1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'slab_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL) 255 #define CFLGS_OFF_SLAB (0x80000000UL) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 #ifdef CONFIG_DEBUG_SLAB_LEAK 366 367 static inline bool is_store_user_clean(struct kmem_cache *cachep) 368 { 369 return atomic_read(&cachep->store_user_clean) == 1; 370 } 371 372 static inline void set_store_user_clean(struct kmem_cache *cachep) 373 { 374 atomic_set(&cachep->store_user_clean, 1); 375 } 376 377 static inline void set_store_user_dirty(struct kmem_cache *cachep) 378 { 379 if (is_store_user_clean(cachep)) 380 atomic_set(&cachep->store_user_clean, 0); 381 } 382 383 #else 384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 385 386 #endif 387 388 /* 389 * Do not go above this order unless 0 objects fit into the slab or 390 * overridden on the command line. 391 */ 392 #define SLAB_MAX_ORDER_HI 1 393 #define SLAB_MAX_ORDER_LO 0 394 static int slab_max_order = SLAB_MAX_ORDER_LO; 395 static bool slab_max_order_set __initdata; 396 397 static inline struct kmem_cache *virt_to_cache(const void *obj) 398 { 399 struct page *page = virt_to_head_page(obj); 400 return page->slab_cache; 401 } 402 403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 404 unsigned int idx) 405 { 406 return page->s_mem + cache->size * idx; 407 } 408 409 /* 410 * We want to avoid an expensive divide : (offset / cache->size) 411 * Using the fact that size is a constant for a particular cache, 412 * we can replace (offset / cache->size) by 413 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 414 */ 415 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 416 const struct page *page, void *obj) 417 { 418 u32 offset = (obj - page->s_mem); 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 420 } 421 422 #define BOOT_CPUCACHE_ENTRIES 1 423 /* internal cache of cache description objs */ 424 static struct kmem_cache kmem_cache_boot = { 425 .batchcount = 1, 426 .limit = BOOT_CPUCACHE_ENTRIES, 427 .shared = 1, 428 .size = sizeof(struct kmem_cache), 429 .name = "kmem_cache", 430 }; 431 432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 433 434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 435 { 436 return this_cpu_ptr(cachep->cpu_cache); 437 } 438 439 /* 440 * Calculate the number of objects and left-over bytes for a given buffer size. 441 */ 442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 443 unsigned long flags, size_t *left_over) 444 { 445 unsigned int num; 446 size_t slab_size = PAGE_SIZE << gfporder; 447 448 /* 449 * The slab management structure can be either off the slab or 450 * on it. For the latter case, the memory allocated for a 451 * slab is used for: 452 * 453 * - @buffer_size bytes for each object 454 * - One freelist_idx_t for each object 455 * 456 * We don't need to consider alignment of freelist because 457 * freelist will be at the end of slab page. The objects will be 458 * at the correct alignment. 459 * 460 * If the slab management structure is off the slab, then the 461 * alignment will already be calculated into the size. Because 462 * the slabs are all pages aligned, the objects will be at the 463 * correct alignment when allocated. 464 */ 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 466 num = slab_size / buffer_size; 467 *left_over = slab_size % buffer_size; 468 } else { 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 470 *left_over = slab_size % 471 (buffer_size + sizeof(freelist_idx_t)); 472 } 473 474 return num; 475 } 476 477 #if DEBUG 478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 479 480 static void __slab_error(const char *function, struct kmem_cache *cachep, 481 char *msg) 482 { 483 pr_err("slab error in %s(): cache `%s': %s\n", 484 function, cachep->name, msg); 485 dump_stack(); 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 487 } 488 #endif 489 490 /* 491 * By default on NUMA we use alien caches to stage the freeing of 492 * objects allocated from other nodes. This causes massive memory 493 * inefficiencies when using fake NUMA setup to split memory into a 494 * large number of small nodes, so it can be disabled on the command 495 * line 496 */ 497 498 static int use_alien_caches __read_mostly = 1; 499 static int __init noaliencache_setup(char *s) 500 { 501 use_alien_caches = 0; 502 return 1; 503 } 504 __setup("noaliencache", noaliencache_setup); 505 506 static int __init slab_max_order_setup(char *str) 507 { 508 get_option(&str, &slab_max_order); 509 slab_max_order = slab_max_order < 0 ? 0 : 510 min(slab_max_order, MAX_ORDER - 1); 511 slab_max_order_set = true; 512 513 return 1; 514 } 515 __setup("slab_max_order=", slab_max_order_setup); 516 517 #ifdef CONFIG_NUMA 518 /* 519 * Special reaping functions for NUMA systems called from cache_reap(). 520 * These take care of doing round robin flushing of alien caches (containing 521 * objects freed on different nodes from which they were allocated) and the 522 * flushing of remote pcps by calling drain_node_pages. 523 */ 524 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 525 526 static void init_reap_node(int cpu) 527 { 528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 529 node_online_map); 530 } 531 532 static void next_reap_node(void) 533 { 534 int node = __this_cpu_read(slab_reap_node); 535 536 node = next_node_in(node, node_online_map); 537 __this_cpu_write(slab_reap_node, node); 538 } 539 540 #else 541 #define init_reap_node(cpu) do { } while (0) 542 #define next_reap_node(void) do { } while (0) 543 #endif 544 545 /* 546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 547 * via the workqueue/eventd. 548 * Add the CPU number into the expiration time to minimize the possibility of 549 * the CPUs getting into lockstep and contending for the global cache chain 550 * lock. 551 */ 552 static void start_cpu_timer(int cpu) 553 { 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 555 556 if (reap_work->work.func == NULL) { 557 init_reap_node(cpu); 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 559 schedule_delayed_work_on(cpu, reap_work, 560 __round_jiffies_relative(HZ, cpu)); 561 } 562 } 563 564 static void init_arraycache(struct array_cache *ac, int limit, int batch) 565 { 566 /* 567 * The array_cache structures contain pointers to free object. 568 * However, when such objects are allocated or transferred to another 569 * cache the pointers are not cleared and they could be counted as 570 * valid references during a kmemleak scan. Therefore, kmemleak must 571 * not scan such objects. 572 */ 573 kmemleak_no_scan(ac); 574 if (ac) { 575 ac->avail = 0; 576 ac->limit = limit; 577 ac->batchcount = batch; 578 ac->touched = 0; 579 } 580 } 581 582 static struct array_cache *alloc_arraycache(int node, int entries, 583 int batchcount, gfp_t gfp) 584 { 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 586 struct array_cache *ac = NULL; 587 588 ac = kmalloc_node(memsize, gfp, node); 589 init_arraycache(ac, entries, batchcount); 590 return ac; 591 } 592 593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 594 struct page *page, void *objp) 595 { 596 struct kmem_cache_node *n; 597 int page_node; 598 LIST_HEAD(list); 599 600 page_node = page_to_nid(page); 601 n = get_node(cachep, page_node); 602 603 spin_lock(&n->list_lock); 604 free_block(cachep, &objp, 1, page_node, &list); 605 spin_unlock(&n->list_lock); 606 607 slabs_destroy(cachep, &list); 608 } 609 610 /* 611 * Transfer objects in one arraycache to another. 612 * Locking must be handled by the caller. 613 * 614 * Return the number of entries transferred. 