1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/kfence.h> 104 #include <linux/cpu.h> 105 #include <linux/sysctl.h> 106 #include <linux/module.h> 107 #include <linux/rcupdate.h> 108 #include <linux/string.h> 109 #include <linux/uaccess.h> 110 #include <linux/nodemask.h> 111 #include <linux/kmemleak.h> 112 #include <linux/mempolicy.h> 113 #include <linux/mutex.h> 114 #include <linux/fault-inject.h> 115 #include <linux/rtmutex.h> 116 #include <linux/reciprocal_div.h> 117 #include <linux/debugobjects.h> 118 #include <linux/memory.h> 119 #include <linux/prefetch.h> 120 #include <linux/sched/task_stack.h> 121 122 #include <net/sock.h> 123 124 #include <asm/cacheflush.h> 125 #include <asm/tlbflush.h> 126 #include <asm/page.h> 127 128 #include <trace/events/kmem.h> 129 130 #include "internal.h" 131 132 #include "slab.h" 133 134 /* 135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 136 * 0 for faster, smaller code (especially in the critical paths). 137 * 138 * STATS - 1 to collect stats for /proc/slabinfo. 139 * 0 for faster, smaller code (especially in the critical paths). 140 * 141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 142 */ 143 144 #ifdef CONFIG_DEBUG_SLAB 145 #define DEBUG 1 146 #define STATS 1 147 #define FORCED_DEBUG 1 148 #else 149 #define DEBUG 0 150 #define STATS 0 151 #define FORCED_DEBUG 0 152 #endif 153 154 /* Shouldn't this be in a header file somewhere? */ 155 #define BYTES_PER_WORD sizeof(void *) 156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 157 158 #ifndef ARCH_KMALLOC_FLAGS 159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 160 #endif 161 162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 164 165 #if FREELIST_BYTE_INDEX 166 typedef unsigned char freelist_idx_t; 167 #else 168 typedef unsigned short freelist_idx_t; 169 #endif 170 171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 172 173 /* 174 * struct array_cache 175 * 176 * Purpose: 177 * - LIFO ordering, to hand out cache-warm objects from _alloc 178 * - reduce the number of linked list operations 179 * - reduce spinlock operations 180 * 181 * The limit is stored in the per-cpu structure to reduce the data cache 182 * footprint. 183 * 184 */ 185 struct array_cache { 186 unsigned int avail; 187 unsigned int limit; 188 unsigned int batchcount; 189 unsigned int touched; 190 void *entry[]; /* 191 * Must have this definition in here for the proper 192 * alignment of array_cache. Also simplifies accessing 193 * the entries. 194 */ 195 }; 196 197 struct alien_cache { 198 spinlock_t lock; 199 struct array_cache ac; 200 }; 201 202 /* 203 * Need this for bootstrapping a per node allocator. 204 */ 205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 207 #define CACHE_CACHE 0 208 #define SIZE_NODE (MAX_NUMNODES) 209 210 static int drain_freelist(struct kmem_cache *cache, 211 struct kmem_cache_node *n, int tofree); 212 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 213 int node, struct list_head *list); 214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 216 static void cache_reap(struct work_struct *unused); 217 218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 219 void **list); 220 static inline void fixup_slab_list(struct kmem_cache *cachep, 221 struct kmem_cache_node *n, struct slab *slab, 222 void **list); 223 static int slab_early_init = 1; 224 225 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 226 227 static void kmem_cache_node_init(struct kmem_cache_node *parent) 228 { 229 INIT_LIST_HEAD(&parent->slabs_full); 230 INIT_LIST_HEAD(&parent->slabs_partial); 231 INIT_LIST_HEAD(&parent->slabs_free); 232 parent->total_slabs = 0; 233 parent->free_slabs = 0; 234 parent->shared = NULL; 235 parent->alien = NULL; 236 parent->colour_next = 0; 237 spin_lock_init(&parent->list_lock); 238 parent->free_objects = 0; 239 parent->free_touched = 0; 240 } 241 242 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 243 do { \ 244 INIT_LIST_HEAD(listp); \ 245 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 246 } while (0) 247 248 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 249 do { \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 253 } while (0) 254 255 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 256 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 257 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 258 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 259 260 #define BATCHREFILL_LIMIT 16 261 /* 262 * Optimization question: fewer reaps means less probability for unnecessary 263 * cpucache drain/refill cycles. 264 * 265 * OTOH the cpuarrays can contain lots of objects, 266 * which could lock up otherwise freeable slabs. 267 */ 268 #define REAPTIMEOUT_AC (2*HZ) 269 #define REAPTIMEOUT_NODE (4*HZ) 270 271 #if STATS 272 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 273 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 274 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 275 #define STATS_INC_GROWN(x) ((x)->grown++) 276 #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y)) 277 #define STATS_SET_HIGH(x) \ 278 do { \ 279 if ((x)->num_active > (x)->high_mark) \ 280 (x)->high_mark = (x)->num_active; \ 281 } while (0) 282 #define STATS_INC_ERR(x) ((x)->errors++) 283 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 284 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 285 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 286 #define STATS_SET_FREEABLE(x, i) \ 287 do { \ 288 if ((x)->max_freeable < i) \ 289 (x)->max_freeable = i; \ 290 } while (0) 291 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 292 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 293 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 294 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 295 #else 296 #define STATS_INC_ACTIVE(x) do { } while (0) 297 #define STATS_DEC_ACTIVE(x) do { } while (0) 298 #define STATS_INC_ALLOCED(x) do { } while (0) 299 #define STATS_INC_GROWN(x) do { } while (0) 300 #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0) 301 #define STATS_SET_HIGH(x) do { } while (0) 302 #define STATS_INC_ERR(x) do { } while (0) 303 #define STATS_INC_NODEALLOCS(x) do { } while (0) 304 #define STATS_INC_NODEFREES(x) do { } while (0) 305 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 306 #define STATS_SET_FREEABLE(x, i) do { } while (0) 307 #define STATS_INC_ALLOCHIT(x) do { } while (0) 308 #define STATS_INC_ALLOCMISS(x) do { } while (0) 309 #define STATS_INC_FREEHIT(x) do { } while (0) 310 #define STATS_INC_FREEMISS(x) do { } while (0) 311 #endif 312 313 #if DEBUG 314 315 /* 316 * memory layout of objects: 317 * 0 : objp 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 319 * the end of an object is aligned with the end of the real 320 * allocation. Catches writes behind the end of the allocation. 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 322 * redzone word. 323 * cachep->obj_offset: The real object. 324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 325 * cachep->size - 1* BYTES_PER_WORD: last caller address 326 * [BYTES_PER_WORD long] 327 */ 328 static int obj_offset(struct kmem_cache *cachep) 329 { 330 return cachep->obj_offset; 331 } 332 333 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 334 { 335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 336 return (unsigned long long *) (objp + obj_offset(cachep) - 337 sizeof(unsigned long long)); 338 } 339 340 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 341 { 342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 343 if (cachep->flags & SLAB_STORE_USER) 344 return (unsigned long long *)(objp + cachep->size - 345 sizeof(unsigned long long) - 346 REDZONE_ALIGN); 347 return (unsigned long long *) (objp + cachep->size - 348 sizeof(unsigned long long)); 349 } 350 351 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 352 { 353 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 354 return (void **)(objp + cachep->size - BYTES_PER_WORD); 355 } 356 357 #else 358 359 #define obj_offset(x) 0 360 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 362 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 363 364 #endif 365 366 /* 367 * Do not go above this order unless 0 objects fit into the slab or 368 * overridden on the command line. 369 */ 370 #define SLAB_MAX_ORDER_HI 1 371 #define SLAB_MAX_ORDER_LO 0 372 static int slab_max_order = SLAB_MAX_ORDER_LO; 373 static bool slab_max_order_set __initdata; 374 375 static inline void *index_to_obj(struct kmem_cache *cache, 376 const struct slab *slab, unsigned int idx) 377 { 378 return slab->s_mem + cache->size * idx; 379 } 380 381 #define BOOT_CPUCACHE_ENTRIES 1 382 /* internal cache of cache description objs */ 383 static struct kmem_cache kmem_cache_boot = { 384 .batchcount = 1, 385 .limit = BOOT_CPUCACHE_ENTRIES, 386 .shared = 1, 387 .size = sizeof(struct kmem_cache), 388 .name = "kmem_cache", 389 }; 390 391 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 392 393 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 394 { 395 return this_cpu_ptr(cachep->cpu_cache); 396 } 397 398 /* 399 * Calculate the number of objects and left-over bytes for a given buffer size. 400 */ 401 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 402 slab_flags_t flags, size_t *left_over) 403 { 404 unsigned int num; 405 size_t slab_size = PAGE_SIZE << gfporder; 406 407 /* 408 * The slab management structure can be either off the slab or 409 * on it. For the latter case, the memory allocated for a 410 * slab is used for: 411 * 412 * - @buffer_size bytes for each object 413 * - One freelist_idx_t for each object 414 * 415 * We don't need to consider alignment of freelist because 416 * freelist will be at the end of slab page. The objects will be 417 * at the correct alignment. 418 * 419 * If the slab management structure is off the slab, then the 420 * alignment will already be calculated into the size. Because 421 * the slabs are all pages aligned, the objects will be at the 422 * correct alignment when allocated. 423 */ 424 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 425 num = slab_size / buffer_size; 426 *left_over = slab_size % buffer_size; 427 } else { 428 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 429 *left_over = slab_size % 430 (buffer_size + sizeof(freelist_idx_t)); 431 } 432 433 return num; 434 } 435 436 #if DEBUG 437 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 438 439 static void __slab_error(const char *function, struct kmem_cache *cachep, 440 char *msg) 441 { 442 pr_err("slab error in %s(): cache `%s': %s\n", 443 function, cachep->name, msg); 444 dump_stack(); 445 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 446 } 447 #endif 448 449 /* 450 * By default on NUMA we use alien caches to stage the freeing of 451 * objects allocated from other nodes. This causes massive memory 452 * inefficiencies when using fake NUMA setup to split memory into a 453 * large number of small nodes, so it can be disabled on the command 454 * line 455 */ 456 457 static int use_alien_caches __read_mostly = 1; 458 static int __init noaliencache_setup(char *s) 459 { 460 use_alien_caches = 0; 461 return 1; 462 } 463 __setup("noaliencache", noaliencache_setup); 464 465 static int __init slab_max_order_setup(char *str) 466 { 467 get_option(&str, &slab_max_order); 468 slab_max_order = slab_max_order < 0 ? 0 : 469 min(slab_max_order, MAX_ORDER - 1); 470 slab_max_order_set = true; 471 472 return 1; 473 } 474 __setup("slab_max_order=", slab_max_order_setup); 475 476 #ifdef CONFIG_NUMA 477 /* 478 * Special reaping functions for NUMA systems called from cache_reap(). 479 * These take care of doing round robin flushing of alien caches (containing 480 * objects freed on different nodes from which they were allocated) and the 481 * flushing of remote pcps by calling drain_node_pages. 482 */ 483 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 484 485 static void init_reap_node(int cpu) 486 { 487 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 488 node_online_map); 489 } 490 491 static void next_reap_node(void) 492 { 493 int node = __this_cpu_read(slab_reap_node); 494 495 node = next_node_in(node, node_online_map); 496 __this_cpu_write(slab_reap_node, node); 497 } 498 499 #else 500 #define init_reap_node(cpu) do { } while (0) 501 #define next_reap_node(void) do { } while (0) 502 #endif 503 504 /* 505 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 506 * via the workqueue/eventd. 507 * Add the CPU number into the expiration time to minimize the possibility of 508 * the CPUs getting into lockstep and contending for the global cache chain 509 * lock. 510 */ 511 static void start_cpu_timer(int cpu) 512 { 513 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 514 515 if (reap_work->work.func == NULL) { 516 init_reap_node(cpu); 517 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 518 schedule_delayed_work_on(cpu, reap_work, 519 __round_jiffies_relative(HZ, cpu)); 520 } 521 } 522 523 static void init_arraycache(struct array_cache *ac, int limit, int batch) 524 { 525 if (ac) { 526 ac->avail = 0; 527 ac->limit = limit; 528 ac->batchcount = batch; 529 ac->touched = 0; 530 } 531 } 532 533 static struct array_cache *alloc_arraycache(int node, int entries, 534 int batchcount, gfp_t gfp) 535 { 536 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 537 struct array_cache *ac = NULL; 538 539 ac = kmalloc_node(memsize, gfp, node); 540 /* 541 * The array_cache structures contain pointers to free object. 542 * However, when such objects are allocated or transferred to another 543 * cache the pointers are not cleared and they could be counted as 544 * valid references during a kmemleak scan. Therefore, kmemleak must 545 * not scan such objects. 546 */ 547 kmemleak_no_scan(ac); 548 init_arraycache(ac, entries, batchcount); 549 return ac; 550 } 551 552 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 553 struct slab *slab, void *objp) 554 { 555 struct kmem_cache_node *n; 556 int slab_node; 557 LIST_HEAD(list); 558 559 slab_node = slab_nid(slab); 560 n = get_node(cachep, slab_node); 561 562 spin_lock(&n->list_lock); 563 free_block(cachep, &objp, 1, slab_node, &list); 564 spin_unlock(&n->list_lock); 565 566 slabs_destroy(cachep, &list); 567 } 568 569 /* 570 * Transfer objects in one arraycache to another. 571 * Locking must be handled by the caller. 572 * 573 * Return the number of entries transferred. 