1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/cpu.h> 104 #include <linux/sysctl.h> 105 #include <linux/module.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/kmemcheck.h> 118 #include <linux/memory.h> 119 #include <linux/prefetch.h> 120 #include <linux/sched/task_stack.h> 121 122 #include <net/sock.h> 123 124 #include <asm/cacheflush.h> 125 #include <asm/tlbflush.h> 126 #include <asm/page.h> 127 128 #include <trace/events/kmem.h> 129 130 #include "internal.h" 131 132 #include "slab.h" 133 134 /* 135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 136 * 0 for faster, smaller code (especially in the critical paths). 137 * 138 * STATS - 1 to collect stats for /proc/slabinfo. 139 * 0 for faster, smaller code (especially in the critical paths). 140 * 141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 142 */ 143 144 #ifdef CONFIG_DEBUG_SLAB 145 #define DEBUG 1 146 #define STATS 1 147 #define FORCED_DEBUG 1 148 #else 149 #define DEBUG 0 150 #define STATS 0 151 #define FORCED_DEBUG 0 152 #endif 153 154 /* Shouldn't this be in a header file somewhere? */ 155 #define BYTES_PER_WORD sizeof(void *) 156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 157 158 #ifndef ARCH_KMALLOC_FLAGS 159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 160 #endif 161 162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 164 165 #if FREELIST_BYTE_INDEX 166 typedef unsigned char freelist_idx_t; 167 #else 168 typedef unsigned short freelist_idx_t; 169 #endif 170 171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 172 173 /* 174 * struct array_cache 175 * 176 * Purpose: 177 * - LIFO ordering, to hand out cache-warm objects from _alloc 178 * - reduce the number of linked list operations 179 * - reduce spinlock operations 180 * 181 * The limit is stored in the per-cpu structure to reduce the data cache 182 * footprint. 183 * 184 */ 185 struct array_cache { 186 unsigned int avail; 187 unsigned int limit; 188 unsigned int batchcount; 189 unsigned int touched; 190 void *entry[]; /* 191 * Must have this definition in here for the proper 192 * alignment of array_cache. Also simplifies accessing 193 * the entries. 194 */ 195 }; 196 197 struct alien_cache { 198 spinlock_t lock; 199 struct array_cache ac; 200 }; 201 202 /* 203 * Need this for bootstrapping a per node allocator. 204 */ 205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 207 #define CACHE_CACHE 0 208 #define SIZE_NODE (MAX_NUMNODES) 209 210 static int drain_freelist(struct kmem_cache *cache, 211 struct kmem_cache_node *n, int tofree); 212 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 213 int node, struct list_head *list); 214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 216 static void cache_reap(struct work_struct *unused); 217 218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 219 void **list); 220 static inline void fixup_slab_list(struct kmem_cache *cachep, 221 struct kmem_cache_node *n, struct page *page, 222 void **list); 223 static int slab_early_init = 1; 224 225 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 226 227 static void kmem_cache_node_init(struct kmem_cache_node *parent) 228 { 229 INIT_LIST_HEAD(&parent->slabs_full); 230 INIT_LIST_HEAD(&parent->slabs_partial); 231 INIT_LIST_HEAD(&parent->slabs_free); 232 parent->total_slabs = 0; 233 parent->free_slabs = 0; 234 parent->shared = NULL; 235 parent->alien = NULL; 236 parent->colour_next = 0; 237 spin_lock_init(&parent->list_lock); 238 parent->free_objects = 0; 239 parent->free_touched = 0; 240 } 241 242 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 243 do { \ 244 INIT_LIST_HEAD(listp); \ 245 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 246 } while (0) 247 248 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 249 do { \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 253 } while (0) 254 255 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL) 256 #define CFLGS_OFF_SLAB (0x80000000UL) 257 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 258 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 259 260 #define BATCHREFILL_LIMIT 16 261 /* 262 * Optimization question: fewer reaps means less probability for unnessary 263 * cpucache drain/refill cycles. 264 * 265 * OTOH the cpuarrays can contain lots of objects, 266 * which could lock up otherwise freeable slabs. 267 */ 268 #define REAPTIMEOUT_AC (2*HZ) 269 #define REAPTIMEOUT_NODE (4*HZ) 270 271 #if STATS 272 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 273 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 274 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 275 #define STATS_INC_GROWN(x) ((x)->grown++) 276 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 277 #define STATS_SET_HIGH(x) \ 278 do { \ 279 if ((x)->num_active > (x)->high_mark) \ 280 (x)->high_mark = (x)->num_active; \ 281 } while (0) 282 #define STATS_INC_ERR(x) ((x)->errors++) 283 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 284 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 285 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 286 #define STATS_SET_FREEABLE(x, i) \ 287 do { \ 288 if ((x)->max_freeable < i) \ 289 (x)->max_freeable = i; \ 290 } while (0) 291 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 292 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 293 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 294 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 295 #else 296 #define STATS_INC_ACTIVE(x) do { } while (0) 297 #define STATS_DEC_ACTIVE(x) do { } while (0) 298 #define STATS_INC_ALLOCED(x) do { } while (0) 299 #define STATS_INC_GROWN(x) do { } while (0) 300 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 301 #define STATS_SET_HIGH(x) do { } while (0) 302 #define STATS_INC_ERR(x) do { } while (0) 303 #define STATS_INC_NODEALLOCS(x) do { } while (0) 304 #define STATS_INC_NODEFREES(x) do { } while (0) 305 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 306 #define STATS_SET_FREEABLE(x, i) do { } while (0) 307 #define STATS_INC_ALLOCHIT(x) do { } while (0) 308 #define STATS_INC_ALLOCMISS(x) do { } while (0) 309 #define STATS_INC_FREEHIT(x) do { } while (0) 310 #define STATS_INC_FREEMISS(x) do { } while (0) 311 #endif 312 313 #if DEBUG 314 315 /* 316 * memory layout of objects: 317 * 0 : objp 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 319 * the end of an object is aligned with the end of the real 320 * allocation. Catches writes behind the end of the allocation. 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 322 * redzone word. 323 * cachep->obj_offset: The real object. 324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 325 * cachep->size - 1* BYTES_PER_WORD: last caller address 326 * [BYTES_PER_WORD long] 327 */ 328 static int obj_offset(struct kmem_cache *cachep) 329 { 330 return cachep->obj_offset; 331 } 332 333 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 334 { 335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 336 return (unsigned long long*) (objp + obj_offset(cachep) - 337 sizeof(unsigned long long)); 338 } 339 340 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 341 { 342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 343 if (cachep->flags & SLAB_STORE_USER) 344 return (unsigned long long *)(objp + cachep->size - 345 sizeof(unsigned long long) - 346 REDZONE_ALIGN); 347 return (unsigned long long *) (objp + cachep->size - 348 sizeof(unsigned long long)); 349 } 350 351 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 352 { 353 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 354 return (void **)(objp + cachep->size - BYTES_PER_WORD); 355 } 356 357 #else 358 359 #define obj_offset(x) 0 360 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 362 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 363 364 #endif 365 366 #ifdef CONFIG_DEBUG_SLAB_LEAK 367 368 static inline bool is_store_user_clean(struct kmem_cache *cachep) 369 { 370 return atomic_read(&cachep->store_user_clean) == 1; 371 } 372 373 static inline void set_store_user_clean(struct kmem_cache *cachep) 374 { 375 atomic_set(&cachep->store_user_clean, 1); 376 } 377 378 static inline void set_store_user_dirty(struct kmem_cache *cachep) 379 { 380 if (is_store_user_clean(cachep)) 381 atomic_set(&cachep->store_user_clean, 0); 382 } 383 384 #else 385 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 386 387 #endif 388 389 /* 390 * Do not go above this order unless 0 objects fit into the slab or 391 * overridden on the command line. 392 */ 393 #define SLAB_MAX_ORDER_HI 1 394 #define SLAB_MAX_ORDER_LO 0 395 static int slab_max_order = SLAB_MAX_ORDER_LO; 396 static bool slab_max_order_set __initdata; 397 398 static inline struct kmem_cache *virt_to_cache(const void *obj) 399 { 400 struct page *page = virt_to_head_page(obj); 401 return page->slab_cache; 402 } 403 404 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 405 unsigned int idx) 406 { 407 return page->s_mem + cache->size * idx; 408 } 409 410 /* 411 * We want to avoid an expensive divide : (offset / cache->size) 412 * Using the fact that size is a constant for a particular cache, 413 * we can replace (offset / cache->size) by 414 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 415 */ 416 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 417 const struct page *page, void *obj) 418 { 419 u32 offset = (obj - page->s_mem); 420 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 421 } 422 423 #define BOOT_CPUCACHE_ENTRIES 1 424 /* internal cache of cache description objs */ 425 static struct kmem_cache kmem_cache_boot = { 426 .batchcount = 1, 427 .limit = BOOT_CPUCACHE_ENTRIES, 428 .shared = 1, 429 .size = sizeof(struct kmem_cache), 430 .name = "kmem_cache", 431 }; 432 433 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 434 435 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 436 { 437 return this_cpu_ptr(cachep->cpu_cache); 438 } 439 440 /* 441 * Calculate the number of objects and left-over bytes for a given buffer size. 442 */ 443 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 444 unsigned long flags, size_t *left_over) 445 { 446 unsigned int num; 447 size_t slab_size = PAGE_SIZE << gfporder; 448 449 /* 450 * The slab management structure can be either off the slab or 451 * on it. For the latter case, the memory allocated for a 452 * slab is used for: 453 * 454 * - @buffer_size bytes for each object 455 * - One freelist_idx_t for each object 456 * 457 * We don't need to consider alignment of freelist because 458 * freelist will be at the end of slab page. The objects will be 459 * at the correct alignment. 460 * 461 * If the slab management structure is off the slab, then the 462 * alignment will already be calculated into the size. Because 463 * the slabs are all pages aligned, the objects will be at the 464 * correct alignment when allocated. 465 */ 466 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 467 num = slab_size / buffer_size; 468 *left_over = slab_size % buffer_size; 469 } else { 470 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 471 *left_over = slab_size % 472 (buffer_size + sizeof(freelist_idx_t)); 473 } 474 475 return num; 476 } 477 478 #if DEBUG 479 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 480 481 static void __slab_error(const char *function, struct kmem_cache *cachep, 482 char *msg) 483 { 484 pr_err("slab error in %s(): cache `%s': %s\n", 485 function, cachep->name, msg); 486 dump_stack(); 487 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 488 } 489 #endif 490 491 /* 492 * By default on NUMA we use alien caches to stage the freeing of 493 * objects allocated from other nodes. This causes massive memory 494 * inefficiencies when using fake NUMA setup to split memory into a 495 * large number of small nodes, so it can be disabled on the command 496 * line 497 */ 498 499 static int use_alien_caches __read_mostly = 1; 500 static int __init noaliencache_setup(char *s) 501 { 502 use_alien_caches = 0; 503 return 1; 504 } 505 __setup("noaliencache", noaliencache_setup); 506 507 static int __init slab_max_order_setup(char *str) 508 { 509 get_option(&str, &slab_max_order); 510 slab_max_order = slab_max_order < 0 ? 0 : 511 min(slab_max_order, MAX_ORDER - 1); 512 slab_max_order_set = true; 513 514 return 1; 515 } 516 __setup("slab_max_order=", slab_max_order_setup); 517 518 #ifdef CONFIG_NUMA 519 /* 520 * Special reaping functions for NUMA systems called from cache_reap(). 521 * These take care of doing round robin flushing of alien caches (containing 522 * objects freed on different nodes from which they were allocated) and the 523 * flushing of remote pcps by calling drain_node_pages. 524 */ 525 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 526 527 static void init_reap_node(int cpu) 528 { 529 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 530 node_online_map); 531 } 532 533 static void next_reap_node(void) 534 { 535 int node = __this_cpu_read(slab_reap_node); 536 537 node = next_node_in(node, node_online_map); 538 __this_cpu_write(slab_reap_node, node); 539 } 540 541 #else 542 #define init_reap_node(cpu) do { } while (0) 543 #define next_reap_node(void) do { } while (0) 544 #endif 545 546 /* 547 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 548 * via the workqueue/eventd. 549 * Add the CPU number into the expiration time to minimize the possibility of 550 * the CPUs getting into lockstep and contending for the global cache chain 551 * lock. 552 */ 553 static void start_cpu_timer(int cpu) 554 { 555 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 556 557 if (reap_work->work.func == NULL) { 558 init_reap_node(cpu); 559 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 560 schedule_delayed_work_on(cpu, reap_work, 561 __round_jiffies_relative(HZ, cpu)); 562 } 563 } 564 565 static void init_arraycache(struct array_cache *ac, int limit, int batch) 566 { 567 /* 568 * The array_cache structures contain pointers to free object. 569 * However, when such objects are allocated or transferred to another 570 * cache the pointers are not cleared and they could be counted as 571 * valid references during a kmemleak scan. Therefore, kmemleak must 572 * not scan such objects. 573 */ 574 kmemleak_no_scan(ac); 575 if (ac) { 576 ac->avail = 0; 577 ac->limit = limit; 578 ac->batchcount = batch; 579 ac->touched = 0; 580 } 581 } 582 583 static struct array_cache *alloc_arraycache(int node, int entries, 584 int batchcount, gfp_t gfp) 585 { 586 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 587 struct array_cache *ac = NULL; 588 589 ac = kmalloc_node(memsize, gfp, node); 590 init_arraycache(ac, entries, batchcount); 591 return ac; 592 } 593 594 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 595 struct page *page, void *objp) 596 { 597 struct kmem_cache_node *n; 598 int page_node; 599 LIST_HEAD(list); 600 601 page_node = page_to_nid(page); 602 n = get_node(cachep, page_node); 603 604 spin_lock(&n->list_lock); 605 free_block(cachep, &objp, 1, page_node, &list); 606 spin_unlock(&n->list_lock); 607 608 slabs_destroy(cachep, &list); 609 } 610 611 /* 612 * Transfer objects in one arraycache to another. 