1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/mempolicy.h> 110 #include <linux/mutex.h> 111 #include <linux/fault-inject.h> 112 #include <linux/rtmutex.h> 113 #include <linux/reciprocal_div.h> 114 #include <linux/debugobjects.h> 115 116 #include <asm/cacheflush.h> 117 #include <asm/tlbflush.h> 118 #include <asm/page.h> 119 120 /* 121 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 122 * 0 for faster, smaller code (especially in the critical paths). 123 * 124 * STATS - 1 to collect stats for /proc/slabinfo. 125 * 0 for faster, smaller code (especially in the critical paths). 126 * 127 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 128 */ 129 130 #ifdef CONFIG_DEBUG_SLAB 131 #define DEBUG 1 132 #define STATS 1 133 #define FORCED_DEBUG 1 134 #else 135 #define DEBUG 0 136 #define STATS 0 137 #define FORCED_DEBUG 0 138 #endif 139 140 /* Shouldn't this be in a header file somewhere? */ 141 #define BYTES_PER_WORD sizeof(void *) 142 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 143 144 #ifndef ARCH_KMALLOC_MINALIGN 145 /* 146 * Enforce a minimum alignment for the kmalloc caches. 147 * Usually, the kmalloc caches are cache_line_size() aligned, except when 148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. 149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 150 * alignment larger than the alignment of a 64-bit integer. 151 * ARCH_KMALLOC_MINALIGN allows that. 152 * Note that increasing this value may disable some debug features. 153 */ 154 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 155 #endif 156 157 #ifndef ARCH_SLAB_MINALIGN 158 /* 159 * Enforce a minimum alignment for all caches. 160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD 161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. 162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables 163 * some debug features. 164 */ 165 #define ARCH_SLAB_MINALIGN 0 166 #endif 167 168 #ifndef ARCH_KMALLOC_FLAGS 169 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 170 #endif 171 172 /* Legal flag mask for kmem_cache_create(). */ 173 #if DEBUG 174 # define CREATE_MASK (SLAB_RED_ZONE | \ 175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \ 176 SLAB_CACHE_DMA | \ 177 SLAB_STORE_USER | \ 178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ 180 SLAB_DEBUG_OBJECTS) 181 #else 182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ 183 SLAB_CACHE_DMA | \ 184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ 186 SLAB_DEBUG_OBJECTS) 187 #endif 188 189 /* 190 * kmem_bufctl_t: 191 * 192 * Bufctl's are used for linking objs within a slab 193 * linked offsets. 194 * 195 * This implementation relies on "struct page" for locating the cache & 196 * slab an object belongs to. 197 * This allows the bufctl structure to be small (one int), but limits 198 * the number of objects a slab (not a cache) can contain when off-slab 199 * bufctls are used. The limit is the size of the largest general cache 200 * that does not use off-slab slabs. 201 * For 32bit archs with 4 kB pages, is this 56. 202 * This is not serious, as it is only for large objects, when it is unwise 203 * to have too many per slab. 204 * Note: This limit can be raised by introducing a general cache whose size 205 * is less than 512 (PAGE_SIZE<<3), but greater than 256. 206 */ 207 208 typedef unsigned int kmem_bufctl_t; 209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) 210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) 211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) 212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) 213 214 /* 215 * struct slab 216 * 217 * Manages the objs in a slab. Placed either at the beginning of mem allocated 218 * for a slab, or allocated from an general cache. 219 * Slabs are chained into three list: fully used, partial, fully free slabs. 220 */ 221 struct slab { 222 struct list_head list; 223 unsigned long colouroff; 224 void *s_mem; /* including colour offset */ 225 unsigned int inuse; /* num of objs active in slab */ 226 kmem_bufctl_t free; 227 unsigned short nodeid; 228 }; 229 230 /* 231 * struct slab_rcu 232 * 233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to 234 * arrange for kmem_freepages to be called via RCU. This is useful if 235 * we need to approach a kernel structure obliquely, from its address 236 * obtained without the usual locking. We can lock the structure to 237 * stabilize it and check it's still at the given address, only if we 238 * can be sure that the memory has not been meanwhile reused for some 239 * other kind of object (which our subsystem's lock might corrupt). 240 * 241 * rcu_read_lock before reading the address, then rcu_read_unlock after 242 * taking the spinlock within the structure expected at that address. 243 * 244 * We assume struct slab_rcu can overlay struct slab when destroying. 245 */ 246 struct slab_rcu { 247 struct rcu_head head; 248 struct kmem_cache *cachep; 249 void *addr; 250 }; 251 252 /* 253 * struct array_cache 254 * 255 * Purpose: 256 * - LIFO ordering, to hand out cache-warm objects from _alloc 257 * - reduce the number of linked list operations 258 * - reduce spinlock operations 259 * 260 * The limit is stored in the per-cpu structure to reduce the data cache 261 * footprint. 262 * 263 */ 264 struct array_cache { 265 unsigned int avail; 266 unsigned int limit; 267 unsigned int batchcount; 268 unsigned int touched; 269 spinlock_t lock; 270 void *entry[]; /* 271 * Must have this definition in here for the proper 272 * alignment of array_cache. Also simplifies accessing 273 * the entries. 274 */ 275 }; 276 277 /* 278 * bootstrap: The caches do not work without cpuarrays anymore, but the 279 * cpuarrays are allocated from the generic caches... 280 */ 281 #define BOOT_CPUCACHE_ENTRIES 1 282 struct arraycache_init { 283 struct array_cache cache; 284 void *entries[BOOT_CPUCACHE_ENTRIES]; 285 }; 286 287 /* 288 * The slab lists for all objects. 289 */ 290 struct kmem_list3 { 291 struct list_head slabs_partial; /* partial list first, better asm code */ 292 struct list_head slabs_full; 293 struct list_head slabs_free; 294 unsigned long free_objects; 295 unsigned int free_limit; 296 unsigned int colour_next; /* Per-node cache coloring */ 297 spinlock_t list_lock; 298 struct array_cache *shared; /* shared per node */ 299 struct array_cache **alien; /* on other nodes */ 300 unsigned long next_reap; /* updated without locking */ 301 int free_touched; /* updated without locking */ 302 }; 303 304 /* 305 * Need this for bootstrapping a per node allocator. 306 */ 307 #define NUM_INIT_LISTS (3 * MAX_NUMNODES) 308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; 309 #define CACHE_CACHE 0 310 #define SIZE_AC MAX_NUMNODES 311 #define SIZE_L3 (2 * MAX_NUMNODES) 312 313 static int drain_freelist(struct kmem_cache *cache, 314 struct kmem_list3 *l3, int tofree); 315 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 316 int node); 317 static int enable_cpucache(struct kmem_cache *cachep); 318 static void cache_reap(struct work_struct *unused); 319 320 /* 321 * This function must be completely optimized away if a constant is passed to 322 * it. Mostly the same as what is in linux/slab.h except it returns an index. 323 */ 324 static __always_inline int index_of(const size_t size) 325 { 326 extern void __bad_size(void); 327 328 if (__builtin_constant_p(size)) { 329 int i = 0; 330 331 #define CACHE(x) \ 332 if (size <=x) \ 333 return i; \ 334 else \ 335 i++; 336 #include <linux/kmalloc_sizes.h> 337 #undef CACHE 338 __bad_size(); 339 } else 340 __bad_size(); 341 return 0; 342 } 343 344 static int slab_early_init = 1; 345 346 #define INDEX_AC index_of(sizeof(struct arraycache_init)) 347 #define INDEX_L3 index_of(sizeof(struct kmem_list3)) 348 349 static void kmem_list3_init(struct kmem_list3 *parent) 350 { 351 INIT_LIST_HEAD(&parent->slabs_full); 352 INIT_LIST_HEAD(&parent->slabs_partial); 353 INIT_LIST_HEAD(&parent->slabs_free); 354 parent->shared = NULL; 355 parent->alien = NULL; 356 parent->colour_next = 0; 357 spin_lock_init(&parent->list_lock); 358 parent->free_objects = 0; 359 parent->free_touched = 0; 360 } 361 362 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 363 do { \ 364 INIT_LIST_HEAD(listp); \ 365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ 366 } while (0) 367 368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 369 do { \ 370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 373 } while (0) 374 375 /* 376 * struct kmem_cache 377 * 378 * manages a cache. 379 */ 380 381 struct kmem_cache { 382 /* 1) per-cpu data, touched during every alloc/free */ 383 struct array_cache *array[NR_CPUS]; 384 /* 2) Cache tunables. Protected by cache_chain_mutex */ 385 unsigned int batchcount; 386 unsigned int limit; 387 unsigned int shared; 388 389 unsigned int buffer_size; 390 u32 reciprocal_buffer_size; 391 /* 3) touched by every alloc & free from the backend */ 392 393 unsigned int flags; /* constant flags */ 394 unsigned int num; /* # of objs per slab */ 395 396 /* 4) cache_grow/shrink */ 397 /* order of pgs per slab (2^n) */ 398 unsigned int gfporder; 399 400 /* force GFP flags, e.g. GFP_DMA */ 401 gfp_t gfpflags; 402 403 size_t colour; /* cache colouring range */ 404 unsigned int colour_off; /* colour offset */ 405 struct kmem_cache *slabp_cache; 406 unsigned int slab_size; 407 unsigned int dflags; /* dynamic flags */ 408 409 /* constructor func */ 410 void (*ctor)(void *obj); 411 412 /* 5) cache creation/removal */ 413 const char *name; 414 struct list_head next; 415 416 /* 6) statistics */ 417 #if STATS 418 unsigned long num_active; 419 unsigned long num_allocations; 420 unsigned long high_mark; 421 unsigned long grown; 422 unsigned long reaped; 423 unsigned long errors; 424 unsigned long max_freeable; 425 unsigned long node_allocs; 426 unsigned long node_frees; 427 unsigned long node_overflow; 428 atomic_t allochit; 429 atomic_t allocmiss; 430 atomic_t freehit; 431 atomic_t freemiss; 432 #endif 433 #if DEBUG 434 /* 435 * If debugging is enabled, then the allocator can add additional 436 * fields and/or padding to every object. buffer_size contains the total 437 * object size including these internal fields, the following two 438 * variables contain the offset to the user object and its size. 439 */ 440 int obj_offset; 441 int obj_size; 442 #endif 443 /* 444 * We put nodelists[] at the end of kmem_cache, because we want to size 445 * this array to nr_node_ids slots instead of MAX_NUMNODES 446 * (see kmem_cache_init()) 447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache 448 * is statically defined, so we reserve the max number of nodes. 449 */ 450 struct kmem_list3 *nodelists[MAX_NUMNODES]; 451 /* 452 * Do not add fields after nodelists[] 453 */ 454 }; 455 456 #define CFLGS_OFF_SLAB (0x80000000UL) 457 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 458 459 #define BATCHREFILL_LIMIT 16 460 /* 461 * Optimization question: fewer reaps means less probability for unnessary 462 * cpucache drain/refill cycles. 463 * 464 * OTOH the cpuarrays can contain lots of objects, 465 * which could lock up otherwise freeable slabs. 466 */ 467 #define REAPTIMEOUT_CPUC (2*HZ) 468 #define REAPTIMEOUT_LIST3 (4*HZ) 469 470 #if STATS 471 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 472 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 473 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 474 #define STATS_INC_GROWN(x) ((x)->grown++) 475 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 476 #define STATS_SET_HIGH(x) \ 477 do { \ 478 if ((x)->num_active > (x)->high_mark) \ 479 (x)->high_mark = (x)->num_active; \ 480 } while (0) 481 #define STATS_INC_ERR(x) ((x)->errors++) 482 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 483 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 484 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 485 #define STATS_SET_FREEABLE(x, i) \ 486 do { \ 487 if ((x)->max_freeable < i) \ 488 (x)->max_freeable = i; \ 489 } while (0) 490 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 491 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 492 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 493 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 494 #else 495 #define STATS_INC_ACTIVE(x) do { } while (0) 496 #define STATS_DEC_ACTIVE(x) do { } while (0) 497 #define STATS_INC_ALLOCED(x) do { } while (0) 498 #define STATS_INC_GROWN(x) do { } while (0) 499 #define STATS_ADD_REAPED(x,y) do { } while (0) 500 #define STATS_SET_HIGH(x) do { } while (0) 501 #define STATS_INC_ERR(x) do { } while (0) 502 #define STATS_INC_NODEALLOCS(x) do { } while (0) 503 #define STATS_INC_NODEFREES(x) do { } while (0) 504 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 505 #define STATS_SET_FREEABLE(x, i) do { } while (0) 506 #define STATS_INC_ALLOCHIT(x) do { } while (0) 507 #define STATS_INC_ALLOCMISS(x) do { } while (0) 508 #define STATS_INC_FREEHIT(x) do { } while (0) 509 #define STATS_INC_FREEMISS(x) do { } while (0) 510 #endif 511 512 #if DEBUG 513 514 /* 515 * memory layout of objects: 516 * 0 : objp 517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 518 * the end of an object is aligned with the end of the real 519 * allocation. Catches writes behind the end of the allocation. 520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 521 * redzone word. 522 * cachep->obj_offset: The real object. 523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address 525 * [BYTES_PER_WORD long] 526 */ 527 static int obj_offset(struct kmem_cache *cachep) 528 { 529 return cachep->obj_offset; 530 } 531 532 static int obj_size(struct kmem_cache *cachep) 533 { 534 return cachep->obj_size; 535 } 536 537 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 538 { 539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 540 return (unsigned long long*) (objp + obj_offset(cachep) - 541 sizeof(unsigned long long)); 542 } 543 544 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 545 { 546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 547 if (cachep->flags & SLAB_STORE_USER) 548 return (unsigned long long *)(objp + cachep->buffer_size - 549 sizeof(unsigned long long) - 550 REDZONE_ALIGN); 551 return (unsigned long long *) (objp + cachep->buffer_size - 552 sizeof(unsigned long long)); 553 } 554 555 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 556 { 557 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); 559 } 560 561 #else 562 563 #define obj_offset(x) 0 564 #define obj_size(cachep) (cachep->buffer_size) 565 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 566 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 567 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 568 569 #endif 570 571 /* 572 * Do not go above this order unless 0 objects fit into the slab. 573 */ 574 #define BREAK_GFP_ORDER_HI 1 575 #define BREAK_GFP_ORDER_LO 0 576 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; 577 578 /* 579 * Functions for storing/retrieving the cachep and or slab from the page 580 * allocator. These are used to find the slab an obj belongs to. With kfree(), 581 * these are used to find the cache which an obj belongs to. 582 */ 583 static inline void page_set_cache(struct page *page, struct kmem_cache *cache) 584 { 585 page->lru.next = (struct list_head *)cache; 586 } 587 588 static inline struct kmem_cache *page_get_cache(struct page *page) 589 { 590 page = compound_head(page); 591 BUG_ON(!PageSlab(page)); 592 return (struct kmem_cache *)page->lru.next; 593 } 594 595 static inline void page_set_slab(struct page *page, struct slab *slab) 596 { 597 page->lru.prev = (struct list_head *)slab; 598 } 599 600 static inline struct slab *page_get_slab(struct page *page) 601 { 602 BUG_ON(!PageSlab(page)); 603 return (struct slab *)page->lru.prev; 604 } 605 606 static inline struct kmem_cache *virt_to_cache(const void *obj) 607 { 608 struct page *page = virt_to_head_page(obj); 609 return page_get_cache(page); 610 } 611 612 static inline struct slab *virt_to_slab(const void *obj) 613 { 614 struct page *page = virt_to_head_page(obj); 615 return page_get_slab(page); 616 } 617 618 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, 619 unsigned int idx) 620 { 621 return slab->s_mem + cache->buffer_size * idx; 622 } 623 624 /* 625 * We want to avoid an expensive divide : (offset / cache->buffer_size) 626 * Using the fact that buffer_size is a constant for a particular cache, 627 * we can replace (offset / cache->buffer_size) by 628 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 629 */ 630 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 631 const struct slab *slab, void *obj) 632 { 633 u32 offset = (obj - slab->s_mem); 634 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 635 } 636 637 /* 638 * These are the default caches for kmalloc. Custom caches can have other sizes. 