615 */ 616 static int transfer_objects(struct array_cache *to, 617 struct array_cache *from, unsigned int max) 618 { 619 /* Figure out how many entries to transfer */ 620 int nr = min3(from->avail, max, to->limit - to->avail); 621 622 if (!nr) 623 return 0; 624 625 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 626 sizeof(void *) *nr); 627 628 from->avail -= nr; 629 to->avail += nr; 630 return nr; 631 } 632 633 #ifndef CONFIG_NUMA 634 635 #define drain_alien_cache(cachep, alien) do { } while (0) 636 #define reap_alien(cachep, n) do { } while (0) 637 638 static inline struct alien_cache **alloc_alien_cache(int node, 639 int limit, gfp_t gfp) 640 { 641 return NULL; 642 } 643 644 static inline void free_alien_cache(struct alien_cache **ac_ptr) 645 { 646 } 647 648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 649 { 650 return 0; 651 } 652 653 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 654 gfp_t flags) 655 { 656 return NULL; 657 } 658 659 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 660 gfp_t flags, int nodeid) 661 { 662 return NULL; 663 } 664 665 static inline gfp_t gfp_exact_node(gfp_t flags) 666 { 667 return flags & ~__GFP_NOFAIL; 668 } 669 670 #else /* CONFIG_NUMA */ 671 672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 674 675 static struct alien_cache *__alloc_alien_cache(int node, int entries, 676 int batch, gfp_t gfp) 677 { 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 679 struct alien_cache *alc = NULL; 680 681 alc = kmalloc_node(memsize, gfp, node); 682 init_arraycache(&alc->ac, entries, batch); 683 spin_lock_init(&alc->lock); 684 return alc; 685 } 686 687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 688 { 689 struct alien_cache **alc_ptr; 690 size_t memsize = sizeof(void *) * nr_node_ids; 691 int i; 692 693 if (limit > 1) 694 limit = 12; 695 alc_ptr = kzalloc_node(memsize, gfp, node); 696 if (!alc_ptr) 697 return NULL; 698 699 for_each_node(i) { 700 if (i == node || !node_online(i)) 701 continue; 702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 703 if (!alc_ptr[i]) { 704 for (i--; i >= 0; i--) 705 kfree(alc_ptr[i]); 706 kfree(alc_ptr); 707 return NULL; 708 } 709 } 710 return alc_ptr; 711 } 712 713 static void free_alien_cache(struct alien_cache **alc_ptr) 714 { 715 int i; 716 717 if (!alc_ptr) 718 return; 719 for_each_node(i) 720 kfree(alc_ptr[i]); 721 kfree(alc_ptr); 722 } 723 724 static void __drain_alien_cache(struct kmem_cache *cachep, 725 struct array_cache *ac, int node, 726 struct list_head *list) 727 { 728 struct kmem_cache_node *n = get_node(cachep, node); 729 730 if (ac->avail) { 731 spin_lock(&n->list_lock); 732 /* 733 * Stuff objects into the remote nodes shared array first. 734 * That way we could avoid the overhead of putting the objects 735 * into the free lists and getting them back later. 736 */ 737 if (n->shared) 738 transfer_objects(n->shared, ac, ac->limit); 739 740 free_block(cachep, ac->entry, ac->avail, node, list); 741 ac->avail = 0; 742 spin_unlock(&n->list_lock); 743 } 744 } 745 746 /* 747 * Called from cache_reap() to regularly drain alien caches round robin. 748 */ 749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 750 { 751 int node = __this_cpu_read(slab_reap_node); 752 753 if (n->alien) { 754 struct alien_cache *alc = n->alien[node]; 755 struct array_cache *ac; 756 757 if (alc) { 758 ac = &alc->ac; 759 if (ac->avail && spin_trylock_irq(&alc->lock)) { 760 LIST_HEAD(list); 761 762 __drain_alien_cache(cachep, ac, node, &list); 763 spin_unlock_irq(&alc->lock); 764 slabs_destroy(cachep, &list); 765 } 766 } 767 } 768 } 769 770 static void drain_alien_cache(struct kmem_cache *cachep, 771 struct alien_cache **alien) 772 { 773 int i = 0; 774 struct alien_cache *alc; 775 struct array_cache *ac; 776 unsigned long flags; 777 778 for_each_online_node(i) { 779 alc = alien[i]; 780 if (alc) { 781 LIST_HEAD(list); 782 783 ac = &alc->ac; 784 spin_lock_irqsave(&alc->lock, flags); 785 __drain_alien_cache(cachep, ac, i, &list); 786 spin_unlock_irqrestore(&alc->lock, flags); 787 slabs_destroy(cachep, &list); 788 } 789 } 790 } 791 792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 793 int node, int page_node) 794 { 795 struct kmem_cache_node *n; 796 struct alien_cache *alien = NULL; 797 struct array_cache *ac; 798 LIST_HEAD(list); 799 800 n = get_node(cachep, node); 801 STATS_INC_NODEFREES(cachep); 802 if (n->alien && n->alien[page_node]) { 803 alien = n->alien[page_node]; 804 ac = &alien->ac; 805 spin_lock(&alien->lock); 806 if (unlikely(ac->avail == ac->limit)) { 807 STATS_INC_ACOVERFLOW(cachep); 808 __drain_alien_cache(cachep, ac, page_node, &list); 809 } 810 ac->entry[ac->avail++] = objp; 811 spin_unlock(&alien->lock); 812 slabs_destroy(cachep, &list); 813 } else { 814 n = get_node(cachep, page_node); 815 spin_lock(&n->list_lock); 816 free_block(cachep, &objp, 1, page_node, &list); 817 spin_unlock(&n->list_lock); 818 slabs_destroy(cachep, &list); 819 } 820 return 1; 821 } 822 823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 824 { 825 int page_node = page_to_nid(virt_to_page(objp)); 826 int node = numa_mem_id(); 827 /* 828 * Make sure we are not freeing a object from another node to the array 829 * cache on this cpu. 830 */ 831 if (likely(node == page_node)) 832 return 0; 833 834 return __cache_free_alien(cachep, objp, node, page_node); 835 } 836 837 /* 838 * Construct gfp mask to allocate from a specific node but do not reclaim or 839 * warn about failures. 840 */ 841 static inline gfp_t gfp_exact_node(gfp_t flags) 842 { 843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 844 } 845 #endif 846 847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 848 { 849 struct kmem_cache_node *n; 850 851 /* 852 * Set up the kmem_cache_node for cpu before we can 853 * begin anything. Make sure some other cpu on this 854 * node has not already allocated this 855 */ 856 n = get_node(cachep, node); 857 if (n) { 858 spin_lock_irq(&n->list_lock); 859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 860 cachep->num; 861 spin_unlock_irq(&n->list_lock); 862 863 return 0; 864 } 865 866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 867 if (!n) 868 return -ENOMEM; 869 870 kmem_cache_node_init(n); 871 n->next_reap = jiffies + REAPTIMEOUT_NODE + 872 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 873 874 n->free_limit = 875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 876 877 /* 878 * The kmem_cache_nodes don't come and go as CPUs 879 * come and go. slab_mutex is sufficient 880 * protection here. 881 */ 882 cachep->node[node] = n; 883 884 return 0; 885 } 886 887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 888 /* 889 * Allocates and initializes node for a node on each slab cache, used for 890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 891 * will be allocated off-node since memory is not yet online for the new node. 892 * When hotplugging memory or a cpu, existing node are not replaced if 893 * already in use. 894 * 895 * Must hold slab_mutex. 896 */ 897 static int init_cache_node_node(int node) 898 { 899 int ret; 900 struct kmem_cache *cachep; 901 902 list_for_each_entry(cachep, &slab_caches, list) { 903 ret = init_cache_node(cachep, node, GFP_KERNEL); 904 if (ret) 905 return ret; 906 } 907 908 return 0; 909 } 910 #endif 911 912 static int setup_kmem_cache_node(struct kmem_cache *cachep, 913 int node, gfp_t gfp, bool force_change) 914 { 915 int ret = -ENOMEM; 916 struct kmem_cache_node *n; 917 struct array_cache *old_shared = NULL; 918 struct array_cache *new_shared = NULL; 919 struct alien_cache **new_alien = NULL; 920 LIST_HEAD(list); 921 922 if (use_alien_caches) { 923 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 924 if (!new_alien) 925 goto fail; 926 } 927 928 if (cachep->shared) { 929 new_shared = alloc_arraycache(node, 930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 931 if (!new_shared) 932 goto fail; 933 } 934 935 ret = init_cache_node(cachep, node, gfp); 936 if (ret) 937 goto fail; 938 939 n = get_node(cachep, node); 940 spin_lock_irq(&n->list_lock); 941 if (n->shared && force_change) { 942 free_block(cachep, n->shared->entry, 943 n->shared->avail, node, &list); 944 n->shared->avail = 0; 945 } 946 947 if (!n->shared || force_change) { 948 old_shared = n->shared; 949 n->shared = new_shared; 950 new_shared = NULL; 951 } 952 953 if (!n->alien) { 954 n->alien = new_alien; 955 new_alien = NULL; 956 } 957 958 spin_unlock_irq(&n->list_lock); 959 slabs_destroy(cachep, &list); 960 961 /* 962 * To protect lockless access to n->shared during irq disabled context. 963 * If n->shared isn't NULL in irq disabled context, accessing to it is 964 * guaranteed to be valid until irq is re-enabled, because it will be 965 * freed after synchronize_sched(). 