613 * Locking must be handled by the caller. 614 * 615 * Return the number of entries transferred. 616 */ 617 static int transfer_objects(struct array_cache *to, 618 struct array_cache *from, unsigned int max) 619 { 620 /* Figure out how many entries to transfer */ 621 int nr = min3(from->avail, max, to->limit - to->avail); 622 623 if (!nr) 624 return 0; 625 626 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 627 sizeof(void *) *nr); 628 629 from->avail -= nr; 630 to->avail += nr; 631 return nr; 632 } 633 634 #ifndef CONFIG_NUMA 635 636 #define drain_alien_cache(cachep, alien) do { } while (0) 637 #define reap_alien(cachep, n) do { } while (0) 638 639 static inline struct alien_cache **alloc_alien_cache(int node, 640 int limit, gfp_t gfp) 641 { 642 return NULL; 643 } 644 645 static inline void free_alien_cache(struct alien_cache **ac_ptr) 646 { 647 } 648 649 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 650 { 651 return 0; 652 } 653 654 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 655 gfp_t flags) 656 { 657 return NULL; 658 } 659 660 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 661 gfp_t flags, int nodeid) 662 { 663 return NULL; 664 } 665 666 static inline gfp_t gfp_exact_node(gfp_t flags) 667 { 668 return flags & ~__GFP_NOFAIL; 669 } 670 671 #else /* CONFIG_NUMA */ 672 673 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 674 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 675 676 static struct alien_cache *__alloc_alien_cache(int node, int entries, 677 int batch, gfp_t gfp) 678 { 679 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 680 struct alien_cache *alc = NULL; 681 682 alc = kmalloc_node(memsize, gfp, node); 683 init_arraycache(&alc->ac, entries, batch); 684 spin_lock_init(&alc->lock); 685 return alc; 686 } 687 688 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 689 { 690 struct alien_cache **alc_ptr; 691 size_t memsize = sizeof(void *) * nr_node_ids; 692 int i; 693 694 if (limit > 1) 695 limit = 12; 696 alc_ptr = kzalloc_node(memsize, gfp, node); 697 if (!alc_ptr) 698 return NULL; 699 700 for_each_node(i) { 701 if (i == node || !node_online(i)) 702 continue; 703 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 704 if (!alc_ptr[i]) { 705 for (i--; i >= 0; i--) 706 kfree(alc_ptr[i]); 707 kfree(alc_ptr); 708 return NULL; 709 } 710 } 711 return alc_ptr; 712 } 713 714 static void free_alien_cache(struct alien_cache **alc_ptr) 715 { 716 int i; 717 718 if (!alc_ptr) 719 return; 720 for_each_node(i) 721 kfree(alc_ptr[i]); 722 kfree(alc_ptr); 723 } 724 725 static void __drain_alien_cache(struct kmem_cache *cachep, 726 struct array_cache *ac, int node, 727 struct list_head *list) 728 { 729 struct kmem_cache_node *n = get_node(cachep, node); 730 731 if (ac->avail) { 732 spin_lock(&n->list_lock); 733 /* 734 * Stuff objects into the remote nodes shared array first. 735 * That way we could avoid the overhead of putting the objects 736 * into the free lists and getting them back later. 737 */ 738 if (n->shared) 739 transfer_objects(n->shared, ac, ac->limit); 740 741 free_block(cachep, ac->entry, ac->avail, node, list); 742 ac->avail = 0; 743 spin_unlock(&n->list_lock); 744 } 745 } 746 747 /* 748 * Called from cache_reap() to regularly drain alien caches round robin. 749 */ 750 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 751 { 752 int node = __this_cpu_read(slab_reap_node); 753 754 if (n->alien) { 755 struct alien_cache *alc = n->alien[node]; 756 struct array_cache *ac; 757 758 if (alc) { 759 ac = &alc->ac; 760 if (ac->avail && spin_trylock_irq(&alc->lock)) { 761 LIST_HEAD(list); 762 763 __drain_alien_cache(cachep, ac, node, &list); 764 spin_unlock_irq(&alc->lock); 765 slabs_destroy(cachep, &list); 766 } 767 } 768 } 769 } 770 771 static void drain_alien_cache(struct kmem_cache *cachep, 772 struct alien_cache **alien) 773 { 774 int i = 0; 775 struct alien_cache *alc; 776 struct array_cache *ac; 777 unsigned long flags; 778 779 for_each_online_node(i) { 780 alc = alien[i]; 781 if (alc) { 782 LIST_HEAD(list); 783 784 ac = &alc->ac; 785 spin_lock_irqsave(&alc->lock, flags); 786 __drain_alien_cache(cachep, ac, i, &list); 787 spin_unlock_irqrestore(&alc->lock, flags); 788 slabs_destroy(cachep, &list); 789 } 790 } 791 } 792 793 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 794 int node, int page_node) 795 { 796 struct kmem_cache_node *n; 797 struct alien_cache *alien = NULL; 798 struct array_cache *ac; 799 LIST_HEAD(list); 800 801 n = get_node(cachep, node); 802 STATS_INC_NODEFREES(cachep); 803 if (n->alien && n->alien[page_node]) { 804 alien = n->alien[page_node]; 805 ac = &alien->ac; 806 spin_lock(&alien->lock); 807 if (unlikely(ac->avail == ac->limit)) { 808 STATS_INC_ACOVERFLOW(cachep); 809 __drain_alien_cache(cachep, ac, page_node, &list); 810 } 811 ac->entry[ac->avail++] = objp; 812 spin_unlock(&alien->lock); 813 slabs_destroy(cachep, &list); 814 } else { 815 n = get_node(cachep, page_node); 816 spin_lock(&n->list_lock); 817 free_block(cachep, &objp, 1, page_node, &list); 818 spin_unlock(&n->list_lock); 819 slabs_destroy(cachep, &list); 820 } 821 return 1; 822 } 823 824 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 825 { 826 int page_node = page_to_nid(virt_to_page(objp)); 827 int node = numa_mem_id(); 828 /* 829 * Make sure we are not freeing a object from another node to the array 830 * cache on this cpu. 831 */ 832 if (likely(node == page_node)) 833 return 0; 834 835 return __cache_free_alien(cachep, objp, node, page_node); 836 } 837 838 /* 839 * Construct gfp mask to allocate from a specific node but do not reclaim or 840 * warn about failures. 841 */ 842 static inline gfp_t gfp_exact_node(gfp_t flags) 843 { 844 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 845 } 846 #endif 847 848 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 849 { 850 struct kmem_cache_node *n; 851 852 /* 853 * Set up the kmem_cache_node for cpu before we can 854 * begin anything. Make sure some other cpu on this 855 * node has not already allocated this 856 */ 857 n = get_node(cachep, node); 858 if (n) { 859 spin_lock_irq(&n->list_lock); 860 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 861 cachep->num; 862 spin_unlock_irq(&n->list_lock); 863 864 return 0; 865 } 866 867 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 868 if (!n) 869 return -ENOMEM; 870 871 kmem_cache_node_init(n); 872 n->next_reap = jiffies + REAPTIMEOUT_NODE + 873 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 874 875 n->free_limit = 876 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 877 878 /* 879 * The kmem_cache_nodes don't come and go as CPUs 880 * come and go. slab_mutex is sufficient 881 * protection here. 882 */ 883 cachep->node[node] = n; 884 885 return 0; 886 } 887 888 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 889 /* 890 * Allocates and initializes node for a node on each slab cache, used for 891 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 892 * will be allocated off-node since memory is not yet online for the new node. 893 * When hotplugging memory or a cpu, existing node are not replaced if 894 * already in use. 895 * 896 * Must hold slab_mutex. 897 */ 898 static int init_cache_node_node(int node) 899 { 900 int ret; 901 struct kmem_cache *cachep; 902 903 list_for_each_entry(cachep, &slab_caches, list) { 904 ret = init_cache_node(cachep, node, GFP_KERNEL); 905 if (ret) 906 return ret; 907 } 908 909 return 0; 910 } 911 #endif 912 913 static int setup_kmem_cache_node(struct kmem_cache *cachep, 914 int node, gfp_t gfp, bool force_change) 915 { 916 int ret = -ENOMEM; 917 struct kmem_cache_node *n; 918 struct array_cache *old_shared = NULL; 919 struct array_cache *new_shared = NULL; 920 struct alien_cache **new_alien = NULL; 921 LIST_HEAD(list); 922 923 if (use_alien_caches) { 924 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 925 if (!new_alien) 926 goto fail; 927 } 928 929 if (cachep->shared) { 930 new_shared = alloc_arraycache(node, 931 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 932 if (!new_shared) 933 goto fail; 934 } 935 936 ret = init_cache_node(cachep, node, gfp); 937 if (ret) 938 goto fail; 939 940 n = get_node(cachep, node); 941 spin_lock_irq(&n->list_lock); 942 if (n->shared && force_change) { 943 free_block(cachep, n->shared->entry, 944 n->shared->avail, node, &list); 945 n->shared->avail = 0; 946 } 947 948 if (!n->shared || force_change) { 949 old_shared = n->shared; 950 n->shared = new_shared; 951 new_shared = NULL; 952 } 953 954 if (!n->alien) { 955 n->alien = new_alien; 956 new_alien = NULL; 957 } 958 959 spin_unlock_irq(&n->list_lock); 960 slabs_destroy(cachep, &list); 961 962 /* 963 * To protect lockless access to n->shared during irq disabled context. 964 * If n->shared isn't NULL in irq disabled context, accessing to it is 965 * guaranteed to be valid until irq is re-enabled, because it will be 966 * freed after synchronize_sched(). 967 */ 968 if (old_shared && force_change) 969 synchronize_sched(); 970 971 fail: 972 kfree(old_shared); 973 kfree(new_shared); 974 free_alien_cache(new_alien); 975 976 return ret; 977 } 978 979 #ifdef CONFIG_SMP 980 981 static void cpuup_canceled(long cpu) 982 { 983 struct kmem_cache *cachep; 984 struct kmem_cache_node *n = NULL; 985 int node = cpu_to_mem(cpu); 986 const struct cpumask *mask = cpumask_of_node(node); 987 988 list_for_each_entry(cachep, &slab_caches, list) { 989 struct array_cache *nc; 990 struct array_cache *shared; 991 struct alien_cache **alien; 992 LIST_HEAD(list); 993 994 n = get_node(cachep, node); 995 if (!n) 996 continue; 997 998 spin_lock_irq(&n->list_lock); 999 1000 /* Free limit for this kmem_cache_node */ 1001 n->free_limit -= cachep->batchcount; 1002 1003 /* cpu is dead; no one can alloc from it. */ 1004 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 1005 if (nc) { 1006 free_block(cachep, nc->entry, nc->avail, node, &list); 1007 nc->avail = 0; 1008 } 1009 1010 if (!cpumask_empty(mask)) { 1011 spin_unlock_irq(&n->list_lock); 1012 goto free_slab; 1013 } 1014 1015 shared = n->shared; 1016 if (shared) { 1017 free_block(cachep, shared->entry, 1018 shared->avail, node, &list); 1019 n->shared = NULL; 1020 } 1021 1022 alien = n->alien; 1023 n->alien = NULL; 1024 1025 spin_unlock_irq(&n->list_lock); 1026 1027 kfree(shared); 1028 if (alien) { 1029 drain_alien_cache(cachep, alien); 1030 free_alien_cache(alien); 1031 } 1032 1033 free_slab: 1034 slabs_destroy(cachep, &list); 1035 } 1036 /* 1037 * In the previous loop, all the objects were freed to 1038 * the respective cache's slabs, now we can go ahead and 1039 * shrink each nodelist to its limit. 1040 */ 1041 list_for_each_entry(cachep, &slab_caches, list) { 1042 n = get_node(cachep, node); 1043 if (!n) 1044 continue; 1045 drain_freelist(cachep, n, INT_MAX); 1046 } 1047 } 1048 1049 static int cpuup_prepare(long cpu) 1050 { 1051 struct kmem_cache *cachep; 1052 int node = cpu_to_mem(cpu); 1053 int err; 1054 1055 /* 1056 * We need to do this right in the beginning since 1057 * alloc_arraycache's are going to use this list. 1058 * kmalloc_node allows us to add the slab to the right 1059 * kmem_cache_node and not this cpu's kmem_cache_node 1060 */ 1061 err = init_cache_node_node(node); 1062 if (err < 0) 1063 goto bad; 1064 1065 /* 1066 * Now we can go ahead with allocating the shared arrays and 1067 * array caches 1068 */ 1069 list_for_each_entry(cachep, &slab_caches, list) { 1070 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1071 if (err) 1072 goto bad; 1073 } 1074 1075 return 0; 1076 bad: 1077 cpuup_canceled(cpu); 1078 return -ENOMEM; 1079 } 1080 1081 int slab_prepare_cpu(unsigned int cpu) 1082 { 1083 int err; 1084 1085 mutex_lock(&slab_mutex); 1086 err = cpuup_prepare(cpu); 1087 mutex_unlock(&slab_mutex); 1088 return err; 1089 } 1090 1091 /* 1092 * This is called for a failed online attempt and for a successful 1093 * offline. 1094 * 1095 * Even if all the cpus of a node are down, we don't free the 1096 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1097 * a kmalloc allocation from another cpu for memory from the node of 1098 * the cpu going down. The list3 structure is usually allocated from 1099 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1100 */ 1101 int slab_dead_cpu(unsigned int cpu) 1102 { 1103 mutex_lock(&slab_mutex); 1104 cpuup_canceled(cpu); 1105 mutex_unlock(&slab_mutex); 1106 return 0; 1107 } 1108 #endif 1109 1110 static int slab_online_cpu(unsigned int cpu) 1111 { 1112 start_cpu_timer(cpu); 1113 return 0; 1114 } 1115 1116 static int slab_offline_cpu(unsigned int cpu) 1117 { 1118 /* 1119 * Shutdown cache reaper. Note that the slab_mutex is held so 1120 * that if cache_reap() is invoked it cannot do anything 1121 * expensive but will only modify reap_work and reschedule the 1122 * timer. 1123 */ 1124 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1125 /* Now the cache_reaper is guaranteed to be not running. */ 1126 per_cpu(slab_reap_work, cpu).work.func = NULL; 1127 return 0; 1128 } 1129 1130 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1131 /* 1132 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1133 * Returns -EBUSY if all objects cannot be drained so that the node is not 1134 * removed. 1135 * 1136 * Must hold slab_mutex. 1137 */ 1138 static int __meminit drain_cache_node_node(int node) 1139 { 1140 struct kmem_cache *cachep; 1141 int ret = 0; 1142 1143 list_for_each_entry(cachep, &slab_caches, list) { 1144 struct kmem_cache_node *n; 1145 1146 n = get_node(cachep, node); 1147 if (!n) 1148 continue; 1149 1150 drain_freelist(cachep, n, INT_MAX); 1151 1152 if (!list_empty(&n->slabs_full) || 1153 !list_empty(&n->slabs_partial)) { 1154 ret = -EBUSY; 1155 break; 1156 } 1157 } 1158 return ret; 1159 } 1160 1161 static int __meminit slab_memory_callback(struct notifier_block *self, 1162 unsigned long action, void *arg) 1163 { 1164 struct memory_notify *mnb = arg; 1165 int ret = 0; 1166 int nid; 1167 1168 nid = mnb->status_change_nid; 1169 if (nid < 0) 1170 goto out; 1171 1172 switch (action) { 1173 case MEM_GOING_ONLINE: 1174 mutex_lock(&slab_mutex); 1175 ret = init_cache_node_node(nid); 1176 mutex_unlock(&slab_mutex); 1177 break; 1178 case MEM_GOING_OFFLINE: 1179 mutex_lock(&slab_mutex); 1180 ret = drain_cache_node_node(nid); 1181 mutex_unlock(&slab_mutex); 1182 break; 1183 case MEM_ONLINE: 1184 case MEM_OFFLINE: 1185 case MEM_CANCEL_ONLINE: 1186 case MEM_CANCEL_OFFLINE: 1187 break; 1188 } 1189 out: 1190 return notifier_from_errno(ret); 1191 } 1192 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1193 1194 /* 1195 * swap the static kmem_cache_node with kmalloced memory 1196 */ 1197 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1198 int nodeid) 1199 { 1200 struct kmem_cache_node *ptr; 1201 1202 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1203 BUG_ON(!ptr); 1204 1205 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1206 /* 1207 * Do not assume that spinlocks can be initialized via memcpy: 1208 */ 1209 spin_lock_init(&ptr->list_lock); 1210 1211 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1212 cachep->node[nodeid] = ptr; 1213 } 1214 1215 /* 1216 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1217 * size of kmem_cache_node. 1218 */ 1219 static void __init set_up_node(struct kmem_cache *cachep, int index) 1220 { 1221 int node; 1222 1223 for_each_online_node(node) { 1224 cachep->node[node] = &init_kmem_cache_node[index + node]; 1225 cachep->node[node]->next_reap = jiffies + 1226 REAPTIMEOUT_NODE + 1227 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1228 } 1229 } 1230 1231 /* 1232 * Initialisation. Called after the page allocator have been initialised and 1233 * before smp_init(). 