xref: /openbmc/linux/mm/slab.c (revision aac5987a)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 #include	<linux/sched/task_stack.h>
120 
121 #include	<net/sock.h>
122 
123 #include	<asm/cacheflush.h>
124 #include	<asm/tlbflush.h>
125 #include	<asm/page.h>
126 
127 #include <trace/events/kmem.h>
128 
129 #include	"internal.h"
130 
131 #include	"slab.h"
132 
133 /*
134  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135  *		  0 for faster, smaller code (especially in the critical paths).
136  *
137  * STATS	- 1 to collect stats for /proc/slabinfo.
138  *		  0 for faster, smaller code (especially in the critical paths).
139  *
140  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141  */
142 
143 #ifdef CONFIG_DEBUG_SLAB
144 #define	DEBUG		1
145 #define	STATS		1
146 #define	FORCED_DEBUG	1
147 #else
148 #define	DEBUG		0
149 #define	STATS		0
150 #define	FORCED_DEBUG	0
151 #endif
152 
153 /* Shouldn't this be in a header file somewhere? */
154 #define	BYTES_PER_WORD		sizeof(void *)
155 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160 
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169 
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171 
172 /*
173  * struct array_cache
174  *
175  * Purpose:
176  * - LIFO ordering, to hand out cache-warm objects from _alloc
177  * - reduce the number of linked list operations
178  * - reduce spinlock operations
179  *
180  * The limit is stored in the per-cpu structure to reduce the data cache
181  * footprint.
182  *
183  */
184 struct array_cache {
185 	unsigned int avail;
186 	unsigned int limit;
187 	unsigned int batchcount;
188 	unsigned int touched;
189 	void *entry[];	/*
190 			 * Must have this definition in here for the proper
191 			 * alignment of array_cache. Also simplifies accessing
192 			 * the entries.
193 			 */
194 };
195 
196 struct alien_cache {
197 	spinlock_t lock;
198 	struct array_cache ac;
199 };
200 
201 /*
202  * Need this for bootstrapping a per node allocator.
203  */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define	CACHE_CACHE 0
207 #define	SIZE_NODE (MAX_NUMNODES)
208 
209 static int drain_freelist(struct kmem_cache *cache,
210 			struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 			int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216 
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 						void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 				struct kmem_cache_node *n, struct page *page,
221 				void **list);
222 static int slab_early_init = 1;
223 
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 	INIT_LIST_HEAD(&parent->slabs_full);
229 	INIT_LIST_HEAD(&parent->slabs_partial);
230 	INIT_LIST_HEAD(&parent->slabs_free);
231 	parent->total_slabs = 0;
232 	parent->free_slabs = 0;
233 	parent->shared = NULL;
234 	parent->alien = NULL;
235 	parent->colour_next = 0;
236 	spin_lock_init(&parent->list_lock);
237 	parent->free_objects = 0;
238 	parent->free_touched = 0;
239 }
240 
241 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
242 	do {								\
243 		INIT_LIST_HEAD(listp);					\
244 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 	} while (0)
246 
247 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
248 	do {								\
249 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
250 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
252 	} while (0)
253 
254 #define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
255 #define CFLGS_OFF_SLAB		(0x80000000UL)
256 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
258 
259 #define BATCHREFILL_LIMIT	16
260 /*
261  * Optimization question: fewer reaps means less probability for unnessary
262  * cpucache drain/refill cycles.
263  *
264  * OTOH the cpuarrays can contain lots of objects,
265  * which could lock up otherwise freeable slabs.
266  */
267 #define REAPTIMEOUT_AC		(2*HZ)
268 #define REAPTIMEOUT_NODE	(4*HZ)
269 
270 #if STATS
271 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
272 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
273 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
274 #define	STATS_INC_GROWN(x)	((x)->grown++)
275 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
276 #define	STATS_SET_HIGH(x)						\
277 	do {								\
278 		if ((x)->num_active > (x)->high_mark)			\
279 			(x)->high_mark = (x)->num_active;		\
280 	} while (0)
281 #define	STATS_INC_ERR(x)	((x)->errors++)
282 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
285 #define	STATS_SET_FREEABLE(x, i)					\
286 	do {								\
287 		if ((x)->max_freeable < i)				\
288 			(x)->max_freeable = i;				\
289 	} while (0)
290 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
294 #else
295 #define	STATS_INC_ACTIVE(x)	do { } while (0)
296 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
297 #define	STATS_INC_ALLOCED(x)	do { } while (0)
298 #define	STATS_INC_GROWN(x)	do { } while (0)
299 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
300 #define	STATS_SET_HIGH(x)	do { } while (0)
301 #define	STATS_INC_ERR(x)	do { } while (0)
302 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303 #define	STATS_INC_NODEFREES(x)	do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
305 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
307 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
308 #define STATS_INC_FREEHIT(x)	do { } while (0)
309 #define STATS_INC_FREEMISS(x)	do { } while (0)
310 #endif
311 
312 #if DEBUG
313 
314 /*
315  * memory layout of objects:
316  * 0		: objp
317  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318  * 		the end of an object is aligned with the end of the real
319  * 		allocation. Catches writes behind the end of the allocation.
320  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321  * 		redzone word.
322  * cachep->obj_offset: The real object.
323  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324  * cachep->size - 1* BYTES_PER_WORD: last caller address
325  *					[BYTES_PER_WORD long]
326  */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 	return cachep->obj_offset;
330 }
331 
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 	return (unsigned long long*) (objp + obj_offset(cachep) -
336 				      sizeof(unsigned long long));
337 }
338 
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 	if (cachep->flags & SLAB_STORE_USER)
343 		return (unsigned long long *)(objp + cachep->size -
344 					      sizeof(unsigned long long) -
345 					      REDZONE_ALIGN);
346 	return (unsigned long long *) (objp + cachep->size -
347 				       sizeof(unsigned long long));
348 }
349 
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355 
356 #else
357 
358 #define obj_offset(x)			0
359 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
362 
363 #endif
364 
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366 
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 	return atomic_read(&cachep->store_user_clean) == 1;
370 }
371 
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 	atomic_set(&cachep->store_user_clean, 1);
375 }
376 
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 	if (is_store_user_clean(cachep))
380 		atomic_set(&cachep->store_user_clean, 0);
381 }
382 
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385 
386 #endif
387 
388 /*
389  * Do not go above this order unless 0 objects fit into the slab or
390  * overridden on the command line.
391  */
392 #define	SLAB_MAX_ORDER_HI	1
393 #define	SLAB_MAX_ORDER_LO	0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396 
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 	struct page *page = virt_to_head_page(obj);
400 	return page->slab_cache;
401 }
402 
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 				 unsigned int idx)
405 {
406 	return page->s_mem + cache->size * idx;
407 }
408 
409 /*
410  * We want to avoid an expensive divide : (offset / cache->size)
411  *   Using the fact that size is a constant for a particular cache,
412  *   we can replace (offset / cache->size) by
413  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
414  */
415 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 					const struct page *page, void *obj)
417 {
418 	u32 offset = (obj - page->s_mem);
419 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 }
421 
422 #define BOOT_CPUCACHE_ENTRIES	1
423 /* internal cache of cache description objs */
424 static struct kmem_cache kmem_cache_boot = {
425 	.batchcount = 1,
426 	.limit = BOOT_CPUCACHE_ENTRIES,
427 	.shared = 1,
428 	.size = sizeof(struct kmem_cache),
429 	.name = "kmem_cache",
430 };
431 
432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433 
434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435 {
436 	return this_cpu_ptr(cachep->cpu_cache);
437 }
438 
439 /*
440  * Calculate the number of objects and left-over bytes for a given buffer size.
441  */
442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 		unsigned long flags, size_t *left_over)
444 {
445 	unsigned int num;
446 	size_t slab_size = PAGE_SIZE << gfporder;
447 
448 	/*
449 	 * The slab management structure can be either off the slab or
450 	 * on it. For the latter case, the memory allocated for a
451 	 * slab is used for:
452 	 *
453 	 * - @buffer_size bytes for each object
454 	 * - One freelist_idx_t for each object
455 	 *
456 	 * We don't need to consider alignment of freelist because
457 	 * freelist will be at the end of slab page. The objects will be
458 	 * at the correct alignment.
459 	 *
460 	 * If the slab management structure is off the slab, then the
461 	 * alignment will already be calculated into the size. Because
462 	 * the slabs are all pages aligned, the objects will be at the
463 	 * correct alignment when allocated.
464 	 */
465 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 		num = slab_size / buffer_size;
467 		*left_over = slab_size % buffer_size;
468 	} else {
469 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 		*left_over = slab_size %
471 			(buffer_size + sizeof(freelist_idx_t));
472 	}
473 
474 	return num;
475 }
476 
477 #if DEBUG
478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479 
480 static void __slab_error(const char *function, struct kmem_cache *cachep,
481 			char *msg)
482 {
483 	pr_err("slab error in %s(): cache `%s': %s\n",
484 	       function, cachep->name, msg);
485 	dump_stack();
486 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487 }
488 #endif
489 
490 /*
491  * By default on NUMA we use alien caches to stage the freeing of
492  * objects allocated from other nodes. This causes massive memory
493  * inefficiencies when using fake NUMA setup to split memory into a
494  * large number of small nodes, so it can be disabled on the command
495  * line
496   */
497 
498 static int use_alien_caches __read_mostly = 1;
499 static int __init noaliencache_setup(char *s)
500 {
501 	use_alien_caches = 0;
502 	return 1;
503 }
504 __setup("noaliencache", noaliencache_setup);
505 
506 static int __init slab_max_order_setup(char *str)
507 {
508 	get_option(&str, &slab_max_order);
509 	slab_max_order = slab_max_order < 0 ? 0 :
510 				min(slab_max_order, MAX_ORDER - 1);
511 	slab_max_order_set = true;
512 
513 	return 1;
514 }
515 __setup("slab_max_order=", slab_max_order_setup);
516 
517 #ifdef CONFIG_NUMA
518 /*
519  * Special reaping functions for NUMA systems called from cache_reap().
520  * These take care of doing round robin flushing of alien caches (containing
521  * objects freed on different nodes from which they were allocated) and the
522  * flushing of remote pcps by calling drain_node_pages.
523  */
524 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525 
526 static void init_reap_node(int cpu)
527 {
528 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 						    node_online_map);
530 }
531 
532 static void next_reap_node(void)
533 {
534 	int node = __this_cpu_read(slab_reap_node);
535 
536 	node = next_node_in(node, node_online_map);
537 	__this_cpu_write(slab_reap_node, node);
538 }
539 
540 #else
541 #define init_reap_node(cpu) do { } while (0)
542 #define next_reap_node(void) do { } while (0)
543 #endif
544 
545 /*
546  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
547  * via the workqueue/eventd.
548  * Add the CPU number into the expiration time to minimize the possibility of
549  * the CPUs getting into lockstep and contending for the global cache chain
550  * lock.
551  */
552 static void start_cpu_timer(int cpu)
553 {
554 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555 
556 	if (reap_work->work.func == NULL) {
557 		init_reap_node(cpu);
558 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 		schedule_delayed_work_on(cpu, reap_work,
560 					__round_jiffies_relative(HZ, cpu));
561 	}
562 }
563 
564 static void init_arraycache(struct array_cache *ac, int limit, int batch)
565 {
566 	/*
567 	 * The array_cache structures contain pointers to free object.
568 	 * However, when such objects are allocated or transferred to another
569 	 * cache the pointers are not cleared and they could be counted as
570 	 * valid references during a kmemleak scan. Therefore, kmemleak must
571 	 * not scan such objects.
572 	 */
573 	kmemleak_no_scan(ac);
574 	if (ac) {
575 		ac->avail = 0;
576 		ac->limit = limit;
577 		ac->batchcount = batch;
578 		ac->touched = 0;
579 	}
580 }
581 
582 static struct array_cache *alloc_arraycache(int node, int entries,
583 					    int batchcount, gfp_t gfp)
584 {
585 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 	struct array_cache *ac = NULL;
587 
588 	ac = kmalloc_node(memsize, gfp, node);
589 	init_arraycache(ac, entries, batchcount);
590 	return ac;
591 }
592 
593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 					struct page *page, void *objp)
595 {
596 	struct kmem_cache_node *n;
597 	int page_node;
598 	LIST_HEAD(list);
599 
600 	page_node = page_to_nid(page);
601 	n = get_node(cachep, page_node);
602 
603 	spin_lock(&n->list_lock);
604 	free_block(cachep, &objp, 1, page_node, &list);
605 	spin_unlock(&n->list_lock);
606 
607 	slabs_destroy(cachep, &list);
608 }
609 
610 /*
611  * Transfer objects in one arraycache to another.
612  * Locking must be handled by the caller.
613  *
614  * Return the number of entries transferred.
615  */
616 static int transfer_objects(struct array_cache *to,
617 		struct array_cache *from, unsigned int max)
618 {
619 	/* Figure out how many entries to transfer */
620 	int nr = min3(from->avail, max, to->limit - to->avail);
621 
622 	if (!nr)
623 		return 0;
624 
625 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 			sizeof(void *) *nr);
627 
628 	from->avail -= nr;
629 	to->avail += nr;
630 	return nr;
631 }
632 
633 #ifndef CONFIG_NUMA
634 
635 #define drain_alien_cache(cachep, alien) do { } while (0)
636 #define reap_alien(cachep, n) do { } while (0)
637 
638 static inline struct alien_cache **alloc_alien_cache(int node,
639 						int limit, gfp_t gfp)
640 {
641 	return NULL;
642 }
643 
644 static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 {
646 }
647 
648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649 {
650 	return 0;
651 }
652 
653 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 		gfp_t flags)
655 {
656 	return NULL;
657 }
658 
659 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 		 gfp_t flags, int nodeid)
661 {
662 	return NULL;
663 }
664 
665 static inline gfp_t gfp_exact_node(gfp_t flags)
666 {
667 	return flags & ~__GFP_NOFAIL;
668 }
669 
670 #else	/* CONFIG_NUMA */
671 
672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674 
675 static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 						int batch, gfp_t gfp)
677 {
678 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 	struct alien_cache *alc = NULL;
680 
681 	alc = kmalloc_node(memsize, gfp, node);
682 	init_arraycache(&alc->ac, entries, batch);
683 	spin_lock_init(&alc->lock);
684 	return alc;
685 }
686 
687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688 {
689 	struct alien_cache **alc_ptr;
690 	size_t memsize = sizeof(void *) * nr_node_ids;
691 	int i;
692 
693 	if (limit > 1)
694 		limit = 12;
695 	alc_ptr = kzalloc_node(memsize, gfp, node);
696 	if (!alc_ptr)
697 		return NULL;
698 
699 	for_each_node(i) {
700 		if (i == node || !node_online(i))
701 			continue;
702 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 		if (!alc_ptr[i]) {
704 			for (i--; i >= 0; i--)
705 				kfree(alc_ptr[i]);
706 			kfree(alc_ptr);
707 			return NULL;
708 		}
709 	}
710 	return alc_ptr;
711 }
712 
713 static void free_alien_cache(struct alien_cache **alc_ptr)
714 {
715 	int i;
716 
717 	if (!alc_ptr)
718 		return;
719 	for_each_node(i)
720 	    kfree(alc_ptr[i]);
721 	kfree(alc_ptr);
722 }
723 
724 static void __drain_alien_cache(struct kmem_cache *cachep,
725 				struct array_cache *ac, int node,
726 				struct list_head *list)
727 {
728 	struct kmem_cache_node *n = get_node(cachep, node);
729 
730 	if (ac->avail) {
731 		spin_lock(&n->list_lock);
732 		/*
733 		 * Stuff objects into the remote nodes shared array first.
734 		 * That way we could avoid the overhead of putting the objects
735 		 * into the free lists and getting them back later.
736 		 */
737 		if (n->shared)
738 			transfer_objects(n->shared, ac, ac->limit);
739 
740 		free_block(cachep, ac->entry, ac->avail, node, list);
741 		ac->avail = 0;
742 		spin_unlock(&n->list_lock);
743 	}
744 }
745 
746 /*
747  * Called from cache_reap() to regularly drain alien caches round robin.