966 */ 967 if (old_shared && force_change) 968 synchronize_sched(); 969 970 fail: 971 kfree(old_shared); 972 kfree(new_shared); 973 free_alien_cache(new_alien); 974 975 return ret; 976 } 977 978 #ifdef CONFIG_SMP 979 980 static void cpuup_canceled(long cpu) 981 { 982 struct kmem_cache *cachep; 983 struct kmem_cache_node *n = NULL; 984 int node = cpu_to_mem(cpu); 985 const struct cpumask *mask = cpumask_of_node(node); 986 987 list_for_each_entry(cachep, &slab_caches, list) { 988 struct array_cache *nc; 989 struct array_cache *shared; 990 struct alien_cache **alien; 991 LIST_HEAD(list); 992 993 n = get_node(cachep, node); 994 if (!n) 995 continue; 996 997 spin_lock_irq(&n->list_lock); 998 999 /* Free limit for this kmem_cache_node */ 1000 n->free_limit -= cachep->batchcount; 1001 1002 /* cpu is dead; no one can alloc from it. */ 1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 1004 if (nc) { 1005 free_block(cachep, nc->entry, nc->avail, node, &list); 1006 nc->avail = 0; 1007 } 1008 1009 if (!cpumask_empty(mask)) { 1010 spin_unlock_irq(&n->list_lock); 1011 goto free_slab; 1012 } 1013 1014 shared = n->shared; 1015 if (shared) { 1016 free_block(cachep, shared->entry, 1017 shared->avail, node, &list); 1018 n->shared = NULL; 1019 } 1020 1021 alien = n->alien; 1022 n->alien = NULL; 1023 1024 spin_unlock_irq(&n->list_lock); 1025 1026 kfree(shared); 1027 if (alien) { 1028 drain_alien_cache(cachep, alien); 1029 free_alien_cache(alien); 1030 } 1031 1032 free_slab: 1033 slabs_destroy(cachep, &list); 1034 } 1035 /* 1036 * In the previous loop, all the objects were freed to 1037 * the respective cache's slabs, now we can go ahead and 1038 * shrink each nodelist to its limit. 1039 */ 1040 list_for_each_entry(cachep, &slab_caches, list) { 1041 n = get_node(cachep, node); 1042 if (!n) 1043 continue; 1044 drain_freelist(cachep, n, INT_MAX); 1045 } 1046 } 1047 1048 static int cpuup_prepare(long cpu) 1049 { 1050 struct kmem_cache *cachep; 1051 int node = cpu_to_mem(cpu); 1052 int err; 1053 1054 /* 1055 * We need to do this right in the beginning since 1056 * alloc_arraycache's are going to use this list. 1057 * kmalloc_node allows us to add the slab to the right 1058 * kmem_cache_node and not this cpu's kmem_cache_node 1059 */ 1060 err = init_cache_node_node(node); 1061 if (err < 0) 1062 goto bad; 1063 1064 /* 1065 * Now we can go ahead with allocating the shared arrays and 1066 * array caches 1067 */ 1068 list_for_each_entry(cachep, &slab_caches, list) { 1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1070 if (err) 1071 goto bad; 1072 } 1073 1074 return 0; 1075 bad: 1076 cpuup_canceled(cpu); 1077 return -ENOMEM; 1078 } 1079 1080 int slab_prepare_cpu(unsigned int cpu) 1081 { 1082 int err; 1083 1084 mutex_lock(&slab_mutex); 1085 err = cpuup_prepare(cpu); 1086 mutex_unlock(&slab_mutex); 1087 return err; 1088 } 1089 1090 /* 1091 * This is called for a failed online attempt and for a successful 1092 * offline. 1093 * 1094 * Even if all the cpus of a node are down, we don't free the 1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1096 * a kmalloc allocation from another cpu for memory from the node of 1097 * the cpu going down. The list3 structure is usually allocated from 1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1099 */ 1100 int slab_dead_cpu(unsigned int cpu) 1101 { 1102 mutex_lock(&slab_mutex); 1103 cpuup_canceled(cpu); 1104 mutex_unlock(&slab_mutex); 1105 return 0; 1106 } 1107 #endif 1108 1109 static int slab_online_cpu(unsigned int cpu) 1110 { 1111 start_cpu_timer(cpu); 1112 return 0; 1113 } 1114 1115 static int slab_offline_cpu(unsigned int cpu) 1116 { 1117 /* 1118 * Shutdown cache reaper. Note that the slab_mutex is held so 1119 * that if cache_reap() is invoked it cannot do anything 1120 * expensive but will only modify reap_work and reschedule the 1121 * timer. 1122 */ 1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1124 /* Now the cache_reaper is guaranteed to be not running. */ 1125 per_cpu(slab_reap_work, cpu).work.func = NULL; 1126 return 0; 1127 } 1128 1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1130 /* 1131 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1132 * Returns -EBUSY if all objects cannot be drained so that the node is not 1133 * removed. 1134 * 1135 * Must hold slab_mutex. 1136 */ 1137 static int __meminit drain_cache_node_node(int node) 1138 { 1139 struct kmem_cache *cachep; 1140 int ret = 0; 1141 1142 list_for_each_entry(cachep, &slab_caches, list) { 1143 struct kmem_cache_node *n; 1144 1145 n = get_node(cachep, node); 1146 if (!n) 1147 continue; 1148 1149 drain_freelist(cachep, n, INT_MAX); 1150 1151 if (!list_empty(&n->slabs_full) || 1152 !list_empty(&n->slabs_partial)) { 1153 ret = -EBUSY; 1154 break; 1155 } 1156 } 1157 return ret; 1158 } 1159 1160 static int __meminit slab_memory_callback(struct notifier_block *self, 1161 unsigned long action, void *arg) 1162 { 1163 struct memory_notify *mnb = arg; 1164 int ret = 0; 1165 int nid; 1166 1167 nid = mnb->status_change_nid; 1168 if (nid < 0) 1169 goto out; 1170 1171 switch (action) { 1172 case MEM_GOING_ONLINE: 1173 mutex_lock(&slab_mutex); 1174 ret = init_cache_node_node(nid); 1175 mutex_unlock(&slab_mutex); 1176 break; 1177 case MEM_GOING_OFFLINE: 1178 mutex_lock(&slab_mutex); 1179 ret = drain_cache_node_node(nid); 1180 mutex_unlock(&slab_mutex); 1181 break; 1182 case MEM_ONLINE: 1183 case MEM_OFFLINE: 1184 case MEM_CANCEL_ONLINE: 1185 case MEM_CANCEL_OFFLINE: 1186 break; 1187 } 1188 out: 1189 return notifier_from_errno(ret); 1190 } 1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1192 1193 /* 1194 * swap the static kmem_cache_node with kmalloced memory 1195 */ 1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1197 int nodeid) 1198 { 1199 struct kmem_cache_node *ptr; 1200 1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1202 BUG_ON(!ptr); 1203 1204 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1205 /* 1206 * Do not assume that spinlocks can be initialized via memcpy: 1207 */ 1208 spin_lock_init(&ptr->list_lock); 1209 1210 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1211 cachep->node[nodeid] = ptr; 1212 } 1213 1214 /* 1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1216 * size of kmem_cache_node. 1217 */ 1218 static void __init set_up_node(struct kmem_cache *cachep, int index) 1219 { 1220 int node; 1221 1222 for_each_online_node(node) { 1223 cachep->node[node] = &init_kmem_cache_node[index + node]; 1224 cachep->node[node]->next_reap = jiffies + 1225 REAPTIMEOUT_NODE + 1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1227 } 1228 } 1229 1230 /* 1231 * Initialisation. Called after the page allocator have been initialised and 1232 * before smp_init(). 1233 */ 1234 void __init kmem_cache_init(void) 1235 { 1236 int i; 1237 1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1239 sizeof(struct rcu_head)); 1240 kmem_cache = &kmem_cache_boot; 1241 1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1243 use_alien_caches = 0; 1244 1245 for (i = 0; i < NUM_INIT_LISTS; i++) 1246 kmem_cache_node_init(&init_kmem_cache_node[i]); 1247 1248 /* 1249 * Fragmentation resistance on low memory - only use bigger 1250 * page orders on machines with more than 32MB of memory if 1251 * not overridden on the command line. 1252 */ 1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1254 slab_max_order = SLAB_MAX_ORDER_HI; 1255 1256 /* Bootstrap is tricky, because several objects are allocated 1257 * from caches that do not exist yet: 1258 * 1) initialize the kmem_cache cache: it contains the struct 1259 * kmem_cache structures of all caches, except kmem_cache itself: 1260 * kmem_cache is statically allocated. 1261 * Initially an __init data area is used for the head array and the 1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1263 * array at the end of the bootstrap. 1264 * 2) Create the first kmalloc cache. 1265 * The struct kmem_cache for the new cache is allocated normally. 1266 * An __init data area is used for the head array. 1267 * 3) Create the remaining kmalloc caches, with minimally sized 1268 * head arrays. 1269 * 4) Replace the __init data head arrays for kmem_cache and the first 1270 * kmalloc cache with kmalloc allocated arrays. 