574 */ 575 static int transfer_objects(struct array_cache *to, 576 struct array_cache *from, unsigned int max) 577 { 578 /* Figure out how many entries to transfer */ 579 int nr = min3(from->avail, max, to->limit - to->avail); 580 581 if (!nr) 582 return 0; 583 584 memcpy(to->entry + to->avail, from->entry + from->avail - nr, 585 sizeof(void *) *nr); 586 587 from->avail -= nr; 588 to->avail += nr; 589 return nr; 590 } 591 592 /* &alien->lock must be held by alien callers. */ 593 static __always_inline void __free_one(struct array_cache *ac, void *objp) 594 { 595 /* Avoid trivial double-free. */ 596 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 597 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) 598 return; 599 ac->entry[ac->avail++] = objp; 600 } 601 602 #ifndef CONFIG_NUMA 603 604 #define drain_alien_cache(cachep, alien) do { } while (0) 605 #define reap_alien(cachep, n) do { } while (0) 606 607 static inline struct alien_cache **alloc_alien_cache(int node, 608 int limit, gfp_t gfp) 609 { 610 return NULL; 611 } 612 613 static inline void free_alien_cache(struct alien_cache **ac_ptr) 614 { 615 } 616 617 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 618 { 619 return 0; 620 } 621 622 static inline gfp_t gfp_exact_node(gfp_t flags) 623 { 624 return flags & ~__GFP_NOFAIL; 625 } 626 627 #else /* CONFIG_NUMA */ 628 629 static struct alien_cache *__alloc_alien_cache(int node, int entries, 630 int batch, gfp_t gfp) 631 { 632 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 633 struct alien_cache *alc = NULL; 634 635 alc = kmalloc_node(memsize, gfp, node); 636 if (alc) { 637 kmemleak_no_scan(alc); 638 init_arraycache(&alc->ac, entries, batch); 639 spin_lock_init(&alc->lock); 640 } 641 return alc; 642 } 643 644 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 645 { 646 struct alien_cache **alc_ptr; 647 int i; 648 649 if (limit > 1) 650 limit = 12; 651 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 652 if (!alc_ptr) 653 return NULL; 654 655 for_each_node(i) { 656 if (i == node || !node_online(i)) 657 continue; 658 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 659 if (!alc_ptr[i]) { 660 for (i--; i >= 0; i--) 661 kfree(alc_ptr[i]); 662 kfree(alc_ptr); 663 return NULL; 664 } 665 } 666 return alc_ptr; 667 } 668 669 static void free_alien_cache(struct alien_cache **alc_ptr) 670 { 671 int i; 672 673 if (!alc_ptr) 674 return; 675 for_each_node(i) 676 kfree(alc_ptr[i]); 677 kfree(alc_ptr); 678 } 679 680 static void __drain_alien_cache(struct kmem_cache *cachep, 681 struct array_cache *ac, int node, 682 struct list_head *list) 683 { 684 struct kmem_cache_node *n = get_node(cachep, node); 685 686 if (ac->avail) { 687 spin_lock(&n->list_lock); 688 /* 689 * Stuff objects into the remote nodes shared array first. 690 * That way we could avoid the overhead of putting the objects 691 * into the free lists and getting them back later. 692 */ 693 if (n->shared) 694 transfer_objects(n->shared, ac, ac->limit); 695 696 free_block(cachep, ac->entry, ac->avail, node, list); 697 ac->avail = 0; 698 spin_unlock(&n->list_lock); 699 } 700 } 701 702 /* 703 * Called from cache_reap() to regularly drain alien caches round robin. 704 */ 705 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 706 { 707 int node = __this_cpu_read(slab_reap_node); 708 709 if (n->alien) { 710 struct alien_cache *alc = n->alien[node]; 711 struct array_cache *ac; 712 713 if (alc) { 714 ac = &alc->ac; 715 if (ac->avail && spin_trylock_irq(&alc->lock)) { 716 LIST_HEAD(list); 717 718 __drain_alien_cache(cachep, ac, node, &list); 719 spin_unlock_irq(&alc->lock); 720 slabs_destroy(cachep, &list); 721 } 722 } 723 } 724 } 725 726 static void drain_alien_cache(struct kmem_cache *cachep, 727 struct alien_cache **alien) 728 { 729 int i = 0; 730 struct alien_cache *alc; 731 struct array_cache *ac; 732 unsigned long flags; 733 734 for_each_online_node(i) { 735 alc = alien[i]; 736 if (alc) { 737 LIST_HEAD(list); 738 739 ac = &alc->ac; 740 spin_lock_irqsave(&alc->lock, flags); 741 __drain_alien_cache(cachep, ac, i, &list); 742 spin_unlock_irqrestore(&alc->lock, flags); 743 slabs_destroy(cachep, &list); 744 } 745 } 746 } 747 748 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 749 int node, int slab_node) 750 { 751 struct kmem_cache_node *n; 752 struct alien_cache *alien = NULL; 753 struct array_cache *ac; 754 LIST_HEAD(list); 755 756 n = get_node(cachep, node); 757 STATS_INC_NODEFREES(cachep); 758 if (n->alien && n->alien[slab_node]) { 759 alien = n->alien[slab_node]; 760 ac = &alien->ac; 761 spin_lock(&alien->lock); 762 if (unlikely(ac->avail == ac->limit)) { 763 STATS_INC_ACOVERFLOW(cachep); 764 __drain_alien_cache(cachep, ac, slab_node, &list); 765 } 766 __free_one(ac, objp); 767 spin_unlock(&alien->lock); 768 slabs_destroy(cachep, &list); 769 } else { 770 n = get_node(cachep, slab_node); 771 spin_lock(&n->list_lock); 772 free_block(cachep, &objp, 1, slab_node, &list); 773 spin_unlock(&n->list_lock); 774 slabs_destroy(cachep, &list); 775 } 776 return 1; 777 } 778 779 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 780 { 781 int slab_node = slab_nid(virt_to_slab(objp)); 782 int node = numa_mem_id(); 783 /* 784 * Make sure we are not freeing an object from another node to the array 785 * cache on this cpu. 786 */ 787 if (likely(node == slab_node)) 788 return 0; 789 790 return __cache_free_alien(cachep, objp, node, slab_node); 791 } 792 793 /* 794 * Construct gfp mask to allocate from a specific node but do not reclaim or 795 * warn about failures. 796 */ 797 static inline gfp_t gfp_exact_node(gfp_t flags) 798 { 799 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 800 } 801 #endif 802 803 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 804 { 805 struct kmem_cache_node *n; 806 807 /* 808 * Set up the kmem_cache_node for cpu before we can 809 * begin anything. Make sure some other cpu on this 810 * node has not already allocated this 811 */ 812 n = get_node(cachep, node); 813 if (n) { 814 spin_lock_irq(&n->list_lock); 815 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 816 cachep->num; 817 spin_unlock_irq(&n->list_lock); 818 819 return 0; 820 } 821 822 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 823 if (!n) 824 return -ENOMEM; 825 826 kmem_cache_node_init(n); 827 n->next_reap = jiffies + REAPTIMEOUT_NODE + 828 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 829 830 n->free_limit = 831 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 832 833 /* 834 * The kmem_cache_nodes don't come and go as CPUs 835 * come and go. slab_mutex provides sufficient 836 * protection here. 837 */ 838 cachep->node[node] = n; 839 840 return 0; 841 } 842 843 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 844 /* 845 * Allocates and initializes node for a node on each slab cache, used for 846 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 847 * will be allocated off-node since memory is not yet online for the new node. 848 * When hotplugging memory or a cpu, existing nodes are not replaced if 849 * already in use. 850 * 851 * Must hold slab_mutex. 852 */ 853 static int init_cache_node_node(int node) 854 { 855 int ret; 856 struct kmem_cache *cachep; 857 858 list_for_each_entry(cachep, &slab_caches, list) { 859 ret = init_cache_node(cachep, node, GFP_KERNEL); 860 if (ret) 861 return ret; 862 } 863 864 return 0; 865 } 866 #endif 867 868 static int setup_kmem_cache_node(struct kmem_cache *cachep, 869 int node, gfp_t gfp, bool force_change) 870 { 871 int ret = -ENOMEM; 872 struct kmem_cache_node *n; 873 struct array_cache *old_shared = NULL; 874 struct array_cache *new_shared = NULL; 875 struct alien_cache **new_alien = NULL; 876 LIST_HEAD(list); 877 878 if (use_alien_caches) { 879 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 880 if (!new_alien) 881 goto fail; 882 } 883 884 if (cachep->shared) { 885 new_shared = alloc_arraycache(node, 886 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 887 if (!new_shared) 888 goto fail; 889 } 890 891 ret = init_cache_node(cachep, node, gfp); 892 if (ret) 893 goto fail; 894 895 n = get_node(cachep, node); 896 spin_lock_irq(&n->list_lock); 897 if (n->shared && force_change) { 898 free_block(cachep, n->shared->entry, 899 n->shared->avail, node, &list); 900 n->shared->avail = 0; 901 } 902 903 if (!n->shared || force_change) { 904 old_shared = n->shared; 905 n->shared = new_shared; 906 new_shared = NULL; 907 } 908 909 if (!n->alien) { 910 n->alien = new_alien; 911 new_alien = NULL; 912 } 913 914 spin_unlock_irq(&n->list_lock); 915 slabs_destroy(cachep, &list); 916 917 /* 918 * To protect lockless access to n->shared during irq disabled context. 919 * If n->shared isn't NULL in irq disabled context, accessing to it is 920 * guaranteed to be valid until irq is re-enabled, because it will be 921 * freed after synchronize_rcu(). 922 */ 923 if (old_shared && force_change) 924 synchronize_rcu(); 925 926 fail: 927 kfree(old_shared); 928 kfree(new_shared); 929 free_alien_cache(new_alien); 930 931 return ret; 932 } 933 934 #ifdef CONFIG_SMP 935 936 static void cpuup_canceled(long cpu) 937 { 938 struct kmem_cache *cachep; 939 struct kmem_cache_node *n = NULL; 940 int node = cpu_to_mem(cpu); 941 const struct cpumask *mask = cpumask_of_node(node); 942 943 list_for_each_entry(cachep, &slab_caches, list) { 944 struct array_cache *nc; 945 struct array_cache *shared; 946 struct alien_cache **alien; 947 LIST_HEAD(list); 948 949 n = get_node(cachep, node); 950 if (!n) 951 continue; 952 953 spin_lock_irq(&n->list_lock); 954 955 /* Free limit for this kmem_cache_node */ 956 n->free_limit -= cachep->batchcount; 957 958 /* cpu is dead; no one can alloc from it. */ 959 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 960 free_block(cachep, nc->entry, nc->avail, node, &list); 961 nc->avail = 0; 962 963 if (!cpumask_empty(mask)) { 964 spin_unlock_irq(&n->list_lock); 965 goto free_slab; 966 } 967 968 shared = n->shared; 969 if (shared) { 970 free_block(cachep, shared->entry, 971 shared->avail, node, &list); 972 n->shared = NULL; 973 } 974 975 alien = n->alien; 976 n->alien = NULL; 977 978 spin_unlock_irq(&n->list_lock); 979 980 kfree(shared); 981 if (alien) { 982 drain_alien_cache(cachep, alien); 983 free_alien_cache(alien); 984 } 985 986 free_slab: 987 slabs_destroy(cachep, &list); 988 } 989 /* 990 * In the previous loop, all the objects were freed to 991 * the respective cache's slabs, now we can go ahead and 992 * shrink each nodelist to its limit. 993 */ 994 list_for_each_entry(cachep, &slab_caches, list) { 995 n = get_node(cachep, node); 996 if (!n) 997 continue; 998 drain_freelist(cachep, n, INT_MAX); 999 } 1000 } 1001 1002 static int cpuup_prepare(long cpu) 1003 { 1004 struct kmem_cache *cachep; 1005 int node = cpu_to_mem(cpu); 1006 int err; 1007 1008 /* 1009 * We need to do this right in the beginning since 1010 * alloc_arraycache's are going to use this list. 1011 * kmalloc_node allows us to add the slab to the right 1012 * kmem_cache_node and not this cpu's kmem_cache_node 1013 */ 1014 err = init_cache_node_node(node); 1015 if (err < 0) 1016 goto bad; 1017 1018 /* 1019 * Now we can go ahead with allocating the shared arrays and 1020 * array caches 1021 */ 1022 list_for_each_entry(cachep, &slab_caches, list) { 1023 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1024 if (err) 1025 goto bad; 1026 } 1027 1028 return 0; 1029 bad: 1030 cpuup_canceled(cpu); 1031 return -ENOMEM; 1032 } 1033 1034 int slab_prepare_cpu(unsigned int cpu) 1035 { 1036 int err; 1037 1038 mutex_lock(&slab_mutex); 1039 err = cpuup_prepare(cpu); 1040 mutex_unlock(&slab_mutex); 1041 return err; 1042 } 1043 1044 /* 1045 * This is called for a failed online attempt and for a successful 1046 * offline. 1047 * 1048 * Even if all the cpus of a node are down, we don't free the 1049 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and 1050 * a kmalloc allocation from another cpu for memory from the node of 1051 * the cpu going down. The kmem_cache_node structure is usually allocated from 1052 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1053 */ 1054 int slab_dead_cpu(unsigned int cpu) 1055 { 1056 mutex_lock(&slab_mutex); 1057 cpuup_canceled(cpu); 1058 mutex_unlock(&slab_mutex); 1059 return 0; 1060 } 1061 #endif 1062 1063 static int slab_online_cpu(unsigned int cpu) 1064 { 1065 start_cpu_timer(cpu); 1066 return 0; 1067 } 1068 1069 static int slab_offline_cpu(unsigned int cpu) 1070 { 1071 /* 1072 * Shutdown cache reaper. Note that the slab_mutex is held so 1073 * that if cache_reap() is invoked it cannot do anything 1074 * expensive but will only modify reap_work and reschedule the 1075 * timer. 1076 */ 1077 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1078 /* Now the cache_reaper is guaranteed to be not running. */ 1079 per_cpu(slab_reap_work, cpu).work.func = NULL; 1080 return 0; 1081 } 1082 1083 #if defined(CONFIG_NUMA) 1084 /* 1085 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1086 * Returns -EBUSY if all objects cannot be drained so that the node is not 1087 * removed. 1088 * 1089 * Must hold slab_mutex. 1090 */ 1091 static int __meminit drain_cache_node_node(int node) 1092 { 1093 struct kmem_cache *cachep; 1094 int ret = 0; 1095 1096 list_for_each_entry(cachep, &slab_caches, list) { 1097 struct kmem_cache_node *n; 1098 1099 n = get_node(cachep, node); 1100 if (!n) 1101 continue; 1102 1103 drain_freelist(cachep, n, INT_MAX); 1104 1105 if (!list_empty(&n->slabs_full) || 1106 !list_empty(&n->slabs_partial)) { 1107 ret = -EBUSY; 1108 break; 1109 } 1110 } 1111 return ret; 1112 } 1113 1114 static int __meminit slab_memory_callback(struct notifier_block *self, 1115 unsigned long action, void *arg) 1116 { 1117 struct memory_notify *mnb = arg; 1118 int ret = 0; 1119 int nid; 1120 1121 nid = mnb->status_change_nid; 1122 if (nid < 0) 1123 goto out; 1124 1125 switch (action) { 1126 case MEM_GOING_ONLINE: 1127 mutex_lock(&slab_mutex); 1128 ret = init_cache_node_node(nid); 1129 mutex_unlock(&slab_mutex); 1130 break; 1131 case MEM_GOING_OFFLINE: 1132 mutex_lock(&slab_mutex); 1133 ret = drain_cache_node_node(nid); 1134 mutex_unlock(&slab_mutex); 1135 break; 1136 case MEM_ONLINE: 1137 case MEM_OFFLINE: 1138 case MEM_CANCEL_ONLINE: 1139 case MEM_CANCEL_OFFLINE: 1140 break; 1141 } 1142 out: 1143 return notifier_from_errno(ret); 1144 } 1145 #endif /* CONFIG_NUMA */ 1146 1147 /* 1148 * swap the static kmem_cache_node with kmalloced memory 1149 */ 1150 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1151 int nodeid) 1152 { 1153 struct kmem_cache_node *ptr; 1154 1155 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1156 BUG_ON(!ptr); 1157 1158 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1159 /* 1160 * Do not assume that spinlocks can be initialized via memcpy: 1161 */ 1162 spin_lock_init(&ptr->list_lock); 1163 1164 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1165 cachep->node[nodeid] = ptr; 1166 } 1167 1168 /* 1169 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1170 * size of kmem_cache_node. 1171 */ 1172 static void __init set_up_node(struct kmem_cache *cachep, int index) 1173 { 1174 int node; 1175 1176 for_each_online_node(node) { 1177 cachep->node[node] = &init_kmem_cache_node[index + node]; 1178 cachep->node[node]->next_reap = jiffies + 1179 REAPTIMEOUT_NODE + 1180 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1181 } 1182 } 1183 1184 /* 1185 * Initialisation. Called after the page allocator have been initialised and 1186 * before smp_init(). 