabp = virt_to_slab(objp);
3486 		n = cachep->node[node];
3487 		list_del(&slabp->list);
3488 		check_spinlock_acquired_node(cachep, node);
3489 		check_slabp(cachep, slabp);
3490 		slab_put_obj(cachep, slabp, objp, node);
3491 		STATS_DEC_ACTIVE(cachep);
3492 		n->free_objects++;
3493 		check_slabp(cachep, slabp);
3494 
3495 		/* fixup slab chains */
3496 		if (slabp->inuse == 0) {
3497 			if (n->free_objects > n->free_limit) {
3498 				n->free_objects -= cachep->num;
3499 				/* No need to drop any previously held
3500 				 * lock here, even if we have a off-slab slab
3501 				 * descriptor it is guaranteed to come from
3502 				 * a different cache, refer to comments before
3503 				 * alloc_slabmgmt.
3504 				 */
3505 				slab_destroy(cachep, slabp);
3506 			} else {
3507 				list_add(&slabp->list, &n->slabs_free);
3508 			}
3509 		} else {
3510 			/* Unconditionally move a slab to the end of the
3511 			 * partial list on free - maximum time for the
3512 			 * other objects to be freed, too.
3513 			 */
3514 			list_add_tail(&slabp->list, &n->slabs_partial);
3515 		}
3516 	}
3517 }
3518 
3519 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3520 {
3521 	int batchcount;
3522 	struct kmem_cache_node *n;
3523 	int node = numa_mem_id();
3524 
3525 	batchcount = ac->batchcount;
3526 #if DEBUG
3527 	BUG_ON(!batchcount || batchcount > ac->avail);
3528 #endif
3529 	check_irq_off();
3530 	n = cachep->node[node];
3531 	spin_lock(&n->list_lock);
3532 	if (n->shared) {
3533 		struct array_cache *shared_array = n->shared;
3534 		int max = shared_array->limit - shared_array->avail;
3535 		if (max) {
3536 			if (batchcount > max)
3537 				batchcount = max;
3538 			memcpy(&(shared_array->entry[shared_array->avail]),
3539 			       ac->entry, sizeof(void *) * batchcount);
3540 			shared_array->avail += batchcount;
3541 			goto free_done;
3542 		}
3543 	}
3544 
3545 	free_block(cachep, ac->entry, batchcount, node);
3546 free_done:
3547 #if STATS
3548 	{
3549 		int i = 0;
3550 		struct list_head *p;
3551 
3552 		p = n->slabs_free.next;
3553 		while (p != &(n->slabs_free)) {
3554 			struct slab *slabp;
3555 
3556 			slabp = list_entry(p, struct slab, list);
3557 			BUG_ON(slabp->inuse);
3558 
3559 			i++;
3560 			p = p->next;
3561 		}
3562 		STATS_SET_FREEABLE(cachep, i);
3563 	}
3564 #endif
3565 	spin_unlock(&n->list_lock);
3566 	ac->avail -= batchcount;
3567 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3568 }
3569 
3570 /*
3571  * Release an obj back to its cache. If the obj has a constructed state, it must
3572  * be in this state _before_ it is released.  Called with disabled ints.
3573  */
3574 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3575 				unsigned long caller)
3576 {
3577 	struct array_cache *ac = cpu_cache_get(cachep);
3578 
3579 	check_irq_off();
3580 	kmemleak_free_recursive(objp, cachep->flags);
3581 	objp = cache_free_debugcheck(cachep, objp, caller);
3582 
3583 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3584 
3585 	/*
3586 	 * Skip calling cache_free_alien() when the platform is not numa.
3587 	 * This will avoid cache misses that happen while accessing slabp (which
3588 	 * is per page memory  reference) to get nodeid. Instead use a global
3589 	 * variable to skip the call, which is mostly likely to be present in
3590 	 * the cache.