748  */
749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750 {
751 	int node = __this_cpu_read(slab_reap_node);
752 
753 	if (n->alien) {
754 		struct alien_cache *alc = n->alien[node];
755 		struct array_cache *ac;
756 
757 		if (alc) {
758 			ac = &alc->ac;
759 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 				LIST_HEAD(list);
761 
762 				__drain_alien_cache(cachep, ac, node, &list);
763 				spin_unlock_irq(&alc->lock);
764 				slabs_destroy(cachep, &list);
765 			}
766 		}
767 	}
768 }
769 
770 static void drain_alien_cache(struct kmem_cache *cachep,
771 				struct alien_cache **alien)
772 {
773 	int i = 0;
774 	struct alien_cache *alc;
775 	struct array_cache *ac;
776 	unsigned long flags;
777 
778 	for_each_online_node(i) {
779 		alc = alien[i];
780 		if (alc) {
781 			LIST_HEAD(list);
782 
783 			ac = &alc->ac;
784 			spin_lock_irqsave(&alc->lock, flags);
785 			__drain_alien_cache(cachep, ac, i, &list);
786 			spin_unlock_irqrestore(&alc->lock, flags);
787 			slabs_destroy(cachep, &list);
788 		}
789 	}
790 }
791 
792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 				int node, int page_node)
794 {
795 	struct kmem_cache_node *n;
796 	struct alien_cache *alien = NULL;
797 	struct array_cache *ac;
798 	LIST_HEAD(list);
799 
800 	n = get_node(cachep, node);
801 	STATS_INC_NODEFREES(cachep);
802 	if (n->alien && n->alien[page_node]) {
803 		alien = n->alien[page_node];
804 		ac = &alien->ac;
805 		spin_lock(&alien->lock);
806 		if (unlikely(ac->avail == ac->limit)) {
807 			STATS_INC_ACOVERFLOW(cachep);
808 			__drain_alien_cache(cachep, ac, page_node, &list);
809 		}
810 		ac->entry[ac->avail++] = objp;
811 		spin_unlock(&alien->lock);
812 		slabs_destroy(cachep, &list);
813 	} else {
814 		n = get_node(cachep, page_node);
815 		spin_lock(&n->list_lock);
816 		free_block(cachep, &objp, 1, page_node, &list);
817 		spin_unlock(&n->list_lock);
818 		slabs_destroy(cachep, &list);
819 	}
820 	return 1;
821 }
822 
823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824 {
825 	int page_node = page_to_nid(virt_to_page(objp));
826 	int node = numa_mem_id();
827 	/*
828 	 * Make sure we are not freeing a object from another node to the array
829 	 * cache on this cpu.
830 	 */
831 	if (likely(node == page_node))
832 		return 0;
833 
834 	return __cache_free_alien(cachep, objp, node, page_node);
835 }
836 
837 /*
838  * Construct gfp mask to allocate from a specific node but do not reclaim or
839  * warn about failures.
840  */
841 static inline gfp_t gfp_exact_node(gfp_t flags)
842 {
843 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
844 }
845 #endif
846 
847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848 {
849 	struct kmem_cache_node *n;
850 
851 	/*
852 	 * Set up the kmem_cache_node for cpu before we can
853 	 * begin anything. Make sure some other cpu on this
854 	 * node has not already allocated this
855 	 */
856 	n = get_node(cachep, node);
857 	if (n) {
858 		spin_lock_irq(&n->list_lock);
859 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 				cachep->num;
861 		spin_unlock_irq(&n->list_lock);
862 
863 		return 0;
864 	}
865 
866 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 	if (!n)
868 		return -ENOMEM;
869 
870 	kmem_cache_node_init(n);
871 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873 
874 	n->free_limit =
875 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876 
877 	/*
878 	 * The kmem_cache_nodes don't come and go as CPUs
879 	 * come and go.  slab_mutex is sufficient
880 	 * protection here.
881 	 */
882 	cachep->node[node] = n;
883 
884 	return 0;
885 }
886 
887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888 /*
889  * Allocates and initializes node for a node on each slab cache, used for
890  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
891  * will be allocated off-node since memory is not yet online for the new node.
892  * When hotplugging memory or a cpu, existing node are not replaced if
893  * already in use.
894  *
895  * Must hold slab_mutex.
896  */
897 static int init_cache_node_node(int node)
898 {
899 	int ret;
900 	struct kmem_cache *cachep;
901 
902 	list_for_each_entry(cachep, &slab_caches, list) {
903 		ret = init_cache_node(cachep, node, GFP_KERNEL);
904 		if (ret)
905 			return ret;
906 	}
907 
908 	return 0;
909 }
910 #endif
911 
912 static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 				int node, gfp_t gfp, bool force_change)
914 {
915 	int ret = -ENOMEM;
916 	struct kmem_cache_node *n;
917 	struct array_cache *old_shared = NULL;
918 	struct array_cache *new_shared = NULL;
919 	struct alien_cache **new_alien = NULL;
920 	LIST_HEAD(list);
921 
922 	if (use_alien_caches) {
923 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 		if (!new_alien)
925 			goto fail;
926 	}
927 
928 	if (cachep->shared) {
929 		new_shared = alloc_arraycache(node,
930 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 		if (!new_shared)
932 			goto fail;
933 	}
934 
935 	ret = init_cache_node(cachep, node, gfp);
936 	if (ret)
937 		goto fail;
938 
939 	n = get_node(cachep, node);
940 	spin_lock_irq(&n->list_lock);
941 	if (n->shared && force_change) {
942 		free_block(cachep, n->shared->entry,
943 				n->shared->avail, node, &list);
944 		n->shared->avail = 0;
945 	}
946 
947 	if (!n->shared || force_change) {
948 		old_shared = n->shared;
949 		n->shared = new_shared;
950 		new_shared = NULL;
951 	}
952 
953 	if (!n->alien) {
954 		n->alien = new_alien;
955 		new_alien = NULL;
956 	}
957 
958 	spin_unlock_irq(&n->list_lock);
959 	slabs_destroy(cachep, &list);
960 
961 	/*
962 	 * To protect lockless access to n->shared during irq disabled context.
963 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 	 * guaranteed to be valid until irq is re-enabled, because it will be
965 	 * freed after synchronize_sched().
966 	 */
967 	if (old_shared && force_change)
968 		synchronize_sched();
969 
970 fail:
971 	kfree(old_shared);
972 	kfree(new_shared);
973 	free_alien_cache(new_alien);
974 
975 	return ret;
976 }
977 
978 #ifdef CONFIG_SMP
979 
980 static void cpuup_canceled(long cpu)
981 {
982 	struct kmem_cache *cachep;
983 	struct kmem_cache_node *n = NULL;
984 	int node = cpu_to_mem(cpu);
985 	const struct cpumask *mask = cpumask_of_node(node);
986 
987 	list_for_each_entry(cachep, &slab_caches, list) {
988 		struct array_cache *nc;
989 		struct array_cache *shared;
990 		struct alien_cache **alien;
991 		LIST_HEAD(list);
992 
993 		n = get_node(cachep, node);
994 		if (!n)
995 			continue;
996 
997 		spin_lock_irq(&n->list_lock);
998 
999 		/* Free limit for this kmem_cache_node */
1000 		n->free_limit -= cachep->batchcount;
1001 
1002 		/* cpu is dead; no one can alloc from it. */
1003 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 		if (nc) {
1005 			free_block(cachep, nc->entry, nc->avail, node, &list);
1006 			nc->avail = 0;
1007 		}
1008 
1009 		if (!cpumask_empty(mask)) {
1010 			spin_unlock_irq(&n->list_lock);
1011 			goto free_slab;
1012 		}
1013 
1014 		shared = n->shared;
1015 		if (shared) {
1016 			free_block(cachep, shared->entry,
1017 				   shared->avail, node, &list);
1018 			n->shared = NULL;
1019 		}
1020 
1021 		alien = n->alien;
1022 		n->alien = NULL;
1023 
1024 		spin_unlock_irq(&n->list_lock);
1025 
1026 		kfree(shared);
1027 		if (alien) {
1028 			drain_alien_cache(cachep, alien);
1029 			free_alien_cache(alien);
1030 		}
1031 
1032 free_slab:
1033 		slabs_destroy(cachep, &list);
1034 	}
1035 	/*
1036 	 * In the previous loop, all the objects were freed to
1037 	 * the respective cache's slabs,  now we can go ahead and
1038 	 * shrink each nodelist to its limit.
1039 	 */
1040 	list_for_each_entry(cachep, &slab_caches, list) {
1041 		n = get_node(cachep, node);
1042 		if (!n)
1043 			continue;
1044 		drain_freelist(cachep, n, INT_MAX);
1045 	}
1046 }
1047 
1048 static int cpuup_prepare(long cpu)
1049 {
1050 	struct kmem_cache *cachep;
1051 	int node = cpu_to_mem(cpu);
1052 	int err;
1053 
1054 	/*
1055 	 * We need to do this right in the beginning since
1056 	 * alloc_arraycache's are going to use this list.
1057 	 * kmalloc_node allows us to add the slab to the right
1058 	 * kmem_cache_node and not this cpu's kmem_cache_node
1059 	 */
1060 	err = init_cache_node_node(node);
1061 	if (err < 0)
1062 		goto bad;
1063 
1064 	/*
1065 	 * Now we can go ahead with allocating the shared arrays and
1066 	 * array caches
1067 	 */
1068 	list_for_each_entry(cachep, &slab_caches, list) {
1069 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 		if (err)
1071 			goto bad;
1072 	}
1073 
1074 	return 0;
1075 bad:
1076 	cpuup_canceled(cpu);
1077 	return -ENOMEM;
1078 }
1079 
1080 int slab_prepare_cpu(unsigned int cpu)
1081 {
1082 	int err;
1083 
1084 	mutex_lock(&slab_mutex);
1085 	err = cpuup_prepare(cpu);
1086 	mutex_unlock(&slab_mutex);
1087 	return err;
1088 }
1089 
1090 /*
1091  * This is called for a failed online attempt and for a successful
1092  * offline.
1093  *
1094  * Even if all the cpus of a node are down, we don't free the
1095  * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096  * a kmalloc allocation from another cpu for memory from the node of
1097  * the cpu going down.  The list3 structure is usually allocated from
1098  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099  */
1100 int slab_dead_cpu(unsigned int cpu)
1101 {
1102 	mutex_lock(&slab_mutex);
1103 	cpuup_canceled(cpu);
1104 	mutex_unlock(&slab_mutex);
1105 	return 0;
1106 }
1107 #endif
1108 
1109 static int slab_online_cpu(unsigned int cpu)
1110 {
1111 	start_cpu_timer(cpu);
1112 	return 0;
1113 }
1114 
1115 static int slab_offline_cpu(unsigned int cpu)
1116 {
1117 	/*
1118 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 	 * that if cache_reap() is invoked it cannot do anything
1120 	 * expensive but will only modify reap_work and reschedule the
1121 	 * timer.
1122 	 */
1123 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 	/* Now the cache_reaper is guaranteed to be not running. */
1125 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 	return 0;
1127 }
1128 
1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130 /*
1131  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132  * Returns -EBUSY if all objects cannot be drained so that the node is not
1133  * removed.
1134  *
1135  * Must hold slab_mutex.
1136  */
1137 static int __meminit drain_cache_node_node(int node)
1138 {
1139 	struct kmem_cache *cachep;
1140 	int ret = 0;
1141 
1142 	list_for_each_entry(cachep, &slab_caches, list) {
1143 		struct kmem_cache_node *n;
1144 
1145 		n = get_node(cachep, node);
1146 		if (!n)
1147 			continue;
1148 
1149 		drain_freelist(cachep, n, INT_MAX);
1150 
1151 		if (!list_empty(&n->slabs_full) ||
1152 		    !list_empty(&n->slabs_partial)) {
1153 			ret = -EBUSY;
1154 			break;
1155 		}
1156 	}
1157 	return ret;
1158 }
1159 
1160 static int __meminit slab_memory_callback(struct notifier_block *self,
1161 					unsigned long action, void *arg)
1162 {
1163 	struct memory_notify *mnb = arg;
1164 	int ret = 0;
1165 	int nid;
1166 
1167 	nid = mnb->status_change_nid;
1168 	if (nid < 0)
1169 		goto out;
1170 
1171 	switch (action) {
1172 	case MEM_GOING_ONLINE:
1173 		mutex_lock(&slab_mutex);
1174 		ret = init_cache_node_node(nid);
1175 		mutex_unlock(&slab_mutex);
1176 		break;
1177 	case MEM_GOING_OFFLINE:
1178 		mutex_lock(&slab_mutex);
1179 		ret = drain_cache_node_node(nid);
1180 		mutex_unlock(&slab_mutex);
1181 		break;
1182 	case MEM_ONLINE:
1183 	case MEM_OFFLINE:
1184 	case MEM_CANCEL_ONLINE:
1185 	case MEM_CANCEL_OFFLINE:
1186 		break;
1187 	}
1188 out:
1189 	return notifier_from_errno(ret);
1190 }
1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192 
1193 /*
1194  * swap the static kmem_cache_node with kmalloced memory
1195  */
1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197 				int nodeid)
1198 {
1199 	struct kmem_cache_node *ptr;
1200 
1201 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 	BUG_ON(!ptr);
1203 
1204 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 	/*
1206 	 * Do not assume that spinlocks can be initialized via memcpy:
1207 	 */
1208 	spin_lock_init(&ptr->list_lock);
1209 
1210 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211 	cachep->node[nodeid] = ptr;
1212 }
1213 
1214 /*
1215  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216  * size of kmem_cache_node.
1217  */
1218 static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 {
1220 	int node;
1221 
1222 	for_each_online_node(node) {
1223 		cachep->node[node] = &init_kmem_cache_node[index + node];
1224 		cachep->node[node]->next_reap = jiffies +
1225 		    REAPTIMEOUT_NODE +
1226 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 	}
1228 }
1229 
1230 /*
1231  * Initialisation.  Called after the page allocator have been initialised and
1232  * before smp_init().
1233  */
1234 void __init kmem_cache_init(void)
1235 {
1236 	int i;
1237 
1238 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 					sizeof(struct rcu_head));
1240 	kmem_cache = &kmem_cache_boot;
1241 
1242 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 		use_alien_caches = 0;
1244 
1245 	for (i = 0; i < NUM_INIT_LISTS; i++)
1246 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1247 
1248 	/*
1249 	 * Fragmentation resistance on low memory - only use bigger
1250 	 * page orders on machines with more than 32MB of memory if
1251 	 * not overridden on the command line.
1252 	 */
1253 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254 		slab_max_order = SLAB_MAX_ORDER_HI;
1255 
1256 	/* Bootstrap is tricky, because several objects are allocated
1257 	 * from caches that do not exist yet:
1258 	 * 1) initialize the kmem_cache cache: it contains the struct
1259 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1260 	 *    kmem_cache is statically allocated.
1261 	 *    Initially an __init data area is used for the head array and the
1262 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1263 	 *    array at the end of the bootstrap.
1264 	 * 2) Create the first kmalloc cache.
1265 	 *    The struct kmem_cache for the new cache is allocated normally.
1266 	 *    An __init data area is used for the head array.
1267 	 * 3) Create the remaining kmalloc caches, with minimally sized
1268 	 *    head arrays.
1269 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1270 	 *    kmalloc cache with kmalloc allocated arrays.
1271 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272 	 *    the other cache's with kmalloc allocated memory.
1273 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274 	 */
1275 
1276 	/* 1) create the kmem_cache */
1277 
1278 	/*
1279 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280 	 */
1281 	create_boot_cache(kmem_cache, "kmem_cache",
1282 		offsetof(struct kmem_cache, node) +
1283 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1284 				  SLAB_HWCACHE_ALIGN);
1285 	list_add(&kmem_cache->list, &slab_caches);
1286 	slab_state = PARTIAL;
1287 
1288 	/*
1289 	 * Initialize the caches that provide memory for the  kmem_cache_node
1290 	 * structures first.  Without this, further allocations will bug.