1187 */ 1188 void __init kmem_cache_init(void) 1189 { 1190 int i; 1191 1192 kmem_cache = &kmem_cache_boot; 1193 1194 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1195 use_alien_caches = 0; 1196 1197 for (i = 0; i < NUM_INIT_LISTS; i++) 1198 kmem_cache_node_init(&init_kmem_cache_node[i]); 1199 1200 /* 1201 * Fragmentation resistance on low memory - only use bigger 1202 * page orders on machines with more than 32MB of memory if 1203 * not overridden on the command line. 1204 */ 1205 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1206 slab_max_order = SLAB_MAX_ORDER_HI; 1207 1208 /* Bootstrap is tricky, because several objects are allocated 1209 * from caches that do not exist yet: 1210 * 1) initialize the kmem_cache cache: it contains the struct 1211 * kmem_cache structures of all caches, except kmem_cache itself: 1212 * kmem_cache is statically allocated. 1213 * Initially an __init data area is used for the head array and the 1214 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1215 * array at the end of the bootstrap. 1216 * 2) Create the first kmalloc cache. 1217 * The struct kmem_cache for the new cache is allocated normally. 1218 * An __init data area is used for the head array. 1219 * 3) Create the remaining kmalloc caches, with minimally sized 1220 * head arrays. 1221 * 4) Replace the __init data head arrays for kmem_cache and the first 1222 * kmalloc cache with kmalloc allocated arrays. 1223 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1224 * the other cache's with kmalloc allocated memory. 1225 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1226 */ 1227 1228 /* 1) create the kmem_cache */ 1229 1230 /* 1231 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1232 */ 1233 create_boot_cache(kmem_cache, "kmem_cache", 1234 offsetof(struct kmem_cache, node) + 1235 nr_node_ids * sizeof(struct kmem_cache_node *), 1236 SLAB_HWCACHE_ALIGN, 0, 0); 1237 list_add(&kmem_cache->list, &slab_caches); 1238 slab_state = PARTIAL; 1239 1240 /* 1241 * Initialize the caches that provide memory for the kmem_cache_node 1242 * structures first. Without this, further allocations will bug. 1243 */ 1244 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( 1245 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL], 1246 kmalloc_info[INDEX_NODE].size, 1247 ARCH_KMALLOC_FLAGS, 0, 1248 kmalloc_info[INDEX_NODE].size); 1249 slab_state = PARTIAL_NODE; 1250 setup_kmalloc_cache_index_table(); 1251 1252 slab_early_init = 0; 1253 1254 /* 5) Replace the bootstrap kmem_cache_node */ 1255 { 1256 int nid; 1257 1258 for_each_online_node(nid) { 1259 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1260 1261 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1262 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1263 } 1264 } 1265 1266 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1267 } 1268 1269 void __init kmem_cache_init_late(void) 1270 { 1271 struct kmem_cache *cachep; 1272 1273 /* 6) resize the head arrays to their final sizes */ 1274 mutex_lock(&slab_mutex); 1275 list_for_each_entry(cachep, &slab_caches, list) 1276 if (enable_cpucache(cachep, GFP_NOWAIT)) 1277 BUG(); 1278 mutex_unlock(&slab_mutex); 1279 1280 /* Done! */ 1281 slab_state = FULL; 1282 1283 #ifdef CONFIG_NUMA 1284 /* 1285 * Register a memory hotplug callback that initializes and frees 1286 * node. 1287 */ 1288 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1289 #endif 1290 1291 /* 1292 * The reap timers are started later, with a module init call: That part 1293 * of the kernel is not yet operational. 1294 */ 1295 } 1296 1297 static int __init cpucache_init(void) 1298 { 1299 int ret; 1300 1301 /* 1302 * Register the timers that return unneeded pages to the page allocator 1303 */ 1304 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1305 slab_online_cpu, slab_offline_cpu); 1306 WARN_ON(ret < 0); 1307 1308 return 0; 1309 } 1310 __initcall(cpucache_init); 1311 1312 static noinline void 1313 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1314 { 1315 #if DEBUG 1316 struct kmem_cache_node *n; 1317 unsigned long flags; 1318 int node; 1319 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1320 DEFAULT_RATELIMIT_BURST); 1321 1322 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1323 return; 1324 1325 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1326 nodeid, gfpflags, &gfpflags); 1327 pr_warn(" cache: %s, object size: %d, order: %d\n", 1328 cachep->name, cachep->size, cachep->gfporder); 1329 1330 for_each_kmem_cache_node(cachep, node, n) { 1331 unsigned long total_slabs, free_slabs, free_objs; 1332 1333 spin_lock_irqsave(&n->list_lock, flags); 1334 total_slabs = n->total_slabs; 1335 free_slabs = n->free_slabs; 1336 free_objs = n->free_objects; 1337 spin_unlock_irqrestore(&n->list_lock, flags); 1338 1339 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1340 node, total_slabs - free_slabs, total_slabs, 1341 (total_slabs * cachep->num) - free_objs, 1342 total_slabs * cachep->num); 1343 } 1344 #endif 1345 } 1346 1347 /* 1348 * Interface to system's page allocator. No need to hold the 1349 * kmem_cache_node ->list_lock. 1350 * 1351 * If we requested dmaable memory, we will get it. Even if we 1352 * did not request dmaable memory, we might get it, but that 1353 * would be relatively rare and ignorable. 1354 */ 1355 static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1356 int nodeid) 1357 { 1358 struct folio *folio; 1359 struct slab *slab; 1360 1361 flags |= cachep->allocflags; 1362 1363 folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder); 1364 if (!folio) { 1365 slab_out_of_memory(cachep, flags, nodeid); 1366 return NULL; 1367 } 1368 1369 slab = folio_slab(folio); 1370 1371 account_slab(slab, cachep->gfporder, cachep, flags); 1372 __folio_set_slab(folio); 1373 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1374 if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0))) 1375 slab_set_pfmemalloc(slab); 1376 1377 return slab; 1378 } 1379 1380 /* 1381 * Interface to system's page release. 1382 */ 1383 static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab) 1384 { 1385 int order = cachep->gfporder; 1386 struct folio *folio = slab_folio(slab); 1387 1388 BUG_ON(!folio_test_slab(folio)); 1389 __slab_clear_pfmemalloc(slab); 1390 __folio_clear_slab(folio); 1391 page_mapcount_reset(folio_page(folio, 0)); 1392 folio->mapping = NULL; 1393 1394 if (current->reclaim_state) 1395 current->reclaim_state->reclaimed_slab += 1 << order; 1396 unaccount_slab(slab, order, cachep); 1397 __free_pages(folio_page(folio, 0), order); 1398 } 1399 1400 static void kmem_rcu_free(struct rcu_head *head) 1401 { 1402 struct kmem_cache *cachep; 1403 struct slab *slab; 1404 1405 slab = container_of(head, struct slab, rcu_head); 1406 cachep = slab->slab_cache; 1407 1408 kmem_freepages(cachep, slab); 1409 } 1410 1411 #if DEBUG 1412 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1413 { 1414 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && 1415 (cachep->size % PAGE_SIZE) == 0) 1416 return true; 1417 1418 return false; 1419 } 1420 1421 #ifdef CONFIG_DEBUG_PAGEALLOC 1422 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1423 { 1424 if (!is_debug_pagealloc_cache(cachep)) 1425 return; 1426 1427 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1428 } 1429 1430 #else 1431 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1432 int map) {} 1433 1434 #endif 1435 1436 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1437 { 1438 int size = cachep->object_size; 1439 addr = &((char *)addr)[obj_offset(cachep)]; 1440 1441 memset(addr, val, size); 1442 *(unsigned char *)(addr + size - 1) = POISON_END; 1443 } 1444 1445 static void dump_line(char *data, int offset, int limit) 1446 { 1447 int i; 1448 unsigned char error = 0; 1449 int bad_count = 0; 1450 1451 pr_err("%03x: ", offset); 1452 for (i = 0; i < limit; i++) { 1453 if (data[offset + i] != POISON_FREE) { 1454 error = data[offset + i]; 1455 bad_count++; 1456 } 1457 } 1458 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1459 &data[offset], limit, 1); 1460 1461 if (bad_count == 1) { 1462 error ^= POISON_FREE; 1463 if (!(error & (error - 1))) { 1464 pr_err("Single bit error detected. Probably bad RAM.\n"); 1465 #ifdef CONFIG_X86 1466 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1467 #else 1468 pr_err("Run a memory test tool.\n"); 1469 #endif 1470 } 1471 } 1472 } 1473 #endif 1474 1475 #if DEBUG 1476 1477 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1478 { 1479 int i, size; 1480 char *realobj; 1481 1482 if (cachep->flags & SLAB_RED_ZONE) { 1483 pr_err("Redzone: 0x%llx/0x%llx\n", 1484 *dbg_redzone1(cachep, objp), 1485 *dbg_redzone2(cachep, objp)); 1486 } 1487 1488 if (cachep->flags & SLAB_STORE_USER) 1489 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1490 realobj = (char *)objp + obj_offset(cachep); 1491 size = cachep->object_size; 1492 for (i = 0; i < size && lines; i += 16, lines--) { 1493 int limit; 1494 limit = 16; 1495 if (i + limit > size) 1496 limit = size - i; 1497 dump_line(realobj, i, limit); 1498 } 1499 } 1500 1501 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1502 { 1503 char *realobj; 1504 int size, i; 1505 int lines = 0; 1506 1507 if (is_debug_pagealloc_cache(cachep)) 1508 return; 1509 1510 realobj = (char *)objp + obj_offset(cachep); 1511 size = cachep->object_size; 1512 1513 for (i = 0; i < size; i++) { 1514 char exp = POISON_FREE; 1515 if (i == size - 1) 1516 exp = POISON_END; 1517 if (realobj[i] != exp) { 1518 int limit; 1519 /* Mismatch ! */ 1520 /* Print header */ 1521 if (lines == 0) { 1522 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1523 print_tainted(), cachep->name, 1524 realobj, size); 1525 print_objinfo(cachep, objp, 0); 1526 } 1527 /* Hexdump the affected line */ 1528 i = (i / 16) * 16; 1529 limit = 16; 1530 if (i + limit > size) 1531 limit = size - i; 1532 dump_line(realobj, i, limit); 1533 i += 16; 1534 lines++; 1535 /* Limit to 5 lines */ 1536 if (lines > 5) 1537 break; 1538 } 1539 } 1540 if (lines != 0) { 1541 /* Print some data about the neighboring objects, if they 1542 * exist: 1543 */ 1544 struct slab *slab = virt_to_slab(objp); 1545 unsigned int objnr; 1546 1547 objnr = obj_to_index(cachep, slab, objp); 1548 if (objnr) { 1549 objp = index_to_obj(cachep, slab, objnr - 1); 1550 realobj = (char *)objp + obj_offset(cachep); 1551 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1552 print_objinfo(cachep, objp, 2); 1553 } 1554 if (objnr + 1 < cachep->num) { 1555 objp = index_to_obj(cachep, slab, objnr + 1); 1556 realobj = (char *)objp + obj_offset(cachep); 1557 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1558 print_objinfo(cachep, objp, 2); 1559 } 1560 } 1561 } 1562 #endif 1563 1564 #if DEBUG 1565 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1566 struct slab *slab) 1567 { 1568 int i; 1569 1570 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1571 poison_obj(cachep, slab->freelist - obj_offset(cachep), 1572 POISON_FREE); 1573 } 1574 1575 for (i = 0; i < cachep->num; i++) { 1576 void *objp = index_to_obj(cachep, slab, i); 1577 1578 if (cachep->flags & SLAB_POISON) { 1579 check_poison_obj(cachep, objp); 1580 slab_kernel_map(cachep, objp, 1); 1581 } 1582 if (cachep->flags & SLAB_RED_ZONE) { 1583 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1584 slab_error(cachep, "start of a freed object was overwritten"); 1585 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1586 slab_error(cachep, "end of a freed object was overwritten"); 1587 } 1588 } 1589 } 1590 #else 1591 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1592 struct slab *slab) 1593 { 1594 } 1595 #endif 1596 1597 /** 1598 * slab_destroy - destroy and release all objects in a slab 1599 * @cachep: cache pointer being destroyed 1600 * @slab: slab being destroyed 1601 * 1602 * Destroy all the objs in a slab, and release the mem back to the system. 1603 * Before calling the slab must have been unlinked from the cache. The 1604 * kmem_cache_node ->list_lock is not held/needed. 1605 */ 1606 static void slab_destroy(struct kmem_cache *cachep, struct slab *slab) 1607 { 1608 void *freelist; 1609 1610 freelist = slab->freelist; 1611 slab_destroy_debugcheck(cachep, slab); 1612 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1613 call_rcu(&slab->rcu_head, kmem_rcu_free); 1614 else 1615 kmem_freepages(cachep, slab); 1616 1617 /* 1618 * From now on, we don't use freelist 1619 * although actual page can be freed in rcu context 1620 */ 1621 if (OFF_SLAB(cachep)) 1622 kmem_cache_free(cachep->freelist_cache, freelist); 1623 } 1624 1625 /* 1626 * Update the size of the caches before calling slabs_destroy as it may 1627 * recursively call kfree. 1628 */ 1629 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1630 { 1631 struct slab *slab, *n; 1632 1633 list_for_each_entry_safe(slab, n, list, slab_list) { 1634 list_del(&slab->slab_list); 1635 slab_destroy(cachep, slab); 1636 } 1637 } 1638 1639 /** 1640 * calculate_slab_order - calculate size (page order) of slabs 1641 * @cachep: pointer to the cache that is being created 1642 * @size: size of objects to be created in this cache. 1643 * @flags: slab allocation flags 1644 * 1645 * Also calculates the number of objects per slab. 1646 * 1647 * This could be made much more intelligent. For now, try to avoid using 1648 * high order pages for slabs. When the gfp() functions are more friendly 1649 * towards high-order requests, this should be changed. 