639 */ 640 struct cache_sizes malloc_sizes[] = { 641 #define CACHE(x) { .cs_size = (x) }, 642 #include <linux/kmalloc_sizes.h> 643 CACHE(ULONG_MAX) 644 #undef CACHE 645 }; 646 EXPORT_SYMBOL(malloc_sizes); 647 648 /* Must match cache_sizes above. Out of line to keep cache footprint low. */ 649 struct cache_names { 650 char *name; 651 char *name_dma; 652 }; 653 654 static struct cache_names __initdata cache_names[] = { 655 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, 656 #include <linux/kmalloc_sizes.h> 657 {NULL,} 658 #undef CACHE 659 }; 660 661 static struct arraycache_init initarray_cache __initdata = 662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 663 static struct arraycache_init initarray_generic = 664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 665 666 /* internal cache of cache description objs */ 667 static struct kmem_cache cache_cache = { 668 .batchcount = 1, 669 .limit = BOOT_CPUCACHE_ENTRIES, 670 .shared = 1, 671 .buffer_size = sizeof(struct kmem_cache), 672 .name = "kmem_cache", 673 }; 674 675 #define BAD_ALIEN_MAGIC 0x01020304ul 676 677 #ifdef CONFIG_LOCKDEP 678 679 /* 680 * Slab sometimes uses the kmalloc slabs to store the slab headers 681 * for other slabs "off slab". 682 * The locking for this is tricky in that it nests within the locks 683 * of all other slabs in a few places; to deal with this special 684 * locking we put on-slab caches into a separate lock-class. 685 * 686 * We set lock class for alien array caches which are up during init. 687 * The lock annotation will be lost if all cpus of a node goes down and 688 * then comes back up during hotplug 689 */ 690 static struct lock_class_key on_slab_l3_key; 691 static struct lock_class_key on_slab_alc_key; 692 693 static inline void init_lock_keys(void) 694 695 { 696 int q; 697 struct cache_sizes *s = malloc_sizes; 698 699 while (s->cs_size != ULONG_MAX) { 700 for_each_node(q) { 701 struct array_cache **alc; 702 int r; 703 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q]; 704 if (!l3 || OFF_SLAB(s->cs_cachep)) 705 continue; 706 lockdep_set_class(&l3->list_lock, &on_slab_l3_key); 707 alc = l3->alien; 708 /* 709 * FIXME: This check for BAD_ALIEN_MAGIC 710 * should go away when common slab code is taught to 711 * work even without alien caches. 712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC 713 * for alloc_alien_cache, 714 */ 715 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) 716 continue; 717 for_each_node(r) { 718 if (alc[r]) 719 lockdep_set_class(&alc[r]->lock, 720 &on_slab_alc_key); 721 } 722 } 723 s++; 724 } 725 } 726 #else 727 static inline void init_lock_keys(void) 728 { 729 } 730 #endif 731 732 /* 733 * Guard access to the cache-chain. 734 */ 735 static DEFINE_MUTEX(cache_chain_mutex); 736 static struct list_head cache_chain; 737 738 /* 739 * chicken and egg problem: delay the per-cpu array allocation 740 * until the general caches are up. 741 */ 742 static enum { 743 NONE, 744 PARTIAL_AC, 745 PARTIAL_L3, 746 FULL 747 } g_cpucache_up; 748 749 /* 750 * used by boot code to determine if it can use slab based allocator 751 */ 752 int slab_is_available(void) 753 { 754 return g_cpucache_up == FULL; 755 } 756 757 static DEFINE_PER_CPU(struct delayed_work, reap_work); 758 759 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 760 { 761 return cachep->array[smp_processor_id()]; 762 } 763 764 static inline struct kmem_cache *__find_general_cachep(size_t size, 765 gfp_t gfpflags) 766 { 767 struct cache_sizes *csizep = malloc_sizes; 768 769 #if DEBUG 770 /* This happens if someone tries to call 771 * kmem_cache_create(), or __kmalloc(), before 772 * the generic caches are initialized. 773 */ 774 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); 775 #endif 776 if (!size) 777 return ZERO_SIZE_PTR; 778 779 while (size > csizep->cs_size) 780 csizep++; 781 782 /* 783 * Really subtle: The last entry with cs->cs_size==ULONG_MAX 784 * has cs_{dma,}cachep==NULL. Thus no special case 785 * for large kmalloc calls required. 786 */ 787 #ifdef CONFIG_ZONE_DMA 788 if (unlikely(gfpflags & GFP_DMA)) 789 return csizep->cs_dmacachep; 790 #endif 791 return csizep->cs_cachep; 792 } 793 794 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) 795 { 796 return __find_general_cachep(size, gfpflags); 797 } 798 799 static size_t slab_mgmt_size(size_t nr_objs, size_t align) 800 { 801 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); 802 } 803 804 /* 805 * Calculate the number of objects and left-over bytes for a given buffer size. 806 */ 807 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 808 size_t align, int flags, size_t *left_over, 809 unsigned int *num) 810 { 811 int nr_objs; 812 size_t mgmt_size; 813 size_t slab_size = PAGE_SIZE << gfporder; 814 815 /* 816 * The slab management structure can be either off the slab or 817 * on it. For the latter case, the memory allocated for a 818 * slab is used for: 819 * 820 * - The struct slab 821 * - One kmem_bufctl_t for each object 822 * - Padding to respect alignment of @align 823 * - @buffer_size bytes for each object 824 * 825 * If the slab management structure is off the slab, then the 826 * alignment will already be calculated into the size. Because 827 * the slabs are all pages aligned, the objects will be at the 828 * correct alignment when allocated. 829 */ 830 if (flags & CFLGS_OFF_SLAB) { 831 mgmt_size = 0; 832 nr_objs = slab_size / buffer_size; 833 834 if (nr_objs > SLAB_LIMIT) 835 nr_objs = SLAB_LIMIT; 836 } else { 837 /* 838 * Ignore padding for the initial guess. The padding 839 * is at most @align-1 bytes, and @buffer_size is at 840 * least @align. In the worst case, this result will 841 * be one greater than the number of objects that fit 842 * into the memory allocation when taking the padding 843 * into account. 844 */ 845 nr_objs = (slab_size - sizeof(struct slab)) / 846 (buffer_size + sizeof(kmem_bufctl_t)); 847 848 /* 849 * This calculated number will be either the right 850 * amount, or one greater than what we want. 851 */ 852 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size 853 > slab_size) 854 nr_objs--; 855 856 if (nr_objs > SLAB_LIMIT) 857 nr_objs = SLAB_LIMIT; 858 859 mgmt_size = slab_mgmt_size(nr_objs, align); 860 } 861 *num = nr_objs; 862 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 863 } 864 865 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 866 867 static void __slab_error(const char *function, struct kmem_cache *cachep, 868 char *msg) 869 { 870 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 871 function, cachep->name, msg); 872 dump_stack(); 873 } 874 875 /* 876 * By default on NUMA we use alien caches to stage the freeing of 877 * objects allocated from other nodes. This causes massive memory 878 * inefficiencies when using fake NUMA setup to split memory into a 879 * large number of small nodes, so it can be disabled on the command 880 * line 881 */ 882 883 static int use_alien_caches __read_mostly = 1; 884 static int numa_platform __read_mostly = 1; 885 static int __init noaliencache_setup(char *s) 886 { 887 use_alien_caches = 0; 888 return 1; 889 } 890 __setup("noaliencache", noaliencache_setup); 891 892 #ifdef CONFIG_NUMA 893 /* 894 * Special reaping functions for NUMA systems called from cache_reap(). 895 * These take care of doing round robin flushing of alien caches (containing 896 * objects freed on different nodes from which they were allocated) and the 897 * flushing of remote pcps by calling drain_node_pages. 898 */ 899 static DEFINE_PER_CPU(unsigned long, reap_node); 900 901 static void init_reap_node(int cpu) 902 { 903 int node; 904 905 node = next_node(cpu_to_node(cpu), node_online_map); 906 if (node == MAX_NUMNODES) 907 node = first_node(node_online_map); 908 909 per_cpu(reap_node, cpu) = node; 910 } 911 912 static void next_reap_node(void) 913 { 914 int node = __get_cpu_var(reap_node); 915 916 node = next_node(node, node_online_map); 917 if (unlikely(node >= MAX_NUMNODES)) 918 node = first_node(node_online_map); 919 __get_cpu_var(reap_node) = node; 920 } 921 922 #else 923 #define init_reap_node(cpu) do { } while (0) 924 #define next_reap_node(void) do { } while (0) 925 #endif 926 927 /* 928 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 929 * via the workqueue/eventd. 930 * Add the CPU number into the expiration time to minimize the possibility of 931 * the CPUs getting into lockstep and contending for the global cache chain 932 * lock. 933 */ 934 static void __cpuinit start_cpu_timer(int cpu) 935 { 936 struct delayed_work *reap_work = &per_cpu(reap_work, cpu); 937 938 /* 939 * When this gets called from do_initcalls via cpucache_init(), 940 * init_workqueues() has already run, so keventd will be setup 941 * at that time. 942 */ 943 if (keventd_up() && reap_work->work.func == NULL) { 944 init_reap_node(cpu); 945 INIT_DELAYED_WORK(reap_work, cache_reap); 946 schedule_delayed_work_on(cpu, reap_work, 947 __round_jiffies_relative(HZ, cpu)); 948 } 949 } 950 951 static struct array_cache *alloc_arraycache(int node, int entries, 952 int batchcount) 953 { 954 int memsize = sizeof(void *) * entries + sizeof(struct array_cache); 955 struct array_cache *nc = NULL; 956 957 nc = kmalloc_node(memsize, GFP_KERNEL, node); 958 if (nc) { 959 nc->avail = 0; 960 nc->limit = entries; 961 nc->batchcount = batchcount; 962 nc->touched = 0; 963 spin_lock_init(&nc->lock); 964 } 965 return nc; 966 } 967 968 /* 969 * Transfer objects in one arraycache to another. 970 * Locking must be handled by the caller. 971 * 972 * Return the number of entries transferred. 973 */ 974 static int transfer_objects(struct array_cache *to, 975 struct array_cache *from, unsigned int max) 976 { 977 /* Figure out how many entries to transfer */ 978 int nr = min(min(from->avail, max), to->limit - to->avail); 979 980 if (!nr) 981 return 0; 982 983 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 984 sizeof(void *) *nr); 985 986 from->avail -= nr; 987 to->avail += nr; 988 to->touched = 1; 989 return nr; 990 } 991 992 #ifndef CONFIG_NUMA 993 994 #define drain_alien_cache(cachep, alien) do { } while (0) 995 #define reap_alien(cachep, l3) do { } while (0) 996 997 static inline struct array_cache **alloc_alien_cache(int node, int limit) 998 { 999 return (struct array_cache **)BAD_ALIEN_MAGIC; 1000 } 1001 1002 static inline void free_alien_cache(struct array_cache **ac_ptr) 1003 { 1004 } 1005 1006 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1007 { 1008 return 0; 1009 } 1010 1011 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 1012 gfp_t flags) 1013 { 1014 return NULL; 1015 } 1016 1017 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 1018 gfp_t flags, int nodeid) 1019 { 1020 return NULL; 1021 } 1022 1023 #else /* CONFIG_NUMA */ 1024 1025 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 1026 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 1027 1028 static struct array_cache **alloc_alien_cache(int node, int limit) 1029 { 1030 struct array_cache **ac_ptr; 1031 int memsize = sizeof(void *) * nr_node_ids; 1032 int i; 1033 1034 if (limit > 1) 1035 limit = 12; 1036 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node); 1037 if (ac_ptr) { 1038 for_each_node(i) { 1039 if (i == node || !node_online(i)) { 1040 ac_ptr[i] = NULL; 1041 continue; 1042 } 1043 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); 1044 if (!ac_ptr[i]) { 1045 for (i--; i >= 0; i--) 1046 kfree(ac_ptr[i]); 1047 kfree(ac_ptr); 1048 return NULL; 1049 } 1050 } 1051 } 1052 return ac_ptr; 1053 } 1054 1055 static void free_alien_cache(struct array_cache **ac_ptr) 1056 { 1057 int i; 1058 1059 if (!ac_ptr) 1060 return; 1061 for_each_node(i) 1062 kfree(ac_ptr[i]); 1063 kfree(ac_ptr); 1064 } 1065 1066 static void __drain_alien_cache(struct kmem_cache *cachep, 1067 struct array_cache *ac, int node) 1068 { 1069 struct kmem_list3 *rl3 = cachep->nodelists[node]; 1070 1071 if (ac->avail) { 1072 spin_lock(&rl3->list_lock); 1073 /* 1074 * Stuff objects into the remote nodes shared array first. 1075 * That way we could avoid the overhead of putting the objects 1076 * into the free lists and getting them back later. 1077 */ 1078 if (rl3->shared) 1079 transfer_objects(rl3->shared, ac, ac->limit); 1080 1081 free_block(cachep, ac->entry, ac->avail, node); 1082 ac->avail = 0; 1083 spin_unlock(&rl3->list_lock); 1084 } 1085 } 1086 1087 /* 1088 * Called from cache_reap() to regularly drain alien caches round robin. 1089 */ 1090 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) 1091 { 1092 int node = __get_cpu_var(reap_node); 1093 1094 if (l3->alien) { 1095 struct array_cache *ac = l3->alien[node]; 1096 1097 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { 1098 __drain_alien_cache(cachep, ac, node); 1099 spin_unlock_irq(&ac->lock); 1100 } 1101 } 1102 } 1103 1104 static void drain_alien_cache(struct kmem_cache *cachep, 1105 struct array_cache **alien) 1106 { 1107 int i = 0; 1108 struct array_cache *ac; 1109 unsigned long flags; 1110 1111 for_each_online_node(i) { 1112 ac = alien[i]; 1113 if (ac) { 1114 spin_lock_irqsave(&ac->lock, flags); 1115 __drain_alien_cache(cachep, ac, i); 1116 spin_unlock_irqrestore(&ac->lock, flags); 1117 } 1118 } 1119 } 1120 1121 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1122 { 1123 struct slab *slabp = virt_to_slab(objp); 1124 int nodeid = slabp->nodeid; 1125 struct kmem_list3 *l3; 1126 struct array_cache *alien = NULL; 1127 int node; 1128 1129 node = numa_node_id(); 1130 1131 /* 1132 * Make sure we are not freeing a object from another node to the array 1133 * cache on this cpu. 1134 */ 1135 if (likely(slabp->nodeid == node)) 1136 return 0; 1137 1138 l3 = cachep->nodelists[node]; 1139 STATS_INC_NODEFREES(cachep); 1140 if (l3->alien && l3->alien[nodeid]) { 1141 alien = l3->alien[nodeid]; 1142 spin_lock(&alien->lock); 1143 if (unlikely(alien->avail == alien->limit)) { 1144 STATS_INC_ACOVERFLOW(cachep); 1145 __drain_alien_cache(cachep, alien, nodeid); 1146 } 1147 alien->entry[alien->avail++] = objp; 1148 spin_unlock(&alien->lock); 1149 } else { 1150 spin_lock(&(cachep->nodelists[nodeid])->list_lock); 1151 free_block(cachep, &objp, 1, nodeid); 1152 spin_unlock(&(cachep->nodelists[nodeid])->list_lock); 1153 } 1154 return 1; 1155 } 1156 #endif 1157 1158 static void __cpuinit cpuup_canceled(long cpu) 1159 { 1160 struct kmem_cache *cachep; 1161 struct kmem_list3 *l3 = NULL; 1162 int node = cpu_to_node(cpu); 1163 node_to_cpumask_ptr(mask, node); 1164 1165 list_for_each_entry(cachep, &cache_chain, next) { 1166 struct array_cache *nc; 1167 struct array_cache *shared; 1168 struct array_cache **alien; 1169 1170 /* cpu is dead; no one can alloc from it. */ 1171 nc = cachep->array[cpu]; 1172 cachep->array[cpu] = NULL; 1173 l3 = cachep->nodelists[node]; 1174 1175 if (!l3) 1176 goto free_array_cache; 1177 1178 spin_lock_irq(&l3->list_lock); 1179 1180 /* Free limit for this kmem_list3 */ 1181 l3->free_limit -= cachep->batchcount; 1182 if (nc) 1183 free_block(cachep, nc->entry, nc->avail, node); 1184 1185 if (!cpus_empty(*mask)) { 1186 spin_unlock_irq(&l3->list_lock); 1187 goto free_array_cache; 1188 } 1189 1190 shared = l3->shared; 1191 if (shared) { 1192 free_block(cachep, shared->entry, 1193 shared->avail, node); 1194 l3->shared = NULL; 1195 } 1196 1197 alien = l3->alien; 1198 l3->alien = NULL; 1199 1200 spin_unlock_irq(&l3->list_lock); 1201 1202 kfree(shared); 1203 if (alien) { 1204 drain_alien_cache(cachep, alien); 1205 free_alien_cache(alien); 1206 } 1207 free_array_cache: 1208 kfree(nc); 1209 } 1210 /* 1211 * In the previous loop, all the objects were freed to 1212 * the respective cache's slabs, now we can go ahead and 1213 * shrink each nodelist to its limit. 