3591 	 */
3592 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3593 		return;
3594 
3595 	if (likely(ac->avail < ac->limit)) {
3596 		STATS_INC_FREEHIT(cachep);
3597 	} else {
3598 		STATS_INC_FREEMISS(cachep);
3599 		cache_flusharray(cachep, ac);
3600 	}
3601 
3602 	ac_put_obj(cachep, ac, objp);
3603 }
3604 
3605 /**
3606  * kmem_cache_alloc - Allocate an object
3607  * @cachep: The cache to allocate from.
3608  * @flags: See kmalloc().
3609  *
3610  * Allocate an object from this cache.  The flags are only relevant
3611  * if the cache has no available objects.
3612  */
3613 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3614 {
3615 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3616 
3617 	trace_kmem_cache_alloc(_RET_IP_, ret,
3618 			       cachep->object_size, cachep->size, flags);
3619 
3620 	return ret;
3621 }
3622 EXPORT_SYMBOL(kmem_cache_alloc);
3623 
3624 #ifdef CONFIG_TRACING
3625 void *
3626 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3627 {
3628 	void *ret;
3629 
3630 	ret = slab_alloc(cachep, flags, _RET_IP_);
3631 
3632 	trace_kmalloc(_RET_IP_, ret,
3633 		      size, cachep->size, flags);
3634 	return ret;
3635 }
3636 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3637 #endif
3638 
3639 #ifdef CONFIG_NUMA
3640 /**
3641  * kmem_cache_alloc_node - Allocate an object on the specified node
3642  * @cachep: The cache to allocate from.
3643  * @flags: See kmalloc().
3644  * @nodeid: node number of the target node.
3645  *
3646  * Identical to kmem_cache_alloc but it will allocate memory on the given
3647  * node, which can improve the performance for cpu bound structures.
3648  *
3649  * Fallback to other node is possible if __GFP_THISNODE is not set.
3650  */
3651 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3652 {
3653 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3654 
3655 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3656 				    cachep->object_size, cachep->size,
3657 				    flags, nodeid);
3658 
3659 	return ret;
3660 }
3661 EXPORT_SYMBOL(kmem_cache_alloc_node);
3662 
3663 #ifdef CONFIG_TRACING
3664 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3665 				  gfp_t flags,
3666 				  int nodeid,
3667 				  size_t size)
3668 {
3669 	void *ret;
3670 
3671 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3672 
3673 	trace_kmalloc_node(_RET_IP_, ret,
3674 			   size, cachep->size,
3675 			   flags, nodeid);
3676 	return ret;
3677 }
3678 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3679 #endif
3680 
3681 static __always_inline void *
3682 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3683 {
3684 	struct kmem_cache *cachep;
3685 
3686 	cachep = kmalloc_slab(size, flags);
3687 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3688 		return cachep;
3689 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3690 }
3691 
3692 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3693 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3694 {
3695 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3696 }
3697 EXPORT_SYMBOL(__kmalloc_node);
3698 
3699 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3700 		int node, unsigned long caller)
3701 {
3702 	return __do_kmalloc_node(size, flags, node, caller);
3703 }
3704 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3705 #else
3706 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3707 {
3708 	return __do_kmalloc_node(size, flags, node, 0);
3709 }
3710 EXPORT_SYMBOL(__kmalloc_node);
3711 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3712 #endif /* CONFIG_NUMA */
3713 
3714 /**
3715  * __do_kmalloc - allocate memory
3716  * @size: how many bytes of memory are required.
3717  * @flags: the type of memory to allocate (see kmalloc).
3718  * @caller: function caller for debug tracking of the caller
3719  */
3720 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3721 					  unsigned long caller)
3722 {
3723 	struct kmem_cache *cachep;
3724 	void *ret;
3725 
3726 	/* If you want to save a few bytes .text space: replace
3727 	 * __ with kmem_.
3728 	 * Then kmalloc uses the uninlined functions instead of the inline
3729 	 * functions.