1291 	 */
1292 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1293 				kmalloc_info[INDEX_NODE].name,
1294 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1295 	slab_state = PARTIAL_NODE;
1296 	setup_kmalloc_cache_index_table();
1297 
1298 	slab_early_init = 0;
1299 
1300 	/* 5) Replace the bootstrap kmem_cache_node */
1301 	{
1302 		int nid;
1303 
1304 		for_each_online_node(nid) {
1305 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306 
1307 			init_list(kmalloc_caches[INDEX_NODE],
1308 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309 		}
1310 	}
1311 
1312 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313 }
1314 
1315 void __init kmem_cache_init_late(void)
1316 {
1317 	struct kmem_cache *cachep;
1318 
1319 	slab_state = UP;
1320 
1321 	/* 6) resize the head arrays to their final sizes */
1322 	mutex_lock(&slab_mutex);
1323 	list_for_each_entry(cachep, &slab_caches, list)
1324 		if (enable_cpucache(cachep, GFP_NOWAIT))
1325 			BUG();
1326 	mutex_unlock(&slab_mutex);
1327 
1328 	/* Done! */
1329 	slab_state = FULL;
1330 
1331 #ifdef CONFIG_NUMA
1332 	/*
1333 	 * Register a memory hotplug callback that initializes and frees
1334 	 * node.
1335 	 */
1336 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337 #endif
1338 
1339 	/*
1340 	 * The reap timers are started later, with a module init call: That part
1341 	 * of the kernel is not yet operational.
1342 	 */
1343 }
1344 
1345 static int __init cpucache_init(void)
1346 {
1347 	int ret;
1348 
1349 	/*
1350 	 * Register the timers that return unneeded pages to the page allocator
1351 	 */
1352 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353 				slab_online_cpu, slab_offline_cpu);
1354 	WARN_ON(ret < 0);
1355 
1356 	/* Done! */
1357 	slab_state = FULL;
1358 	return 0;
1359 }
1360 __initcall(cpucache_init);
1361 
1362 static noinline void
1363 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1364 {
1365 #if DEBUG
1366 	struct kmem_cache_node *n;
1367 	unsigned long flags;
1368 	int node;
1369 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1370 				      DEFAULT_RATELIMIT_BURST);
1371 
1372 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1373 		return;
1374 
1375 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1376 		nodeid, gfpflags, &gfpflags);
1377 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1378 		cachep->name, cachep->size, cachep->gfporder);
1379 
1380 	for_each_kmem_cache_node(cachep, node, n) {
1381 		unsigned long total_slabs, free_slabs, free_objs;
1382 
1383 		spin_lock_irqsave(&n->list_lock, flags);
1384 		total_slabs = n->total_slabs;
1385 		free_slabs = n->free_slabs;
1386 		free_objs = n->free_objects;
1387 		spin_unlock_irqrestore(&n->list_lock, flags);
1388 
1389 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1390 			node, total_slabs - free_slabs, total_slabs,
1391 			(total_slabs * cachep->num) - free_objs,
1392 			total_slabs * cachep->num);
1393 	}
1394 #endif
1395 }
1396 
1397 /*
1398  * Interface to system's page allocator. No need to hold the
1399  * kmem_cache_node ->list_lock.
1400  *
1401  * If we requested dmaable memory, we will get it. Even if we
1402  * did not request dmaable memory, we might get it, but that
1403  * would be relatively rare and ignorable.
1404  */
1405 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1406 								int nodeid)
1407 {
1408 	struct page *page;
1409 	int nr_pages;
1410 
1411 	flags |= cachep->allocflags;
1412 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1413 		flags |= __GFP_RECLAIMABLE;
1414 
1415 	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1416 	if (!page) {
1417 		slab_out_of_memory(cachep, flags, nodeid);
1418 		return NULL;
1419 	}
1420 
1421 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1422 		__free_pages(page, cachep->gfporder);
1423 		return NULL;
1424 	}
1425 
1426 	nr_pages = (1 << cachep->gfporder);
1427 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1428 		add_zone_page_state(page_zone(page),
1429 			NR_SLAB_RECLAIMABLE, nr_pages);
1430 	else
1431 		add_zone_page_state(page_zone(page),
1432 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1433 
1434 	__SetPageSlab(page);
1435 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1436 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1437 		SetPageSlabPfmemalloc(page);
1438 
1439 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1440 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1441 
1442 		if (cachep->ctor)
1443 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1444 		else
1445 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1446 	}
1447 
1448 	return page;
1449 }
1450 
1451 /*
1452  * Interface to system's page release.
1453  */
1454 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1455 {
1456 	int order = cachep->gfporder;
1457 	unsigned long nr_freed = (1 << order);
1458 
1459 	kmemcheck_free_shadow(page, order);
1460 
1461 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1462 		sub_zone_page_state(page_zone(page),
1463 				NR_SLAB_RECLAIMABLE, nr_freed);
1464 	else
1465 		sub_zone_page_state(page_zone(page),
1466 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1467 
1468 	BUG_ON(!PageSlab(page));
1469 	__ClearPageSlabPfmemalloc(page);
1470 	__ClearPageSlab(page);
1471 	page_mapcount_reset(page);
1472 	page->mapping = NULL;
1473 
1474 	if (current->reclaim_state)
1475 		current->reclaim_state->reclaimed_slab += nr_freed;
1476 	memcg_uncharge_slab(page, order, cachep);
1477 	__free_pages(page, order);
1478 }
1479 
1480 static void kmem_rcu_free(struct rcu_head *head)
1481 {
1482 	struct kmem_cache *cachep;
1483 	struct page *page;
1484 
1485 	page = container_of(head, struct page, rcu_head);
1486 	cachep = page->slab_cache;
1487 
1488 	kmem_freepages(cachep, page);
1489 }
1490 
1491 #if DEBUG
1492 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1493 {
1494 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1495 		(cachep->size % PAGE_SIZE) == 0)
1496 		return true;
1497 
1498 	return false;
1499 }
1500 
1501 #ifdef CONFIG_DEBUG_PAGEALLOC
1502 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1503 			    unsigned long caller)
1504 {
1505 	int size = cachep->object_size;
1506 
1507 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1508 
1509 	if (size < 5 * sizeof(unsigned long))
1510 		return;
1511 
1512 	*addr++ = 0x12345678;
1513 	*addr++ = caller;
1514 	*addr++ = smp_processor_id();
1515 	size -= 3 * sizeof(unsigned long);
1516 	{
1517 		unsigned long *sptr = &caller;
1518 		unsigned long svalue;
1519 
1520 		while (!kstack_end(sptr)) {
1521 			svalue = *sptr++;
1522 			if (kernel_text_address(svalue)) {
1523 				*addr++ = svalue;
1524 				size -= sizeof(unsigned long);
1525 				if (size <= sizeof(unsigned long))
1526 					break;
1527 			}
1528 		}
1529 
1530 	}
1531 	*addr++ = 0x87654321;
1532 }
1533 
1534 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1535 				int map, unsigned long caller)
1536 {
1537 	if (!is_debug_pagealloc_cache(cachep))
1538 		return;
1539 
1540 	if (caller)
1541 		store_stackinfo(cachep, objp, caller);
1542 
1543 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1544 }
1545 
1546 #else
1547 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1548 				int map, unsigned long caller) {}
1549 
1550 #endif
1551 
1552 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1553 {
1554 	int size = cachep->object_size;
1555 	addr = &((char *)addr)[obj_offset(cachep)];
1556 
1557 	memset(addr, val, size);
1558 	*(unsigned char *)(addr + size - 1) = POISON_END;
1559 }
1560 
1561 static void dump_line(char *data, int offset, int limit)
1562 {
1563 	int i;
1564 	unsigned char error = 0;
1565 	int bad_count = 0;
1566 
1567 	pr_err("%03x: ", offset);
1568 	for (i = 0; i < limit; i++) {
1569 		if (data[offset + i] != POISON_FREE) {
1570 			error = data[offset + i];
1571 			bad_count++;
1572 		}
1573 	}
1574 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1575 			&data[offset], limit, 1);
1576 
1577 	if (bad_count == 1) {
1578 		error ^= POISON_FREE;
1579 		if (!(error & (error - 1))) {
1580 			pr_err("Single bit error detected. Probably bad RAM.\n");
1581 #ifdef CONFIG_X86
1582 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1583 #else
1584 			pr_err("Run a memory test tool.\n");
1585 #endif
1586 		}
1587 	}
1588 }
1589 #endif
1590 
1591 #if DEBUG
1592 
1593 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1594 {
1595 	int i, size;
1596 	char *realobj;
1597 
1598 	if (cachep->flags & SLAB_RED_ZONE) {
1599 		pr_err("Redzone: 0x%llx/0x%llx\n",
1600 		       *dbg_redzone1(cachep, objp),
1601 		       *dbg_redzone2(cachep, objp));
1602 	}
1603 
1604 	if (cachep->flags & SLAB_STORE_USER) {
1605 		pr_err("Last user: [<%p>](%pSR)\n",
1606 		       *dbg_userword(cachep, objp),
1607 		       *dbg_userword(cachep, objp));
1608 	}
1609 	realobj = (char *)objp + obj_offset(cachep);
1610 	size = cachep->object_size;
1611 	for (i = 0; i < size && lines; i += 16, lines--) {
1612 		int limit;
1613 		limit = 16;
1614 		if (i + limit > size)
1615 			limit = size - i;
1616 		dump_line(realobj, i, limit);
1617 	}
1618 }
1619 
1620 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1621 {
1622 	char *realobj;
1623 	int size, i;
1624 	int lines = 0;
1625 
1626 	if (is_debug_pagealloc_cache(cachep))
1627 		return;
1628 
1629 	realobj = (char *)objp + obj_offset(cachep);
1630 	size = cachep->object_size;
1631 
1632 	for (i = 0; i < size; i++) {
1633 		char exp = POISON_FREE;
1634 		if (i == size - 1)
1635 			exp = POISON_END;
1636 		if (realobj[i] != exp) {
1637 			int limit;
1638 			/* Mismatch ! */
1639 			/* Print header */
1640 			if (lines == 0) {
1641 				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1642 				       print_tainted(), cachep->name,
1643 				       realobj, size);
1644 				print_objinfo(cachep, objp, 0);
1645 			}
1646 			/* Hexdump the affected line */
1647 			i = (i / 16) * 16;
1648 			limit = 16;
1649 			if (i + limit > size)
1650 				limit = size - i;
1651 			dump_line(realobj, i, limit);
1652 			i += 16;
1653 			lines++;
1654 			/* Limit to 5 lines */
1655 			if (lines > 5)
1656 				break;
1657 		}
1658 	}
1659 	if (lines != 0) {
1660 		/* Print some data about the neighboring objects, if they
1661 		 * exist:
1662 		 */
1663 		struct page *page = virt_to_head_page(objp);
1664 		unsigned int objnr;
1665 
1666 		objnr = obj_to_index(cachep, page, objp);
1667 		if (objnr) {
1668 			objp = index_to_obj(cachep, page, objnr - 1);
1669 			realobj = (char *)objp + obj_offset(cachep);
1670 			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1671 			print_objinfo(cachep, objp, 2);
1672 		}
1673 		if (objnr + 1 < cachep->num) {
1674 			objp = index_to_obj(cachep, page, objnr + 1);
1675 			realobj = (char *)objp + obj_offset(cachep);
1676 			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1677 			print_objinfo(cachep, objp, 2);
1678 		}
1679 	}
1680 }
1681 #endif
1682 
1683 #if DEBUG
1684 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1685 						struct page *page)
1686 {
1687 	int i;
1688 
1689 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1690 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1691 			POISON_FREE);
1692 	}
1693 
1694 	for (i = 0; i < cachep->num; i++) {
1695 		void *objp = index_to_obj(cachep, page, i);
1696 
1697 		if (cachep->flags & SLAB_POISON) {
1698 			check_poison_obj(cachep, objp);
1699 			slab_kernel_map(cachep, objp, 1, 0);
1700 		}
1701 		if (cachep->flags & SLAB_RED_ZONE) {
1702 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1703 				slab_error(cachep, "start of a freed object was overwritten");
1704 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1705 				slab_error(cachep, "end of a freed object was overwritten");
1706 		}
1707 	}
1708 }
1709 #else
1710 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1711 						struct page *page)
1712 {
1713 }
1714 #endif
1715 
1716 /**
1717  * slab_destroy - destroy and release all objects in a slab
1718  * @cachep: cache pointer being destroyed
1719  * @page: page pointer being destroyed
1720  *
1721  * Destroy all the objs in a slab page, and release the mem back to the system.
1722  * Before calling the slab page must have been unlinked from the cache. The
1723  * kmem_cache_node ->list_lock is not held/needed.
1724  */
1725 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1726 {
1727 	void *freelist;
1728 
1729 	freelist = page->freelist;
1730 	slab_destroy_debugcheck(cachep, page);
1731 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1732 		call_rcu(&page->rcu_head, kmem_rcu_free);
1733 	else
1734 		kmem_freepages(cachep, page);
1735 
1736 	/*
1737 	 * From now on, we don't use freelist
1738 	 * although actual page can be freed in rcu context
1739 	 */
1740 	if (OFF_SLAB(cachep))
1741 		kmem_cache_free(cachep->freelist_cache, freelist);
1742 }
1743 
1744 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1745 {
1746 	struct page *page, *n;
1747 
1748 	list_for_each_entry_safe(page, n, list, lru) {
1749 		list_del(&page->lru);
1750 		slab_destroy(cachep, page);
1751 	}
1752 }
1753 
1754 /**
1755  * calculate_slab_order - calculate size (page order) of slabs
1756  * @cachep: pointer to the cache that is being created
1757  * @size: size of objects to be created in this cache.
1758  * @flags: slab allocation flags
1759  *
1760  * Also calculates the number of objects per slab.
1761  *
1762  * This could be made much more intelligent.  For now, try to avoid using
1763  * high order pages for slabs.  When the gfp() functions are more friendly
1764  * towards high-order requests, this should be changed.
1765  */
1766 static size_t calculate_slab_order(struct kmem_cache *cachep,
1767 				size_t size, unsigned long flags)
1768 {
1769 	size_t left_over = 0;
1770 	int gfporder;
1771 
1772 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1773 		unsigned int num;
1774 		size_t remainder;
1775 
1776 		num = cache_estimate(gfporder, size, flags, &remainder);
1777 		if (!num)
1778 			continue;
1779 
1780 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1781 		if (num > SLAB_OBJ_MAX_NUM)
1782 			break;
1783 
1784 		if (flags & CFLGS_OFF_SLAB) {
1785 			struct kmem_cache *freelist_cache;
1786 			size_t freelist_size;
1787 
1788 			freelist_size = num * sizeof(freelist_idx_t);
1789 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1790 			if (!freelist_cache)
1791 				continue;
1792 
1793 			/*
1794 			 * Needed to avoid possible looping condition
1795 			 * in cache_grow_begin()
1796 			 */
1797 			if (OFF_SLAB(freelist_cache))
1798 				continue;
1799 
1800 			/* check if off slab has enough benefit */
1801 			if (freelist_cache->size > cachep->size / 2)
1802 				continue;
1803 		}
1804 
1805 		/* Found something acceptable - save it away */
1806 		cachep->num = num;
1807 		cachep->gfporder = gfporder;
1808 		left_over = remainder;
1809 
1810 		/*
1811 		 * A VFS-reclaimable slab tends to have most allocations
1812 		 * as GFP_NOFS and we really don't want to have to be allocating
1813 		 * higher-order pages when we are unable to shrink dcache.
1814 		 */
1815 		if (flags & SLAB_RECLAIM_ACCOUNT)
1816 			break;
1817 
1818 		/*
1819 		 * Large number of objects is good, but very large slabs are
1820 		 * currently bad for the gfp()s.
1821 		 */
1822 		if (gfporder >= slab_max_order)
1823 			break;
1824 
1825 		/*
1826 		 * Acceptable internal fragmentation?