1650 * 1651 * Return: number of left-over bytes in a slab 1652 */ 1653 static size_t calculate_slab_order(struct kmem_cache *cachep, 1654 size_t size, slab_flags_t flags) 1655 { 1656 size_t left_over = 0; 1657 int gfporder; 1658 1659 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1660 unsigned int num; 1661 size_t remainder; 1662 1663 num = cache_estimate(gfporder, size, flags, &remainder); 1664 if (!num) 1665 continue; 1666 1667 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1668 if (num > SLAB_OBJ_MAX_NUM) 1669 break; 1670 1671 if (flags & CFLGS_OFF_SLAB) { 1672 struct kmem_cache *freelist_cache; 1673 size_t freelist_size; 1674 1675 freelist_size = num * sizeof(freelist_idx_t); 1676 freelist_cache = kmalloc_slab(freelist_size, 0u); 1677 if (!freelist_cache) 1678 continue; 1679 1680 /* 1681 * Needed to avoid possible looping condition 1682 * in cache_grow_begin() 1683 */ 1684 if (OFF_SLAB(freelist_cache)) 1685 continue; 1686 1687 /* check if off slab has enough benefit */ 1688 if (freelist_cache->size > cachep->size / 2) 1689 continue; 1690 } 1691 1692 /* Found something acceptable - save it away */ 1693 cachep->num = num; 1694 cachep->gfporder = gfporder; 1695 left_over = remainder; 1696 1697 /* 1698 * A VFS-reclaimable slab tends to have most allocations 1699 * as GFP_NOFS and we really don't want to have to be allocating 1700 * higher-order pages when we are unable to shrink dcache. 1701 */ 1702 if (flags & SLAB_RECLAIM_ACCOUNT) 1703 break; 1704 1705 /* 1706 * Large number of objects is good, but very large slabs are 1707 * currently bad for the gfp()s. 1708 */ 1709 if (gfporder >= slab_max_order) 1710 break; 1711 1712 /* 1713 * Acceptable internal fragmentation? 1714 */ 1715 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1716 break; 1717 } 1718 return left_over; 1719 } 1720 1721 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1722 struct kmem_cache *cachep, int entries, int batchcount) 1723 { 1724 int cpu; 1725 size_t size; 1726 struct array_cache __percpu *cpu_cache; 1727 1728 size = sizeof(void *) * entries + sizeof(struct array_cache); 1729 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1730 1731 if (!cpu_cache) 1732 return NULL; 1733 1734 for_each_possible_cpu(cpu) { 1735 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1736 entries, batchcount); 1737 } 1738 1739 return cpu_cache; 1740 } 1741 1742 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1743 { 1744 if (slab_state >= FULL) 1745 return enable_cpucache(cachep, gfp); 1746 1747 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1748 if (!cachep->cpu_cache) 1749 return 1; 1750 1751 if (slab_state == DOWN) { 1752 /* Creation of first cache (kmem_cache). */ 1753 set_up_node(kmem_cache, CACHE_CACHE); 1754 } else if (slab_state == PARTIAL) { 1755 /* For kmem_cache_node */ 1756 set_up_node(cachep, SIZE_NODE); 1757 } else { 1758 int node; 1759 1760 for_each_online_node(node) { 1761 cachep->node[node] = kmalloc_node( 1762 sizeof(struct kmem_cache_node), gfp, node); 1763 BUG_ON(!cachep->node[node]); 1764 kmem_cache_node_init(cachep->node[node]); 1765 } 1766 } 1767 1768 cachep->node[numa_mem_id()]->next_reap = 1769 jiffies + REAPTIMEOUT_NODE + 1770 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1771 1772 cpu_cache_get(cachep)->avail = 0; 1773 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1774 cpu_cache_get(cachep)->batchcount = 1; 1775 cpu_cache_get(cachep)->touched = 0; 1776 cachep->batchcount = 1; 1777 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1778 return 0; 1779 } 1780 1781 slab_flags_t kmem_cache_flags(unsigned int object_size, 1782 slab_flags_t flags, const char *name) 1783 { 1784 return flags; 1785 } 1786 1787 struct kmem_cache * 1788 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1789 slab_flags_t flags, void (*ctor)(void *)) 1790 { 1791 struct kmem_cache *cachep; 1792 1793 cachep = find_mergeable(size, align, flags, name, ctor); 1794 if (cachep) { 1795 cachep->refcount++; 1796 1797 /* 1798 * Adjust the object sizes so that we clear 1799 * the complete object on kzalloc. 1800 */ 1801 cachep->object_size = max_t(int, cachep->object_size, size); 1802 } 1803 return cachep; 1804 } 1805 1806 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1807 size_t size, slab_flags_t flags) 1808 { 1809 size_t left; 1810 1811 cachep->num = 0; 1812 1813 /* 1814 * If slab auto-initialization on free is enabled, store the freelist 1815 * off-slab, so that its contents don't end up in one of the allocated 1816 * objects. 1817 */ 1818 if (unlikely(slab_want_init_on_free(cachep))) 1819 return false; 1820 1821 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1822 return false; 1823 1824 left = calculate_slab_order(cachep, size, 1825 flags | CFLGS_OBJFREELIST_SLAB); 1826 if (!cachep->num) 1827 return false; 1828 1829 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1830 return false; 1831 1832 cachep->colour = left / cachep->colour_off; 1833 1834 return true; 1835 } 1836 1837 static bool set_off_slab_cache(struct kmem_cache *cachep, 1838 size_t size, slab_flags_t flags) 1839 { 1840 size_t left; 1841 1842 cachep->num = 0; 1843 1844 /* 1845 * Always use on-slab management when SLAB_NOLEAKTRACE 1846 * to avoid recursive calls into kmemleak. 1847 */ 1848 if (flags & SLAB_NOLEAKTRACE) 1849 return false; 1850 1851 /* 1852 * Size is large, assume best to place the slab management obj 1853 * off-slab (should allow better packing of objs). 1854 */ 1855 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1856 if (!cachep->num) 1857 return false; 1858 1859 /* 1860 * If the slab has been placed off-slab, and we have enough space then 1861 * move it on-slab. This is at the expense of any extra colouring. 1862 */ 1863 if (left >= cachep->num * sizeof(freelist_idx_t)) 1864 return false; 1865 1866 cachep->colour = left / cachep->colour_off; 1867 1868 return true; 1869 } 1870 1871 static bool set_on_slab_cache(struct kmem_cache *cachep, 1872 size_t size, slab_flags_t flags) 1873 { 1874 size_t left; 1875 1876 cachep->num = 0; 1877 1878 left = calculate_slab_order(cachep, size, flags); 1879 if (!cachep->num) 1880 return false; 1881 1882 cachep->colour = left / cachep->colour_off; 1883 1884 return true; 1885 } 1886 1887 /** 1888 * __kmem_cache_create - Create a cache. 1889 * @cachep: cache management descriptor 1890 * @flags: SLAB flags 1891 * 1892 * Returns a ptr to the cache on success, NULL on failure. 1893 * Cannot be called within an int, but can be interrupted. 1894 * The @ctor is run when new pages are allocated by the cache. 1895 * 1896 * The flags are 1897 * 1898 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1899 * to catch references to uninitialised memory. 1900 * 1901 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1902 * for buffer overruns. 1903 * 1904 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1905 * cacheline. This can be beneficial if you're counting cycles as closely 1906 * as davem. 1907 * 1908 * Return: a pointer to the created cache or %NULL in case of error 1909 */ 1910 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1911 { 1912 size_t ralign = BYTES_PER_WORD; 1913 gfp_t gfp; 1914 int err; 1915 unsigned int size = cachep->size; 1916 1917 #if DEBUG 1918 #if FORCED_DEBUG 1919 /* 1920 * Enable redzoning and last user accounting, except for caches with 1921 * large objects, if the increased size would increase the object size 1922 * above the next power of two: caches with object sizes just above a 1923 * power of two have a significant amount of internal fragmentation. 1924 */ 1925 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1926 2 * sizeof(unsigned long long))) 1927 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1928 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1929 flags |= SLAB_POISON; 1930 #endif 1931 #endif 1932 1933 /* 1934 * Check that size is in terms of words. This is needed to avoid 1935 * unaligned accesses for some archs when redzoning is used, and makes 1936 * sure any on-slab bufctl's are also correctly aligned. 1937 */ 1938 size = ALIGN(size, BYTES_PER_WORD); 1939 1940 if (flags & SLAB_RED_ZONE) { 1941 ralign = REDZONE_ALIGN; 1942 /* If redzoning, ensure that the second redzone is suitably 1943 * aligned, by adjusting the object size accordingly. */ 1944 size = ALIGN(size, REDZONE_ALIGN); 1945 } 1946 1947 /* 3) caller mandated alignment */ 1948 if (ralign < cachep->align) { 1949 ralign = cachep->align; 1950 } 1951 /* disable debug if necessary */ 1952 if (ralign > __alignof__(unsigned long long)) 1953 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1954 /* 1955 * 4) Store it. 1956 */ 1957 cachep->align = ralign; 1958 cachep->colour_off = cache_line_size(); 1959 /* Offset must be a multiple of the alignment. */ 1960 if (cachep->colour_off < cachep->align) 1961 cachep->colour_off = cachep->align; 1962 1963 if (slab_is_available()) 1964 gfp = GFP_KERNEL; 1965 else 1966 gfp = GFP_NOWAIT; 1967 1968 #if DEBUG 1969 1970 /* 1971 * Both debugging options require word-alignment which is calculated 1972 * into align above. 1973 */ 1974 if (flags & SLAB_RED_ZONE) { 1975 /* add space for red zone words */ 1976 cachep->obj_offset += sizeof(unsigned long long); 1977 size += 2 * sizeof(unsigned long long); 1978 } 1979 if (flags & SLAB_STORE_USER) { 1980 /* user store requires one word storage behind the end of 1981 * the real object. But if the second red zone needs to be 1982 * aligned to 64 bits, we must allow that much space. 1983 */ 1984 if (flags & SLAB_RED_ZONE) 1985 size += REDZONE_ALIGN; 1986 else 1987 size += BYTES_PER_WORD; 1988 } 1989 #endif 1990 1991 kasan_cache_create(cachep, &size, &flags); 1992 1993 size = ALIGN(size, cachep->align); 1994 /* 1995 * We should restrict the number of objects in a slab to implement 1996 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 1997 */ 1998 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 1999 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2000 2001 #if DEBUG 2002 /* 2003 * To activate debug pagealloc, off-slab management is necessary 2004 * requirement. In early phase of initialization, small sized slab 2005 * doesn't get initialized so it would not be possible. So, we need 2006 * to check size >= 256. It guarantees that all necessary small 2007 * sized slab is initialized in current slab initialization sequence. 2008 */ 2009 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && 2010 size >= 256 && cachep->object_size > cache_line_size()) { 2011 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2012 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2013 2014 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2015 flags |= CFLGS_OFF_SLAB; 2016 cachep->obj_offset += tmp_size - size; 2017 size = tmp_size; 2018 goto done; 2019 } 2020 } 2021 } 2022 #endif 2023 2024 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2025 flags |= CFLGS_OBJFREELIST_SLAB; 2026 goto done; 2027 } 2028 2029 if (set_off_slab_cache(cachep, size, flags)) { 2030 flags |= CFLGS_OFF_SLAB; 2031 goto done; 2032 } 2033 2034 if (set_on_slab_cache(cachep, size, flags)) 2035 goto done; 2036 2037 return -E2BIG; 2038 2039 done: 2040 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2041 cachep->flags = flags; 2042 cachep->allocflags = __GFP_COMP; 2043 if (flags & SLAB_CACHE_DMA) 2044 cachep->allocflags |= GFP_DMA; 2045 if (flags & SLAB_CACHE_DMA32) 2046 cachep->allocflags |= GFP_DMA32; 2047 if (flags & SLAB_RECLAIM_ACCOUNT) 2048 cachep->allocflags |= __GFP_RECLAIMABLE; 2049 cachep->size = size; 2050 cachep->reciprocal_buffer_size = reciprocal_value(size); 2051 2052 #if DEBUG 2053 /* 2054 * If we're going to use the generic kernel_map_pages() 2055 * poisoning, then it's going to smash the contents of 2056 * the redzone and userword anyhow, so switch them off. 2057 */ 2058 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2059 (cachep->flags & SLAB_POISON) && 2060 is_debug_pagealloc_cache(cachep)) 2061 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2062 #endif 2063 2064 if (OFF_SLAB(cachep)) { 2065 cachep->freelist_cache = 2066 kmalloc_slab(cachep->freelist_size, 0u); 2067 } 2068 2069 err = setup_cpu_cache(cachep, gfp); 2070 if (err) { 2071 __kmem_cache_release(cachep); 2072 return err; 2073 } 2074 2075 return 0; 2076 } 2077 2078 #if DEBUG 2079 static void check_irq_off(void) 2080 { 2081 BUG_ON(!irqs_disabled()); 2082 } 2083 2084 static void check_irq_on(void) 2085 { 2086 BUG_ON(irqs_disabled()); 2087 } 2088 2089 static void check_mutex_acquired(void) 2090 { 2091 BUG_ON(!mutex_is_locked(&slab_mutex)); 2092 } 2093 2094 static void check_spinlock_acquired(struct kmem_cache *cachep) 2095 { 2096 #ifdef CONFIG_SMP 2097 check_irq_off(); 2098 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2099 #endif 2100 } 2101 2102 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2103 { 2104 #ifdef CONFIG_SMP 2105 check_irq_off(); 2106 assert_spin_locked(&get_node(cachep, node)->list_lock); 2107 #endif 2108 } 2109 2110 #else 2111 #define check_irq_off() do { } while(0) 2112 #define check_irq_on() do { } while(0) 2113 #define check_mutex_acquired() do { } while(0) 2114 #define check_spinlock_acquired(x) do { } while(0) 2115 #define check_spinlock_acquired_node(x, y) do { } while(0) 2116 #endif 2117 2118 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2119 int node, bool free_all, struct list_head *list) 2120 { 2121 int tofree; 2122 2123 if (!ac || !ac->avail) 2124 return; 2125 2126 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2127 if (tofree > ac->avail) 2128 tofree = (ac->avail + 1) / 2; 2129 2130 free_block(cachep, ac->entry, tofree, node, list); 2131 ac->avail -= tofree; 2132 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2133 } 2134 2135 static void do_drain(void *arg) 2136 { 2137 struct kmem_cache *cachep = arg; 2138 struct array_cache *ac; 2139 int node = numa_mem_id(); 2140 struct kmem_cache_node *n; 2141 LIST_HEAD(list); 2142 2143 check_irq_off(); 2144 ac = cpu_cache_get(cachep); 2145 n = get_node(cachep, node); 2146 spin_lock(&n->list_lock); 2147 free_block(cachep, ac->entry, ac->avail, node, &list); 2148 spin_unlock(&n->list_lock); 2149 ac->avail = 0; 2150 slabs_destroy(cachep, &list); 2151 } 2152 2153 static void drain_cpu_caches(struct kmem_cache *cachep) 2154 { 2155 struct kmem_cache_node *n; 2156 int node; 2157 LIST_HEAD(list); 2158 2159 on_each_cpu(do_drain, cachep, 1); 2160 check_irq_on(); 2161 for_each_kmem_cache_node(cachep, node, n) 2162 if (n->alien) 2163 drain_alien_cache(cachep, n->alien); 2164 2165 for_each_kmem_cache_node(cachep, node, n) { 2166 spin_lock_irq(&n->list_lock); 2167 drain_array_locked(cachep, n->shared, node, true, &list); 2168 spin_unlock_irq(&n->list_lock); 2169 2170 slabs_destroy(cachep, &list); 2171 } 2172 } 2173 2174 /* 2175 * Remove slabs from the list of free slabs. 