3730 	 */
3731 	cachep = kmalloc_slab(size, flags);
3732 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3733 		return cachep;
3734 	ret = slab_alloc(cachep, flags, caller);
3735 
3736 	trace_kmalloc(caller, ret,
3737 		      size, cachep->size, flags);
3738 
3739 	return ret;
3740 }
3741 
3742 
3743 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3744 void *__kmalloc(size_t size, gfp_t flags)
3745 {
3746 	return __do_kmalloc(size, flags, _RET_IP_);
3747 }
3748 EXPORT_SYMBOL(__kmalloc);
3749 
3750 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3751 {
3752 	return __do_kmalloc(size, flags, caller);
3753 }
3754 EXPORT_SYMBOL(__kmalloc_track_caller);
3755 
3756 #else
3757 void *__kmalloc(size_t size, gfp_t flags)
3758 {
3759 	return __do_kmalloc(size, flags, 0);
3760 }
3761 EXPORT_SYMBOL(__kmalloc);
3762 #endif
3763 
3764 /**
3765  * kmem_cache_free - Deallocate an object
3766  * @cachep: The cache the allocation was from.
3767  * @objp: The previously allocated object.
3768  *
3769  * Free an object which was previously allocated from this
3770  * cache.
3771  */
3772 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3773 {
3774 	unsigned long flags;
3775 	cachep = cache_from_obj(cachep, objp);
3776 	if (!cachep)
3777 		return;
3778 
3779 	local_irq_save(flags);
3780 	debug_check_no_locks_freed(objp, cachep->object_size);
3781 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3782 		debug_check_no_obj_freed(objp, cachep->object_size);
3783 	__cache_free(cachep, objp, _RET_IP_);
3784 	local_irq_restore(flags);
3785 
3786 	trace_kmem_cache_free(_RET_IP_, objp);
3787 }
3788 EXPORT_SYMBOL(kmem_cache_free);
3789 
3790 /**
3791  * kfree - free previously allocated memory
3792  * @objp: pointer returned by kmalloc.
3793  *
3794  * If @objp is NULL, no operation is performed.
3795  *
3796  * Don't free memory not originally allocated by kmalloc()
3797  * or you will run into trouble.
3798  */
3799 void kfree(const void *objp)
3800 {
3801 	struct kmem_cache *c;
3802 	unsigned long flags;
3803 
3804 	trace_kfree(_RET_IP_, objp);
3805 
3806 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3807 		return;
3808 	local_irq_save(flags);
3809 	kfree_debugcheck(objp);
3810 	c = virt_to_cache(objp);
3811 	debug_check_no_locks_freed(objp, c->object_size);
3812 
3813 	debug_check_no_obj_freed(objp, c->object_size);
3814 	__cache_free(c, (void *)objp, _RET_IP_);
3815 	local_irq_restore(flags);
3816 }
3817 EXPORT_SYMBOL(kfree);
3818 
3819 /*
3820  * This initializes kmem_cache_node or resizes various caches for all nodes.
3821  */
3822 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3823 {
3824 	int node;
3825 	struct kmem_cache_node *n;
3826 	struct array_cache *new_shared;
3827 	struct array_cache **new_alien = NULL;
3828 
3829 	for_each_online_node(node) {
3830 
3831                 if (use_alien_caches) {
3832                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3833                         if (!new_alien)
3834                                 goto fail;
3835                 }
3836 
3837 		new_shared = NULL;
3838 		if (cachep->shared) {
3839 			new_shared = alloc_arraycache(node,
3840 				cachep->shared*cachep->batchcount,
3841 					0xbaadf00d, gfp);
3842 			if (!new_shared) {
3843 				free_alien_cache(new_alien);
3844 				goto fail;
3845 			}
3846 		}
3847 
3848 		n = cachep->node[node];
3849 		if (n) {
3850 			struct array_cache *shared = n->shared;
3851 
3852 			spin_lock_irq(&n->list_lock);
3853 
3854 			if (shared)
3855 				free_block(cachep, shared->entry,
3856 						shared->avail, node);
3857 
3858 			n->shared = new_shared;
3859 			if (!n->alien) {
3860 				n->alien = new_alien;
3861 				new_alien = NULL;
3862 			}
3863 			n->free_limit = (1 + nr_cpus_node(node)) *
3864 					cachep->batchcount + cachep->num;
3865 			spin_unlock_irq(&n->list_lock);
3866 			kfree(shared);
3867 			free_alien_cache(new_alien);
3868 			continue;
3869 		}
