xref: /openbmc/linux/mm/slab.c (revision ace2dc7d)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 
119 #include	<asm/cacheflush.h>
120 #include	<asm/tlbflush.h>
121 #include	<asm/page.h>
122 
123 /*
124  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
125  *		  0 for faster, smaller code (especially in the critical paths).
126  *
127  * STATS	- 1 to collect stats for /proc/slabinfo.
128  *		  0 for faster, smaller code (especially in the critical paths).
129  *
130  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131  */
132 
133 #ifdef CONFIG_DEBUG_SLAB
134 #define	DEBUG		1
135 #define	STATS		1
136 #define	FORCED_DEBUG	1
137 #else
138 #define	DEBUG		0
139 #define	STATS		0
140 #define	FORCED_DEBUG	0
141 #endif
142 
143 /* Shouldn't this be in a header file somewhere? */
144 #define	BYTES_PER_WORD		sizeof(void *)
145 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
146 
147 #ifndef ARCH_KMALLOC_FLAGS
148 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
149 #endif
150 
151 /* Legal flag mask for kmem_cache_create(). */
152 #if DEBUG
153 # define CREATE_MASK	(SLAB_RED_ZONE | \
154 			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
155 			 SLAB_CACHE_DMA | \
156 			 SLAB_STORE_USER | \
157 			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
158 			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
159 			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
160 #else
161 # define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
162 			 SLAB_CACHE_DMA | \
163 			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
164 			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
165 			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
166 #endif
167 
168 /*
169  * kmem_bufctl_t:
170  *
171  * Bufctl's are used for linking objs within a slab
172  * linked offsets.
173  *
174  * This implementation relies on "struct page" for locating the cache &
175  * slab an object belongs to.
176  * This allows the bufctl structure to be small (one int), but limits
177  * the number of objects a slab (not a cache) can contain when off-slab
178  * bufctls are used. The limit is the size of the largest general cache
179  * that does not use off-slab slabs.
180  * For 32bit archs with 4 kB pages, is this 56.
181  * This is not serious, as it is only for large objects, when it is unwise
182  * to have too many per slab.
183  * Note: This limit can be raised by introducing a general cache whose size
184  * is less than 512 (PAGE_SIZE<<3), but greater than 256.
185  */
186 
187 typedef unsigned int kmem_bufctl_t;
188 #define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
189 #define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
190 #define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
191 #define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
192 
193 /*
194  * struct slab
195  *
196  * Manages the objs in a slab. Placed either at the beginning of mem allocated
197  * for a slab, or allocated from an general cache.
198  * Slabs are chained into three list: fully used, partial, fully free slabs.
199  */
200 struct slab {
201 	struct list_head list;
202 	unsigned long colouroff;
203 	void *s_mem;		/* including colour offset */
204 	unsigned int inuse;	/* num of objs active in slab */
205 	kmem_bufctl_t free;
206 	unsigned short nodeid;
207 };
208 
209 /*
210  * struct slab_rcu
211  *
212  * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
213  * arrange for kmem_freepages to be called via RCU.  This is useful if
214  * we need to approach a kernel structure obliquely, from its address
215  * obtained without the usual locking.  We can lock the structure to
216  * stabilize it and check it's still at the given address, only if we
217  * can be sure that the memory has not been meanwhile reused for some
218  * other kind of object (which our subsystem's lock might corrupt).
219  *
220  * rcu_read_lock before reading the address, then rcu_read_unlock after
221  * taking the spinlock within the structure expected at that address.
222  *
223  * We assume struct slab_rcu can overlay struct slab when destroying.
224  */
225 struct slab_rcu {
226 	struct rcu_head head;
227 	struct kmem_cache *cachep;
228 	void *addr;
229 };
230 
231 /*
232  * struct array_cache
233  *
234  * Purpose:
235  * - LIFO ordering, to hand out cache-warm objects from _alloc
236  * - reduce the number of linked list operations
237  * - reduce spinlock operations
238  *
239  * The limit is stored in the per-cpu structure to reduce the data cache
240  * footprint.
241  *
242  */
243 struct array_cache {
244 	unsigned int avail;
245 	unsigned int limit;
246 	unsigned int batchcount;
247 	unsigned int touched;
248 	spinlock_t lock;
249 	void *entry[];	/*
250 			 * Must have this definition in here for the proper
251 			 * alignment of array_cache. Also simplifies accessing
252 			 * the entries.
253 			 */
254 };
255 
256 /*
257  * bootstrap: The caches do not work without cpuarrays anymore, but the
258  * cpuarrays are allocated from the generic caches...
259  */
260 #define BOOT_CPUCACHE_ENTRIES	1
261 struct arraycache_init {
262 	struct array_cache cache;
263 	void *entries[BOOT_CPUCACHE_ENTRIES];
264 };
265 
266 /*
267  * The slab lists for all objects.
268  */
269 struct kmem_list3 {
270 	struct list_head slabs_partial;	/* partial list first, better asm code */
271 	struct list_head slabs_full;
272 	struct list_head slabs_free;
273 	unsigned long free_objects;
274 	unsigned int free_limit;
275 	unsigned int colour_next;	/* Per-node cache coloring */
276 	spinlock_t list_lock;
277 	struct array_cache *shared;	/* shared per node */
278 	struct array_cache **alien;	/* on other nodes */
279 	unsigned long next_reap;	/* updated without locking */
280 	int free_touched;		/* updated without locking */
281 };
282 
283 /*
284  * Need this for bootstrapping a per node allocator.
285  */
286 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
287 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
288 #define	CACHE_CACHE 0
289 #define	SIZE_AC MAX_NUMNODES
290 #define	SIZE_L3 (2 * MAX_NUMNODES)
291 
292 static int drain_freelist(struct kmem_cache *cache,
293 			struct kmem_list3 *l3, int tofree);
294 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
295 			int node);
296 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
297 static void cache_reap(struct work_struct *unused);
298 
299 /*
300  * This function must be completely optimized away if a constant is passed to
301  * it.  Mostly the same as what is in linux/slab.h except it returns an index.
302  */
303 static __always_inline int index_of(const size_t size)
304 {
305 	extern void __bad_size(void);
306 
307 	if (__builtin_constant_p(size)) {
308 		int i = 0;
309 
310 #define CACHE(x) \
311 	if (size <=x) \
312 		return i; \
313 	else \
314 		i++;
315 #include <linux/kmalloc_sizes.h>
316 #undef CACHE
317 		__bad_size();
318 	} else
319 		__bad_size();
320 	return 0;
321 }
322 
323 static int slab_early_init = 1;
324 
325 #define INDEX_AC index_of(sizeof(struct arraycache_init))
326 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
327 
328 static void kmem_list3_init(struct kmem_list3 *parent)
329 {
330 	INIT_LIST_HEAD(&parent->slabs_full);
331 	INIT_LIST_HEAD(&parent->slabs_partial);
332 	INIT_LIST_HEAD(&parent->slabs_free);
333 	parent->shared = NULL;
334 	parent->alien = NULL;
335 	parent->colour_next = 0;
336 	spin_lock_init(&parent->list_lock);
337 	parent->free_objects = 0;
338 	parent->free_touched = 0;
339 }
340 
341 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
342 	do {								\
343 		INIT_LIST_HEAD(listp);					\
344 		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
345 	} while (0)
346 
347 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
348 	do {								\
349 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
350 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
351 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
352 	} while (0)
353 
354 #define CFLGS_OFF_SLAB		(0x80000000UL)
355 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
356 
357 #define BATCHREFILL_LIMIT	16
358 /*
359  * Optimization question: fewer reaps means less probability for unnessary
360  * cpucache drain/refill cycles.
361  *
362  * OTOH the cpuarrays can contain lots of objects,
363  * which could lock up otherwise freeable slabs.
364  */
365 #define REAPTIMEOUT_CPUC	(2*HZ)
366 #define REAPTIMEOUT_LIST3	(4*HZ)
367 
368 #if STATS
369 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
370 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
371 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
372 #define	STATS_INC_GROWN(x)	((x)->grown++)
373 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
374 #define	STATS_SET_HIGH(x)						\
375 	do {								\
376 		if ((x)->num_active > (x)->high_mark)			\
377 			(x)->high_mark = (x)->num_active;		\
378 	} while (0)
379 #define	STATS_INC_ERR(x)	((x)->errors++)
380 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
381 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
382 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
383 #define	STATS_SET_FREEABLE(x, i)					\
384 	do {								\
385 		if ((x)->max_freeable < i)				\
386 			(x)->max_freeable = i;				\
387 	} while (0)
388 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
389 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
390 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
391 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
392 #else
393 #define	STATS_INC_ACTIVE(x)	do { } while (0)
394 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
395 #define	STATS_INC_ALLOCED(x)	do { } while (0)
396 #define	STATS_INC_GROWN(x)	do { } while (0)
397 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
398 #define	STATS_SET_HIGH(x)	do { } while (0)
399 #define	STATS_INC_ERR(x)	do { } while (0)
400 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
401 #define	STATS_INC_NODEFREES(x)	do { } while (0)
402 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
403 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
404 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
405 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
406 #define STATS_INC_FREEHIT(x)	do { } while (0)
407 #define STATS_INC_FREEMISS(x)	do { } while (0)
408 #endif
409 
410 #if DEBUG
411 
412 /*
413  * memory layout of objects:
414  * 0		: objp
415  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
416  * 		the end of an object is aligned with the end of the real
417  * 		allocation. Catches writes behind the end of the allocation.
418  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
419  * 		redzone word.
420  * cachep->obj_offset: The real object.
421  * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
422  * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
423  *					[BYTES_PER_WORD long]
424  */
425 static int obj_offset(struct kmem_cache *cachep)
426 {
427 	return cachep->obj_offset;
428 }
429 
430 static int obj_size(struct kmem_cache *cachep)
431 {
432 	return cachep->obj_size;
433 }
434 
435 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
436 {
437 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
438 	return (unsigned long long*) (objp + obj_offset(cachep) -
439 				      sizeof(unsigned long long));
440 }
441 
442 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
443 {
444 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
445 	if (cachep->flags & SLAB_STORE_USER)
446 		return (unsigned long long *)(objp + cachep->buffer_size -
447 					      sizeof(unsigned long long) -
448 					      REDZONE_ALIGN);
449 	return (unsigned long long *) (objp + cachep->buffer_size -
450 				       sizeof(unsigned long long));
451 }
452 
453 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
454 {
455 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
456 	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
457 }
458 
459 #else
460 
461 #define obj_offset(x)			0
462 #define obj_size(cachep)		(cachep->buffer_size)
463 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
464 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
465 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
466 
467 #endif
468 
469 #ifdef CONFIG_TRACING
470 size_t slab_buffer_size(struct kmem_cache *cachep)
471 {
472 	return cachep->buffer_size;
473 }
474 EXPORT_SYMBOL(slab_buffer_size);
475 #endif
476 
477 /*
478  * Do not go above this order unless 0 objects fit into the slab.
479  */
480 #define	BREAK_GFP_ORDER_HI	1
481 #define	BREAK_GFP_ORDER_LO	0
482 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
483 
484 /*
485  * Functions for storing/retrieving the cachep and or slab from the page
486  * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
487  * these are used to find the cache which an obj belongs to.
488  */
489 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
490 {
491 	page->lru.next = (struct list_head *)cache;
492 }
493 
494 static inline struct kmem_cache *page_get_cache(struct page *page)
495 {
496 	page = compound_head(page);
497 	BUG_ON(!PageSlab(page));
498 	return (struct kmem_cache *)page->lru.next;
499 }
500 
501 static inline void page_set_slab(struct page *page, struct slab *slab)
502 {
503 	page->lru.prev = (struct list_head *)slab;
504 }
505 
506 static inline struct slab *page_get_slab(struct page *page)
507 {
508 	BUG_ON(!PageSlab(page));
509 	return (struct slab *)page->lru.prev;
510 }
511 
512 static inline struct kmem_cache *virt_to_cache(const void *obj)
513 {
514 	struct page *page = virt_to_head_page(obj);
515 	return page_get_cache(page);
516 }
517 
518 static inline struct slab *virt_to_slab(const void *obj)
519 {
520 	struct page *page = virt_to_head_page(obj);
521 	return page_get_slab(page);
522 }
523 
524 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
525 				 unsigned int idx)
526 {
527 	return slab->s_mem + cache->buffer_size * idx;
528 }
529 
530 /*
531  * We want to avoid an expensive divide : (offset / cache->buffer_size)
532  *   Using the fact that buffer_size is a constant for a particular cache,
533  *   we can replace (offset / cache->buffer_size) by
534  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
535  */
536 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
537 					const struct slab *slab, void *obj)
538 {
539 	u32 offset = (obj - slab->s_mem);
540 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
541 }
542 
543 /*
544  * These are the default caches for kmalloc. Custom caches can have other sizes.
545  */
546 struct cache_sizes malloc_sizes[] = {
547 #define CACHE(x) { .cs_size = (x) },
548 #include <linux/kmalloc_sizes.h>
549 	CACHE(ULONG_MAX)
550 #undef CACHE
551 };
552 EXPORT_SYMBOL(malloc_sizes);
553 
554 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
555 struct cache_names {
556 	char *name;
557 	char *name_dma;
558 };
559 
560 static struct cache_names __initdata cache_names[] = {
561 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
562 #include <linux/kmalloc_sizes.h>
563 	{NULL,}
564 #undef CACHE
565 };
566 
567 static struct arraycache_init initarray_cache __initdata =
568     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
569 static struct arraycache_init initarray_generic =
570     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
571 
572 /* internal cache of cache description objs */
573 static struct kmem_cache cache_cache = {
574 	.batchcount = 1,
575 	.limit = BOOT_CPUCACHE_ENTRIES,
576 	.shared = 1,
577 	.buffer_size = sizeof(struct kmem_cache),
578 	.name = "kmem_cache",
579 };
580 
581 #define BAD_ALIEN_MAGIC 0x01020304ul
582 
583 /*
584  * chicken and egg problem: delay the per-cpu array allocation
585  * until the general caches are up.
586  */
587 static enum {
588 	NONE,
589 	PARTIAL_AC,
590 	PARTIAL_L3,
591 	EARLY,
592 	FULL
593 } g_cpucache_up;
594 
595 /*
596  * used by boot code to determine if it can use slab based allocator
597  */
598 int slab_is_available(void)
599 {
600 	return g_cpucache_up >= EARLY;
601 }
602 
603 #ifdef CONFIG_LOCKDEP
604 
605 /*
606  * Slab sometimes uses the kmalloc slabs to store the slab headers
607  * for other slabs "off slab".
608  * The locking for this is tricky in that it nests within the locks
609  * of all other slabs in a few places; to deal with this special
610  * locking we put on-slab caches into a separate lock-class.
611  *
612  * We set lock class for alien array caches which are up during init.
613  * The lock annotation will be lost if all cpus of a node goes down and
614  * then comes back up during hotplug
615  */
616 static struct lock_class_key on_slab_l3_key;
617 static struct lock_class_key on_slab_alc_key;
618 
619 static void init_node_lock_keys(int q)
620 {
621 	struct cache_sizes *s = malloc_sizes;
622 
623 	if (g_cpucache_up != FULL)
624 		return;
625 
626 	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
627 		struct array_cache **alc;
628 		struct kmem_list3 *l3;
629 		int r;
630 
631 		l3 = s->cs_cachep->nodelists[q];
632 		if (!l3 || OFF_SLAB(s->cs_cachep))
633 			continue;
634 		lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
635 		alc = l3->alien;
636 		/*
637 		 * FIXME: This check for BAD_ALIEN_MAGIC
638 		 * should go away when common slab code is taught to
639 		 * work even without alien caches.
640 		 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
641 		 * for alloc_alien_cache,
642 		 */
643 		if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
644 			continue;
645 		for_each_node(r) {
646 			if (alc[r])
647 				lockdep_set_class(&alc[r]->lock,
648 					&on_slab_alc_key);
649 		}
650 	}
651 }
652 
653 static inline void init_lock_keys(void)
654 {
655 	int node;
656 
657 	for_each_node(node)
658 		init_node_lock_keys(node);
659 }
660 #else
661 static void init_node_lock_keys(int q)
662 {
663 }
664 
665 static inline void init_lock_keys(void)
666 {
667 }
668 #endif
669 
670 /*
671  * Guard access to the cache-chain.
672  */
673 static DEFINE_MUTEX(cache_chain_mutex);
674 static struct list_head cache_chain;
675 
676 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
677 
678 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
679 {
680 	return cachep->array[smp_processor_id()];
681 }
682 
683 static inline struct kmem_cache *__find_general_cachep(size_t size,
684 							gfp_t gfpflags)
685 {
686 	struct cache_sizes *csizep = malloc_sizes;
687 
688 #if DEBUG
689 	/* This happens if someone tries to call
690 	 * kmem_cache_create(), or __kmalloc(), before
691 	 * the generic caches are initialized.
692 	 */
693 	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
694 #endif
695 	if (!size)
696 		return ZERO_SIZE_PTR;
697 
698 	while (size > csizep->cs_size)
699 		csizep++;
700 
701 	/*
702 	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
703 	 * has cs_{dma,}cachep==NULL. Thus no special case
704 	 * for large kmalloc calls required.
705 	 */
706 #ifdef CONFIG_ZONE_DMA
707 	if (unlikely(gfpflags & GFP_DMA))
708 		return csizep->cs_dmacachep;
709 #endif
710 	return csizep->cs_cachep;
711 }
712 
713 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
714 {
715 	return __find_general_cachep(size, gfpflags);
716 }
717 
718 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
719 {
720 	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
721 }
722 
723 /*
724  * Calculate the number of objects and left-over bytes for a given buffer size.