1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1272 * the other cache's with kmalloc allocated memory. 1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1274 */ 1275 1276 /* 1) create the kmem_cache */ 1277 1278 /* 1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1280 */ 1281 create_boot_cache(kmem_cache, "kmem_cache", 1282 offsetof(struct kmem_cache, node) + 1283 nr_node_ids * sizeof(struct kmem_cache_node *), 1284 SLAB_HWCACHE_ALIGN); 1285 list_add(&kmem_cache->list, &slab_caches); 1286 slab_state = PARTIAL; 1287 1288 /* 1289 * Initialize the caches that provide memory for the kmem_cache_node 1290 * structures first. Without this, further allocations will bug. 1291 */ 1292 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache( 1293 kmalloc_info[INDEX_NODE].name, 1294 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1295 slab_state = PARTIAL_NODE; 1296 setup_kmalloc_cache_index_table(); 1297 1298 slab_early_init = 0; 1299 1300 /* 5) Replace the bootstrap kmem_cache_node */ 1301 { 1302 int nid; 1303 1304 for_each_online_node(nid) { 1305 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1306 1307 init_list(kmalloc_caches[INDEX_NODE], 1308 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1309 } 1310 } 1311 1312 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1313 } 1314 1315 void __init kmem_cache_init_late(void) 1316 { 1317 struct kmem_cache *cachep; 1318 1319 slab_state = UP; 1320 1321 /* 6) resize the head arrays to their final sizes */ 1322 mutex_lock(&slab_mutex); 1323 list_for_each_entry(cachep, &slab_caches, list) 1324 if (enable_cpucache(cachep, GFP_NOWAIT)) 1325 BUG(); 1326 mutex_unlock(&slab_mutex); 1327 1328 /* Done! */ 1329 slab_state = FULL; 1330 1331 #ifdef CONFIG_NUMA 1332 /* 1333 * Register a memory hotplug callback that initializes and frees 1334 * node. 1335 */ 1336 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1337 #endif 1338 1339 /* 1340 * The reap timers are started later, with a module init call: That part 1341 * of the kernel is not yet operational. 1342 */ 1343 } 1344 1345 static int __init cpucache_init(void) 1346 { 1347 int ret; 1348 1349 /* 1350 * Register the timers that return unneeded pages to the page allocator 1351 */ 1352 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1353 slab_online_cpu, slab_offline_cpu); 1354 WARN_ON(ret < 0); 1355 1356 /* Done! */ 1357 slab_state = FULL; 1358 return 0; 1359 } 1360 __initcall(cpucache_init); 1361 1362 static noinline void 1363 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1364 { 1365 #if DEBUG 1366 struct kmem_cache_node *n; 1367 unsigned long flags; 1368 int node; 1369 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1370 DEFAULT_RATELIMIT_BURST); 1371 1372 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1373 return; 1374 1375 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1376 nodeid, gfpflags, &gfpflags); 1377 pr_warn(" cache: %s, object size: %d, order: %d\n", 1378 cachep->name, cachep->size, cachep->gfporder); 1379 1380 for_each_kmem_cache_node(cachep, node, n) { 1381 unsigned long total_slabs, free_slabs, free_objs; 1382 1383 spin_lock_irqsave(&n->list_lock, flags); 1384 total_slabs = n->total_slabs; 1385 free_slabs = n->free_slabs; 1386 free_objs = n->free_objects; 1387 spin_unlock_irqrestore(&n->list_lock, flags); 1388 1389 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1390 node, total_slabs - free_slabs, total_slabs, 1391 (total_slabs * cachep->num) - free_objs, 1392 total_slabs * cachep->num); 1393 } 1394 #endif 1395 } 1396 1397 /* 1398 * Interface to system's page allocator. No need to hold the 1399 * kmem_cache_node ->list_lock. 1400 * 1401 * If we requested dmaable memory, we will get it. Even if we 1402 * did not request dmaable memory, we might get it, but that 1403 * would be relatively rare and ignorable. 1404 */ 1405 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1406 int nodeid) 1407 { 1408 struct page *page; 1409 int nr_pages; 1410 1411 flags |= cachep->allocflags; 1412 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1413 flags |= __GFP_RECLAIMABLE; 1414 1415 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1416 if (!page) { 1417 slab_out_of_memory(cachep, flags, nodeid); 1418 return NULL; 1419 } 1420 1421 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1422 __free_pages(page, cachep->gfporder); 1423 return NULL; 1424 } 1425 1426 nr_pages = (1 << cachep->gfporder); 1427 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1428 add_zone_page_state(page_zone(page), 1429 NR_SLAB_RECLAIMABLE, nr_pages); 1430 else 1431 add_zone_page_state(page_zone(page), 1432 NR_SLAB_UNRECLAIMABLE, nr_pages); 1433 1434 __SetPageSlab(page); 1435 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1436 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1437 SetPageSlabPfmemalloc(page); 1438 1439 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1440 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1441 1442 if (cachep->ctor) 1443 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1444 else 1445 kmemcheck_mark_unallocated_pages(page, nr_pages); 1446 } 1447 1448 return page; 1449 } 1450 1451 /* 1452 * Interface to system's page release. 1453 */ 1454 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1455 { 1456 int order = cachep->gfporder; 1457 unsigned long nr_freed = (1 << order); 1458 1459 kmemcheck_free_shadow(page, order); 1460 1461 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1462 sub_zone_page_state(page_zone(page), 1463 NR_SLAB_RECLAIMABLE, nr_freed); 1464 else 1465 sub_zone_page_state(page_zone(page), 1466 NR_SLAB_UNRECLAIMABLE, nr_freed); 1467 1468 BUG_ON(!PageSlab(page)); 1469 __ClearPageSlabPfmemalloc(page); 1470 __ClearPageSlab(page); 1471 page_mapcount_reset(page); 1472 page->mapping = NULL; 1473 1474 if (current->reclaim_state) 1475 current->reclaim_state->reclaimed_slab += nr_freed; 1476 memcg_uncharge_slab(page, order, cachep); 1477 __free_pages(page, order); 1478 } 1479 1480 static void kmem_rcu_free(struct rcu_head *head) 1481 { 1482 struct kmem_cache *cachep; 1483 struct page *page; 1484 1485 page = container_of(head, struct page, rcu_head); 1486 cachep = page->slab_cache; 1487 1488 kmem_freepages(cachep, page); 1489 } 1490 1491 #if DEBUG 1492 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1493 { 1494 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1495 (cachep->size % PAGE_SIZE) == 0) 1496 return true; 1497 1498 return false; 1499 } 1500 1501 #ifdef CONFIG_DEBUG_PAGEALLOC 1502 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1503 unsigned long caller) 1504 { 1505 int size = cachep->object_size; 1506 1507 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1508 1509 if (size < 5 * sizeof(unsigned long)) 1510 return; 1511 1512 *addr++ = 0x12345678; 1513 *addr++ = caller; 1514 *addr++ = smp_processor_id(); 1515 size -= 3 * sizeof(unsigned long); 1516 { 1517 unsigned long *sptr = &caller; 1518 unsigned long svalue; 1519 1520 while (!kstack_end(sptr)) { 1521 svalue = *sptr++; 1522 if (kernel_text_address(svalue)) { 1523 *addr++ = svalue; 1524 size -= sizeof(unsigned long); 1525 if (size <= sizeof(unsigned long)) 1526 break; 1527 } 1528 } 1529 1530 } 1531 *addr++ = 0x87654321; 1532 } 1533 1534 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1535 int map, unsigned long caller) 1536 { 1537 if (!is_debug_pagealloc_cache(cachep)) 1538 return; 1539 1540 if (caller) 1541 store_stackinfo(cachep, objp, caller); 1542 1543 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1544 } 1545 1546 #else 1547 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1548 int map, unsigned long caller) {} 1549 1550 #endif 1551 1552 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1553 { 1554 int size = cachep->object_size; 1555 addr = &((char *)addr)[obj_offset(cachep)]; 1556 1557 memset(addr, val, size); 1558 *(unsigned char *)(addr + size - 1) = POISON_END; 1559 } 1560 1561 static void dump_line(char *data, int offset, int limit) 1562 { 1563 int i; 1564 unsigned char error = 0; 1565 int bad_count = 0; 1566 1567 pr_err("%03x: ", offset); 1568 for (i = 0; i < limit; i++) { 1569 if (data[offset + i] != POISON_FREE) { 1570 error = data[offset + i]; 1571 bad_count++; 1572 } 1573 } 1574 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1575 &data[offset], limit, 1); 1576 1577 if (bad_count == 1) { 1578 error ^= POISON_FREE; 1579 if (!