3870 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3871 		if (!n) {
3872 			free_alien_cache(new_alien);
3873 			kfree(new_shared);
3874 			goto fail;
3875 		}
3876 
3877 		kmem_cache_node_init(n);
3878 		n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3879 				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3880 		n->shared = new_shared;
3881 		n->alien = new_alien;
3882 		n->free_limit = (1 + nr_cpus_node(node)) *
3883 					cachep->batchcount + cachep->num;
3884 		cachep->node[node] = n;
3885 	}
3886 	return 0;
3887 
3888 fail:
3889 	if (!cachep->list.next) {
3890 		/* Cache is not active yet. Roll back what we did */
3891 		node--;
3892 		while (node >= 0) {
3893 			if (cachep->node[node]) {
3894 				n = cachep->node[node];
3895 
3896 				kfree(n->shared);
3897 				free_alien_cache(n->alien);
3898 				kfree(n);
3899 				cachep->node[node] = NULL;
3900 			}
3901 			node--;
3902 		}
3903 	}
3904 	return -ENOMEM;
3905 }
3906 
3907 struct ccupdate_struct {
3908 	struct kmem_cache *cachep;
3909 	struct array_cache *new[0];
3910 };
3911 
3912 static void do_ccupdate_local(void *info)
3913 {
3914 	struct ccupdate_struct *new = info;
3915 	struct array_cache *old;
3916 
3917 	check_irq_off();
3918 	old = cpu_cache_get(new->cachep);
3919 
3920 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3921 	new->new[smp_processor_id()] = old;
3922 }
3923 
3924 /* Always called with the slab_mutex held */
3925 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3926 				int batchcount, int shared, gfp_t gfp)
3927 {
3928 	struct ccupdate_struct *new;
3929 	int i;
3930 
3931 	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3932 		      gfp);
3933 	if (!new)
3934 		return -ENOMEM;
3935 
3936 	for_each_online_cpu(i) {
3937 		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3938 						batchcount, gfp);
3939 		if (!new->new[i]) {
3940 			for (i--; i >= 0; i--)
3941 				kfree(new->new[i]);
3942 			kfree(new);
3943 			return -ENOMEM;
3944 		}
3945 	}
3946 	new->cachep = cachep;
3947 
3948 	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3949 
3950 	check_irq_on();
3951 	cachep->batchcount = batchcount;
3952 	cachep->limit = limit;
3953 	cachep->shared = shared;
3954 
3955 	for_each_online_cpu(i) {
3956 		struct array_cache *ccold = new->new[i];
3957 		if (!ccold)
3958 			continue;
3959 		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3960 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3961 		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3962 		kfree(ccold);
3963 	}
3964 	kfree(new);
3965 	return alloc_kmemlist(cachep, gfp);
3966 }
3967 
3968 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3969 				int batchcount, int shared, gfp_t gfp)
3970 {
3971 	int ret;
3972 	struct kmem_cache *c = NULL;
3973 	int i = 0;
3974 
3975 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3976 
3977 	if (slab_state < FULL)
3978 		return ret;
3979 
3980 	if ((ret < 0) || !is_root_cache(cachep))
3981 		return ret;
3982 
3983 	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3984 	for_each_memcg_cache_index(i) {
3985 		c = cache_from_memcg(cachep, i);
3986 		if (c)
3987 			/* return value determined by the parent cache only */
3988 			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3989 	}
3990 
3991 	return ret;
3992 }
3993 
3994 /* Called with slab_mutex held always */
3995 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3996 {
3997 	int err;
3998 	int limit = 0;
3999 	int shared = 0;
4000 	int batchcount = 0;
4001 
4002 	if (!is_root_cache(cachep)) {
4003 		struct kmem_cache *root = memcg_root_cache(cachep);
4004 		limit = root->limit;
4005 		shared = root->shared;
4006 		batchcount = root->batchcount;
4007 	}
4008 
4009 	if (limit && shared && batchcount)
4010 		goto skip_setup;
4011 	/*
4012 	 * The head array serves three purposes:
4013 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
4014 	 * - reduce the number of spinlock operations.