2176 * Specify the number of slabs to drain in tofree. 2177 * 2178 * Returns the actual number of slabs released. 2179 */ 2180 static int drain_freelist(struct kmem_cache *cache, 2181 struct kmem_cache_node *n, int tofree) 2182 { 2183 struct list_head *p; 2184 int nr_freed; 2185 struct slab *slab; 2186 2187 nr_freed = 0; 2188 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2189 2190 spin_lock_irq(&n->list_lock); 2191 p = n->slabs_free.prev; 2192 if (p == &n->slabs_free) { 2193 spin_unlock_irq(&n->list_lock); 2194 goto out; 2195 } 2196 2197 slab = list_entry(p, struct slab, slab_list); 2198 list_del(&slab->slab_list); 2199 n->free_slabs--; 2200 n->total_slabs--; 2201 /* 2202 * Safe to drop the lock. The slab is no longer linked 2203 * to the cache. 2204 */ 2205 n->free_objects -= cache->num; 2206 spin_unlock_irq(&n->list_lock); 2207 slab_destroy(cache, slab); 2208 nr_freed++; 2209 } 2210 out: 2211 return nr_freed; 2212 } 2213 2214 bool __kmem_cache_empty(struct kmem_cache *s) 2215 { 2216 int node; 2217 struct kmem_cache_node *n; 2218 2219 for_each_kmem_cache_node(s, node, n) 2220 if (!list_empty(&n->slabs_full) || 2221 !list_empty(&n->slabs_partial)) 2222 return false; 2223 return true; 2224 } 2225 2226 int __kmem_cache_shrink(struct kmem_cache *cachep) 2227 { 2228 int ret = 0; 2229 int node; 2230 struct kmem_cache_node *n; 2231 2232 drain_cpu_caches(cachep); 2233 2234 check_irq_on(); 2235 for_each_kmem_cache_node(cachep, node, n) { 2236 drain_freelist(cachep, n, INT_MAX); 2237 2238 ret += !list_empty(&n->slabs_full) || 2239 !list_empty(&n->slabs_partial); 2240 } 2241 return (ret ? 1 : 0); 2242 } 2243 2244 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2245 { 2246 return __kmem_cache_shrink(cachep); 2247 } 2248 2249 void __kmem_cache_release(struct kmem_cache *cachep) 2250 { 2251 int i; 2252 struct kmem_cache_node *n; 2253 2254 cache_random_seq_destroy(cachep); 2255 2256 free_percpu(cachep->cpu_cache); 2257 2258 /* NUMA: free the node structures */ 2259 for_each_kmem_cache_node(cachep, i, n) { 2260 kfree(n->shared); 2261 free_alien_cache(n->alien); 2262 kfree(n); 2263 cachep->node[i] = NULL; 2264 } 2265 } 2266 2267 /* 2268 * Get the memory for a slab management obj. 2269 * 2270 * For a slab cache when the slab descriptor is off-slab, the 2271 * slab descriptor can't come from the same cache which is being created, 2272 * Because if it is the case, that means we defer the creation of 2273 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2274 * And we eventually call down to __kmem_cache_create(), which 2275 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one. 2276 * This is a "chicken-and-egg" problem. 2277 * 2278 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2279 * which are all initialized during kmem_cache_init(). 2280 */ 2281 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2282 struct slab *slab, int colour_off, 2283 gfp_t local_flags, int nodeid) 2284 { 2285 void *freelist; 2286 void *addr = slab_address(slab); 2287 2288 slab->s_mem = addr + colour_off; 2289 slab->active = 0; 2290 2291 if (OBJFREELIST_SLAB(cachep)) 2292 freelist = NULL; 2293 else if (OFF_SLAB(cachep)) { 2294 /* Slab management obj is off-slab. */ 2295 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2296 local_flags, nodeid); 2297 } else { 2298 /* We will use last bytes at the slab for freelist */ 2299 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2300 cachep->freelist_size; 2301 } 2302 2303 return freelist; 2304 } 2305 2306 static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx) 2307 { 2308 return ((freelist_idx_t *) slab->freelist)[idx]; 2309 } 2310 2311 static inline void set_free_obj(struct slab *slab, 2312 unsigned int idx, freelist_idx_t val) 2313 { 2314 ((freelist_idx_t *)(slab->freelist))[idx] = val; 2315 } 2316 2317 static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab) 2318 { 2319 #if DEBUG 2320 int i; 2321 2322 for (i = 0; i < cachep->num; i++) { 2323 void *objp = index_to_obj(cachep, slab, i); 2324 2325 if (cachep->flags & SLAB_STORE_USER) 2326 *dbg_userword(cachep, objp) = NULL; 2327 2328 if (cachep->flags & SLAB_RED_ZONE) { 2329 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2330 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2331 } 2332 /* 2333 * Constructors are not allowed to allocate memory from the same 2334 * cache which they are a constructor for. Otherwise, deadlock. 2335 * They must also be threaded. 2336 */ 2337 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2338 kasan_unpoison_object_data(cachep, 2339 objp + obj_offset(cachep)); 2340 cachep->ctor(objp + obj_offset(cachep)); 2341 kasan_poison_object_data( 2342 cachep, objp + obj_offset(cachep)); 2343 } 2344 2345 if (cachep->flags & SLAB_RED_ZONE) { 2346 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2347 slab_error(cachep, "constructor overwrote the end of an object"); 2348 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2349 slab_error(cachep, "constructor overwrote the start of an object"); 2350 } 2351 /* need to poison the objs? */ 2352 if (cachep->flags & SLAB_POISON) { 2353 poison_obj(cachep, objp, POISON_FREE); 2354 slab_kernel_map(cachep, objp, 0); 2355 } 2356 } 2357 #endif 2358 } 2359 2360 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2361 /* Hold information during a freelist initialization */ 2362 union freelist_init_state { 2363 struct { 2364 unsigned int pos; 2365 unsigned int *list; 2366 unsigned int count; 2367 }; 2368 struct rnd_state rnd_state; 2369 }; 2370 2371 /* 2372 * Initialize the state based on the randomization method available. 2373 * return true if the pre-computed list is available, false otherwise. 2374 */ 2375 static bool freelist_state_initialize(union freelist_init_state *state, 2376 struct kmem_cache *cachep, 2377 unsigned int count) 2378 { 2379 bool ret; 2380 unsigned int rand; 2381 2382 /* Use best entropy available to define a random shift */ 2383 rand = get_random_int(); 2384 2385 /* Use a random state if the pre-computed list is not available */ 2386 if (!cachep->random_seq) { 2387 prandom_seed_state(&state->rnd_state, rand); 2388 ret = false; 2389 } else { 2390 state->list = cachep->random_seq; 2391 state->count = count; 2392 state->pos = rand % count; 2393 ret = true; 2394 } 2395 return ret; 2396 } 2397 2398 /* Get the next entry on the list and randomize it using a random shift */ 2399 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2400 { 2401 if (state->pos >= state->count) 2402 state->pos = 0; 2403 return state->list[state->pos++]; 2404 } 2405 2406 /* Swap two freelist entries */ 2407 static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b) 2408 { 2409 swap(((freelist_idx_t *) slab->freelist)[a], 2410 ((freelist_idx_t *) slab->freelist)[b]); 2411 } 2412 2413 /* 2414 * Shuffle the freelist initialization state based on pre-computed lists. 2415 * return true if the list was successfully shuffled, false otherwise. 2416 */ 2417 static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab) 2418 { 2419 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2420 union freelist_init_state state; 2421 bool precomputed; 2422 2423 if (count < 2) 2424 return false; 2425 2426 precomputed = freelist_state_initialize(&state, cachep, count); 2427 2428 /* Take a random entry as the objfreelist */ 2429 if (OBJFREELIST_SLAB(cachep)) { 2430 if (!precomputed) 2431 objfreelist = count - 1; 2432 else 2433 objfreelist = next_random_slot(&state); 2434 slab->freelist = index_to_obj(cachep, slab, objfreelist) + 2435 obj_offset(cachep); 2436 count--; 2437 } 2438 2439 /* 2440 * On early boot, generate the list dynamically. 2441 * Later use a pre-computed list for speed. 2442 */ 2443 if (!precomputed) { 2444 for (i = 0; i < count; i++) 2445 set_free_obj(slab, i, i); 2446 2447 /* Fisher-Yates shuffle */ 2448 for (i = count - 1; i > 0; i--) { 2449 rand = prandom_u32_state(&state.rnd_state); 2450 rand %= (i + 1); 2451 swap_free_obj(slab, i, rand); 2452 } 2453 } else { 2454 for (i = 0; i < count; i++) 2455 set_free_obj(slab, i, next_random_slot(&state)); 2456 } 2457 2458 if (OBJFREELIST_SLAB(cachep)) 2459 set_free_obj(slab, cachep->num - 1, objfreelist); 2460 2461 return true; 2462 } 2463 #else 2464 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2465 struct slab *slab) 2466 { 2467 return false; 2468 } 2469 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2470 2471 static void cache_init_objs(struct kmem_cache *cachep, 2472 struct slab *slab) 2473 { 2474 int i; 2475 void *objp; 2476 bool shuffled; 2477 2478 cache_init_objs_debug(cachep, slab); 2479 2480 /* Try to randomize the freelist if enabled */ 2481 shuffled = shuffle_freelist(cachep, slab); 2482 2483 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2484 slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) + 2485 obj_offset(cachep); 2486 } 2487 2488 for (i = 0; i < cachep->num; i++) { 2489 objp = index_to_obj(cachep, slab, i); 2490 objp = kasan_init_slab_obj(cachep, objp); 2491 2492 /* constructor could break poison info */ 2493 if (DEBUG == 0 && cachep->ctor) { 2494 kasan_unpoison_object_data(cachep, objp); 2495 cachep->ctor(objp); 2496 kasan_poison_object_data(cachep, objp); 2497 } 2498 2499 if (!shuffled) 2500 set_free_obj(slab, i, i); 2501 } 2502 } 2503 2504 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab) 2505 { 2506 void *objp; 2507 2508 objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active)); 2509 slab->active++; 2510 2511 return objp; 2512 } 2513 2514 static void slab_put_obj(struct kmem_cache *cachep, 2515 struct slab *slab, void *objp) 2516 { 2517 unsigned int objnr = obj_to_index(cachep, slab, objp); 2518 #if DEBUG 2519 unsigned int i; 2520 2521 /* Verify double free bug */ 2522 for (i = slab->active; i < cachep->num; i++) { 2523 if (get_free_obj(slab, i) == objnr) { 2524 pr_err("slab: double free detected in cache '%s', objp %px\n", 2525 cachep->name, objp); 2526 BUG(); 2527 } 2528 } 2529 #endif 2530 slab->active--; 2531 if (!slab->freelist) 2532 slab->freelist = objp + obj_offset(cachep); 2533 2534 set_free_obj(slab, slab->active, objnr); 2535 } 2536 2537 /* 2538 * Grow (by 1) the number of slabs within a cache. This is called by 2539 * kmem_cache_alloc() when there are no active objs left in a cache. 2540 */ 2541 static struct slab *cache_grow_begin(struct kmem_cache *cachep, 2542 gfp_t flags, int nodeid) 2543 { 2544 void *freelist; 2545 size_t offset; 2546 gfp_t local_flags; 2547 int slab_node; 2548 struct kmem_cache_node *n; 2549 struct slab *slab; 2550 2551 /* 2552 * Be lazy and only check for valid flags here, keeping it out of the 2553 * critical path in kmem_cache_alloc(). 2554 */ 2555 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2556 flags = kmalloc_fix_flags(flags); 2557 2558 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2559 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2560 2561 check_irq_off(); 2562 if (gfpflags_allow_blocking(local_flags)) 2563 local_irq_enable(); 2564 2565 /* 2566 * Get mem for the objs. Attempt to allocate a physical page from 2567 * 'nodeid'. 2568 */ 2569 slab = kmem_getpages(cachep, local_flags, nodeid); 2570 if (!slab) 2571 goto failed; 2572 2573 slab_node = slab_nid(slab); 2574 n = get_node(cachep, slab_node); 2575 2576 /* Get colour for the slab, and cal the next value. */ 2577 n->colour_next++; 2578 if (n->colour_next >= cachep->colour) 2579 n->colour_next = 0; 2580 2581 offset = n->colour_next; 2582 if (offset >= cachep->colour) 2583 offset = 0; 2584 2585 offset *= cachep->colour_off; 2586 2587 /* 2588 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2589 * page_address() in the latter returns a non-tagged pointer, 2590 * as it should be for slab pages. 2591 */ 2592 kasan_poison_slab(slab); 2593 2594 /* Get slab management. */ 2595 freelist = alloc_slabmgmt(cachep, slab, offset, 2596 local_flags & ~GFP_CONSTRAINT_MASK, slab_node); 2597 if (OFF_SLAB(cachep) && !freelist) 2598 goto opps1; 2599 2600 slab->slab_cache = cachep; 2601 slab->freelist = freelist; 2602 2603 cache_init_objs(cachep, slab); 2604 2605 if (gfpflags_allow_blocking(local_flags)) 2606 local_irq_disable(); 2607 2608 return slab; 2609 2610 opps1: 2611 kmem_freepages(cachep, slab); 2612 failed: 2613 if (gfpflags_allow_blocking(local_flags)) 2614 local_irq_disable(); 2615 return NULL; 2616 } 2617 2618 static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab) 2619 { 2620 struct kmem_cache_node *n; 2621 void *list = NULL; 2622 2623 check_irq_off(); 2624 2625 if (!slab) 2626 return; 2627 2628 INIT_LIST_HEAD(&slab->slab_list); 2629 n = get_node(cachep, slab_nid(slab)); 2630 2631 spin_lock(&n->list_lock); 2632 n->total_slabs++; 2633 if (!slab->active) { 2634 list_add_tail(&slab->slab_list, &n->slabs_free); 2635 n->free_slabs++; 2636 } else 2637 fixup_slab_list(cachep, n, slab, &list); 2638 2639 STATS_INC_GROWN(cachep); 2640 n->free_objects += cachep->num - slab->active; 2641 spin_unlock(&n->list_lock); 2642 2643 fixup_objfreelist_debug(cachep, &list); 2644 } 2645 2646 #if DEBUG 2647 2648 /* 2649 * Perform extra freeing checks: 2650 * - detect bad pointers. 