(error & (error - 1))) { 1580 pr_err("Single bit error detected. Probably bad RAM.\n"); 1581 #ifdef CONFIG_X86 1582 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1583 #else 1584 pr_err("Run a memory test tool.\n"); 1585 #endif 1586 } 1587 } 1588 } 1589 #endif 1590 1591 #if DEBUG 1592 1593 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1594 { 1595 int i, size; 1596 char *realobj; 1597 1598 if (cachep->flags & SLAB_RED_ZONE) { 1599 pr_err("Redzone: 0x%llx/0x%llx\n", 1600 *dbg_redzone1(cachep, objp), 1601 *dbg_redzone2(cachep, objp)); 1602 } 1603 1604 if (cachep->flags & SLAB_STORE_USER) { 1605 pr_err("Last user: [<%p>](%pSR)\n", 1606 *dbg_userword(cachep, objp), 1607 *dbg_userword(cachep, objp)); 1608 } 1609 realobj = (char *)objp + obj_offset(cachep); 1610 size = cachep->object_size; 1611 for (i = 0; i < size && lines; i += 16, lines--) { 1612 int limit; 1613 limit = 16; 1614 if (i + limit > size) 1615 limit = size - i; 1616 dump_line(realobj, i, limit); 1617 } 1618 } 1619 1620 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1621 { 1622 char *realobj; 1623 int size, i; 1624 int lines = 0; 1625 1626 if (is_debug_pagealloc_cache(cachep)) 1627 return; 1628 1629 realobj = (char *)objp + obj_offset(cachep); 1630 size = cachep->object_size; 1631 1632 for (i = 0; i < size; i++) { 1633 char exp = POISON_FREE; 1634 if (i == size - 1) 1635 exp = POISON_END; 1636 if (realobj[i] != exp) { 1637 int limit; 1638 /* Mismatch ! */ 1639 /* Print header */ 1640 if (lines == 0) { 1641 pr_err("Slab corruption (%s): %s start=%p, len=%d\n", 1642 print_tainted(), cachep->name, 1643 realobj, size); 1644 print_objinfo(cachep, objp, 0); 1645 } 1646 /* Hexdump the affected line */ 1647 i = (i / 16) * 16; 1648 limit = 16; 1649 if (i + limit > size) 1650 limit = size - i; 1651 dump_line(realobj, i, limit); 1652 i += 16; 1653 lines++; 1654 /* Limit to 5 lines */ 1655 if (lines > 5) 1656 break; 1657 } 1658 } 1659 if (lines != 0) { 1660 /* Print some data about the neighboring objects, if they 1661 * exist: 1662 */ 1663 struct page *page = virt_to_head_page(objp); 1664 unsigned int objnr; 1665 1666 objnr = obj_to_index(cachep, page, objp); 1667 if (objnr) { 1668 objp = index_to_obj(cachep, page, objnr - 1); 1669 realobj = (char *)objp + obj_offset(cachep); 1670 pr_err("Prev obj: start=%p, len=%d\n", realobj, size); 1671 print_objinfo(cachep, objp, 2); 1672 } 1673 if (objnr + 1 < cachep->num) { 1674 objp = index_to_obj(cachep, page, objnr + 1); 1675 realobj = (char *)objp + obj_offset(cachep); 1676 pr_err("Next obj: start=%p, len=%d\n", realobj, size); 1677 print_objinfo(cachep, objp, 2); 1678 } 1679 } 1680 } 1681 #endif 1682 1683 #if DEBUG 1684 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1685 struct page *page) 1686 { 1687 int i; 1688 1689 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1690 poison_obj(cachep, page->freelist - obj_offset(cachep), 1691 POISON_FREE); 1692 } 1693 1694 for (i = 0; i < cachep->num; i++) { 1695 void *objp = index_to_obj(cachep, page, i); 1696 1697 if (cachep->flags & SLAB_POISON) { 1698 check_poison_obj(cachep, objp); 1699 slab_kernel_map(cachep, objp, 1, 0); 1700 } 1701 if (cachep->flags & SLAB_RED_ZONE) { 1702 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1703 slab_error(cachep, "start of a freed object was overwritten"); 1704 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1705 slab_error(cachep, "end of a freed object was overwritten"); 1706 } 1707 } 1708 } 1709 #else 1710 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1711 struct page *page) 1712 { 1713 } 1714 #endif 1715 1716 /** 1717 * slab_destroy - destroy and release all objects in a slab 1718 * @cachep: cache pointer being destroyed 1719 * @page: page pointer being destroyed 1720 * 1721 * Destroy all the objs in a slab page, and release the mem back to the system. 1722 * Before calling the slab page must have been unlinked from the cache. The 1723 * kmem_cache_node ->list_lock is not held/needed. 1724 */ 1725 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1726 { 1727 void *freelist; 1728 1729 freelist = page->freelist; 1730 slab_destroy_debugcheck(cachep, page); 1731 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 1732 call_rcu(&page->rcu_head, kmem_rcu_free); 1733 else 1734 kmem_freepages(cachep, page); 1735 1736 /* 1737 * From now on, we don't use freelist 1738 * although actual page can be freed in rcu context 1739 */ 1740 if (OFF_SLAB(cachep)) 1741 kmem_cache_free(cachep->freelist_cache, freelist); 1742 } 1743 1744 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1745 { 1746 struct page *page, *n; 1747 1748 list_for_each_entry_safe(page, n, list, lru) { 1749 list_del(&page->lru); 1750 slab_destroy(cachep, page); 1751 } 1752 } 1753 1754 /** 1755 * calculate_slab_order - calculate size (page order) of slabs 1756 * @cachep: pointer to the cache that is being created 1757 * @size: size of objects to be created in this cache. 1758 * @flags: slab allocation flags 1759 * 1760 * Also calculates the number of objects per slab. 1761 * 1762 * This could be made much more intelligent. For now, try to avoid using 1763 * high order pages for slabs. When the gfp() functions are more friendly 1764 * towards high-order requests, this should be changed. 1765 */ 1766 static size_t calculate_slab_order(struct kmem_cache *cachep, 1767 size_t size, unsigned long flags) 1768 { 1769 size_t left_over = 0; 1770 int gfporder; 1771 1772 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1773 unsigned int num; 1774 size_t remainder; 1775 1776 num = cache_estimate(gfporder, size, flags, &remainder); 1777 if (!num) 1778 continue; 1779 1780 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1781 if (num > SLAB_OBJ_MAX_NUM) 1782 break; 1783 1784 if (flags & CFLGS_OFF_SLAB) { 1785 struct kmem_cache *freelist_cache; 1786 size_t freelist_size; 1787 1788 freelist_size = num * sizeof(freelist_idx_t); 1789 freelist_cache = kmalloc_slab(freelist_size, 0u); 1790 if (!freelist_cache) 1791 continue; 1792 1793 /* 1794 * Needed to avoid possible looping condition 1795 * in cache_grow_begin() 1796 */ 1797 if (OFF_SLAB(freelist_cache)) 1798 continue; 1799 1800 /* check if off slab has enough benefit */ 1801 if (freelist_cache->size > cachep->size / 2) 1802 continue; 1803 } 1804 1805 /* Found something acceptable - save it away */ 1806 cachep->num = num; 1807 cachep->gfporder = gfporder; 1808 left_over = remainder; 1809 1810 /* 1811 * A VFS-reclaimable slab tends to have most allocations 1812 * as GFP_NOFS and we really don't want to have to be allocating 1813 * higher-order pages when we are unable to shrink dcache. 1814 */ 1815 if (flags & SLAB_RECLAIM_ACCOUNT) 1816 break; 1817 1818 /* 1819 * Large number of objects is good, but very large slabs are 1820 * currently bad for the gfp()s. 1821 */ 1822 if (gfporder >= slab_max_order) 1823 break; 1824 1825 /* 1826 * Acceptable internal fragmentation? 