4015 	 * - reduce the number of linked list operations on the slab and
4016 	 *   bufctl chains: array operations are cheaper.
4017 	 * The numbers are guessed, we should auto-tune as described by
4018 	 * Bonwick.
4019 	 */
4020 	if (cachep->size > 131072)
4021 		limit = 1;
4022 	else if (cachep->size > PAGE_SIZE)
4023 		limit = 8;
4024 	else if (cachep->size > 1024)
4025 		limit = 24;
4026 	else if (cachep->size > 256)
4027 		limit = 54;
4028 	else
4029 		limit = 120;
4030 
4031 	/*
4032 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4033 	 * allocation behaviour: Most allocs on one cpu, most free operations
4034 	 * on another cpu. For these cases, an efficient object passing between
4035 	 * cpus is necessary. This is provided by a shared array. The array
4036 	 * replaces Bonwick's magazine layer.
4037 	 * On uniprocessor, it's functionally equivalent (but less efficient)
4038 	 * to a larger limit. Thus disabled by default.
4039 	 */
4040 	shared = 0;
4041 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4042 		shared = 8;
4043 
4044 #if DEBUG
4045 	/*
4046 	 * With debugging enabled, large batchcount lead to excessively long
4047 	 * periods with disabled local interrupts. Limit the batchcount
4048 	 */
4049 	if (limit > 32)
4050 		limit = 32;
4051 #endif
4052 	batchcount = (limit + 1) / 2;
4053 skip_setup:
4054 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4055 	if (err)
4056 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4057 		       cachep->name, -err);
4058 	return err;
4059 }
4060 
4061 /*
4062  * Drain an array if it contains any elements taking the node lock only if
4063  * necessary. Note that the node listlock also protects the array_cache
4064  * if drain_array() is used on the shared array.
4065  */
4066 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4067 			 struct array_cache *ac, int force, int node)
4068 {
4069 	int tofree;
4070 
4071 	if (!ac || !ac->avail)
4072 		return;
4073 	if (ac->touched && !force) {
4074 		ac->touched = 0;
4075 	} else {
4076 		spin_lock_irq(&n->list_lock);
4077 		if (ac->avail) {
4078 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4079 			if (tofree > ac->avail)
4080 				tofree = (ac->avail + 1) / 2;
4081 			free_block(cachep, ac->entry, tofree, node);
4082 			ac->avail -= tofree;
4083 			memmove(ac->entry, &(ac->entry[tofree]),
4084 				sizeof(void *) * ac->avail);
4085 		}
4086 		spin_unlock_irq(&n->list_lock);
4087 	}
4088 }
4089 
4090 /**
4091  * cache_reap - Reclaim memory from caches.
4092  * @w: work descriptor
4093  *
4094  * Called from workqueue/eventd every few seconds.
4095  * Purpose:
4096  * - clear the per-cpu caches for this CPU.
4097  * - return freeable pages to the main free memory pool.
4098  *
4099  * If we cannot acquire the cache chain mutex then just give up - we'll try
4100  * again on the next iteration.
4101  */
4102 static void cache_reap(struct work_struct *w)
4103 {
4104 	struct kmem_cache *searchp;
4105 	struct kmem_cache_node *n;
4106 	int node = numa_mem_id();
4107 	struct delayed_work *work = to_delayed_work(w);
4108 
4109 	if (!mutex_trylock(&slab_mutex))
4110 		/* Give up. Setup the next iteration. */
4111 		goto out;
4112 
4113 	list_for_each_entry(searchp, &slab_caches, list) {
4114 		check_irq_on();
4115 
4116 		/*
4117 		 * We only take the node lock if absolutely necessary and we
4118 		 * have established with reasonable certainty that
4119 		 * we can do some work if the lock was obtained.
4120 		 */
4121 		n = searchp->node[node];
4122 
4123 		reap_alien(searchp, n);
4124 
4125 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4126 
4127 		/*
4128 		 * These are racy checks but it does not matter
4129 		 * if we skip one check or scan twice.