725  */
726 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
727 			   size_t align, int flags, size_t *left_over,
728 			   unsigned int *num)
729 {
730 	int nr_objs;
731 	size_t mgmt_size;
732 	size_t slab_size = PAGE_SIZE << gfporder;
733 
734 	/*
735 	 * The slab management structure can be either off the slab or
736 	 * on it. For the latter case, the memory allocated for a
737 	 * slab is used for:
738 	 *
739 	 * - The struct slab
740 	 * - One kmem_bufctl_t for each object
741 	 * - Padding to respect alignment of @align
742 	 * - @buffer_size bytes for each object
743 	 *
744 	 * If the slab management structure is off the slab, then the
745 	 * alignment will already be calculated into the size. Because
746 	 * the slabs are all pages aligned, the objects will be at the
747 	 * correct alignment when allocated.
748 	 */
749 	if (flags & CFLGS_OFF_SLAB) {
750 		mgmt_size = 0;
751 		nr_objs = slab_size / buffer_size;
752 
753 		if (nr_objs > SLAB_LIMIT)
754 			nr_objs = SLAB_LIMIT;
755 	} else {
756 		/*
757 		 * Ignore padding for the initial guess. The padding
758 		 * is at most @align-1 bytes, and @buffer_size is at
759 		 * least @align. In the worst case, this result will
760 		 * be one greater than the number of objects that fit
761 		 * into the memory allocation when taking the padding
762 		 * into account.
763 		 */
764 		nr_objs = (slab_size - sizeof(struct slab)) /
765 			  (buffer_size + sizeof(kmem_bufctl_t));
766 
767 		/*
768 		 * This calculated number will be either the right
769 		 * amount, or one greater than what we want.
770 		 */
771 		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
772 		       > slab_size)
773 			nr_objs--;
774 
775 		if (nr_objs > SLAB_LIMIT)
776 			nr_objs = SLAB_LIMIT;
777 
778 		mgmt_size = slab_mgmt_size(nr_objs, align);
779 	}
780 	*num = nr_objs;
781 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
782 }
783 
784 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
785 
786 static void __slab_error(const char *function, struct kmem_cache *cachep,
787 			char *msg)
788 {
789 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
790 	       function, cachep->name, msg);
791 	dump_stack();
792 }
793 
794 /*
795  * By default on NUMA we use alien caches to stage the freeing of
796  * objects allocated from other nodes. This causes massive memory
797  * inefficiencies when using fake NUMA setup to split memory into a
798  * large number of small nodes, so it can be disabled on the command
799  * line
800   */
801 
802 static int use_alien_caches __read_mostly = 1;
803 static int __init noaliencache_setup(char *s)
804 {
805 	use_alien_caches = 0;
806 	return 1;
807 }
808 __setup("noaliencache", noaliencache_setup);
809 
810 #ifdef CONFIG_NUMA
811 /*
812  * Special reaping functions for NUMA systems called from cache_reap().
813  * These take care of doing round robin flushing of alien caches (containing
814  * objects freed on different nodes from which they were allocated) and the
815  * flushing of remote pcps by calling drain_node_pages.
816  */
817 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
818 
819 static void init_reap_node(int cpu)
820 {
821 	int node;
822 
823 	node = next_node(cpu_to_mem(cpu), node_online_map);
824 	if (node == MAX_NUMNODES)
825 		node = first_node(node_online_map);
826 
827 	per_cpu(slab_reap_node, cpu) = node;
828 }
829 
830 static void next_reap_node(void)
831 {
832 	int node = __get_cpu_var(slab_reap_node);
833 
834 	node = next_node(node, node_online_map);
835 	if (unlikely(node >= MAX_NUMNODES))
836 		node = first_node(node_online_map);
837 	__get_cpu_var(slab_reap_node) = node;
838 }
839 
840 #else
841 #define init_reap_node(cpu) do { } while (0)
842 #define next_reap_node(void) do { } while (0)
843 #endif
844 
845 /*
846  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
847  * via the workqueue/eventd.
848  * Add the CPU number into the expiration time to minimize the possibility of
849  * the CPUs getting into lockstep and contending for the global cache chain
850  * lock.
851  */
852 static void __cpuinit start_cpu_timer(int cpu)
853 {
854 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
855 
856 	/*
857 	 * When this gets called from do_initcalls via cpucache_init(),
858 	 * init_workqueues() has already run, so keventd will be setup
859 	 * at that time.
860 	 */
861 	if (keventd_up() && reap_work->work.func == NULL) {
862 		init_reap_node(cpu);
863 		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
864 		schedule_delayed_work_on(cpu, reap_work,
865 					__round_jiffies_relative(HZ, cpu));
866 	}
867 }
868 
869 static struct array_cache *alloc_arraycache(int node, int entries,
870 					    int batchcount, gfp_t gfp)
871 {
872 	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
873 	struct array_cache *nc = NULL;
874 
875 	nc = kmalloc_node(memsize, gfp, node);
876 	/*
877 	 * The array_cache structures contain pointers to free object.
878 	 * However, when such objects are allocated or transfered to another
879 	 * cache the pointers are not cleared and they could be counted as
880 	 * valid references during a kmemleak scan. Therefore, kmemleak must
881 	 * not scan such objects.
882 	 */
883 	kmemleak_no_scan(nc);
884 	if (nc) {
885 		nc->avail = 0;
886 		nc->limit = entries;
887 		nc->batchcount = batchcount;
888 		nc->touched = 0;
889 		spin_lock_init(&nc->lock);
890 	}
891 	return nc;
892 }
893 
894 /*
895  * Transfer objects in one arraycache to another.
896  * Locking must be handled by the caller.
897  *
898  * Return the number of entries transferred.
899  */
900 static int transfer_objects(struct array_cache *to,
901 		struct array_cache *from, unsigned int max)
902 {
903 	/* Figure out how many entries to transfer */
904 	int nr = min(min(from->avail, max), to->limit - to->avail);
905 
906 	if (!nr)
907 		return 0;
908 
909 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
910 			sizeof(void *) *nr);
911 
912 	from->avail -= nr;
913 	to->avail += nr;
914 	return nr;
915 }
916 
917 #ifndef CONFIG_NUMA
918 
919 #define drain_alien_cache(cachep, alien) do { } while (0)
920 #define reap_alien(cachep, l3) do { } while (0)
921 
922 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
923 {
924 	return (struct array_cache **)BAD_ALIEN_MAGIC;
925 }
926 
927 static inline void free_alien_cache(struct array_cache **ac_ptr)
928 {
929 }
930 
931 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
932 {
933 	return 0;
934 }
935 
936 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
937 		gfp_t flags)
938 {
939 	return NULL;
940 }
941 
942 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
943 		 gfp_t flags, int nodeid)
944 {
945 	return NULL;
946 }
947 
948 #else	/* CONFIG_NUMA */
949 
950 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
951 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
952 
953 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
954 {
955 	struct array_cache **ac_ptr;
956 	int memsize = sizeof(void *) * nr_node_ids;
957 	int i;
958 
959 	if (limit > 1)
960 		limit = 12;
961 	ac_ptr = kzalloc_node(memsize, gfp, node);
962 	if (ac_ptr) {
963 		for_each_node(i) {
964 			if (i == node || !node_online(i))
965 				continue;
966 			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
967 			if (!ac_ptr[i]) {
968 				for (i--; i >= 0; i--)
969 					kfree(ac_ptr[i]);
970 				kfree(ac_ptr);
971 				return NULL;
972 			}
973 		}
974 	}
975 	return ac_ptr;
976 }
977 
978 static void free_alien_cache(struct array_cache **ac_ptr)
979 {
980 	int i;
981 
982 	if (!ac_ptr)
983 		return;
984 	for_each_node(i)
985 	    kfree(ac_ptr[i]);
986 	kfree(ac_ptr);
987 }
988 
989 static void __drain_alien_cache(struct kmem_cache *cachep,
990 				struct array_cache *ac, int node)
991 {
992 	struct kmem_list3 *rl3 = cachep->nodelists[node];
993 
994 	if (ac->avail) {
995 		spin_lock(&rl3->list_lock);
996 		/*
997 		 * Stuff objects into the remote nodes shared array first.
998 		 * That way we could avoid the overhead of putting the objects
999 		 * into the free lists and getting them back later.
1000 		 */
1001 		if (rl3->shared)
1002 			transfer_objects(rl3->shared, ac, ac->limit);
1003 
1004 		free_block(cachep, ac->entry, ac->avail, node);
1005 		ac->avail = 0;
1006 		spin_unlock(&rl3->list_lock);
1007 	}
1008 }
1009 
1010 /*
1011  * Called from cache_reap() to regularly drain alien caches round robin.
1012  */
1013 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1014 {
1015 	int node = __get_cpu_var(slab_reap_node);
1016 
1017 	if (l3->alien) {
1018 		struct array_cache *ac = l3->alien[node];
1019 
1020 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1021 			__drain_alien_cache(cachep, ac, node);
1022 			spin_unlock_irq(&ac->lock);
1023 		}
1024 	}
1025 }
1026 
1027 static void drain_alien_cache(struct kmem_cache *cachep,
1028 				struct array_cache **alien)
1029 {
1030 	int i = 0;
1031 	struct array_cache *ac;
1032 	unsigned long flags;
1033 
1034 	for_each_online_node(i) {
1035 		ac = alien[i];
1036 		if (ac) {
1037 			spin_lock_irqsave(&ac->lock, flags);
1038 			__drain_alien_cache(cachep, ac, i);
1039 			spin_unlock_irqrestore(&ac->lock, flags);
1040 		}
1041 	}
1042 }
1043 
1044 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1045 {
1046 	struct slab *slabp = virt_to_slab(objp);
1047 	int nodeid = slabp->nodeid;
1048 	struct kmem_list3 *l3;
1049 	struct array_cache *alien = NULL;
1050 	int node;
1051 
1052 	node = numa_mem_id();
1053 
1054 	/*
1055 	 * Make sure we are not freeing a object from another node to the array
1056 	 * cache on this cpu.
1057 	 */
1058 	if (likely(slabp->nodeid == node))
1059 		return 0;
1060 
1061 	l3 = cachep->nodelists[node];
1062 	STATS_INC_NODEFREES(cachep);
1063 	if (l3->alien && l3->alien[nodeid]) {
1064 		alien = l3->alien[nodeid];
1065 		spin_lock(&alien->lock);
1066 		if (unlikely(alien->avail == alien->limit)) {
1067 			STATS_INC_ACOVERFLOW(cachep);
1068 			__drain_alien_cache(cachep, alien, nodeid);
1069 		}
1070 		alien->entry[alien->avail++] = objp;
1071 		spin_unlock(&alien->lock);
1072 	} else {
1073 		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1074 		free_block(cachep, &objp, 1, nodeid);
1075 		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1076 	}
1077 	return 1;
1078 }
1079 #endif
1080 
1081 /*
1082  * Allocates and initializes nodelists for a node on each slab cache, used for
1083  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
1084  * will be allocated off-node since memory is not yet online for the new node.
1085  * When hotplugging memory or a cpu, existing nodelists are not replaced if
1086  * already in use.
1087  *
1088  * Must hold cache_chain_mutex.
1089  */
1090 static int init_cache_nodelists_node(int node)
1091 {
1092 	struct kmem_cache *cachep;
1093 	struct kmem_list3 *l3;
1094 	const int memsize = sizeof(struct kmem_list3);
1095 
1096 	list_for_each_entry(cachep, &cache_chain, next) {
1097 		/*
1098 		 * Set up the size64 kmemlist for cpu before we can
1099 		 * begin anything. Make sure some other cpu on this
1100 		 * node has not already allocated this
1101 		 */
1102 		if (!cachep->nodelists[node]) {
1103 			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1104 			if (!l3)
1105 				return -ENOMEM;
1106 			kmem_list3_init(l3);
1107 			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1108 			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1109 
1110 			/*
1111 			 * The l3s don't come and go as CPUs come and
1112 			 * go.  cache_chain_mutex is sufficient
1113 			 * protection here.
1114 			 */
1115 			cachep->nodelists[node] = l3;
1116 		}
1117 
1118 		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1119 		cachep->nodelists[node]->free_limit =
1120 			(1 + nr_cpus_node(node)) *
1121 			cachep->batchcount + cachep->num;
1122 		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1123 	}
1124 	return 0;
1125 }
1126 
1127 static void __cpuinit cpuup_canceled(long cpu)
1128 {
1129 	struct kmem_cache *cachep;
1130 	struct kmem_list3 *l3 = NULL;
1131 	int node = cpu_to_mem(cpu);
1132 	const struct cpumask *mask = cpumask_of_node(node);
1133 
1134 	list_for_each_entry(cachep, &cache_chain, next) {
1135 		struct array_cache *nc;
1136 		struct array_cache *shared;
1137 		struct array_cache **alien;
1138 
1139 		/* cpu is dead; no one can alloc from it. */
1140 		nc = cachep->array[cpu];
1141 		cachep->array[cpu] = NULL;
1142 		l3 = cachep->nodelists[node];
1143 
1144 		if (!l3)
1145 			goto free_array_cache;
1146 
1147 		spin_lock_irq(&l3->list_lock);
1148 
1149 		/* Free limit for this kmem_list3 */
1150 		l3->free_limit -= cachep->batchcount;
1151 		if (nc)
1152 			free_block(cachep, nc->entry, nc->avail, node);
1153 
1154 		if (!cpumask_empty(mask)) {
1155 			spin_unlock_irq(&l3->list_lock);
1156 			goto free_array_cache;
1157 		}
1158 
1159 		shared = l3->shared;
1160 		if (shared) {
1161 			free_block(cachep, shared->entry,
1162 				   shared->avail, node);
1163 			l3->shared = NULL;
1164 		}
1165 
1166 		alien = l3->alien;
1167 		l3->alien = NULL;
1168 
1169 		spin_unlock_irq(&l3->list_lock);
1170 
1171 		kfree(shared);
1172 		if (alien) {
1173 			drain_alien_cache(cachep, alien);
1174 			free_alien_cache(alien);
1175 		}
1176 free_array_cache:
1177 		kfree(nc);
1178 	}
1179 	/*
1180 	 * In the previous loop, all the objects were freed to
1181 	 * the respective cache's slabs,  now we can go ahead and
1182 	 * shrink each nodelist to its limit.
1183 	 */
1184 	list_for_each_entry(cachep, &cache_chain, next) {
1185 		l3 = cachep->nodelists[node];
1186 		if (!l3)
1187 			continue;
1188 		drain_freelist(cachep, l3, l3->free_objects);
1189 	}
1190 }
1191 
1192 static int __cpuinit cpuup_prepare(long cpu)
1193 {
1194 	struct kmem_cache *cachep;
1195 	struct kmem_list3 *l3 = NULL;
1196 	int node = cpu_to_mem(cpu);
1197 	int err;
1198 
1199 	/*
1200 	 * We need to do this right in the beginning since
1201 	 * alloc_arraycache's are going to use this list.
1202 	 * kmalloc_node allows us to add the slab to the right
1203 	 * kmem_list3 and not this cpu's kmem_list3
1204 	 */
1205 	err = init_cache_nodelists_node(node);
1206 	if (err < 0)
1207 		goto bad;
1208 
1209 	/*
1210 	 * Now we can go ahead with allocating the shared arrays and
1211 	 * array caches
1212 	 */
1213 	list_for_each_entry(cachep, &cache_chain, next) {
1214 		struct array_cache *nc;
1215 		struct array_cache *shared = NULL;
1216 		struct array_cache **alien = NULL;
1217 
1218 		nc = alloc_arraycache(node, cachep->limit,
1219 					cachep->batchcount, GFP_KERNEL);
1220 		if (!nc)
1221 			goto bad;
1222 		if (cachep->shared) {
1223 			shared = alloc_arraycache(node,
1224 				cachep->shared * cachep->batchcount,
1225 				0xbaadf00d, GFP_KERNEL);
1226 			if (!shared) {
1227 				kfree(nc);
1228 				goto bad;
1229 			}
1230 		}
1231 		if (use_alien_caches) {
1232 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1233 			if (!alien) {
1234 				kfree(shared);
1235 				kfree(nc);
1236 				goto bad;
1237 			}
1238 		}
1239 		cachep->array[cpu] = nc;
1240 		l3 = cachep->nodelists[node];
1241 		BUG_ON(!l3);
1242 
1243 		spin_lock_irq(&l3->list_lock);
1244 		if (!l3->shared) {
1245 			/*
1246 			 * We are serialised from CPU_DEAD or
1247 			 * CPU_UP_CANCELLED by the cpucontrol lock
1248 			 */
1249 			l3->shared = shared;
1250 			shared = NULL;
1251 		}
1252 #ifdef CONFIG_NUMA
1253 		if (!l3->alien) {
1254 			l3->alien = alien;
1255 			alien = NULL;
1256 		}
1257 #endif
1258 		spin_unlock_irq(&l3->list_lock);
1259 		kfree(shared);
1260 		free_alien_cache(alien);
1261 	}
1262 	init_node_lock_keys(node);
1263 
1264 	return 0;
1265 bad:
1266 	cpuup_canceled(cpu);
1267 	return -ENOMEM;
1268 }
1269 
1270 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1271 				    unsigned long action, void *hcpu)
1272 {
1273 	long cpu = (long)hcpu;
1274 	int err = 0;
1275 
1276 	switch (action) {
1277 	case CPU_UP_PREPARE:
1278 	case CPU_UP_PREPARE_FROZEN:
1279 		mutex_lock(&cache_chain_mutex);
1280 		err = cpuup_prepare(cpu);
1281 		mutex_unlock(&cache_chain_mutex);
1282 		break;
1283 	case CPU_ONLINE:
1284 	case CPU_ONLINE_FROZEN:
1285 		start_cpu_timer(cpu);
1286 		break;
1287 #ifdef CONFIG_HOTPLUG_CPU
1288   	case CPU_DOWN_PREPARE:
1289   	case CPU_DOWN_PREPARE_FROZEN:
1290 		/*
1291 		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1292 		 * held so that if cache_reap() is invoked it cannot do
1293 		 * anything expensive but will only modify reap_work
1294 		 * and reschedule the timer.