1827 */ 1828 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1829 break; 1830 } 1831 return left_over; 1832 } 1833 1834 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1835 struct kmem_cache *cachep, int entries, int batchcount) 1836 { 1837 int cpu; 1838 size_t size; 1839 struct array_cache __percpu *cpu_cache; 1840 1841 size = sizeof(void *) * entries + sizeof(struct array_cache); 1842 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1843 1844 if (!cpu_cache) 1845 return NULL; 1846 1847 for_each_possible_cpu(cpu) { 1848 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1849 entries, batchcount); 1850 } 1851 1852 return cpu_cache; 1853 } 1854 1855 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1856 { 1857 if (slab_state >= FULL) 1858 return enable_cpucache(cachep, gfp); 1859 1860 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1861 if (!cachep->cpu_cache) 1862 return 1; 1863 1864 if (slab_state == DOWN) { 1865 /* Creation of first cache (kmem_cache). */ 1866 set_up_node(kmem_cache, CACHE_CACHE); 1867 } else if (slab_state == PARTIAL) { 1868 /* For kmem_cache_node */ 1869 set_up_node(cachep, SIZE_NODE); 1870 } else { 1871 int node; 1872 1873 for_each_online_node(node) { 1874 cachep->node[node] = kmalloc_node( 1875 sizeof(struct kmem_cache_node), gfp, node); 1876 BUG_ON(!cachep->node[node]); 1877 kmem_cache_node_init(cachep->node[node]); 1878 } 1879 } 1880 1881 cachep->node[numa_mem_id()]->next_reap = 1882 jiffies + REAPTIMEOUT_NODE + 1883 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1884 1885 cpu_cache_get(cachep)->avail = 0; 1886 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1887 cpu_cache_get(cachep)->batchcount = 1; 1888 cpu_cache_get(cachep)->touched = 0; 1889 cachep->batchcount = 1; 1890 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1891 return 0; 1892 } 1893 1894 unsigned long kmem_cache_flags(unsigned long object_size, 1895 unsigned long flags, const char *name, 1896 void (*ctor)(void *)) 1897 { 1898 return flags; 1899 } 1900 1901 struct kmem_cache * 1902 __kmem_cache_alias(const char *name, size_t size, size_t align, 1903 unsigned long flags, void (*ctor)(void *)) 1904 { 1905 struct kmem_cache *cachep; 1906 1907 cachep = find_mergeable(size, align, flags, name, ctor); 1908 if (cachep) { 1909 cachep->refcount++; 1910 1911 /* 1912 * Adjust the object sizes so that we clear 1913 * the complete object on kzalloc. 1914 */ 1915 cachep->object_size = max_t(int, cachep->object_size, size); 1916 } 1917 return cachep; 1918 } 1919 1920 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1921 size_t size, unsigned long flags) 1922 { 1923 size_t left; 1924 1925 cachep->num = 0; 1926 1927 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU) 1928 return false; 1929 1930 left = calculate_slab_order(cachep, size, 1931 flags | CFLGS_OBJFREELIST_SLAB); 1932 if (!cachep->num) 1933 return false; 1934 1935 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1936 return false; 1937 1938 cachep->colour = left / cachep->colour_off; 1939 1940 return true; 1941 } 1942 1943 static bool set_off_slab_cache(struct kmem_cache *cachep, 1944 size_t size, unsigned long flags) 1945 { 1946 size_t left; 1947 1948 cachep->num = 0; 1949 1950 /* 1951 * Always use on-slab management when SLAB_NOLEAKTRACE 1952 * to avoid recursive calls into kmemleak. 1953 */ 1954 if (flags & SLAB_NOLEAKTRACE) 1955 return false; 1956 1957 /* 1958 * Size is large, assume best to place the slab management obj 1959 * off-slab (should allow better packing of objs). 1960 */ 1961 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1962 if (!cachep->num) 1963 return false; 1964 1965 /* 1966 * If the slab has been placed off-slab, and we have enough space then 1967 * move it on-slab. This is at the expense of any extra colouring. 1968 */ 1969 if (left >= cachep->num * sizeof(freelist_idx_t)) 1970 return false; 1971 1972 cachep->colour = left / cachep->colour_off; 1973 1974 return true; 1975 } 1976 1977 static bool set_on_slab_cache(struct kmem_cache *cachep, 1978 size_t size, unsigned long flags) 1979 { 1980 size_t left; 1981 1982 cachep->num = 0; 1983 1984 left = calculate_slab_order(cachep, size, flags); 1985 if (!cachep->num) 1986 return false; 1987 1988 cachep->colour = left / cachep->colour_off; 1989 1990 return true; 1991 } 1992 1993 /** 1994 * __kmem_cache_create - Create a cache. 1995 * @cachep: cache management descriptor 1996 * @flags: SLAB flags 1997 * 1998 * Returns a ptr to the cache on success, NULL on failure. 1999 * Cannot be called within a int, but can be interrupted. 2000 * The @ctor is run when new pages are allocated by the cache. 2001 * 2002 * The flags are 2003 * 2004 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2005 * to catch references to uninitialised memory. 2006 * 2007 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2008 * for buffer overruns. 2009 * 2010 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2011 * cacheline. This can be beneficial if you're counting cycles as closely 2012 * as davem. 2013 */ 2014 int 2015 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2016 { 2017 size_t ralign = BYTES_PER_WORD; 2018 gfp_t gfp; 2019 int err; 2020 size_t size = cachep->size; 2021 2022 #if DEBUG 2023 #if FORCED_DEBUG 2024 /* 2025 * Enable redzoning and last user accounting, except for caches with 2026 * large objects, if the increased size would increase the object size 2027 * above the next power of two: caches with object sizes just above a 2028 * power of two have a significant amount of internal fragmentation. 2029 */ 2030 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2031 2 * sizeof(unsigned long long))) 2032 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2033 if (!(flags & SLAB_DESTROY_BY_RCU)) 2034 flags |= SLAB_POISON; 2035 #endif 2036 #endif 2037 2038 /* 2039 * Check that size is in terms of words. This is needed to avoid 2040 * unaligned accesses for some archs when redzoning is used, and makes 2041 * sure any on-slab bufctl's are also correctly aligned. 2042 */ 2043 if (size & (BYTES_PER_WORD - 1)) { 2044 size += (BYTES_PER_WORD - 1); 2045 size &= ~(BYTES_PER_WORD - 1); 2046 } 2047 2048 if (flags & SLAB_RED_ZONE) { 2049 ralign = REDZONE_ALIGN; 2050 /* If redzoning, ensure that the second redzone is suitably 2051 * aligned, by adjusting the object size accordingly. */ 2052 size += REDZONE_ALIGN - 1; 2053 size &= ~(REDZONE_ALIGN - 1); 2054 } 2055 2056 /* 3) caller mandated alignment */ 2057 if (ralign < cachep->align) { 2058 ralign = cachep->align; 2059 } 2060 /* disable debug if necessary */ 2061 if (ralign > __alignof__(unsigned long long)) 2062 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2063 /* 2064 * 4) Store it. 2065 */ 2066 cachep->align = ralign; 2067 cachep->colour_off = cache_line_size(); 2068 /* Offset must be a multiple of the alignment. */ 2069 if (cachep->colour_off < cachep->align) 2070 cachep->colour_off = cachep->align; 2071 2072 if (slab_is_available()) 2073 gfp = GFP_KERNEL; 2074 else 2075 gfp = GFP_NOWAIT; 2076 2077 #if DEBUG 2078 2079 /* 2080 * Both debugging options require word-alignment which is calculated 2081 * into align above. 2082 */ 2083 if (flags & SLAB_RED_ZONE) { 2084 /* add space for red zone words */ 2085 cachep->obj_offset += sizeof(unsigned long long); 2086 size += 2 * sizeof(unsigned long long); 2087 } 2088 if (flags & SLAB_STORE_USER) { 2089 /* user store requires one word storage behind the end of 2090 * the real object. But if the second red zone needs to be 2091 * aligned to 64 bits, we must allow that much space. 2092 */ 2093 if (flags & SLAB_RED_ZONE) 2094 size += REDZONE_ALIGN; 2095 else 2096 size += BYTES_PER_WORD; 2097 } 2098 #endif 2099 2100 kasan_cache_create(cachep, &size, &flags); 2101 2102 size = ALIGN(size, cachep->align); 2103 /* 2104 * We should restrict the number of objects in a slab to implement 2105 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2106 */ 2107 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2108 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2109 2110 #if DEBUG 2111 /* 2112 * To activate debug pagealloc, off-slab management is necessary 2113 * requirement. In early phase of initialization, small sized slab 2114 * doesn't get initialized so it would not be possible. So, we need 2115 * to check size >= 256. It guarantees that all necessary small 2116 * sized slab is initialized in current slab initialization sequence. 