4130 		 */
4131 		if (time_after(n->next_reap, jiffies))
4132 			goto next;
4133 
4134 		n->next_reap = jiffies + REAPTIMEOUT_LIST3;
4135 
4136 		drain_array(searchp, n, n->shared, 0, node);
4137 
4138 		if (n->free_touched)
4139 			n->free_touched = 0;
4140 		else {
4141 			int freed;
4142 
4143 			freed = drain_freelist(searchp, n, (n->free_limit +
4144 				5 * searchp->num - 1) / (5 * searchp->num));
4145 			STATS_ADD_REAPED(searchp, freed);
4146 		}
4147 next:
4148 		cond_resched();
4149 	}
4150 	check_irq_on();
4151 	mutex_unlock(&slab_mutex);
4152 	next_reap_node();
4153 out:
4154 	/* Set up the next iteration */
4155 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4156 }
4157 
4158 #ifdef CONFIG_SLABINFO
4159 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4160 {
4161 	struct slab *slabp;
4162 	unsigned long active_objs;
4163 	unsigned long num_objs;
4164 	unsigned long active_slabs = 0;
4165 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4166 	const char *name;
4167 	char *error = NULL;
4168 	int node;
4169 	struct kmem_cache_node *n;
4170 
4171 	active_objs = 0;
4172 	num_slabs = 0;
4173 	for_each_online_node(node) {
4174 		n = cachep->node[node];
4175 		if (!n)
4176 			continue;
4177 
4178 		check_irq_on();
4179 		spin_lock_irq(&n->list_lock);
4180 
4181 		list_for_each_entry(slabp, &n->slabs_full, list) {
4182 			if (slabp->inuse != cachep->num && !error)
4183 				error = "slabs_full accounting error";
4184 			active_objs += cachep->num;
4185 			active_slabs++;
4186 		}
4187 		list_for_each_entry(slabp, &n->slabs_partial, list) {
4188 			if (slabp->inuse == cachep->num && !error)
4189 				error = "slabs_partial inuse accounting error";
4190 			if (!slabp->inuse && !error)
4191 				error = "slabs_partial/inuse accounting error";
4192 			active_objs += slabp->inuse;
4193 			active_slabs++;
4194 		}
4195 		list_for_each_entry(slabp, &n->slabs_free, list) {
4196 			if (slabp->inuse && !error)
4197 				error = "slabs_free/inuse accounting error";
4198 			num_slabs++;
4199 		}
4200 		free_objects += n->free_objects;
4201 		if (n->shared)
4202 			shared_avail += n->shared->avail;
4203 
4204 		spin_unlock_irq(&n->list_lock);
4205 	}
4206 	num_slabs += active_slabs;
4207 	num_objs = num_slabs * cachep->num;
4208 	if (num_objs - active_objs != free_objects && !error)
4209 		error = "free_objects accounting error";
4210 
4211 	name = cachep->name;
4212 	if (error)
4213 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4214 
4215 	sinfo->active_objs = active_objs;
4216 	sinfo->num_objs = num_objs;
4217 	sinfo->active_slabs = active_slabs;
4218 	sinfo->num_slabs = num_slabs;
4219 	sinfo->shared_avail = shared_avail;
4220 	sinfo->limit = cachep->limit;
4221 	sinfo->batchcount = cachep->batchcount;
4222 	sinfo->shared = cachep->shared;
4223 	sinfo->objects_per_slab = cachep->num;
4224 	sinfo->cache_order = cachep->gfporder;
4225 }
4226 
4227 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4228 {
4229 #if STATS
4230 	{			/* node stats */
4231 		unsigned long high = cachep->high_mark;
4232 		unsigned long allocs = cachep->num_allocations;
4233 		unsigned long grown = cachep->grown;
4234 		unsigned long reaped = cachep->reaped;
4235 		unsigned long errors = cachep->errors;
4236 		unsigned long max_freeable = cachep->max_freeable;
4237 		unsigned long node_allocs = cachep->node_allocs;
4238 		unsigned long node_frees = cachep->node_frees;
4239 		unsigned long overflows = cachep->node_overflow;
4240 
4241 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4242 			   "%4lu %4lu %4lu %4lu %4lu",