1827 		 */
1828 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1829 			break;
1830 	}
1831 	return left_over;
1832 }
1833 
1834 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1835 		struct kmem_cache *cachep, int entries, int batchcount)
1836 {
1837 	int cpu;
1838 	size_t size;
1839 	struct array_cache __percpu *cpu_cache;
1840 
1841 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1842 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1843 
1844 	if (!cpu_cache)
1845 		return NULL;
1846 
1847 	for_each_possible_cpu(cpu) {
1848 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1849 				entries, batchcount);
1850 	}
1851 
1852 	return cpu_cache;
1853 }
1854 
1855 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1856 {
1857 	if (slab_state >= FULL)
1858 		return enable_cpucache(cachep, gfp);
1859 
1860 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1861 	if (!cachep->cpu_cache)
1862 		return 1;
1863 
1864 	if (slab_state == DOWN) {
1865 		/* Creation of first cache (kmem_cache). */
1866 		set_up_node(kmem_cache, CACHE_CACHE);
1867 	} else if (slab_state == PARTIAL) {
1868 		/* For kmem_cache_node */
1869 		set_up_node(cachep, SIZE_NODE);
1870 	} else {
1871 		int node;
1872 
1873 		for_each_online_node(node) {
1874 			cachep->node[node] = kmalloc_node(
1875 				sizeof(struct kmem_cache_node), gfp, node);
1876 			BUG_ON(!cachep->node[node]);
1877 			kmem_cache_node_init(cachep->node[node]);
1878 		}
1879 	}
1880 
1881 	cachep->node[numa_mem_id()]->next_reap =
1882 			jiffies + REAPTIMEOUT_NODE +
1883 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1884 
1885 	cpu_cache_get(cachep)->avail = 0;
1886 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1887 	cpu_cache_get(cachep)->batchcount = 1;
1888 	cpu_cache_get(cachep)->touched = 0;
1889 	cachep->batchcount = 1;
1890 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1891 	return 0;
1892 }
1893 
1894 unsigned long kmem_cache_flags(unsigned long object_size,
1895 	unsigned long flags, const char *name,
1896 	void (*ctor)(void *))
1897 {
1898 	return flags;
1899 }
1900 
1901 struct kmem_cache *
1902 __kmem_cache_alias(const char *name, size_t size, size_t align,
1903 		   unsigned long flags, void (*ctor)(void *))
1904 {
1905 	struct kmem_cache *cachep;
1906 
1907 	cachep = find_mergeable(size, align, flags, name, ctor);
1908 	if (cachep) {
1909 		cachep->refcount++;
1910 
1911 		/*
1912 		 * Adjust the object sizes so that we clear
1913 		 * the complete object on kzalloc.
1914 		 */
1915 		cachep->object_size = max_t(int, cachep->object_size, size);
1916 	}
1917 	return cachep;
1918 }
1919 
1920 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1921 			size_t size, unsigned long flags)
1922 {
1923 	size_t left;
1924 
1925 	cachep->num = 0;
1926 
1927 	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1928 		return false;
1929 
1930 	left = calculate_slab_order(cachep, size,
1931 			flags | CFLGS_OBJFREELIST_SLAB);
1932 	if (!cachep->num)
1933 		return false;
1934 
1935 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1936 		return false;
1937 
1938 	cachep->colour = left / cachep->colour_off;
1939 
1940 	return true;
1941 }
1942 
1943 static bool set_off_slab_cache(struct kmem_cache *cachep,
1944 			size_t size, unsigned long flags)
1945 {
1946 	size_t left;
1947 
1948 	cachep->num = 0;
1949 
1950 	/*
1951 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1952 	 * to avoid recursive calls into kmemleak.
1953 	 */
1954 	if (flags & SLAB_NOLEAKTRACE)
1955 		return false;
1956 
1957 	/*
1958 	 * Size is large, assume best to place the slab management obj
1959 	 * off-slab (should allow better packing of objs).
1960 	 */
1961 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1962 	if (!cachep->num)
1963 		return false;
1964 
1965 	/*
1966 	 * If the slab has been placed off-slab, and we have enough space then
1967 	 * move it on-slab. This is at the expense of any extra colouring.
1968 	 */
1969 	if (left >= cachep->num * sizeof(freelist_idx_t))
1970 		return false;
1971 
1972 	cachep->colour = left / cachep->colour_off;
1973 
1974 	return true;
1975 }
1976 
1977 static bool set_on_slab_cache(struct kmem_cache *cachep,
1978 			size_t size, unsigned long flags)
1979 {
1980 	size_t left;
1981 
1982 	cachep->num = 0;
1983 
1984 	left = calculate_slab_order(cachep, size, flags);
1985 	if (!cachep->num)
1986 		return false;
1987 
1988 	cachep->colour = left / cachep->colour_off;
1989 
1990 	return true;
1991 }
1992 
1993 /**
1994  * __kmem_cache_create - Create a cache.
1995  * @cachep: cache management descriptor
1996  * @flags: SLAB flags
1997  *
1998  * Returns a ptr to the cache on success, NULL on failure.
1999  * Cannot be called within a int, but can be interrupted.
2000  * The @ctor is run when new pages are allocated by the cache.
2001  *
2002  * The flags are
2003  *
2004  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2005  * to catch references to uninitialised memory.
2006  *
2007  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2008  * for buffer overruns.
2009  *
2010  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2011  * cacheline.  This can be beneficial if you're counting cycles as closely
2012  * as davem.
2013  */
2014 int
2015 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2016 {
2017 	size_t ralign = BYTES_PER_WORD;
2018 	gfp_t gfp;
2019 	int err;
2020 	size_t size = cachep->size;
2021 
2022 #if DEBUG
2023 #if FORCED_DEBUG
2024 	/*
2025 	 * Enable redzoning and last user accounting, except for caches with
2026 	 * large objects, if the increased size would increase the object size
2027 	 * above the next power of two: caches with object sizes just above a
2028 	 * power of two have a significant amount of internal fragmentation.
2029 	 */
2030 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2031 						2 * sizeof(unsigned long long)))
2032 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2033 	if (!(flags & SLAB_DESTROY_BY_RCU))
2034 		flags |= SLAB_POISON;
2035 #endif
2036 #endif
2037 
2038 	/*
2039 	 * Check that size is in terms of words.  This is needed to avoid
2040 	 * unaligned accesses for some archs when redzoning is used, and makes
2041 	 * sure any on-slab bufctl's are also correctly aligned.
2042 	 */
2043 	if (size & (BYTES_PER_WORD - 1)) {
2044 		size += (BYTES_PER_WORD - 1);
2045 		size &= ~(BYTES_PER_WORD - 1);
2046 	}
2047 
2048 	if (flags & SLAB_RED_ZONE) {
2049 		ralign = REDZONE_ALIGN;
2050 		/* If redzoning, ensure that the second redzone is suitably
2051 		 * aligned, by adjusting the object size accordingly. */
2052 		size += REDZONE_ALIGN - 1;
2053 		size &= ~(REDZONE_ALIGN - 1);
2054 	}
2055 
2056 	/* 3) caller mandated alignment */
2057 	if (ralign < cachep->align) {
2058 		ralign = cachep->align;
2059 	}
2060 	/* disable debug if necessary */
2061 	if (ralign > __alignof__(unsigned long long))
2062 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2063 	/*
2064 	 * 4) Store it.
2065 	 */
2066 	cachep->align = ralign;
2067 	cachep->colour_off = cache_line_size();
2068 	/* Offset must be a multiple of the alignment. */
2069 	if (cachep->colour_off < cachep->align)
2070 		cachep->colour_off = cachep->align;
2071 
2072 	if (slab_is_available())
2073 		gfp = GFP_KERNEL;
2074 	else
2075 		gfp = GFP_NOWAIT;
2076 
2077 #if DEBUG
2078 
2079 	/*
2080 	 * Both debugging options require word-alignment which is calculated
2081 	 * into align above.
2082 	 */
2083 	if (flags & SLAB_RED_ZONE) {
2084 		/* add space for red zone words */
2085 		cachep->obj_offset += sizeof(unsigned long long);
2086 		size += 2 * sizeof(unsigned long long);
2087 	}
2088 	if (flags & SLAB_STORE_USER) {
2089 		/* user store requires one word storage behind the end of
2090 		 * the real object. But if the second red zone needs to be
2091 		 * aligned to 64 bits, we must allow that much space.
2092 		 */
2093 		if (flags & SLAB_RED_ZONE)
2094 			size += REDZONE_ALIGN;
2095 		else
2096 			size += BYTES_PER_WORD;
2097 	}
2098 #endif
2099 
2100 	kasan_cache_create(cachep, &size, &flags);
2101 
2102 	size = ALIGN(size, cachep->align);
2103 	/*
2104 	 * We should restrict the number of objects in a slab to implement
2105 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2106 	 */
2107 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2108 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2109 
2110 #if DEBUG
2111 	/*
2112 	 * To activate debug pagealloc, off-slab management is necessary
2113 	 * requirement. In early phase of initialization, small sized slab
2114 	 * doesn't get initialized so it would not be possible. So, we need
2115 	 * to check size >= 256. It guarantees that all necessary small
2116 	 * sized slab is initialized in current slab initialization sequence.
2117 	 */
2118 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2119 		size >= 256 && cachep->object_size > cache_line_size()) {
2120 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2121 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2122 
2123 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2124 				flags |= CFLGS_OFF_SLAB;
2125 				cachep->obj_offset += tmp_size - size;
2126 				size = tmp_size;
2127 				goto done;
2128 			}
2129 		}
2130 	}
2131 #endif
2132 
2133 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2134 		flags |= CFLGS_OBJFREELIST_SLAB;
2135 		goto done;
2136 	}
2137 
2138 	if (set_off_slab_cache(cachep, size, flags)) {
2139 		flags |= CFLGS_OFF_SLAB;
2140 		goto done;
2141 	}
2142 
2143 	if (set_on_slab_cache(cachep, size, flags))
2144 		goto done;
2145 
2146 	return -E2BIG;
2147 
2148 done:
2149 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2150 	cachep->flags = flags;
2151 	cachep->allocflags = __GFP_COMP;
2152 	if (flags & SLAB_CACHE_DMA)
2153 		cachep->allocflags |= GFP_DMA;
2154 	cachep->size = size;
2155 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2156 
2157 #if DEBUG
2158 	/*
2159 	 * If we're going to use the generic kernel_map_pages()
2160 	 * poisoning, then it's going to smash the contents of
2161 	 * the redzone and userword anyhow, so switch them off.
2162 	 */
2163 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2164 		(cachep->flags & SLAB_POISON) &&
2165 		is_debug_pagealloc_cache(cachep))
2166 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2167 #endif
2168 
2169 	if (OFF_SLAB(cachep)) {
2170 		cachep->freelist_cache =
2171 			kmalloc_slab(cachep->freelist_size, 0u);
2172 	}
2173 
2174 	err = setup_cpu_cache(cachep, gfp);
2175 	if (err) {
2176 		__kmem_cache_release(cachep);
2177 		return err;
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 #if DEBUG
2184 static void check_irq_off(void)
2185 {
2186 	BUG_ON(!irqs_disabled());
2187 }
2188 
2189 static void check_irq_on(void)
2190 {
2191 	BUG_ON(irqs_disabled());
2192 }
2193 
2194 static void check_mutex_acquired(void)
2195 {
2196 	BUG_ON(!mutex_is_locked(&slab_mutex));
2197 }
2198 
2199 static void check_spinlock_acquired(struct kmem_cache *cachep)
2200 {
2201 #ifdef CONFIG_SMP
2202 	check_irq_off();
2203 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2204 #endif
2205 }
2206 
2207 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2208 {
2209 #ifdef CONFIG_SMP
2210 	check_irq_off();
2211 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2212 #endif
2213 }
2214 
2215 #else
2216 #define check_irq_off()	do { } while(0)
2217 #define check_irq_on()	do { } while(0)
2218 #define check_mutex_acquired()	do { } while(0)
2219 #define check_spinlock_acquired(x) do { } while(0)
2220 #define check_spinlock_acquired_node(x, y) do { } while(0)
2221 #endif
2222 
2223 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2224 				int node, bool free_all, struct list_head *list)
2225 {
2226 	int tofree;
2227 
2228 	if (!ac || !ac->avail)
2229 		return;
2230 
2231 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2232 	if (tofree > ac->avail)
2233 		tofree = (ac->avail + 1) / 2;
2234 
2235 	free_block(cachep, ac->entry, tofree, node, list);
2236 	ac->avail -= tofree;
2237 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2238 }
2239 
2240 static void do_drain(void *arg)
2241 {
2242 	struct kmem_cache *cachep = arg;
2243 	struct array_cache *ac;
2244 	int node = numa_mem_id();
2245 	struct kmem_cache_node *n;
2246 	LIST_HEAD(list);
2247 
2248 	check_irq_off();
2249 	ac = cpu_cache_get(cachep);
2250 	n = get_node(cachep, node);
2251 	spin_lock(&n->list_lock);
2252 	free_block(cachep, ac->entry, ac->avail, node, &list);
2253 	spin_unlock(&n->list_lock);
2254 	slabs_destroy(cachep, &list);
2255 	ac->avail = 0;
2256 }
2257 
2258 static void drain_cpu_caches(struct kmem_cache *cachep)
2259 {
2260 	struct kmem_cache_node *n;
2261 	int node;
2262 	LIST_HEAD(list);
2263 
2264 	on_each_cpu(do_drain, cachep, 1);
2265 	check_irq_on();
2266 	for_each_kmem_cache_node(cachep, node, n)
2267 		if (n->alien)
2268 			drain_alien_cache(cachep, n->alien);
2269 
2270 	for_each_kmem_cache_node(cachep, node, n) {
2271 		spin_lock_irq(&n->list_lock);
2272 		drain_array_locked(cachep, n->shared, node, true, &list);
2273 		spin_unlock_irq(&n->list_lock);
2274 
2275 		slabs_destroy(cachep, &list);
2276 	}
2277 }
2278 
2279 /*
2280  * Remove slabs from the list of free slabs.
2281  * Specify the number of slabs to drain in tofree.
2282  *
2283  * Returns the actual number of slabs released.
2284  */
2285 static int drain_freelist(struct kmem_cache *cache,
2286 			struct kmem_cache_node *n, int tofree)
2287 {
2288 	struct list_head *p;
2289 	int nr_freed;
2290 	struct page *page;
2291 
2292 	nr_freed = 0;
2293 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2294 
2295 		spin_lock_irq(&n->list_lock);
2296 		p = n->slabs_free.prev;
2297 		if (p == &n->slabs_free) {
2298 			spin_unlock_irq(&n->list_lock);
2299 			goto out;
2300 		}
2301 
2302 		page = list_entry(p, struct page, lru);
2303 		list_del(&page->lru);
2304 		n->free_slabs--;
2305 		n->total_slabs--;
2306 		/*
2307 		 * Safe to drop the lock. The slab is no longer linked
2308 		 * to the cache.
2309 		 */
2310 		n->free_objects -= cache->num;
2311 		spin_unlock_irq(&n->list_lock);
2312 		slab_destroy(cache, page);
2313 		nr_freed++;
2314 	}
2315 out:
2316 	return nr_freed;
2317 }
2318 
2319 int __kmem_cache_shrink(struct kmem_cache *cachep)
2320 {
2321 	int ret = 0;
2322 	int node;
2323 	struct kmem_cache_node *n;
2324 
2325 	drain_cpu_caches(cachep);
2326 
2327 	check_irq_on();
2328 	for_each_kmem_cache_node(cachep, node, n) {
2329 		drain_freelist(cachep, n, INT_MAX);
2330 
2331 		ret += !list_empty(&n->slabs_full) ||
2332 			!list_empty(&n->slabs_partial);
2333 	}
2334 	return (ret ? 1 : 0);
2335 }
2336 
2337 #ifdef CONFIG_MEMCG
2338 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2339 {
2340 	__kmem_cache_shrink(cachep);
2341 }
2342 #endif
2343 
2344 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2345 {
2346 	return __kmem_cache_shrink(cachep);
2347 }
2348 
2349 void __kmem_cache_release(struct kmem_cache *cachep)
2350 {
2351 	int i;
2352 	struct kmem_cache_node *n;
2353 
2354 	cache_random_seq_destroy(cachep);
2355 
2356 	free_percpu(cachep->cpu_cache);
2357 
2358 	/* NUMA: free the node structures */
2359 	for_each_kmem_cache_node(cachep, i, n) {
2360 		kfree(n->shared);
2361 		free_alien_cache(n->alien);
2362 		kfree(n);
2363 		cachep->node[i] = NULL;
2364 	}
2365 }
2366 
2367 /*
2368  * Get the memory for a slab management obj.