1214 */ 1215 list_for_each_entry(cachep, &cache_chain, next) { 1216 l3 = cachep->nodelists[node]; 1217 if (!l3) 1218 continue; 1219 drain_freelist(cachep, l3, l3->free_objects); 1220 } 1221 } 1222 1223 static int __cpuinit cpuup_prepare(long cpu) 1224 { 1225 struct kmem_cache *cachep; 1226 struct kmem_list3 *l3 = NULL; 1227 int node = cpu_to_node(cpu); 1228 const int memsize = sizeof(struct kmem_list3); 1229 1230 /* 1231 * We need to do this right in the beginning since 1232 * alloc_arraycache's are going to use this list. 1233 * kmalloc_node allows us to add the slab to the right 1234 * kmem_list3 and not this cpu's kmem_list3 1235 */ 1236 1237 list_for_each_entry(cachep, &cache_chain, next) { 1238 /* 1239 * Set up the size64 kmemlist for cpu before we can 1240 * begin anything. Make sure some other cpu on this 1241 * node has not already allocated this 1242 */ 1243 if (!cachep->nodelists[node]) { 1244 l3 = kmalloc_node(memsize, GFP_KERNEL, node); 1245 if (!l3) 1246 goto bad; 1247 kmem_list3_init(l3); 1248 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 1249 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1250 1251 /* 1252 * The l3s don't come and go as CPUs come and 1253 * go. cache_chain_mutex is sufficient 1254 * protection here. 1255 */ 1256 cachep->nodelists[node] = l3; 1257 } 1258 1259 spin_lock_irq(&cachep->nodelists[node]->list_lock); 1260 cachep->nodelists[node]->free_limit = 1261 (1 + nr_cpus_node(node)) * 1262 cachep->batchcount + cachep->num; 1263 spin_unlock_irq(&cachep->nodelists[node]->list_lock); 1264 } 1265 1266 /* 1267 * Now we can go ahead with allocating the shared arrays and 1268 * array caches 1269 */ 1270 list_for_each_entry(cachep, &cache_chain, next) { 1271 struct array_cache *nc; 1272 struct array_cache *shared = NULL; 1273 struct array_cache **alien = NULL; 1274 1275 nc = alloc_arraycache(node, cachep->limit, 1276 cachep->batchcount); 1277 if (!nc) 1278 goto bad; 1279 if (cachep->shared) { 1280 shared = alloc_arraycache(node, 1281 cachep->shared * cachep->batchcount, 1282 0xbaadf00d); 1283 if (!shared) { 1284 kfree(nc); 1285 goto bad; 1286 } 1287 } 1288 if (use_alien_caches) { 1289 alien = alloc_alien_cache(node, cachep->limit); 1290 if (!alien) { 1291 kfree(shared); 1292 kfree(nc); 1293 goto bad; 1294 } 1295 } 1296 cachep->array[cpu] = nc; 1297 l3 = cachep->nodelists[node]; 1298 BUG_ON(!l3); 1299 1300 spin_lock_irq(&l3->list_lock); 1301 if (!l3->shared) { 1302 /* 1303 * We are serialised from CPU_DEAD or 1304 * CPU_UP_CANCELLED by the cpucontrol lock 1305 */ 1306 l3->shared = shared; 1307 shared = NULL; 1308 } 1309 #ifdef CONFIG_NUMA 1310 if (!l3->alien) { 1311 l3->alien = alien; 1312 alien = NULL; 1313 } 1314 #endif 1315 spin_unlock_irq(&l3->list_lock); 1316 kfree(shared); 1317 free_alien_cache(alien); 1318 } 1319 return 0; 1320 bad: 1321 cpuup_canceled(cpu); 1322 return -ENOMEM; 1323 } 1324 1325 static int __cpuinit cpuup_callback(struct notifier_block *nfb, 1326 unsigned long action, void *hcpu) 1327 { 1328 long cpu = (long)hcpu; 1329 int err = 0; 1330 1331 switch (action) { 1332 case CPU_UP_PREPARE: 1333 case CPU_UP_PREPARE_FROZEN: 1334 mutex_lock(&cache_chain_mutex); 1335 err = cpuup_prepare(cpu); 1336 mutex_unlock(&cache_chain_mutex); 1337 break; 1338 case CPU_ONLINE: 1339 case CPU_ONLINE_FROZEN: 1340 start_cpu_timer(cpu); 1341 break; 1342 #ifdef CONFIG_HOTPLUG_CPU 1343 case CPU_DOWN_PREPARE: 1344 case CPU_DOWN_PREPARE_FROZEN: 1345 /* 1346 * Shutdown cache reaper. Note that the cache_chain_mutex is 1347 * held so that if cache_reap() is invoked it cannot do 1348 * anything expensive but will only modify reap_work 1349 * and reschedule the timer. 1350 */ 1351 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu)); 1352 /* Now the cache_reaper is guaranteed to be not running. */ 1353 per_cpu(reap_work, cpu).work.func = NULL; 1354 break; 1355 case CPU_DOWN_FAILED: 1356 case CPU_DOWN_FAILED_FROZEN: 1357 start_cpu_timer(cpu); 1358 break; 1359 case CPU_DEAD: 1360 case CPU_DEAD_FROZEN: 1361 /* 1362 * Even if all the cpus of a node are down, we don't free the 1363 * kmem_list3 of any cache. This to avoid a race between 1364 * cpu_down, and a kmalloc allocation from another cpu for 1365 * memory from the node of the cpu going down. The list3 1366 * structure is usually allocated from kmem_cache_create() and 1367 * gets destroyed at kmem_cache_destroy(). 1368 */ 1369 /* fall through */ 1370 #endif 1371 case CPU_UP_CANCELED: 1372 case CPU_UP_CANCELED_FROZEN: 1373 mutex_lock(&cache_chain_mutex); 1374 cpuup_canceled(cpu); 1375 mutex_unlock(&cache_chain_mutex); 1376 break; 1377 } 1378 return err ? NOTIFY_BAD : NOTIFY_OK; 1379 } 1380 1381 static struct notifier_block __cpuinitdata cpucache_notifier = { 1382 &cpuup_callback, NULL, 0 1383 }; 1384 1385 /* 1386 * swap the static kmem_list3 with kmalloced memory 1387 */ 1388 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, 1389 int nodeid) 1390 { 1391 struct kmem_list3 *ptr; 1392 1393 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid); 1394 BUG_ON(!ptr); 1395 1396 local_irq_disable(); 1397 memcpy(ptr, list, sizeof(struct kmem_list3)); 1398 /* 1399 * Do not assume that spinlocks can be initialized via memcpy: 1400 */ 1401 spin_lock_init(&ptr->list_lock); 1402 1403 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1404 cachep->nodelists[nodeid] = ptr; 1405 local_irq_enable(); 1406 } 1407 1408 /* 1409 * For setting up all the kmem_list3s for cache whose buffer_size is same as 1410 * size of kmem_list3. 1411 */ 1412 static void __init set_up_list3s(struct kmem_cache *cachep, int index) 1413 { 1414 int node; 1415 1416 for_each_online_node(node) { 1417 cachep->nodelists[node] = &initkmem_list3[index + node]; 1418 cachep->nodelists[node]->next_reap = jiffies + 1419 REAPTIMEOUT_LIST3 + 1420 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1421 } 1422 } 1423 1424 /* 1425 * Initialisation. Called after the page allocator have been initialised and 1426 * before smp_init(). 1427 */ 1428 void __init kmem_cache_init(void) 1429 { 1430 size_t left_over; 1431 struct cache_sizes *sizes; 1432 struct cache_names *names; 1433 int i; 1434 int order; 1435 int node; 1436 1437 if (num_possible_nodes() == 1) { 1438 use_alien_caches = 0; 1439 numa_platform = 0; 1440 } 1441 1442 for (i = 0; i < NUM_INIT_LISTS; i++) { 1443 kmem_list3_init(&initkmem_list3[i]); 1444 if (i < MAX_NUMNODES) 1445 cache_cache.nodelists[i] = NULL; 1446 } 1447 set_up_list3s(&cache_cache, CACHE_CACHE); 1448 1449 /* 1450 * Fragmentation resistance on low memory - only use bigger 1451 * page orders on machines with more than 32MB of memory. 1452 */ 1453 if (num_physpages > (32 << 20) >> PAGE_SHIFT) 1454 slab_break_gfp_order = BREAK_GFP_ORDER_HI; 1455 1456 /* Bootstrap is tricky, because several objects are allocated 1457 * from caches that do not exist yet: 1458 * 1) initialize the cache_cache cache: it contains the struct 1459 * kmem_cache structures of all caches, except cache_cache itself: 1460 * cache_cache is statically allocated. 1461 * Initially an __init data area is used for the head array and the 1462 * kmem_list3 structures, it's replaced with a kmalloc allocated 1463 * array at the end of the bootstrap. 1464 * 2) Create the first kmalloc cache. 1465 * The struct kmem_cache for the new cache is allocated normally. 1466 * An __init data area is used for the head array. 1467 * 3) Create the remaining kmalloc caches, with minimally sized 1468 * head arrays. 1469 * 4) Replace the __init data head arrays for cache_cache and the first 1470 * kmalloc cache with kmalloc allocated arrays. 1471 * 5) Replace the __init data for kmem_list3 for cache_cache and 1472 * the other cache's with kmalloc allocated memory. 1473 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1474 */ 1475 1476 node = numa_node_id(); 1477 1478 /* 1) create the cache_cache */ 1479 INIT_LIST_HEAD(&cache_chain); 1480 list_add(&cache_cache.next, &cache_chain); 1481 cache_cache.colour_off = cache_line_size(); 1482 cache_cache.array[smp_processor_id()] = &initarray_cache.cache; 1483 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; 1484 1485 /* 1486 * struct kmem_cache size depends on nr_node_ids, which 1487 * can be less than MAX_NUMNODES. 1488 */ 1489 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) + 1490 nr_node_ids * sizeof(struct kmem_list3 *); 1491 #if DEBUG 1492 cache_cache.obj_size = cache_cache.buffer_size; 1493 #endif 1494 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, 1495 cache_line_size()); 1496 cache_cache.reciprocal_buffer_size = 1497 reciprocal_value(cache_cache.buffer_size); 1498 1499 for (order = 0; order < MAX_ORDER; order++) { 1500 cache_estimate(order, cache_cache.buffer_size, 1501 cache_line_size(), 0, &left_over, &cache_cache.num); 1502 if (cache_cache.num) 1503 break; 1504 } 1505 BUG_ON(!cache_cache.num); 1506 cache_cache.gfporder = order; 1507 cache_cache.colour = left_over / cache_cache.colour_off; 1508 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + 1509 sizeof(struct slab), cache_line_size()); 1510 1511 /* 2+3) create the kmalloc caches */ 1512 sizes = malloc_sizes; 1513 names = cache_names; 1514 1515 /* 1516 * Initialize the caches that provide memory for the array cache and the 1517 * kmem_list3 structures first. Without this, further allocations will 1518 * bug. 1519 */ 1520 1521 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, 1522 sizes[INDEX_AC].cs_size, 1523 ARCH_KMALLOC_MINALIGN, 1524 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1525 NULL); 1526 1527 if (INDEX_AC != INDEX_L3) { 1528 sizes[INDEX_L3].cs_cachep = 1529 kmem_cache_create(names[INDEX_L3].name, 1530 sizes[INDEX_L3].cs_size, 1531 ARCH_KMALLOC_MINALIGN, 1532 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1533 NULL); 1534 } 1535 1536 slab_early_init = 0; 1537 1538 while (sizes->cs_size != ULONG_MAX) { 1539 /* 1540 * For performance, all the general caches are L1 aligned. 1541 * This should be particularly beneficial on SMP boxes, as it 1542 * eliminates "false sharing". 1543 * Note for systems short on memory removing the alignment will 1544 * allow tighter packing of the smaller caches. 1545 */ 1546 if (!sizes->cs_cachep) { 1547 sizes->cs_cachep = kmem_cache_create(names->name, 1548 sizes->cs_size, 1549 ARCH_KMALLOC_MINALIGN, 1550 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1551 NULL); 1552 } 1553 #ifdef CONFIG_ZONE_DMA 1554 sizes->cs_dmacachep = kmem_cache_create( 1555 names->name_dma, 1556 sizes->cs_size, 1557 ARCH_KMALLOC_MINALIGN, 1558 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| 1559 SLAB_PANIC, 1560 NULL); 1561 #endif 1562 sizes++; 1563 names++; 1564 } 1565 /* 4) Replace the bootstrap head arrays */ 1566 { 1567 struct array_cache *ptr; 1568 1569 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 1570 1571 local_irq_disable(); 1572 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); 1573 memcpy(ptr, cpu_cache_get(&cache_cache), 1574 sizeof(struct arraycache_init)); 1575 /* 1576 * Do not assume that spinlocks can be initialized via memcpy: 1577 */ 1578 spin_lock_init(&ptr->lock); 1579 1580 cache_cache.array[smp_processor_id()] = ptr; 1581 local_irq_enable(); 1582 1583 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 1584 1585 local_irq_disable(); 1586 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) 1587 != &initarray_generic.cache); 1588 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), 1589 sizeof(struct arraycache_init)); 1590 /* 1591 * Do not assume that spinlocks can be initialized via memcpy: 1592 */ 1593 spin_lock_init(&ptr->lock); 1594 1595 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = 1596 ptr; 1597 local_irq_enable(); 1598 } 1599 /* 5) Replace the bootstrap kmem_list3's */ 1600 { 1601 int nid; 1602 1603 for_each_online_node(nid) { 1604 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); 1605 1606 init_list(malloc_sizes[INDEX_AC].cs_cachep, 1607 &initkmem_list3[SIZE_AC + nid], nid); 1608 1609 if (INDEX_AC != INDEX_L3) { 1610 init_list(malloc_sizes[INDEX_L3].cs_cachep, 1611 &initkmem_list3[SIZE_L3 + nid], nid); 1612 } 1613 } 1614 } 1615 1616 /* 6) resize the head arrays to their final sizes */ 1617 { 1618 struct kmem_cache *cachep; 1619 mutex_lock(&cache_chain_mutex); 1620 list_for_each_entry(cachep, &cache_chain, next) 1621 if (enable_cpucache(cachep)) 1622 BUG(); 1623 mutex_unlock(&cache_chain_mutex); 1624 } 1625 1626 /* Annotate slab for lockdep -- annotate the malloc caches */ 1627 init_lock_keys(); 1628 1629 1630 /* Done! */ 1631 g_cpucache_up = FULL; 1632 1633 /* 1634 * Register a cpu startup notifier callback that initializes 1635 * cpu_cache_get for all new cpus 1636 */ 1637 register_cpu_notifier(&cpucache_notifier); 1638 1639 /* 1640 * The reap timers are started later, with a module init call: That part 1641 * of the kernel is not yet operational. 1642 */ 1643 } 1644 1645 static int __init cpucache_init(void) 1646 { 1647 int cpu; 1648 1649 /* 1650 * Register the timers that return unneeded pages to the page allocator 1651 */ 1652 for_each_online_cpu(cpu) 1653 start_cpu_timer(cpu); 1654 return 0; 1655 } 1656 __initcall(cpucache_init); 1657 1658 /* 1659 * Interface to system's page allocator. No need to hold the cache-lock. 1660 * 1661 * If we requested dmaable memory, we will get it. Even if we 1662 * did not request dmaable memory, we might get it, but that 1663 * would be relatively rare and ignorable. 1664 */ 1665 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) 1666 { 1667 struct page *page; 1668 int nr_pages; 1669 int i; 1670 1671 #ifndef CONFIG_MMU 1672 /* 1673 * Nommu uses slab's for process anonymous memory allocations, and thus 1674 * requires __GFP_COMP to properly refcount higher order allocations 1675 */ 1676 flags |= __GFP_COMP; 1677 #endif 1678 1679 flags |= cachep->gfpflags; 1680 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1681 flags |= __GFP_RECLAIMABLE; 1682 1683 page = alloc_pages_node(nodeid, flags, cachep->gfporder); 1684 if (!page) 1685 return NULL; 1686 1687 nr_pages = (1 << cachep->gfporder); 1688 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1689 add_zone_page_state(page_zone(page), 1690 NR_SLAB_RECLAIMABLE, nr_pages); 1691 else 1692 add_zone_page_state(page_zone(page), 1693 NR_SLAB_UNRECLAIMABLE, nr_pages); 1694 for (i = 0; i < nr_pages; i++) 1695 __SetPageSlab(page + i); 1696 return page_address(page); 1697 } 1698 1699 /* 1700 * Interface to system's page release. 