4243 			   allocs, high, grown,
4244 			   reaped, errors, max_freeable, node_allocs,
4245 			   node_frees, overflows);
4246 	}
4247 	/* cpu stats */
4248 	{
4249 		unsigned long allochit = atomic_read(&cachep->allochit);
4250 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4251 		unsigned long freehit = atomic_read(&cachep->freehit);
4252 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4253 
4254 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4255 			   allochit, allocmiss, freehit, freemiss);
4256 	}
4257 #endif
4258 }
4259 
4260 #define MAX_SLABINFO_WRITE 128
4261 /**
4262  * slabinfo_write - Tuning for the slab allocator
4263  * @file: unused
4264  * @buffer: user buffer
4265  * @count: data length
4266  * @ppos: unused
4267  */
4268 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4269 		       size_t count, loff_t *ppos)
4270 {
4271 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4272 	int limit, batchcount, shared, res;
4273 	struct kmem_cache *cachep;
4274 
4275 	if (count > MAX_SLABINFO_WRITE)
4276 		return -EINVAL;
4277 	if (copy_from_user(&kbuf, buffer, count))
4278 		return -EFAULT;
4279 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4280 
4281 	tmp = strchr(kbuf, ' ');
4282 	if (!tmp)
4283 		return -EINVAL;
4284 	*tmp = '\0';
4285 	tmp++;
4286 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4287 		return -EINVAL;
4288 
4289 	/* Find the cache in the chain of caches. */
4290 	mutex_lock(&slab_mutex);
4291 	res = -EINVAL;
4292 	list_for_each_entry(cachep, &slab_caches, list) {
4293 		if (!strcmp(cachep->name, kbuf)) {
4294 			if (limit < 1 || batchcount < 1 ||
4295 					batchcount > limit || shared < 0) {
4296 				res = 0;
4297 			} else {
4298 				res = do_tune_cpucache(cachep, limit,
4299 						       batchcount, shared,
4300 						       GFP_KERNEL);
4301 			}
4302 			break;
4303 		}
4304 	}
4305 	mutex_unlock(&slab_mutex);
4306 	if (res >= 0)
4307 		res = count;
4308 	return res;
4309 }
4310 
4311 #ifdef CONFIG_DEBUG_SLAB_LEAK
4312 
4313 static void *leaks_start(struct seq_file *m, loff_t *pos)
4314 {
4315 	mutex_lock(&slab_mutex);
4316 	return seq_list_start(&slab_caches, *pos);
4317 }
4318 
4319 static inline int add_caller(unsigned long *n, unsigned long v)
4320 {
4321 	unsigned long *p;
4322 	int l;
4323 	if (!v)
4324 		return 1;
4325 	l = n[1];
4326 	p = n + 2;
4327 	while (l) {
4328 		int i = l/2;
4329 		unsigned long *q = p + 2 * i;
4330 		if (*q == v) {
4331 			q[1]++;
4332 			return 1;
4333 		}
4334 		if (*q > v) {
4335 			l = i;
4336 		} else {
4337 			p = q + 2;
4338 			l -= i + 1;
4339 		}
4340 	}
4341 	if (++n[1] == n[0])
4342 		return 0;
4343 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4344 	p[0] = v;
4345 	p[1] = 1;
4346 	return 1;
4347 }
4348 
4349 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4350 {
4351 	void *p;
4352 	int i;
4353 	if (n[0] == n[1])
4354 		return;
4355 	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4356 		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4357 			continue;
4358 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4359 			return;
4360 	}
4361 }
4362 
4363 static void show_symbol(struct seq_file *m, unsigned long address)
4364 {
4365 #ifdef CONFIG_KALLSYMS
4366 	unsigned long offset, size;
4367 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4368 
4369 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4370 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4371 		if (modname[0])
4372 			seq_printf(m, " [%s]", modname);
4373 		return;
4374 	}
4375 #endif
4376 	seq_printf(m, "%p", (void *)address);