2369  *
2370  * For a slab cache when the slab descriptor is off-slab, the
2371  * slab descriptor can't come from the same cache which is being created,
2372  * Because if it is the case, that means we defer the creation of
2373  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2374  * And we eventually call down to __kmem_cache_create(), which
2375  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2376  * This is a "chicken-and-egg" problem.
2377  *
2378  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2379  * which are all initialized during kmem_cache_init().
2380  */
2381 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2382 				   struct page *page, int colour_off,
2383 				   gfp_t local_flags, int nodeid)
2384 {
2385 	void *freelist;
2386 	void *addr = page_address(page);
2387 
2388 	page->s_mem = addr + colour_off;
2389 	page->active = 0;
2390 
2391 	if (OBJFREELIST_SLAB(cachep))
2392 		freelist = NULL;
2393 	else if (OFF_SLAB(cachep)) {
2394 		/* Slab management obj is off-slab. */
2395 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2396 					      local_flags, nodeid);
2397 		if (!freelist)
2398 			return NULL;
2399 	} else {
2400 		/* We will use last bytes at the slab for freelist */
2401 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2402 				cachep->freelist_size;
2403 	}
2404 
2405 	return freelist;
2406 }
2407 
2408 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2409 {
2410 	return ((freelist_idx_t *)page->freelist)[idx];
2411 }
2412 
2413 static inline void set_free_obj(struct page *page,
2414 					unsigned int idx, freelist_idx_t val)
2415 {
2416 	((freelist_idx_t *)(page->freelist))[idx] = val;
2417 }
2418 
2419 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2420 {
2421 #if DEBUG
2422 	int i;
2423 
2424 	for (i = 0; i < cachep->num; i++) {
2425 		void *objp = index_to_obj(cachep, page, i);
2426 
2427 		if (cachep->flags & SLAB_STORE_USER)
2428 			*dbg_userword(cachep, objp) = NULL;
2429 
2430 		if (cachep->flags & SLAB_RED_ZONE) {
2431 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2432 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2433 		}
2434 		/*
2435 		 * Constructors are not allowed to allocate memory from the same
2436 		 * cache which they are a constructor for.  Otherwise, deadlock.
2437 		 * They must also be threaded.
2438 		 */
2439 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2440 			kasan_unpoison_object_data(cachep,
2441 						   objp + obj_offset(cachep));
2442 			cachep->ctor(objp + obj_offset(cachep));
2443 			kasan_poison_object_data(
2444 				cachep, objp + obj_offset(cachep));
2445 		}
2446 
2447 		if (cachep->flags & SLAB_RED_ZONE) {
2448 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2449 				slab_error(cachep, "constructor overwrote the end of an object");
2450 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2451 				slab_error(cachep, "constructor overwrote the start of an object");
2452 		}
2453 		/* need to poison the objs? */
2454 		if (cachep->flags & SLAB_POISON) {
2455 			poison_obj(cachep, objp, POISON_FREE);
2456 			slab_kernel_map(cachep, objp, 0, 0);
2457 		}
2458 	}
2459 #endif
2460 }
2461 
2462 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2463 /* Hold information during a freelist initialization */
2464 union freelist_init_state {
2465 	struct {
2466 		unsigned int pos;
2467 		unsigned int *list;
2468 		unsigned int count;
2469 	};
2470 	struct rnd_state rnd_state;
2471 };
2472 
2473 /*
2474  * Initialize the state based on the randomization methode available.
2475  * return true if the pre-computed list is available, false otherwize.
2476  */
2477 static bool freelist_state_initialize(union freelist_init_state *state,
2478 				struct kmem_cache *cachep,
2479 				unsigned int count)
2480 {
2481 	bool ret;
2482 	unsigned int rand;
2483 
2484 	/* Use best entropy available to define a random shift */
2485 	rand = get_random_int();
2486 
2487 	/* Use a random state if the pre-computed list is not available */
2488 	if (!cachep->random_seq) {
2489 		prandom_seed_state(&state->rnd_state, rand);
2490 		ret = false;
2491 	} else {
2492 		state->list = cachep->random_seq;
2493 		state->count = count;
2494 		state->pos = rand % count;
2495 		ret = true;
2496 	}
2497 	return ret;
2498 }
2499 
2500 /* Get the next entry on the list and randomize it using a random shift */
2501 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2502 {
2503 	if (state->pos >= state->count)
2504 		state->pos = 0;
2505 	return state->list[state->pos++];
2506 }
2507 
2508 /* Swap two freelist entries */
2509 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2510 {
2511 	swap(((freelist_idx_t *)page->freelist)[a],
2512 		((freelist_idx_t *)page->freelist)[b]);
2513 }
2514 
2515 /*
2516  * Shuffle the freelist initialization state based on pre-computed lists.
2517  * return true if the list was successfully shuffled, false otherwise.
2518  */
2519 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2520 {
2521 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2522 	union freelist_init_state state;
2523 	bool precomputed;
2524 
2525 	if (count < 2)
2526 		return false;
2527 
2528 	precomputed = freelist_state_initialize(&state, cachep, count);
2529 
2530 	/* Take a random entry as the objfreelist */
2531 	if (OBJFREELIST_SLAB(cachep)) {
2532 		if (!precomputed)
2533 			objfreelist = count - 1;
2534 		else
2535 			objfreelist = next_random_slot(&state);
2536 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2537 						obj_offset(cachep);
2538 		count--;
2539 	}
2540 
2541 	/*
2542 	 * On early boot, generate the list dynamically.
2543 	 * Later use a pre-computed list for speed.
2544 	 */
2545 	if (!precomputed) {
2546 		for (i = 0; i < count; i++)
2547 			set_free_obj(page, i, i);
2548 
2549 		/* Fisher-Yates shuffle */
2550 		for (i = count - 1; i > 0; i--) {
2551 			rand = prandom_u32_state(&state.rnd_state);
2552 			rand %= (i + 1);
2553 			swap_free_obj(page, i, rand);
2554 		}
2555 	} else {
2556 		for (i = 0; i < count; i++)
2557 			set_free_obj(page, i, next_random_slot(&state));
2558 	}
2559 
2560 	if (OBJFREELIST_SLAB(cachep))
2561 		set_free_obj(page, cachep->num - 1, objfreelist);
2562 
2563 	return true;
2564 }
2565 #else
2566 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2567 				struct page *page)
2568 {
2569 	return false;
2570 }
2571 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2572 
2573 static void cache_init_objs(struct kmem_cache *cachep,
2574 			    struct page *page)
2575 {
2576 	int i;
2577 	void *objp;
2578 	bool shuffled;
2579 
2580 	cache_init_objs_debug(cachep, page);
2581 
2582 	/* Try to randomize the freelist if enabled */
2583 	shuffled = shuffle_freelist(cachep, page);
2584 
2585 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2586 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2587 						obj_offset(cachep);
2588 	}
2589 
2590 	for (i = 0; i < cachep->num; i++) {
2591 		objp = index_to_obj(cachep, page, i);
2592 		kasan_init_slab_obj(cachep, objp);
2593 
2594 		/* constructor could break poison info */
2595 		if (DEBUG == 0 && cachep->ctor) {
2596 			kasan_unpoison_object_data(cachep, objp);
2597 			cachep->ctor(objp);
2598 			kasan_poison_object_data(cachep, objp);
2599 		}
2600 
2601 		if (!shuffled)
2602 			set_free_obj(page, i, i);
2603 	}
2604 }
2605 
2606 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2607 {
2608 	void *objp;
2609 
2610 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2611 	page->active++;
2612 
2613 #if DEBUG
2614 	if (cachep->flags & SLAB_STORE_USER)
2615 		set_store_user_dirty(cachep);
2616 #endif
2617 
2618 	return objp;
2619 }
2620 
2621 static void slab_put_obj(struct kmem_cache *cachep,
2622 			struct page *page, void *objp)
2623 {
2624 	unsigned int objnr = obj_to_index(cachep, page, objp);
2625 #if DEBUG
2626 	unsigned int i;
2627 
2628 	/* Verify double free bug */
2629 	for (i = page->active; i < cachep->num; i++) {
2630 		if (get_free_obj(page, i) == objnr) {
2631 			pr_err("slab: double free detected in cache '%s', objp %p\n",
2632 			       cachep->name, objp);
2633 			BUG();
2634 		}
2635 	}
2636 #endif
2637 	page->active--;
2638 	if (!page->freelist)
2639 		page->freelist = objp + obj_offset(cachep);
2640 
2641 	set_free_obj(page, page->active, objnr);
2642 }
2643 
2644 /*
2645  * Map pages beginning at addr to the given cache and slab. This is required
2646  * for the slab allocator to be able to lookup the cache and slab of a
2647  * virtual address for kfree, ksize, and slab debugging.
2648  */
2649 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2650 			   void *freelist)
2651 {
2652 	page->slab_cache = cache;
2653 	page->freelist = freelist;
2654 }
2655 
2656 /*
2657  * Grow (by 1) the number of slabs within a cache.  This is called by
2658  * kmem_cache_alloc() when there are no active objs left in a cache.
2659  */
2660 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2661 				gfp_t flags, int nodeid)
2662 {
2663 	void *freelist;
2664 	size_t offset;
2665 	gfp_t local_flags;
2666 	int page_node;
2667 	struct kmem_cache_node *n;
2668 	struct page *page;
2669 
2670 	/*
2671 	 * Be lazy and only check for valid flags here,  keeping it out of the
2672 	 * critical path in kmem_cache_alloc().
2673 	 */
2674 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2675 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2676 		flags &= ~GFP_SLAB_BUG_MASK;
2677 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2678 				invalid_mask, &invalid_mask, flags, &flags);
2679 		dump_stack();
2680 	}
2681 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2682 
2683 	check_irq_off();
2684 	if (gfpflags_allow_blocking(local_flags))
2685 		local_irq_enable();
2686 
2687 	/*
2688 	 * Get mem for the objs.  Attempt to allocate a physical page from
2689 	 * 'nodeid'.
2690 	 */
2691 	page = kmem_getpages(cachep, local_flags, nodeid);
2692 	if (!page)
2693 		goto failed;
2694 
2695 	page_node = page_to_nid(page);
2696 	n = get_node(cachep, page_node);
2697 
2698 	/* Get colour for the slab, and cal the next value. */
2699 	n->colour_next++;
2700 	if (n->colour_next >= cachep->colour)
2701 		n->colour_next = 0;
2702 
2703 	offset = n->colour_next;
2704 	if (offset >= cachep->colour)
2705 		offset = 0;
2706 
2707 	offset *= cachep->colour_off;
2708 
2709 	/* Get slab management. */
2710 	freelist = alloc_slabmgmt(cachep, page, offset,
2711 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2712 	if (OFF_SLAB(cachep) && !freelist)
2713 		goto opps1;
2714 
2715 	slab_map_pages(cachep, page, freelist);
2716 
2717 	kasan_poison_slab(page);
2718 	cache_init_objs(cachep, page);
2719 
2720 	if (gfpflags_allow_blocking(local_flags))
2721 		local_irq_disable();
2722 
2723 	return page;
2724 
2725 opps1:
2726 	kmem_freepages(cachep, page);
2727 failed:
2728 	if (gfpflags_allow_blocking(local_flags))
2729 		local_irq_disable();
2730 	return NULL;
2731 }
2732 
2733 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2734 {
2735 	struct kmem_cache_node *n;
2736 	void *list = NULL;
2737 
2738 	check_irq_off();
2739 
2740 	if (!page)
2741 		return;
2742 
2743 	INIT_LIST_HEAD(&page->lru);
2744 	n = get_node(cachep, page_to_nid(page));
2745 
2746 	spin_lock(&n->list_lock);
2747 	n->total_slabs++;
2748 	if (!page->active) {
2749 		list_add_tail(&page->lru, &(n->slabs_free));
2750 		n->free_slabs++;
2751 	} else
2752 		fixup_slab_list(cachep, n, page, &list);
2753 
2754 	STATS_INC_GROWN(cachep);
2755 	n->free_objects += cachep->num - page->active;
2756 	spin_unlock(&n->list_lock);
2757 
2758 	fixup_objfreelist_debug(cachep, &list);
2759 }
2760 
2761 #if DEBUG
2762 
2763 /*
2764  * Perform extra freeing checks:
2765  * - detect bad pointers.
2766  * - POISON/RED_ZONE checking
2767  */
2768 static void kfree_debugcheck(const void *objp)
2769 {
2770 	if (!virt_addr_valid(objp)) {
2771 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2772 		       (unsigned long)objp);
2773 		BUG();
2774 	}
2775 }
2776 
2777 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2778 {
2779 	unsigned long long redzone1, redzone2;
2780 
2781 	redzone1 = *dbg_redzone1(cache, obj);
2782 	redzone2 = *dbg_redzone2(cache, obj);
2783 
2784 	/*
2785 	 * Redzone is ok.
2786 	 */
2787 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2788 		return;
2789 
2790 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2791 		slab_error(cache, "double free detected");
2792 	else
2793 		slab_error(cache, "memory outside object was overwritten");
2794 
2795 	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2796 	       obj, redzone1, redzone2);
2797 }
2798 
2799 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2800 				   unsigned long caller)
2801 {
2802 	unsigned int objnr;
2803 	struct page *page;
2804 
2805 	BUG_ON(virt_to_cache(objp) != cachep);
2806 
2807 	objp -= obj_offset(cachep);
2808 	kfree_debugcheck(objp);
2809 	page = virt_to_head_page(objp);
2810 
2811 	if (cachep->flags & SLAB_RED_ZONE) {
2812 		verify_redzone_free(cachep, objp);
2813 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2814 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2815 	}
2816 	if (cachep->flags & SLAB_STORE_USER) {
2817 		set_store_user_dirty(cachep);
2818 		*dbg_userword(cachep, objp) = (void *)caller;
2819 	}
2820 
2821 	objnr = obj_to_index(cachep, page, objp);
2822 
2823 	BUG_ON(objnr >= cachep->num);
2824 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2825 
2826 	if (cachep->flags & SLAB_POISON) {
2827 		poison_obj(cachep, objp, POISON_FREE);
2828 		slab_kernel_map(cachep, objp, 0, caller);
2829 	}
2830 	return objp;
2831 }
2832 
2833 #else
2834 #define kfree_debugcheck(x) do { } while(0)
2835 #define cache_free_debugcheck(x,objp,z) (objp)
2836 #endif
2837 
2838 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2839 						void **list)
2840 {
2841 #if DEBUG
2842 	void *next = *list;
2843 	void *objp;
2844 
2845 	while (next) {
2846 		objp = next - obj_offset(cachep);
2847 		next = *(void **)next;
2848 		poison_obj(cachep, objp, POISON_FREE);
2849 	}
2850 #endif
2851 }
2852 
2853 static inline void fixup_slab_list(struct kmem_cache *cachep,
2854 				struct kmem_cache_node *n, struct page *page,
2855 				void **list)
2856 {
2857 	/* move slabp to correct slabp list: */
2858 	list_del(&page->lru);
2859 	if (page->active == cachep->num) {
2860 		list_add(&page->lru, &n->slabs_full);
2861 		if (OBJFREELIST_SLAB(cachep)) {
2862 #if DEBUG
2863 			/* Poisoning will be done without holding the lock */
2864 			if (cachep->flags & SLAB_POISON) {
2865 				void **objp = page->freelist;
2866 
2867 				*objp = *list;
2868 				*list = objp;
2869 			}
2870 #endif
2871 			page->freelist = NULL;
2872 		}
2873 	} else
2874 		list_add(&page->lru, &n->slabs_partial);
2875 }
2876 
2877 /* Try to find non-pfmemalloc slab if needed */
2878 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2879 					struct page *page, bool pfmemalloc)
2880 {
2881 	if (!page)
2882 		return NULL;
2883 
2884 	if (pfmemalloc)
2885 		return page;
2886 
2887 	if (!PageSlabPfmemalloc(page))
2888 		return page;
2889 
2890 	/* No need to keep pfmemalloc slab if we have enough free objects */
2891 	if (n->free_objects > n->free_limit) {
2892 		ClearPageSlabPfmemalloc(page);
2893 		return page;
2894 	}
2895 
2896 	/* Move pfmemalloc slab to the end of list to speed up next search */
2897 	list_del(&page->lru);
2898 	if (!page->active) {
2899 		list_add_tail(&page->lru, &n->slabs_free);
2900 		n->free_slabs++;
2901 	} else
2902 		list_add_tail(&page->lru, &n->slabs_partial);
2903 
2904 	list_for_each_entry(page, &n->slabs_partial, lru) {
2905 		if (!PageSlabPfmemalloc(page))
2906 			return page;
2907 	}
2908 
2909 	n->free_touched = 1;
2910 	list_for_each_entry(page, &n->slabs_free, lru) {
2911 		if (!PageSlabPfmemalloc(page)) {
2912 			n->free_slabs--;
2913 			return page;
2914 		}
2915 	}
2916 
2917 	return NULL;
2918 }
2919 
2920 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2921 {
2922 	struct page *page;
2923 
2924 	assert_spin_locked(&n->list_lock);
2925 	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2926 	if (!page) {
2927 		n->free_touched = 1;
2928 		page = list_first_entry_or_null(&n->slabs_free, struct page,
2929 						lru);
2930 		if (page)
2931 			n->free_slabs--;
2932 	}
2933 
2934 	if (sk_memalloc_socks())
2935 		page = get_valid_first_slab(n, page, pfmemalloc);
2936 
2937 	return page;
2938 }
2939 
2940 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2941 				struct kmem_cache_node *n, gfp_t flags)
2942 {
2943 	struct page *page;
2944 	void *obj;
2945 	void *list = NULL;
2946 
2947 	if (!gfp_pfmemalloc_allowed(flags))
2948 		return NULL;
2949 
2950 	spin_lock(&n->list_lock);
2951 	page = get_first_slab(n, true);
2952 	if (!page) {
2953 		spin_unlock(&n->list_lock);
2954 		return NULL;
2955 	}
2956 
2957 	obj = slab_get_obj(cachep, page);
2958 	n->free_objects--;
2959 
2960 	fixup_slab_list(cachep, n, page, &list);
2961 
2962 	spin_unlock(&n->list_lock);
2963 	fixup_objfreelist_debug(cachep, &list);
2964 
2965 	return obj;
2966 }
2967 
2968 /*
2969  * Slab list should be fixed up by fixup_slab_list() for existing slab
2970  * or cache_grow_end() for new slab
2971  */
2972 static __always_inline int alloc_block(struct kmem_cache *cachep,
2973 		struct array_cache *ac, struct page *page, int batchcount)
2974 {
2975 	/*
2976 	 * There must be at least one object available for
2977 	 * allocation.