1234 */ 1235 void __init kmem_cache_init(void) 1236 { 1237 int i; 1238 1239 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1240 sizeof(struct rcu_head)); 1241 kmem_cache = &kmem_cache_boot; 1242 1243 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1244 use_alien_caches = 0; 1245 1246 for (i = 0; i < NUM_INIT_LISTS; i++) 1247 kmem_cache_node_init(&init_kmem_cache_node[i]); 1248 1249 /* 1250 * Fragmentation resistance on low memory - only use bigger 1251 * page orders on machines with more than 32MB of memory if 1252 * not overridden on the command line. 1253 */ 1254 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1255 slab_max_order = SLAB_MAX_ORDER_HI; 1256 1257 /* Bootstrap is tricky, because several objects are allocated 1258 * from caches that do not exist yet: 1259 * 1) initialize the kmem_cache cache: it contains the struct 1260 * kmem_cache structures of all caches, except kmem_cache itself: 1261 * kmem_cache is statically allocated. 1262 * Initially an __init data area is used for the head array and the 1263 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1264 * array at the end of the bootstrap. 1265 * 2) Create the first kmalloc cache. 1266 * The struct kmem_cache for the new cache is allocated normally. 1267 * An __init data area is used for the head array. 1268 * 3) Create the remaining kmalloc caches, with minimally sized 1269 * head arrays. 1270 * 4) Replace the __init data head arrays for kmem_cache and the first 1271 * kmalloc cache with kmalloc allocated arrays. 1272 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1273 * the other cache's with kmalloc allocated memory. 1274 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1275 */ 1276 1277 /* 1) create the kmem_cache */ 1278 1279 /* 1280 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1281 */ 1282 create_boot_cache(kmem_cache, "kmem_cache", 1283 offsetof(struct kmem_cache, node) + 1284 nr_node_ids * sizeof(struct kmem_cache_node *), 1285 SLAB_HWCACHE_ALIGN); 1286 list_add(&kmem_cache->list, &slab_caches); 1287 slab_state = PARTIAL; 1288 1289 /* 1290 * Initialize the caches that provide memory for the kmem_cache_node 1291 * structures first. Without this, further allocations will bug. 1292 */ 1293 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache( 1294 kmalloc_info[INDEX_NODE].name, 1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1296 slab_state = PARTIAL_NODE; 1297 setup_kmalloc_cache_index_table(); 1298 1299 slab_early_init = 0; 1300 1301 /* 5) Replace the bootstrap kmem_cache_node */ 1302 { 1303 int nid; 1304 1305 for_each_online_node(nid) { 1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1307 1308 init_list(kmalloc_caches[INDEX_NODE], 1309 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1310 } 1311 } 1312 1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1314 } 1315 1316 void __init kmem_cache_init_late(void) 1317 { 1318 struct kmem_cache *cachep; 1319 1320 slab_state = UP; 1321 1322 /* 6) resize the head arrays to their final sizes */ 1323 mutex_lock(&slab_mutex); 1324 list_for_each_entry(cachep, &slab_caches, list) 1325 if (enable_cpucache(cachep, GFP_NOWAIT)) 1326 BUG(); 1327 mutex_unlock(&slab_mutex); 1328 1329 /* Done! */ 1330 slab_state = FULL; 1331 1332 #ifdef CONFIG_NUMA 1333 /* 1334 * Register a memory hotplug callback that initializes and frees 1335 * node. 1336 */ 1337 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1338 #endif 1339 1340 /* 1341 * The reap timers are started later, with a module init call: That part 1342 * of the kernel is not yet operational. 1343 */ 1344 } 1345 1346 static int __init cpucache_init(void) 1347 { 1348 int ret; 1349 1350 /* 1351 * Register the timers that return unneeded pages to the page allocator 1352 */ 1353 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1354 slab_online_cpu, slab_offline_cpu); 1355 WARN_ON(ret < 0); 1356 1357 /* Done! */ 1358 slab_state = FULL; 1359 return 0; 1360 } 1361 __initcall(cpucache_init); 1362 1363 static noinline void 1364 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1365 { 1366 #if DEBUG 1367 struct kmem_cache_node *n; 1368 unsigned long flags; 1369 int node; 1370 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1371 DEFAULT_RATELIMIT_BURST); 1372 1373 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1374 return; 1375 1376 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1377 nodeid, gfpflags, &gfpflags); 1378 pr_warn(" cache: %s, object size: %d, order: %d\n", 1379 cachep->name, cachep->size, cachep->gfporder); 1380 1381 for_each_kmem_cache_node(cachep, node, n) { 1382 unsigned long total_slabs, free_slabs, free_objs; 1383 1384 spin_lock_irqsave(&n->list_lock, flags); 1385 total_slabs = n->total_slabs; 1386 free_slabs = n->free_slabs; 1387 free_objs = n->free_objects; 1388 spin_unlock_irqrestore(&n->list_lock, flags); 1389 1390 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1391 node, total_slabs - free_slabs, total_slabs, 1392 (total_slabs * cachep->num) - free_objs, 1393 total_slabs * cachep->num); 1394 } 1395 #endif 1396 } 1397 1398 /* 1399 * Interface to system's page allocator. No need to hold the 1400 * kmem_cache_node ->list_lock. 1401 * 1402 * If we requested dmaable memory, we will get it. Even if we 1403 * did not request dmaable memory, we might get it, but that 1404 * would be relatively rare and ignorable. 1405 */ 1406 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1407 int nodeid) 1408 { 1409 struct page *page; 1410 int nr_pages; 1411 1412 flags |= cachep->allocflags; 1413 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1414 flags |= __GFP_RECLAIMABLE; 1415 1416 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1417 if (!page) { 1418 slab_out_of_memory(cachep, flags, nodeid); 1419 return NULL; 1420 } 1421 1422 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1423 __free_pages(page, cachep->gfporder); 1424 return NULL; 1425 } 1426 1427 nr_pages = (1 << cachep->gfporder); 1428 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1429 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages); 1430 else 1431 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages); 1432 1433 __SetPageSlab(page); 1434 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1435 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1436 SetPageSlabPfmemalloc(page); 1437 1438 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1439 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1440 1441 if (cachep->ctor) 1442 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1443 else 1444 kmemcheck_mark_unallocated_pages(page, nr_pages); 1445 } 1446 1447 return page; 1448 } 1449 1450 /* 1451 * Interface to system's page release. 1452 */ 1453 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1454 { 1455 int order = cachep->gfporder; 1456 unsigned long nr_freed = (1 << order); 1457 1458 kmemcheck_free_shadow(page, order); 1459 1460 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1461 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed); 1462 else 1463 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed); 1464 1465 BUG_ON(!PageSlab(page)); 1466 __ClearPageSlabPfmemalloc(page); 1467 __ClearPageSlab(page); 1468 page_mapcount_reset(page); 1469 page->mapping = NULL; 1470 1471 if (current->reclaim_state) 1472 current->reclaim_state->reclaimed_slab += nr_freed; 1473 memcg_uncharge_slab(page, order, cachep); 1474 __free_pages(page, order); 1475 } 1476 1477 static void kmem_rcu_free(struct rcu_head *head) 1478 { 1479 struct kmem_cache *cachep; 1480 struct page *page; 1481 1482 page = container_of(head, struct page, rcu_head); 1483 cachep = page->slab_cache; 1484 1485 kmem_freepages(cachep, page); 1486 } 1487 1488 #if DEBUG 1489 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1490 { 1491 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1492 (cachep->size % PAGE_SIZE) == 0) 1493 return true; 1494 1495 return false; 1496 } 1497 1498 #ifdef CONFIG_DEBUG_PAGEALLOC 1499 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1500 unsigned long caller) 1501 { 1502 int size = cachep->object_size; 1503 1504 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1505 1506 if (size < 5 * sizeof(unsigned long)) 1507 return; 1508 1509 *addr++ = 0x12345678; 1510 *addr++ = caller; 1511 *addr++ = smp_processor_id(); 1512 size -= 3 * sizeof(unsigned long); 1513 { 1514 unsigned long *sptr = &caller; 1515 unsigned long svalue; 1516 1517 while (!kstack_end(sptr)) { 1518 svalue = *sptr++; 1519 if (kernel_text_address(svalue)) { 1520 *addr++ = svalue; 1521 size -= sizeof(unsigned long); 1522 if (size <= sizeof(unsigned long)) 1523 break; 1524 } 1525 } 1526 1527 } 1528 *addr++ = 0x87654321; 1529 } 1530 1531 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1532 int map, unsigned long caller) 1533 { 1534 if (!is_debug_pagealloc_cache(cachep)) 1535 return; 1536 1537 if (caller) 1538 store_stackinfo(cachep, objp, caller); 1539 1540 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1541 } 1542 1543 #else 1544 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1545 int map, unsigned long caller) {} 1546 1547 #endif 1548 1549 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1550 { 1551 int size = cachep->object_size; 1552 addr = &((char *)addr)[obj_offset(cachep)]; 1553 1554 memset(addr, val, size); 1555 *(unsigned char *)(addr + size - 1) = POISON_END; 1556 } 1557 1558 static void dump_line(char *data, int offset, int limit) 1559 { 1560 int i; 1561 unsigned char error = 0; 1562 int bad_count = 0; 1563 1564 pr_err("%03x: ", offset); 1565 for (i = 0; i < limit; i++) { 1566 if (data[offset + i] != POISON_FREE) { 1567 error = data[offset + i]; 1568 bad_count++; 1569 } 1570 } 1571 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1572 &data[offset], limit, 1); 1573 1574 if (bad_count == 1) { 1575 error ^= POISON_FREE; 1576 if (!(error & (error - 1))) { 1577 pr_err("Single bit error detected. Probably bad RAM.\n"); 1578 #ifdef CONFIG_X86 1579 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1580 #else 1581 pr_err("Run a memory test tool.\n"); 1582 #endif 1583 } 1584 } 1585 } 1586 #endif 1587 1588 #if DEBUG 1589 1590 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1591 { 1592 int i, size; 1593 char *realobj; 1594 1595 if (cachep->flags & SLAB_RED_ZONE) { 1596 pr_err("Redzone: 0x%llx/0x%llx\n", 1597 *dbg_redzone1(cachep, objp), 1598 *dbg_redzone2(cachep, objp)); 1599 } 1600 1601 if (cachep->flags & SLAB_STORE_USER) { 1602 pr_err("Last user: [<%p>](%pSR)\n", 1603 *dbg_userword(cachep, objp), 1604 *dbg_userword(cachep, objp)); 1605 } 1606 realobj = (char *)objp + obj_offset(cachep); 1607 size = cachep->object_size; 1608 for (i = 0; i < size && lines; i += 16, lines--) { 1609 int limit; 1610 limit = 16; 1611 if (i + limit > size) 1612 limit = size - i; 1613 dump_line(realobj, i, limit); 1614 } 1615 } 1616 1617 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1618 { 1619 char *realobj; 1620 int size, i; 1621 int lines = 0; 1622 1623 if (is_debug_pagealloc_cache(cachep)) 1624 return; 1625 1626 realobj = (char *)objp + obj_offset(cachep); 1627 size = cachep->object_size; 1628 1629 for (i = 0; i < size; i++) { 1630 char exp = POISON_FREE; 1631 if (i == size - 1) 1632 exp = POISON_END; 1633 if (realobj[i] != exp) { 1634 int limit; 1635 /* Mismatch ! */ 1636 /* Print header */ 1637 if (lines == 0) { 1638 pr_err("Slab corruption (%s): %s start=%p, len=%d\n", 1639 print_tainted(), cachep->name, 1640 realobj, size); 1641 print_objinfo(cachep, objp, 0); 1642 } 1643 /* Hexdump the affected line */ 1644 i = (i / 16) * 16; 1645 limit = 16; 1646 if (i + limit > size) 1647 limit = size - i; 1648 dump_line(realobj, i, limit); 1649 i += 16; 1650 lines++; 1651 /* Limit to 5 lines */ 1652 if (lines > 5) 1653 break; 1654 } 1655 } 1656 if (lines != 0) { 1657 /* Print some data about the neighboring objects, if they 1658 * exist: 1659 */ 1660 struct page *page = virt_to_head_page(objp); 1661 unsigned int objnr; 1662 1663 objnr = obj_to_index(cachep, page, objp); 1664 if (objnr) { 1665 objp = index_to_obj(cachep, page, objnr - 1); 1666 realobj = (char *)objp + obj_offset(cachep); 1667 pr_err("Prev obj: start=%p, len=%d\n", realobj, size); 1668 print_objinfo(cachep, objp, 2); 1669 } 1670 if (objnr + 1 < cachep->num) { 1671 objp = index_to_obj(cachep, page, objnr + 1); 1672 realobj = (char *)objp + obj_offset(cachep); 1673 pr_err("Next obj: start=%p, len=%d\n", realobj, size); 1674 print_objinfo(cachep, objp, 2); 1675 } 1676 } 1677 } 1678 #endif 1679 1680 #if DEBUG 1681 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1682 struct page *page) 1683 { 1684 int i; 1685 1686 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1687 poison_obj(cachep, page->freelist - obj_offset(cachep), 1688 POISON_FREE); 1689 } 1690 1691 for (i = 0; i < cachep->num; i++) { 1692 void *objp = index_to_obj(cachep, page, i); 1693 1694 if (cachep->flags & SLAB_POISON) { 1695 check_poison_obj(cachep, objp); 1696 slab_kernel_map(cachep, objp, 1, 0); 1697 } 1698 if (cachep->flags & SLAB_RED_ZONE) { 1699 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1700 slab_error(cachep, "start of a freed object was overwritten"); 1701 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1702 slab_error(cachep, "end of a freed object was overwritten"); 1703 } 1704 } 1705 } 1706 #else 1707 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1708 struct page *page) 1709 { 1710 } 1711 #endif 1712 1713 /** 1714 * slab_destroy - destroy and release all objects in a slab 1715 * @cachep: cache pointer being destroyed 1716 * @page: page pointer being destroyed 1717 * 1718 * Destroy all the objs in a slab page, and release the mem back to the system. 1719 * Before calling the slab page must have been unlinked from the cache. The 1720 * kmem_cache_node ->list_lock is not held/needed. 1721 */ 1722 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1723 { 1724 void *freelist; 1725 1726 freelist = page->freelist; 1727 slab_destroy_debugcheck(cachep, page); 1728 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1729 call_rcu(&page->rcu_head, kmem_rcu_free); 1730 else 1731 kmem_freepages(cachep, page); 1732 1733 /* 1734 * From now on, we don't use freelist 1735 * although actual page can be freed in rcu context 1736 */ 1737 if (OFF_SLAB(cachep)) 1738 kmem_cache_free(cachep->freelist_cache, freelist); 1739 } 1740 1741 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1742 { 1743 struct page *page, *n; 1744 1745 list_for_each_entry_safe(page, n, list, lru) { 1746 list_del(&page->lru); 1747 slab_destroy(cachep, page); 1748 } 1749 } 1750 1751 /** 1752 * calculate_slab_order - calculate size (page order) of slabs 1753 * @cachep: pointer to the cache that is being created 1754 * @size: size of objects to be created in this cache. 