2651 * - POISON/RED_ZONE checking 2652 */ 2653 static void kfree_debugcheck(const void *objp) 2654 { 2655 if (!virt_addr_valid(objp)) { 2656 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2657 (unsigned long)objp); 2658 BUG(); 2659 } 2660 } 2661 2662 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2663 { 2664 unsigned long long redzone1, redzone2; 2665 2666 redzone1 = *dbg_redzone1(cache, obj); 2667 redzone2 = *dbg_redzone2(cache, obj); 2668 2669 /* 2670 * Redzone is ok. 2671 */ 2672 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2673 return; 2674 2675 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2676 slab_error(cache, "double free detected"); 2677 else 2678 slab_error(cache, "memory outside object was overwritten"); 2679 2680 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2681 obj, redzone1, redzone2); 2682 } 2683 2684 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2685 unsigned long caller) 2686 { 2687 unsigned int objnr; 2688 struct slab *slab; 2689 2690 BUG_ON(virt_to_cache(objp) != cachep); 2691 2692 objp -= obj_offset(cachep); 2693 kfree_debugcheck(objp); 2694 slab = virt_to_slab(objp); 2695 2696 if (cachep->flags & SLAB_RED_ZONE) { 2697 verify_redzone_free(cachep, objp); 2698 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2699 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2700 } 2701 if (cachep->flags & SLAB_STORE_USER) 2702 *dbg_userword(cachep, objp) = (void *)caller; 2703 2704 objnr = obj_to_index(cachep, slab, objp); 2705 2706 BUG_ON(objnr >= cachep->num); 2707 BUG_ON(objp != index_to_obj(cachep, slab, objnr)); 2708 2709 if (cachep->flags & SLAB_POISON) { 2710 poison_obj(cachep, objp, POISON_FREE); 2711 slab_kernel_map(cachep, objp, 0); 2712 } 2713 return objp; 2714 } 2715 2716 #else 2717 #define kfree_debugcheck(x) do { } while(0) 2718 #define cache_free_debugcheck(x, objp, z) (objp) 2719 #endif 2720 2721 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2722 void **list) 2723 { 2724 #if DEBUG 2725 void *next = *list; 2726 void *objp; 2727 2728 while (next) { 2729 objp = next - obj_offset(cachep); 2730 next = *(void **)next; 2731 poison_obj(cachep, objp, POISON_FREE); 2732 } 2733 #endif 2734 } 2735 2736 static inline void fixup_slab_list(struct kmem_cache *cachep, 2737 struct kmem_cache_node *n, struct slab *slab, 2738 void **list) 2739 { 2740 /* move slabp to correct slabp list: */ 2741 list_del(&slab->slab_list); 2742 if (slab->active == cachep->num) { 2743 list_add(&slab->slab_list, &n->slabs_full); 2744 if (OBJFREELIST_SLAB(cachep)) { 2745 #if DEBUG 2746 /* Poisoning will be done without holding the lock */ 2747 if (cachep->flags & SLAB_POISON) { 2748 void **objp = slab->freelist; 2749 2750 *objp = *list; 2751 *list = objp; 2752 } 2753 #endif 2754 slab->freelist = NULL; 2755 } 2756 } else 2757 list_add(&slab->slab_list, &n->slabs_partial); 2758 } 2759 2760 /* Try to find non-pfmemalloc slab if needed */ 2761 static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n, 2762 struct slab *slab, bool pfmemalloc) 2763 { 2764 if (!slab) 2765 return NULL; 2766 2767 if (pfmemalloc) 2768 return slab; 2769 2770 if (!slab_test_pfmemalloc(slab)) 2771 return slab; 2772 2773 /* No need to keep pfmemalloc slab if we have enough free objects */ 2774 if (n->free_objects > n->free_limit) { 2775 slab_clear_pfmemalloc(slab); 2776 return slab; 2777 } 2778 2779 /* Move pfmemalloc slab to the end of list to speed up next search */ 2780 list_del(&slab->slab_list); 2781 if (!slab->active) { 2782 list_add_tail(&slab->slab_list, &n->slabs_free); 2783 n->free_slabs++; 2784 } else 2785 list_add_tail(&slab->slab_list, &n->slabs_partial); 2786 2787 list_for_each_entry(slab, &n->slabs_partial, slab_list) { 2788 if (!slab_test_pfmemalloc(slab)) 2789 return slab; 2790 } 2791 2792 n->free_touched = 1; 2793 list_for_each_entry(slab, &n->slabs_free, slab_list) { 2794 if (!slab_test_pfmemalloc(slab)) { 2795 n->free_slabs--; 2796 return slab; 2797 } 2798 } 2799 2800 return NULL; 2801 } 2802 2803 static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2804 { 2805 struct slab *slab; 2806 2807 assert_spin_locked(&n->list_lock); 2808 slab = list_first_entry_or_null(&n->slabs_partial, struct slab, 2809 slab_list); 2810 if (!slab) { 2811 n->free_touched = 1; 2812 slab = list_first_entry_or_null(&n->slabs_free, struct slab, 2813 slab_list); 2814 if (slab) 2815 n->free_slabs--; 2816 } 2817 2818 if (sk_memalloc_socks()) 2819 slab = get_valid_first_slab(n, slab, pfmemalloc); 2820 2821 return slab; 2822 } 2823 2824 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2825 struct kmem_cache_node *n, gfp_t flags) 2826 { 2827 struct slab *slab; 2828 void *obj; 2829 void *list = NULL; 2830 2831 if (!gfp_pfmemalloc_allowed(flags)) 2832 return NULL; 2833 2834 spin_lock(&n->list_lock); 2835 slab = get_first_slab(n, true); 2836 if (!slab) { 2837 spin_unlock(&n->list_lock); 2838 return NULL; 2839 } 2840 2841 obj = slab_get_obj(cachep, slab); 2842 n->free_objects--; 2843 2844 fixup_slab_list(cachep, n, slab, &list); 2845 2846 spin_unlock(&n->list_lock); 2847 fixup_objfreelist_debug(cachep, &list); 2848 2849 return obj; 2850 } 2851 2852 /* 2853 * Slab list should be fixed up by fixup_slab_list() for existing slab 2854 * or cache_grow_end() for new slab 2855 */ 2856 static __always_inline int alloc_block(struct kmem_cache *cachep, 2857 struct array_cache *ac, struct slab *slab, int batchcount) 2858 { 2859 /* 2860 * There must be at least one object available for 2861 * allocation. 2862 */ 2863 BUG_ON(slab->active >= cachep->num); 2864 2865 while (slab->active < cachep->num && batchcount--) { 2866 STATS_INC_ALLOCED(cachep); 2867 STATS_INC_ACTIVE(cachep); 2868 STATS_SET_HIGH(cachep); 2869 2870 ac->entry[ac->avail++] = slab_get_obj(cachep, slab); 2871 } 2872 2873 return batchcount; 2874 } 2875 2876 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2877 { 2878 int batchcount; 2879 struct kmem_cache_node *n; 2880 struct array_cache *ac, *shared; 2881 int node; 2882 void *list = NULL; 2883 struct slab *slab; 2884 2885 check_irq_off(); 2886 node = numa_mem_id(); 2887 2888 ac = cpu_cache_get(cachep); 2889 batchcount = ac->batchcount; 2890 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2891 /* 2892 * If there was little recent activity on this cache, then 2893 * perform only a partial refill. Otherwise we could generate 2894 * refill bouncing. 2895 */ 2896 batchcount = BATCHREFILL_LIMIT; 2897 } 2898 n = get_node(cachep, node); 2899 2900 BUG_ON(ac->avail > 0 || !n); 2901 shared = READ_ONCE(n->shared); 2902 if (!n->free_objects && (!shared || !shared->avail)) 2903 goto direct_grow; 2904 2905 spin_lock(&n->list_lock); 2906 shared = READ_ONCE(n->shared); 2907 2908 /* See if we can refill from the shared array */ 2909 if (shared && transfer_objects(ac, shared, batchcount)) { 2910 shared->touched = 1; 2911 goto alloc_done; 2912 } 2913 2914 while (batchcount > 0) { 2915 /* Get slab alloc is to come from. */ 2916 slab = get_first_slab(n, false); 2917 if (!slab) 2918 goto must_grow; 2919 2920 check_spinlock_acquired(cachep); 2921 2922 batchcount = alloc_block(cachep, ac, slab, batchcount); 2923 fixup_slab_list(cachep, n, slab, &list); 2924 } 2925 2926 must_grow: 2927 n->free_objects -= ac->avail; 2928 alloc_done: 2929 spin_unlock(&n->list_lock); 2930 fixup_objfreelist_debug(cachep, &list); 2931 2932 direct_grow: 2933 if (unlikely(!ac->avail)) { 2934 /* Check if we can use obj in pfmemalloc slab */ 2935 if (sk_memalloc_socks()) { 2936 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2937 2938 if (obj) 2939 return obj; 2940 } 2941 2942 slab = cache_grow_begin(cachep, gfp_exact_node(flags), node); 2943 2944 /* 2945 * cache_grow_begin() can reenable interrupts, 2946 * then ac could change. 2947 */ 2948 ac = cpu_cache_get(cachep); 2949 if (!ac->avail && slab) 2950 alloc_block(cachep, ac, slab, batchcount); 2951 cache_grow_end(cachep, slab); 2952 2953 if (!ac->avail) 2954 return NULL; 2955 } 2956 ac->touched = 1; 2957 2958 return ac->entry[--ac->avail]; 2959 } 2960 2961 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 2962 gfp_t flags) 2963 { 2964 might_sleep_if(gfpflags_allow_blocking(flags)); 2965 } 2966 2967 #if DEBUG 2968 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2969 gfp_t flags, void *objp, unsigned long caller) 2970 { 2971 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2972 if (!objp || is_kfence_address(objp)) 2973 return objp; 2974 if (cachep->flags & SLAB_POISON) { 2975 check_poison_obj(cachep, objp); 2976 slab_kernel_map(cachep, objp, 1); 2977 poison_obj(cachep, objp, POISON_INUSE); 2978 } 2979 if (cachep->flags & SLAB_STORE_USER) 2980 *dbg_userword(cachep, objp) = (void *)caller; 2981 2982 if (cachep->flags & SLAB_RED_ZONE) { 2983 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 2984 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 2985 slab_error(cachep, "double free, or memory outside object was overwritten"); 2986 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2987 objp, *dbg_redzone1(cachep, objp), 2988 *dbg_redzone2(cachep, objp)); 2989 } 2990 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2991 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2992 } 2993 2994 objp += obj_offset(cachep); 2995 if (cachep->ctor && cachep->flags & SLAB_POISON) 2996 cachep->ctor(objp); 2997 if ((unsigned long)objp & (arch_slab_minalign() - 1)) { 2998 pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp, 2999 arch_slab_minalign()); 3000 } 3001 return objp; 3002 } 3003 #else 3004 #define cache_alloc_debugcheck_after(a, b, objp, d) (objp) 3005 #endif 3006 3007 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3008 { 3009 void *objp; 3010 struct array_cache *ac; 3011 3012 check_irq_off(); 3013 3014 ac = cpu_cache_get(cachep); 3015 if (likely(ac->avail)) { 3016 ac->touched = 1; 3017 objp = ac->entry[--ac->avail]; 3018 3019 STATS_INC_ALLOCHIT(cachep); 3020 goto out; 3021 } 3022 3023 STATS_INC_ALLOCMISS(cachep); 3024 objp = cache_alloc_refill(cachep, flags); 3025 /* 3026 * the 'ac' may be updated by cache_alloc_refill(), 3027 * and kmemleak_erase() requires its correct value. 3028 */ 3029 ac = cpu_cache_get(cachep); 3030 3031 out: 3032 /* 3033 * To avoid a false negative, if an object that is in one of the 3034 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3035 * treat the array pointers as a reference to the object. 3036 */ 3037 if (objp) 3038 kmemleak_erase(&ac->entry[ac->avail]); 3039 return objp; 3040 } 3041 3042 #ifdef CONFIG_NUMA 3043 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 3044 3045 /* 3046 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3047 * 3048 * If we are in_interrupt, then process context, including cpusets and 3049 * mempolicy, may not apply and should not be used for allocation policy. 3050 */ 3051 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3052 { 3053 int nid_alloc, nid_here; 3054 3055 if (in_interrupt() || (flags & __GFP_THISNODE)) 3056 return NULL; 3057 nid_alloc = nid_here = numa_mem_id(); 3058 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3059 nid_alloc = cpuset_slab_spread_node(); 3060 else if (current->mempolicy) 3061 nid_alloc = mempolicy_slab_node(); 3062 if (nid_alloc != nid_here) 3063 return ____cache_alloc_node(cachep, flags, nid_alloc); 3064 return NULL; 3065 } 3066 3067 /* 3068 * Fallback function if there was no memory available and no objects on a 3069 * certain node and fall back is permitted. First we scan all the 3070 * available node for available objects. If that fails then we 3071 * perform an allocation without specifying a node. This allows the page 3072 * allocator to do its reclaim / fallback magic. We then insert the 3073 * slab into the proper nodelist and then allocate from it. 3074 */ 3075 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3076 { 3077 struct zonelist *zonelist; 3078 struct zoneref *z; 3079 struct zone *zone; 3080 enum zone_type highest_zoneidx = gfp_zone(flags); 3081 void *obj = NULL; 3082 struct slab *slab; 3083 int nid; 3084 unsigned int cpuset_mems_cookie; 3085 3086 if (flags & __GFP_THISNODE) 3087 return NULL; 3088 3089 retry_cpuset: 3090 cpuset_mems_cookie = read_mems_allowed_begin(); 3091 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3092 3093 retry: 3094 /* 3095 * Look through allowed nodes for objects available 3096 * from existing per node queues. 3097 */ 3098 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 3099 nid = zone_to_nid(zone); 3100 3101 if (cpuset_zone_allowed(zone, flags) && 3102 get_node(cache, nid) && 3103 get_node(cache, nid)->free_objects) { 3104 obj = ____cache_alloc_node(cache, 3105 gfp_exact_node(flags), nid); 3106 if (obj) 3107 break; 3108 } 3109 } 3110 3111 if (!obj) { 3112 /* 3113 * This allocation will be performed within the constraints 3114 * of the current cpuset / memory policy requirements. 3115 * We may trigger various forms of reclaim on the allowed 3116 * set and go into memory reserves if necessary. 3117 */ 3118 slab = cache_grow_begin(cache, flags, numa_mem_id()); 3119 cache_grow_end(cache, slab); 3120 if (slab) { 3121 nid = slab_nid(slab); 3122 obj = ____cache_alloc_node(cache, 3123 gfp_exact_node(flags), nid); 3124 3125 /* 3126 * Another processor may allocate the objects in 3127 * the slab since we are not holding any locks. 3128 */ 3129 if (!obj) 3130 goto retry; 3131 } 3132 } 3133 3134 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3135 goto retry_cpuset; 3136 return obj; 3137 } 3138 3139 /* 3140 * An interface to enable slab creation on nodeid 3141 */ 3142 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3143 int nodeid) 3144 { 3145 struct slab *slab; 3146 struct kmem_cache_node *n; 3147 void *obj = NULL; 3148 void *list = NULL; 3149 3150 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3151 n = get_node(cachep, nodeid); 3152 BUG_ON(!n); 3153 3154 check_irq_off(); 3155 spin_lock(&n->list_lock); 3156 slab = get_first_slab(n, false); 3157 if (!slab) 3158 goto must_grow; 3159 3160 check_spinlock_acquired_node(cachep, nodeid); 3161 3162 STATS_INC_NODEALLOCS(cachep); 3163 STATS_INC_ACTIVE(cachep); 3164 STATS_SET_HIGH(cachep); 3165 3166 BUG_ON(slab->active == cachep->num); 3167 3168 obj = slab_get_obj(cachep, slab); 3169 n->free_objects--; 3170 3171 fixup_slab_list(cachep, n, slab, &list); 3172 3173 spin_unlock(&n->list_lock); 3174 fixup_objfreelist_debug(cachep, &list); 3175 return obj; 3176 3177 must_grow: 3178 spin_unlock(&n->list_lock); 3179 slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3180 if (slab) { 3181 /* This slab isn't counted yet so don't update free_objects */ 3182 obj = slab_get_obj(cachep, slab); 3183 } 3184 cache_grow_end(cachep, slab); 3185 3186 return obj ? obj : fallback_alloc(cachep, flags); 3187 } 3188 3189 static __always_inline void * 3190 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size, 3191 unsigned long caller) 3192 { 3193 unsigned long save_flags; 3194 void *ptr; 3195 int slab_node = numa_mem_id(); 3196 struct obj_cgroup *objcg = NULL; 3197 bool init = false; 3198 3199 flags &= gfp_allowed_mask; 3200 cachep = slab_pre_alloc_hook(cachep, NULL, &objcg, 1, flags); 3201 if (unlikely(!cachep)) 3202 return NULL; 3203 3204 ptr = kfence_alloc(cachep, orig_size, flags); 3205 if (unlikely(ptr)) 3206 goto out_hooks; 3207 3208 cache_alloc_debugcheck_before(cachep, flags); 3209 local_irq_save(save_flags); 3210 3211 if (nodeid == NUMA_NO_NODE) 3212 nodeid = slab_node; 3213 3214 if (unlikely(!get_node(cachep, nodeid))) { 3215 /* Node not bootstrapped yet */ 3216 ptr = fallback_alloc(cachep, flags); 3217 goto out; 3218 } 3219 3220 if (nodeid == slab_node) { 3221 /* 3222 * Use the locally cached objects if possible. 