2117 */ 2118 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2119 size >= 256 && cachep->object_size > cache_line_size()) { 2120 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2121 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2122 2123 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2124 flags |= CFLGS_OFF_SLAB; 2125 cachep->obj_offset += tmp_size - size; 2126 size = tmp_size; 2127 goto done; 2128 } 2129 } 2130 } 2131 #endif 2132 2133 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2134 flags |= CFLGS_OBJFREELIST_SLAB; 2135 goto done; 2136 } 2137 2138 if (set_off_slab_cache(cachep, size, flags)) { 2139 flags |= CFLGS_OFF_SLAB; 2140 goto done; 2141 } 2142 2143 if (set_on_slab_cache(cachep, size, flags)) 2144 goto done; 2145 2146 return -E2BIG; 2147 2148 done: 2149 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2150 cachep->flags = flags; 2151 cachep->allocflags = __GFP_COMP; 2152 if (flags & SLAB_CACHE_DMA) 2153 cachep->allocflags |= GFP_DMA; 2154 cachep->size = size; 2155 cachep->reciprocal_buffer_size = reciprocal_value(size); 2156 2157 #if DEBUG 2158 /* 2159 * If we're going to use the generic kernel_map_pages() 2160 * poisoning, then it's going to smash the contents of 2161 * the redzone and userword anyhow, so switch them off. 2162 */ 2163 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2164 (cachep->flags & SLAB_POISON) && 2165 is_debug_pagealloc_cache(cachep)) 2166 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2167 #endif 2168 2169 if (OFF_SLAB(cachep)) { 2170 cachep->freelist_cache = 2171 kmalloc_slab(cachep->freelist_size, 0u); 2172 } 2173 2174 err = setup_cpu_cache(cachep, gfp); 2175 if (err) { 2176 __kmem_cache_release(cachep); 2177 return err; 2178 } 2179 2180 return 0; 2181 } 2182 2183 #if DEBUG 2184 static void check_irq_off(void) 2185 { 2186 BUG_ON(!irqs_disabled()); 2187 } 2188 2189 static void check_irq_on(void) 2190 { 2191 BUG_ON(irqs_disabled()); 2192 } 2193 2194 static void check_mutex_acquired(void) 2195 { 2196 BUG_ON(!mutex_is_locked(&slab_mutex)); 2197 } 2198 2199 static void check_spinlock_acquired(struct kmem_cache *cachep) 2200 { 2201 #ifdef CONFIG_SMP 2202 check_irq_off(); 2203 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2204 #endif 2205 } 2206 2207 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2208 { 2209 #ifdef CONFIG_SMP 2210 check_irq_off(); 2211 assert_spin_locked(&get_node(cachep, node)->list_lock); 2212 #endif 2213 } 2214 2215 #else 2216 #define check_irq_off() do { } while(0) 2217 #define check_irq_on() do { } while(0) 2218 #define check_mutex_acquired() do { } while(0) 2219 #define check_spinlock_acquired(x) do { } while(0) 2220 #define check_spinlock_acquired_node(x, y) do { } while(0) 2221 #endif 2222 2223 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2224 int node, bool free_all, struct list_head *list) 2225 { 2226 int tofree; 2227 2228 if (!ac || !ac->avail) 2229 return; 2230 2231 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2232 if (tofree > ac->avail) 2233 tofree = (ac->avail + 1) / 2; 2234 2235 free_block(cachep, ac->entry, tofree, node, list); 2236 ac->avail -= tofree; 2237 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2238 } 2239 2240 static void do_drain(void *arg) 2241 { 2242 struct kmem_cache *cachep = arg; 2243 struct array_cache *ac; 2244 int node = numa_mem_id(); 2245 struct kmem_cache_node *n; 2246 LIST_HEAD(list); 2247 2248 check_irq_off(); 2249 ac = cpu_cache_get(cachep); 2250 n = get_node(cachep, node); 2251 spin_lock(&n->list_lock); 2252 free_block(cachep, ac->entry, ac->avail, node, &list); 2253 spin_unlock(&n->list_lock); 2254 slabs_destroy(cachep, &list); 2255 ac->avail = 0; 2256 } 2257 2258 static void drain_cpu_caches(struct kmem_cache *cachep) 2259 { 2260 struct kmem_cache_node *n; 2261 int node; 2262 LIST_HEAD(list); 2263 2264 on_each_cpu(do_drain, cachep, 1); 2265 check_irq_on(); 2266 for_each_kmem_cache_node(cachep, node, n) 2267 if (n->alien) 2268 drain_alien_cache(cachep, n->alien); 2269 2270 for_each_kmem_cache_node(cachep, node, n) { 2271 spin_lock_irq(&n->list_lock); 2272 drain_array_locked(cachep, n->shared, node, true, &list); 2273 spin_unlock_irq(&n->list_lock); 2274 2275 slabs_destroy(cachep, &list); 2276 } 2277 } 2278 2279 /* 2280 * Remove slabs from the list of free slabs. 2281 * Specify the number of slabs to drain in tofree. 2282 * 2283 * Returns the actual number of slabs released. 2284 */ 2285 static int drain_freelist(struct kmem_cache *cache, 2286 struct kmem_cache_node *n, int tofree) 2287 { 2288 struct list_head *p; 2289 int nr_freed; 2290 struct page *page; 2291 2292 nr_freed = 0; 2293 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2294 2295 spin_lock_irq(&n->list_lock); 2296 p = n->slabs_free.prev; 2297 if (p == &n->slabs_free) { 2298 spin_unlock_irq(&n->list_lock); 2299 goto out; 2300 } 2301 2302 page = list_entry(p, struct page, lru); 2303 list_del(&page->lru); 2304 n->free_slabs--; 2305 n->total_slabs--; 2306 /* 2307 * Safe to drop the lock. The slab is no longer linked 2308 * to the cache. 2309 */ 2310 n->free_objects -= cache->num; 2311 spin_unlock_irq(&n->list_lock); 2312 slab_destroy(cache, page); 2313 nr_freed++; 2314 } 2315 out: 2316 return nr_freed; 2317 } 2318 2319 int __kmem_cache_shrink(struct kmem_cache *cachep) 2320 { 2321 int ret = 0; 2322 int node; 2323 struct kmem_cache_node *n; 2324 2325 drain_cpu_caches(cachep); 2326 2327 check_irq_on(); 2328 for_each_kmem_cache_node(cachep, node, n) { 2329 drain_freelist(cachep, n, INT_MAX); 2330 2331 ret += !list_empty(&n->slabs_full) || 2332 !list_empty(&n->slabs_partial); 2333 } 2334 return (ret ? 1 : 0); 2335 } 2336 2337 #ifdef CONFIG_MEMCG 2338 void __kmemcg_cache_deactivate(struct kmem_cache *cachep) 2339 { 2340 __kmem_cache_shrink(cachep); 2341 } 2342 #endif 2343 2344 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2345 { 2346 return __kmem_cache_shrink(cachep); 2347 } 2348 2349 void __kmem_cache_release(struct kmem_cache *cachep) 2350 { 2351 int i; 2352 struct kmem_cache_node *n; 2353 2354 cache_random_seq_destroy(cachep); 2355 2356 free_percpu(cachep->cpu_cache); 2357 2358 /* NUMA: free the node structures */ 2359 for_each_kmem_cache_node(cachep, i, n) { 2360 kfree(n->shared); 2361 free_alien_cache(n->alien); 2362 kfree(n); 2363 cachep->node[i] = NULL; 2364 } 2365 } 2366 2367 /* 2368 * Get the memory for a slab management obj. 2369 * 2370 * For a slab cache when the slab descriptor is off-slab, the 2371 * slab descriptor can't come from the same cache which is being created, 2372 * Because if it is the case, that means we defer the creation of 2373 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2374 * And we eventually call down to __kmem_cache_create(), which 2375 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2376 * This is a "chicken-and-egg" problem. 2377 * 2378 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2379 * which are all initialized during kmem_cache_init(). 2380 */ 2381 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2382 struct page *page, int colour_off, 2383 gfp_t local_flags, int nodeid) 2384 { 2385 void *freelist; 2386 void *addr = page_address(page); 2387 2388 page->s_mem = addr + colour_off; 2389 page->active = 0; 2390 2391 if (OBJFREELIST_SLAB(cachep)) 2392 freelist = NULL; 2393 else if (OFF_SLAB(cachep)) { 2394 /* Slab management obj is off-slab. */ 2395 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2396 local_flags, nodeid); 2397 if (!freelist) 2398 return NULL; 2399 } else { 2400 /* We will use last bytes at the slab for freelist */ 2401 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2402 cachep->freelist_size; 2403 } 2404 2405 return freelist; 2406 } 2407 2408 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2409 { 2410 return ((freelist_idx_t *)page->freelist)[idx]; 2411 } 2412 2413 static inline void set_free_obj(struct page *page, 2414 unsigned int idx, freelist_idx_t val) 2415 { 2416 ((freelist_idx_t *)(page->freelist))[idx] = val; 2417 } 2418 2419 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2420 { 2421 #if DEBUG 2422 int i; 2423 2424 for (i = 0; i < cachep->num; i++) { 2425 void *objp = index_to_obj(cachep, page, i); 2426 2427 if (cachep->flags & SLAB_STORE_USER) 2428 *dbg_userword(cachep, objp) = NULL; 2429 2430 if (cachep->flags & SLAB_RED_ZONE) { 2431 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2432 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2433 } 2434 /* 2435 * Constructors are not allowed to allocate memory from the same 2436 * cache which they are a constructor for. Otherwise, deadlock. 2437 * They must also be threaded. 