1755 * @flags: slab allocation flags 1756 * 1757 * Also calculates the number of objects per slab. 1758 * 1759 * This could be made much more intelligent. For now, try to avoid using 1760 * high order pages for slabs. When the gfp() functions are more friendly 1761 * towards high-order requests, this should be changed. 1762 */ 1763 static size_t calculate_slab_order(struct kmem_cache *cachep, 1764 size_t size, unsigned long flags) 1765 { 1766 size_t left_over = 0; 1767 int gfporder; 1768 1769 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1770 unsigned int num; 1771 size_t remainder; 1772 1773 num = cache_estimate(gfporder, size, flags, &remainder); 1774 if (!num) 1775 continue; 1776 1777 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1778 if (num > SLAB_OBJ_MAX_NUM) 1779 break; 1780 1781 if (flags & CFLGS_OFF_SLAB) { 1782 struct kmem_cache *freelist_cache; 1783 size_t freelist_size; 1784 1785 freelist_size = num * sizeof(freelist_idx_t); 1786 freelist_cache = kmalloc_slab(freelist_size, 0u); 1787 if (!freelist_cache) 1788 continue; 1789 1790 /* 1791 * Needed to avoid possible looping condition 1792 * in cache_grow_begin() 1793 */ 1794 if (OFF_SLAB(freelist_cache)) 1795 continue; 1796 1797 /* check if off slab has enough benefit */ 1798 if (freelist_cache->size > cachep->size / 2) 1799 continue; 1800 } 1801 1802 /* Found something acceptable - save it away */ 1803 cachep->num = num; 1804 cachep->gfporder = gfporder; 1805 left_over = remainder; 1806 1807 /* 1808 * A VFS-reclaimable slab tends to have most allocations 1809 * as GFP_NOFS and we really don't want to have to be allocating 1810 * higher-order pages when we are unable to shrink dcache. 1811 */ 1812 if (flags & SLAB_RECLAIM_ACCOUNT) 1813 break; 1814 1815 /* 1816 * Large number of objects is good, but very large slabs are 1817 * currently bad for the gfp()s. 1818 */ 1819 if (gfporder >= slab_max_order) 1820 break; 1821 1822 /* 1823 * Acceptable internal fragmentation? 1824 */ 1825 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1826 break; 1827 } 1828 return left_over; 1829 } 1830 1831 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1832 struct kmem_cache *cachep, int entries, int batchcount) 1833 { 1834 int cpu; 1835 size_t size; 1836 struct array_cache __percpu *cpu_cache; 1837 1838 size = sizeof(void *) * entries + sizeof(struct array_cache); 1839 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1840 1841 if (!cpu_cache) 1842 return NULL; 1843 1844 for_each_possible_cpu(cpu) { 1845 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1846 entries, batchcount); 1847 } 1848 1849 return cpu_cache; 1850 } 1851 1852 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1853 { 1854 if (slab_state >= FULL) 1855 return enable_cpucache(cachep, gfp); 1856 1857 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1858 if (!cachep->cpu_cache) 1859 return 1; 1860 1861 if (slab_state == DOWN) { 1862 /* Creation of first cache (kmem_cache). */ 1863 set_up_node(kmem_cache, CACHE_CACHE); 1864 } else if (slab_state == PARTIAL) { 1865 /* For kmem_cache_node */ 1866 set_up_node(cachep, SIZE_NODE); 1867 } else { 1868 int node; 1869 1870 for_each_online_node(node) { 1871 cachep->node[node] = kmalloc_node( 1872 sizeof(struct kmem_cache_node), gfp, node); 1873 BUG_ON(!cachep->node[node]); 1874 kmem_cache_node_init(cachep->node[node]); 1875 } 1876 } 1877 1878 cachep->node[numa_mem_id()]->next_reap = 1879 jiffies + REAPTIMEOUT_NODE + 1880 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1881 1882 cpu_cache_get(cachep)->avail = 0; 1883 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1884 cpu_cache_get(cachep)->batchcount = 1; 1885 cpu_cache_get(cachep)->touched = 0; 1886 cachep->batchcount = 1; 1887 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1888 return 0; 1889 } 1890 1891 unsigned long kmem_cache_flags(unsigned long object_size, 1892 unsigned long flags, const char *name, 1893 void (*ctor)(void *)) 1894 { 1895 return flags; 1896 } 1897 1898 struct kmem_cache * 1899 __kmem_cache_alias(const char *name, size_t size, size_t align, 1900 unsigned long flags, void (*ctor)(void *)) 1901 { 1902 struct kmem_cache *cachep; 1903 1904 cachep = find_mergeable(size, align, flags, name, ctor); 1905 if (cachep) { 1906 cachep->refcount++; 1907 1908 /* 1909 * Adjust the object sizes so that we clear 1910 * the complete object on kzalloc. 1911 */ 1912 cachep->object_size = max_t(int, cachep->object_size, size); 1913 } 1914 return cachep; 1915 } 1916 1917 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1918 size_t size, unsigned long flags) 1919 { 1920 size_t left; 1921 1922 cachep->num = 0; 1923 1924 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1925 return false; 1926 1927 left = calculate_slab_order(cachep, size, 1928 flags | CFLGS_OBJFREELIST_SLAB); 1929 if (!cachep->num) 1930 return false; 1931 1932 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1933 return false; 1934 1935 cachep->colour = left / cachep->colour_off; 1936 1937 return true; 1938 } 1939 1940 static bool set_off_slab_cache(struct kmem_cache *cachep, 1941 size_t size, unsigned long flags) 1942 { 1943 size_t left; 1944 1945 cachep->num = 0; 1946 1947 /* 1948 * Always use on-slab management when SLAB_NOLEAKTRACE 1949 * to avoid recursive calls into kmemleak. 1950 */ 1951 if (flags & SLAB_NOLEAKTRACE) 1952 return false; 1953 1954 /* 1955 * Size is large, assume best to place the slab management obj 1956 * off-slab (should allow better packing of objs). 1957 */ 1958 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1959 if (!cachep->num) 1960 return false; 1961 1962 /* 1963 * If the slab has been placed off-slab, and we have enough space then 1964 * move it on-slab. This is at the expense of any extra colouring. 1965 */ 1966 if (left >= cachep->num * sizeof(freelist_idx_t)) 1967 return false; 1968 1969 cachep->colour = left / cachep->colour_off; 1970 1971 return true; 1972 } 1973 1974 static bool set_on_slab_cache(struct kmem_cache *cachep, 1975 size_t size, unsigned long flags) 1976 { 1977 size_t left; 1978 1979 cachep->num = 0; 1980 1981 left = calculate_slab_order(cachep, size, flags); 1982 if (!cachep->num) 1983 return false; 1984 1985 cachep->colour = left / cachep->colour_off; 1986 1987 return true; 1988 } 1989 1990 /** 1991 * __kmem_cache_create - Create a cache. 1992 * @cachep: cache management descriptor 1993 * @flags: SLAB flags 1994 * 1995 * Returns a ptr to the cache on success, NULL on failure. 1996 * Cannot be called within a int, but can be interrupted. 1997 * The @ctor is run when new pages are allocated by the cache. 1998 * 1999 * The flags are 2000 * 2001 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2002 * to catch references to uninitialised memory. 2003 * 2004 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2005 * for buffer overruns. 2006 * 2007 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2008 * cacheline. This can be beneficial if you're counting cycles as closely 2009 * as davem. 2010 */ 2011 int 2012 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2013 { 2014 size_t ralign = BYTES_PER_WORD; 2015 gfp_t gfp; 2016 int err; 2017 size_t size = cachep->size; 2018 2019 #if DEBUG 2020 #if FORCED_DEBUG 2021 /* 2022 * Enable redzoning and last user accounting, except for caches with 2023 * large objects, if the increased size would increase the object size 2024 * above the next power of two: caches with object sizes just above a 2025 * power of two have a significant amount of internal fragmentation. 2026 */ 2027 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2028 2 * sizeof(unsigned long long))) 2029 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2030 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 2031 flags |= SLAB_POISON; 2032 #endif 2033 #endif 2034 2035 /* 2036 * Check that size is in terms of words. This is needed to avoid 2037 * unaligned accesses for some archs when redzoning is used, and makes 2038 * sure any on-slab bufctl's are also correctly aligned. 2039 */ 2040 size = ALIGN(size, BYTES_PER_WORD); 2041 2042 if (flags & SLAB_RED_ZONE) { 2043 ralign = REDZONE_ALIGN; 2044 /* If redzoning, ensure that the second redzone is suitably 2045 * aligned, by adjusting the object size accordingly. */ 2046 size = ALIGN(size, REDZONE_ALIGN); 2047 } 2048 2049 /* 3) caller mandated alignment */ 2050 if (ralign < cachep->align) { 2051 ralign = cachep->align; 2052 } 2053 /* disable debug if necessary */ 2054 if (ralign > __alignof__(unsigned long long)) 2055 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2056 /* 2057 * 4) Store it. 2058 */ 2059 cachep->align = ralign; 2060 cachep->colour_off = cache_line_size(); 2061 /* Offset must be a multiple of the alignment. */ 2062 if (cachep->colour_off < cachep->align) 2063 cachep->colour_off = cachep->align; 2064 2065 if (slab_is_available()) 2066 gfp = GFP_KERNEL; 2067 else 2068 gfp = GFP_NOWAIT; 2069 2070 #if DEBUG 2071 2072 /* 2073 * Both debugging options require word-alignment which is calculated 2074 * into align above. 2075 */ 2076 if (flags & SLAB_RED_ZONE) { 2077 /* add space for red zone words */ 2078 cachep->obj_offset += sizeof(unsigned long long); 2079 size += 2 * sizeof(unsigned long long); 2080 } 2081 if (flags & SLAB_STORE_USER) { 2082 /* user store requires one word storage behind the end of 2083 * the real object. But if the second red zone needs to be 2084 * aligned to 64 bits, we must allow that much space. 2085 */ 2086 if (flags & SLAB_RED_ZONE) 2087 size += REDZONE_ALIGN; 2088 else 2089 size += BYTES_PER_WORD; 2090 } 2091 #endif 2092 2093 kasan_cache_create(cachep, &size, &flags); 2094 2095 size = ALIGN(size, cachep->align); 2096 /* 2097 * We should restrict the number of objects in a slab to implement 2098 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2099 */ 2100 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2101 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2102 2103 #if DEBUG 2104 /* 2105 * To activate debug pagealloc, off-slab management is necessary 2106 * requirement. In early phase of initialization, small sized slab 2107 * doesn't get initialized so it would not be possible. So, we need 2108 * to check size >= 256. It guarantees that all necessary small 2109 * sized slab is initialized in current slab initialization sequence. 2110 */ 2111 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2112 size >= 256 && cachep->object_size > cache_line_size()) { 2113 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2114 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2115 2116 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2117 flags |= CFLGS_OFF_SLAB; 2118 cachep->obj_offset += tmp_size - size; 2119 size = tmp_size; 2120 goto done; 2121 } 2122 } 2123 } 2124 #endif 2125 2126 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2127 flags |= CFLGS_OBJFREELIST_SLAB; 2128 goto done; 2129 } 2130 2131 if (set_off_slab_cache(cachep, size, flags)) { 2132 flags |= CFLGS_OFF_SLAB; 2133 goto done; 2134 } 2135 2136 if (set_on_slab_cache(cachep, size, flags)) 2137 goto done; 2138 2139 return -E2BIG; 2140 2141 done: 2142 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2143 cachep->flags = flags; 2144 cachep->allocflags = __GFP_COMP; 2145 if (flags & SLAB_CACHE_DMA) 2146 cachep->allocflags |= GFP_DMA; 2147 cachep->size = size; 2148 cachep->reciprocal_buffer_size = reciprocal_value(size); 2149 2150 #if DEBUG 2151 /* 2152 * If we're going to use the generic kernel_map_pages() 2153 * poisoning, then it's going to smash the contents of 2154 * the redzone and userword anyhow, so switch them off. 2155 */ 2156 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2157 (cachep->flags & SLAB_POISON) && 2158 is_debug_pagealloc_cache(cachep)) 2159 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2160 #endif 2161 2162 if (OFF_SLAB(cachep)) { 2163 cachep->freelist_cache = 2164 kmalloc_slab(cachep->freelist_size, 0u); 2165 } 2166 2167 err = setup_cpu_cache(cachep, gfp); 2168 if (err) { 2169 __kmem_cache_release(cachep); 2170 return err; 2171 } 2172 2173 return 0; 2174 } 2175 2176 #if DEBUG 2177 static void check_irq_off(void) 2178 { 2179 BUG_ON(!irqs_disabled()); 2180 } 2181 2182 static void check_irq_on(void) 2183 { 2184 BUG_ON(irqs_disabled()); 2185 } 2186 2187 static void check_mutex_acquired(void) 2188 { 2189 BUG_ON(!mutex_is_locked(&slab_mutex)); 2190 } 2191 2192 static void check_spinlock_acquired(struct kmem_cache *cachep) 2193 { 2194 #ifdef CONFIG_SMP 2195 check_irq_off(); 2196 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2197 #endif 2198 } 2199 2200 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2201 { 2202 #ifdef CONFIG_SMP 2203 check_irq_off(); 2204 assert_spin_locked(&get_node(cachep, node)->list_lock); 2205 #endif 2206 } 2207 2208 #else 2209 #define check_irq_off() do { } while(0) 2210 #define check_irq_on() do { } while(0) 2211 #define check_mutex_acquired() do { } while(0) 2212 #define check_spinlock_acquired(x) do { } while(0) 2213 #define check_spinlock_acquired_node(x, y) do { } while(0) 2214 #endif 2215 2216 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2217 int node, bool free_all, struct list_head *list) 2218 { 2219 int tofree; 2220 2221 if (!ac || !ac->avail) 2222 return; 2223 2224 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2225 if (tofree > ac->avail) 2226 tofree = (ac->avail + 1) / 2; 2227 2228 free_block(cachep, ac->entry, tofree, node, list); 2229 ac->avail -= tofree; 2230 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2231 } 2232 2233 static void do_drain(void *arg) 2234 { 2235 struct kmem_cache *cachep = arg; 2236 struct array_cache *ac; 2237 int node = numa_mem_id(); 2238 struct kmem_cache_node *n; 2239 LIST_HEAD(list); 2240 2241 check_irq_off(); 2242 ac = cpu_cache_get(cachep); 2243 n = get_node(cachep, node); 2244 spin_lock(&n->list_lock); 2245 free_block(cachep, ac->entry, ac->avail, node, &list); 2246 spin_unlock(&n->list_lock); 2247 slabs_destroy(cachep, &list); 2248 ac->avail = 0; 2249 } 2250 2251 static void drain_cpu_caches(struct kmem_cache *cachep) 2252 { 2253 struct kmem_cache_node *n; 2254 int node; 2255 LIST_HEAD(list); 2256 2257 on_each_cpu(do_drain, cachep, 1); 2258 check_irq_on(); 2259 for_each_kmem_cache_node(cachep, node, n) 2260 if (n->alien) 2261 drain_alien_cache(cachep, n->alien); 2262 2263 for_each_kmem_cache_node(cachep, node, n) { 2264 spin_lock_irq(&n->list_lock); 2265 drain_array_locked(cachep, n->shared, node, true, &list); 2266 spin_unlock_irq(&n->list_lock); 2267 2268 slabs_destroy(cachep, &list); 2269 } 2270 } 2271 2272 /* 2273 * Remove slabs from the list of free slabs. 