3223 * However ____cache_alloc does not allow fallback 3224 * to other nodes. It may fail while we still have 3225 * objects on other nodes available. 3226 */ 3227 ptr = ____cache_alloc(cachep, flags); 3228 if (ptr) 3229 goto out; 3230 } 3231 /* ___cache_alloc_node can fall back to other nodes */ 3232 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3233 out: 3234 local_irq_restore(save_flags); 3235 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3236 init = slab_want_init_on_alloc(flags, cachep); 3237 3238 out_hooks: 3239 slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init); 3240 return ptr; 3241 } 3242 3243 static __always_inline void * 3244 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3245 { 3246 void *objp; 3247 3248 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3249 objp = alternate_node_alloc(cache, flags); 3250 if (objp) 3251 goto out; 3252 } 3253 objp = ____cache_alloc(cache, flags); 3254 3255 /* 3256 * We may just have run out of memory on the local node. 3257 * ____cache_alloc_node() knows how to locate memory on other nodes 3258 */ 3259 if (!objp) 3260 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3261 3262 out: 3263 return objp; 3264 } 3265 #else 3266 3267 static __always_inline void * 3268 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3269 { 3270 return ____cache_alloc(cachep, flags); 3271 } 3272 3273 #endif /* CONFIG_NUMA */ 3274 3275 static __always_inline void * 3276 slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, 3277 size_t orig_size, unsigned long caller) 3278 { 3279 unsigned long save_flags; 3280 void *objp; 3281 struct obj_cgroup *objcg = NULL; 3282 bool init = false; 3283 3284 flags &= gfp_allowed_mask; 3285 cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags); 3286 if (unlikely(!cachep)) 3287 return NULL; 3288 3289 objp = kfence_alloc(cachep, orig_size, flags); 3290 if (unlikely(objp)) 3291 goto out; 3292 3293 cache_alloc_debugcheck_before(cachep, flags); 3294 local_irq_save(save_flags); 3295 objp = __do_cache_alloc(cachep, flags); 3296 local_irq_restore(save_flags); 3297 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3298 prefetchw(objp); 3299 init = slab_want_init_on_alloc(flags, cachep); 3300 3301 out: 3302 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init); 3303 return objp; 3304 } 3305 3306 /* 3307 * Caller needs to acquire correct kmem_cache_node's list_lock 3308 * @list: List of detached free slabs should be freed by caller 3309 */ 3310 static void free_block(struct kmem_cache *cachep, void **objpp, 3311 int nr_objects, int node, struct list_head *list) 3312 { 3313 int i; 3314 struct kmem_cache_node *n = get_node(cachep, node); 3315 struct slab *slab; 3316 3317 n->free_objects += nr_objects; 3318 3319 for (i = 0; i < nr_objects; i++) { 3320 void *objp; 3321 struct slab *slab; 3322 3323 objp = objpp[i]; 3324 3325 slab = virt_to_slab(objp); 3326 list_del(&slab->slab_list); 3327 check_spinlock_acquired_node(cachep, node); 3328 slab_put_obj(cachep, slab, objp); 3329 STATS_DEC_ACTIVE(cachep); 3330 3331 /* fixup slab chains */ 3332 if (slab->active == 0) { 3333 list_add(&slab->slab_list, &n->slabs_free); 3334 n->free_slabs++; 3335 } else { 3336 /* Unconditionally move a slab to the end of the 3337 * partial list on free - maximum time for the 3338 * other objects to be freed, too. 3339 */ 3340 list_add_tail(&slab->slab_list, &n->slabs_partial); 3341 } 3342 } 3343 3344 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3345 n->free_objects -= cachep->num; 3346 3347 slab = list_last_entry(&n->slabs_free, struct slab, slab_list); 3348 list_move(&slab->slab_list, list); 3349 n->free_slabs--; 3350 n->total_slabs--; 3351 } 3352 } 3353 3354 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3355 { 3356 int batchcount; 3357 struct kmem_cache_node *n; 3358 int node = numa_mem_id(); 3359 LIST_HEAD(list); 3360 3361 batchcount = ac->batchcount; 3362 3363 check_irq_off(); 3364 n = get_node(cachep, node); 3365 spin_lock(&n->list_lock); 3366 if (n->shared) { 3367 struct array_cache *shared_array = n->shared; 3368 int max = shared_array->limit - shared_array->avail; 3369 if (max) { 3370 if (batchcount > max) 3371 batchcount = max; 3372 memcpy(&(shared_array->entry[shared_array->avail]), 3373 ac->entry, sizeof(void *) * batchcount); 3374 shared_array->avail += batchcount; 3375 goto free_done; 3376 } 3377 } 3378 3379 free_block(cachep, ac->entry, batchcount, node, &list); 3380 free_done: 3381 #if STATS 3382 { 3383 int i = 0; 3384 struct slab *slab; 3385 3386 list_for_each_entry(slab, &n->slabs_free, slab_list) { 3387 BUG_ON(slab->active); 3388 3389 i++; 3390 } 3391 STATS_SET_FREEABLE(cachep, i); 3392 } 3393 #endif 3394 spin_unlock(&n->list_lock); 3395 ac->avail -= batchcount; 3396 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3397 slabs_destroy(cachep, &list); 3398 } 3399 3400 /* 3401 * Release an obj back to its cache. If the obj has a constructed state, it must 3402 * be in this state _before_ it is released. Called with disabled ints. 3403 */ 3404 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3405 unsigned long caller) 3406 { 3407 bool init; 3408 3409 if (is_kfence_address(objp)) { 3410 kmemleak_free_recursive(objp, cachep->flags); 3411 memcg_slab_free_hook(cachep, &objp, 1); 3412 __kfence_free(objp); 3413 return; 3414 } 3415 3416 /* 3417 * As memory initialization might be integrated into KASAN, 3418 * kasan_slab_free and initialization memset must be 3419 * kept together to avoid discrepancies in behavior. 3420 */ 3421 init = slab_want_init_on_free(cachep); 3422 if (init && !kasan_has_integrated_init()) 3423 memset(objp, 0, cachep->object_size); 3424 /* KASAN might put objp into memory quarantine, delaying its reuse. */ 3425 if (kasan_slab_free(cachep, objp, init)) 3426 return; 3427 3428 /* Use KCSAN to help debug racy use-after-free. */ 3429 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 3430 __kcsan_check_access(objp, cachep->object_size, 3431 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 3432 3433 ___cache_free(cachep, objp, caller); 3434 } 3435 3436 void ___cache_free(struct kmem_cache *cachep, void *objp, 3437 unsigned long caller) 3438 { 3439 struct array_cache *ac = cpu_cache_get(cachep); 3440 3441 check_irq_off(); 3442 kmemleak_free_recursive(objp, cachep->flags); 3443 objp = cache_free_debugcheck(cachep, objp, caller); 3444 memcg_slab_free_hook(cachep, &objp, 1); 3445 3446 /* 3447 * Skip calling cache_free_alien() when the platform is not numa. 3448 * This will avoid cache misses that happen while accessing slabp (which 3449 * is per page memory reference) to get nodeid. Instead use a global 3450 * variable to skip the call, which is mostly likely to be present in 3451 * the cache. 3452 */ 3453 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3454 return; 3455 3456 if (ac->avail < ac->limit) { 3457 STATS_INC_FREEHIT(cachep); 3458 } else { 3459 STATS_INC_FREEMISS(cachep); 3460 cache_flusharray(cachep, ac); 3461 } 3462 3463 if (sk_memalloc_socks()) { 3464 struct slab *slab = virt_to_slab(objp); 3465 3466 if (unlikely(slab_test_pfmemalloc(slab))) { 3467 cache_free_pfmemalloc(cachep, slab, objp); 3468 return; 3469 } 3470 } 3471 3472 __free_one(ac, objp); 3473 } 3474 3475 static __always_inline 3476 void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3477 gfp_t flags) 3478 { 3479 void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_); 3480 3481 trace_kmem_cache_alloc(_RET_IP_, ret, 3482 cachep->object_size, cachep->size, flags); 3483 3484 return ret; 3485 } 3486 3487 /** 3488 * kmem_cache_alloc - Allocate an object 3489 * @cachep: The cache to allocate from. 3490 * @flags: See kmalloc(). 3491 * 3492 * Allocate an object from this cache. The flags are only relevant 3493 * if the cache has no available objects. 3494 * 3495 * Return: pointer to the new object or %NULL in case of error 3496 */ 3497 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3498 { 3499 return __kmem_cache_alloc_lru(cachep, NULL, flags); 3500 } 3501 EXPORT_SYMBOL(kmem_cache_alloc); 3502 3503 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3504 gfp_t flags) 3505 { 3506 return __kmem_cache_alloc_lru(cachep, lru, flags); 3507 } 3508 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3509 3510 static __always_inline void 3511 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3512 size_t size, void **p, unsigned long caller) 3513 { 3514 size_t i; 3515 3516 for (i = 0; i < size; i++) 3517 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3518 } 3519 3520 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3521 void **p) 3522 { 3523 size_t i; 3524 struct obj_cgroup *objcg = NULL; 3525 3526 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3527 if (!s) 3528 return 0; 3529 3530 cache_alloc_debugcheck_before(s, flags); 3531 3532 local_irq_disable(); 3533 for (i = 0; i < size; i++) { 3534 void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags); 3535 3536 if (unlikely(!objp)) 3537 goto error; 3538 p[i] = objp; 3539 } 3540 local_irq_enable(); 3541 3542 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3543 3544 /* 3545 * memcg and kmem_cache debug support and memory initialization. 3546 * Done outside of the IRQ disabled section. 3547 */ 3548 slab_post_alloc_hook(s, objcg, flags, size, p, 3549 slab_want_init_on_alloc(flags, s)); 3550 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3551 return size; 3552 error: 3553 local_irq_enable(); 3554 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3555 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3556 __kmem_cache_free_bulk(s, i, p); 3557 return 0; 3558 } 3559 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3560 3561 #ifdef CONFIG_TRACING 3562 void * 3563 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3564 { 3565 void *ret; 3566 3567 ret = slab_alloc(cachep, NULL, flags, size, _RET_IP_); 3568 3569 ret = kasan_kmalloc(cachep, ret, size, flags); 3570 trace_kmalloc(_RET_IP_, ret, 3571 size, cachep->size, flags); 3572 return ret; 3573 } 3574 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3575 #endif 3576 3577 #ifdef CONFIG_NUMA 3578 /** 3579 * kmem_cache_alloc_node - Allocate an object on the specified node 3580 * @cachep: The cache to allocate from. 3581 * @flags: See kmalloc(). 3582 * @nodeid: node number of the target node. 3583 * 3584 * Identical to kmem_cache_alloc but it will allocate memory on the given 3585 * node, which can improve the performance for cpu bound structures. 3586 * 3587 * Fallback to other node is possible if __GFP_THISNODE is not set. 3588 * 3589 * Return: pointer to the new object or %NULL in case of error 3590 */ 3591 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3592 { 3593 void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_); 3594 3595 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3596 cachep->object_size, cachep->size, 3597 flags, nodeid); 3598 3599 return ret; 3600 } 3601 EXPORT_SYMBOL(kmem_cache_alloc_node); 3602 3603 #ifdef CONFIG_TRACING 3604 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3605 gfp_t flags, 3606 int nodeid, 3607 size_t size) 3608 { 3609 void *ret; 3610 3611 ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_); 3612 3613 ret = kasan_kmalloc(cachep, ret, size, flags); 3614 trace_kmalloc_node(_RET_IP_, ret, 3615 size, cachep->size, 3616 flags, nodeid); 3617 return ret; 3618 } 3619 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3620 #endif 3621 3622 static __always_inline void * 3623 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3624 { 3625 struct kmem_cache *cachep; 3626 void *ret; 3627 3628 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3629 return NULL; 3630 cachep = kmalloc_slab(size, flags); 3631 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3632 return cachep; 3633 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3634 ret = kasan_kmalloc(cachep, ret, size, flags); 3635 3636 return ret; 3637 } 3638 3639 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3640 { 3641 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3642 } 3643 EXPORT_SYMBOL(__kmalloc_node); 3644 3645 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3646 int node, unsigned long caller) 3647 { 3648 return __do_kmalloc_node(size, flags, node, caller); 3649 } 3650 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3651 #endif /* CONFIG_NUMA */ 3652 3653 #ifdef CONFIG_PRINTK 3654 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 3655 { 3656 struct kmem_cache *cachep; 3657 unsigned int objnr; 3658 void *objp; 3659 3660 kpp->kp_ptr = object; 3661 kpp->kp_slab = slab; 3662 cachep = slab->slab_cache; 3663 kpp->kp_slab_cache = cachep; 3664 objp = object - obj_offset(cachep); 3665 kpp->kp_data_offset = obj_offset(cachep); 3666 slab = virt_to_slab(objp); 3667 objnr = obj_to_index(cachep, slab, objp); 3668 objp = index_to_obj(cachep, slab, objnr); 3669 kpp->kp_objp = objp; 3670 if (DEBUG && cachep->flags & SLAB_STORE_USER) 3671 kpp->kp_ret = *dbg_userword(cachep, objp); 3672 } 3673 #endif 3674 3675 /** 3676 * __do_kmalloc - allocate memory 3677 * @size: how many bytes of memory are required. 3678 * @flags: the type of memory to allocate (see kmalloc). 3679 * @caller: function caller for debug tracking of the caller 3680 * 3681 * Return: pointer to the allocated memory or %NULL in case of error 3682 */ 3683 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3684 unsigned long caller) 3685 { 3686 struct kmem_cache *cachep; 3687 void *ret; 3688 3689 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3690 return NULL; 3691 cachep = kmalloc_slab(size, flags); 3692 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3693 return cachep; 3694 ret = slab_alloc(cachep, NULL, flags, size, caller); 3695 3696 ret = kasan_kmalloc(cachep, ret, size, flags); 3697 trace_kmalloc(caller, ret, 3698 size, cachep->size, flags); 3699 3700 return ret; 3701 } 3702 3703 void *__kmalloc(size_t size, gfp_t flags) 3704 { 3705 return __do_kmalloc(size, flags, _RET_IP_); 3706 } 3707 EXPORT_SYMBOL(__kmalloc); 3708 3709 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3710 { 3711 return __do_kmalloc(size, flags, caller); 3712 } 3713 EXPORT_SYMBOL(__kmalloc_track_caller); 3714 3715 /** 3716 * kmem_cache_free - Deallocate an object 3717 * @cachep: The cache the allocation was from. 3718 * @objp: The previously allocated object. 