1701 */ 1702 static void kmem_freepages(struct kmem_cache *cachep, void *addr) 1703 { 1704 unsigned long i = (1 << cachep->gfporder); 1705 struct page *page = virt_to_page(addr); 1706 const unsigned long nr_freed = i; 1707 1708 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1709 sub_zone_page_state(page_zone(page), 1710 NR_SLAB_RECLAIMABLE, nr_freed); 1711 else 1712 sub_zone_page_state(page_zone(page), 1713 NR_SLAB_UNRECLAIMABLE, nr_freed); 1714 while (i--) { 1715 BUG_ON(!PageSlab(page)); 1716 __ClearPageSlab(page); 1717 page++; 1718 } 1719 if (current->reclaim_state) 1720 current->reclaim_state->reclaimed_slab += nr_freed; 1721 free_pages((unsigned long)addr, cachep->gfporder); 1722 } 1723 1724 static void kmem_rcu_free(struct rcu_head *head) 1725 { 1726 struct slab_rcu *slab_rcu = (struct slab_rcu *)head; 1727 struct kmem_cache *cachep = slab_rcu->cachep; 1728 1729 kmem_freepages(cachep, slab_rcu->addr); 1730 if (OFF_SLAB(cachep)) 1731 kmem_cache_free(cachep->slabp_cache, slab_rcu); 1732 } 1733 1734 #if DEBUG 1735 1736 #ifdef CONFIG_DEBUG_PAGEALLOC 1737 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1738 unsigned long caller) 1739 { 1740 int size = obj_size(cachep); 1741 1742 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1743 1744 if (size < 5 * sizeof(unsigned long)) 1745 return; 1746 1747 *addr++ = 0x12345678; 1748 *addr++ = caller; 1749 *addr++ = smp_processor_id(); 1750 size -= 3 * sizeof(unsigned long); 1751 { 1752 unsigned long *sptr = &caller; 1753 unsigned long svalue; 1754 1755 while (!kstack_end(sptr)) { 1756 svalue = *sptr++; 1757 if (kernel_text_address(svalue)) { 1758 *addr++ = svalue; 1759 size -= sizeof(unsigned long); 1760 if (size <= sizeof(unsigned long)) 1761 break; 1762 } 1763 } 1764 1765 } 1766 *addr++ = 0x87654321; 1767 } 1768 #endif 1769 1770 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1771 { 1772 int size = obj_size(cachep); 1773 addr = &((char *)addr)[obj_offset(cachep)]; 1774 1775 memset(addr, val, size); 1776 *(unsigned char *)(addr + size - 1) = POISON_END; 1777 } 1778 1779 static void dump_line(char *data, int offset, int limit) 1780 { 1781 int i; 1782 unsigned char error = 0; 1783 int bad_count = 0; 1784 1785 printk(KERN_ERR "%03x:", offset); 1786 for (i = 0; i < limit; i++) { 1787 if (data[offset + i] != POISON_FREE) { 1788 error = data[offset + i]; 1789 bad_count++; 1790 } 1791 printk(" %02x", (unsigned char)data[offset + i]); 1792 } 1793 printk("\n"); 1794 1795 if (bad_count == 1) { 1796 error ^= POISON_FREE; 1797 if (!(error & (error - 1))) { 1798 printk(KERN_ERR "Single bit error detected. Probably " 1799 "bad RAM.\n"); 1800 #ifdef CONFIG_X86 1801 printk(KERN_ERR "Run memtest86+ or a similar memory " 1802 "test tool.\n"); 1803 #else 1804 printk(KERN_ERR "Run a memory test tool.\n"); 1805 #endif 1806 } 1807 } 1808 } 1809 #endif 1810 1811 #if DEBUG 1812 1813 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1814 { 1815 int i, size; 1816 char *realobj; 1817 1818 if (cachep->flags & SLAB_RED_ZONE) { 1819 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 1820 *dbg_redzone1(cachep, objp), 1821 *dbg_redzone2(cachep, objp)); 1822 } 1823 1824 if (cachep->flags & SLAB_STORE_USER) { 1825 printk(KERN_ERR "Last user: [<%p>]", 1826 *dbg_userword(cachep, objp)); 1827 print_symbol("(%s)", 1828 (unsigned long)*dbg_userword(cachep, objp)); 1829 printk("\n"); 1830 } 1831 realobj = (char *)objp + obj_offset(cachep); 1832 size = obj_size(cachep); 1833 for (i = 0; i < size && lines; i += 16, lines--) { 1834 int limit; 1835 limit = 16; 1836 if (i + limit > size) 1837 limit = size - i; 1838 dump_line(realobj, i, limit); 1839 } 1840 } 1841 1842 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1843 { 1844 char *realobj; 1845 int size, i; 1846 int lines = 0; 1847 1848 realobj = (char *)objp + obj_offset(cachep); 1849 size = obj_size(cachep); 1850 1851 for (i = 0; i < size; i++) { 1852 char exp = POISON_FREE; 1853 if (i == size - 1) 1854 exp = POISON_END; 1855 if (realobj[i] != exp) { 1856 int limit; 1857 /* Mismatch ! */ 1858 /* Print header */ 1859 if (lines == 0) { 1860 printk(KERN_ERR 1861 "Slab corruption: %s start=%p, len=%d\n", 1862 cachep->name, realobj, size); 1863 print_objinfo(cachep, objp, 0); 1864 } 1865 /* Hexdump the affected line */ 1866 i = (i / 16) * 16; 1867 limit = 16; 1868 if (i + limit > size) 1869 limit = size - i; 1870 dump_line(realobj, i, limit); 1871 i += 16; 1872 lines++; 1873 /* Limit to 5 lines */ 1874 if (lines > 5) 1875 break; 1876 } 1877 } 1878 if (lines != 0) { 1879 /* Print some data about the neighboring objects, if they 1880 * exist: 1881 */ 1882 struct slab *slabp = virt_to_slab(objp); 1883 unsigned int objnr; 1884 1885 objnr = obj_to_index(cachep, slabp, objp); 1886 if (objnr) { 1887 objp = index_to_obj(cachep, slabp, objnr - 1); 1888 realobj = (char *)objp + obj_offset(cachep); 1889 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1890 realobj, size); 1891 print_objinfo(cachep, objp, 2); 1892 } 1893 if (objnr + 1 < cachep->num) { 1894 objp = index_to_obj(cachep, slabp, objnr + 1); 1895 realobj = (char *)objp + obj_offset(cachep); 1896 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1897 realobj, size); 1898 print_objinfo(cachep, objp, 2); 1899 } 1900 } 1901 } 1902 #endif 1903 1904 #if DEBUG 1905 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 1906 { 1907 int i; 1908 for (i = 0; i < cachep->num; i++) { 1909 void *objp = index_to_obj(cachep, slabp, i); 1910 1911 if (cachep->flags & SLAB_POISON) { 1912 #ifdef CONFIG_DEBUG_PAGEALLOC 1913 if (cachep->buffer_size % PAGE_SIZE == 0 && 1914 OFF_SLAB(cachep)) 1915 kernel_map_pages(virt_to_page(objp), 1916 cachep->buffer_size / PAGE_SIZE, 1); 1917 else 1918 check_poison_obj(cachep, objp); 1919 #else 1920 check_poison_obj(cachep, objp); 1921 #endif 1922 } 1923 if (cachep->flags & SLAB_RED_ZONE) { 1924 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1925 slab_error(cachep, "start of a freed object " 1926 "was overwritten"); 1927 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1928 slab_error(cachep, "end of a freed object " 1929 "was overwritten"); 1930 } 1931 } 1932 } 1933 #else 1934 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 1935 { 1936 } 1937 #endif 1938 1939 /** 1940 * slab_destroy - destroy and release all objects in a slab 1941 * @cachep: cache pointer being destroyed 1942 * @slabp: slab pointer being destroyed 1943 * 1944 * Destroy all the objs in a slab, and release the mem back to the system. 1945 * Before calling the slab must have been unlinked from the cache. The 1946 * cache-lock is not held/needed. 1947 */ 1948 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) 1949 { 1950 void *addr = slabp->s_mem - slabp->colouroff; 1951 1952 slab_destroy_debugcheck(cachep, slabp); 1953 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 1954 struct slab_rcu *slab_rcu; 1955 1956 slab_rcu = (struct slab_rcu *)slabp; 1957 slab_rcu->cachep = cachep; 1958 slab_rcu->addr = addr; 1959 call_rcu(&slab_rcu->head, kmem_rcu_free); 1960 } else { 1961 kmem_freepages(cachep, addr); 1962 if (OFF_SLAB(cachep)) 1963 kmem_cache_free(cachep->slabp_cache, slabp); 1964 } 1965 } 1966 1967 static void __kmem_cache_destroy(struct kmem_cache *cachep) 1968 { 1969 int i; 1970 struct kmem_list3 *l3; 1971 1972 for_each_online_cpu(i) 1973 kfree(cachep->array[i]); 1974 1975 /* NUMA: free the list3 structures */ 1976 for_each_online_node(i) { 1977 l3 = cachep->nodelists[i]; 1978 if (l3) { 1979 kfree(l3->shared); 1980 free_alien_cache(l3->alien); 1981 kfree(l3); 1982 } 1983 } 1984 kmem_cache_free(&cache_cache, cachep); 1985 } 1986 1987 1988 /** 1989 * calculate_slab_order - calculate size (page order) of slabs 1990 * @cachep: pointer to the cache that is being created 1991 * @size: size of objects to be created in this cache. 1992 * @align: required alignment for the objects. 1993 * @flags: slab allocation flags 1994 * 1995 * Also calculates the number of objects per slab. 1996 * 1997 * This could be made much more intelligent. For now, try to avoid using 1998 * high order pages for slabs. When the gfp() functions are more friendly 1999 * towards high-order requests, this should be changed. 2000 */ 2001 static size_t calculate_slab_order(struct kmem_cache *cachep, 2002 size_t size, size_t align, unsigned long flags) 2003 { 2004 unsigned long offslab_limit; 2005 size_t left_over = 0; 2006 int gfporder; 2007 2008 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 2009 unsigned int num; 2010 size_t remainder; 2011 2012 cache_estimate(gfporder, size, align, flags, &remainder, &num); 2013 if (!num) 2014 continue; 2015 2016 if (flags & CFLGS_OFF_SLAB) { 2017 /* 2018 * Max number of objs-per-slab for caches which 2019 * use off-slab slabs. Needed to avoid a possible 2020 * looping condition in cache_grow(). 2021 */ 2022 offslab_limit = size - sizeof(struct slab); 2023 offslab_limit /= sizeof(kmem_bufctl_t); 2024 2025 if (num > offslab_limit) 2026 break; 2027 } 2028 2029 /* Found something acceptable - save it away */ 2030 cachep->num = num; 2031 cachep->gfporder = gfporder; 2032 left_over = remainder; 2033 2034 /* 2035 * A VFS-reclaimable slab tends to have most allocations 2036 * as GFP_NOFS and we really don't want to have to be allocating 2037 * higher-order pages when we are unable to shrink dcache. 2038 */ 2039 if (flags & SLAB_RECLAIM_ACCOUNT) 2040 break; 2041 2042 /* 2043 * Large number of objects is good, but very large slabs are 2044 * currently bad for the gfp()s. 2045 */ 2046 if (gfporder >= slab_break_gfp_order) 2047 break; 2048 2049 /* 2050 * Acceptable internal fragmentation? 2051 */ 2052 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 2053 break; 2054 } 2055 return left_over; 2056 } 2057 2058 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep) 2059 { 2060 if (g_cpucache_up == FULL) 2061 return enable_cpucache(cachep); 2062 2063 if (g_cpucache_up == NONE) { 2064 /* 2065 * Note: the first kmem_cache_create must create the cache 2066 * that's used by kmalloc(24), otherwise the creation of 2067 * further caches will BUG(). 2068 */ 2069 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2070 2071 /* 2072 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is 2073 * the first cache, then we need to set up all its list3s, 2074 * otherwise the creation of further caches will BUG(). 2075 */ 2076 set_up_list3s(cachep, SIZE_AC); 2077 if (INDEX_AC == INDEX_L3) 2078 g_cpucache_up = PARTIAL_L3; 2079 else 2080 g_cpucache_up = PARTIAL_AC; 2081 } else { 2082 cachep->array[smp_processor_id()] = 2083 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 2084 2085 if (g_cpucache_up == PARTIAL_AC) { 2086 set_up_list3s(cachep, SIZE_L3); 2087 g_cpucache_up = PARTIAL_L3; 2088 } else { 2089 int node; 2090 for_each_online_node(node) { 2091 cachep->nodelists[node] = 2092 kmalloc_node(sizeof(struct kmem_list3), 2093 GFP_KERNEL, node); 2094 BUG_ON(!cachep->nodelists[node]); 2095 kmem_list3_init(cachep->nodelists[node]); 2096 } 2097 } 2098 } 2099 cachep->nodelists[numa_node_id()]->next_reap = 2100 jiffies + REAPTIMEOUT_LIST3 + 2101 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 2102 2103 cpu_cache_get(cachep)->avail = 0; 2104 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2105 cpu_cache_get(cachep)->batchcount = 1; 2106 cpu_cache_get(cachep)->touched = 0; 2107 cachep->batchcount = 1; 2108 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2109 return 0; 2110 } 2111 2112 /** 2113 * kmem_cache_create - Create a cache. 2114 * @name: A string which is used in /proc/slabinfo to identify this cache. 2115 * @size: The size of objects to be created in this cache. 2116 * @align: The required alignment for the objects. 2117 * @flags: SLAB flags 2118 * @ctor: A constructor for the objects. 2119 * 2120 * Returns a ptr to the cache on success, NULL on failure. 2121 * Cannot be called within a int, but can be interrupted. 2122 * The @ctor is run when new pages are allocated by the cache. 2123 * 2124 * @name must be valid until the cache is destroyed. This implies that 2125 * the module calling this has to destroy the cache before getting unloaded. 2126 * Note that kmem_cache_name() is not guaranteed to return the same pointer, 2127 * therefore applications must manage it themselves. 2128 * 2129 * The flags are 2130 * 2131 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2132 * to catch references to uninitialised memory. 2133 * 2134 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2135 * for buffer overruns. 2136 * 2137 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2138 * cacheline. This can be beneficial if you're counting cycles as closely 2139 * as davem. 2140 */ 2141 struct kmem_cache * 2142 kmem_cache_create (const char *name, size_t size, size_t align, 2143 unsigned long flags, void (*ctor)(void *)) 2144 { 2145 size_t left_over, slab_size, ralign; 2146 struct kmem_cache *cachep = NULL, *pc; 2147 2148 /* 2149 * Sanity checks... these are all serious usage bugs. 2150 */ 2151 if (!name || in_interrupt() || (size < BYTES_PER_WORD) || 2152 size > KMALLOC_MAX_SIZE) { 2153 printk(KERN_ERR "%s: Early error in slab %s\n", __func__, 2154 name); 2155 BUG(); 2156 } 2157 2158 /* 2159 * We use cache_chain_mutex to ensure a consistent view of 2160 * cpu_online_mask as well. Please see cpuup_callback 2161 */ 2162 get_online_cpus(); 2163 mutex_lock(&cache_chain_mutex); 2164 2165 list_for_each_entry(pc, &cache_chain, next) { 2166 char tmp; 2167 int res; 2168 2169 /* 2170 * This happens when the module gets unloaded and doesn't 2171 * destroy its slab cache and no-one else reuses the vmalloc 2172 * area of the module. Print a warning. 2173 */ 2174 res = probe_kernel_address(pc->name, tmp); 2175 if (res) { 2176 printk(KERN_ERR 2177 "SLAB: cache with size %d has lost its name\n", 2178 pc->buffer_size); 2179 continue; 2180 } 2181 2182 if (!strcmp(pc->name, name)) { 2183 printk(KERN_ERR 2184 "kmem_cache_create: duplicate cache %s\n", name); 2185 dump_stack(); 2186 goto oops; 2187 } 2188 } 2189 2190 #if DEBUG 2191 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 2192 #if FORCED_DEBUG 2193 /* 2194 * Enable redzoning and last user accounting, except for caches with 2195 * large objects, if the increased size would increase the object size 2196 * above the next power of two: caches with object sizes just above a 2197 * power of two have a significant amount of internal fragmentation. 2198 */ 2199 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2200 2 * sizeof(unsigned long long))) 2201 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2202 if (!(flags & SLAB_DESTROY_BY_RCU)) 2203 flags |= SLAB_POISON; 2204 #endif 2205 if (flags & SLAB_DESTROY_BY_RCU) 2206 BUG_ON(flags & SLAB_POISON); 2207 #endif 2208 /* 2209 * Always checks flags, a caller might be expecting debug support which 2210 * isn't available. 2211 */ 2212 BUG_ON(flags & ~CREATE_MASK); 2213 2214 /* 2215 * Check that size is in terms of words. This is needed to avoid 2216 * unaligned accesses for some archs when redzoning is used, and makes 2217 * sure any on-slab bufctl's are also correctly aligned. 2218 */ 2219 if (size & (BYTES_PER_WORD - 1)) { 2220 size += (BYTES_PER_WORD - 1); 2221 size &= ~(BYTES_PER_WORD - 1); 2222 } 2223 2224 /* calculate the final buffer alignment: */ 2225 2226 /* 1) arch recommendation: can be overridden for debug */ 2227 if (flags & SLAB_HWCACHE_ALIGN) { 2228 /* 2229 * Default alignment: as specified by the arch code. Except if 2230 * an object is really small, then squeeze multiple objects into 2231 * one cacheline. 2232 */ 2233 ralign = cache_line_size(); 2234 while (size <= ralign / 2) 2235 ralign /= 2; 2236 } else { 2237 ralign = BYTES_PER_WORD; 2238 } 2239 2240 /* 2241 * Redzoning and user store require word alignment or possibly larger. 