1295 		*/
1296 		cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
1297 		/* Now the cache_reaper is guaranteed to be not running. */
1298 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1299   		break;
1300   	case CPU_DOWN_FAILED:
1301   	case CPU_DOWN_FAILED_FROZEN:
1302 		start_cpu_timer(cpu);
1303   		break;
1304 	case CPU_DEAD:
1305 	case CPU_DEAD_FROZEN:
1306 		/*
1307 		 * Even if all the cpus of a node are down, we don't free the
1308 		 * kmem_list3 of any cache. This to avoid a race between
1309 		 * cpu_down, and a kmalloc allocation from another cpu for
1310 		 * memory from the node of the cpu going down.  The list3
1311 		 * structure is usually allocated from kmem_cache_create() and
1312 		 * gets destroyed at kmem_cache_destroy().
1313 		 */
1314 		/* fall through */
1315 #endif
1316 	case CPU_UP_CANCELED:
1317 	case CPU_UP_CANCELED_FROZEN:
1318 		mutex_lock(&cache_chain_mutex);
1319 		cpuup_canceled(cpu);
1320 		mutex_unlock(&cache_chain_mutex);
1321 		break;
1322 	}
1323 	return notifier_from_errno(err);
1324 }
1325 
1326 static struct notifier_block __cpuinitdata cpucache_notifier = {
1327 	&cpuup_callback, NULL, 0
1328 };
1329 
1330 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1331 /*
1332  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1333  * Returns -EBUSY if all objects cannot be drained so that the node is not
1334  * removed.
1335  *
1336  * Must hold cache_chain_mutex.
1337  */
1338 static int __meminit drain_cache_nodelists_node(int node)
1339 {
1340 	struct kmem_cache *cachep;
1341 	int ret = 0;
1342 
1343 	list_for_each_entry(cachep, &cache_chain, next) {
1344 		struct kmem_list3 *l3;
1345 
1346 		l3 = cachep->nodelists[node];
1347 		if (!l3)
1348 			continue;
1349 
1350 		drain_freelist(cachep, l3, l3->free_objects);
1351 
1352 		if (!list_empty(&l3->slabs_full) ||
1353 		    !list_empty(&l3->slabs_partial)) {
1354 			ret = -EBUSY;
1355 			break;
1356 		}
1357 	}
1358 	return ret;
1359 }
1360 
1361 static int __meminit slab_memory_callback(struct notifier_block *self,
1362 					unsigned long action, void *arg)
1363 {
1364 	struct memory_notify *mnb = arg;
1365 	int ret = 0;
1366 	int nid;
1367 
1368 	nid = mnb->status_change_nid;
1369 	if (nid < 0)
1370 		goto out;
1371 
1372 	switch (action) {
1373 	case MEM_GOING_ONLINE:
1374 		mutex_lock(&cache_chain_mutex);
1375 		ret = init_cache_nodelists_node(nid);
1376 		mutex_unlock(&cache_chain_mutex);
1377 		break;
1378 	case MEM_GOING_OFFLINE:
1379 		mutex_lock(&cache_chain_mutex);
1380 		ret = drain_cache_nodelists_node(nid);
1381 		mutex_unlock(&cache_chain_mutex);
1382 		break;
1383 	case MEM_ONLINE:
1384 	case MEM_OFFLINE:
1385 	case MEM_CANCEL_ONLINE:
1386 	case MEM_CANCEL_OFFLINE:
1387 		break;
1388 	}
1389 out:
1390 	return ret ? notifier_from_errno(ret) : NOTIFY_OK;
1391 }
1392 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1393 
1394 /*
1395  * swap the static kmem_list3 with kmalloced memory
1396  */
1397 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1398 				int nodeid)
1399 {
1400 	struct kmem_list3 *ptr;
1401 
1402 	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1403 	BUG_ON(!ptr);
1404 
1405 	memcpy(ptr, list, sizeof(struct kmem_list3));
1406 	/*
1407 	 * Do not assume that spinlocks can be initialized via memcpy:
1408 	 */
1409 	spin_lock_init(&ptr->list_lock);
1410 
1411 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1412 	cachep->nodelists[nodeid] = ptr;
1413 }
1414 
1415 /*
1416  * For setting up all the kmem_list3s for cache whose buffer_size is same as
1417  * size of kmem_list3.
1418  */
1419 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1420 {
1421 	int node;
1422 
1423 	for_each_online_node(node) {
1424 		cachep->nodelists[node] = &initkmem_list3[index + node];
1425 		cachep->nodelists[node]->next_reap = jiffies +
1426 		    REAPTIMEOUT_LIST3 +
1427 		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1428 	}
1429 }
1430 
1431 /*
1432  * Initialisation.  Called after the page allocator have been initialised and
1433  * before smp_init().
1434  */
1435 void __init kmem_cache_init(void)
1436 {
1437 	size_t left_over;
1438 	struct cache_sizes *sizes;
1439 	struct cache_names *names;
1440 	int i;
1441 	int order;
1442 	int node;
1443 
1444 	if (num_possible_nodes() == 1)
1445 		use_alien_caches = 0;
1446 
1447 	for (i = 0; i < NUM_INIT_LISTS; i++) {
1448 		kmem_list3_init(&initkmem_list3[i]);
1449 		if (i < MAX_NUMNODES)
1450 			cache_cache.nodelists[i] = NULL;
1451 	}
1452 	set_up_list3s(&cache_cache, CACHE_CACHE);
1453 
1454 	/*
1455 	 * Fragmentation resistance on low memory - only use bigger
1456 	 * page orders on machines with more than 32MB of memory.
1457 	 */
1458 	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1459 		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1460 
1461 	/* Bootstrap is tricky, because several objects are allocated
1462 	 * from caches that do not exist yet:
1463 	 * 1) initialize the cache_cache cache: it contains the struct
1464 	 *    kmem_cache structures of all caches, except cache_cache itself:
1465 	 *    cache_cache is statically allocated.
1466 	 *    Initially an __init data area is used for the head array and the
1467 	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1468 	 *    array at the end of the bootstrap.
1469 	 * 2) Create the first kmalloc cache.
1470 	 *    The struct kmem_cache for the new cache is allocated normally.
1471 	 *    An __init data area is used for the head array.
1472 	 * 3) Create the remaining kmalloc caches, with minimally sized
1473 	 *    head arrays.
1474 	 * 4) Replace the __init data head arrays for cache_cache and the first
1475 	 *    kmalloc cache with kmalloc allocated arrays.
1476 	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1477 	 *    the other cache's with kmalloc allocated memory.
1478 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1479 	 */
1480 
1481 	node = numa_mem_id();
1482 
1483 	/* 1) create the cache_cache */
1484 	INIT_LIST_HEAD(&cache_chain);
1485 	list_add(&cache_cache.next, &cache_chain);
1486 	cache_cache.colour_off = cache_line_size();
1487 	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1488 	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1489 
1490 	/*
1491 	 * struct kmem_cache size depends on nr_node_ids, which
1492 	 * can be less than MAX_NUMNODES.
1493 	 */
1494 	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1495 				 nr_node_ids * sizeof(struct kmem_list3 *);
1496 #if DEBUG
1497 	cache_cache.obj_size = cache_cache.buffer_size;
1498 #endif
1499 	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1500 					cache_line_size());
1501 	cache_cache.reciprocal_buffer_size =
1502 		reciprocal_value(cache_cache.buffer_size);
1503 
1504 	for (order = 0; order < MAX_ORDER; order++) {
1505 		cache_estimate(order, cache_cache.buffer_size,
1506 			cache_line_size(), 0, &left_over, &cache_cache.num);
1507 		if (cache_cache.num)
1508 			break;
1509 	}
1510 	BUG_ON(!cache_cache.num);
1511 	cache_cache.gfporder = order;
1512 	cache_cache.colour = left_over / cache_cache.colour_off;
1513 	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1514 				      sizeof(struct slab), cache_line_size());
1515 
1516 	/* 2+3) create the kmalloc caches */
1517 	sizes = malloc_sizes;
1518 	names = cache_names;
1519 
1520 	/*
1521 	 * Initialize the caches that provide memory for the array cache and the
1522 	 * kmem_list3 structures first.  Without this, further allocations will
1523 	 * bug.
1524 	 */
1525 
1526 	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1527 					sizes[INDEX_AC].cs_size,
1528 					ARCH_KMALLOC_MINALIGN,
1529 					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1530 					NULL);
1531 
1532 	if (INDEX_AC != INDEX_L3) {
1533 		sizes[INDEX_L3].cs_cachep =
1534 			kmem_cache_create(names[INDEX_L3].name,
1535 				sizes[INDEX_L3].cs_size,
1536 				ARCH_KMALLOC_MINALIGN,
1537 				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1538 				NULL);
1539 	}
1540 
1541 	slab_early_init = 0;
1542 
1543 	while (sizes->cs_size != ULONG_MAX) {
1544 		/*
1545 		 * For performance, all the general caches are L1 aligned.
1546 		 * This should be particularly beneficial on SMP boxes, as it
1547 		 * eliminates "false sharing".
1548 		 * Note for systems short on memory removing the alignment will
1549 		 * allow tighter packing of the smaller caches.
1550 		 */
1551 		if (!sizes->cs_cachep) {
1552 			sizes->cs_cachep = kmem_cache_create(names->name,
1553 					sizes->cs_size,
1554 					ARCH_KMALLOC_MINALIGN,
1555 					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1556 					NULL);
1557 		}
1558 #ifdef CONFIG_ZONE_DMA
1559 		sizes->cs_dmacachep = kmem_cache_create(
1560 					names->name_dma,
1561 					sizes->cs_size,
1562 					ARCH_KMALLOC_MINALIGN,
1563 					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1564 						SLAB_PANIC,
1565 					NULL);
1566 #endif
1567 		sizes++;
1568 		names++;
1569 	}
1570 	/* 4) Replace the bootstrap head arrays */
1571 	{
1572 		struct array_cache *ptr;
1573 
1574 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1575 
1576 		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1577 		memcpy(ptr, cpu_cache_get(&cache_cache),
1578 		       sizeof(struct arraycache_init));
1579 		/*
1580 		 * Do not assume that spinlocks can be initialized via memcpy:
1581 		 */
1582 		spin_lock_init(&ptr->lock);
1583 
1584 		cache_cache.array[smp_processor_id()] = ptr;
1585 
1586 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1587 
1588 		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1589 		       != &initarray_generic.cache);
1590 		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1591 		       sizeof(struct arraycache_init));
1592 		/*
1593 		 * Do not assume that spinlocks can be initialized via memcpy:
1594 		 */
1595 		spin_lock_init(&ptr->lock);
1596 
1597 		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1598 		    ptr;
1599 	}
1600 	/* 5) Replace the bootstrap kmem_list3's */
1601 	{
1602 		int nid;
1603 
1604 		for_each_online_node(nid) {
1605 			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1606 
1607 			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1608 				  &initkmem_list3[SIZE_AC + nid], nid);
1609 
1610 			if (INDEX_AC != INDEX_L3) {
1611 				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1612 					  &initkmem_list3[SIZE_L3 + nid], nid);
1613 			}
1614 		}
1615 	}
1616 
1617 	g_cpucache_up = EARLY;
1618 }
1619 
1620 void __init kmem_cache_init_late(void)
1621 {
1622 	struct kmem_cache *cachep;
1623 
1624 	/* 6) resize the head arrays to their final sizes */
1625 	mutex_lock(&cache_chain_mutex);
1626 	list_for_each_entry(cachep, &cache_chain, next)
1627 		if (enable_cpucache(cachep, GFP_NOWAIT))
1628 			BUG();
1629 	mutex_unlock(&cache_chain_mutex);
1630 
1631 	/* Done! */
1632 	g_cpucache_up = FULL;
1633 
1634 	/* Annotate slab for lockdep -- annotate the malloc caches */
1635 	init_lock_keys();
1636 
1637 	/*
1638 	 * Register a cpu startup notifier callback that initializes
1639 	 * cpu_cache_get for all new cpus
1640 	 */
1641 	register_cpu_notifier(&cpucache_notifier);
1642 
1643 #ifdef CONFIG_NUMA
1644 	/*
1645 	 * Register a memory hotplug callback that initializes and frees
1646 	 * nodelists.
1647 	 */
1648 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1649 #endif
1650 
1651 	/*
1652 	 * The reap timers are started later, with a module init call: That part
1653 	 * of the kernel is not yet operational.
1654 	 */
1655 }
1656 
1657 static int __init cpucache_init(void)
1658 {
1659 	int cpu;
1660 
1661 	/*
1662 	 * Register the timers that return unneeded pages to the page allocator
1663 	 */
1664 	for_each_online_cpu(cpu)
1665 		start_cpu_timer(cpu);
1666 	return 0;
1667 }
1668 __initcall(cpucache_init);
1669 
1670 /*
1671  * Interface to system's page allocator. No need to hold the cache-lock.
1672  *
1673  * If we requested dmaable memory, we will get it. Even if we
1674  * did not request dmaable memory, we might get it, but that
1675  * would be relatively rare and ignorable.
1676  */
1677 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1678 {
1679 	struct page *page;
1680 	int nr_pages;
1681 	int i;
1682 
1683 #ifndef CONFIG_MMU
1684 	/*
1685 	 * Nommu uses slab's for process anonymous memory allocations, and thus
1686 	 * requires __GFP_COMP to properly refcount higher order allocations
1687 	 */
1688 	flags |= __GFP_COMP;
1689 #endif
1690 
1691 	flags |= cachep->gfpflags;
1692 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1693 		flags |= __GFP_RECLAIMABLE;
1694 
1695 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1696 	if (!page)
1697 		return NULL;
1698 
1699 	nr_pages = (1 << cachep->gfporder);
1700 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1701 		add_zone_page_state(page_zone(page),
1702 			NR_SLAB_RECLAIMABLE, nr_pages);
1703 	else
1704 		add_zone_page_state(page_zone(page),
1705 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1706 	for (i = 0; i < nr_pages; i++)
1707 		__SetPageSlab(page + i);
1708 
1709 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1710 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1711 
1712 		if (cachep->ctor)
1713 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1714 		else
1715 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1716 	}
1717 
1718 	return page_address(page);
1719 }
1720 
1721 /*
1722  * Interface to system's page release.