2274 * Specify the number of slabs to drain in tofree. 2275 * 2276 * Returns the actual number of slabs released. 2277 */ 2278 static int drain_freelist(struct kmem_cache *cache, 2279 struct kmem_cache_node *n, int tofree) 2280 { 2281 struct list_head *p; 2282 int nr_freed; 2283 struct page *page; 2284 2285 nr_freed = 0; 2286 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2287 2288 spin_lock_irq(&n->list_lock); 2289 p = n->slabs_free.prev; 2290 if (p == &n->slabs_free) { 2291 spin_unlock_irq(&n->list_lock); 2292 goto out; 2293 } 2294 2295 page = list_entry(p, struct page, lru); 2296 list_del(&page->lru); 2297 n->free_slabs--; 2298 n->total_slabs--; 2299 /* 2300 * Safe to drop the lock. The slab is no longer linked 2301 * to the cache. 2302 */ 2303 n->free_objects -= cache->num; 2304 spin_unlock_irq(&n->list_lock); 2305 slab_destroy(cache, page); 2306 nr_freed++; 2307 } 2308 out: 2309 return nr_freed; 2310 } 2311 2312 int __kmem_cache_shrink(struct kmem_cache *cachep) 2313 { 2314 int ret = 0; 2315 int node; 2316 struct kmem_cache_node *n; 2317 2318 drain_cpu_caches(cachep); 2319 2320 check_irq_on(); 2321 for_each_kmem_cache_node(cachep, node, n) { 2322 drain_freelist(cachep, n, INT_MAX); 2323 2324 ret += !list_empty(&n->slabs_full) || 2325 !list_empty(&n->slabs_partial); 2326 } 2327 return (ret ? 1 : 0); 2328 } 2329 2330 #ifdef CONFIG_MEMCG 2331 void __kmemcg_cache_deactivate(struct kmem_cache *cachep) 2332 { 2333 __kmem_cache_shrink(cachep); 2334 } 2335 #endif 2336 2337 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2338 { 2339 return __kmem_cache_shrink(cachep); 2340 } 2341 2342 void __kmem_cache_release(struct kmem_cache *cachep) 2343 { 2344 int i; 2345 struct kmem_cache_node *n; 2346 2347 cache_random_seq_destroy(cachep); 2348 2349 free_percpu(cachep->cpu_cache); 2350 2351 /* NUMA: free the node structures */ 2352 for_each_kmem_cache_node(cachep, i, n) { 2353 kfree(n->shared); 2354 free_alien_cache(n->alien); 2355 kfree(n); 2356 cachep->node[i] = NULL; 2357 } 2358 } 2359 2360 /* 2361 * Get the memory for a slab management obj. 2362 * 2363 * For a slab cache when the slab descriptor is off-slab, the 2364 * slab descriptor can't come from the same cache which is being created, 2365 * Because if it is the case, that means we defer the creation of 2366 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2367 * And we eventually call down to __kmem_cache_create(), which 2368 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2369 * This is a "chicken-and-egg" problem. 2370 * 2371 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2372 * which are all initialized during kmem_cache_init(). 2373 */ 2374 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2375 struct page *page, int colour_off, 2376 gfp_t local_flags, int nodeid) 2377 { 2378 void *freelist; 2379 void *addr = page_address(page); 2380 2381 page->s_mem = addr + colour_off; 2382 page->active = 0; 2383 2384 if (OBJFREELIST_SLAB(cachep)) 2385 freelist = NULL; 2386 else if (OFF_SLAB(cachep)) { 2387 /* Slab management obj is off-slab. */ 2388 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2389 local_flags, nodeid); 2390 if (!freelist) 2391 return NULL; 2392 } else { 2393 /* We will use last bytes at the slab for freelist */ 2394 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2395 cachep->freelist_size; 2396 } 2397 2398 return freelist; 2399 } 2400 2401 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2402 { 2403 return ((freelist_idx_t *)page->freelist)[idx]; 2404 } 2405 2406 static inline void set_free_obj(struct page *page, 2407 unsigned int idx, freelist_idx_t val) 2408 { 2409 ((freelist_idx_t *)(page->freelist))[idx] = val; 2410 } 2411 2412 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2413 { 2414 #if DEBUG 2415 int i; 2416 2417 for (i = 0; i < cachep->num; i++) { 2418 void *objp = index_to_obj(cachep, page, i); 2419 2420 if (cachep->flags & SLAB_STORE_USER) 2421 *dbg_userword(cachep, objp) = NULL; 2422 2423 if (cachep->flags & SLAB_RED_ZONE) { 2424 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2425 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2426 } 2427 /* 2428 * Constructors are not allowed to allocate memory from the same 2429 * cache which they are a constructor for. Otherwise, deadlock. 2430 * They must also be threaded. 2431 */ 2432 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2433 kasan_unpoison_object_data(cachep, 2434 objp + obj_offset(cachep)); 2435 cachep->ctor(objp + obj_offset(cachep)); 2436 kasan_poison_object_data( 2437 cachep, objp + obj_offset(cachep)); 2438 } 2439 2440 if (cachep->flags & SLAB_RED_ZONE) { 2441 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2442 slab_error(cachep, "constructor overwrote the end of an object"); 2443 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2444 slab_error(cachep, "constructor overwrote the start of an object"); 2445 } 2446 /* need to poison the objs? */ 2447 if (cachep->flags & SLAB_POISON) { 2448 poison_obj(cachep, objp, POISON_FREE); 2449 slab_kernel_map(cachep, objp, 0, 0); 2450 } 2451 } 2452 #endif 2453 } 2454 2455 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2456 /* Hold information during a freelist initialization */ 2457 union freelist_init_state { 2458 struct { 2459 unsigned int pos; 2460 unsigned int *list; 2461 unsigned int count; 2462 }; 2463 struct rnd_state rnd_state; 2464 }; 2465 2466 /* 2467 * Initialize the state based on the randomization methode available. 2468 * return true if the pre-computed list is available, false otherwize. 2469 */ 2470 static bool freelist_state_initialize(union freelist_init_state *state, 2471 struct kmem_cache *cachep, 2472 unsigned int count) 2473 { 2474 bool ret; 2475 unsigned int rand; 2476 2477 /* Use best entropy available to define a random shift */ 2478 rand = get_random_int(); 2479 2480 /* Use a random state if the pre-computed list is not available */ 2481 if (!cachep->random_seq) { 2482 prandom_seed_state(&state->rnd_state, rand); 2483 ret = false; 2484 } else { 2485 state->list = cachep->random_seq; 2486 state->count = count; 2487 state->pos = rand % count; 2488 ret = true; 2489 } 2490 return ret; 2491 } 2492 2493 /* Get the next entry on the list and randomize it using a random shift */ 2494 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2495 { 2496 if (state->pos >= state->count) 2497 state->pos = 0; 2498 return state->list[state->pos++]; 2499 } 2500 2501 /* Swap two freelist entries */ 2502 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2503 { 2504 swap(((freelist_idx_t *)page->freelist)[a], 2505 ((freelist_idx_t *)page->freelist)[b]); 2506 } 2507 2508 /* 2509 * Shuffle the freelist initialization state based on pre-computed lists. 2510 * return true if the list was successfully shuffled, false otherwise. 2511 */ 2512 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2513 { 2514 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2515 union freelist_init_state state; 2516 bool precomputed; 2517 2518 if (count < 2) 2519 return false; 2520 2521 precomputed = freelist_state_initialize(&state, cachep, count); 2522 2523 /* Take a random entry as the objfreelist */ 2524 if (OBJFREELIST_SLAB(cachep)) { 2525 if (!precomputed) 2526 objfreelist = count - 1; 2527 else 2528 objfreelist = next_random_slot(&state); 2529 page->freelist = index_to_obj(cachep, page, objfreelist) + 2530 obj_offset(cachep); 2531 count--; 2532 } 2533 2534 /* 2535 * On early boot, generate the list dynamically. 2536 * Later use a pre-computed list for speed. 2537 */ 2538 if (!precomputed) { 2539 for (i = 0; i < count; i++) 2540 set_free_obj(page, i, i); 2541 2542 /* Fisher-Yates shuffle */ 2543 for (i = count - 1; i > 0; i--) { 2544 rand = prandom_u32_state(&state.rnd_state); 2545 rand %= (i + 1); 2546 swap_free_obj(page, i, rand); 2547 } 2548 } else { 2549 for (i = 0; i < count; i++) 2550 set_free_obj(page, i, next_random_slot(&state)); 2551 } 2552 2553 if (OBJFREELIST_SLAB(cachep)) 2554 set_free_obj(page, cachep->num - 1, objfreelist); 2555 2556 return true; 2557 } 2558 #else 2559 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2560 struct page *page) 2561 { 2562 return false; 2563 } 2564 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2565 2566 static void cache_init_objs(struct kmem_cache *cachep, 2567 struct page *page) 2568 { 2569 int i; 2570 void *objp; 2571 bool shuffled; 2572 2573 cache_init_objs_debug(cachep, page); 2574 2575 /* Try to randomize the freelist if enabled */ 2576 shuffled = shuffle_freelist(cachep, page); 2577 2578 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2579 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2580 obj_offset(cachep); 2581 } 2582 2583 for (i = 0; i < cachep->num; i++) { 2584 objp = index_to_obj(cachep, page, i); 2585 kasan_init_slab_obj(cachep, objp); 2586 2587 /* constructor could break poison info */ 2588 if (DEBUG == 0 && cachep->ctor) { 2589 kasan_unpoison_object_data(cachep, objp); 2590 cachep->ctor(objp); 2591 kasan_poison_object_data(cachep, objp); 2592 } 2593 2594 if (!shuffled) 2595 set_free_obj(page, i, i); 2596 } 2597 } 2598 2599 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2600 { 2601 void *objp; 2602 2603 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2604 page->active++; 2605 2606 #if DEBUG 2607 if (cachep->flags & SLAB_STORE_USER) 2608 set_store_user_dirty(cachep); 2609 #endif 2610 2611 return objp; 2612 } 2613 2614 static void slab_put_obj(struct kmem_cache *cachep, 2615 struct page *page, void *objp) 2616 { 2617 unsigned int objnr = obj_to_index(cachep, page, objp); 2618 #if DEBUG 2619 unsigned int i; 2620 2621 /* Verify double free bug */ 2622 for (i = page->active; i < cachep->num; i++) { 2623 if (get_free_obj(page, i) == objnr) { 2624 pr_err("slab: double free detected in cache '%s', objp %p\n", 2625 cachep->name, objp); 2626 BUG(); 2627 } 2628 } 2629 #endif 2630 page->active--; 2631 if (!page->freelist) 2632 page->freelist = objp + obj_offset(cachep); 2633 2634 set_free_obj(page, page->active, objnr); 2635 } 2636 2637 /* 2638 * Map pages beginning at addr to the given cache and slab. This is required 2639 * for the slab allocator to be able to lookup the cache and slab of a 2640 * virtual address for kfree, ksize, and slab debugging. 2641 */ 2642 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2643 void *freelist) 2644 { 2645 page->slab_cache = cache; 2646 page->freelist = freelist; 2647 } 2648 2649 /* 2650 * Grow (by 1) the number of slabs within a cache. This is called by 2651 * kmem_cache_alloc() when there are no active objs left in a cache. 2652 */ 2653 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2654 gfp_t flags, int nodeid) 2655 { 2656 void *freelist; 2657 size_t offset; 2658 gfp_t local_flags; 2659 int page_node; 2660 struct kmem_cache_node *n; 2661 struct page *page; 2662 2663 /* 2664 * Be lazy and only check for valid flags here, keeping it out of the 2665 * critical path in kmem_cache_alloc(). 2666 */ 2667 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2668 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2669 flags &= ~GFP_SLAB_BUG_MASK; 2670 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2671 invalid_mask, &invalid_mask, flags, &flags); 2672 dump_stack(); 2673 } 2674 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2675 2676 check_irq_off(); 2677 if (gfpflags_allow_blocking(local_flags)) 2678 local_irq_enable(); 2679 2680 /* 2681 * Get mem for the objs. Attempt to allocate a physical page from 2682 * 'nodeid'. 2683 */ 2684 page = kmem_getpages(cachep, local_flags, nodeid); 2685 if (!page) 2686 goto failed; 2687 2688 page_node = page_to_nid(page); 2689 n = get_node(cachep, page_node); 2690 2691 /* Get colour for the slab, and cal the next value. */ 2692 n->colour_next++; 2693 if (n->colour_next >= cachep->colour) 2694 n->colour_next = 0; 2695 2696 offset = n->colour_next; 2697 if (offset >= cachep->colour) 2698 offset = 0; 2699 2700 offset *= cachep->colour_off; 2701 2702 /* Get slab management. */ 2703 freelist = alloc_slabmgmt(cachep, page, offset, 2704 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2705 if (OFF_SLAB(cachep) && !freelist) 2706 goto opps1; 2707 2708 slab_map_pages(cachep, page, freelist); 2709 2710 kasan_poison_slab(page); 2711 cache_init_objs(cachep, page); 2712 2713 if (gfpflags_allow_blocking(local_flags)) 2714 local_irq_disable(); 2715 2716 return page; 2717 2718 opps1: 2719 kmem_freepages(cachep, page); 2720 failed: 2721 if (gfpflags_allow_blocking(local_flags)) 2722 local_irq_disable(); 2723 return NULL; 2724 } 2725 2726 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2727 { 2728 struct kmem_cache_node *n; 2729 void *list = NULL; 2730 2731 check_irq_off(); 2732 2733 if (!page) 2734 return; 2735 2736 INIT_LIST_HEAD(&page->lru); 2737 n = get_node(cachep, page_to_nid(page)); 2738 2739 spin_lock(&n->list_lock); 2740 n->total_slabs++; 2741 if (!page->active) { 2742 list_add_tail(&page->lru, &(n->slabs_free)); 2743 n->free_slabs++; 2744 } else 2745 fixup_slab_list(cachep, n, page, &list); 2746 2747 STATS_INC_GROWN(cachep); 2748 n->free_objects += cachep->num - page->active; 2749 spin_unlock(&n->list_lock); 2750 2751 fixup_objfreelist_debug(cachep, &list); 2752 } 2753 2754 #if DEBUG 2755 2756 /* 2757 * Perform extra freeing checks: 2758 * - detect bad pointers. 