2242 * Note this will be overridden by architecture or caller mandated 2243 * alignment if either is greater than BYTES_PER_WORD. 2244 */ 2245 if (flags & SLAB_STORE_USER) 2246 ralign = BYTES_PER_WORD; 2247 2248 if (flags & SLAB_RED_ZONE) { 2249 ralign = REDZONE_ALIGN; 2250 /* If redzoning, ensure that the second redzone is suitably 2251 * aligned, by adjusting the object size accordingly. */ 2252 size += REDZONE_ALIGN - 1; 2253 size &= ~(REDZONE_ALIGN - 1); 2254 } 2255 2256 /* 2) arch mandated alignment */ 2257 if (ralign < ARCH_SLAB_MINALIGN) { 2258 ralign = ARCH_SLAB_MINALIGN; 2259 } 2260 /* 3) caller mandated alignment */ 2261 if (ralign < align) { 2262 ralign = align; 2263 } 2264 /* disable debug if necessary */ 2265 if (ralign > __alignof__(unsigned long long)) 2266 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2267 /* 2268 * 4) Store it. 2269 */ 2270 align = ralign; 2271 2272 /* Get cache's description obj. */ 2273 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL); 2274 if (!cachep) 2275 goto oops; 2276 2277 #if DEBUG 2278 cachep->obj_size = size; 2279 2280 /* 2281 * Both debugging options require word-alignment which is calculated 2282 * into align above. 2283 */ 2284 if (flags & SLAB_RED_ZONE) { 2285 /* add space for red zone words */ 2286 cachep->obj_offset += sizeof(unsigned long long); 2287 size += 2 * sizeof(unsigned long long); 2288 } 2289 if (flags & SLAB_STORE_USER) { 2290 /* user store requires one word storage behind the end of 2291 * the real object. But if the second red zone needs to be 2292 * aligned to 64 bits, we must allow that much space. 2293 */ 2294 if (flags & SLAB_RED_ZONE) 2295 size += REDZONE_ALIGN; 2296 else 2297 size += BYTES_PER_WORD; 2298 } 2299 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2300 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size 2301 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { 2302 cachep->obj_offset += PAGE_SIZE - size; 2303 size = PAGE_SIZE; 2304 } 2305 #endif 2306 #endif 2307 2308 /* 2309 * Determine if the slab management is 'on' or 'off' slab. 2310 * (bootstrapping cannot cope with offslab caches so don't do 2311 * it too early on.) 2312 */ 2313 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init) 2314 /* 2315 * Size is large, assume best to place the slab management obj 2316 * off-slab (should allow better packing of objs). 2317 */ 2318 flags |= CFLGS_OFF_SLAB; 2319 2320 size = ALIGN(size, align); 2321 2322 left_over = calculate_slab_order(cachep, size, align, flags); 2323 2324 if (!cachep->num) { 2325 printk(KERN_ERR 2326 "kmem_cache_create: couldn't create cache %s.\n", name); 2327 kmem_cache_free(&cache_cache, cachep); 2328 cachep = NULL; 2329 goto oops; 2330 } 2331 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) 2332 + sizeof(struct slab), align); 2333 2334 /* 2335 * If the slab has been placed off-slab, and we have enough space then 2336 * move it on-slab. This is at the expense of any extra colouring. 2337 */ 2338 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { 2339 flags &= ~CFLGS_OFF_SLAB; 2340 left_over -= slab_size; 2341 } 2342 2343 if (flags & CFLGS_OFF_SLAB) { 2344 /* really off slab. No need for manual alignment */ 2345 slab_size = 2346 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); 2347 } 2348 2349 cachep->colour_off = cache_line_size(); 2350 /* Offset must be a multiple of the alignment. */ 2351 if (cachep->colour_off < align) 2352 cachep->colour_off = align; 2353 cachep->colour = left_over / cachep->colour_off; 2354 cachep->slab_size = slab_size; 2355 cachep->flags = flags; 2356 cachep->gfpflags = 0; 2357 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2358 cachep->gfpflags |= GFP_DMA; 2359 cachep->buffer_size = size; 2360 cachep->reciprocal_buffer_size = reciprocal_value(size); 2361 2362 if (flags & CFLGS_OFF_SLAB) { 2363 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); 2364 /* 2365 * This is a possibility for one of the malloc_sizes caches. 2366 * But since we go off slab only for object size greater than 2367 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, 2368 * this should not happen at all. 2369 * But leave a BUG_ON for some lucky dude. 2370 */ 2371 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); 2372 } 2373 cachep->ctor = ctor; 2374 cachep->name = name; 2375 2376 if (setup_cpu_cache(cachep)) { 2377 __kmem_cache_destroy(cachep); 2378 cachep = NULL; 2379 goto oops; 2380 } 2381 2382 /* cache setup completed, link it into the list */ 2383 list_add(&cachep->next, &cache_chain); 2384 oops: 2385 if (!cachep && (flags & SLAB_PANIC)) 2386 panic("kmem_cache_create(): failed to create slab `%s'\n", 2387 name); 2388 mutex_unlock(&cache_chain_mutex); 2389 put_online_cpus(); 2390 return cachep; 2391 } 2392 EXPORT_SYMBOL(kmem_cache_create); 2393 2394 #if DEBUG 2395 static void check_irq_off(void) 2396 { 2397 BUG_ON(!irqs_disabled()); 2398 } 2399 2400 static void check_irq_on(void) 2401 { 2402 BUG_ON(irqs_disabled()); 2403 } 2404 2405 static void check_spinlock_acquired(struct kmem_cache *cachep) 2406 { 2407 #ifdef CONFIG_SMP 2408 check_irq_off(); 2409 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); 2410 #endif 2411 } 2412 2413 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2414 { 2415 #ifdef CONFIG_SMP 2416 check_irq_off(); 2417 assert_spin_locked(&cachep->nodelists[node]->list_lock); 2418 #endif 2419 } 2420 2421 #else 2422 #define check_irq_off() do { } while(0) 2423 #define check_irq_on() do { } while(0) 2424 #define check_spinlock_acquired(x) do { } while(0) 2425 #define check_spinlock_acquired_node(x, y) do { } while(0) 2426 #endif 2427 2428 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 2429 struct array_cache *ac, 2430 int force, int node); 2431 2432 static void do_drain(void *arg) 2433 { 2434 struct kmem_cache *cachep = arg; 2435 struct array_cache *ac; 2436 int node = numa_node_id(); 2437 2438 check_irq_off(); 2439 ac = cpu_cache_get(cachep); 2440 spin_lock(&cachep->nodelists[node]->list_lock); 2441 free_block(cachep, ac->entry, ac->avail, node); 2442 spin_unlock(&cachep->nodelists[node]->list_lock); 2443 ac->avail = 0; 2444 } 2445 2446 static void drain_cpu_caches(struct kmem_cache *cachep) 2447 { 2448 struct kmem_list3 *l3; 2449 int node; 2450 2451 on_each_cpu(do_drain, cachep, 1); 2452 check_irq_on(); 2453 for_each_online_node(node) { 2454 l3 = cachep->nodelists[node]; 2455 if (l3 && l3->alien) 2456 drain_alien_cache(cachep, l3->alien); 2457 } 2458 2459 for_each_online_node(node) { 2460 l3 = cachep->nodelists[node]; 2461 if (l3) 2462 drain_array(cachep, l3, l3->shared, 1, node); 2463 } 2464 } 2465 2466 /* 2467 * Remove slabs from the list of free slabs. 2468 * Specify the number of slabs to drain in tofree. 2469 * 2470 * Returns the actual number of slabs released. 2471 */ 2472 static int drain_freelist(struct kmem_cache *cache, 2473 struct kmem_list3 *l3, int tofree) 2474 { 2475 struct list_head *p; 2476 int nr_freed; 2477 struct slab *slabp; 2478 2479 nr_freed = 0; 2480 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { 2481 2482 spin_lock_irq(&l3->list_lock); 2483 p = l3->slabs_free.prev; 2484 if (p == &l3->slabs_free) { 2485 spin_unlock_irq(&l3->list_lock); 2486 goto out; 2487 } 2488 2489 slabp = list_entry(p, struct slab, list); 2490 #if DEBUG 2491 BUG_ON(slabp->inuse); 2492 #endif 2493 list_del(&slabp->list); 2494 /* 2495 * Safe to drop the lock. The slab is no longer linked 2496 * to the cache. 2497 */ 2498 l3->free_objects -= cache->num; 2499 spin_unlock_irq(&l3->list_lock); 2500 slab_destroy(cache, slabp); 2501 nr_freed++; 2502 } 2503 out: 2504 return nr_freed; 2505 } 2506 2507 /* Called with cache_chain_mutex held to protect against cpu hotplug */ 2508 static int __cache_shrink(struct kmem_cache *cachep) 2509 { 2510 int ret = 0, i = 0; 2511 struct kmem_list3 *l3; 2512 2513 drain_cpu_caches(cachep); 2514 2515 check_irq_on(); 2516 for_each_online_node(i) { 2517 l3 = cachep->nodelists[i]; 2518 if (!l3) 2519 continue; 2520 2521 drain_freelist(cachep, l3, l3->free_objects); 2522 2523 ret += !list_empty(&l3->slabs_full) || 2524 !list_empty(&l3->slabs_partial); 2525 } 2526 return (ret ? 1 : 0); 2527 } 2528 2529 /** 2530 * kmem_cache_shrink - Shrink a cache. 2531 * @cachep: The cache to shrink. 2532 * 2533 * Releases as many slabs as possible for a cache. 2534 * To help debugging, a zero exit status indicates all slabs were released. 2535 */ 2536 int kmem_cache_shrink(struct kmem_cache *cachep) 2537 { 2538 int ret; 2539 BUG_ON(!cachep || in_interrupt()); 2540 2541 get_online_cpus(); 2542 mutex_lock(&cache_chain_mutex); 2543 ret = __cache_shrink(cachep); 2544 mutex_unlock(&cache_chain_mutex); 2545 put_online_cpus(); 2546 return ret; 2547 } 2548 EXPORT_SYMBOL(kmem_cache_shrink); 2549 2550 /** 2551 * kmem_cache_destroy - delete a cache 2552 * @cachep: the cache to destroy 2553 * 2554 * Remove a &struct kmem_cache object from the slab cache. 2555 * 2556 * It is expected this function will be called by a module when it is 2557 * unloaded. This will remove the cache completely, and avoid a duplicate 2558 * cache being allocated each time a module is loaded and unloaded, if the 2559 * module doesn't have persistent in-kernel storage across loads and unloads. 2560 * 2561 * The cache must be empty before calling this function. 2562 * 2563 * The caller must guarantee that noone will allocate memory from the cache 2564 * during the kmem_cache_destroy(). 2565 */ 2566 void kmem_cache_destroy(struct kmem_cache *cachep) 2567 { 2568 BUG_ON(!cachep || in_interrupt()); 2569 2570 /* Find the cache in the chain of caches. */ 2571 get_online_cpus(); 2572 mutex_lock(&cache_chain_mutex); 2573 /* 2574 * the chain is never empty, cache_cache is never destroyed 2575 */ 2576 list_del(&cachep->next); 2577 if (__cache_shrink(cachep)) { 2578 slab_error(cachep, "Can't free all objects"); 2579 list_add(&cachep->next, &cache_chain); 2580 mutex_unlock(&cache_chain_mutex); 2581 put_online_cpus(); 2582 return; 2583 } 2584 2585 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 2586 synchronize_rcu(); 2587 2588 __kmem_cache_destroy(cachep); 2589 mutex_unlock(&cache_chain_mutex); 2590 put_online_cpus(); 2591 } 2592 EXPORT_SYMBOL(kmem_cache_destroy); 2593 2594 /* 2595 * Get the memory for a slab management obj. 2596 * For a slab cache when the slab descriptor is off-slab, slab descriptors 2597 * always come from malloc_sizes caches. The slab descriptor cannot 2598 * come from the same cache which is getting created because, 2599 * when we are searching for an appropriate cache for these 2600 * descriptors in kmem_cache_create, we search through the malloc_sizes array. 2601 * If we are creating a malloc_sizes cache here it would not be visible to 2602 * kmem_find_general_cachep till the initialization is complete. 2603 * Hence we cannot have slabp_cache same as the original cache. 2604 */ 2605 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, 2606 int colour_off, gfp_t local_flags, 2607 int nodeid) 2608 { 2609 struct slab *slabp; 2610 2611 if (OFF_SLAB(cachep)) { 2612 /* Slab management obj is off-slab. */ 2613 slabp = kmem_cache_alloc_node(cachep->slabp_cache, 2614 local_flags, nodeid); 2615 if (!slabp) 2616 return NULL; 2617 } else { 2618 slabp = objp + colour_off; 2619 colour_off += cachep->slab_size; 2620 } 2621 slabp->inuse = 0; 2622 slabp->colouroff = colour_off; 2623 slabp->s_mem = objp + colour_off; 2624 slabp->nodeid = nodeid; 2625 slabp->free = 0; 2626 return slabp; 2627 } 2628 2629 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) 2630 { 2631 return (kmem_bufctl_t *) (slabp + 1); 2632 } 2633 2634 static void cache_init_objs(struct kmem_cache *cachep, 2635 struct slab *slabp) 2636 { 2637 int i; 2638 2639 for (i = 0; i < cachep->num; i++) { 2640 void *objp = index_to_obj(cachep, slabp, i); 2641 #if DEBUG 2642 /* need to poison the objs? */ 2643 if (cachep->flags & SLAB_POISON) 2644 poison_obj(cachep, objp, POISON_FREE); 2645 if (cachep->flags & SLAB_STORE_USER) 2646 *dbg_userword(cachep, objp) = NULL; 2647 2648 if (cachep->flags & SLAB_RED_ZONE) { 2649 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2650 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2651 } 2652 /* 2653 * Constructors are not allowed to allocate memory from the same 2654 * cache which they are a constructor for. Otherwise, deadlock. 2655 * They must also be threaded. 2656 */ 2657 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2658 cachep->ctor(objp + obj_offset(cachep)); 2659 2660 if (cachep->flags & SLAB_RED_ZONE) { 2661 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2662 slab_error(cachep, "constructor overwrote the" 2663 " end of an object"); 2664 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2665 slab_error(cachep, "constructor overwrote the" 2666 " start of an object"); 2667 } 2668 if ((cachep->buffer_size % PAGE_SIZE) == 0 && 2669 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2670 kernel_map_pages(virt_to_page(objp), 2671 cachep->buffer_size / PAGE_SIZE, 0); 2672 #else 2673 if (cachep->ctor) 2674 cachep->ctor(objp); 2675 #endif 2676 slab_bufctl(slabp)[i] = i + 1; 2677 } 2678 slab_bufctl(slabp)[i - 1] = BUFCTL_END; 2679 } 2680 2681 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2682 { 2683 if (CONFIG_ZONE_DMA_FLAG) { 2684 if (flags & GFP_DMA) 2685 BUG_ON(!(cachep->gfpflags & GFP_DMA)); 2686 else 2687 BUG_ON(cachep->gfpflags & GFP_DMA); 2688 } 2689 } 2690 2691 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, 2692 int nodeid) 2693 { 2694 void *objp = index_to_obj(cachep, slabp, slabp->free); 2695 kmem_bufctl_t next; 2696 2697 slabp->inuse++; 2698 next = slab_bufctl(slabp)[slabp->free]; 2699 #if DEBUG 2700 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; 2701 WARN_ON(slabp->nodeid != nodeid); 2702 #endif 2703 slabp->free = next; 2704 2705 return objp; 2706 } 2707 2708 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, 2709 void *objp, int nodeid) 2710 { 2711 unsigned int objnr = obj_to_index(cachep, slabp, objp); 2712 2713 #if DEBUG 2714 /* Verify that the slab belongs to the intended node */ 2715 WARN_ON(slabp->nodeid != nodeid); 2716 2717 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { 2718 printk(KERN_ERR "slab: double free detected in cache " 2719 "'%s', objp %p\n", cachep->name, objp); 2720 BUG(); 2721 } 2722 #endif 2723 slab_bufctl(slabp)[objnr] = slabp->free; 2724 slabp->free = objnr; 2725 slabp->inuse--; 2726 } 2727 2728 /* 2729 * Map pages beginning at addr to the given cache and slab. This is required 2730 * for the slab allocator to be able to lookup the cache and slab of a 2731 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging. 2732 */ 2733 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, 2734 void *addr) 2735 { 2736 int nr_pages; 2737 struct page *page; 2738 2739 page = virt_to_page(addr); 2740 2741 nr_pages = 1; 2742 if (likely(!PageCompound(page))) 2743 nr_pages <<= cache->gfporder; 2744 2745 do { 2746 page_set_cache(page, cache); 2747 page_set_slab(page, slab); 2748 page++; 2749 } while (--nr_pages); 2750 } 2751 2752 /* 2753 * Grow (by 1) the number of slabs within a cache. This is called by 2754 * kmem_cache_alloc() when there are no active objs left in a cache. 2755 */ 2756 static int cache_grow(struct kmem_cache *cachep, 2757 gfp_t flags, int nodeid, void *objp) 2758 { 2759 struct slab *slabp; 2760 size_t offset; 2761 gfp_t local_flags; 2762 struct kmem_list3 *l3; 2763 2764 /* 2765 * Be lazy and only check for valid flags here, keeping it out of the 2766 * critical path in kmem_cache_alloc(). 2767 */ 2768 BUG_ON(flags & GFP_SLAB_BUG_MASK); 2769 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2770 2771 /* Take the l3 list lock to change the colour_next on this node */ 2772 check_irq_off(); 2773 l3 = cachep->nodelists[nodeid]; 2774 spin_lock(&l3->list_lock); 2775 2776 /* Get colour for the slab, and cal the next value. */ 2777 offset = l3->colour_next; 2778 l3->colour_next++; 2779 if (l3->colour_next >= cachep->colour) 2780 l3->colour_next = 0; 2781 spin_unlock(&l3->list_lock); 2782 2783 offset *= cachep->colour_off; 2784 2785 if (local_flags & __GFP_WAIT) 2786 local_irq_enable(); 2787 2788 /* 2789 * The test for missing atomic flag is performed here, rather than 2790 * the more obvious place, simply to reduce the critical path length 2791 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2792 * will eventually be caught here (where it matters). 