2978 	 */
2979 	BUG_ON(page->active >= cachep->num);
2980 
2981 	while (page->active < cachep->num && batchcount--) {
2982 		STATS_INC_ALLOCED(cachep);
2983 		STATS_INC_ACTIVE(cachep);
2984 		STATS_SET_HIGH(cachep);
2985 
2986 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2987 	}
2988 
2989 	return batchcount;
2990 }
2991 
2992 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2993 {
2994 	int batchcount;
2995 	struct kmem_cache_node *n;
2996 	struct array_cache *ac, *shared;
2997 	int node;
2998 	void *list = NULL;
2999 	struct page *page;
3000 
3001 	check_irq_off();
3002 	node = numa_mem_id();
3003 
3004 	ac = cpu_cache_get(cachep);
3005 	batchcount = ac->batchcount;
3006 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3007 		/*
3008 		 * If there was little recent activity on this cache, then
3009 		 * perform only a partial refill.  Otherwise we could generate
3010 		 * refill bouncing.
3011 		 */
3012 		batchcount = BATCHREFILL_LIMIT;
3013 	}
3014 	n = get_node(cachep, node);
3015 
3016 	BUG_ON(ac->avail > 0 || !n);
3017 	shared = READ_ONCE(n->shared);
3018 	if (!n->free_objects && (!shared || !shared->avail))
3019 		goto direct_grow;
3020 
3021 	spin_lock(&n->list_lock);
3022 	shared = READ_ONCE(n->shared);
3023 
3024 	/* See if we can refill from the shared array */
3025 	if (shared && transfer_objects(ac, shared, batchcount)) {
3026 		shared->touched = 1;
3027 		goto alloc_done;
3028 	}
3029 
3030 	while (batchcount > 0) {
3031 		/* Get slab alloc is to come from. */
3032 		page = get_first_slab(n, false);
3033 		if (!page)
3034 			goto must_grow;
3035 
3036 		check_spinlock_acquired(cachep);
3037 
3038 		batchcount = alloc_block(cachep, ac, page, batchcount);
3039 		fixup_slab_list(cachep, n, page, &list);
3040 	}
3041 
3042 must_grow:
3043 	n->free_objects -= ac->avail;
3044 alloc_done:
3045 	spin_unlock(&n->list_lock);
3046 	fixup_objfreelist_debug(cachep, &list);
3047 
3048 direct_grow:
3049 	if (unlikely(!ac->avail)) {
3050 		/* Check if we can use obj in pfmemalloc slab */
3051 		if (sk_memalloc_socks()) {
3052 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3053 
3054 			if (obj)
3055 				return obj;
3056 		}
3057 
3058 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3059 
3060 		/*
3061 		 * cache_grow_begin() can reenable interrupts,
3062 		 * then ac could change.
3063 		 */
3064 		ac = cpu_cache_get(cachep);
3065 		if (!ac->avail && page)
3066 			alloc_block(cachep, ac, page, batchcount);
3067 		cache_grow_end(cachep, page);
3068 
3069 		if (!ac->avail)
3070 			return NULL;
3071 	}
3072 	ac->touched = 1;
3073 
3074 	return ac->entry[--ac->avail];
3075 }
3076 
3077 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3078 						gfp_t flags)
3079 {
3080 	might_sleep_if(gfpflags_allow_blocking(flags));
3081 }
3082 
3083 #if DEBUG
3084 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3085 				gfp_t flags, void *objp, unsigned long caller)
3086 {
3087 	if (!objp)
3088 		return objp;
3089 	if (cachep->flags & SLAB_POISON) {
3090 		check_poison_obj(cachep, objp);
3091 		slab_kernel_map(cachep, objp, 1, 0);
3092 		poison_obj(cachep, objp, POISON_INUSE);
3093 	}
3094 	if (cachep->flags & SLAB_STORE_USER)
3095 		*dbg_userword(cachep, objp) = (void *)caller;
3096 
3097 	if (cachep->flags & SLAB_RED_ZONE) {
3098 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3099 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3100 			slab_error(cachep, "double free, or memory outside object was overwritten");
3101 			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3102 			       objp, *dbg_redzone1(cachep, objp),
3103 			       *dbg_redzone2(cachep, objp));
3104 		}
3105 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3106 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3107 	}
3108 
3109 	objp += obj_offset(cachep);
3110 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3111 		cachep->ctor(objp);
3112 	if (ARCH_SLAB_MINALIGN &&
3113 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3114 		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3115 		       objp, (int)ARCH_SLAB_MINALIGN);
3116 	}
3117 	return objp;
3118 }
3119 #else
3120 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3121 #endif
3122 
3123 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3124 {
3125 	void *objp;
3126 	struct array_cache *ac;
3127 
3128 	check_irq_off();
3129 
3130 	ac = cpu_cache_get(cachep);
3131 	if (likely(ac->avail)) {
3132 		ac->touched = 1;
3133 		objp = ac->entry[--ac->avail];
3134 
3135 		STATS_INC_ALLOCHIT(cachep);
3136 		goto out;
3137 	}
3138 
3139 	STATS_INC_ALLOCMISS(cachep);
3140 	objp = cache_alloc_refill(cachep, flags);
3141 	/*
3142 	 * the 'ac' may be updated by cache_alloc_refill(),
3143 	 * and kmemleak_erase() requires its correct value.
3144 	 */
3145 	ac = cpu_cache_get(cachep);
3146 
3147 out:
3148 	/*
3149 	 * To avoid a false negative, if an object that is in one of the
3150 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3151 	 * treat the array pointers as a reference to the object.
3152 	 */
3153 	if (objp)
3154 		kmemleak_erase(&ac->entry[ac->avail]);
3155 	return objp;
3156 }
3157 
3158 #ifdef CONFIG_NUMA
3159 /*
3160  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3161  *
3162  * If we are in_interrupt, then process context, including cpusets and
3163  * mempolicy, may not apply and should not be used for allocation policy.
3164  */
3165 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3166 {
3167 	int nid_alloc, nid_here;
3168 
3169 	if (in_interrupt() || (flags & __GFP_THISNODE))
3170 		return NULL;
3171 	nid_alloc = nid_here = numa_mem_id();
3172 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3173 		nid_alloc = cpuset_slab_spread_node();
3174 	else if (current->mempolicy)
3175 		nid_alloc = mempolicy_slab_node();
3176 	if (nid_alloc != nid_here)
3177 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3178 	return NULL;
3179 }
3180 
3181 /*
3182  * Fallback function if there was no memory available and no objects on a
3183  * certain node and fall back is permitted. First we scan all the
3184  * available node for available objects. If that fails then we
3185  * perform an allocation without specifying a node. This allows the page
3186  * allocator to do its reclaim / fallback magic. We then insert the
3187  * slab into the proper nodelist and then allocate from it.
3188  */
3189 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3190 {
3191 	struct zonelist *zonelist;
3192 	struct zoneref *z;
3193 	struct zone *zone;
3194 	enum zone_type high_zoneidx = gfp_zone(flags);
3195 	void *obj = NULL;
3196 	struct page *page;
3197 	int nid;
3198 	unsigned int cpuset_mems_cookie;
3199 
3200 	if (flags & __GFP_THISNODE)
3201 		return NULL;
3202 
3203 retry_cpuset:
3204 	cpuset_mems_cookie = read_mems_allowed_begin();
3205 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3206 
3207 retry:
3208 	/*
3209 	 * Look through allowed nodes for objects available
3210 	 * from existing per node queues.
3211 	 */
3212 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3213 		nid = zone_to_nid(zone);
3214 
3215 		if (cpuset_zone_allowed(zone, flags) &&
3216 			get_node(cache, nid) &&
3217 			get_node(cache, nid)->free_objects) {
3218 				obj = ____cache_alloc_node(cache,
3219 					gfp_exact_node(flags), nid);
3220 				if (obj)
3221 					break;
3222 		}
3223 	}
3224 
3225 	if (!obj) {
3226 		/*
3227 		 * This allocation will be performed within the constraints
3228 		 * of the current cpuset / memory policy requirements.
3229 		 * We may trigger various forms of reclaim on the allowed
3230 		 * set and go into memory reserves if necessary.
3231 		 */
3232 		page = cache_grow_begin(cache, flags, numa_mem_id());
3233 		cache_grow_end(cache, page);
3234 		if (page) {
3235 			nid = page_to_nid(page);
3236 			obj = ____cache_alloc_node(cache,
3237 				gfp_exact_node(flags), nid);
3238 
3239 			/*
3240 			 * Another processor may allocate the objects in
3241 			 * the slab since we are not holding any locks.
3242 			 */
3243 			if (!obj)
3244 				goto retry;
3245 		}
3246 	}
3247 
3248 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3249 		goto retry_cpuset;
3250 	return obj;
3251 }
3252 
3253 /*
3254  * A interface to enable slab creation on nodeid
3255  */
3256 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3257 				int nodeid)
3258 {
3259 	struct page *page;
3260 	struct kmem_cache_node *n;
3261 	void *obj = NULL;
3262 	void *list = NULL;
3263 
3264 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3265 	n = get_node(cachep, nodeid);
3266 	BUG_ON(!n);
3267 
3268 	check_irq_off();
3269 	spin_lock(&n->list_lock);
3270 	page = get_first_slab(n, false);
3271 	if (!page)
3272 		goto must_grow;
3273 
3274 	check_spinlock_acquired_node(cachep, nodeid);
3275 
3276 	STATS_INC_NODEALLOCS(cachep);
3277 	STATS_INC_ACTIVE(cachep);
3278 	STATS_SET_HIGH(cachep);
3279 
3280 	BUG_ON(page->active == cachep->num);
3281 
3282 	obj = slab_get_obj(cachep, page);
3283 	n->free_objects--;
3284 
3285 	fixup_slab_list(cachep, n, page, &list);
3286 
3287 	spin_unlock(&n->list_lock);
3288 	fixup_objfreelist_debug(cachep, &list);
3289 	return obj;
3290 
3291 must_grow:
3292 	spin_unlock(&n->list_lock);
3293 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3294 	if (page) {
3295 		/* This slab isn't counted yet so don't update free_objects */
3296 		obj = slab_get_obj(cachep, page);
3297 	}
3298 	cache_grow_end(cachep, page);
3299 
3300 	return obj ? obj : fallback_alloc(cachep, flags);
3301 }
3302 
3303 static __always_inline void *
3304 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3305 		   unsigned long caller)
3306 {
3307 	unsigned long save_flags;
3308 	void *ptr;
3309 	int slab_node = numa_mem_id();
3310 
3311 	flags &= gfp_allowed_mask;
3312 	cachep = slab_pre_alloc_hook(cachep, flags);
3313 	if (unlikely(!cachep))
3314 		return NULL;
3315 
3316 	cache_alloc_debugcheck_before(cachep, flags);
3317 	local_irq_save(save_flags);
3318 
3319 	if (nodeid == NUMA_NO_NODE)
3320 		nodeid = slab_node;
3321 
3322 	if (unlikely(!get_node(cachep, nodeid))) {
3323 		/* Node not bootstrapped yet */
3324 		ptr = fallback_alloc(cachep, flags);
3325 		goto out;
3326 	}
3327 
3328 	if (nodeid == slab_node) {
3329 		/*
3330 		 * Use the locally cached objects if possible.
3331 		 * However ____cache_alloc does not allow fallback
3332 		 * to other nodes. It may fail while we still have
3333 		 * objects on other nodes available.
3334 		 */
3335 		ptr = ____cache_alloc(cachep, flags);
3336 		if (ptr)
3337 			goto out;
3338 	}
3339 	/* ___cache_alloc_node can fall back to other nodes */
3340 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3341   out:
3342 	local_irq_restore(save_flags);
3343 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3344 
3345 	if (unlikely(flags & __GFP_ZERO) && ptr)
3346 		memset(ptr, 0, cachep->object_size);
3347 
3348 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3349 	return ptr;
3350 }
3351 
3352 static __always_inline void *
3353 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3354 {
3355 	void *objp;
3356 
3357 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3358 		objp = alternate_node_alloc(cache, flags);
3359 		if (objp)
3360 			goto out;
3361 	}
3362 	objp = ____cache_alloc(cache, flags);
3363 
3364 	/*
3365 	 * We may just have run out of memory on the local node.
3366 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3367 	 */
3368 	if (!objp)
3369 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3370 
3371   out:
3372 	return objp;
3373 }
3374 #else
3375 
3376 static __always_inline void *
3377 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3378 {
3379 	return ____cache_alloc(cachep, flags);
3380 }
3381 
3382 #endif /* CONFIG_NUMA */
3383 
3384 static __always_inline void *
3385 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3386 {
3387 	unsigned long save_flags;
3388 	void *objp;
3389 
3390 	flags &= gfp_allowed_mask;
3391 	cachep = slab_pre_alloc_hook(cachep, flags);
3392 	if (unlikely(!cachep))
3393 		return NULL;
3394 
3395 	cache_alloc_debugcheck_before(cachep, flags);
3396 	local_irq_save(save_flags);
3397 	objp = __do_cache_alloc(cachep, flags);
3398 	local_irq_restore(save_flags);
3399 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3400 	prefetchw(objp);
3401 
3402 	if (unlikely(flags & __GFP_ZERO) && objp)
3403 		memset(objp, 0, cachep->object_size);
3404 
3405 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3406 	return objp;
3407 }
3408 
3409 /*
3410  * Caller needs to acquire correct kmem_cache_node's list_lock
3411  * @list: List of detached free slabs should be freed by caller
3412  */
3413 static void free_block(struct kmem_cache *cachep, void **objpp,
3414 			int nr_objects, int node, struct list_head *list)
3415 {
3416 	int i;
3417 	struct kmem_cache_node *n = get_node(cachep, node);
3418 	struct page *page;
3419 
3420 	n->free_objects += nr_objects;
3421 
3422 	for (i = 0; i < nr_objects; i++) {
3423 		void *objp;
3424 		struct page *page;
3425 
3426 		objp = objpp[i];
3427 
3428 		page = virt_to_head_page(objp);
3429 		list_del(&page->lru);
3430 		check_spinlock_acquired_node(cachep, node);
3431 		slab_put_obj(cachep, page, objp);
3432 		STATS_DEC_ACTIVE(cachep);
3433 
3434 		/* fixup slab chains */
3435 		if (page->active == 0) {
3436 			list_add(&page->lru, &n->slabs_free);
3437 			n->free_slabs++;
3438 		} else {
3439 			/* Unconditionally move a slab to the end of the
3440 			 * partial list on free - maximum time for the
3441 			 * other objects to be freed, too.