1723  */
1724 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1725 {
1726 	unsigned long i = (1 << cachep->gfporder);
1727 	struct page *page = virt_to_page(addr);
1728 	const unsigned long nr_freed = i;
1729 
1730 	kmemcheck_free_shadow(page, cachep->gfporder);
1731 
1732 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1733 		sub_zone_page_state(page_zone(page),
1734 				NR_SLAB_RECLAIMABLE, nr_freed);
1735 	else
1736 		sub_zone_page_state(page_zone(page),
1737 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1738 	while (i--) {
1739 		BUG_ON(!PageSlab(page));
1740 		__ClearPageSlab(page);
1741 		page++;
1742 	}
1743 	if (current->reclaim_state)
1744 		current->reclaim_state->reclaimed_slab += nr_freed;
1745 	free_pages((unsigned long)addr, cachep->gfporder);
1746 }
1747 
1748 static void kmem_rcu_free(struct rcu_head *head)
1749 {
1750 	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1751 	struct kmem_cache *cachep = slab_rcu->cachep;
1752 
1753 	kmem_freepages(cachep, slab_rcu->addr);
1754 	if (OFF_SLAB(cachep))
1755 		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1756 }
1757 
1758 #if DEBUG
1759 
1760 #ifdef CONFIG_DEBUG_PAGEALLOC
1761 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1762 			    unsigned long caller)
1763 {
1764 	int size = obj_size(cachep);
1765 
1766 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1767 
1768 	if (size < 5 * sizeof(unsigned long))
1769 		return;
1770 
1771 	*addr++ = 0x12345678;
1772 	*addr++ = caller;
1773 	*addr++ = smp_processor_id();
1774 	size -= 3 * sizeof(unsigned long);
1775 	{
1776 		unsigned long *sptr = &caller;
1777 		unsigned long svalue;
1778 
1779 		while (!kstack_end(sptr)) {
1780 			svalue = *sptr++;
1781 			if (kernel_text_address(svalue)) {
1782 				*addr++ = svalue;
1783 				size -= sizeof(unsigned long);
1784 				if (size <= sizeof(unsigned long))
1785 					break;
1786 			}
1787 		}
1788 
1789 	}
1790 	*addr++ = 0x87654321;
1791 }
1792 #endif
1793 
1794 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1795 {
1796 	int size = obj_size(cachep);
1797 	addr = &((char *)addr)[obj_offset(cachep)];
1798 
1799 	memset(addr, val, size);
1800 	*(unsigned char *)(addr + size - 1) = POISON_END;
1801 }
1802 
1803 static void dump_line(char *data, int offset, int limit)
1804 {
1805 	int i;
1806 	unsigned char error = 0;
1807 	int bad_count = 0;
1808 
1809 	printk(KERN_ERR "%03x:", offset);
1810 	for (i = 0; i < limit; i++) {
1811 		if (data[offset + i] != POISON_FREE) {
1812 			error = data[offset + i];
1813 			bad_count++;
1814 		}
1815 		printk(" %02x", (unsigned char)data[offset + i]);
1816 	}
1817 	printk("\n");
1818 
1819 	if (bad_count == 1) {
1820 		error ^= POISON_FREE;
1821 		if (!(error & (error - 1))) {
1822 			printk(KERN_ERR "Single bit error detected. Probably "
1823 					"bad RAM.\n");
1824 #ifdef CONFIG_X86
1825 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1826 					"test tool.\n");
1827 #else
1828 			printk(KERN_ERR "Run a memory test tool.\n");
1829 #endif
1830 		}
1831 	}
1832 }
1833 #endif
1834 
1835 #if DEBUG
1836 
1837 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1838 {
1839 	int i, size;
1840 	char *realobj;
1841 
1842 	if (cachep->flags & SLAB_RED_ZONE) {
1843 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1844 			*dbg_redzone1(cachep, objp),
1845 			*dbg_redzone2(cachep, objp));
1846 	}
1847 
1848 	if (cachep->flags & SLAB_STORE_USER) {
1849 		printk(KERN_ERR "Last user: [<%p>]",
1850 			*dbg_userword(cachep, objp));
1851 		print_symbol("(%s)",
1852 				(unsigned long)*dbg_userword(cachep, objp));
1853 		printk("\n");
1854 	}
1855 	realobj = (char *)objp + obj_offset(cachep);
1856 	size = obj_size(cachep);
1857 	for (i = 0; i < size && lines; i += 16, lines--) {
1858 		int limit;
1859 		limit = 16;
1860 		if (i + limit > size)
1861 			limit = size - i;
1862 		dump_line(realobj, i, limit);
1863 	}
1864 }
1865 
1866 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1867 {
1868 	char *realobj;
1869 	int size, i;
1870 	int lines = 0;
1871 
1872 	realobj = (char *)objp + obj_offset(cachep);
1873 	size = obj_size(cachep);
1874 
1875 	for (i = 0; i < size; i++) {
1876 		char exp = POISON_FREE;
1877 		if (i == size - 1)
1878 			exp = POISON_END;
1879 		if (realobj[i] != exp) {
1880 			int limit;
1881 			/* Mismatch ! */
1882 			/* Print header */
1883 			if (lines == 0) {
1884 				printk(KERN_ERR
1885 					"Slab corruption: %s start=%p, len=%d\n",
1886 					cachep->name, realobj, size);
1887 				print_objinfo(cachep, objp, 0);
1888 			}
1889 			/* Hexdump the affected line */
1890 			i = (i / 16) * 16;
1891 			limit = 16;
1892 			if (i + limit > size)
1893 				limit = size - i;
1894 			dump_line(realobj, i, limit);
1895 			i += 16;
1896 			lines++;
1897 			/* Limit to 5 lines */
1898 			if (lines > 5)
1899 				break;
1900 		}
1901 	}
1902 	if (lines != 0) {
1903 		/* Print some data about the neighboring objects, if they
1904 		 * exist:
1905 		 */
1906 		struct slab *slabp = virt_to_slab(objp);
1907 		unsigned int objnr;
1908 
1909 		objnr = obj_to_index(cachep, slabp, objp);
1910 		if (objnr) {
1911 			objp = index_to_obj(cachep, slabp, objnr - 1);
1912 			realobj = (char *)objp + obj_offset(cachep);
1913 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1914 			       realobj, size);
1915 			print_objinfo(cachep, objp, 2);
1916 		}
1917 		if (objnr + 1 < cachep->num) {
1918 			objp = index_to_obj(cachep, slabp, objnr + 1);
1919 			realobj = (char *)objp + obj_offset(cachep);
1920 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1921 			       realobj, size);
1922 			print_objinfo(cachep, objp, 2);
1923 		}
1924 	}
1925 }
1926 #endif
1927 
1928 #if DEBUG
1929 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1930 {
1931 	int i;
1932 	for (i = 0; i < cachep->num; i++) {
1933 		void *objp = index_to_obj(cachep, slabp, i);
1934 
1935 		if (cachep->flags & SLAB_POISON) {
1936 #ifdef CONFIG_DEBUG_PAGEALLOC
1937 			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1938 					OFF_SLAB(cachep))
1939 				kernel_map_pages(virt_to_page(objp),
1940 					cachep->buffer_size / PAGE_SIZE, 1);
1941 			else
1942 				check_poison_obj(cachep, objp);
1943 #else
1944 			check_poison_obj(cachep, objp);
1945 #endif
1946 		}
1947 		if (cachep->flags & SLAB_RED_ZONE) {
1948 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1949 				slab_error(cachep, "start of a freed object "
1950 					   "was overwritten");
1951 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1952 				slab_error(cachep, "end of a freed object "
1953 					   "was overwritten");
1954 		}
1955 	}
1956 }
1957 #else
1958 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1959 {
1960 }
1961 #endif
1962 
1963 /**
1964  * slab_destroy - destroy and release all objects in a slab
1965  * @cachep: cache pointer being destroyed
1966  * @slabp: slab pointer being destroyed
1967  *
1968  * Destroy all the objs in a slab, and release the mem back to the system.
1969  * Before calling the slab must have been unlinked from the cache.  The
1970  * cache-lock is not held/needed.
1971  */
1972 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1973 {
1974 	void *addr = slabp->s_mem - slabp->colouroff;
1975 
1976 	slab_destroy_debugcheck(cachep, slabp);
1977 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1978 		struct slab_rcu *slab_rcu;
1979 
1980 		slab_rcu = (struct slab_rcu *)slabp;
1981 		slab_rcu->cachep = cachep;
1982 		slab_rcu->addr = addr;
1983 		call_rcu(&slab_rcu->head, kmem_rcu_free);
1984 	} else {
1985 		kmem_freepages(cachep, addr);
1986 		if (OFF_SLAB(cachep))
1987 			kmem_cache_free(cachep->slabp_cache, slabp);
1988 	}
1989 }
1990 
1991 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1992 {
1993 	int i;
1994 	struct kmem_list3 *l3;
1995 
1996 	for_each_online_cpu(i)
1997 	    kfree(cachep->array[i]);
1998 
1999 	/* NUMA: free the list3 structures */
2000 	for_each_online_node(i) {
2001 		l3 = cachep->nodelists[i];
2002 		if (l3) {
2003 			kfree(l3->shared);
2004 			free_alien_cache(l3->alien);
2005 			kfree(l3);
2006 		}
2007 	}
2008 	kmem_cache_free(&cache_cache, cachep);
2009 }
2010 
2011 
2012 /**
2013  * calculate_slab_order - calculate size (page order) of slabs
2014  * @cachep: pointer to the cache that is being created
2015  * @size: size of objects to be created in this cache.
2016  * @align: required alignment for the objects.
2017  * @flags: slab allocation flags
2018  *
2019  * Also calculates the number of objects per slab.
2020  *
2021  * This could be made much more intelligent.  For now, try to avoid using
2022  * high order pages for slabs.  When the gfp() functions are more friendly
2023  * towards high-order requests, this should be changed.
2024  */
2025 static size_t calculate_slab_order(struct kmem_cache *cachep,
2026 			size_t size, size_t align, unsigned long flags)
2027 {
2028 	unsigned long offslab_limit;
2029 	size_t left_over = 0;
2030 	int gfporder;
2031 
2032 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2033 		unsigned int num;
2034 		size_t remainder;
2035 
2036 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2037 		if (!num)
2038 			continue;
2039 
2040 		if (flags & CFLGS_OFF_SLAB) {
2041 			/*
2042 			 * Max number of objs-per-slab for caches which
2043 			 * use off-slab slabs. Needed to avoid a possible
2044 			 * looping condition in cache_grow().
2045 			 */
2046 			offslab_limit = size - sizeof(struct slab);
2047 			offslab_limit /= sizeof(kmem_bufctl_t);
2048 
2049  			if (num > offslab_limit)
2050 				break;
2051 		}
2052 
2053 		/* Found something acceptable - save it away */
2054 		cachep->num = num;
2055 		cachep->gfporder = gfporder;
2056 		left_over = remainder;
2057 
2058 		/*
2059 		 * A VFS-reclaimable slab tends to have most allocations
2060 		 * as GFP_NOFS and we really don't want to have to be allocating
2061 		 * higher-order pages when we are unable to shrink dcache.
2062 		 */
2063 		if (flags & SLAB_RECLAIM_ACCOUNT)
2064 			break;
2065 
2066 		/*
2067 		 * Large number of objects is good, but very large slabs are
2068 		 * currently bad for the gfp()s.
2069 		 */
2070 		if (gfporder >= slab_break_gfp_order)
2071 			break;
2072 
2073 		/*
2074 		 * Acceptable internal fragmentation?
2075 		 */
2076 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2077 			break;
2078 	}
2079 	return left_over;
2080 }
2081 
2082 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2083 {
2084 	if (g_cpucache_up == FULL)
2085 		return enable_cpucache(cachep, gfp);
2086 
2087 	if (g_cpucache_up == NONE) {
2088 		/*
2089 		 * Note: the first kmem_cache_create must create the cache
2090 		 * that's used by kmalloc(24), otherwise the creation of
2091 		 * further caches will BUG().
2092 		 */
2093 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2094 
2095 		/*
2096 		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2097 		 * the first cache, then we need to set up all its list3s,
2098 		 * otherwise the creation of further caches will BUG().
2099 		 */
2100 		set_up_list3s(cachep, SIZE_AC);
2101 		if (INDEX_AC == INDEX_L3)
2102 			g_cpucache_up = PARTIAL_L3;
2103 		else
2104 			g_cpucache_up = PARTIAL_AC;
2105 	} else {
2106 		cachep->array[smp_processor_id()] =
2107 			kmalloc(sizeof(struct arraycache_init), gfp);
2108 
2109 		if (g_cpucache_up == PARTIAL_AC) {
2110 			set_up_list3s(cachep, SIZE_L3);
2111 			g_cpucache_up = PARTIAL_L3;
2112 		} else {
2113 			int node;
2114 			for_each_online_node(node) {
2115 				cachep->nodelists[node] =
2116 				    kmalloc_node(sizeof(struct kmem_list3),
2117 						gfp, node);
2118 				BUG_ON(!cachep->nodelists[node]);
2119 				kmem_list3_init(cachep->nodelists[node]);
2120 			}
2121 		}
2122 	}
2123 	cachep->nodelists[numa_mem_id()]->next_reap =
2124 			jiffies + REAPTIMEOUT_LIST3 +
2125 			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2126 
2127 	cpu_cache_get(cachep)->avail = 0;
2128 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2129 	cpu_cache_get(cachep)->batchcount = 1;
2130 	cpu_cache_get(cachep)->touched = 0;
2131 	cachep->batchcount = 1;
2132 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2133 	return 0;
2134 }
2135 
2136 /**
2137  * kmem_cache_create - Create a cache.
2138  * @name: A string which is used in /proc/slabinfo to identify this cache.
2139  * @size: The size of objects to be created in this cache.
2140  * @align: The required alignment for the objects.
2141  * @flags: SLAB flags
2142  * @ctor: A constructor for the objects.
2143  *
2144  * Returns a ptr to the cache on success, NULL on failure.
2145  * Cannot be called within a int, but can be interrupted.
2146  * The @ctor is run when new pages are allocated by the cache.
2147  *
2148  * @name must be valid until the cache is destroyed. This implies that
2149  * the module calling this has to destroy the cache before getting unloaded.
2150  * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2151  * therefore applications must manage it themselves.
2152  *
2153  * The flags are
2154  *
2155  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2156  * to catch references to uninitialised memory.
2157  *
2158  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2159  * for buffer overruns.
2160  *
2161  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2162  * cacheline.  This can be beneficial if you're counting cycles as closely
2163  * as davem.
2164  */
2165 struct kmem_cache *
2166 kmem_cache_create (const char *name, size_t size, size_t align,
2167 	unsigned long flags, void (*ctor)(void *))
2168 {
2169 	size_t left_over, slab_size, ralign;
2170 	struct kmem_cache *cachep = NULL, *pc;
2171 	gfp_t gfp;
2172 
2173 	/*
2174 	 * Sanity checks... these are all serious usage bugs.
2175 	 */
2176 	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2177 	    size > KMALLOC_MAX_SIZE) {
2178 		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2179 				name);
2180 		BUG();
2181 	}
2182 
2183 	/*
2184 	 * We use cache_chain_mutex to ensure a consistent view of
2185 	 * cpu_online_mask as well.  Please see cpuup_callback
2186 	 */
2187 	if (slab_is_available()) {
2188 		get_online_cpus();
2189 		mutex_lock(&cache_chain_mutex);
2190 	}
2191 
2192 	list_for_each_entry(pc, &cache_chain, next) {
2193 		char tmp;
2194 		int res;
2195 
2196 		/*
2197 		 * This happens when the module gets unloaded and doesn't
2198 		 * destroy its slab cache and no-one else reuses the vmalloc
2199 		 * area of the module.  Print a warning.
2200 		 */
2201 		res = probe_kernel_address(pc->name, tmp);
2202 		if (res) {
2203 			printk(KERN_ERR
2204 			       "SLAB: cache with size %d has lost its name\n",
2205 			       pc->buffer_size);
2206 			continue;
2207 		}
2208 
2209 		if (!strcmp(pc->name, name)) {
2210 			printk(KERN_ERR
2211 			       "kmem_cache_create: duplicate cache %s\n", name);
2212 			dump_stack();
2213 			goto oops;
2214 		}
2215 	}
2216 
2217 #if DEBUG
2218 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2219 #if FORCED_DEBUG
2220 	/*
2221 	 * Enable redzoning and last user accounting, except for caches with
2222 	 * large objects, if the increased size would increase the object size
2223 	 * above the next power of two: caches with object sizes just above a
2224 	 * power of two have a significant amount of internal fragmentation.
2225 	 */
2226 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2227 						2 * sizeof(unsigned long long)))
2228 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2229 	if (!(flags & SLAB_DESTROY_BY_RCU))
2230 		flags |= SLAB_POISON;
2231 #endif
2232 	if (flags & SLAB_DESTROY_BY_RCU)
2233 		BUG_ON(flags & SLAB_POISON);
2234 #endif
2235 	/*
2236 	 * Always checks flags, a caller might be expecting debug support which
2237 	 * isn't available.
2238 	 */
2239 	BUG_ON(flags & ~CREATE_MASK);
2240 
2241 	/*
2242 	 * Check that size is in terms of words.  This is needed to avoid
2243 	 * unaligned accesses for some archs when redzoning is used, and makes
2244 	 * sure any on-slab bufctl's are also correctly aligned.
2245 	 */
2246 	if (size & (BYTES_PER_WORD - 1)) {
2247 		size += (BYTES_PER_WORD - 1);
2248 		size &= ~(BYTES_PER_WORD - 1);
2249 	}
2250 
2251 	/* calculate the final buffer alignment: */
2252 
2253 	/* 1) arch recommendation: can be overridden for debug */
2254 	if (flags & SLAB_HWCACHE_ALIGN) {
2255 		/*
2256 		 * Default alignment: as specified by the arch code.  Except if
2257 		 * an object is really small, then squeeze multiple objects into
2258 		 * one cacheline.
2259 		 */
2260 		ralign = cache_line_size();
2261 		while (size <= ralign / 2)
2262 			ralign /= 2;
2263 	} else {
2264 		ralign = BYTES_PER_WORD;
2265 	}
2266 
2267 	/*
2268 	 * Redzoning and user store require word alignment or possibly larger.
2269 	 * Note this will be overridden by architecture or caller mandated
2270 	 * alignment if either is greater than BYTES_PER_WORD.
2271 	 */
2272 	if (flags & SLAB_STORE_USER)
2273 		ralign = BYTES_PER_WORD;
2274 
2275 	if (flags & SLAB_RED_ZONE) {
2276 		ralign = REDZONE_ALIGN;
2277 		/* If redzoning, ensure that the second redzone is suitably
2278 		 * aligned, by adjusting the object size accordingly. */
2279 		size += REDZONE_ALIGN - 1;
2280 		size &= ~(REDZONE_ALIGN - 1);
2281 	}
2282 
2283 	/* 2) arch mandated alignment */
2284 	if (ralign < ARCH_SLAB_MINALIGN) {
2285 		ralign = ARCH_SLAB_MINALIGN;
2286 	}
2287 	/* 3) caller mandated alignment */
2288 	if (ralign < align) {
2289 		ralign = align;
2290 	}
2291 	/* disable debug if not aligning with REDZONE_ALIGN */
2292 	if (ralign & (__alignof__(unsigned long long) - 1))
2293 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2294 	/*
2295 	 * 4) Store it.
2296 	 */
2297 	align = ralign;
2298 
2299 	if (slab_is_available())
2300 		gfp = GFP_KERNEL;
2301 	else
2302 		gfp = GFP_NOWAIT;
2303 
2304 	/* Get cache's description obj. */
2305 	cachep = kmem_cache_zalloc(&cache_cache, gfp);
2306 	if (!cachep)
2307 		goto oops;
2308 
2309 #if DEBUG
2310 	cachep->obj_size = size;
2311 
2312 	/*
2313 	 * Both debugging options require word-alignment which is calculated
2314 	 * into align above.
2315 	 */
2316 	if (flags & SLAB_RED_ZONE) {
2317 		/* add space for red zone words */
2318 		cachep->obj_offset += align;
2319 		size += align + sizeof(unsigned long long);
2320 	}
2321 	if (flags & SLAB_STORE_USER) {
2322 		/* user store requires one word storage behind the end of
2323 		 * the real object. But if the second red zone needs to be
2324 		 * aligned to 64 bits, we must allow that much space.
2325 		 */
2326 		if (flags & SLAB_RED_ZONE)
2327 			size += REDZONE_ALIGN;
2328 		else
2329 			size += BYTES_PER_WORD;
2330 	}
2331 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2332 	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2333 	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2334 		cachep->obj_offset += PAGE_SIZE - size;
2335 		size = PAGE_SIZE;
2336 	}
2337 #endif
2338 #endif
2339 
2340 	/*
2341 	 * Determine if the slab management is 'on' or 'off' slab.