2793 */ 2794 kmem_flagcheck(cachep, flags); 2795 2796 /* 2797 * Get mem for the objs. Attempt to allocate a physical page from 2798 * 'nodeid'. 2799 */ 2800 if (!objp) 2801 objp = kmem_getpages(cachep, local_flags, nodeid); 2802 if (!objp) 2803 goto failed; 2804 2805 /* Get slab management. */ 2806 slabp = alloc_slabmgmt(cachep, objp, offset, 2807 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2808 if (!slabp) 2809 goto opps1; 2810 2811 slab_map_pages(cachep, slabp, objp); 2812 2813 cache_init_objs(cachep, slabp); 2814 2815 if (local_flags & __GFP_WAIT) 2816 local_irq_disable(); 2817 check_irq_off(); 2818 spin_lock(&l3->list_lock); 2819 2820 /* Make slab active. */ 2821 list_add_tail(&slabp->list, &(l3->slabs_free)); 2822 STATS_INC_GROWN(cachep); 2823 l3->free_objects += cachep->num; 2824 spin_unlock(&l3->list_lock); 2825 return 1; 2826 opps1: 2827 kmem_freepages(cachep, objp); 2828 failed: 2829 if (local_flags & __GFP_WAIT) 2830 local_irq_disable(); 2831 return 0; 2832 } 2833 2834 #if DEBUG 2835 2836 /* 2837 * Perform extra freeing checks: 2838 * - detect bad pointers. 2839 * - POISON/RED_ZONE checking 2840 */ 2841 static void kfree_debugcheck(const void *objp) 2842 { 2843 if (!virt_addr_valid(objp)) { 2844 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2845 (unsigned long)objp); 2846 BUG(); 2847 } 2848 } 2849 2850 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2851 { 2852 unsigned long long redzone1, redzone2; 2853 2854 redzone1 = *dbg_redzone1(cache, obj); 2855 redzone2 = *dbg_redzone2(cache, obj); 2856 2857 /* 2858 * Redzone is ok. 2859 */ 2860 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2861 return; 2862 2863 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2864 slab_error(cache, "double free detected"); 2865 else 2866 slab_error(cache, "memory outside object was overwritten"); 2867 2868 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 2869 obj, redzone1, redzone2); 2870 } 2871 2872 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2873 void *caller) 2874 { 2875 struct page *page; 2876 unsigned int objnr; 2877 struct slab *slabp; 2878 2879 BUG_ON(virt_to_cache(objp) != cachep); 2880 2881 objp -= obj_offset(cachep); 2882 kfree_debugcheck(objp); 2883 page = virt_to_head_page(objp); 2884 2885 slabp = page_get_slab(page); 2886 2887 if (cachep->flags & SLAB_RED_ZONE) { 2888 verify_redzone_free(cachep, objp); 2889 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2890 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2891 } 2892 if (cachep->flags & SLAB_STORE_USER) 2893 *dbg_userword(cachep, objp) = caller; 2894 2895 objnr = obj_to_index(cachep, slabp, objp); 2896 2897 BUG_ON(objnr >= cachep->num); 2898 BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); 2899 2900 #ifdef CONFIG_DEBUG_SLAB_LEAK 2901 slab_bufctl(slabp)[objnr] = BUFCTL_FREE; 2902 #endif 2903 if (cachep->flags & SLAB_POISON) { 2904 #ifdef CONFIG_DEBUG_PAGEALLOC 2905 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 2906 store_stackinfo(cachep, objp, (unsigned long)caller); 2907 kernel_map_pages(virt_to_page(objp), 2908 cachep->buffer_size / PAGE_SIZE, 0); 2909 } else { 2910 poison_obj(cachep, objp, POISON_FREE); 2911 } 2912 #else 2913 poison_obj(cachep, objp, POISON_FREE); 2914 #endif 2915 } 2916 return objp; 2917 } 2918 2919 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) 2920 { 2921 kmem_bufctl_t i; 2922 int entries = 0; 2923 2924 /* Check slab's freelist to see if this obj is there. */ 2925 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { 2926 entries++; 2927 if (entries > cachep->num || i >= cachep->num) 2928 goto bad; 2929 } 2930 if (entries != cachep->num - slabp->inuse) { 2931 bad: 2932 printk(KERN_ERR "slab: Internal list corruption detected in " 2933 "cache '%s'(%d), slabp %p(%d). Hexdump:\n", 2934 cachep->name, cachep->num, slabp, slabp->inuse); 2935 for (i = 0; 2936 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); 2937 i++) { 2938 if (i % 16 == 0) 2939 printk("\n%03x:", i); 2940 printk(" %02x", ((unsigned char *)slabp)[i]); 2941 } 2942 printk("\n"); 2943 BUG(); 2944 } 2945 } 2946 #else 2947 #define kfree_debugcheck(x) do { } while(0) 2948 #define cache_free_debugcheck(x,objp,z) (objp) 2949 #define check_slabp(x,y) do { } while(0) 2950 #endif 2951 2952 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2953 { 2954 int batchcount; 2955 struct kmem_list3 *l3; 2956 struct array_cache *ac; 2957 int node; 2958 2959 retry: 2960 check_irq_off(); 2961 node = numa_node_id(); 2962 ac = cpu_cache_get(cachep); 2963 batchcount = ac->batchcount; 2964 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2965 /* 2966 * If there was little recent activity on this cache, then 2967 * perform only a partial refill. Otherwise we could generate 2968 * refill bouncing. 2969 */ 2970 batchcount = BATCHREFILL_LIMIT; 2971 } 2972 l3 = cachep->nodelists[node]; 2973 2974 BUG_ON(ac->avail > 0 || !l3); 2975 spin_lock(&l3->list_lock); 2976 2977 /* See if we can refill from the shared array */ 2978 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) 2979 goto alloc_done; 2980 2981 while (batchcount > 0) { 2982 struct list_head *entry; 2983 struct slab *slabp; 2984 /* Get slab alloc is to come from. */ 2985 entry = l3->slabs_partial.next; 2986 if (entry == &l3->slabs_partial) { 2987 l3->free_touched = 1; 2988 entry = l3->slabs_free.next; 2989 if (entry == &l3->slabs_free) 2990 goto must_grow; 2991 } 2992 2993 slabp = list_entry(entry, struct slab, list); 2994 check_slabp(cachep, slabp); 2995 check_spinlock_acquired(cachep); 2996 2997 /* 2998 * The slab was either on partial or free list so 2999 * there must be at least one object available for 3000 * allocation. 3001 */ 3002 BUG_ON(slabp->inuse >= cachep->num); 3003 3004 while (slabp->inuse < cachep->num && batchcount--) { 3005 STATS_INC_ALLOCED(cachep); 3006 STATS_INC_ACTIVE(cachep); 3007 STATS_SET_HIGH(cachep); 3008 3009 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, 3010 node); 3011 } 3012 check_slabp(cachep, slabp); 3013 3014 /* move slabp to correct slabp list: */ 3015 list_del(&slabp->list); 3016 if (slabp->free == BUFCTL_END) 3017 list_add(&slabp->list, &l3->slabs_full); 3018 else 3019 list_add(&slabp->list, &l3->slabs_partial); 3020 } 3021 3022 must_grow: 3023 l3->free_objects -= ac->avail; 3024 alloc_done: 3025 spin_unlock(&l3->list_lock); 3026 3027 if (unlikely(!ac->avail)) { 3028 int x; 3029 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 3030 3031 /* cache_grow can reenable interrupts, then ac could change. */ 3032 ac = cpu_cache_get(cachep); 3033 if (!x && ac->avail == 0) /* no objects in sight? abort */ 3034 return NULL; 3035 3036 if (!ac->avail) /* objects refilled by interrupt? */ 3037 goto retry; 3038 } 3039 ac->touched = 1; 3040 return ac->entry[--ac->avail]; 3041 } 3042 3043 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3044 gfp_t flags) 3045 { 3046 might_sleep_if(flags & __GFP_WAIT); 3047 #if DEBUG 3048 kmem_flagcheck(cachep, flags); 3049 #endif 3050 } 3051 3052 #if DEBUG 3053 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3054 gfp_t flags, void *objp, void *caller) 3055 { 3056 if (!objp) 3057 return objp; 3058 if (cachep->flags & SLAB_POISON) { 3059 #ifdef CONFIG_DEBUG_PAGEALLOC 3060 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 3061 kernel_map_pages(virt_to_page(objp), 3062 cachep->buffer_size / PAGE_SIZE, 1); 3063 else 3064 check_poison_obj(cachep, objp); 3065 #else 3066 check_poison_obj(cachep, objp); 3067 #endif 3068 poison_obj(cachep, objp, POISON_INUSE); 3069 } 3070 if (cachep->flags & SLAB_STORE_USER) 3071 *dbg_userword(cachep, objp) = caller; 3072 3073 if (cachep->flags & SLAB_RED_ZONE) { 3074 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3075 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3076 slab_error(cachep, "double free, or memory outside" 3077 " object was overwritten"); 3078 printk(KERN_ERR 3079 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3080 objp, *dbg_redzone1(cachep, objp), 3081 *dbg_redzone2(cachep, objp)); 3082 } 3083 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3084 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3085 } 3086 #ifdef CONFIG_DEBUG_SLAB_LEAK 3087 { 3088 struct slab *slabp; 3089 unsigned objnr; 3090 3091 slabp = page_get_slab(virt_to_head_page(objp)); 3092 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; 3093 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; 3094 } 3095 #endif 3096 objp += obj_offset(cachep); 3097 if (cachep->ctor && cachep->flags & SLAB_POISON) 3098 cachep->ctor(objp); 3099 #if ARCH_SLAB_MINALIGN 3100 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { 3101 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3102 objp, ARCH_SLAB_MINALIGN); 3103 } 3104 #endif 3105 return objp; 3106 } 3107 #else 3108 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3109 #endif 3110 3111 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) 3112 { 3113 if (cachep == &cache_cache) 3114 return false; 3115 3116 return should_failslab(obj_size(cachep), flags); 3117 } 3118 3119 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3120 { 3121 void *objp; 3122 struct array_cache *ac; 3123 3124 check_irq_off(); 3125 3126 ac = cpu_cache_get(cachep); 3127 if (likely(ac->avail)) { 3128 STATS_INC_ALLOCHIT(cachep); 3129 ac->touched = 1; 3130 objp = ac->entry[--ac->avail]; 3131 } else { 3132 STATS_INC_ALLOCMISS(cachep); 3133 objp = cache_alloc_refill(cachep, flags); 3134 } 3135 return objp; 3136 } 3137 3138 #ifdef CONFIG_NUMA 3139 /* 3140 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. 3141 * 3142 * If we are in_interrupt, then process context, including cpusets and 3143 * mempolicy, may not apply and should not be used for allocation policy. 3144 */ 3145 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3146 { 3147 int nid_alloc, nid_here; 3148 3149 if (in_interrupt() || (flags & __GFP_THISNODE)) 3150 return NULL; 3151 nid_alloc = nid_here = numa_node_id(); 3152 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3153 nid_alloc = cpuset_mem_spread_node(); 3154 else if (current->mempolicy) 3155 nid_alloc = slab_node(current->mempolicy); 3156 if (nid_alloc != nid_here) 3157 return ____cache_alloc_node(cachep, flags, nid_alloc); 3158 return NULL; 3159 } 3160 3161 /* 3162 * Fallback function if there was no memory available and no objects on a 3163 * certain node and fall back is permitted. First we scan all the 3164 * available nodelists for available objects. If that fails then we 3165 * perform an allocation without specifying a node. This allows the page 3166 * allocator to do its reclaim / fallback magic. We then insert the 3167 * slab into the proper nodelist and then allocate from it. 3168 */ 3169 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3170 { 3171 struct zonelist *zonelist; 3172 gfp_t local_flags; 3173 struct zoneref *z; 3174 struct zone *zone; 3175 enum zone_type high_zoneidx = gfp_zone(flags); 3176 void *obj = NULL; 3177 int nid; 3178 3179 if (flags & __GFP_THISNODE) 3180 return NULL; 3181 3182 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 3183 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3184 3185 retry: 3186 /* 3187 * Look through allowed nodes for objects available 3188 * from existing per node queues. 3189 */ 3190 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3191 nid = zone_to_nid(zone); 3192 3193 if (cpuset_zone_allowed_hardwall(zone, flags) && 3194 cache->nodelists[nid] && 3195 cache->nodelists[nid]->free_objects) { 3196 obj = ____cache_alloc_node(cache, 3197 flags | GFP_THISNODE, nid); 3198 if (obj) 3199 break; 3200 } 3201 } 3202 3203 if (!obj) { 3204 /* 3205 * This allocation will be performed within the constraints 3206 * of the current cpuset / memory policy requirements. 3207 * We may trigger various forms of reclaim on the allowed 3208 * set and go into memory reserves if necessary. 3209 */ 3210 if (local_flags & __GFP_WAIT) 3211 local_irq_enable(); 3212 kmem_flagcheck(cache, flags); 3213 obj = kmem_getpages(cache, local_flags, -1); 3214 if (local_flags & __GFP_WAIT) 3215 local_irq_disable(); 3216 if (obj) { 3217 /* 3218 * Insert into the appropriate per node queues 3219 */ 3220 nid = page_to_nid(virt_to_page(obj)); 3221 if (cache_grow(cache, flags, nid, obj)) { 3222 obj = ____cache_alloc_node(cache, 3223 flags | GFP_THISNODE, nid); 3224 if (!obj) 3225 /* 3226 * Another processor may allocate the 3227 * objects in the slab since we are 3228 * not holding any locks. 3229 */ 3230 goto retry; 3231 } else { 3232 /* cache_grow already freed obj */ 3233 obj = NULL; 3234 } 3235 } 3236 } 3237 return obj; 3238 } 3239 3240 /* 3241 * A interface to enable slab creation on nodeid 3242 */ 3243 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3244 int nodeid) 3245 { 3246 struct list_head *entry; 3247 struct slab *slabp; 3248 struct kmem_list3 *l3; 3249 void *obj; 3250 int x; 3251 3252 l3 = cachep->nodelists[nodeid]; 3253 BUG_ON(!l3); 3254 3255 retry: 3256 check_irq_off(); 3257 spin_lock(&l3->list_lock); 3258 entry = l3->slabs_partial.next; 3259 if (entry == &l3->slabs_partial) { 3260 l3->free_touched = 1; 3261 entry = l3->slabs_free.next; 3262 if (entry == &l3->slabs_free) 3263 goto must_grow; 3264 } 3265 3266 slabp = list_entry(entry, struct slab, list); 3267 check_spinlock_acquired_node(cachep, nodeid); 3268 check_slabp(cachep, slabp); 3269 3270 STATS_INC_NODEALLOCS(cachep); 3271 STATS_INC_ACTIVE(cachep); 3272 STATS_SET_HIGH(cachep); 3273 3274 BUG_ON(slabp->inuse == cachep->num); 3275 3276 obj = slab_get_obj(cachep, slabp, nodeid); 3277 check_slabp(cachep, slabp); 3278 l3->free_objects--; 3279 /* move slabp to correct slabp list: */ 3280 list_del(&slabp->list); 3281 3282 if (slabp->free == BUFCTL_END) 3283 list_add(&slabp->list, &l3->slabs_full); 3284 else 3285 list_add(&slabp->list, &l3->slabs_partial); 3286 3287 spin_unlock(&l3->list_lock); 3288 goto done; 3289 3290 must_grow: 3291 spin_unlock(&l3->list_lock); 3292 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3293 if (x) 3294 goto retry; 3295 3296 return fallback_alloc(cachep, flags); 3297 3298 done: 3299 return obj; 3300 } 3301 3302 /** 3303 * kmem_cache_alloc_node - Allocate an object on the specified node 3304 * @cachep: The cache to allocate from. 3305 * @flags: See kmalloc(). 3306 * @nodeid: node number of the target node. 3307 * @caller: return address of caller, used for debug information 3308 * 3309 * Identical to kmem_cache_alloc but it will allocate memory on the given 3310 * node, which can improve the performance for cpu bound structures. 3311 * 3312 * Fallback to other node is possible if __GFP_THISNODE is not set. 3313 */ 3314 static __always_inline void * 3315 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3316 void *caller) 3317 { 3318 unsigned long save_flags; 3319 void *ptr; 3320 3321 lockdep_trace_alloc(flags); 3322 3323 if (slab_should_failslab(cachep, flags)) 3324 return NULL; 3325 3326 cache_alloc_debugcheck_before(cachep, flags); 3327 local_irq_save(save_flags); 3328 3329 if (unlikely(nodeid == -1)) 3330 nodeid = numa_node_id(); 3331 3332 if (unlikely(!cachep->nodelists[nodeid])) { 3333 /* Node not bootstrapped yet */ 3334 ptr = fallback_alloc(cachep, flags); 3335 goto out; 3336 } 3337 3338 if (nodeid == numa_node_id()) { 3339 /* 3340 * Use the locally cached objects if possible. 3341 * However ____cache_alloc does not allow fallback 3342 * to other nodes. It may fail while we still have 3343 * objects on other nodes available. 