3442 			 */
3443 			list_add_tail(&page->lru, &n->slabs_partial);
3444 		}
3445 	}
3446 
3447 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3448 		n->free_objects -= cachep->num;
3449 
3450 		page = list_last_entry(&n->slabs_free, struct page, lru);
3451 		list_move(&page->lru, list);
3452 		n->free_slabs--;
3453 		n->total_slabs--;
3454 	}
3455 }
3456 
3457 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3458 {
3459 	int batchcount;
3460 	struct kmem_cache_node *n;
3461 	int node = numa_mem_id();
3462 	LIST_HEAD(list);
3463 
3464 	batchcount = ac->batchcount;
3465 
3466 	check_irq_off();
3467 	n = get_node(cachep, node);
3468 	spin_lock(&n->list_lock);
3469 	if (n->shared) {
3470 		struct array_cache *shared_array = n->shared;
3471 		int max = shared_array->limit - shared_array->avail;
3472 		if (max) {
3473 			if (batchcount > max)
3474 				batchcount = max;
3475 			memcpy(&(shared_array->entry[shared_array->avail]),
3476 			       ac->entry, sizeof(void *) * batchcount);
3477 			shared_array->avail += batchcount;
3478 			goto free_done;
3479 		}
3480 	}
3481 
3482 	free_block(cachep, ac->entry, batchcount, node, &list);
3483 free_done:
3484 #if STATS
3485 	{
3486 		int i = 0;
3487 		struct page *page;
3488 
3489 		list_for_each_entry(page, &n->slabs_free, lru) {
3490 			BUG_ON(page->active);
3491 
3492 			i++;
3493 		}
3494 		STATS_SET_FREEABLE(cachep, i);
3495 	}
3496 #endif
3497 	spin_unlock(&n->list_lock);
3498 	slabs_destroy(cachep, &list);
3499 	ac->avail -= batchcount;
3500 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3501 }
3502 
3503 /*
3504  * Release an obj back to its cache. If the obj has a constructed state, it must
3505  * be in this state _before_ it is released.  Called with disabled ints.
3506  */
3507 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3508 				unsigned long caller)
3509 {
3510 	/* Put the object into the quarantine, don't touch it for now. */
3511 	if (kasan_slab_free(cachep, objp))
3512 		return;
3513 
3514 	___cache_free(cachep, objp, caller);
3515 }
3516 
3517 void ___cache_free(struct kmem_cache *cachep, void *objp,
3518 		unsigned long caller)
3519 {
3520 	struct array_cache *ac = cpu_cache_get(cachep);
3521 
3522 	check_irq_off();
3523 	kmemleak_free_recursive(objp, cachep->flags);
3524 	objp = cache_free_debugcheck(cachep, objp, caller);
3525 
3526 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3527 
3528 	/*
3529 	 * Skip calling cache_free_alien() when the platform is not numa.
3530 	 * This will avoid cache misses that happen while accessing slabp (which
3531 	 * is per page memory  reference) to get nodeid. Instead use a global
3532 	 * variable to skip the call, which is mostly likely to be present in
3533 	 * the cache.
3534 	 */
3535 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3536 		return;
3537 
3538 	if (ac->avail < ac->limit) {
3539 		STATS_INC_FREEHIT(cachep);
3540 	} else {
3541 		STATS_INC_FREEMISS(cachep);
3542 		cache_flusharray(cachep, ac);
3543 	}
3544 
3545 	if (sk_memalloc_socks()) {
3546 		struct page *page = virt_to_head_page(objp);
3547 
3548 		if (unlikely(PageSlabPfmemalloc(page))) {
3549 			cache_free_pfmemalloc(cachep, page, objp);
3550 			return;
3551 		}
3552 	}
3553 
3554 	ac->entry[ac->avail++] = objp;
3555 }
3556 
3557 /**
3558  * kmem_cache_alloc - Allocate an object
3559  * @cachep: The cache to allocate from.
3560  * @flags: See kmalloc().
3561  *
3562  * Allocate an object from this cache.  The flags are only relevant
3563  * if the cache has no available objects.
3564  */
3565 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3566 {
3567 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3568 
3569 	kasan_slab_alloc(cachep, ret, flags);
3570 	trace_kmem_cache_alloc(_RET_IP_, ret,
3571 			       cachep->object_size, cachep->size, flags);
3572 
3573 	return ret;
3574 }
3575 EXPORT_SYMBOL(kmem_cache_alloc);
3576 
3577 static __always_inline void
3578 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3579 				  size_t size, void **p, unsigned long caller)
3580 {
3581 	size_t i;
3582 
3583 	for (i = 0; i < size; i++)
3584 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3585 }
3586 
3587 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3588 			  void **p)
3589 {
3590 	size_t i;
3591 
3592 	s = slab_pre_alloc_hook(s, flags);
3593 	if (!s)
3594 		return 0;
3595 
3596 	cache_alloc_debugcheck_before(s, flags);
3597 
3598 	local_irq_disable();
3599 	for (i = 0; i < size; i++) {
3600 		void *objp = __do_cache_alloc(s, flags);
3601 
3602 		if (unlikely(!objp))
3603 			goto error;
3604 		p[i] = objp;
3605 	}
3606 	local_irq_enable();
3607 
3608 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3609 
3610 	/* Clear memory outside IRQ disabled section */
3611 	if (unlikely(flags & __GFP_ZERO))
3612 		for (i = 0; i < size; i++)
3613 			memset(p[i], 0, s->object_size);
3614 
3615 	slab_post_alloc_hook(s, flags, size, p);
3616 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3617 	return size;
3618 error:
3619 	local_irq_enable();
3620 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3621 	slab_post_alloc_hook(s, flags, i, p);
3622 	__kmem_cache_free_bulk(s, i, p);
3623 	return 0;
3624 }
3625 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3626 
3627 #ifdef CONFIG_TRACING
3628 void *
3629 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3630 {
3631 	void *ret;
3632 
3633 	ret = slab_alloc(cachep, flags, _RET_IP_);
3634 
3635 	kasan_kmalloc(cachep, ret, size, flags);
3636 	trace_kmalloc(_RET_IP_, ret,
3637 		      size, cachep->size, flags);
3638 	return ret;
3639 }
3640 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3641 #endif
3642 
3643 #ifdef CONFIG_NUMA
3644 /**
3645  * kmem_cache_alloc_node - Allocate an object on the specified node
3646  * @cachep: The cache to allocate from.
3647  * @flags: See kmalloc().
3648  * @nodeid: node number of the target node.
3649  *
3650  * Identical to kmem_cache_alloc but it will allocate memory on the given
3651  * node, which can improve the performance for cpu bound structures.
3652  *
3653  * Fallback to other node is possible if __GFP_THISNODE is not set.
3654  */
3655 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3656 {
3657 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3658 
3659 	kasan_slab_alloc(cachep, ret, flags);
3660 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3661 				    cachep->object_size, cachep->size,
3662 				    flags, nodeid);
3663 
3664 	return ret;
3665 }
3666 EXPORT_SYMBOL(kmem_cache_alloc_node);
3667 
3668 #ifdef CONFIG_TRACING
3669 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3670 				  gfp_t flags,
3671 				  int nodeid,
3672 				  size_t size)
3673 {
3674 	void *ret;
3675 
3676 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3677 
3678 	kasan_kmalloc(cachep, ret, size, flags);
3679 	trace_kmalloc_node(_RET_IP_, ret,
3680 			   size, cachep->size,
3681 			   flags, nodeid);
3682 	return ret;
3683 }
3684 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3685 #endif
3686 
3687 static __always_inline void *
3688 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3689 {
3690 	struct kmem_cache *cachep;
3691 	void *ret;
3692 
3693 	cachep = kmalloc_slab(size, flags);
3694 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3695 		return cachep;
3696 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3697 	kasan_kmalloc(cachep, ret, size, flags);
3698 
3699 	return ret;
3700 }
3701 
3702 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3703 {
3704 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3705 }
3706 EXPORT_SYMBOL(__kmalloc_node);
3707 
3708 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3709 		int node, unsigned long caller)
3710 {
3711 	return __do_kmalloc_node(size, flags, node, caller);
3712 }
3713 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3714 #endif /* CONFIG_NUMA */
3715 
3716 /**
3717  * __do_kmalloc - allocate memory
3718  * @size: how many bytes of memory are required.
3719  * @flags: the type of memory to allocate (see kmalloc).
3720  * @caller: function caller for debug tracking of the caller
3721  */
3722 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3723 					  unsigned long caller)
3724 {
3725 	struct kmem_cache *cachep;
3726 	void *ret;
3727 
3728 	cachep = kmalloc_slab(size, flags);
3729 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3730 		return cachep;
3731 	ret = slab_alloc(cachep, flags, caller);
3732 
3733 	kasan_kmalloc(cachep, ret, size, flags);
3734 	trace_kmalloc(caller, ret,
3735 		      size, cachep->size, flags);
3736 
3737 	return ret;
3738 }
3739 
3740 void *__kmalloc(size_t size, gfp_t flags)
3741 {
3742 	return __do_kmalloc(size, flags, _RET_IP_);
3743 }
3744 EXPORT_SYMBOL(__kmalloc);
3745 
3746 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3747 {
3748 	return __do_kmalloc(size, flags, caller);
3749 }
3750 EXPORT_SYMBOL(__kmalloc_track_caller);
3751 
3752 /**
3753  * kmem_cache_free - Deallocate an object
3754  * @cachep: The cache the allocation was from.
3755  * @objp: The previously allocated object.
3756  *
3757  * Free an object which was previously allocated from this
3758  * cache.
3759  */
3760 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3761 {
3762 	unsigned long flags;
3763 	cachep = cache_from_obj(cachep, objp);
3764 	if (!cachep)
3765 		return;
3766 
3767 	local_irq_save(flags);
3768 	debug_check_no_locks_freed(objp, cachep->object_size);
3769 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3770 		debug_check_no_obj_freed(objp, cachep->object_size);
3771 	__cache_free(cachep, objp, _RET_IP_);
3772 	local_irq_restore(flags);
3773 
3774 	trace_kmem_cache_free(_RET_IP_, objp);
3775 }
3776 EXPORT_SYMBOL(kmem_cache_free);
3777 
3778 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3779 {
3780 	struct kmem_cache *s;
3781 	size_t i;
3782 
3783 	local_irq_disable();
3784 	for (i = 0; i < size; i++) {
3785 		void *objp = p[i];
3786 
3787 		if (!orig_s) /* called via kfree_bulk */
3788 			s = virt_to_cache(objp);
3789 		else
3790 			s = cache_from_obj(orig_s, objp);
3791 
3792 		debug_check_no_locks_freed(objp, s->object_size);
3793 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3794 			debug_check_no_obj_freed(objp, s->object_size);
3795 
3796 		__cache_free(s, objp, _RET_IP_);
3797 	}
3798 	local_irq_enable();
3799 
3800 	/* FIXME: add tracing */
3801 }
3802 EXPORT_SYMBOL(kmem_cache_free_bulk);
3803 
3804 /**
3805  * kfree - free previously allocated memory
3806  * @objp: pointer returned by kmalloc.
3807  *
3808  * If @objp is NULL, no operation is performed.
3809  *
3810  * Don't free memory not originally allocated by kmalloc()
3811  * or you will run into trouble.
3812  */
3813 void kfree(const void *objp)
3814 {
3815 	struct kmem_cache *c;
3816 	unsigned long flags;
3817 
3818 	trace_kfree(_RET_IP_, objp);
3819 
3820 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3821 		return;
3822 	local_irq_save(flags);
3823 	kfree_debugcheck(objp);
3824 	c = virt_to_cache(objp);
3825 	debug_check_no_locks_freed(objp, c->object_size);
3826 
3827 	debug_check_no_obj_freed(objp, c->object_size);
3828 	__cache_free(c, (void *)objp, _RET_IP_);
3829 	local_irq_restore(flags);
3830 }
3831 EXPORT_SYMBOL(kfree);
3832 
3833 /*
3834  * This initializes kmem_cache_node or resizes various caches for all nodes.
3835  */
3836 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3837 {
3838 	int ret;
3839 	int node;
3840 	struct kmem_cache_node *n;
3841 
3842 	for_each_online_node(node) {
3843 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3844 		if (ret)
3845 			goto fail;
3846 
3847 	}
3848 
3849 	return 0;
3850 
3851 fail:
3852 	if (!cachep->list.next) {
3853 		/* Cache is not active yet. Roll back what we did */
3854 		node--;
3855 		while (node >= 0) {
3856 			n = get_node(cachep, node);
3857 			if (n) {
3858 				kfree(n->shared);
3859 				free_alien_cache(n->alien);
3860 				kfree(n);
3861 				cachep->node[node] = NULL;
3862 			}
3863 			node--;
3864 		}
3865 	}
3866 	return -ENOMEM;
3867 }
3868 
3869 /* Always called with the slab_mutex held */
3870 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3871 				int batchcount, int shared, gfp_t gfp)
3872 {
3873 	struct array_cache __percpu *cpu_cache, *prev;
3874 	int cpu;
3875 
3876 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3877 	if (!cpu_cache)
3878 		return -ENOMEM;
3879 
3880 	prev = cachep->cpu_cache;
3881 	cachep->cpu_cache = cpu_cache;
3882 	kick_all_cpus_sync();
3883 
3884 	check_irq_on();
3885 	cachep->batchcount = batchcount;
3886 	cachep->limit = limit;
3887 	cachep->shared = shared;
3888 
3889 	if (!prev)
3890 		goto setup_node;
3891 
3892 	for_each_online_cpu(cpu) {
3893 		LIST_HEAD(list);
3894 		int node;
3895 		struct kmem_cache_node *n;
3896 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3897 
3898 		node = cpu_to_mem(cpu);
3899 		n = get_node(cachep, node);
3900 		spin_lock_irq(&n->list_lock);
3901 		free_block(cachep, ac->entry, ac->avail, node, &list);
3902 		spin_unlock_irq(&n->list_lock);
3903 		slabs_destroy(cachep, &list);
3904 	}
3905 	free_percpu(prev);
3906 
3907 setup_node:
3908 	return setup_kmem_cache_nodes(cachep, gfp);
3909 }
3910 
3911 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3912 				int batchcount, int shared, gfp_t gfp)
3913 {
3914 	int ret;
3915 	struct kmem_cache *c;
3916 
3917 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3918 
3919 	if (slab_state < FULL)
3920 		return ret;
3921 
3922 	if ((ret < 0) || !is_root_cache(cachep))
3923 		return ret;
3924 
3925 	lockdep_assert_held(&slab_mutex);
3926 	for_each_memcg_cache(c, cachep) {
3927 		/* return value determined by the root cache only */
3928 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3929 	}
3930 
3931 	return ret;
3932 }
3933 
3934 /* Called with slab_mutex held always */
3935 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3936 {
3937 	int err;
3938 	int limit = 0;
3939 	int shared = 0;
3940 	int batchcount = 0;
3941 
3942 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3943 	if (err)
3944 		goto end;
3945 
3946 	if (!is_root_cache(cachep)) {
3947 		struct kmem_cache *root = memcg_root_cache(cachep);
3948 		limit = root->limit;
3949 		shared = root->shared;
3950 		batchcount = root->batchcount;
3951 	}
3952 
3953 	if (limit && shared && batchcount)
3954 		goto skip_setup;
3955 	/*
3956 	 * The head array serves three purposes:
3957 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3958 	 * - reduce the number of spinlock operations.