2342 	 * (bootstrapping cannot cope with offslab caches so don't do
2343 	 * it too early on. Always use on-slab management when
2344 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2345 	 */
2346 	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2347 	    !(flags & SLAB_NOLEAKTRACE))
2348 		/*
2349 		 * Size is large, assume best to place the slab management obj
2350 		 * off-slab (should allow better packing of objs).
2351 		 */
2352 		flags |= CFLGS_OFF_SLAB;
2353 
2354 	size = ALIGN(size, align);
2355 
2356 	left_over = calculate_slab_order(cachep, size, align, flags);
2357 
2358 	if (!cachep->num) {
2359 		printk(KERN_ERR
2360 		       "kmem_cache_create: couldn't create cache %s.\n", name);
2361 		kmem_cache_free(&cache_cache, cachep);
2362 		cachep = NULL;
2363 		goto oops;
2364 	}
2365 	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2366 			  + sizeof(struct slab), align);
2367 
2368 	/*
2369 	 * If the slab has been placed off-slab, and we have enough space then
2370 	 * move it on-slab. This is at the expense of any extra colouring.
2371 	 */
2372 	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2373 		flags &= ~CFLGS_OFF_SLAB;
2374 		left_over -= slab_size;
2375 	}
2376 
2377 	if (flags & CFLGS_OFF_SLAB) {
2378 		/* really off slab. No need for manual alignment */
2379 		slab_size =
2380 		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2381 
2382 #ifdef CONFIG_PAGE_POISONING
2383 		/* If we're going to use the generic kernel_map_pages()
2384 		 * poisoning, then it's going to smash the contents of
2385 		 * the redzone and userword anyhow, so switch them off.
2386 		 */
2387 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2388 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2389 #endif
2390 	}
2391 
2392 	cachep->colour_off = cache_line_size();
2393 	/* Offset must be a multiple of the alignment. */
2394 	if (cachep->colour_off < align)
2395 		cachep->colour_off = align;
2396 	cachep->colour = left_over / cachep->colour_off;
2397 	cachep->slab_size = slab_size;
2398 	cachep->flags = flags;
2399 	cachep->gfpflags = 0;
2400 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2401 		cachep->gfpflags |= GFP_DMA;
2402 	cachep->buffer_size = size;
2403 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2404 
2405 	if (flags & CFLGS_OFF_SLAB) {
2406 		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2407 		/*
2408 		 * This is a possibility for one of the malloc_sizes caches.
2409 		 * But since we go off slab only for object size greater than
2410 		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2411 		 * this should not happen at all.
2412 		 * But leave a BUG_ON for some lucky dude.
2413 		 */
2414 		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2415 	}
2416 	cachep->ctor = ctor;
2417 	cachep->name = name;
2418 
2419 	if (setup_cpu_cache(cachep, gfp)) {
2420 		__kmem_cache_destroy(cachep);
2421 		cachep = NULL;
2422 		goto oops;
2423 	}
2424 
2425 	/* cache setup completed, link it into the list */
2426 	list_add(&cachep->next, &cache_chain);
2427 oops:
2428 	if (!cachep && (flags & SLAB_PANIC))
2429 		panic("kmem_cache_create(): failed to create slab `%s'\n",
2430 		      name);
2431 	if (slab_is_available()) {
2432 		mutex_unlock(&cache_chain_mutex);
2433 		put_online_cpus();
2434 	}
2435 	return cachep;
2436 }
2437 EXPORT_SYMBOL(kmem_cache_create);
2438 
2439 #if DEBUG
2440 static void check_irq_off(void)
2441 {
2442 	BUG_ON(!irqs_disabled());
2443 }
2444 
2445 static void check_irq_on(void)
2446 {
2447 	BUG_ON(irqs_disabled());
2448 }
2449 
2450 static void check_spinlock_acquired(struct kmem_cache *cachep)
2451 {
2452 #ifdef CONFIG_SMP
2453 	check_irq_off();
2454 	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2455 #endif
2456 }
2457 
2458 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2459 {
2460 #ifdef CONFIG_SMP
2461 	check_irq_off();
2462 	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2463 #endif
2464 }
2465 
2466 #else
2467 #define check_irq_off()	do { } while(0)
2468 #define check_irq_on()	do { } while(0)
2469 #define check_spinlock_acquired(x) do { } while(0)
2470 #define check_spinlock_acquired_node(x, y) do { } while(0)
2471 #endif
2472 
2473 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2474 			struct array_cache *ac,
2475 			int force, int node);
2476 
2477 static void do_drain(void *arg)
2478 {
2479 	struct kmem_cache *cachep = arg;
2480 	struct array_cache *ac;
2481 	int node = numa_mem_id();
2482 
2483 	check_irq_off();
2484 	ac = cpu_cache_get(cachep);
2485 	spin_lock(&cachep->nodelists[node]->list_lock);
2486 	free_block(cachep, ac->entry, ac->avail, node);
2487 	spin_unlock(&cachep->nodelists[node]->list_lock);
2488 	ac->avail = 0;
2489 }
2490 
2491 static void drain_cpu_caches(struct kmem_cache *cachep)
2492 {
2493 	struct kmem_list3 *l3;
2494 	int node;
2495 
2496 	on_each_cpu(do_drain, cachep, 1);
2497 	check_irq_on();
2498 	for_each_online_node(node) {
2499 		l3 = cachep->nodelists[node];
2500 		if (l3 && l3->alien)
2501 			drain_alien_cache(cachep, l3->alien);
2502 	}
2503 
2504 	for_each_online_node(node) {
2505 		l3 = cachep->nodelists[node];
2506 		if (l3)
2507 			drain_array(cachep, l3, l3->shared, 1, node);
2508 	}
2509 }
2510 
2511 /*
2512  * Remove slabs from the list of free slabs.
2513  * Specify the number of slabs to drain in tofree.
2514  *
2515  * Returns the actual number of slabs released.
2516  */
2517 static int drain_freelist(struct kmem_cache *cache,
2518 			struct kmem_list3 *l3, int tofree)
2519 {
2520 	struct list_head *p;
2521 	int nr_freed;
2522 	struct slab *slabp;
2523 
2524 	nr_freed = 0;
2525 	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2526 
2527 		spin_lock_irq(&l3->list_lock);
2528 		p = l3->slabs_free.prev;
2529 		if (p == &l3->slabs_free) {
2530 			spin_unlock_irq(&l3->list_lock);
2531 			goto out;
2532 		}
2533 
2534 		slabp = list_entry(p, struct slab, list);
2535 #if DEBUG
2536 		BUG_ON(slabp->inuse);
2537 #endif
2538 		list_del(&slabp->list);
2539 		/*
2540 		 * Safe to drop the lock. The slab is no longer linked
2541 		 * to the cache.
2542 		 */
2543 		l3->free_objects -= cache->num;
2544 		spin_unlock_irq(&l3->list_lock);
2545 		slab_destroy(cache, slabp);
2546 		nr_freed++;
2547 	}
2548 out:
2549 	return nr_freed;
2550 }
2551 
2552 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2553 static int __cache_shrink(struct kmem_cache *cachep)
2554 {
2555 	int ret = 0, i = 0;
2556 	struct kmem_list3 *l3;
2557 
2558 	drain_cpu_caches(cachep);
2559 
2560 	check_irq_on();
2561 	for_each_online_node(i) {
2562 		l3 = cachep->nodelists[i];
2563 		if (!l3)
2564 			continue;
2565 
2566 		drain_freelist(cachep, l3, l3->free_objects);
2567 
2568 		ret += !list_empty(&l3->slabs_full) ||
2569 			!list_empty(&l3->slabs_partial);
2570 	}
2571 	return (ret ? 1 : 0);
2572 }
2573 
2574 /**
2575  * kmem_cache_shrink - Shrink a cache.
2576  * @cachep: The cache to shrink.
2577  *
2578  * Releases as many slabs as possible for a cache.
2579  * To help debugging, a zero exit status indicates all slabs were released.
2580  */
2581 int kmem_cache_shrink(struct kmem_cache *cachep)
2582 {
2583 	int ret;
2584 	BUG_ON(!cachep || in_interrupt());
2585 
2586 	get_online_cpus();
2587 	mutex_lock(&cache_chain_mutex);
2588 	ret = __cache_shrink(cachep);
2589 	mutex_unlock(&cache_chain_mutex);
2590 	put_online_cpus();
2591 	return ret;
2592 }
2593 EXPORT_SYMBOL(kmem_cache_shrink);
2594 
2595 /**
2596  * kmem_cache_destroy - delete a cache
2597  * @cachep: the cache to destroy
2598  *
2599  * Remove a &struct kmem_cache object from the slab cache.
2600  *
2601  * It is expected this function will be called by a module when it is
2602  * unloaded.  This will remove the cache completely, and avoid a duplicate
2603  * cache being allocated each time a module is loaded and unloaded, if the
2604  * module doesn't have persistent in-kernel storage across loads and unloads.
2605  *
2606  * The cache must be empty before calling this function.
2607  *
2608  * The caller must guarantee that noone will allocate memory from the cache
2609  * during the kmem_cache_destroy().
2610  */
2611 void kmem_cache_destroy(struct kmem_cache *cachep)
2612 {
2613 	BUG_ON(!cachep || in_interrupt());
2614 
2615 	/* Find the cache in the chain of caches. */
2616 	get_online_cpus();
2617 	mutex_lock(&cache_chain_mutex);
2618 	/*
2619 	 * the chain is never empty, cache_cache is never destroyed
2620 	 */
2621 	list_del(&cachep->next);
2622 	if (__cache_shrink(cachep)) {
2623 		slab_error(cachep, "Can't free all objects");
2624 		list_add(&cachep->next, &cache_chain);
2625 		mutex_unlock(&cache_chain_mutex);
2626 		put_online_cpus();
2627 		return;
2628 	}
2629 
2630 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2631 		rcu_barrier();
2632 
2633 	__kmem_cache_destroy(cachep);
2634 	mutex_unlock(&cache_chain_mutex);
2635 	put_online_cpus();
2636 }
2637 EXPORT_SYMBOL(kmem_cache_destroy);
2638 
2639 /*
2640  * Get the memory for a slab management obj.
2641  * For a slab cache when the slab descriptor is off-slab, slab descriptors
2642  * always come from malloc_sizes caches.  The slab descriptor cannot
2643  * come from the same cache which is getting created because,
2644  * when we are searching for an appropriate cache for these
2645  * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2646  * If we are creating a malloc_sizes cache here it would not be visible to
2647  * kmem_find_general_cachep till the initialization is complete.
2648  * Hence we cannot have slabp_cache same as the original cache.
2649  */
2650 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2651 				   int colour_off, gfp_t local_flags,
2652 				   int nodeid)
2653 {
2654 	struct slab *slabp;
2655 
2656 	if (OFF_SLAB(cachep)) {
2657 		/* Slab management obj is off-slab. */
2658 		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2659 					      local_flags, nodeid);
2660 		/*
2661 		 * If the first object in the slab is leaked (it's allocated
2662 		 * but no one has a reference to it), we want to make sure
2663 		 * kmemleak does not treat the ->s_mem pointer as a reference
2664 		 * to the object. Otherwise we will not report the leak.
2665 		 */
2666 		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2667 				   local_flags);
2668 		if (!slabp)
2669 			return NULL;
2670 	} else {
2671 		slabp = objp + colour_off;
2672 		colour_off += cachep->slab_size;
2673 	}
2674 	slabp->inuse = 0;
2675 	slabp->colouroff = colour_off;
2676 	slabp->s_mem = objp + colour_off;
2677 	slabp->nodeid = nodeid;
2678 	slabp->free = 0;
2679 	return slabp;
2680 }
2681 
2682 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2683 {
2684 	return (kmem_bufctl_t *) (slabp + 1);
2685 }
2686 
2687 static void cache_init_objs(struct kmem_cache *cachep,
2688 			    struct slab *slabp)
2689 {
2690 	int i;
2691 
2692 	for (i = 0; i < cachep->num; i++) {
2693 		void *objp = index_to_obj(cachep, slabp, i);
2694 #if DEBUG
2695 		/* need to poison the objs? */
2696 		if (cachep->flags & SLAB_POISON)
2697 			poison_obj(cachep, objp, POISON_FREE);
2698 		if (cachep->flags & SLAB_STORE_USER)
2699 			*dbg_userword(cachep, objp) = NULL;
2700 
2701 		if (cachep->flags & SLAB_RED_ZONE) {
2702 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2703 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2704 		}
2705 		/*
2706 		 * Constructors are not allowed to allocate memory from the same
2707 		 * cache which they are a constructor for.  Otherwise, deadlock.
2708 		 * They must also be threaded.
2709 		 */
2710 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2711 			cachep->ctor(objp + obj_offset(cachep));
2712 
2713 		if (cachep->flags & SLAB_RED_ZONE) {
2714 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2715 				slab_error(cachep, "constructor overwrote the"
2716 					   " end of an object");
2717 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2718 				slab_error(cachep, "constructor overwrote the"
2719 					   " start of an object");
2720 		}
2721 		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2722 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2723 			kernel_map_pages(virt_to_page(objp),
2724 					 cachep->buffer_size / PAGE_SIZE, 0);
2725 #else
2726 		if (cachep->ctor)
2727 			cachep->ctor(objp);
2728 #endif
2729 		slab_bufctl(slabp)[i] = i + 1;
2730 	}
2731 	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2732 }
2733 
2734 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2735 {
2736 	if (CONFIG_ZONE_DMA_FLAG) {
2737 		if (flags & GFP_DMA)
2738 			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2739 		else
2740 			BUG_ON(cachep->gfpflags & GFP_DMA);
2741 	}
2742 }
2743 
2744 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2745 				int nodeid)
2746 {
2747 	void *objp = index_to_obj(cachep, slabp, slabp->free);
2748 	kmem_bufctl_t next;
2749 
2750 	slabp->inuse++;
2751 	next = slab_bufctl(slabp)[slabp->free];
2752 #if DEBUG
2753 	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2754 	WARN_ON(slabp->nodeid != nodeid);
2755 #endif
2756 	slabp->free = next;
2757 
2758 	return objp;
2759 }
2760 
2761 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2762 				void *objp, int nodeid)
2763 {
2764 	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2765 
2766 #if DEBUG
2767 	/* Verify that the slab belongs to the intended node */
2768 	WARN_ON(slabp->nodeid != nodeid);
2769 
2770 	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2771 		printk(KERN_ERR "slab: double free detected in cache "
2772 				"'%s', objp %p\n", cachep->name, objp);
2773 		BUG();
2774 	}
2775 #endif
2776 	slab_bufctl(slabp)[objnr] = slabp->free;
2777 	slabp->free = objnr;
2778 	slabp->inuse--;
2779 }
2780 
2781 /*
2782  * Map pages beginning at addr to the given cache and slab. This is required
2783  * for the slab allocator to be able to lookup the cache and slab of a
2784  * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2785  */
2786 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2787 			   void *addr)
2788 {
2789 	int nr_pages;
2790 	struct page *page;
2791 
2792 	page = virt_to_page(addr);
2793 
2794 	nr_pages = 1;
2795 	if (likely(!PageCompound(page)))
2796 		nr_pages <<= cache->gfporder;
2797 
2798 	do {
2799 		page_set_cache(page, cache);
2800 		page_set_slab(page, slab);
2801 		page++;
2802 	} while (--nr_pages);
2803 }
2804 
2805 /*
2806  * Grow (by 1) the number of slabs within a cache.  This is called by
2807  * kmem_cache_alloc() when there are no active objs left in a cache.
2808  */
2809 static int cache_grow(struct kmem_cache *cachep,
2810 		gfp_t flags, int nodeid, void *objp)
2811 {
2812 	struct slab *slabp;
2813 	size_t offset;
2814 	gfp_t local_flags;
2815 	struct kmem_list3 *l3;
2816 
2817 	/*
2818 	 * Be lazy and only check for valid flags here,  keeping it out of the
2819 	 * critical path in kmem_cache_alloc().
2820 	 */
2821 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2822 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2823 
2824 	/* Take the l3 list lock to change the colour_next on this node */
2825 	check_irq_off();
2826 	l3 = cachep->nodelists[nodeid];
2827 	spin_lock(&l3->list_lock);
2828 
2829 	/* Get colour for the slab, and cal the next value. */
2830 	offset = l3->colour_next;
2831 	l3->colour_next++;
2832 	if (l3->colour_next >= cachep->colour)
2833 		l3->colour_next = 0;
2834 	spin_unlock(&l3->list_lock);
2835 
2836 	offset *= cachep->colour_off;
2837 
2838 	if (local_flags & __GFP_WAIT)
2839 		local_irq_enable();
2840 
2841 	/*
2842 	 * The test for missing atomic flag is performed here, rather than
2843 	 * the more obvious place, simply to reduce the critical path length
2844 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2845 	 * will eventually be caught here (where it matters).
2846 	 */
2847 	kmem_flagcheck(cachep, flags);
2848 
2849 	/*
2850 	 * Get mem for the objs.  Attempt to allocate a physical page from
2851 	 * 'nodeid'.
2852 	 */
2853 	if (!objp)
2854 		objp = kmem_getpages(cachep, local_flags, nodeid);
2855 	if (!objp)
2856 		goto failed;
2857 
2858 	/* Get slab management. */
2859 	slabp = alloc_slabmgmt(cachep, objp, offset,
2860 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2861 	if (!slabp)
2862 		goto opps1;
2863 
2864 	slab_map_pages(cachep, slabp, objp);
2865 
2866 	cache_init_objs(cachep, slabp);
2867 
2868 	if (local_flags & __GFP_WAIT)
2869 		local_irq_disable();
2870 	check_irq_off();
2871 	spin_lock(&l3->list_lock);
2872 
2873 	/* Make slab active. */
2874 	list_add_tail(&slabp->list, &(l3->slabs_free));
2875 	STATS_INC_GROWN(cachep);
2876 	l3->free_objects += cachep->num;
2877 	spin_unlock(&l3->list_lock);
2878 	return 1;
2879 opps1:
2880 	kmem_freepages(cachep, objp);
2881 failed:
2882 	if (local_flags & __GFP_WAIT)
2883 		local_irq_disable();
2884 	return 0;
2885 }
2886 
2887 #if DEBUG
2888 
2889 /*
2890  * Perform extra freeing checks:
2891  * - detect bad pointers.