2759 * - POISON/RED_ZONE checking 2760 */ 2761 static void kfree_debugcheck(const void *objp) 2762 { 2763 if (!virt_addr_valid(objp)) { 2764 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2765 (unsigned long)objp); 2766 BUG(); 2767 } 2768 } 2769 2770 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2771 { 2772 unsigned long long redzone1, redzone2; 2773 2774 redzone1 = *dbg_redzone1(cache, obj); 2775 redzone2 = *dbg_redzone2(cache, obj); 2776 2777 /* 2778 * Redzone is ok. 2779 */ 2780 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2781 return; 2782 2783 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2784 slab_error(cache, "double free detected"); 2785 else 2786 slab_error(cache, "memory outside object was overwritten"); 2787 2788 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2789 obj, redzone1, redzone2); 2790 } 2791 2792 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2793 unsigned long caller) 2794 { 2795 unsigned int objnr; 2796 struct page *page; 2797 2798 BUG_ON(virt_to_cache(objp) != cachep); 2799 2800 objp -= obj_offset(cachep); 2801 kfree_debugcheck(objp); 2802 page = virt_to_head_page(objp); 2803 2804 if (cachep->flags & SLAB_RED_ZONE) { 2805 verify_redzone_free(cachep, objp); 2806 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2807 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2808 } 2809 if (cachep->flags & SLAB_STORE_USER) { 2810 set_store_user_dirty(cachep); 2811 *dbg_userword(cachep, objp) = (void *)caller; 2812 } 2813 2814 objnr = obj_to_index(cachep, page, objp); 2815 2816 BUG_ON(objnr >= cachep->num); 2817 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2818 2819 if (cachep->flags & SLAB_POISON) { 2820 poison_obj(cachep, objp, POISON_FREE); 2821 slab_kernel_map(cachep, objp, 0, caller); 2822 } 2823 return objp; 2824 } 2825 2826 #else 2827 #define kfree_debugcheck(x) do { } while(0) 2828 #define cache_free_debugcheck(x,objp,z) (objp) 2829 #endif 2830 2831 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2832 void **list) 2833 { 2834 #if DEBUG 2835 void *next = *list; 2836 void *objp; 2837 2838 while (next) { 2839 objp = next - obj_offset(cachep); 2840 next = *(void **)next; 2841 poison_obj(cachep, objp, POISON_FREE); 2842 } 2843 #endif 2844 } 2845 2846 static inline void fixup_slab_list(struct kmem_cache *cachep, 2847 struct kmem_cache_node *n, struct page *page, 2848 void **list) 2849 { 2850 /* move slabp to correct slabp list: */ 2851 list_del(&page->lru); 2852 if (page->active == cachep->num) { 2853 list_add(&page->lru, &n->slabs_full); 2854 if (OBJFREELIST_SLAB(cachep)) { 2855 #if DEBUG 2856 /* Poisoning will be done without holding the lock */ 2857 if (cachep->flags & SLAB_POISON) { 2858 void **objp = page->freelist; 2859 2860 *objp = *list; 2861 *list = objp; 2862 } 2863 #endif 2864 page->freelist = NULL; 2865 } 2866 } else 2867 list_add(&page->lru, &n->slabs_partial); 2868 } 2869 2870 /* Try to find non-pfmemalloc slab if needed */ 2871 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2872 struct page *page, bool pfmemalloc) 2873 { 2874 if (!page) 2875 return NULL; 2876 2877 if (pfmemalloc) 2878 return page; 2879 2880 if (!PageSlabPfmemalloc(page)) 2881 return page; 2882 2883 /* No need to keep pfmemalloc slab if we have enough free objects */ 2884 if (n->free_objects > n->free_limit) { 2885 ClearPageSlabPfmemalloc(page); 2886 return page; 2887 } 2888 2889 /* Move pfmemalloc slab to the end of list to speed up next search */ 2890 list_del(&page->lru); 2891 if (!page->active) { 2892 list_add_tail(&page->lru, &n->slabs_free); 2893 n->free_slabs++; 2894 } else 2895 list_add_tail(&page->lru, &n->slabs_partial); 2896 2897 list_for_each_entry(page, &n->slabs_partial, lru) { 2898 if (!PageSlabPfmemalloc(page)) 2899 return page; 2900 } 2901 2902 n->free_touched = 1; 2903 list_for_each_entry(page, &n->slabs_free, lru) { 2904 if (!PageSlabPfmemalloc(page)) { 2905 n->free_slabs--; 2906 return page; 2907 } 2908 } 2909 2910 return NULL; 2911 } 2912 2913 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2914 { 2915 struct page *page; 2916 2917 assert_spin_locked(&n->list_lock); 2918 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru); 2919 if (!page) { 2920 n->free_touched = 1; 2921 page = list_first_entry_or_null(&n->slabs_free, struct page, 2922 lru); 2923 if (page) 2924 n->free_slabs--; 2925 } 2926 2927 if (sk_memalloc_socks()) 2928 page = get_valid_first_slab(n, page, pfmemalloc); 2929 2930 return page; 2931 } 2932 2933 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2934 struct kmem_cache_node *n, gfp_t flags) 2935 { 2936 struct page *page; 2937 void *obj; 2938 void *list = NULL; 2939 2940 if (!gfp_pfmemalloc_allowed(flags)) 2941 return NULL; 2942 2943 spin_lock(&n->list_lock); 2944 page = get_first_slab(n, true); 2945 if (!page) { 2946 spin_unlock(&n->list_lock); 2947 return NULL; 2948 } 2949 2950 obj = slab_get_obj(cachep, page); 2951 n->free_objects--; 2952 2953 fixup_slab_list(cachep, n, page, &list); 2954 2955 spin_unlock(&n->list_lock); 2956 fixup_objfreelist_debug(cachep, &list); 2957 2958 return obj; 2959 } 2960 2961 /* 2962 * Slab list should be fixed up by fixup_slab_list() for existing slab 2963 * or cache_grow_end() for new slab 2964 */ 2965 static __always_inline int alloc_block(struct kmem_cache *cachep, 2966 struct array_cache *ac, struct page *page, int batchcount) 2967 { 2968 /* 2969 * There must be at least one object available for 2970 * allocation. 2971 */ 2972 BUG_ON(page->active >= cachep->num); 2973 2974 while (page->active < cachep->num && batchcount--) { 2975 STATS_INC_ALLOCED(cachep); 2976 STATS_INC_ACTIVE(cachep); 2977 STATS_SET_HIGH(cachep); 2978 2979 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2980 } 2981 2982 return batchcount; 2983 } 2984 2985 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2986 { 2987 int batchcount; 2988 struct kmem_cache_node *n; 2989 struct array_cache *ac, *shared; 2990 int node; 2991 void *list = NULL; 2992 struct page *page; 2993 2994 check_irq_off(); 2995 node = numa_mem_id(); 2996 2997 ac = cpu_cache_get(cachep); 2998 batchcount = ac->batchcount; 2999 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 3000 /* 3001 * If there was little recent activity on this cache, then 3002 * perform only a partial refill. Otherwise we could generate 3003 * refill bouncing. 3004 */ 3005 batchcount = BATCHREFILL_LIMIT; 3006 } 3007 n = get_node(cachep, node); 3008 3009 BUG_ON(ac->avail > 0 || !n); 3010 shared = READ_ONCE(n->shared); 3011 if (!n->free_objects && (!shared || !shared->avail)) 3012 goto direct_grow; 3013 3014 spin_lock(&n->list_lock); 3015 shared = READ_ONCE(n->shared); 3016 3017 /* See if we can refill from the shared array */ 3018 if (shared && transfer_objects(ac, shared, batchcount)) { 3019 shared->touched = 1; 3020 goto alloc_done; 3021 } 3022 3023 while (batchcount > 0) { 3024 /* Get slab alloc is to come from. */ 3025 page = get_first_slab(n, false); 3026 if (!page) 3027 goto must_grow; 3028 3029 check_spinlock_acquired(cachep); 3030 3031 batchcount = alloc_block(cachep, ac, page, batchcount); 3032 fixup_slab_list(cachep, n, page, &list); 3033 } 3034 3035 must_grow: 3036 n->free_objects -= ac->avail; 3037 alloc_done: 3038 spin_unlock(&n->list_lock); 3039 fixup_objfreelist_debug(cachep, &list); 3040 3041 direct_grow: 3042 if (unlikely(!ac->avail)) { 3043 /* Check if we can use obj in pfmemalloc slab */ 3044 if (sk_memalloc_socks()) { 3045 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 3046 3047 if (obj) 3048 return obj; 3049 } 3050 3051 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 3052 3053 /* 3054 * cache_grow_begin() can reenable interrupts, 3055 * then ac could change. 3056 */ 3057 ac = cpu_cache_get(cachep); 3058 if (!ac->avail && page) 3059 alloc_block(cachep, ac, page, batchcount); 3060 cache_grow_end(cachep, page); 3061 3062 if (!ac->avail) 3063 return NULL; 3064 } 3065 ac->touched = 1; 3066 3067 return ac->entry[--ac->avail]; 3068 } 3069 3070 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3071 gfp_t flags) 3072 { 3073 might_sleep_if(gfpflags_allow_blocking(flags)); 3074 } 3075 3076 #if DEBUG 3077 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3078 gfp_t flags, void *objp, unsigned long caller) 3079 { 3080 if (!objp) 3081 return objp; 3082 if (cachep->flags & SLAB_POISON) { 3083 check_poison_obj(cachep, objp); 3084 slab_kernel_map(cachep, objp, 1, 0); 3085 poison_obj(cachep, objp, POISON_INUSE); 3086 } 3087 if (cachep->flags & SLAB_STORE_USER) 3088 *dbg_userword(cachep, objp) = (void *)caller; 3089 3090 if (cachep->flags & SLAB_RED_ZONE) { 3091 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3092 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3093 slab_error(cachep, "double free, or memory outside object was overwritten"); 3094 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3095 objp, *dbg_redzone1(cachep, objp), 3096 *dbg_redzone2(cachep, objp)); 3097 } 3098 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3099 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3100 } 3101 3102 objp += obj_offset(cachep); 3103 if (cachep->ctor && cachep->flags & SLAB_POISON) 3104 cachep->ctor(objp); 3105 if (ARCH_SLAB_MINALIGN && 3106 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3107 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3108 objp, (int)ARCH_SLAB_MINALIGN); 3109 } 3110 return objp; 3111 } 3112 #else 3113 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3114 #endif 3115 3116 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3117 { 3118 void *objp; 3119 struct array_cache *ac; 3120 3121 check_irq_off(); 3122 3123 ac = cpu_cache_get(cachep); 3124 if (likely(ac->avail)) { 3125 ac->touched = 1; 3126 objp = ac->entry[--ac->avail]; 3127 3128 STATS_INC_ALLOCHIT(cachep); 3129 goto out; 3130 } 3131 3132 STATS_INC_ALLOCMISS(cachep); 3133 objp = cache_alloc_refill(cachep, flags); 3134 /* 3135 * the 'ac' may be updated by cache_alloc_refill(), 3136 * and kmemleak_erase() requires its correct value. 3137 */ 3138 ac = cpu_cache_get(cachep); 3139 3140 out: 3141 /* 3142 * To avoid a false negative, if an object that is in one of the 3143 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3144 * treat the array pointers as a reference to the object. 3145 */ 3146 if (objp) 3147 kmemleak_erase(&ac->entry[ac->avail]); 3148 return objp; 3149 } 3150 3151 #ifdef CONFIG_NUMA 3152 /* 3153 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3154 * 3155 * If we are in_interrupt, then process context, including cpusets and 3156 * mempolicy, may not apply and should not be used for allocation policy. 3157 */ 3158 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3159 { 3160 int nid_alloc, nid_here; 3161 3162 if (in_interrupt() || (flags & __GFP_THISNODE)) 3163 return NULL; 3164 nid_alloc = nid_here = numa_mem_id(); 3165 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3166 nid_alloc = cpuset_slab_spread_node(); 3167 else if (current->mempolicy) 3168 nid_alloc = mempolicy_slab_node(); 3169 if (nid_alloc != nid_here) 3170 return ____cache_alloc_node(cachep, flags, nid_alloc); 3171 return NULL; 3172 } 3173 3174 /* 3175 * Fallback function if there was no memory available and no objects on a 3176 * certain node and fall back is permitted. First we scan all the 3177 * available node for available objects. If that fails then we 3178 * perform an allocation without specifying a node. This allows the page 3179 * allocator to do its reclaim / fallback magic. We then insert the 3180 * slab into the proper nodelist and then allocate from it. 3181 */ 3182 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3183 { 3184 struct zonelist *zonelist; 3185 struct zoneref *z; 3186 struct zone *zone; 3187 enum zone_type high_zoneidx = gfp_zone(flags); 3188 void *obj = NULL; 3189 struct page *page; 3190 int nid; 3191 unsigned int cpuset_mems_cookie; 3192 3193 if (flags & __GFP_THISNODE) 3194 return NULL; 3195 3196 retry_cpuset: 3197 cpuset_mems_cookie = read_mems_allowed_begin(); 3198 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3199 3200 retry: 3201 /* 3202 * Look through allowed nodes for objects available 3203 * from existing per node queues. 3204 */ 3205 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3206 nid = zone_to_nid(zone); 3207 3208 if (cpuset_zone_allowed(zone, flags) && 3209 get_node(cache, nid) && 3210 get_node(cache, nid)->free_objects) { 3211 obj = ____cache_alloc_node(cache, 3212 gfp_exact_node(flags), nid); 3213 if (obj) 3214 break; 3215 } 3216 } 3217 3218 if (!obj) { 3219 /* 3220 * This allocation will be performed within the constraints 3221 * of the current cpuset / memory policy requirements. 3222 * We may trigger various forms of reclaim on the allowed 3223 * set and go into memory reserves if necessary. 3224 */ 3225 page = cache_grow_begin(cache, flags, numa_mem_id()); 3226 cache_grow_end(cache, page); 3227 if (page) { 3228 nid = page_to_nid(page); 3229 obj = ____cache_alloc_node(cache, 3230 gfp_exact_node(flags), nid); 3231 3232 /* 3233 * Another processor may allocate the objects in 3234 * the slab since we are not holding any locks. 3235 */ 3236 if (!obj) 3237 goto retry; 3238 } 3239 } 3240 3241 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3242 goto retry_cpuset; 3243 return obj; 3244 } 3245 3246 /* 3247 * A interface to enable slab creation on nodeid 3248 */ 3249 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3250 int nodeid) 3251 { 3252 struct page *page; 3253 struct kmem_cache_node *n; 3254 void *obj = NULL; 3255 void *list = NULL; 3256 3257 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3258 n = get_node(cachep, nodeid); 3259 BUG_ON(!n); 3260 3261 check_irq_off(); 3262 spin_lock(&n->list_lock); 3263 page = get_first_slab(n, false); 3264 if (!page) 3265 goto must_grow; 3266 3267 check_spinlock_acquired_node(cachep, nodeid); 3268 3269 STATS_INC_NODEALLOCS(cachep); 3270 STATS_INC_ACTIVE(cachep); 3271 STATS_SET_HIGH(cachep); 3272 3273 BUG_ON(page->active == cachep->num); 3274 3275 obj = slab_get_obj(cachep, page); 3276 n->free_objects--; 3277 3278 fixup_slab_list(cachep, n, page, &list); 3279 3280 spin_unlock(&n->list_lock); 3281 fixup_objfreelist_debug(cachep, &list); 3282 return obj; 3283 3284 must_grow: 3285 spin_unlock(&n->list_lock); 3286 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3287 if (page) { 3288 /* This slab isn't counted yet so don't update free_objects */ 3289 obj = slab_get_obj(cachep, page); 3290 } 3291 cache_grow_end(cachep, page); 3292 3293 return obj ? obj : fallback_alloc(cachep, flags); 3294 } 3295 3296 static __always_inline void * 3297 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3298 unsigned long caller) 3299 { 3300 unsigned long save_flags; 3301 void *ptr; 3302 int slab_node = numa_mem_id(); 3303 3304 flags &= gfp_allowed_mask; 3305 cachep = slab_pre_alloc_hook(cachep, flags); 3306 if (unlikely(!cachep)) 3307 return NULL; 3308 3309 cache_alloc_debugcheck_before(cachep, flags); 3310 local_irq_save(save_flags); 3311 3312 if (nodeid == NUMA_NO_NODE) 3313 nodeid = slab_node; 3314 3315 if (unlikely(!get_node(cachep, nodeid))) { 3316 /* Node not bootstrapped yet */ 3317 ptr = fallback_alloc(cachep, flags); 3318 goto out; 3319 } 3320 3321 if (nodeid == slab_node) { 3322 /* 3323 * Use the locally cached objects if possible. 3324 * However ____cache_alloc does not allow fallback 3325 * to other nodes. It may fail while we still have 3326 * objects on other nodes available. 