3959 	 * - reduce the number of linked list operations on the slab and
3960 	 *   bufctl chains: array operations are cheaper.
3961 	 * The numbers are guessed, we should auto-tune as described by
3962 	 * Bonwick.
3963 	 */
3964 	if (cachep->size > 131072)
3965 		limit = 1;
3966 	else if (cachep->size > PAGE_SIZE)
3967 		limit = 8;
3968 	else if (cachep->size > 1024)
3969 		limit = 24;
3970 	else if (cachep->size > 256)
3971 		limit = 54;
3972 	else
3973 		limit = 120;
3974 
3975 	/*
3976 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3977 	 * allocation behaviour: Most allocs on one cpu, most free operations
3978 	 * on another cpu. For these cases, an efficient object passing between
3979 	 * cpus is necessary. This is provided by a shared array. The array
3980 	 * replaces Bonwick's magazine layer.
3981 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3982 	 * to a larger limit. Thus disabled by default.
3983 	 */
3984 	shared = 0;
3985 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3986 		shared = 8;
3987 
3988 #if DEBUG
3989 	/*
3990 	 * With debugging enabled, large batchcount lead to excessively long
3991 	 * periods with disabled local interrupts. Limit the batchcount
3992 	 */
3993 	if (limit > 32)
3994 		limit = 32;
3995 #endif
3996 	batchcount = (limit + 1) / 2;
3997 skip_setup:
3998 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3999 end:
4000 	if (err)
4001 		pr_err("enable_cpucache failed for %s, error %d\n",
4002 		       cachep->name, -err);
4003 	return err;
4004 }
4005 
4006 /*
4007  * Drain an array if it contains any elements taking the node lock only if
4008  * necessary. Note that the node listlock also protects the array_cache
4009  * if drain_array() is used on the shared array.
4010  */
4011 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4012 			 struct array_cache *ac, int node)
4013 {
4014 	LIST_HEAD(list);
4015 
4016 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
4017 	check_mutex_acquired();
4018 
4019 	if (!ac || !ac->avail)
4020 		return;
4021 
4022 	if (ac->touched) {
4023 		ac->touched = 0;
4024 		return;
4025 	}
4026 
4027 	spin_lock_irq(&n->list_lock);
4028 	drain_array_locked(cachep, ac, node, false, &list);
4029 	spin_unlock_irq(&n->list_lock);
4030 
4031 	slabs_destroy(cachep, &list);
4032 }
4033 
4034 /**
4035  * cache_reap - Reclaim memory from caches.
4036  * @w: work descriptor
4037  *
4038  * Called from workqueue/eventd every few seconds.
4039  * Purpose:
4040  * - clear the per-cpu caches for this CPU.
4041  * - return freeable pages to the main free memory pool.
4042  *
4043  * If we cannot acquire the cache chain mutex then just give up - we'll try
4044  * again on the next iteration.
4045  */
4046 static void cache_reap(struct work_struct *w)
4047 {
4048 	struct kmem_cache *searchp;
4049 	struct kmem_cache_node *n;
4050 	int node = numa_mem_id();
4051 	struct delayed_work *work = to_delayed_work(w);
4052 
4053 	if (!mutex_trylock(&slab_mutex))
4054 		/* Give up. Setup the next iteration. */
4055 		goto out;
4056 
4057 	list_for_each_entry(searchp, &slab_caches, list) {
4058 		check_irq_on();
4059 
4060 		/*
4061 		 * We only take the node lock if absolutely necessary and we
4062 		 * have established with reasonable certainty that
4063 		 * we can do some work if the lock was obtained.
4064 		 */
4065 		n = get_node(searchp, node);
4066 
4067 		reap_alien(searchp, n);
4068 
4069 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4070 
4071 		/*
4072 		 * These are racy checks but it does not matter
4073 		 * if we skip one check or scan twice.
4074 		 */
4075 		if (time_after(n->next_reap, jiffies))
4076 			goto next;
4077 
4078 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4079 
4080 		drain_array(searchp, n, n->shared, node);
4081 
4082 		if (n->free_touched)
4083 			n->free_touched = 0;
4084 		else {
4085 			int freed;
4086 
4087 			freed = drain_freelist(searchp, n, (n->free_limit +
4088 				5 * searchp->num - 1) / (5 * searchp->num));
4089 			STATS_ADD_REAPED(searchp, freed);
4090 		}
4091 next:
4092 		cond_resched();
4093 	}
4094 	check_irq_on();
4095 	mutex_unlock(&slab_mutex);
4096 	next_reap_node();
4097 out:
4098 	/* Set up the next iteration */
4099 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4100 }
4101 
4102 #ifdef CONFIG_SLABINFO
4103 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4104 {
4105 	unsigned long active_objs, num_objs, active_slabs;
4106 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4107 	unsigned long free_slabs = 0;
4108 	int node;
4109 	struct kmem_cache_node *n;
4110 
4111 	for_each_kmem_cache_node(cachep, node, n) {
4112 		check_irq_on();
4113 		spin_lock_irq(&n->list_lock);
4114 
4115 		total_slabs += n->total_slabs;
4116 		free_slabs += n->free_slabs;
4117 		free_objs += n->free_objects;
4118 
4119 		if (n->shared)
4120 			shared_avail += n->shared->avail;
4121 
4122 		spin_unlock_irq(&n->list_lock);
4123 	}
4124 	num_objs = total_slabs * cachep->num;
4125 	active_slabs = total_slabs - free_slabs;
4126 	active_objs = num_objs - free_objs;
4127 
4128 	sinfo->active_objs = active_objs;
4129 	sinfo->num_objs = num_objs;
4130 	sinfo->active_slabs = active_slabs;
4131 	sinfo->num_slabs = total_slabs;
4132 	sinfo->shared_avail = shared_avail;
4133 	sinfo->limit = cachep->limit;
4134 	sinfo->batchcount = cachep->batchcount;
4135 	sinfo->shared = cachep->shared;
4136 	sinfo->objects_per_slab = cachep->num;
4137 	sinfo->cache_order = cachep->gfporder;
4138 }
4139 
4140 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4141 {
4142 #if STATS
4143 	{			/* node stats */
4144 		unsigned long high = cachep->high_mark;
4145 		unsigned long allocs = cachep->num_allocations;
4146 		unsigned long grown = cachep->grown;
4147 		unsigned long reaped = cachep->reaped;
4148 		unsigned long errors = cachep->errors;
4149 		unsigned long max_freeable = cachep->max_freeable;
4150 		unsigned long node_allocs = cachep->node_allocs;
4151 		unsigned long node_frees = cachep->node_frees;
4152 		unsigned long overflows = cachep->node_overflow;
4153 
4154 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4155 			   allocs, high, grown,
4156 			   reaped, errors, max_freeable, node_allocs,
4157 			   node_frees, overflows);
4158 	}
4159 	/* cpu stats */
4160 	{
4161 		unsigned long allochit = atomic_read(&cachep->allochit);
4162 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4163 		unsigned long freehit = atomic_read(&cachep->freehit);
4164 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4165 
4166 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4167 			   allochit, allocmiss, freehit, freemiss);
4168 	}
4169 #endif
4170 }
4171 
4172 #define MAX_SLABINFO_WRITE 128
4173 /**
4174  * slabinfo_write - Tuning for the slab allocator
4175  * @file: unused
4176  * @buffer: user buffer
4177  * @count: data length
4178  * @ppos: unused
4179  */
4180 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4181 		       size_t count, loff_t *ppos)
4182 {
4183 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4184 	int limit, batchcount, shared, res;
4185 	struct kmem_cache *cachep;
4186 
4187 	if (count > MAX_SLABINFO_WRITE)
4188 		return -EINVAL;
4189 	if (copy_from_user(&kbuf, buffer, count))
4190 		return -EFAULT;
4191 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4192 
4193 	tmp = strchr(kbuf, ' ');
4194 	if (!tmp)
4195 		return -EINVAL;
4196 	*tmp = '\0';
4197 	tmp++;
4198 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4199 		return -EINVAL;
4200 
4201 	/* Find the cache in the chain of caches. */
4202 	mutex_lock(&slab_mutex);
4203 	res = -EINVAL;
4204 	list_for_each_entry(cachep, &slab_caches, list) {
4205 		if (!strcmp(cachep->name, kbuf)) {
4206 			if (limit < 1 || batchcount < 1 ||
4207 					batchcount > limit || shared < 0) {
4208 				res = 0;
4209 			} else {
4210 				res = do_tune_cpucache(cachep, limit,
4211 						       batchcount, shared,
4212 						       GFP_KERNEL);
4213 			}
4214 			break;
4215 		}
4216 	}
4217 	mutex_unlock(&slab_mutex);
4218 	if (res >= 0)
4219 		res = count;
4220 	return res;
4221 }
4222 
4223 #ifdef CONFIG_DEBUG_SLAB_LEAK
4224 
4225 static inline int add_caller(unsigned long *n, unsigned long v)
4226 {
4227 	unsigned long *p;
4228 	int l;
4229 	if (!v)
4230 		return 1;
4231 	l = n[1];
4232 	p = n + 2;
4233 	while (l) {
4234 		int i = l/2;
4235 		unsigned long *q = p + 2 * i;
4236 		if (*q == v) {
4237 			q[1]++;
4238 			return 1;
4239 		}
4240 		if (*q > v) {
4241 			l = i;
4242 		} else {
4243 			p = q + 2;
4244 			l -= i + 1;
4245 		}
4246 	}
4247 	if (++n[1] == n[0])
4248 		return 0;
4249 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4250 	p[0] = v;
4251 	p[1] = 1;
4252 	return 1;
4253 }
4254 
4255 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4256 						struct page *page)
4257 {
4258 	void *p;
4259 	int i, j;
4260 	unsigned long v;
4261 
4262 	if (n[0] == n[1])
4263 		return;
4264 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4265 		bool active = true;
4266 
4267 		for (j = page->active; j < c->num; j++) {
4268 			if (get_free_obj(page, j) == i) {
4269 				active = false;
4270 				break;
4271 			}
4272 		}
4273 
4274 		if (!active)
4275 			continue;
4276 
4277 		/*
4278 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4279 		 * mapping is established when actual object allocation and
4280 		 * we could mistakenly access the unmapped object in the cpu
4281 		 * cache.
4282 		 */
4283 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4284 			continue;
4285 
4286 		if (!add_caller(n, v))
4287 			return;
4288 	}
4289 }
4290 
4291 static void show_symbol(struct seq_file *m, unsigned long address)
4292 {
4293 #ifdef CONFIG_KALLSYMS
4294 	unsigned long offset, size;
4295 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4296 
4297 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4298 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4299 		if (modname[0])
4300 			seq_printf(m, " [%s]", modname);
4301 		return;
4302 	}
4303 #endif
4304 	seq_printf(m, "%p", (void *)address);
4305 }
4306 
4307 static int leaks_show(struct seq_file *m, void *p)
4308 {
4309 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4310 	struct page *page;
4311 	struct kmem_cache_node *n;
4312 	const char *name;
4313 	unsigned long *x = m->private;
4314 	int node;
4315 	int i;
4316 
4317 	if (!(cachep->flags & SLAB_STORE_USER))
4318 		return 0;
4319 	if (!(cachep->flags & SLAB_RED_ZONE))
4320 		return 0;
4321 
4322 	/*
4323 	 * Set store_user_clean and start to grab stored user information
4324 	 * for all objects on this cache. If some alloc/free requests comes
4325 	 * during the processing, information would be wrong so restart
4326 	 * whole processing.
4327 	 */
4328 	do {
4329 		set_store_user_clean(cachep);
4330 		drain_cpu_caches(cachep);
4331 
4332 		x[1] = 0;
4333 
4334 		for_each_kmem_cache_node(cachep, node, n) {
4335 
4336 			check_irq_on();
4337 			spin_lock_irq(&n->list_lock);
4338 
4339 			list_for_each_entry(page, &n->slabs_full, lru)
4340 				handle_slab(x, cachep, page);
4341 			list_for_each_entry(page, &n->slabs_partial, lru)
4342 				handle_slab(x, cachep, page);
4343 			spin_unlock_irq(&n->list_lock);
4344 		}
4345 	} while (!is_store_user_clean(cachep));
4346 
4347 	name = cachep->name;
4348 	if (x[0] == x[1]) {
4349 		/* Increase the buffer size */
4350 		mutex_unlock(&slab_mutex);
4351 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4352 		if (!m->private) {
4353 			/* Too bad, we are really out */
4354 			m->private = x;
4355 			mutex_lock(&slab_mutex);
4356 			return -ENOMEM;
4357 		}
4358 		*(unsigned long *)m->private = x[0] * 2;
4359 		kfree(x);
4360 		mutex_lock(&slab_mutex);
4361 		/* Now make sure this entry will be retried */
4362 		m->count = m->size;
4363 		return 0;
4364 	}
4365 	for (i = 0; i < x[1]; i++) {
4366 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4367 		show_symbol(m, x[2*i+2]);
4368 		seq_putc(m, '\n');
4369 	}
4370 
4371 	return 0;
4372 }
4373 
4374 static const struct seq_operations slabstats_op = {
4375 	.start = slab_start,
4376 	.next = slab_next,
4377 	.stop = slab_stop,
4378 	.show = leaks_show,
4379 };
4380 
4381 static int slabstats_open(struct inode *inode, struct file *file)
4382 {
4383 	unsigned long *n;
4384 
4385 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4386 	if (!n)
4387 		return -ENOMEM;
4388 
4389 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4390 
4391 	return 0;
4392 }
4393 
4394 static const struct file_operations proc_slabstats_operations = {
4395 	.open		= slabstats_open,
4396 	.read		= seq_read,
4397 	.llseek		= seq_lseek,
4398 	.release	= seq_release_private,
4399 };
4400 #endif
4401 
4402 static int __init slab_proc_init(void)
4403 {
4404 #ifdef CONFIG_DEBUG_SLAB_LEAK
4405 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4406 #endif
4407 	return 0;
4408 }
4409 module_init(slab_proc_init);
4410 #endif
4411 
4412 #ifdef CONFIG_HARDENED_USERCOPY
4413 /*
4414  * Rejects objects that are incorrectly sized.
4415  *
4416  * Returns NULL if check passes, otherwise const char * to name of cache
4417  * to indicate an error.
4418  */
4419 const char *__check_heap_object(const void *ptr, unsigned long n,
4420 				struct page *page)
4421 {
4422 	struct kmem_cache *cachep;
4423 	unsigned int objnr;
4424 	unsigned long offset;
4425 
4426 	/* Find and validate object. */
4427 	cachep = page->slab_cache;
4428 	objnr = obj_to_index(cachep, page, (void *)ptr);
4429 	BUG_ON(objnr >= cachep->num);
4430 
4431 	/* Find offset within object. */
4432 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4433 
4434 	/* Allow address range falling entirely within object size. */
4435 	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4436 		return NULL;
4437 
4438 	return cachep->name;
4439 }
4440 #endif /* CONFIG_HARDENED_USERCOPY */
4441 
4442 /**
4443  * ksize - get the actual amount of memory allocated for a given object
4444  * @objp: Pointer to the object
4445  *
4446  * kmalloc may internally round up allocations and return more memory
4447  * than requested. ksize() can be used to determine the actual amount of
4448  * memory allocated. The caller may use this additional memory, even though
4449  * a smaller amount of memory was initially specified with the kmalloc call.
4450  * The caller must guarantee that objp points to a valid object previously
4451  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4452  * must not be freed during the duration of the call.
4453  */
4454 size_t ksize(const void *objp)
4455 {
4456 	size_t size;
4457 
4458 	BUG_ON(!objp);
4459 	if (unlikely(objp == ZERO_SIZE_PTR))
4460 		return 0;
4461 
4462 	size = virt_to_cache(objp)->object_size;
4463 	/* We assume that ksize callers could use the whole allocated area,
4464 	 * so we need to unpoison this area.
4465 	 */
4466 	kasan_unpoison_shadow(objp, size);
4467 
4468 	return size;
4469 }
4470 EXPORT_SYMBOL(ksize);
4471