3719 * 3720 * Free an object which was previously allocated from this 3721 * cache. 3722 */ 3723 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3724 { 3725 unsigned long flags; 3726 cachep = cache_from_obj(cachep, objp); 3727 if (!cachep) 3728 return; 3729 3730 trace_kmem_cache_free(_RET_IP_, objp, cachep->name); 3731 local_irq_save(flags); 3732 debug_check_no_locks_freed(objp, cachep->object_size); 3733 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3734 debug_check_no_obj_freed(objp, cachep->object_size); 3735 __cache_free(cachep, objp, _RET_IP_); 3736 local_irq_restore(flags); 3737 } 3738 EXPORT_SYMBOL(kmem_cache_free); 3739 3740 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3741 { 3742 struct kmem_cache *s; 3743 size_t i; 3744 3745 local_irq_disable(); 3746 for (i = 0; i < size; i++) { 3747 void *objp = p[i]; 3748 3749 if (!orig_s) /* called via kfree_bulk */ 3750 s = virt_to_cache(objp); 3751 else 3752 s = cache_from_obj(orig_s, objp); 3753 if (!s) 3754 continue; 3755 3756 debug_check_no_locks_freed(objp, s->object_size); 3757 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3758 debug_check_no_obj_freed(objp, s->object_size); 3759 3760 __cache_free(s, objp, _RET_IP_); 3761 } 3762 local_irq_enable(); 3763 3764 /* FIXME: add tracing */ 3765 } 3766 EXPORT_SYMBOL(kmem_cache_free_bulk); 3767 3768 /** 3769 * kfree - free previously allocated memory 3770 * @objp: pointer returned by kmalloc. 3771 * 3772 * If @objp is NULL, no operation is performed. 3773 * 3774 * Don't free memory not originally allocated by kmalloc() 3775 * or you will run into trouble. 3776 */ 3777 void kfree(const void *objp) 3778 { 3779 struct kmem_cache *c; 3780 unsigned long flags; 3781 3782 trace_kfree(_RET_IP_, objp); 3783 3784 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3785 return; 3786 local_irq_save(flags); 3787 kfree_debugcheck(objp); 3788 c = virt_to_cache(objp); 3789 if (!c) { 3790 local_irq_restore(flags); 3791 return; 3792 } 3793 debug_check_no_locks_freed(objp, c->object_size); 3794 3795 debug_check_no_obj_freed(objp, c->object_size); 3796 __cache_free(c, (void *)objp, _RET_IP_); 3797 local_irq_restore(flags); 3798 } 3799 EXPORT_SYMBOL(kfree); 3800 3801 /* 3802 * This initializes kmem_cache_node or resizes various caches for all nodes. 3803 */ 3804 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3805 { 3806 int ret; 3807 int node; 3808 struct kmem_cache_node *n; 3809 3810 for_each_online_node(node) { 3811 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3812 if (ret) 3813 goto fail; 3814 3815 } 3816 3817 return 0; 3818 3819 fail: 3820 if (!cachep->list.next) { 3821 /* Cache is not active yet. Roll back what we did */ 3822 node--; 3823 while (node >= 0) { 3824 n = get_node(cachep, node); 3825 if (n) { 3826 kfree(n->shared); 3827 free_alien_cache(n->alien); 3828 kfree(n); 3829 cachep->node[node] = NULL; 3830 } 3831 node--; 3832 } 3833 } 3834 return -ENOMEM; 3835 } 3836 3837 /* Always called with the slab_mutex held */ 3838 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3839 int batchcount, int shared, gfp_t gfp) 3840 { 3841 struct array_cache __percpu *cpu_cache, *prev; 3842 int cpu; 3843 3844 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3845 if (!cpu_cache) 3846 return -ENOMEM; 3847 3848 prev = cachep->cpu_cache; 3849 cachep->cpu_cache = cpu_cache; 3850 /* 3851 * Without a previous cpu_cache there's no need to synchronize remote 3852 * cpus, so skip the IPIs. 3853 */ 3854 if (prev) 3855 kick_all_cpus_sync(); 3856 3857 check_irq_on(); 3858 cachep->batchcount = batchcount; 3859 cachep->limit = limit; 3860 cachep->shared = shared; 3861 3862 if (!prev) 3863 goto setup_node; 3864 3865 for_each_online_cpu(cpu) { 3866 LIST_HEAD(list); 3867 int node; 3868 struct kmem_cache_node *n; 3869 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3870 3871 node = cpu_to_mem(cpu); 3872 n = get_node(cachep, node); 3873 spin_lock_irq(&n->list_lock); 3874 free_block(cachep, ac->entry, ac->avail, node, &list); 3875 spin_unlock_irq(&n->list_lock); 3876 slabs_destroy(cachep, &list); 3877 } 3878 free_percpu(prev); 3879 3880 setup_node: 3881 return setup_kmem_cache_nodes(cachep, gfp); 3882 } 3883 3884 /* Called with slab_mutex held always */ 3885 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3886 { 3887 int err; 3888 int limit = 0; 3889 int shared = 0; 3890 int batchcount = 0; 3891 3892 err = cache_random_seq_create(cachep, cachep->num, gfp); 3893 if (err) 3894 goto end; 3895 3896 /* 3897 * The head array serves three purposes: 3898 * - create a LIFO ordering, i.e. return objects that are cache-warm 3899 * - reduce the number of spinlock operations. 3900 * - reduce the number of linked list operations on the slab and 3901 * bufctl chains: array operations are cheaper. 3902 * The numbers are guessed, we should auto-tune as described by 3903 * Bonwick. 3904 */ 3905 if (cachep->size > 131072) 3906 limit = 1; 3907 else if (cachep->size > PAGE_SIZE) 3908 limit = 8; 3909 else if (cachep->size > 1024) 3910 limit = 24; 3911 else if (cachep->size > 256) 3912 limit = 54; 3913 else 3914 limit = 120; 3915 3916 /* 3917 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3918 * allocation behaviour: Most allocs on one cpu, most free operations 3919 * on another cpu. For these cases, an efficient object passing between 3920 * cpus is necessary. This is provided by a shared array. The array 3921 * replaces Bonwick's magazine layer. 3922 * On uniprocessor, it's functionally equivalent (but less efficient) 3923 * to a larger limit. Thus disabled by default. 3924 */ 3925 shared = 0; 3926 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3927 shared = 8; 3928 3929 #if DEBUG 3930 /* 3931 * With debugging enabled, large batchcount lead to excessively long 3932 * periods with disabled local interrupts. Limit the batchcount 3933 */ 3934 if (limit > 32) 3935 limit = 32; 3936 #endif 3937 batchcount = (limit + 1) / 2; 3938 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3939 end: 3940 if (err) 3941 pr_err("enable_cpucache failed for %s, error %d\n", 3942 cachep->name, -err); 3943 return err; 3944 } 3945 3946 /* 3947 * Drain an array if it contains any elements taking the node lock only if 3948 * necessary. Note that the node listlock also protects the array_cache 3949 * if drain_array() is used on the shared array. 3950 */ 3951 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3952 struct array_cache *ac, int node) 3953 { 3954 LIST_HEAD(list); 3955 3956 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3957 check_mutex_acquired(); 3958 3959 if (!ac || !ac->avail) 3960 return; 3961 3962 if (ac->touched) { 3963 ac->touched = 0; 3964 return; 3965 } 3966 3967 spin_lock_irq(&n->list_lock); 3968 drain_array_locked(cachep, ac, node, false, &list); 3969 spin_unlock_irq(&n->list_lock); 3970 3971 slabs_destroy(cachep, &list); 3972 } 3973 3974 /** 3975 * cache_reap - Reclaim memory from caches. 3976 * @w: work descriptor 3977 * 3978 * Called from workqueue/eventd every few seconds. 3979 * Purpose: 3980 * - clear the per-cpu caches for this CPU. 3981 * - return freeable pages to the main free memory pool. 3982 * 3983 * If we cannot acquire the cache chain mutex then just give up - we'll try 3984 * again on the next iteration. 3985 */ 3986 static void cache_reap(struct work_struct *w) 3987 { 3988 struct kmem_cache *searchp; 3989 struct kmem_cache_node *n; 3990 int node = numa_mem_id(); 3991 struct delayed_work *work = to_delayed_work(w); 3992 3993 if (!mutex_trylock(&slab_mutex)) 3994 /* Give up. Setup the next iteration. */ 3995 goto out; 3996 3997 list_for_each_entry(searchp, &slab_caches, list) { 3998 check_irq_on(); 3999 4000 /* 4001 * We only take the node lock if absolutely necessary and we 4002 * have established with reasonable certainty that 4003 * we can do some work if the lock was obtained. 4004 */ 4005 n = get_node(searchp, node); 4006 4007 reap_alien(searchp, n); 4008 4009 drain_array(searchp, n, cpu_cache_get(searchp), node); 4010 4011 /* 4012 * These are racy checks but it does not matter 4013 * if we skip one check or scan twice. 4014 */ 4015 if (time_after(n->next_reap, jiffies)) 4016 goto next; 4017 4018 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4019 4020 drain_array(searchp, n, n->shared, node); 4021 4022 if (n->free_touched) 4023 n->free_touched = 0; 4024 else { 4025 int freed; 4026 4027 freed = drain_freelist(searchp, n, (n->free_limit + 4028 5 * searchp->num - 1) / (5 * searchp->num)); 4029 STATS_ADD_REAPED(searchp, freed); 4030 } 4031 next: 4032 cond_resched(); 4033 } 4034 check_irq_on(); 4035 mutex_unlock(&slab_mutex); 4036 next_reap_node(); 4037 out: 4038 /* Set up the next iteration */ 4039 schedule_delayed_work_on(smp_processor_id(), work, 4040 round_jiffies_relative(REAPTIMEOUT_AC)); 4041 } 4042 4043 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4044 { 4045 unsigned long active_objs, num_objs, active_slabs; 4046 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4047 unsigned long free_slabs = 0; 4048 int node; 4049 struct kmem_cache_node *n; 4050 4051 for_each_kmem_cache_node(cachep, node, n) { 4052 check_irq_on(); 4053 spin_lock_irq(&n->list_lock); 4054 4055 total_slabs += n->total_slabs; 4056 free_slabs += n->free_slabs; 4057 free_objs += n->free_objects; 4058 4059 if (n->shared) 4060 shared_avail += n->shared->avail; 4061 4062 spin_unlock_irq(&n->list_lock); 4063 } 4064 num_objs = total_slabs * cachep->num; 4065 active_slabs = total_slabs - free_slabs; 4066 active_objs = num_objs - free_objs; 4067 4068 sinfo->active_objs = active_objs; 4069 sinfo->num_objs = num_objs; 4070 sinfo->active_slabs = active_slabs; 4071 sinfo->num_slabs = total_slabs; 4072 sinfo->shared_avail = shared_avail; 4073 sinfo->limit = cachep->limit; 4074 sinfo->batchcount = cachep->batchcount; 4075 sinfo->shared = cachep->shared; 4076 sinfo->objects_per_slab = cachep->num; 4077 sinfo->cache_order = cachep->gfporder; 4078 } 4079 4080 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4081 { 4082 #if STATS 4083 { /* node stats */ 4084 unsigned long high = cachep->high_mark; 4085 unsigned long allocs = cachep->num_allocations; 4086 unsigned long grown = cachep->grown; 4087 unsigned long reaped = cachep->reaped; 4088 unsigned long errors = cachep->errors; 4089 unsigned long max_freeable = cachep->max_freeable; 4090 unsigned long node_allocs = cachep->node_allocs; 4091 unsigned long node_frees = cachep->node_frees; 4092 unsigned long overflows = cachep->node_overflow; 4093 4094 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4095 allocs, high, grown, 4096 reaped, errors, max_freeable, node_allocs, 4097 node_frees, overflows); 4098 } 4099 /* cpu stats */ 4100 { 4101 unsigned long allochit = atomic_read(&cachep->allochit); 4102 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4103 unsigned long freehit = atomic_read(&cachep->freehit); 4104 unsigned long freemiss = atomic_read(&cachep->freemiss); 4105 4106 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4107 allochit, allocmiss, freehit, freemiss); 4108 } 4109 #endif 4110 } 4111 4112 #define MAX_SLABINFO_WRITE 128 4113 /** 4114 * slabinfo_write - Tuning for the slab allocator 4115 * @file: unused 4116 * @buffer: user buffer 4117 * @count: data length 4118 * @ppos: unused 4119 * 4120 * Return: %0 on success, negative error code otherwise. 4121 */ 4122 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4123 size_t count, loff_t *ppos) 4124 { 4125 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4126 int limit, batchcount, shared, res; 4127 struct kmem_cache *cachep; 4128 4129 if (count > MAX_SLABINFO_WRITE) 4130 return -EINVAL; 4131 if (copy_from_user(&kbuf, buffer, count)) 4132 return -EFAULT; 4133 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4134 4135 tmp = strchr(kbuf, ' '); 4136 if (!tmp) 4137 return -EINVAL; 4138 *tmp = '\0'; 4139 tmp++; 4140 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4141 return -EINVAL; 4142 4143 /* Find the cache in the chain of caches. */ 4144 mutex_lock(&slab_mutex); 4145 res = -EINVAL; 4146 list_for_each_entry(cachep, &slab_caches, list) { 4147 if (!strcmp(cachep->name, kbuf)) { 4148 if (limit < 1 || batchcount < 1 || 4149 batchcount > limit || shared < 0) { 4150 res = 0; 4151 } else { 4152 res = do_tune_cpucache(cachep, limit, 4153 batchcount, shared, 4154 GFP_KERNEL); 4155 } 4156 break; 4157 } 4158 } 4159 mutex_unlock(&slab_mutex); 4160 if (res >= 0) 4161 res = count; 4162 return res; 4163 } 4164 4165 #ifdef CONFIG_HARDENED_USERCOPY 4166 /* 4167 * Rejects incorrectly sized objects and objects that are to be copied 4168 * to/from userspace but do not fall entirely within the containing slab 4169 * cache's usercopy region. 4170 * 4171 * Returns NULL if check passes, otherwise const char * to name of cache 4172 * to indicate an error. 4173 */ 4174 void __check_heap_object(const void *ptr, unsigned long n, 4175 const struct slab *slab, bool to_user) 4176 { 4177 struct kmem_cache *cachep; 4178 unsigned int objnr; 4179 unsigned long offset; 4180 4181 ptr = kasan_reset_tag(ptr); 4182 4183 /* Find and validate object. */ 4184 cachep = slab->slab_cache; 4185 objnr = obj_to_index(cachep, slab, (void *)ptr); 4186 BUG_ON(objnr >= cachep->num); 4187 4188 /* Find offset within object. */ 4189 if (is_kfence_address(ptr)) 4190 offset = ptr - kfence_object_start(ptr); 4191 else 4192 offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep); 4193 4194 /* Allow address range falling entirely within usercopy region. */ 4195 if (offset >= cachep->useroffset && 4196 offset - cachep->useroffset <= cachep->usersize && 4197 n <= cachep->useroffset - offset + cachep->usersize) 4198 return; 4199 4200 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4201 } 4202 #endif /* CONFIG_HARDENED_USERCOPY */ 4203 4204 /** 4205 * __ksize -- Uninstrumented ksize. 4206 * @objp: pointer to the object 4207 * 4208 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same 4209 * safety checks as ksize() with KASAN instrumentation enabled. 4210 * 4211 * Return: size of the actual memory used by @objp in bytes 4212 */ 4213 size_t __ksize(const void *objp) 4214 { 4215 struct kmem_cache *c; 4216 size_t size; 4217 4218 BUG_ON(!objp); 4219 if (unlikely(objp == ZERO_SIZE_PTR)) 4220 return 0; 4221 4222 c = virt_to_cache(objp); 4223 size = c ? c->object_size : 0; 4224 4225 return size; 4226 } 4227 EXPORT_SYMBOL(__ksize); 4228