4377 }
4378 
4379 static int leaks_show(struct seq_file *m, void *p)
4380 {
4381 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4382 	struct slab *slabp;
4383 	struct kmem_cache_node *n;
4384 	const char *name;
4385 	unsigned long *x = m->private;
4386 	int node;
4387 	int i;
4388 
4389 	if (!(cachep->flags & SLAB_STORE_USER))
4390 		return 0;
4391 	if (!(cachep->flags & SLAB_RED_ZONE))
4392 		return 0;
4393 
4394 	/* OK, we can do it */
4395 
4396 	x[1] = 0;
4397 
4398 	for_each_online_node(node) {
4399 		n = cachep->node[node];
4400 		if (!n)
4401 			continue;
4402 
4403 		check_irq_on();
4404 		spin_lock_irq(&n->list_lock);
4405 
4406 		list_for_each_entry(slabp, &n->slabs_full, list)
4407 			handle_slab(x, cachep, slabp);
4408 		list_for_each_entry(slabp, &n->slabs_partial, list)
4409 			handle_slab(x, cachep, slabp);
4410 		spin_unlock_irq(&n->list_lock);
4411 	}
4412 	name = cachep->name;
4413 	if (x[0] == x[1]) {
4414 		/* Increase the buffer size */
4415 		mutex_unlock(&slab_mutex);
4416 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4417 		if (!m->private) {
4418 			/* Too bad, we are really out */
4419 			m->private = x;
4420 			mutex_lock(&slab_mutex);
4421 			return -ENOMEM;
4422 		}
4423 		*(unsigned long *)m->private = x[0] * 2;
4424 		kfree(x);
4425 		mutex_lock(&slab_mutex);
4426 		/* Now make sure this entry will be retried */
4427 		m->count = m->size;
4428 		return 0;
4429 	}
4430 	for (i = 0; i < x[1]; i++) {
4431 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4432 		show_symbol(m, x[2*i+2]);
4433 		seq_putc(m, '\n');
4434 	}
4435 
4436 	return 0;
4437 }
4438 
4439 static const struct seq_operations slabstats_op = {
4440 	.start = leaks_start,
4441 	.next = slab_next,
4442 	.stop = slab_stop,
4443 	.show = leaks_show,
4444 };
4445 
4446 static int slabstats_open(struct inode *inode, struct file *file)
4447 {
4448 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4449 	int ret = -ENOMEM;
4450 	if (n) {
4451 		ret = seq_open(file, &slabstats_op);
4452 		if (!ret) {
4453 			struct seq_file *m = file->private_data;
4454 			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4455 			m->private = n;
4456 			n = NULL;
4457 		}
4458 		kfree(n);
4459 	}
4460 	return ret;
4461 }
4462 
4463 static const struct file_operations proc_slabstats_operations = {
4464 	.open		= slabstats_open,
4465 	.read		= seq_read,
4466 	.llseek		= seq_lseek,
4467 	.release	= seq_release_private,
4468 };
4469 #endif
4470 
4471 static int __init slab_proc_init(void)
4472 {
4473 #ifdef CONFIG_DEBUG_SLAB_LEAK
4474 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4475 #endif
4476 	return 0;
4477 }
4478 module_init(slab_proc_init);
4479 #endif
4480 
4481 /**
4482  * ksize - get the actual amount of memory allocated for a given object
4483  * @objp: Pointer to the object
4484  *
4485  * kmalloc may internally round up allocations and return more memory
4486  * than requested. ksize() can be used to determine the actual amount of
4487  * memory allocated. The caller may use this additional memory, even though
4488  * a smaller amount of memory was initially specified with the kmalloc call.
4489  * The caller must guarantee that objp points to a valid object previously
4490  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4491  * must not be freed during the duration of the call.
4492  */
4493 size_t ksize(const void *objp)
4494 {
4495 	BUG_ON(!objp);
4496 	if (unlikely(objp == ZERO_SIZE_PTR))
4497 		return 0;
4498 
4499 	return virt_to_cache(objp)->object_size;
4500 }
4501 EXPORT_SYMBOL(ksize);
4502