2892  * - POISON/RED_ZONE checking
2893  */
2894 static void kfree_debugcheck(const void *objp)
2895 {
2896 	if (!virt_addr_valid(objp)) {
2897 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2898 		       (unsigned long)objp);
2899 		BUG();
2900 	}
2901 }
2902 
2903 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2904 {
2905 	unsigned long long redzone1, redzone2;
2906 
2907 	redzone1 = *dbg_redzone1(cache, obj);
2908 	redzone2 = *dbg_redzone2(cache, obj);
2909 
2910 	/*
2911 	 * Redzone is ok.
2912 	 */
2913 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2914 		return;
2915 
2916 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2917 		slab_error(cache, "double free detected");
2918 	else
2919 		slab_error(cache, "memory outside object was overwritten");
2920 
2921 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2922 			obj, redzone1, redzone2);
2923 }
2924 
2925 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2926 				   void *caller)
2927 {
2928 	struct page *page;
2929 	unsigned int objnr;
2930 	struct slab *slabp;
2931 
2932 	BUG_ON(virt_to_cache(objp) != cachep);
2933 
2934 	objp -= obj_offset(cachep);
2935 	kfree_debugcheck(objp);
2936 	page = virt_to_head_page(objp);
2937 
2938 	slabp = page_get_slab(page);
2939 
2940 	if (cachep->flags & SLAB_RED_ZONE) {
2941 		verify_redzone_free(cachep, objp);
2942 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2943 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2944 	}
2945 	if (cachep->flags & SLAB_STORE_USER)
2946 		*dbg_userword(cachep, objp) = caller;
2947 
2948 	objnr = obj_to_index(cachep, slabp, objp);
2949 
2950 	BUG_ON(objnr >= cachep->num);
2951 	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2952 
2953 #ifdef CONFIG_DEBUG_SLAB_LEAK
2954 	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2955 #endif
2956 	if (cachep->flags & SLAB_POISON) {
2957 #ifdef CONFIG_DEBUG_PAGEALLOC
2958 		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2959 			store_stackinfo(cachep, objp, (unsigned long)caller);
2960 			kernel_map_pages(virt_to_page(objp),
2961 					 cachep->buffer_size / PAGE_SIZE, 0);
2962 		} else {
2963 			poison_obj(cachep, objp, POISON_FREE);
2964 		}
2965 #else
2966 		poison_obj(cachep, objp, POISON_FREE);
2967 #endif
2968 	}
2969 	return objp;
2970 }
2971 
2972 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2973 {
2974 	kmem_bufctl_t i;
2975 	int entries = 0;
2976 
2977 	/* Check slab's freelist to see if this obj is there. */
2978 	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2979 		entries++;
2980 		if (entries > cachep->num || i >= cachep->num)
2981 			goto bad;
2982 	}
2983 	if (entries != cachep->num - slabp->inuse) {
2984 bad:
2985 		printk(KERN_ERR "slab: Internal list corruption detected in "
2986 				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2987 			cachep->name, cachep->num, slabp, slabp->inuse);
2988 		for (i = 0;
2989 		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2990 		     i++) {
2991 			if (i % 16 == 0)
2992 				printk("\n%03x:", i);
2993 			printk(" %02x", ((unsigned char *)slabp)[i]);
2994 		}
2995 		printk("\n");
2996 		BUG();
2997 	}
2998 }
2999 #else
3000 #define kfree_debugcheck(x) do { } while(0)
3001 #define cache_free_debugcheck(x,objp,z) (objp)
3002 #define check_slabp(x,y) do { } while(0)
3003 #endif
3004 
3005 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3006 {
3007 	int batchcount;
3008 	struct kmem_list3 *l3;
3009 	struct array_cache *ac;
3010 	int node;
3011 
3012 retry:
3013 	check_irq_off();
3014 	node = numa_mem_id();
3015 	ac = cpu_cache_get(cachep);
3016 	batchcount = ac->batchcount;
3017 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3018 		/*
3019 		 * If there was little recent activity on this cache, then
3020 		 * perform only a partial refill.  Otherwise we could generate
3021 		 * refill bouncing.
3022 		 */
3023 		batchcount = BATCHREFILL_LIMIT;
3024 	}
3025 	l3 = cachep->nodelists[node];
3026 
3027 	BUG_ON(ac->avail > 0 || !l3);
3028 	spin_lock(&l3->list_lock);
3029 
3030 	/* See if we can refill from the shared array */
3031 	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3032 		l3->shared->touched = 1;
3033 		goto alloc_done;
3034 	}
3035 
3036 	while (batchcount > 0) {
3037 		struct list_head *entry;
3038 		struct slab *slabp;
3039 		/* Get slab alloc is to come from. */
3040 		entry = l3->slabs_partial.next;
3041 		if (entry == &l3->slabs_partial) {
3042 			l3->free_touched = 1;
3043 			entry = l3->slabs_free.next;
3044 			if (entry == &l3->slabs_free)
3045 				goto must_grow;
3046 		}
3047 
3048 		slabp = list_entry(entry, struct slab, list);
3049 		check_slabp(cachep, slabp);
3050 		check_spinlock_acquired(cachep);
3051 
3052 		/*
3053 		 * The slab was either on partial or free list so
3054 		 * there must be at least one object available for
3055 		 * allocation.
3056 		 */
3057 		BUG_ON(slabp->inuse >= cachep->num);
3058 
3059 		while (slabp->inuse < cachep->num && batchcount--) {
3060 			STATS_INC_ALLOCED(cachep);
3061 			STATS_INC_ACTIVE(cachep);
3062 			STATS_SET_HIGH(cachep);
3063 
3064 			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3065 							    node);
3066 		}
3067 		check_slabp(cachep, slabp);
3068 
3069 		/* move slabp to correct slabp list: */
3070 		list_del(&slabp->list);
3071 		if (slabp->free == BUFCTL_END)
3072 			list_add(&slabp->list, &l3->slabs_full);
3073 		else
3074 			list_add(&slabp->list, &l3->slabs_partial);
3075 	}
3076 
3077 must_grow:
3078 	l3->free_objects -= ac->avail;
3079 alloc_done:
3080 	spin_unlock(&l3->list_lock);
3081 
3082 	if (unlikely(!ac->avail)) {
3083 		int x;
3084 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3085 
3086 		/* cache_grow can reenable interrupts, then ac could change. */
3087 		ac = cpu_cache_get(cachep);
3088 		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3089 			return NULL;
3090 
3091 		if (!ac->avail)		/* objects refilled by interrupt? */
3092 			goto retry;
3093 	}
3094 	ac->touched = 1;
3095 	return ac->entry[--ac->avail];
3096 }
3097 
3098 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3099 						gfp_t flags)
3100 {
3101 	might_sleep_if(flags & __GFP_WAIT);
3102 #if DEBUG
3103 	kmem_flagcheck(cachep, flags);
3104 #endif
3105 }
3106 
3107 #if DEBUG
3108 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3109 				gfp_t flags, void *objp, void *caller)
3110 {
3111 	if (!objp)
3112 		return objp;
3113 	if (cachep->flags & SLAB_POISON) {
3114 #ifdef CONFIG_DEBUG_PAGEALLOC
3115 		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3116 			kernel_map_pages(virt_to_page(objp),
3117 					 cachep->buffer_size / PAGE_SIZE, 1);
3118 		else
3119 			check_poison_obj(cachep, objp);
3120 #else
3121 		check_poison_obj(cachep, objp);
3122 #endif
3123 		poison_obj(cachep, objp, POISON_INUSE);
3124 	}
3125 	if (cachep->flags & SLAB_STORE_USER)
3126 		*dbg_userword(cachep, objp) = caller;
3127 
3128 	if (cachep->flags & SLAB_RED_ZONE) {
3129 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3130 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3131 			slab_error(cachep, "double free, or memory outside"
3132 						" object was overwritten");
3133 			printk(KERN_ERR
3134 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3135 				objp, *dbg_redzone1(cachep, objp),
3136 				*dbg_redzone2(cachep, objp));
3137 		}
3138 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3139 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3140 	}
3141 #ifdef CONFIG_DEBUG_SLAB_LEAK
3142 	{
3143 		struct slab *slabp;
3144 		unsigned objnr;
3145 
3146 		slabp = page_get_slab(virt_to_head_page(objp));
3147 		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3148 		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3149 	}
3150 #endif
3151 	objp += obj_offset(cachep);
3152 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3153 		cachep->ctor(objp);
3154 #if ARCH_SLAB_MINALIGN
3155 	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3156 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3157 		       objp, ARCH_SLAB_MINALIGN);
3158 	}
3159 #endif
3160 	return objp;
3161 }
3162 #else
3163 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3164 #endif
3165 
3166 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3167 {
3168 	if (cachep == &cache_cache)
3169 		return false;
3170 
3171 	return should_failslab(obj_size(cachep), flags, cachep->flags);
3172 }
3173 
3174 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3175 {
3176 	void *objp;
3177 	struct array_cache *ac;
3178 
3179 	check_irq_off();
3180 
3181 	ac = cpu_cache_get(cachep);
3182 	if (likely(ac->avail)) {
3183 		STATS_INC_ALLOCHIT(cachep);
3184 		ac->touched = 1;
3185 		objp = ac->entry[--ac->avail];
3186 	} else {
3187 		STATS_INC_ALLOCMISS(cachep);
3188 		objp = cache_alloc_refill(cachep, flags);
3189 		/*
3190 		 * the 'ac' may be updated by cache_alloc_refill(),
3191 		 * and kmemleak_erase() requires its correct value.
3192 		 */
3193 		ac = cpu_cache_get(cachep);
3194 	}
3195 	/*
3196 	 * To avoid a false negative, if an object that is in one of the
3197 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3198 	 * treat the array pointers as a reference to the object.
3199 	 */
3200 	if (objp)
3201 		kmemleak_erase(&ac->entry[ac->avail]);
3202 	return objp;
3203 }
3204 
3205 #ifdef CONFIG_NUMA
3206 /*
3207  * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3208  *
3209  * If we are in_interrupt, then process context, including cpusets and
3210  * mempolicy, may not apply and should not be used for allocation policy.
3211  */
3212 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3213 {
3214 	int nid_alloc, nid_here;
3215 
3216 	if (in_interrupt() || (flags & __GFP_THISNODE))
3217 		return NULL;
3218 	nid_alloc = nid_here = numa_mem_id();
3219 	get_mems_allowed();
3220 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3221 		nid_alloc = cpuset_slab_spread_node();
3222 	else if (current->mempolicy)
3223 		nid_alloc = slab_node(current->mempolicy);
3224 	put_mems_allowed();
3225 	if (nid_alloc != nid_here)
3226 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3227 	return NULL;
3228 }
3229 
3230 /*
3231  * Fallback function if there was no memory available and no objects on a
3232  * certain node and fall back is permitted. First we scan all the
3233  * available nodelists for available objects. If that fails then we
3234  * perform an allocation without specifying a node. This allows the page
3235  * allocator to do its reclaim / fallback magic. We then insert the
3236  * slab into the proper nodelist and then allocate from it.
3237  */
3238 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3239 {
3240 	struct zonelist *zonelist;
3241 	gfp_t local_flags;
3242 	struct zoneref *z;
3243 	struct zone *zone;
3244 	enum zone_type high_zoneidx = gfp_zone(flags);
3245 	void *obj = NULL;
3246 	int nid;
3247 
3248 	if (flags & __GFP_THISNODE)
3249 		return NULL;
3250 
3251 	get_mems_allowed();
3252 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3253 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3254 
3255 retry:
3256 	/*
3257 	 * Look through allowed nodes for objects available
3258 	 * from existing per node queues.
3259 	 */
3260 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3261 		nid = zone_to_nid(zone);
3262 
3263 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3264 			cache->nodelists[nid] &&
3265 			cache->nodelists[nid]->free_objects) {
3266 				obj = ____cache_alloc_node(cache,
3267 					flags | GFP_THISNODE, nid);
3268 				if (obj)
3269 					break;
3270 		}
3271 	}
3272 
3273 	if (!obj) {
3274 		/*
3275 		 * This allocation will be performed within the constraints
3276 		 * of the current cpuset / memory policy requirements.
3277 		 * We may trigger various forms of reclaim on the allowed
3278 		 * set and go into memory reserves if necessary.
3279 		 */
3280 		if (local_flags & __GFP_WAIT)
3281 			local_irq_enable();
3282 		kmem_flagcheck(cache, flags);
3283 		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3284 		if (local_flags & __GFP_WAIT)
3285 			local_irq_disable();
3286 		if (obj) {
3287 			/*
3288 			 * Insert into the appropriate per node queues
3289 			 */
3290 			nid = page_to_nid(virt_to_page(obj));
3291 			if (cache_grow(cache, flags, nid, obj)) {
3292 				obj = ____cache_alloc_node(cache,
3293 					flags | GFP_THISNODE, nid);
3294 				if (!obj)
3295 					/*
3296 					 * Another processor may allocate the
3297 					 * objects in the slab since we are
3298 					 * not holding any locks.
3299 					 */
3300 					goto retry;
3301 			} else {
3302 				/* cache_grow already freed obj */
3303 				obj = NULL;
3304 			}
3305 		}
3306 	}
3307 	put_mems_allowed();
3308 	return obj;
3309 }
3310 
3311 /*
3312  * A interface to enable slab creation on nodeid
3313  */
3314 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3315 				int nodeid)
3316 {
3317 	struct list_head *entry;
3318 	struct slab *slabp;
3319 	struct kmem_list3 *l3;
3320 	void *obj;
3321 	int x;
3322 
3323 	l3 = cachep->nodelists[nodeid];
3324 	BUG_ON(!l3);
3325 
3326 retry:
3327 	check_irq_off();
3328 	spin_lock(&l3->list_lock);
3329 	entry = l3->slabs_partial.next;
3330 	if (entry == &l3->slabs_partial) {
3331 		l3->free_touched = 1;
3332 		entry = l3->slabs_free.next;
3333 		if (entry == &l3->slabs_free)
3334 			goto must_grow;
3335 	}
3336 
3337 	slabp = list_entry(entry, struct slab, list);
3338 	check_spinlock_acquired_node(cachep, nodeid);
3339 	check_slabp(cachep, slabp);
3340 
3341 	STATS_INC_NODEALLOCS(cachep);
3342 	STATS_INC_ACTIVE(cachep);
3343 	STATS_SET_HIGH(cachep);
3344 
3345 	BUG_ON(slabp->inuse == cachep->num);
3346 
3347 	obj = slab_get_obj(cachep, slabp, nodeid);
3348 	check_slabp(cachep, slabp);
3349 	l3->free_objects--;
3350 	/* move slabp to correct slabp list: */
3351 	list_del(&slabp->list);
3352 
3353 	if (slabp->free == BUFCTL_END)
3354 		list_add(&slabp->list, &l3->slabs_full);
3355 	else
3356 		list_add(&slabp->list, &l3->slabs_partial);
3357 
3358 	spin_unlock(&l3->list_lock);
3359 	goto done;
3360 
3361 must_grow:
3362 	spin_unlock(&l3->list_lock);
3363 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3364 	if (x)
3365 		goto retry;
3366 
3367 	return fallback_alloc(cachep, flags);
3368 
3369 done:
3370 	return obj;
3371 }
3372 
3373 /**
3374  * kmem_cache_alloc_node - Allocate an object on the specified node
3375  * @cachep: The cache to allocate from.
3376  * @flags: See kmalloc().
3377  * @nodeid: node number of the target node.
3378  * @caller: return address of caller, used for debug information
3379  *
3380  * Identical to kmem_cache_alloc but it will allocate memory on the given
3381  * node, which can improve the performance for cpu bound structures.
3382  *
3383  * Fallback to other node is possible if __GFP_THISNODE is not set.
3384  */
3385 static __always_inline void *
3386 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3387 		   void *caller)
3388 {
3389 	unsigned long save_flags;
3390 	void *ptr;
3391 	int slab_node = numa_mem_id();
3392 
3393 	flags &= gfp_allowed_mask;
3394 
3395 	lockdep_trace_alloc(flags);
3396 
3397 	if (slab_should_failslab(cachep, flags))
3398 		return NULL;
3399 
3400 	cache_alloc_debugcheck_before(cachep, flags);
3401 	local_irq_save(save_flags);
3402 
3403 	if (nodeid == -1)
3404 		nodeid = slab_node;
3405 
3406 	if (unlikely(!cachep->nodelists[nodeid])) {
3407 		/* Node not bootstrapped yet */
3408 		ptr = fallback_alloc(cachep, flags);
3409 		goto out;
3410 	}
3411 
3412 	if (nodeid == slab_node) {
3413 		/*
3414 		 * Use the locally cached objects if possible.
3415 		 * However ____cache_alloc does not allow fallback
3416 		 * to other nodes. It may fail while we still have
3417 		 * objects on other nodes available.
3418 		 */
3419 		ptr = ____cache_alloc(cachep, flags);
3420 		if (ptr)
3421 			goto out;
3422 	}
3423 	/* ___cache_alloc_node can fall back to other nodes */
3424 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3425   out:
3426 	local_irq_restore(save_flags);
3427 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3428 	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3429 				 flags);
3430 
3431 	if (likely(ptr))
3432 		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3433 
3434 	if (unlikely((flags & __GFP_ZERO) && ptr))
3435 		memset(ptr, 0, obj_size(cachep));
3436 
3437 	return ptr;
3438 }
3439 
3440 static __always_inline void *
3441 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3442 {
3443 	void *objp;
3444 
3445 	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3446 		objp = alternate_node_alloc(cache, flags);
3447 		if (objp)
3448 			goto out;
3449 	}
3450 	objp = ____cache_alloc(cache, flags);
3451 
3452 	/*
3453 	 * We may just have run out of memory on the local node.