3344 */ 3345 ptr = ____cache_alloc(cachep, flags); 3346 if (ptr) 3347 goto out; 3348 } 3349 /* ___cache_alloc_node can fall back to other nodes */ 3350 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3351 out: 3352 local_irq_restore(save_flags); 3353 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3354 3355 if (unlikely((flags & __GFP_ZERO) && ptr)) 3356 memset(ptr, 0, obj_size(cachep)); 3357 3358 return ptr; 3359 } 3360 3361 static __always_inline void * 3362 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3363 { 3364 void *objp; 3365 3366 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { 3367 objp = alternate_node_alloc(cache, flags); 3368 if (objp) 3369 goto out; 3370 } 3371 objp = ____cache_alloc(cache, flags); 3372 3373 /* 3374 * We may just have run out of memory on the local node. 3375 * ____cache_alloc_node() knows how to locate memory on other nodes 3376 */ 3377 if (!objp) 3378 objp = ____cache_alloc_node(cache, flags, numa_node_id()); 3379 3380 out: 3381 return objp; 3382 } 3383 #else 3384 3385 static __always_inline void * 3386 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3387 { 3388 return ____cache_alloc(cachep, flags); 3389 } 3390 3391 #endif /* CONFIG_NUMA */ 3392 3393 static __always_inline void * 3394 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) 3395 { 3396 unsigned long save_flags; 3397 void *objp; 3398 3399 lockdep_trace_alloc(flags); 3400 3401 if (slab_should_failslab(cachep, flags)) 3402 return NULL; 3403 3404 cache_alloc_debugcheck_before(cachep, flags); 3405 local_irq_save(save_flags); 3406 objp = __do_cache_alloc(cachep, flags); 3407 local_irq_restore(save_flags); 3408 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3409 prefetchw(objp); 3410 3411 if (unlikely((flags & __GFP_ZERO) && objp)) 3412 memset(objp, 0, obj_size(cachep)); 3413 3414 return objp; 3415 } 3416 3417 /* 3418 * Caller needs to acquire correct kmem_list's list_lock 3419 */ 3420 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, 3421 int node) 3422 { 3423 int i; 3424 struct kmem_list3 *l3; 3425 3426 for (i = 0; i < nr_objects; i++) { 3427 void *objp = objpp[i]; 3428 struct slab *slabp; 3429 3430 slabp = virt_to_slab(objp); 3431 l3 = cachep->nodelists[node]; 3432 list_del(&slabp->list); 3433 check_spinlock_acquired_node(cachep, node); 3434 check_slabp(cachep, slabp); 3435 slab_put_obj(cachep, slabp, objp, node); 3436 STATS_DEC_ACTIVE(cachep); 3437 l3->free_objects++; 3438 check_slabp(cachep, slabp); 3439 3440 /* fixup slab chains */ 3441 if (slabp->inuse == 0) { 3442 if (l3->free_objects > l3->free_limit) { 3443 l3->free_objects -= cachep->num; 3444 /* No need to drop any previously held 3445 * lock here, even if we have a off-slab slab 3446 * descriptor it is guaranteed to come from 3447 * a different cache, refer to comments before 3448 * alloc_slabmgmt. 3449 */ 3450 slab_destroy(cachep, slabp); 3451 } else { 3452 list_add(&slabp->list, &l3->slabs_free); 3453 } 3454 } else { 3455 /* Unconditionally move a slab to the end of the 3456 * partial list on free - maximum time for the 3457 * other objects to be freed, too. 3458 */ 3459 list_add_tail(&slabp->list, &l3->slabs_partial); 3460 } 3461 } 3462 } 3463 3464 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3465 { 3466 int batchcount; 3467 struct kmem_list3 *l3; 3468 int node = numa_node_id(); 3469 3470 batchcount = ac->batchcount; 3471 #if DEBUG 3472 BUG_ON(!batchcount || batchcount > ac->avail); 3473 #endif 3474 check_irq_off(); 3475 l3 = cachep->nodelists[node]; 3476 spin_lock(&l3->list_lock); 3477 if (l3->shared) { 3478 struct array_cache *shared_array = l3->shared; 3479 int max = shared_array->limit - shared_array->avail; 3480 if (max) { 3481 if (batchcount > max) 3482 batchcount = max; 3483 memcpy(&(shared_array->entry[shared_array->avail]), 3484 ac->entry, sizeof(void *) * batchcount); 3485 shared_array->avail += batchcount; 3486 goto free_done; 3487 } 3488 } 3489 3490 free_block(cachep, ac->entry, batchcount, node); 3491 free_done: 3492 #if STATS 3493 { 3494 int i = 0; 3495 struct list_head *p; 3496 3497 p = l3->slabs_free.next; 3498 while (p != &(l3->slabs_free)) { 3499 struct slab *slabp; 3500 3501 slabp = list_entry(p, struct slab, list); 3502 BUG_ON(slabp->inuse); 3503 3504 i++; 3505 p = p->next; 3506 } 3507 STATS_SET_FREEABLE(cachep, i); 3508 } 3509 #endif 3510 spin_unlock(&l3->list_lock); 3511 ac->avail -= batchcount; 3512 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3513 } 3514 3515 /* 3516 * Release an obj back to its cache. If the obj has a constructed state, it must 3517 * be in this state _before_ it is released. Called with disabled ints. 3518 */ 3519 static inline void __cache_free(struct kmem_cache *cachep, void *objp) 3520 { 3521 struct array_cache *ac = cpu_cache_get(cachep); 3522 3523 check_irq_off(); 3524 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); 3525 3526 /* 3527 * Skip calling cache_free_alien() when the platform is not numa. 3528 * This will avoid cache misses that happen while accessing slabp (which 3529 * is per page memory reference) to get nodeid. Instead use a global 3530 * variable to skip the call, which is mostly likely to be present in 3531 * the cache. 3532 */ 3533 if (numa_platform && cache_free_alien(cachep, objp)) 3534 return; 3535 3536 if (likely(ac->avail < ac->limit)) { 3537 STATS_INC_FREEHIT(cachep); 3538 ac->entry[ac->avail++] = objp; 3539 return; 3540 } else { 3541 STATS_INC_FREEMISS(cachep); 3542 cache_flusharray(cachep, ac); 3543 ac->entry[ac->avail++] = objp; 3544 } 3545 } 3546 3547 /** 3548 * kmem_cache_alloc - Allocate an object 3549 * @cachep: The cache to allocate from. 3550 * @flags: See kmalloc(). 3551 * 3552 * Allocate an object from this cache. The flags are only relevant 3553 * if the cache has no available objects. 3554 */ 3555 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3556 { 3557 return __cache_alloc(cachep, flags, __builtin_return_address(0)); 3558 } 3559 EXPORT_SYMBOL(kmem_cache_alloc); 3560 3561 /** 3562 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry. 3563 * @cachep: the cache we're checking against 3564 * @ptr: pointer to validate 3565 * 3566 * This verifies that the untrusted pointer looks sane; 3567 * it is _not_ a guarantee that the pointer is actually 3568 * part of the slab cache in question, but it at least 3569 * validates that the pointer can be dereferenced and 3570 * looks half-way sane. 3571 * 3572 * Currently only used for dentry validation. 3573 */ 3574 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr) 3575 { 3576 unsigned long addr = (unsigned long)ptr; 3577 unsigned long min_addr = PAGE_OFFSET; 3578 unsigned long align_mask = BYTES_PER_WORD - 1; 3579 unsigned long size = cachep->buffer_size; 3580 struct page *page; 3581 3582 if (unlikely(addr < min_addr)) 3583 goto out; 3584 if (unlikely(addr > (unsigned long)high_memory - size)) 3585 goto out; 3586 if (unlikely(addr & align_mask)) 3587 goto out; 3588 if (unlikely(!kern_addr_valid(addr))) 3589 goto out; 3590 if (unlikely(!kern_addr_valid(addr + size - 1))) 3591 goto out; 3592 page = virt_to_page(ptr); 3593 if (unlikely(!PageSlab(page))) 3594 goto out; 3595 if (unlikely(page_get_cache(page) != cachep)) 3596 goto out; 3597 return 1; 3598 out: 3599 return 0; 3600 } 3601 3602 #ifdef CONFIG_NUMA 3603 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3604 { 3605 return __cache_alloc_node(cachep, flags, nodeid, 3606 __builtin_return_address(0)); 3607 } 3608 EXPORT_SYMBOL(kmem_cache_alloc_node); 3609 3610 static __always_inline void * 3611 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) 3612 { 3613 struct kmem_cache *cachep; 3614 3615 cachep = kmem_find_general_cachep(size, flags); 3616 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3617 return cachep; 3618 return kmem_cache_alloc_node(cachep, flags, node); 3619 } 3620 3621 #ifdef CONFIG_DEBUG_SLAB 3622 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3623 { 3624 return __do_kmalloc_node(size, flags, node, 3625 __builtin_return_address(0)); 3626 } 3627 EXPORT_SYMBOL(__kmalloc_node); 3628 3629 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3630 int node, unsigned long caller) 3631 { 3632 return __do_kmalloc_node(size, flags, node, (void *)caller); 3633 } 3634 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3635 #else 3636 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3637 { 3638 return __do_kmalloc_node(size, flags, node, NULL); 3639 } 3640 EXPORT_SYMBOL(__kmalloc_node); 3641 #endif /* CONFIG_DEBUG_SLAB */ 3642 #endif /* CONFIG_NUMA */ 3643 3644 /** 3645 * __do_kmalloc - allocate memory 3646 * @size: how many bytes of memory are required. 3647 * @flags: the type of memory to allocate (see kmalloc). 3648 * @caller: function caller for debug tracking of the caller 3649 */ 3650 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3651 void *caller) 3652 { 3653 struct kmem_cache *cachep; 3654 3655 /* If you want to save a few bytes .text space: replace 3656 * __ with kmem_. 3657 * Then kmalloc uses the uninlined functions instead of the inline 3658 * functions. 3659 */ 3660 cachep = __find_general_cachep(size, flags); 3661 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3662 return cachep; 3663 return __cache_alloc(cachep, flags, caller); 3664 } 3665 3666 3667 #ifdef CONFIG_DEBUG_SLAB 3668 void *__kmalloc(size_t size, gfp_t flags) 3669 { 3670 return __do_kmalloc(size, flags, __builtin_return_address(0)); 3671 } 3672 EXPORT_SYMBOL(__kmalloc); 3673 3674 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3675 { 3676 return __do_kmalloc(size, flags, (void *)caller); 3677 } 3678 EXPORT_SYMBOL(__kmalloc_track_caller); 3679 3680 #else 3681 void *__kmalloc(size_t size, gfp_t flags) 3682 { 3683 return __do_kmalloc(size, flags, NULL); 3684 } 3685 EXPORT_SYMBOL(__kmalloc); 3686 #endif 3687 3688 /** 3689 * kmem_cache_free - Deallocate an object 3690 * @cachep: The cache the allocation was from. 3691 * @objp: The previously allocated object. 3692 * 3693 * Free an object which was previously allocated from this 3694 * cache. 3695 */ 3696 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3697 { 3698 unsigned long flags; 3699 3700 local_irq_save(flags); 3701 debug_check_no_locks_freed(objp, obj_size(cachep)); 3702 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3703 debug_check_no_obj_freed(objp, obj_size(cachep)); 3704 __cache_free(cachep, objp); 3705 local_irq_restore(flags); 3706 } 3707 EXPORT_SYMBOL(kmem_cache_free); 3708 3709 /** 3710 * kfree - free previously allocated memory 3711 * @objp: pointer returned by kmalloc. 3712 * 3713 * If @objp is NULL, no operation is performed. 3714 * 3715 * Don't free memory not originally allocated by kmalloc() 3716 * or you will run into trouble. 3717 */ 3718 void kfree(const void *objp) 3719 { 3720 struct kmem_cache *c; 3721 unsigned long flags; 3722 3723 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3724 return; 3725 local_irq_save(flags); 3726 kfree_debugcheck(objp); 3727 c = virt_to_cache(objp); 3728 debug_check_no_locks_freed(objp, obj_size(c)); 3729 debug_check_no_obj_freed(objp, obj_size(c)); 3730 __cache_free(c, (void *)objp); 3731 local_irq_restore(flags); 3732 } 3733 EXPORT_SYMBOL(kfree); 3734 3735 unsigned int kmem_cache_size(struct kmem_cache *cachep) 3736 { 3737 return obj_size(cachep); 3738 } 3739 EXPORT_SYMBOL(kmem_cache_size); 3740 3741 const char *kmem_cache_name(struct kmem_cache *cachep) 3742 { 3743 return cachep->name; 3744 } 3745 EXPORT_SYMBOL_GPL(kmem_cache_name); 3746 3747 /* 3748 * This initializes kmem_list3 or resizes various caches for all nodes. 3749 */ 3750 static int alloc_kmemlist(struct kmem_cache *cachep) 3751 { 3752 int node; 3753 struct kmem_list3 *l3; 3754 struct array_cache *new_shared; 3755 struct array_cache **new_alien = NULL; 3756 3757 for_each_online_node(node) { 3758 3759 if (use_alien_caches) { 3760 new_alien = alloc_alien_cache(node, cachep->limit); 3761 if (!new_alien) 3762 goto fail; 3763 } 3764 3765 new_shared = NULL; 3766 if (cachep->shared) { 3767 new_shared = alloc_arraycache(node, 3768 cachep->shared*cachep->batchcount, 3769 0xbaadf00d); 3770 if (!new_shared) { 3771 free_alien_cache(new_alien); 3772 goto fail; 3773 } 3774 } 3775 3776 l3 = cachep->nodelists[node]; 3777 if (l3) { 3778 struct array_cache *shared = l3->shared; 3779 3780 spin_lock_irq(&l3->list_lock); 3781 3782 if (shared) 3783 free_block(cachep, shared->entry, 3784 shared->avail, node); 3785 3786 l3->shared = new_shared; 3787 if (!l3->alien) { 3788 l3->alien = new_alien; 3789 new_alien = NULL; 3790 } 3791 l3->free_limit = (1 + nr_cpus_node(node)) * 3792 cachep->batchcount + cachep->num; 3793 spin_unlock_irq(&l3->list_lock); 3794 kfree(shared); 3795 free_alien_cache(new_alien); 3796 continue; 3797 } 3798 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node); 3799 if (!l3) { 3800 free_alien_cache(new_alien); 3801 kfree(new_shared); 3802 goto fail; 3803 } 3804 3805 kmem_list3_init(l3); 3806 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 3807 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 3808 l3->shared = new_shared; 3809 l3->alien = new_alien; 3810 l3->free_limit = (1 + nr_cpus_node(node)) * 3811 cachep->batchcount + cachep->num; 3812 cachep->nodelists[node] = l3; 3813 } 3814 return 0; 3815 3816 fail: 3817 if (!cachep->next.next) { 3818 /* Cache is not active yet. Roll back what we did */ 3819 node--; 3820 while (node >= 0) { 3821 if (cachep->nodelists[node]) { 3822 l3 = cachep->nodelists[node]; 3823 3824 kfree(l3->shared); 3825 free_alien_cache(l3->alien); 3826 kfree(l3); 3827 cachep->nodelists[node] = NULL; 3828 } 3829 node--; 3830 } 3831 } 3832 return -ENOMEM; 3833 } 3834 3835 struct ccupdate_struct { 3836 struct kmem_cache *cachep; 3837 struct array_cache *new[NR_CPUS]; 3838 }; 3839 3840 static void do_ccupdate_local(void *info) 3841 { 3842 struct ccupdate_struct *new = info; 3843 struct array_cache *old; 3844 3845 check_irq_off(); 3846 old = cpu_cache_get(new->cachep); 3847 3848 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 3849 new->new[smp_processor_id()] = old; 3850 } 3851 3852 /* Always called with the cache_chain_mutex held */ 3853 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3854 int batchcount, int shared) 3855 { 3856 struct ccupdate_struct *new; 3857 int i; 3858 3859 new = kzalloc(sizeof(*new), GFP_KERNEL); 3860 if (!new) 3861 return -ENOMEM; 3862 3863 for_each_online_cpu(i) { 3864 new->new[i] = alloc_arraycache(cpu_to_node(i), limit, 3865 batchcount); 3866 if (!new->new[i]) { 3867 for (i--; i >= 0; i--) 3868 kfree(new->new[i]); 3869 kfree(new); 3870 return -ENOMEM; 3871 } 3872 } 3873 new->cachep = cachep; 3874 3875 on_each_cpu(do_ccupdate_local, (void *)new, 1); 3876 3877 check_irq_on(); 3878 cachep->batchcount = batchcount; 3879 cachep->limit = limit; 3880 cachep->shared = shared; 3881 3882 for_each_online_cpu(i) { 3883 struct array_cache *ccold = new->new[i]; 3884 if (!ccold) 3885 continue; 3886 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); 3887 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i)); 3888 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); 3889 kfree(ccold); 3890 } 3891 kfree(new); 3892 return alloc_kmemlist(cachep); 3893 } 3894 3895 /* Called with cache_chain_mutex held always */ 3896 static int enable_cpucache(struct kmem_cache *cachep) 3897 { 3898 int err; 3899 int limit, shared; 3900 3901 /* 3902 * The head array serves three purposes: 3903 * - create a LIFO ordering, i.e. return objects that are cache-warm 3904 * - reduce the number of spinlock operations. 3905 * - reduce the number of linked list operations on the slab and 3906 * bufctl chains: array operations are cheaper. 3907 * The numbers are guessed, we should auto-tune as described by 3908 * Bonwick. 