3327 */ 3328 ptr = ____cache_alloc(cachep, flags); 3329 if (ptr) 3330 goto out; 3331 } 3332 /* ___cache_alloc_node can fall back to other nodes */ 3333 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3334 out: 3335 local_irq_restore(save_flags); 3336 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3337 3338 if (unlikely(flags & __GFP_ZERO) && ptr) 3339 memset(ptr, 0, cachep->object_size); 3340 3341 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3342 return ptr; 3343 } 3344 3345 static __always_inline void * 3346 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3347 { 3348 void *objp; 3349 3350 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3351 objp = alternate_node_alloc(cache, flags); 3352 if (objp) 3353 goto out; 3354 } 3355 objp = ____cache_alloc(cache, flags); 3356 3357 /* 3358 * We may just have run out of memory on the local node. 3359 * ____cache_alloc_node() knows how to locate memory on other nodes 3360 */ 3361 if (!objp) 3362 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3363 3364 out: 3365 return objp; 3366 } 3367 #else 3368 3369 static __always_inline void * 3370 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3371 { 3372 return ____cache_alloc(cachep, flags); 3373 } 3374 3375 #endif /* CONFIG_NUMA */ 3376 3377 static __always_inline void * 3378 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3379 { 3380 unsigned long save_flags; 3381 void *objp; 3382 3383 flags &= gfp_allowed_mask; 3384 cachep = slab_pre_alloc_hook(cachep, flags); 3385 if (unlikely(!cachep)) 3386 return NULL; 3387 3388 cache_alloc_debugcheck_before(cachep, flags); 3389 local_irq_save(save_flags); 3390 objp = __do_cache_alloc(cachep, flags); 3391 local_irq_restore(save_flags); 3392 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3393 prefetchw(objp); 3394 3395 if (unlikely(flags & __GFP_ZERO) && objp) 3396 memset(objp, 0, cachep->object_size); 3397 3398 slab_post_alloc_hook(cachep, flags, 1, &objp); 3399 return objp; 3400 } 3401 3402 /* 3403 * Caller needs to acquire correct kmem_cache_node's list_lock 3404 * @list: List of detached free slabs should be freed by caller 3405 */ 3406 static void free_block(struct kmem_cache *cachep, void **objpp, 3407 int nr_objects, int node, struct list_head *list) 3408 { 3409 int i; 3410 struct kmem_cache_node *n = get_node(cachep, node); 3411 struct page *page; 3412 3413 n->free_objects += nr_objects; 3414 3415 for (i = 0; i < nr_objects; i++) { 3416 void *objp; 3417 struct page *page; 3418 3419 objp = objpp[i]; 3420 3421 page = virt_to_head_page(objp); 3422 list_del(&page->lru); 3423 check_spinlock_acquired_node(cachep, node); 3424 slab_put_obj(cachep, page, objp); 3425 STATS_DEC_ACTIVE(cachep); 3426 3427 /* fixup slab chains */ 3428 if (page->active == 0) { 3429 list_add(&page->lru, &n->slabs_free); 3430 n->free_slabs++; 3431 } else { 3432 /* Unconditionally move a slab to the end of the 3433 * partial list on free - maximum time for the 3434 * other objects to be freed, too. 3435 */ 3436 list_add_tail(&page->lru, &n->slabs_partial); 3437 } 3438 } 3439 3440 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3441 n->free_objects -= cachep->num; 3442 3443 page = list_last_entry(&n->slabs_free, struct page, lru); 3444 list_move(&page->lru, list); 3445 n->free_slabs--; 3446 n->total_slabs--; 3447 } 3448 } 3449 3450 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3451 { 3452 int batchcount; 3453 struct kmem_cache_node *n; 3454 int node = numa_mem_id(); 3455 LIST_HEAD(list); 3456 3457 batchcount = ac->batchcount; 3458 3459 check_irq_off(); 3460 n = get_node(cachep, node); 3461 spin_lock(&n->list_lock); 3462 if (n->shared) { 3463 struct array_cache *shared_array = n->shared; 3464 int max = shared_array->limit - shared_array->avail; 3465 if (max) { 3466 if (batchcount > max) 3467 batchcount = max; 3468 memcpy(&(shared_array->entry[shared_array->avail]), 3469 ac->entry, sizeof(void *) * batchcount); 3470 shared_array->avail += batchcount; 3471 goto free_done; 3472 } 3473 } 3474 3475 free_block(cachep, ac->entry, batchcount, node, &list); 3476 free_done: 3477 #if STATS 3478 { 3479 int i = 0; 3480 struct page *page; 3481 3482 list_for_each_entry(page, &n->slabs_free, lru) { 3483 BUG_ON(page->active); 3484 3485 i++; 3486 } 3487 STATS_SET_FREEABLE(cachep, i); 3488 } 3489 #endif 3490 spin_unlock(&n->list_lock); 3491 slabs_destroy(cachep, &list); 3492 ac->avail -= batchcount; 3493 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3494 } 3495 3496 /* 3497 * Release an obj back to its cache. If the obj has a constructed state, it must 3498 * be in this state _before_ it is released. Called with disabled ints. 3499 */ 3500 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3501 unsigned long caller) 3502 { 3503 /* Put the object into the quarantine, don't touch it for now. */ 3504 if (kasan_slab_free(cachep, objp)) 3505 return; 3506 3507 ___cache_free(cachep, objp, caller); 3508 } 3509 3510 void ___cache_free(struct kmem_cache *cachep, void *objp, 3511 unsigned long caller) 3512 { 3513 struct array_cache *ac = cpu_cache_get(cachep); 3514 3515 check_irq_off(); 3516 kmemleak_free_recursive(objp, cachep->flags); 3517 objp = cache_free_debugcheck(cachep, objp, caller); 3518 3519 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3520 3521 /* 3522 * Skip calling cache_free_alien() when the platform is not numa. 3523 * This will avoid cache misses that happen while accessing slabp (which 3524 * is per page memory reference) to get nodeid. Instead use a global 3525 * variable to skip the call, which is mostly likely to be present in 3526 * the cache. 3527 */ 3528 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3529 return; 3530 3531 if (ac->avail < ac->limit) { 3532 STATS_INC_FREEHIT(cachep); 3533 } else { 3534 STATS_INC_FREEMISS(cachep); 3535 cache_flusharray(cachep, ac); 3536 } 3537 3538 if (sk_memalloc_socks()) { 3539 struct page *page = virt_to_head_page(objp); 3540 3541 if (unlikely(PageSlabPfmemalloc(page))) { 3542 cache_free_pfmemalloc(cachep, page, objp); 3543 return; 3544 } 3545 } 3546 3547 ac->entry[ac->avail++] = objp; 3548 } 3549 3550 /** 3551 * kmem_cache_alloc - Allocate an object 3552 * @cachep: The cache to allocate from. 3553 * @flags: See kmalloc(). 3554 * 3555 * Allocate an object from this cache. The flags are only relevant 3556 * if the cache has no available objects. 3557 */ 3558 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3559 { 3560 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3561 3562 kasan_slab_alloc(cachep, ret, flags); 3563 trace_kmem_cache_alloc(_RET_IP_, ret, 3564 cachep->object_size, cachep->size, flags); 3565 3566 return ret; 3567 } 3568 EXPORT_SYMBOL(kmem_cache_alloc); 3569 3570 static __always_inline void 3571 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3572 size_t size, void **p, unsigned long caller) 3573 { 3574 size_t i; 3575 3576 for (i = 0; i < size; i++) 3577 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3578 } 3579 3580 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3581 void **p) 3582 { 3583 size_t i; 3584 3585 s = slab_pre_alloc_hook(s, flags); 3586 if (!s) 3587 return 0; 3588 3589 cache_alloc_debugcheck_before(s, flags); 3590 3591 local_irq_disable(); 3592 for (i = 0; i < size; i++) { 3593 void *objp = __do_cache_alloc(s, flags); 3594 3595 if (unlikely(!objp)) 3596 goto error; 3597 p[i] = objp; 3598 } 3599 local_irq_enable(); 3600 3601 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3602 3603 /* Clear memory outside IRQ disabled section */ 3604 if (unlikely(flags & __GFP_ZERO)) 3605 for (i = 0; i < size; i++) 3606 memset(p[i], 0, s->object_size); 3607 3608 slab_post_alloc_hook(s, flags, size, p); 3609 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3610 return size; 3611 error: 3612 local_irq_enable(); 3613 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3614 slab_post_alloc_hook(s, flags, i, p); 3615 __kmem_cache_free_bulk(s, i, p); 3616 return 0; 3617 } 3618 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3619 3620 #ifdef CONFIG_TRACING 3621 void * 3622 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3623 { 3624 void *ret; 3625 3626 ret = slab_alloc(cachep, flags, _RET_IP_); 3627 3628 kasan_kmalloc(cachep, ret, size, flags); 3629 trace_kmalloc(_RET_IP_, ret, 3630 size, cachep->size, flags); 3631 return ret; 3632 } 3633 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3634 #endif 3635 3636 #ifdef CONFIG_NUMA 3637 /** 3638 * kmem_cache_alloc_node - Allocate an object on the specified node 3639 * @cachep: The cache to allocate from. 3640 * @flags: See kmalloc(). 3641 * @nodeid: node number of the target node. 3642 * 3643 * Identical to kmem_cache_alloc but it will allocate memory on the given 3644 * node, which can improve the performance for cpu bound structures. 3645 * 3646 * Fallback to other node is possible if __GFP_THISNODE is not set. 3647 */ 3648 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3649 { 3650 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3651 3652 kasan_slab_alloc(cachep, ret, flags); 3653 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3654 cachep->object_size, cachep->size, 3655 flags, nodeid); 3656 3657 return ret; 3658 } 3659 EXPORT_SYMBOL(kmem_cache_alloc_node); 3660 3661 #ifdef CONFIG_TRACING 3662 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3663 gfp_t flags, 3664 int nodeid, 3665 size_t size) 3666 { 3667 void *ret; 3668 3669 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3670 3671 kasan_kmalloc(cachep, ret, size, flags); 3672 trace_kmalloc_node(_RET_IP_, ret, 3673 size, cachep->size, 3674 flags, nodeid); 3675 return ret; 3676 } 3677 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3678 #endif 3679 3680 static __always_inline void * 3681 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3682 { 3683 struct kmem_cache *cachep; 3684 void *ret; 3685 3686 cachep = kmalloc_slab(size, flags); 3687 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3688 return cachep; 3689 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3690 kasan_kmalloc(cachep, ret, size, flags); 3691 3692 return ret; 3693 } 3694 3695 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3696 { 3697 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3698 } 3699 EXPORT_SYMBOL(__kmalloc_node); 3700 3701 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3702 int node, unsigned long caller) 3703 { 3704 return __do_kmalloc_node(size, flags, node, caller); 3705 } 3706 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3707 #endif /* CONFIG_NUMA */ 3708 3709 /** 3710 * __do_kmalloc - allocate memory 3711 * @size: how many bytes of memory are required. 3712 * @flags: the type of memory to allocate (see kmalloc). 3713 * @caller: function caller for debug tracking of the caller 3714 */ 3715 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3716 unsigned long caller) 3717 { 3718 struct kmem_cache *cachep; 3719 void *ret; 3720 3721 cachep = kmalloc_slab(size, flags); 3722 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3723 return cachep; 3724 ret = slab_alloc(cachep, flags, caller); 3725 3726 kasan_kmalloc(cachep, ret, size, flags); 3727 trace_kmalloc(caller, ret, 3728 size, cachep->size, flags); 3729 3730 return ret; 3731 } 3732 3733 void *__kmalloc(size_t size, gfp_t flags) 3734 { 3735 return __do_kmalloc(size, flags, _RET_IP_); 3736 } 3737 EXPORT_SYMBOL(__kmalloc); 3738 3739 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3740 { 3741 return __do_kmalloc(size, flags, caller); 3742 } 3743 EXPORT_SYMBOL(__kmalloc_track_caller); 3744 3745 /** 3746 * kmem_cache_free - Deallocate an object 3747 * @cachep: The cache the allocation was from. 3748 * @objp: The previously allocated object. 3749 * 3750 * Free an object which was previously allocated from this 3751 * cache. 3752 */ 3753 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3754 { 3755 unsigned long flags; 3756 cachep = cache_from_obj(cachep, objp); 3757 if (!cachep) 3758 return; 3759 3760 local_irq_save(flags); 3761 debug_check_no_locks_freed(objp, cachep->object_size); 3762 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3763 debug_check_no_obj_freed(objp, cachep->object_size); 3764 __cache_free(cachep, objp, _RET_IP_); 3765 local_irq_restore(flags); 3766 3767 trace_kmem_cache_free(_RET_IP_, objp); 3768 } 3769 EXPORT_SYMBOL(kmem_cache_free); 3770 3771 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3772 { 3773 struct kmem_cache *s; 3774 size_t i; 3775 3776 local_irq_disable(); 3777 for (i = 0; i < size; i++) { 3778 void *objp = p[i]; 3779 3780 if (!orig_s) /* called via kfree_bulk */ 3781 s = virt_to_cache(objp); 3782 else 3783 s = cache_from_obj(orig_s, objp); 3784 3785 debug_check_no_locks_freed(objp, s->object_size); 3786 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3787 debug_check_no_obj_freed(objp, s->object_size); 3788 3789 __cache_free(s, objp, _RET_IP_); 3790 } 3791 local_irq_enable(); 3792 3793 /* FIXME: add tracing */ 3794 } 3795 EXPORT_SYMBOL(kmem_cache_free_bulk); 3796 3797 /** 3798 * kfree - free previously allocated memory 3799 * @objp: pointer returned by kmalloc. 3800 * 3801 * If @objp is NULL, no operation is performed. 3802 * 3803 * Don't free memory not originally allocated by kmalloc() 3804 * or you will run into trouble. 3805 */ 3806 void kfree(const void *objp) 3807 { 3808 struct kmem_cache *c; 3809 unsigned long flags; 3810 3811 trace_kfree(_RET_IP_, objp); 3812 3813 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3814 return; 3815 local_irq_save(flags); 3816 kfree_debugcheck(objp); 3817 c = virt_to_cache(objp); 3818 debug_check_no_locks_freed(objp, c->object_size); 3819 3820 debug_check_no_obj_freed(objp, c->object_size); 3821 __cache_free(c, (void *)objp, _RET_IP_); 3822 local_irq_restore(flags); 3823 } 3824 EXPORT_SYMBOL(kfree); 3825 3826 /* 3827 * This initializes kmem_cache_node or resizes various caches for all nodes. 3828 */ 3829 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3830 { 3831 int ret; 3832 int node; 3833 struct kmem_cache_node *n; 3834 3835 for_each_online_node(node) { 3836 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3837 if (ret) 3838 goto fail; 3839 3840 } 3841 3842 return 0; 3843 3844 fail: 3845 if (!cachep->list.next) { 3846 /* Cache is not active yet. Roll back what we did */ 3847 node--; 3848 while (node >= 0) { 3849 n = get_node(cachep, node); 3850 if (n) { 3851 kfree(n->shared); 3852 free_alien_cache(n->alien); 3853 kfree(n); 3854 cachep->node[node] = NULL; 3855 } 3856 node--; 3857 } 3858 } 3859 return -ENOMEM; 3860 } 3861 3862 /* Always called with the slab_mutex held */ 3863 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3864 int batchcount, int shared, gfp_t gfp) 3865 { 3866 struct array_cache __percpu *cpu_cache, *prev; 3867 int cpu; 3868 3869 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3870 if (!cpu_cache) 3871 return -ENOMEM; 3872 3873 prev = cachep->cpu_cache; 3874 cachep->cpu_cache = cpu_cache; 3875 /* 3876 * Without a previous cpu_cache there's no need to synchronize remote 3877 * cpus, so skip the IPIs. 3878 */ 3879 if (prev) 3880 kick_all_cpus_sync(); 3881 3882 check_irq_on(); 3883 cachep->batchcount = batchcount; 3884 cachep->limit = limit; 3885 cachep->shared = shared; 3886 3887 if (!prev) 3888 goto setup_node; 3889 3890 for_each_online_cpu(cpu) { 3891 LIST_HEAD(list); 3892 int node; 3893 struct kmem_cache_node *n; 3894 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3895 3896 node = cpu_to_mem(cpu); 3897 n = get_node(cachep, node); 3898 spin_lock_irq(&n->list_lock); 3899 free_block(cachep, ac->entry, ac->avail, node, &list); 3900 spin_unlock_irq(&n->list_lock); 3901 slabs_destroy(cachep, &list); 3902 } 3903 free_percpu(prev); 3904 3905 setup_node: 3906 return setup_kmem_cache_nodes(cachep, gfp); 3907 } 3908 3909 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3910 int batchcount, int shared, gfp_t gfp) 3911 { 3912 int ret; 3913 struct kmem_cache *c; 3914 3915 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3916 3917 if (slab_state < FULL) 3918 return ret; 3919 3920 if ((ret < 0) || !is_root_cache(cachep)) 3921 return ret; 3922 3923 lockdep_assert_held(&slab_mutex); 3924 for_each_memcg_cache(c, cachep) { 3925 /* return value determined by the root cache only */ 3926 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3927 } 3928 3929 return ret; 3930 } 3931 3932 /* Called with slab_mutex held always */ 3933 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3934 { 3935 int err; 3936 int limit = 0; 3937 int shared = 0; 3938 int batchcount = 0; 3939 3940 err = cache_random_seq_create(cachep, cachep->num, gfp); 3941 if (err) 3942 goto end; 3943 3944 if (!is_root_cache(cachep)) { 3945 struct kmem_cache *root = memcg_root_cache(cachep); 3946 limit = root->limit; 3947 shared = root->shared; 3948 batchcount = root->batchcount; 3949 } 3950 3951 if (limit && shared && batchcount) 3952 goto skip_setup; 3953 /* 3954 * The head array serves three purposes: 3955 * - create a LIFO ordering, i.e. return objects that are cache-warm 3956 * - reduce the number of spinlock operations. 