3454 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3455 	 */
3456 	if (!objp)
3457 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3458 
3459   out:
3460 	return objp;
3461 }
3462 #else
3463 
3464 static __always_inline void *
3465 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3466 {
3467 	return ____cache_alloc(cachep, flags);
3468 }
3469 
3470 #endif /* CONFIG_NUMA */
3471 
3472 static __always_inline void *
3473 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3474 {
3475 	unsigned long save_flags;
3476 	void *objp;
3477 
3478 	flags &= gfp_allowed_mask;
3479 
3480 	lockdep_trace_alloc(flags);
3481 
3482 	if (slab_should_failslab(cachep, flags))
3483 		return NULL;
3484 
3485 	cache_alloc_debugcheck_before(cachep, flags);
3486 	local_irq_save(save_flags);
3487 	objp = __do_cache_alloc(cachep, flags);
3488 	local_irq_restore(save_flags);
3489 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3490 	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3491 				 flags);
3492 	prefetchw(objp);
3493 
3494 	if (likely(objp))
3495 		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3496 
3497 	if (unlikely((flags & __GFP_ZERO) && objp))
3498 		memset(objp, 0, obj_size(cachep));
3499 
3500 	return objp;
3501 }
3502 
3503 /*
3504  * Caller needs to acquire correct kmem_list's list_lock
3505  */
3506 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3507 		       int node)
3508 {
3509 	int i;
3510 	struct kmem_list3 *l3;
3511 
3512 	for (i = 0; i < nr_objects; i++) {
3513 		void *objp = objpp[i];
3514 		struct slab *slabp;
3515 
3516 		slabp = virt_to_slab(objp);
3517 		l3 = cachep->nodelists[node];
3518 		list_del(&slabp->list);
3519 		check_spinlock_acquired_node(cachep, node);
3520 		check_slabp(cachep, slabp);
3521 		slab_put_obj(cachep, slabp, objp, node);
3522 		STATS_DEC_ACTIVE(cachep);
3523 		l3->free_objects++;
3524 		check_slabp(cachep, slabp);
3525 
3526 		/* fixup slab chains */
3527 		if (slabp->inuse == 0) {
3528 			if (l3->free_objects > l3->free_limit) {
3529 				l3->free_objects -= cachep->num;
3530 				/* No need to drop any previously held
3531 				 * lock here, even if we have a off-slab slab
3532 				 * descriptor it is guaranteed to come from
3533 				 * a different cache, refer to comments before
3534 				 * alloc_slabmgmt.
3535 				 */
3536 				slab_destroy(cachep, slabp);
3537 			} else {
3538 				list_add(&slabp->list, &l3->slabs_free);
3539 			}
3540 		} else {
3541 			/* Unconditionally move a slab to the end of the
3542 			 * partial list on free - maximum time for the
3543 			 * other objects to be freed, too.
3544 			 */
3545 			list_add_tail(&slabp->list, &l3->slabs_partial);
3546 		}
3547 	}
3548 }
3549 
3550 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3551 {
3552 	int batchcount;
3553 	struct kmem_list3 *l3;
3554 	int node = numa_mem_id();
3555 
3556 	batchcount = ac->batchcount;
3557 #if DEBUG
3558 	BUG_ON(!batchcount || batchcount > ac->avail);
3559 #endif
3560 	check_irq_off();
3561 	l3 = cachep->nodelists[node];
3562 	spin_lock(&l3->list_lock);
3563 	if (l3->shared) {
3564 		struct array_cache *shared_array = l3->shared;
3565 		int max = shared_array->limit - shared_array->avail;
3566 		if (max) {
3567 			if (batchcount > max)
3568 				batchcount = max;
3569 			memcpy(&(shared_array->entry[shared_array->avail]),
3570 			       ac->entry, sizeof(void *) * batchcount);
3571 			shared_array->avail += batchcount;
3572 			goto free_done;
3573 		}
3574 	}
3575 
3576 	free_block(cachep, ac->entry, batchcount, node);
3577 free_done:
3578 #if STATS
3579 	{
3580 		int i = 0;
3581 		struct list_head *p;
3582 
3583 		p = l3->slabs_free.next;
3584 		while (p != &(l3->slabs_free)) {
3585 			struct slab *slabp;
3586 
3587 			slabp = list_entry(p, struct slab, list);
3588 			BUG_ON(slabp->inuse);
3589 
3590 			i++;
3591 			p = p->next;
3592 		}
3593 		STATS_SET_FREEABLE(cachep, i);
3594 	}
3595 #endif
3596 	spin_unlock(&l3->list_lock);
3597 	ac->avail -= batchcount;
3598 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3599 }
3600 
3601 /*
3602  * Release an obj back to its cache. If the obj has a constructed state, it must
3603  * be in this state _before_ it is released.  Called with disabled ints.
3604  */
3605 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3606 {
3607 	struct array_cache *ac = cpu_cache_get(cachep);
3608 
3609 	check_irq_off();
3610 	kmemleak_free_recursive(objp, cachep->flags);
3611 	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3612 
3613 	kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3614 
3615 	/*
3616 	 * Skip calling cache_free_alien() when the platform is not numa.
3617 	 * This will avoid cache misses that happen while accessing slabp (which
3618 	 * is per page memory  reference) to get nodeid. Instead use a global
3619 	 * variable to skip the call, which is mostly likely to be present in
3620 	 * the cache.
3621 	 */
3622 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3623 		return;
3624 
3625 	if (likely(ac->avail < ac->limit)) {
3626 		STATS_INC_FREEHIT(cachep);
3627 		ac->entry[ac->avail++] = objp;
3628 		return;
3629 	} else {
3630 		STATS_INC_FREEMISS(cachep);
3631 		cache_flusharray(cachep, ac);
3632 		ac->entry[ac->avail++] = objp;
3633 	}
3634 }
3635 
3636 /**
3637  * kmem_cache_alloc - Allocate an object
3638  * @cachep: The cache to allocate from.
3639  * @flags: See kmalloc().
3640  *
3641  * Allocate an object from this cache.  The flags are only relevant
3642  * if the cache has no available objects.
3643  */
3644 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3645 {
3646 	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3647 
3648 	trace_kmem_cache_alloc(_RET_IP_, ret,
3649 			       obj_size(cachep), cachep->buffer_size, flags);
3650 
3651 	return ret;
3652 }
3653 EXPORT_SYMBOL(kmem_cache_alloc);
3654 
3655 #ifdef CONFIG_TRACING
3656 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3657 {
3658 	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3659 }
3660 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3661 #endif
3662 
3663 /**
3664  * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3665  * @cachep: the cache we're checking against
3666  * @ptr: pointer to validate
3667  *
3668  * This verifies that the untrusted pointer looks sane;
3669  * it is _not_ a guarantee that the pointer is actually
3670  * part of the slab cache in question, but it at least
3671  * validates that the pointer can be dereferenced and
3672  * looks half-way sane.
3673  *
3674  * Currently only used for dentry validation.
3675  */
3676 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3677 {
3678 	unsigned long size = cachep->buffer_size;
3679 	struct page *page;
3680 
3681 	if (unlikely(!kern_ptr_validate(ptr, size)))
3682 		goto out;
3683 	page = virt_to_page(ptr);
3684 	if (unlikely(!PageSlab(page)))
3685 		goto out;
3686 	if (unlikely(page_get_cache(page) != cachep))
3687 		goto out;
3688 	return 1;
3689 out:
3690 	return 0;
3691 }
3692 
3693 #ifdef CONFIG_NUMA
3694 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3695 {
3696 	void *ret = __cache_alloc_node(cachep, flags, nodeid,
3697 				       __builtin_return_address(0));
3698 
3699 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3700 				    obj_size(cachep), cachep->buffer_size,
3701 				    flags, nodeid);
3702 
3703 	return ret;
3704 }
3705 EXPORT_SYMBOL(kmem_cache_alloc_node);
3706 
3707 #ifdef CONFIG_TRACING
3708 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3709 				    gfp_t flags,
3710 				    int nodeid)
3711 {
3712 	return __cache_alloc_node(cachep, flags, nodeid,
3713 				  __builtin_return_address(0));
3714 }
3715 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3716 #endif
3717 
3718 static __always_inline void *
3719 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3720 {
3721 	struct kmem_cache *cachep;
3722 	void *ret;
3723 
3724 	cachep = kmem_find_general_cachep(size, flags);
3725 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3726 		return cachep;
3727 	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3728 
3729 	trace_kmalloc_node((unsigned long) caller, ret,
3730 			   size, cachep->buffer_size, flags, node);
3731 
3732 	return ret;
3733 }
3734 
3735 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3736 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3737 {
3738 	return __do_kmalloc_node(size, flags, node,
3739 			__builtin_return_address(0));
3740 }
3741 EXPORT_SYMBOL(__kmalloc_node);
3742 
3743 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3744 		int node, unsigned long caller)
3745 {
3746 	return __do_kmalloc_node(size, flags, node, (void *)caller);
3747 }
3748 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3749 #else
3750 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3751 {
3752 	return __do_kmalloc_node(size, flags, node, NULL);
3753 }
3754 EXPORT_SYMBOL(__kmalloc_node);
3755 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3756 #endif /* CONFIG_NUMA */
3757 
3758 /**
3759  * __do_kmalloc - allocate memory
3760  * @size: how many bytes of memory are required.
3761  * @flags: the type of memory to allocate (see kmalloc).
3762  * @caller: function caller for debug tracking of the caller
3763  */
3764 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3765 					  void *caller)
3766 {
3767 	struct kmem_cache *cachep;
3768 	void *ret;
3769 
3770 	/* If you want to save a few bytes .text space: replace
3771 	 * __ with kmem_.
3772 	 * Then kmalloc uses the uninlined functions instead of the inline
3773 	 * functions.
3774 	 */
3775 	cachep = __find_general_cachep(size, flags);
3776 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3777 		return cachep;
3778 	ret = __cache_alloc(cachep, flags, caller);
3779 
3780 	trace_kmalloc((unsigned long) caller, ret,
3781 		      size, cachep->buffer_size, flags);
3782 
3783 	return ret;
3784 }
3785 
3786 
3787 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3788 void *__kmalloc(size_t size, gfp_t flags)
3789 {
3790 	return __do_kmalloc(size, flags, __builtin_return_address(0));
3791 }
3792 EXPORT_SYMBOL(__kmalloc);
3793 
3794 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3795 {
3796 	return __do_kmalloc(size, flags, (void *)caller);
3797 }
3798 EXPORT_SYMBOL(__kmalloc_track_caller);
3799 
3800 #else
3801 void *__kmalloc(size_t size, gfp_t flags)
3802 {
3803 	return __do_kmalloc(size, flags, NULL);
3804 }
3805 EXPORT_SYMBOL(__kmalloc);
3806 #endif
3807 
3808 /**
3809  * kmem_cache_free - Deallocate an object
3810  * @cachep: The cache the allocation was from.
3811  * @objp: The previously allocated object.
3812  *
3813  * Free an object which was previously allocated from this
3814  * cache.
3815  */
3816 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3817 {
3818 	unsigned long flags;
3819 
3820 	local_irq_save(flags);
3821 	debug_check_no_locks_freed(objp, obj_size(cachep));
3822 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3823 		debug_check_no_obj_freed(objp, obj_size(cachep));
3824 	__cache_free(cachep, objp);
3825 	local_irq_restore(flags);
3826 
3827 	trace_kmem_cache_free(_RET_IP_, objp);
3828 }
3829 EXPORT_SYMBOL(kmem_cache_free);
3830 
3831 /**
3832  * kfree - free previously allocated memory
3833  * @objp: pointer returned by kmalloc.
3834  *
3835  * If @objp is NULL, no operation is performed.
3836  *
3837  * Don't free memory not originally allocated by kmalloc()
3838  * or you will run into trouble.
3839  */
3840 void kfree(const void *objp)
3841 {
3842 	struct kmem_cache *c;
3843 	unsigned long flags;
3844 
3845 	trace_kfree(_RET_IP_, objp);
3846 
3847 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3848 		return;
3849 	local_irq_save(flags);
3850 	kfree_debugcheck(objp);
3851 	c = virt_to_cache(objp);
3852 	debug_check_no_locks_freed(objp, obj_size(c));
3853 	debug_check_no_obj_freed(objp, obj_size(c));
3854 	__cache_free(c, (void *)objp);
3855 	local_irq_restore(flags);
3856 }
3857 EXPORT_SYMBOL(kfree);
3858 
3859 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3860 {
3861 	return obj_size(cachep);
3862 }
3863 EXPORT_SYMBOL(kmem_cache_size);
3864 
3865 const char *kmem_cache_name(struct kmem_cache *cachep)
3866 {
3867 	return cachep->name;
3868 }
3869 EXPORT_SYMBOL_GPL(kmem_cache_name);
3870 
3871 /*
3872  * This initializes kmem_list3 or resizes various caches for all nodes.
3873  */
3874 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3875 {
3876 	int node;
3877 	struct kmem_list3 *l3;
3878 	struct array_cache *new_shared;
3879 	struct array_cache **new_alien = NULL;
3880 
3881 	for_each_online_node(node) {
3882 
3883                 if (use_alien_caches) {
3884                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3885                         if (!new_alien)
3886                                 goto fail;
3887                 }
3888 
3889 		new_shared = NULL;
3890 		if (cachep->shared) {
3891 			new_shared = alloc_arraycache(node,
3892 				cachep->shared*cachep->batchcount,
3893 					0xbaadf00d, gfp);
3894 			if (!new_shared) {
3895 				free_alien_cache(new_alien);
3896 				goto fail;
3897 			}
3898 		}
3899 
3900 		l3 = cachep->nodelists[node];
3901 		if (l3) {
3902 			struct array_cache *shared = l3->shared;
3903 
3904 			spin_lock_irq(&l3->list_lock);
3905 
3906 			if (shared)
3907 				free_block(cachep, shared->entry,
3908 						shared->avail, node);
3909 
3910 			l3->shared = new_shared;
3911 			if (!l3->alien) {
3912 				l3->alien = new_alien;
3913 				new_alien = NULL;
3914 			}
3915 			l3->free_limit = (1 + nr_cpus_node(node)) *
3916 					cachep->batchcount + cachep->num;
3917 			spin_unlock_irq(&l3->list_lock);
3918 			kfree(shared);
3919 			free_alien_cache(new_alien);
3920 			continue;
3921 		}
3922 		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3923 		if (!l3) {
3924 			free_alien_cache(new_alien);
3925 			kfree(new_shared);
3926 			goto fail;
3927 		}
3928 
3929 		kmem_list3_init(l3);
3930 		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3931 				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3932 		l3->shared = new_shared;
3933 		l3->alien = new_alien;
3934 		l3->free_limit = (1 + nr_cpus_node(node)) *
3935 					cachep->batchcount + cachep->num;
3936 		cachep->nodelists[node] = l3;
3937 	}
3938 	return 0;
3939 
3940 fail:
3941 	if (!cachep->next.next) {
3942 		/* Cache is not active yet. Roll back what we did */
3943 		node--;
3944 		while (node >= 0) {
3945 			if (cachep->nodelists[node]) {
3946 				l3 = cachep->nodelists[node];
3947 
3948 				kfree(l3->shared);
3949 				free_alien_cache(l3->alien);
3950 				kfree(l3);
3951 				cachep->nodelists[node] = NULL;
3952 			}
3953 			node--;
3954 		}
3955 	}
3956 	return -ENOMEM;
3957 }
3958 
3959 struct ccupdate_struct {
3960 	struct kmem_cache *cachep;
3961 	struct array_cache *new[NR_CPUS];
3962 };
3963 
3964 static void do_ccupdate_local(void *info)
3965 {
3966 	struct ccupdate_struct *new = info;
3967 	struct array_cache *old;
3968 
3969 	check_irq_off();
3970 	old = cpu_cache_get(new->cachep);
3971 
3972 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3973 	new->new[smp_processor_id()] = old;
3974 }
3975 
3976 /* Always called with the cache_chain_mutex held */
3977 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3978 				int batchcount, int shared, gfp_t gfp)
3979 {
3980 	struct ccupdate_struct *new;
3981 	int i;
3982 
3983 	new = kzalloc(sizeof(*new), gfp);
3984 	if (!new)
3985 		return -ENOMEM;
3986 
3987 	for_each_online_cpu(i) {
3988 		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3989 						batchcount, gfp);
3990 		if (!new->new[i]) {
3991 			for (i--; i >= 0; i--)
3992 				kfree(new->new[i]);
3993 			kfree(new);
3994 			return -ENOMEM;
3995 		}
3996 	}
3997 	new->cachep = cachep;
3998 
3999 	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4000 
4001 	check_irq_on();
4002 	cachep->batchcount = batchcount;
4003 	cachep->limit = limit;
4004 	cachep->shared = shared;
4005 
4006 	for_each_online_cpu(i) {
4007 		struct array_cache *ccold = new->new[i];
4008 		if (!ccold)
4009 			continue;
4010 		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4011 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4012 		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4013 		kfree(ccold);
4014 	}
4015 	kfree(new);
4016 	return alloc_kmemlist(cachep, gfp);
4017 }
4018 
4019 /* Called with cache_chain_mutex held always */
4020 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4021 {
4022 	int err;
4023 	int limit, shared;
4024 
4025 	/*
4026 	 * The head array serves three purposes:
4027 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
4028 	 * - reduce the number of spinlock operations.