3909 */ 3910 if (cachep->buffer_size > 131072) 3911 limit = 1; 3912 else if (cachep->buffer_size > PAGE_SIZE) 3913 limit = 8; 3914 else if (cachep->buffer_size > 1024) 3915 limit = 24; 3916 else if (cachep->buffer_size > 256) 3917 limit = 54; 3918 else 3919 limit = 120; 3920 3921 /* 3922 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3923 * allocation behaviour: Most allocs on one cpu, most free operations 3924 * on another cpu. For these cases, an efficient object passing between 3925 * cpus is necessary. This is provided by a shared array. The array 3926 * replaces Bonwick's magazine layer. 3927 * On uniprocessor, it's functionally equivalent (but less efficient) 3928 * to a larger limit. Thus disabled by default. 3929 */ 3930 shared = 0; 3931 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1) 3932 shared = 8; 3933 3934 #if DEBUG 3935 /* 3936 * With debugging enabled, large batchcount lead to excessively long 3937 * periods with disabled local interrupts. Limit the batchcount 3938 */ 3939 if (limit > 32) 3940 limit = 32; 3941 #endif 3942 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared); 3943 if (err) 3944 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 3945 cachep->name, -err); 3946 return err; 3947 } 3948 3949 /* 3950 * Drain an array if it contains any elements taking the l3 lock only if 3951 * necessary. Note that the l3 listlock also protects the array_cache 3952 * if drain_array() is used on the shared array. 3953 */ 3954 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 3955 struct array_cache *ac, int force, int node) 3956 { 3957 int tofree; 3958 3959 if (!ac || !ac->avail) 3960 return; 3961 if (ac->touched && !force) { 3962 ac->touched = 0; 3963 } else { 3964 spin_lock_irq(&l3->list_lock); 3965 if (ac->avail) { 3966 tofree = force ? ac->avail : (ac->limit + 4) / 5; 3967 if (tofree > ac->avail) 3968 tofree = (ac->avail + 1) / 2; 3969 free_block(cachep, ac->entry, tofree, node); 3970 ac->avail -= tofree; 3971 memmove(ac->entry, &(ac->entry[tofree]), 3972 sizeof(void *) * ac->avail); 3973 } 3974 spin_unlock_irq(&l3->list_lock); 3975 } 3976 } 3977 3978 /** 3979 * cache_reap - Reclaim memory from caches. 3980 * @w: work descriptor 3981 * 3982 * Called from workqueue/eventd every few seconds. 3983 * Purpose: 3984 * - clear the per-cpu caches for this CPU. 3985 * - return freeable pages to the main free memory pool. 3986 * 3987 * If we cannot acquire the cache chain mutex then just give up - we'll try 3988 * again on the next iteration. 3989 */ 3990 static void cache_reap(struct work_struct *w) 3991 { 3992 struct kmem_cache *searchp; 3993 struct kmem_list3 *l3; 3994 int node = numa_node_id(); 3995 struct delayed_work *work = 3996 container_of(w, struct delayed_work, work); 3997 3998 if (!mutex_trylock(&cache_chain_mutex)) 3999 /* Give up. Setup the next iteration. */ 4000 goto out; 4001 4002 list_for_each_entry(searchp, &cache_chain, next) { 4003 check_irq_on(); 4004 4005 /* 4006 * We only take the l3 lock if absolutely necessary and we 4007 * have established with reasonable certainty that 4008 * we can do some work if the lock was obtained. 4009 */ 4010 l3 = searchp->nodelists[node]; 4011 4012 reap_alien(searchp, l3); 4013 4014 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); 4015 4016 /* 4017 * These are racy checks but it does not matter 4018 * if we skip one check or scan twice. 4019 */ 4020 if (time_after(l3->next_reap, jiffies)) 4021 goto next; 4022 4023 l3->next_reap = jiffies + REAPTIMEOUT_LIST3; 4024 4025 drain_array(searchp, l3, l3->shared, 0, node); 4026 4027 if (l3->free_touched) 4028 l3->free_touched = 0; 4029 else { 4030 int freed; 4031 4032 freed = drain_freelist(searchp, l3, (l3->free_limit + 4033 5 * searchp->num - 1) / (5 * searchp->num)); 4034 STATS_ADD_REAPED(searchp, freed); 4035 } 4036 next: 4037 cond_resched(); 4038 } 4039 check_irq_on(); 4040 mutex_unlock(&cache_chain_mutex); 4041 next_reap_node(); 4042 out: 4043 /* Set up the next iteration */ 4044 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); 4045 } 4046 4047 #ifdef CONFIG_SLABINFO 4048 4049 static void print_slabinfo_header(struct seq_file *m) 4050 { 4051 /* 4052 * Output format version, so at least we can change it 4053 * without _too_ many complaints. 4054 */ 4055 #if STATS 4056 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 4057 #else 4058 seq_puts(m, "slabinfo - version: 2.1\n"); 4059 #endif 4060 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4061 "<objperslab> <pagesperslab>"); 4062 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4063 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4064 #if STATS 4065 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " 4066 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 4067 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 4068 #endif 4069 seq_putc(m, '\n'); 4070 } 4071 4072 static void *s_start(struct seq_file *m, loff_t *pos) 4073 { 4074 loff_t n = *pos; 4075 4076 mutex_lock(&cache_chain_mutex); 4077 if (!n) 4078 print_slabinfo_header(m); 4079 4080 return seq_list_start(&cache_chain, *pos); 4081 } 4082 4083 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4084 { 4085 return seq_list_next(p, &cache_chain, pos); 4086 } 4087 4088 static void s_stop(struct seq_file *m, void *p) 4089 { 4090 mutex_unlock(&cache_chain_mutex); 4091 } 4092 4093 static int s_show(struct seq_file *m, void *p) 4094 { 4095 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4096 struct slab *slabp; 4097 unsigned long active_objs; 4098 unsigned long num_objs; 4099 unsigned long active_slabs = 0; 4100 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4101 const char *name; 4102 char *error = NULL; 4103 int node; 4104 struct kmem_list3 *l3; 4105 4106 active_objs = 0; 4107 num_slabs = 0; 4108 for_each_online_node(node) { 4109 l3 = cachep->nodelists[node]; 4110 if (!l3) 4111 continue; 4112 4113 check_irq_on(); 4114 spin_lock_irq(&l3->list_lock); 4115 4116 list_for_each_entry(slabp, &l3->slabs_full, list) { 4117 if (slabp->inuse != cachep->num && !error) 4118 error = "slabs_full accounting error"; 4119 active_objs += cachep->num; 4120 active_slabs++; 4121 } 4122 list_for_each_entry(slabp, &l3->slabs_partial, list) { 4123 if (slabp->inuse == cachep->num && !error) 4124 error = "slabs_partial inuse accounting error"; 4125 if (!slabp->inuse && !error) 4126 error = "slabs_partial/inuse accounting error"; 4127 active_objs += slabp->inuse; 4128 active_slabs++; 4129 } 4130 list_for_each_entry(slabp, &l3->slabs_free, list) { 4131 if (slabp->inuse && !error) 4132 error = "slabs_free/inuse accounting error"; 4133 num_slabs++; 4134 } 4135 free_objects += l3->free_objects; 4136 if (l3->shared) 4137 shared_avail += l3->shared->avail; 4138 4139 spin_unlock_irq(&l3->list_lock); 4140 } 4141 num_slabs += active_slabs; 4142 num_objs = num_slabs * cachep->num; 4143 if (num_objs - active_objs != free_objects && !error) 4144 error = "free_objects accounting error"; 4145 4146 name = cachep->name; 4147 if (error) 4148 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 4149 4150 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 4151 name, active_objs, num_objs, cachep->buffer_size, 4152 cachep->num, (1 << cachep->gfporder)); 4153 seq_printf(m, " : tunables %4u %4u %4u", 4154 cachep->limit, cachep->batchcount, cachep->shared); 4155 seq_printf(m, " : slabdata %6lu %6lu %6lu", 4156 active_slabs, num_slabs, shared_avail); 4157 #if STATS 4158 { /* list3 stats */ 4159 unsigned long high = cachep->high_mark; 4160 unsigned long allocs = cachep->num_allocations; 4161 unsigned long grown = cachep->grown; 4162 unsigned long reaped = cachep->reaped; 4163 unsigned long errors = cachep->errors; 4164 unsigned long max_freeable = cachep->max_freeable; 4165 unsigned long node_allocs = cachep->node_allocs; 4166 unsigned long node_frees = cachep->node_frees; 4167 unsigned long overflows = cachep->node_overflow; 4168 4169 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ 4170 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown, 4171 reaped, errors, max_freeable, node_allocs, 4172 node_frees, overflows); 4173 } 4174 /* cpu stats */ 4175 { 4176 unsigned long allochit = atomic_read(&cachep->allochit); 4177 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4178 unsigned long freehit = atomic_read(&cachep->freehit); 4179 unsigned long freemiss = atomic_read(&cachep->freemiss); 4180 4181 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4182 allochit, allocmiss, freehit, freemiss); 4183 } 4184 #endif 4185 seq_putc(m, '\n'); 4186 return 0; 4187 } 4188 4189 /* 4190 * slabinfo_op - iterator that generates /proc/slabinfo 4191 * 4192 * Output layout: 4193 * cache-name 4194 * num-active-objs 4195 * total-objs 4196 * object size 4197 * num-active-slabs 4198 * total-slabs 4199 * num-pages-per-slab 4200 * + further values on SMP and with statistics enabled 4201 */ 4202 4203 static const struct seq_operations slabinfo_op = { 4204 .start = s_start, 4205 .next = s_next, 4206 .stop = s_stop, 4207 .show = s_show, 4208 }; 4209 4210 #define MAX_SLABINFO_WRITE 128 4211 /** 4212 * slabinfo_write - Tuning for the slab allocator 4213 * @file: unused 4214 * @buffer: user buffer 4215 * @count: data length 4216 * @ppos: unused 4217 */ 4218 ssize_t slabinfo_write(struct file *file, const char __user * buffer, 4219 size_t count, loff_t *ppos) 4220 { 4221 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4222 int limit, batchcount, shared, res; 4223 struct kmem_cache *cachep; 4224 4225 if (count > MAX_SLABINFO_WRITE) 4226 return -EINVAL; 4227 if (copy_from_user(&kbuf, buffer, count)) 4228 return -EFAULT; 4229 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4230 4231 tmp = strchr(kbuf, ' '); 4232 if (!tmp) 4233 return -EINVAL; 4234 *tmp = '\0'; 4235 tmp++; 4236 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4237 return -EINVAL; 4238 4239 /* Find the cache in the chain of caches. */ 4240 mutex_lock(&cache_chain_mutex); 4241 res = -EINVAL; 4242 list_for_each_entry(cachep, &cache_chain, next) { 4243 if (!strcmp(cachep->name, kbuf)) { 4244 if (limit < 1 || batchcount < 1 || 4245 batchcount > limit || shared < 0) { 4246 res = 0; 4247 } else { 4248 res = do_tune_cpucache(cachep, limit, 4249 batchcount, shared); 4250 } 4251 break; 4252 } 4253 } 4254 mutex_unlock(&cache_chain_mutex); 4255 if (res >= 0) 4256 res = count; 4257 return res; 4258 } 4259 4260 static int slabinfo_open(struct inode *inode, struct file *file) 4261 { 4262 return seq_open(file, &slabinfo_op); 4263 } 4264 4265 static const struct file_operations proc_slabinfo_operations = { 4266 .open = slabinfo_open, 4267 .read = seq_read, 4268 .write = slabinfo_write, 4269 .llseek = seq_lseek, 4270 .release = seq_release, 4271 }; 4272 4273 #ifdef CONFIG_DEBUG_SLAB_LEAK 4274 4275 static void *leaks_start(struct seq_file *m, loff_t *pos) 4276 { 4277 mutex_lock(&cache_chain_mutex); 4278 return seq_list_start(&cache_chain, *pos); 4279 } 4280 4281 static inline int add_caller(unsigned long *n, unsigned long v) 4282 { 4283 unsigned long *p; 4284 int l; 4285 if (!v) 4286 return 1; 4287 l = n[1]; 4288 p = n + 2; 4289 while (l) { 4290 int i = l/2; 4291 unsigned long *q = p + 2 * i; 4292 if (*q == v) { 4293 q[1]++; 4294 return 1; 4295 } 4296 if (*q > v) { 4297 l = i; 4298 } else { 4299 p = q + 2; 4300 l -= i + 1; 4301 } 4302 } 4303 if (++n[1] == n[0]) 4304 return 0; 4305 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4306 p[0] = v; 4307 p[1] = 1; 4308 return 1; 4309 } 4310 4311 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) 4312 { 4313 void *p; 4314 int i; 4315 if (n[0] == n[1]) 4316 return; 4317 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { 4318 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) 4319 continue; 4320 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4321 return; 4322 } 4323 } 4324 4325 static void show_symbol(struct seq_file *m, unsigned long address) 4326 { 4327 #ifdef CONFIG_KALLSYMS 4328 unsigned long offset, size; 4329 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4330 4331 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4332 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4333 if (modname[0]) 4334 seq_printf(m, " [%s]", modname); 4335 return; 4336 } 4337 #endif 4338 seq_printf(m, "%p", (void *)address); 4339 } 4340 4341 static int leaks_show(struct seq_file *m, void *p) 4342 { 4343 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4344 struct slab *slabp; 4345 struct kmem_list3 *l3; 4346 const char *name; 4347 unsigned long *n = m->private; 4348 int node; 4349 int i; 4350 4351 if (!(cachep->flags & SLAB_STORE_USER)) 4352 return 0; 4353 if (!(cachep->flags & SLAB_RED_ZONE)) 4354 return 0; 4355 4356 /* OK, we can do it */ 4357 4358 n[1] = 0; 4359 4360 for_each_online_node(node) { 4361 l3 = cachep->nodelists[node]; 4362 if (!l3) 4363 continue; 4364 4365 check_irq_on(); 4366 spin_lock_irq(&l3->list_lock); 4367 4368 list_for_each_entry(slabp, &l3->slabs_full, list) 4369 handle_slab(n, cachep, slabp); 4370 list_for_each_entry(slabp, &l3->slabs_partial, list) 4371 handle_slab(n, cachep, slabp); 4372 spin_unlock_irq(&l3->list_lock); 4373 } 4374 name = cachep->name; 4375 if (n[0] == n[1]) { 4376 /* Increase the buffer size */ 4377 mutex_unlock(&cache_chain_mutex); 4378 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4379 if (!m->private) { 4380 /* Too bad, we are really out */ 4381 m->private = n; 4382 mutex_lock(&cache_chain_mutex); 4383 return -ENOMEM; 4384 } 4385 *(unsigned long *)m->private = n[0] * 2; 4386 kfree(n); 4387 mutex_lock(&cache_chain_mutex); 4388 /* Now make sure this entry will be retried */ 4389 m->count = m->size; 4390 return 0; 4391 } 4392 for (i = 0; i < n[1]; i++) { 4393 seq_printf(m, "%s: %lu ", name, n[2*i+3]); 4394 show_symbol(m, n[2*i+2]); 4395 seq_putc(m, '\n'); 4396 } 4397 4398 return 0; 4399 } 4400 4401 static const struct seq_operations slabstats_op = { 4402 .start = leaks_start, 4403 .next = s_next, 4404 .stop = s_stop, 4405 .show = leaks_show, 4406 }; 4407 4408 static int slabstats_open(struct inode *inode, struct file *file) 4409 { 4410 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); 4411 int ret = -ENOMEM; 4412 if (n) { 4413 ret = seq_open(file, &slabstats_op); 4414 if (!ret) { 4415 struct seq_file *m = file->private_data; 4416 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4417 m->private = n; 4418 n = NULL; 4419 } 4420 kfree(n); 4421 } 4422 return ret; 4423 } 4424 4425 static const struct file_operations proc_slabstats_operations = { 4426 .open = slabstats_open, 4427 .read = seq_read, 4428 .llseek = seq_lseek, 4429 .release = seq_release_private, 4430 }; 4431 #endif 4432 4433 static int __init slab_proc_init(void) 4434 { 4435 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); 4436 #ifdef CONFIG_DEBUG_SLAB_LEAK 4437 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4438 #endif 4439 return 0; 4440 } 4441 module_init(slab_proc_init); 4442 #endif 4443 4444 /** 4445 * ksize - get the actual amount of memory allocated for a given object 4446 * @objp: Pointer to the object 4447 * 4448 * kmalloc may internally round up allocations and return more memory 4449 * than requested. ksize() can be used to determine the actual amount of 4450 * memory allocated. The caller may use this additional memory, even though 4451 * a smaller amount of memory was initially specified with the kmalloc call. 4452 * The caller must guarantee that objp points to a valid object previously 4453 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4454 * must not be freed during the duration of the call. 4455 */ 4456 size_t ksize(const void *objp) 4457 { 4458 BUG_ON(!objp); 4459 if (unlikely(objp == ZERO_SIZE_PTR)) 4460 return 0; 4461 4462 return obj_size(virt_to_cache(objp)); 4463 } 4464 EXPORT_SYMBOL(ksize); 4465