3957 * - reduce the number of linked list operations on the slab and 3958 * bufctl chains: array operations are cheaper. 3959 * The numbers are guessed, we should auto-tune as described by 3960 * Bonwick. 3961 */ 3962 if (cachep->size > 131072) 3963 limit = 1; 3964 else if (cachep->size > PAGE_SIZE) 3965 limit = 8; 3966 else if (cachep->size > 1024) 3967 limit = 24; 3968 else if (cachep->size > 256) 3969 limit = 54; 3970 else 3971 limit = 120; 3972 3973 /* 3974 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3975 * allocation behaviour: Most allocs on one cpu, most free operations 3976 * on another cpu. For these cases, an efficient object passing between 3977 * cpus is necessary. This is provided by a shared array. The array 3978 * replaces Bonwick's magazine layer. 3979 * On uniprocessor, it's functionally equivalent (but less efficient) 3980 * to a larger limit. Thus disabled by default. 3981 */ 3982 shared = 0; 3983 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3984 shared = 8; 3985 3986 #if DEBUG 3987 /* 3988 * With debugging enabled, large batchcount lead to excessively long 3989 * periods with disabled local interrupts. Limit the batchcount 3990 */ 3991 if (limit > 32) 3992 limit = 32; 3993 #endif 3994 batchcount = (limit + 1) / 2; 3995 skip_setup: 3996 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3997 end: 3998 if (err) 3999 pr_err("enable_cpucache failed for %s, error %d\n", 4000 cachep->name, -err); 4001 return err; 4002 } 4003 4004 /* 4005 * Drain an array if it contains any elements taking the node lock only if 4006 * necessary. Note that the node listlock also protects the array_cache 4007 * if drain_array() is used on the shared array. 4008 */ 4009 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 4010 struct array_cache *ac, int node) 4011 { 4012 LIST_HEAD(list); 4013 4014 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 4015 check_mutex_acquired(); 4016 4017 if (!ac || !ac->avail) 4018 return; 4019 4020 if (ac->touched) { 4021 ac->touched = 0; 4022 return; 4023 } 4024 4025 spin_lock_irq(&n->list_lock); 4026 drain_array_locked(cachep, ac, node, false, &list); 4027 spin_unlock_irq(&n->list_lock); 4028 4029 slabs_destroy(cachep, &list); 4030 } 4031 4032 /** 4033 * cache_reap - Reclaim memory from caches. 4034 * @w: work descriptor 4035 * 4036 * Called from workqueue/eventd every few seconds. 4037 * Purpose: 4038 * - clear the per-cpu caches for this CPU. 4039 * - return freeable pages to the main free memory pool. 4040 * 4041 * If we cannot acquire the cache chain mutex then just give up - we'll try 4042 * again on the next iteration. 4043 */ 4044 static void cache_reap(struct work_struct *w) 4045 { 4046 struct kmem_cache *searchp; 4047 struct kmem_cache_node *n; 4048 int node = numa_mem_id(); 4049 struct delayed_work *work = to_delayed_work(w); 4050 4051 if (!mutex_trylock(&slab_mutex)) 4052 /* Give up. Setup the next iteration. */ 4053 goto out; 4054 4055 list_for_each_entry(searchp, &slab_caches, list) { 4056 check_irq_on(); 4057 4058 /* 4059 * We only take the node lock if absolutely necessary and we 4060 * have established with reasonable certainty that 4061 * we can do some work if the lock was obtained. 4062 */ 4063 n = get_node(searchp, node); 4064 4065 reap_alien(searchp, n); 4066 4067 drain_array(searchp, n, cpu_cache_get(searchp), node); 4068 4069 /* 4070 * These are racy checks but it does not matter 4071 * if we skip one check or scan twice. 4072 */ 4073 if (time_after(n->next_reap, jiffies)) 4074 goto next; 4075 4076 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4077 4078 drain_array(searchp, n, n->shared, node); 4079 4080 if (n->free_touched) 4081 n->free_touched = 0; 4082 else { 4083 int freed; 4084 4085 freed = drain_freelist(searchp, n, (n->free_limit + 4086 5 * searchp->num - 1) / (5 * searchp->num)); 4087 STATS_ADD_REAPED(searchp, freed); 4088 } 4089 next: 4090 cond_resched(); 4091 } 4092 check_irq_on(); 4093 mutex_unlock(&slab_mutex); 4094 next_reap_node(); 4095 out: 4096 /* Set up the next iteration */ 4097 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 4098 } 4099 4100 #ifdef CONFIG_SLABINFO 4101 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4102 { 4103 unsigned long active_objs, num_objs, active_slabs; 4104 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4105 unsigned long free_slabs = 0; 4106 int node; 4107 struct kmem_cache_node *n; 4108 4109 for_each_kmem_cache_node(cachep, node, n) { 4110 check_irq_on(); 4111 spin_lock_irq(&n->list_lock); 4112 4113 total_slabs += n->total_slabs; 4114 free_slabs += n->free_slabs; 4115 free_objs += n->free_objects; 4116 4117 if (n->shared) 4118 shared_avail += n->shared->avail; 4119 4120 spin_unlock_irq(&n->list_lock); 4121 } 4122 num_objs = total_slabs * cachep->num; 4123 active_slabs = total_slabs - free_slabs; 4124 active_objs = num_objs - free_objs; 4125 4126 sinfo->active_objs = active_objs; 4127 sinfo->num_objs = num_objs; 4128 sinfo->active_slabs = active_slabs; 4129 sinfo->num_slabs = total_slabs; 4130 sinfo->shared_avail = shared_avail; 4131 sinfo->limit = cachep->limit; 4132 sinfo->batchcount = cachep->batchcount; 4133 sinfo->shared = cachep->shared; 4134 sinfo->objects_per_slab = cachep->num; 4135 sinfo->cache_order = cachep->gfporder; 4136 } 4137 4138 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4139 { 4140 #if STATS 4141 { /* node stats */ 4142 unsigned long high = cachep->high_mark; 4143 unsigned long allocs = cachep->num_allocations; 4144 unsigned long grown = cachep->grown; 4145 unsigned long reaped = cachep->reaped; 4146 unsigned long errors = cachep->errors; 4147 unsigned long max_freeable = cachep->max_freeable; 4148 unsigned long node_allocs = cachep->node_allocs; 4149 unsigned long node_frees = cachep->node_frees; 4150 unsigned long overflows = cachep->node_overflow; 4151 4152 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4153 allocs, high, grown, 4154 reaped, errors, max_freeable, node_allocs, 4155 node_frees, overflows); 4156 } 4157 /* cpu stats */ 4158 { 4159 unsigned long allochit = atomic_read(&cachep->allochit); 4160 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4161 unsigned long freehit = atomic_read(&cachep->freehit); 4162 unsigned long freemiss = atomic_read(&cachep->freemiss); 4163 4164 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4165 allochit, allocmiss, freehit, freemiss); 4166 } 4167 #endif 4168 } 4169 4170 #define MAX_SLABINFO_WRITE 128 4171 /** 4172 * slabinfo_write - Tuning for the slab allocator 4173 * @file: unused 4174 * @buffer: user buffer 4175 * @count: data length 4176 * @ppos: unused 4177 */ 4178 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4179 size_t count, loff_t *ppos) 4180 { 4181 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4182 int limit, batchcount, shared, res; 4183 struct kmem_cache *cachep; 4184 4185 if (count > MAX_SLABINFO_WRITE) 4186 return -EINVAL; 4187 if (copy_from_user(&kbuf, buffer, count)) 4188 return -EFAULT; 4189 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4190 4191 tmp = strchr(kbuf, ' '); 4192 if (!tmp) 4193 return -EINVAL; 4194 *tmp = '\0'; 4195 tmp++; 4196 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4197 return -EINVAL; 4198 4199 /* Find the cache in the chain of caches. */ 4200 mutex_lock(&slab_mutex); 4201 res = -EINVAL; 4202 list_for_each_entry(cachep, &slab_caches, list) { 4203 if (!strcmp(cachep->name, kbuf)) { 4204 if (limit < 1 || batchcount < 1 || 4205 batchcount > limit || shared < 0) { 4206 res = 0; 4207 } else { 4208 res = do_tune_cpucache(cachep, limit, 4209 batchcount, shared, 4210 GFP_KERNEL); 4211 } 4212 break; 4213 } 4214 } 4215 mutex_unlock(&slab_mutex); 4216 if (res >= 0) 4217 res = count; 4218 return res; 4219 } 4220 4221 #ifdef CONFIG_DEBUG_SLAB_LEAK 4222 4223 static inline int add_caller(unsigned long *n, unsigned long v) 4224 { 4225 unsigned long *p; 4226 int l; 4227 if (!v) 4228 return 1; 4229 l = n[1]; 4230 p = n + 2; 4231 while (l) { 4232 int i = l/2; 4233 unsigned long *q = p + 2 * i; 4234 if (*q == v) { 4235 q[1]++; 4236 return 1; 4237 } 4238 if (*q > v) { 4239 l = i; 4240 } else { 4241 p = q + 2; 4242 l -= i + 1; 4243 } 4244 } 4245 if (++n[1] == n[0]) 4246 return 0; 4247 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4248 p[0] = v; 4249 p[1] = 1; 4250 return 1; 4251 } 4252 4253 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4254 struct page *page) 4255 { 4256 void *p; 4257 int i, j; 4258 unsigned long v; 4259 4260 if (n[0] == n[1]) 4261 return; 4262 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4263 bool active = true; 4264 4265 for (j = page->active; j < c->num; j++) { 4266 if (get_free_obj(page, j) == i) { 4267 active = false; 4268 break; 4269 } 4270 } 4271 4272 if (!active) 4273 continue; 4274 4275 /* 4276 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4277 * mapping is established when actual object allocation and 4278 * we could mistakenly access the unmapped object in the cpu 4279 * cache. 4280 */ 4281 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4282 continue; 4283 4284 if (!add_caller(n, v)) 4285 return; 4286 } 4287 } 4288 4289 static void show_symbol(struct seq_file *m, unsigned long address) 4290 { 4291 #ifdef CONFIG_KALLSYMS 4292 unsigned long offset, size; 4293 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4294 4295 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4296 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4297 if (modname[0]) 4298 seq_printf(m, " [%s]", modname); 4299 return; 4300 } 4301 #endif 4302 seq_printf(m, "%p", (void *)address); 4303 } 4304 4305 static int leaks_show(struct seq_file *m, void *p) 4306 { 4307 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4308 struct page *page; 4309 struct kmem_cache_node *n; 4310 const char *name; 4311 unsigned long *x = m->private; 4312 int node; 4313 int i; 4314 4315 if (!(cachep->flags & SLAB_STORE_USER)) 4316 return 0; 4317 if (!(cachep->flags & SLAB_RED_ZONE)) 4318 return 0; 4319 4320 /* 4321 * Set store_user_clean and start to grab stored user information 4322 * for all objects on this cache. If some alloc/free requests comes 4323 * during the processing, information would be wrong so restart 4324 * whole processing. 4325 */ 4326 do { 4327 set_store_user_clean(cachep); 4328 drain_cpu_caches(cachep); 4329 4330 x[1] = 0; 4331 4332 for_each_kmem_cache_node(cachep, node, n) { 4333 4334 check_irq_on(); 4335 spin_lock_irq(&n->list_lock); 4336 4337 list_for_each_entry(page, &n->slabs_full, lru) 4338 handle_slab(x, cachep, page); 4339 list_for_each_entry(page, &n->slabs_partial, lru) 4340 handle_slab(x, cachep, page); 4341 spin_unlock_irq(&n->list_lock); 4342 } 4343 } while (!is_store_user_clean(cachep)); 4344 4345 name = cachep->name; 4346 if (x[0] == x[1]) { 4347 /* Increase the buffer size */ 4348 mutex_unlock(&slab_mutex); 4349 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4350 if (!m->private) { 4351 /* Too bad, we are really out */ 4352 m->private = x; 4353 mutex_lock(&slab_mutex); 4354 return -ENOMEM; 4355 } 4356 *(unsigned long *)m->private = x[0] * 2; 4357 kfree(x); 4358 mutex_lock(&slab_mutex); 4359 /* Now make sure this entry will be retried */ 4360 m->count = m->size; 4361 return 0; 4362 } 4363 for (i = 0; i < x[1]; i++) { 4364 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4365 show_symbol(m, x[2*i+2]); 4366 seq_putc(m, '\n'); 4367 } 4368 4369 return 0; 4370 } 4371 4372 static const struct seq_operations slabstats_op = { 4373 .start = slab_start, 4374 .next = slab_next, 4375 .stop = slab_stop, 4376 .show = leaks_show, 4377 }; 4378 4379 static int slabstats_open(struct inode *inode, struct file *file) 4380 { 4381 unsigned long *n; 4382 4383 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4384 if (!n) 4385 return -ENOMEM; 4386 4387 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4388 4389 return 0; 4390 } 4391 4392 static const struct file_operations proc_slabstats_operations = { 4393 .open = slabstats_open, 4394 .read = seq_read, 4395 .llseek = seq_lseek, 4396 .release = seq_release_private, 4397 }; 4398 #endif 4399 4400 static int __init slab_proc_init(void) 4401 { 4402 #ifdef CONFIG_DEBUG_SLAB_LEAK 4403 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4404 #endif 4405 return 0; 4406 } 4407 module_init(slab_proc_init); 4408 #endif 4409 4410 #ifdef CONFIG_HARDENED_USERCOPY 4411 /* 4412 * Rejects objects that are incorrectly sized. 4413 * 4414 * Returns NULL if check passes, otherwise const char * to name of cache 4415 * to indicate an error. 4416 */ 4417 const char *__check_heap_object(const void *ptr, unsigned long n, 4418 struct page *page) 4419 { 4420 struct kmem_cache *cachep; 4421 unsigned int objnr; 4422 unsigned long offset; 4423 4424 /* Find and validate object. */ 4425 cachep = page->slab_cache; 4426 objnr = obj_to_index(cachep, page, (void *)ptr); 4427 BUG_ON(objnr >= cachep->num); 4428 4429 /* Find offset within object. */ 4430 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4431 4432 /* Allow address range falling entirely within object size. */ 4433 if (offset <= cachep->object_size && n <= cachep->object_size - offset) 4434 return NULL; 4435 4436 return cachep->name; 4437 } 4438 #endif /* CONFIG_HARDENED_USERCOPY */ 4439 4440 /** 4441 * ksize - get the actual amount of memory allocated for a given object 4442 * @objp: Pointer to the object 4443 * 4444 * kmalloc may internally round up allocations and return more memory 4445 * than requested. ksize() can be used to determine the actual amount of 4446 * memory allocated. The caller may use this additional memory, even though 4447 * a smaller amount of memory was initially specified with the kmalloc call. 4448 * The caller must guarantee that objp points to a valid object previously 4449 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4450 * must not be freed during the duration of the call. 4451 */ 4452 size_t ksize(const void *objp) 4453 { 4454 size_t size; 4455 4456 BUG_ON(!objp); 4457 if (unlikely(objp == ZERO_SIZE_PTR)) 4458 return 0; 4459 4460 size = virt_to_cache(objp)->object_size; 4461 /* We assume that ksize callers could use the whole allocated area, 4462 * so we need to unpoison this area. 4463 */ 4464 kasan_unpoison_shadow(objp, size); 4465 4466 return size; 4467 } 4468 EXPORT_SYMBOL(ksize); 4469