4029 	 * - reduce the number of linked list operations on the slab and
4030 	 *   bufctl chains: array operations are cheaper.
4031 	 * The numbers are guessed, we should auto-tune as described by
4032 	 * Bonwick.
4033 	 */
4034 	if (cachep->buffer_size > 131072)
4035 		limit = 1;
4036 	else if (cachep->buffer_size > PAGE_SIZE)
4037 		limit = 8;
4038 	else if (cachep->buffer_size > 1024)
4039 		limit = 24;
4040 	else if (cachep->buffer_size > 256)
4041 		limit = 54;
4042 	else
4043 		limit = 120;
4044 
4045 	/*
4046 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4047 	 * allocation behaviour: Most allocs on one cpu, most free operations
4048 	 * on another cpu. For these cases, an efficient object passing between
4049 	 * cpus is necessary. This is provided by a shared array. The array
4050 	 * replaces Bonwick's magazine layer.
4051 	 * On uniprocessor, it's functionally equivalent (but less efficient)
4052 	 * to a larger limit. Thus disabled by default.
4053 	 */
4054 	shared = 0;
4055 	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4056 		shared = 8;
4057 
4058 #if DEBUG
4059 	/*
4060 	 * With debugging enabled, large batchcount lead to excessively long
4061 	 * periods with disabled local interrupts. Limit the batchcount
4062 	 */
4063 	if (limit > 32)
4064 		limit = 32;
4065 #endif
4066 	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4067 	if (err)
4068 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4069 		       cachep->name, -err);
4070 	return err;
4071 }
4072 
4073 /*
4074  * Drain an array if it contains any elements taking the l3 lock only if
4075  * necessary. Note that the l3 listlock also protects the array_cache
4076  * if drain_array() is used on the shared array.
4077  */
4078 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4079 			 struct array_cache *ac, int force, int node)
4080 {
4081 	int tofree;
4082 
4083 	if (!ac || !ac->avail)
4084 		return;
4085 	if (ac->touched && !force) {
4086 		ac->touched = 0;
4087 	} else {
4088 		spin_lock_irq(&l3->list_lock);
4089 		if (ac->avail) {
4090 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4091 			if (tofree > ac->avail)
4092 				tofree = (ac->avail + 1) / 2;
4093 			free_block(cachep, ac->entry, tofree, node);
4094 			ac->avail -= tofree;
4095 			memmove(ac->entry, &(ac->entry[tofree]),
4096 				sizeof(void *) * ac->avail);
4097 		}
4098 		spin_unlock_irq(&l3->list_lock);
4099 	}
4100 }
4101 
4102 /**
4103  * cache_reap - Reclaim memory from caches.
4104  * @w: work descriptor
4105  *
4106  * Called from workqueue/eventd every few seconds.
4107  * Purpose:
4108  * - clear the per-cpu caches for this CPU.
4109  * - return freeable pages to the main free memory pool.
4110  *
4111  * If we cannot acquire the cache chain mutex then just give up - we'll try
4112  * again on the next iteration.
4113  */
4114 static void cache_reap(struct work_struct *w)
4115 {
4116 	struct kmem_cache *searchp;
4117 	struct kmem_list3 *l3;
4118 	int node = numa_mem_id();
4119 	struct delayed_work *work = to_delayed_work(w);
4120 
4121 	if (!mutex_trylock(&cache_chain_mutex))
4122 		/* Give up. Setup the next iteration. */
4123 		goto out;
4124 
4125 	list_for_each_entry(searchp, &cache_chain, next) {
4126 		check_irq_on();
4127 
4128 		/*
4129 		 * We only take the l3 lock if absolutely necessary and we
4130 		 * have established with reasonable certainty that
4131 		 * we can do some work if the lock was obtained.
4132 		 */
4133 		l3 = searchp->nodelists[node];
4134 
4135 		reap_alien(searchp, l3);
4136 
4137 		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4138 
4139 		/*
4140 		 * These are racy checks but it does not matter
4141 		 * if we skip one check or scan twice.
4142 		 */
4143 		if (time_after(l3->next_reap, jiffies))
4144 			goto next;
4145 
4146 		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4147 
4148 		drain_array(searchp, l3, l3->shared, 0, node);
4149 
4150 		if (l3->free_touched)
4151 			l3->free_touched = 0;
4152 		else {
4153 			int freed;
4154 
4155 			freed = drain_freelist(searchp, l3, (l3->free_limit +
4156 				5 * searchp->num - 1) / (5 * searchp->num));
4157 			STATS_ADD_REAPED(searchp, freed);
4158 		}
4159 next:
4160 		cond_resched();
4161 	}
4162 	check_irq_on();
4163 	mutex_unlock(&cache_chain_mutex);
4164 	next_reap_node();
4165 out:
4166 	/* Set up the next iteration */
4167 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4168 }
4169 
4170 #ifdef CONFIG_SLABINFO
4171 
4172 static void print_slabinfo_header(struct seq_file *m)
4173 {
4174 	/*
4175 	 * Output format version, so at least we can change it
4176 	 * without _too_ many complaints.
4177 	 */
4178 #if STATS
4179 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4180 #else
4181 	seq_puts(m, "slabinfo - version: 2.1\n");
4182 #endif
4183 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4184 		 "<objperslab> <pagesperslab>");
4185 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4186 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4187 #if STATS
4188 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4189 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4190 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4191 #endif
4192 	seq_putc(m, '\n');
4193 }
4194 
4195 static void *s_start(struct seq_file *m, loff_t *pos)
4196 {
4197 	loff_t n = *pos;
4198 
4199 	mutex_lock(&cache_chain_mutex);
4200 	if (!n)
4201 		print_slabinfo_header(m);
4202 
4203 	return seq_list_start(&cache_chain, *pos);
4204 }
4205 
4206 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4207 {
4208 	return seq_list_next(p, &cache_chain, pos);
4209 }
4210 
4211 static void s_stop(struct seq_file *m, void *p)
4212 {
4213 	mutex_unlock(&cache_chain_mutex);
4214 }
4215 
4216 static int s_show(struct seq_file *m, void *p)
4217 {
4218 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4219 	struct slab *slabp;
4220 	unsigned long active_objs;
4221 	unsigned long num_objs;
4222 	unsigned long active_slabs = 0;
4223 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4224 	const char *name;
4225 	char *error = NULL;
4226 	int node;
4227 	struct kmem_list3 *l3;
4228 
4229 	active_objs = 0;
4230 	num_slabs = 0;
4231 	for_each_online_node(node) {
4232 		l3 = cachep->nodelists[node];
4233 		if (!l3)
4234 			continue;
4235 
4236 		check_irq_on();
4237 		spin_lock_irq(&l3->list_lock);
4238 
4239 		list_for_each_entry(slabp, &l3->slabs_full, list) {
4240 			if (slabp->inuse != cachep->num && !error)
4241 				error = "slabs_full accounting error";
4242 			active_objs += cachep->num;
4243 			active_slabs++;
4244 		}
4245 		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4246 			if (slabp->inuse == cachep->num && !error)
4247 				error = "slabs_partial inuse accounting error";
4248 			if (!slabp->inuse && !error)
4249 				error = "slabs_partial/inuse accounting error";
4250 			active_objs += slabp->inuse;
4251 			active_slabs++;
4252 		}
4253 		list_for_each_entry(slabp, &l3->slabs_free, list) {
4254 			if (slabp->inuse && !error)
4255 				error = "slabs_free/inuse accounting error";
4256 			num_slabs++;
4257 		}
4258 		free_objects += l3->free_objects;
4259 		if (l3->shared)
4260 			shared_avail += l3->shared->avail;
4261 
4262 		spin_unlock_irq(&l3->list_lock);
4263 	}
4264 	num_slabs += active_slabs;
4265 	num_objs = num_slabs * cachep->num;
4266 	if (num_objs - active_objs != free_objects && !error)
4267 		error = "free_objects accounting error";
4268 
4269 	name = cachep->name;
4270 	if (error)
4271 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4272 
4273 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4274 		   name, active_objs, num_objs, cachep->buffer_size,
4275 		   cachep->num, (1 << cachep->gfporder));
4276 	seq_printf(m, " : tunables %4u %4u %4u",
4277 		   cachep->limit, cachep->batchcount, cachep->shared);
4278 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4279 		   active_slabs, num_slabs, shared_avail);
4280 #if STATS
4281 	{			/* list3 stats */
4282 		unsigned long high = cachep->high_mark;
4283 		unsigned long allocs = cachep->num_allocations;
4284 		unsigned long grown = cachep->grown;
4285 		unsigned long reaped = cachep->reaped;
4286 		unsigned long errors = cachep->errors;
4287 		unsigned long max_freeable = cachep->max_freeable;
4288 		unsigned long node_allocs = cachep->node_allocs;
4289 		unsigned long node_frees = cachep->node_frees;
4290 		unsigned long overflows = cachep->node_overflow;
4291 
4292 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4293 			   "%4lu %4lu %4lu %4lu %4lu",
4294 			   allocs, high, grown,
4295 			   reaped, errors, max_freeable, node_allocs,
4296 			   node_frees, overflows);
4297 	}
4298 	/* cpu stats */
4299 	{
4300 		unsigned long allochit = atomic_read(&cachep->allochit);
4301 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4302 		unsigned long freehit = atomic_read(&cachep->freehit);
4303 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4304 
4305 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4306 			   allochit, allocmiss, freehit, freemiss);
4307 	}
4308 #endif
4309 	seq_putc(m, '\n');
4310 	return 0;
4311 }
4312 
4313 /*
4314  * slabinfo_op - iterator that generates /proc/slabinfo
4315  *
4316  * Output layout:
4317  * cache-name
4318  * num-active-objs
4319  * total-objs
4320  * object size
4321  * num-active-slabs
4322  * total-slabs
4323  * num-pages-per-slab
4324  * + further values on SMP and with statistics enabled
4325  */
4326 
4327 static const struct seq_operations slabinfo_op = {
4328 	.start = s_start,
4329 	.next = s_next,
4330 	.stop = s_stop,
4331 	.show = s_show,
4332 };
4333 
4334 #define MAX_SLABINFO_WRITE 128
4335 /**
4336  * slabinfo_write - Tuning for the slab allocator
4337  * @file: unused
4338  * @buffer: user buffer
4339  * @count: data length
4340  * @ppos: unused
4341  */
4342 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4343 		       size_t count, loff_t *ppos)
4344 {
4345 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4346 	int limit, batchcount, shared, res;
4347 	struct kmem_cache *cachep;
4348 
4349 	if (count > MAX_SLABINFO_WRITE)
4350 		return -EINVAL;
4351 	if (copy_from_user(&kbuf, buffer, count))
4352 		return -EFAULT;
4353 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4354 
4355 	tmp = strchr(kbuf, ' ');
4356 	if (!tmp)
4357 		return -EINVAL;
4358 	*tmp = '\0';
4359 	tmp++;
4360 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4361 		return -EINVAL;
4362 
4363 	/* Find the cache in the chain of caches. */
4364 	mutex_lock(&cache_chain_mutex);
4365 	res = -EINVAL;
4366 	list_for_each_entry(cachep, &cache_chain, next) {
4367 		if (!strcmp(cachep->name, kbuf)) {
4368 			if (limit < 1 || batchcount < 1 ||
4369 					batchcount > limit || shared < 0) {
4370 				res = 0;
4371 			} else {
4372 				res = do_tune_cpucache(cachep, limit,
4373 						       batchcount, shared,
4374 						       GFP_KERNEL);
4375 			}
4376 			break;
4377 		}
4378 	}
4379 	mutex_unlock(&cache_chain_mutex);
4380 	if (res >= 0)
4381 		res = count;
4382 	return res;
4383 }
4384 
4385 static int slabinfo_open(struct inode *inode, struct file *file)
4386 {
4387 	return seq_open(file, &slabinfo_op);
4388 }
4389 
4390 static const struct file_operations proc_slabinfo_operations = {
4391 	.open		= slabinfo_open,
4392 	.read		= seq_read,
4393 	.write		= slabinfo_write,
4394 	.llseek		= seq_lseek,
4395 	.release	= seq_release,
4396 };
4397 
4398 #ifdef CONFIG_DEBUG_SLAB_LEAK
4399 
4400 static void *leaks_start(struct seq_file *m, loff_t *pos)
4401 {
4402 	mutex_lock(&cache_chain_mutex);
4403 	return seq_list_start(&cache_chain, *pos);
4404 }
4405 
4406 static inline int add_caller(unsigned long *n, unsigned long v)
4407 {
4408 	unsigned long *p;
4409 	int l;
4410 	if (!v)
4411 		return 1;
4412 	l = n[1];
4413 	p = n + 2;
4414 	while (l) {
4415 		int i = l/2;
4416 		unsigned long *q = p + 2 * i;
4417 		if (*q == v) {
4418 			q[1]++;
4419 			return 1;
4420 		}
4421 		if (*q > v) {
4422 			l = i;
4423 		} else {
4424 			p = q + 2;
4425 			l -= i + 1;
4426 		}
4427 	}
4428 	if (++n[1] == n[0])
4429 		return 0;
4430 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4431 	p[0] = v;
4432 	p[1] = 1;
4433 	return 1;
4434 }
4435 
4436 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4437 {
4438 	void *p;
4439 	int i;
4440 	if (n[0] == n[1])
4441 		return;
4442 	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4443 		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4444 			continue;
4445 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4446 			return;
4447 	}
4448 }
4449 
4450 static void show_symbol(struct seq_file *m, unsigned long address)
4451 {
4452 #ifdef CONFIG_KALLSYMS
4453 	unsigned long offset, size;
4454 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4455 
4456 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4457 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4458 		if (modname[0])
4459 			seq_printf(m, " [%s]", modname);
4460 		return;
4461 	}
4462 #endif
4463 	seq_printf(m, "%p", (void *)address);
4464 }
4465 
4466 static int leaks_show(struct seq_file *m, void *p)
4467 {
4468 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4469 	struct slab *slabp;
4470 	struct kmem_list3 *l3;
4471 	const char *name;
4472 	unsigned long *n = m->private;
4473 	int node;
4474 	int i;
4475 
4476 	if (!(cachep->flags & SLAB_STORE_USER))
4477 		return 0;
4478 	if (!(cachep->flags & SLAB_RED_ZONE))
4479 		return 0;
4480 
4481 	/* OK, we can do it */
4482 
4483 	n[1] = 0;
4484 
4485 	for_each_online_node(node) {
4486 		l3 = cachep->nodelists[node];
4487 		if (!l3)
4488 			continue;
4489 
4490 		check_irq_on();
4491 		spin_lock_irq(&l3->list_lock);
4492 
4493 		list_for_each_entry(slabp, &l3->slabs_full, list)
4494 			handle_slab(n, cachep, slabp);
4495 		list_for_each_entry(slabp, &l3->slabs_partial, list)
4496 			handle_slab(n, cachep, slabp);
4497 		spin_unlock_irq(&l3->list_lock);
4498 	}
4499 	name = cachep->name;
4500 	if (n[0] == n[1]) {
4501 		/* Increase the buffer size */
4502 		mutex_unlock(&cache_chain_mutex);
4503 		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4504 		if (!m->private) {
4505 			/* Too bad, we are really out */
4506 			m->private = n;
4507 			mutex_lock(&cache_chain_mutex);
4508 			return -ENOMEM;
4509 		}
4510 		*(unsigned long *)m->private = n[0] * 2;
4511 		kfree(n);
4512 		mutex_lock(&cache_chain_mutex);
4513 		/* Now make sure this entry will be retried */
4514 		m->count = m->size;
4515 		return 0;
4516 	}
4517 	for (i = 0; i < n[1]; i++) {
4518 		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4519 		show_symbol(m, n[2*i+2]);
4520 		seq_putc(m, '\n');
4521 	}
4522 
4523 	return 0;
4524 }
4525 
4526 static const struct seq_operations slabstats_op = {
4527 	.start = leaks_start,
4528 	.next = s_next,
4529 	.stop = s_stop,
4530 	.show = leaks_show,
4531 };
4532 
4533 static int slabstats_open(struct inode *inode, struct file *file)
4534 {
4535 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4536 	int ret = -ENOMEM;
4537 	if (n) {
4538 		ret = seq_open(file, &slabstats_op);
4539 		if (!ret) {
4540 			struct seq_file *m = file->private_data;
4541 			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4542 			m->private = n;
4543 			n = NULL;
4544 		}
4545 		kfree(n);
4546 	}
4547 	return ret;
4548 }
4549 
4550 static const struct file_operations proc_slabstats_operations = {
4551 	.open		= slabstats_open,
4552 	.read		= seq_read,
4553 	.llseek		= seq_lseek,
4554 	.release	= seq_release_private,
4555 };
4556 #endif
4557 
4558 static int __init slab_proc_init(void)
4559 {
4560 	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4561 #ifdef CONFIG_DEBUG_SLAB_LEAK
4562 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4563 #endif
4564 	return 0;
4565 }
4566 module_init(slab_proc_init);
4567 #endif
4568 
4569 /**
4570  * ksize - get the actual amount of memory allocated for a given object
4571  * @objp: Pointer to the object
4572  *
4573  * kmalloc may internally round up allocations and return more memory
4574  * than requested. ksize() can be used to determine the actual amount of
4575  * memory allocated. The caller may use this additional memory, even though
4576  * a smaller amount of memory was initially specified with the kmalloc call.
4577  * The caller must guarantee that objp points to a valid object previously
4578  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4579  * must not be freed during the duration of the call.
4580  */
4581 size_t ksize(const void *objp)
4582 {
4583 	BUG_ON(!objp);
4584 	if (unlikely(objp == ZERO_SIZE_PTR))
4585 		return 0;
4586 
4587 	return obj_size(virt_to_cache(objp));
4588 }
4589 EXPORT_SYMBOL(ksize);
4590