2438 */ 2439 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2440 kasan_unpoison_object_data(cachep, 2441 objp + obj_offset(cachep)); 2442 cachep->ctor(objp + obj_offset(cachep)); 2443 kasan_poison_object_data( 2444 cachep, objp + obj_offset(cachep)); 2445 } 2446 2447 if (cachep->flags & SLAB_RED_ZONE) { 2448 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2449 slab_error(cachep, "constructor overwrote the end of an object"); 2450 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2451 slab_error(cachep, "constructor overwrote the start of an object"); 2452 } 2453 /* need to poison the objs? */ 2454 if (cachep->flags & SLAB_POISON) { 2455 poison_obj(cachep, objp, POISON_FREE); 2456 slab_kernel_map(cachep, objp, 0, 0); 2457 } 2458 } 2459 #endif 2460 } 2461 2462 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2463 /* Hold information during a freelist initialization */ 2464 union freelist_init_state { 2465 struct { 2466 unsigned int pos; 2467 unsigned int *list; 2468 unsigned int count; 2469 }; 2470 struct rnd_state rnd_state; 2471 }; 2472 2473 /* 2474 * Initialize the state based on the randomization methode available. 2475 * return true if the pre-computed list is available, false otherwize. 2476 */ 2477 static bool freelist_state_initialize(union freelist_init_state *state, 2478 struct kmem_cache *cachep, 2479 unsigned int count) 2480 { 2481 bool ret; 2482 unsigned int rand; 2483 2484 /* Use best entropy available to define a random shift */ 2485 rand = get_random_int(); 2486 2487 /* Use a random state if the pre-computed list is not available */ 2488 if (!cachep->random_seq) { 2489 prandom_seed_state(&state->rnd_state, rand); 2490 ret = false; 2491 } else { 2492 state->list = cachep->random_seq; 2493 state->count = count; 2494 state->pos = rand % count; 2495 ret = true; 2496 } 2497 return ret; 2498 } 2499 2500 /* Get the next entry on the list and randomize it using a random shift */ 2501 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2502 { 2503 if (state->pos >= state->count) 2504 state->pos = 0; 2505 return state->list[state->pos++]; 2506 } 2507 2508 /* Swap two freelist entries */ 2509 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2510 { 2511 swap(((freelist_idx_t *)page->freelist)[a], 2512 ((freelist_idx_t *)page->freelist)[b]); 2513 } 2514 2515 /* 2516 * Shuffle the freelist initialization state based on pre-computed lists. 2517 * return true if the list was successfully shuffled, false otherwise. 2518 */ 2519 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2520 { 2521 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2522 union freelist_init_state state; 2523 bool precomputed; 2524 2525 if (count < 2) 2526 return false; 2527 2528 precomputed = freelist_state_initialize(&state, cachep, count); 2529 2530 /* Take a random entry as the objfreelist */ 2531 if (OBJFREELIST_SLAB(cachep)) { 2532 if (!precomputed) 2533 objfreelist = count - 1; 2534 else 2535 objfreelist = next_random_slot(&state); 2536 page->freelist = index_to_obj(cachep, page, objfreelist) + 2537 obj_offset(cachep); 2538 count--; 2539 } 2540 2541 /* 2542 * On early boot, generate the list dynamically. 2543 * Later use a pre-computed list for speed. 2544 */ 2545 if (!precomputed) { 2546 for (i = 0; i < count; i++) 2547 set_free_obj(page, i, i); 2548 2549 /* Fisher-Yates shuffle */ 2550 for (i = count - 1; i > 0; i--) { 2551 rand = prandom_u32_state(&state.rnd_state); 2552 rand %= (i + 1); 2553 swap_free_obj(page, i, rand); 2554 } 2555 } else { 2556 for (i = 0; i < count; i++) 2557 set_free_obj(page, i, next_random_slot(&state)); 2558 } 2559 2560 if (OBJFREELIST_SLAB(cachep)) 2561 set_free_obj(page, cachep->num - 1, objfreelist); 2562 2563 return true; 2564 } 2565 #else 2566 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2567 struct page *page) 2568 { 2569 return false; 2570 } 2571 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2572 2573 static void cache_init_objs(struct kmem_cache *cachep, 2574 struct page *page) 2575 { 2576 int i; 2577 void *objp; 2578 bool shuffled; 2579 2580 cache_init_objs_debug(cachep, page); 2581 2582 /* Try to randomize the freelist if enabled */ 2583 shuffled = shuffle_freelist(cachep, page); 2584 2585 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2586 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2587 obj_offset(cachep); 2588 } 2589 2590 for (i = 0; i < cachep->num; i++) { 2591 objp = index_to_obj(cachep, page, i); 2592 kasan_init_slab_obj(cachep, objp); 2593 2594 /* constructor could break poison info */ 2595 if (DEBUG == 0 && cachep->ctor) { 2596 kasan_unpoison_object_data(cachep, objp); 2597 cachep->ctor(objp); 2598 kasan_poison_object_data(cachep, objp); 2599 } 2600 2601 if (!shuffled) 2602 set_free_obj(page, i, i); 2603 } 2604 } 2605 2606 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2607 { 2608 void *objp; 2609 2610 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2611 page->active++; 2612 2613 #if DEBUG 2614 if (cachep->flags & SLAB_STORE_USER) 2615 set_store_user_dirty(cachep); 2616 #endif 2617 2618 return objp; 2619 } 2620 2621 static void slab_put_obj(struct kmem_cache *cachep, 2622 struct page *page, void *objp) 2623 { 2624 unsigned int objnr = obj_to_index(cachep, page, objp); 2625 #if DEBUG 2626 unsigned int i; 2627 2628 /* Verify double free bug */ 2629 for (i = page->active; i < cachep->num; i++) { 2630 if (get_free_obj(page, i) == objnr) { 2631 pr_err("slab: double free detected in cache '%s', objp %p\n", 2632 cachep->name, objp); 2633 BUG(); 2634 } 2635 } 2636 #endif 2637 page->active--; 2638 if (!page->freelist) 2639 page->freelist = objp + obj_offset(cachep); 2640 2641 set_free_obj(page, page->active, objnr); 2642 } 2643 2644 /* 2645 * Map pages beginning at addr to the given cache and slab. This is required 2646 * for the slab allocator to be able to lookup the cache and slab of a 2647 * virtual address for kfree, ksize, and slab debugging. 2648 */ 2649 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2650 void *freelist) 2651 { 2652 page->slab_cache = cache; 2653 page->freelist = freelist; 2654 } 2655 2656 /* 2657 * Grow (by 1) the number of slabs within a cache. This is called by 2658 * kmem_cache_alloc() when there are no active objs left in a cache. 2659 */ 2660 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2661 gfp_t flags, int nodeid) 2662 { 2663 void *freelist; 2664 size_t offset; 2665 gfp_t local_flags; 2666 int page_node; 2667 struct kmem_cache_node *n; 2668 struct page *page; 2669 2670 /* 2671 * Be lazy and only check for valid flags here, keeping it out of the 2672 * critical path in kmem_cache_alloc(). 2673 */ 2674 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2675 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2676 flags &= ~GFP_SLAB_BUG_MASK; 2677 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2678 invalid_mask, &invalid_mask, flags, &flags); 2679 dump_stack(); 2680 } 2681 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2682 2683 check_irq_off(); 2684 if (gfpflags_allow_blocking(local_flags)) 2685 local_irq_enable(); 2686 2687 /* 2688 * Get mem for the objs. Attempt to allocate a physical page from 2689 * 'nodeid'. 2690 */ 2691 page = kmem_getpages(cachep, local_flags, nodeid); 2692 if (!page) 2693 goto failed; 2694 2695 page_node = page_to_nid(page); 2696 n = get_node(cachep, page_node); 2697 2698 /* Get colour for the slab, and cal the next value. */ 2699 n->colour_next++; 2700 if (n->colour_next >= cachep->colour) 2701 n->colour_next = 0; 2702 2703 offset = n->colour_next; 2704 if (offset >= cachep->colour) 2705 offset = 0; 2706 2707 offset *= cachep->colour_off; 2708 2709 /* Get slab management. */ 2710 freelist = alloc_slabmgmt(cachep, page, offset, 2711 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2712 if (OFF_SLAB(cachep) && !freelist) 2713 goto opps1; 2714 2715 slab_map_pages(cachep, page, freelist); 2716 2717 kasan_poison_slab(page); 2718 cache_init_objs(cachep, page); 2719 2720 if (gfpflags_allow_blocking(local_flags)) 2721 local_irq_disable(); 2722 2723 return page; 2724 2725 opps1: 2726 kmem_freepages(cachep, page); 2727 failed: 2728 if (gfpflags_allow_blocking(local_flags)) 2729 local_irq_disable(); 2730 return NULL; 2731 } 2732 2733 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2734 { 2735 struct kmem_cache_node *n; 2736 void *list = NULL; 2737 2738 check_irq_off(); 2739 2740 if (!page) 2741 return; 2742 2743 INIT_LIST_HEAD(&page->lru); 2744 n = get_node(cachep, page_to_nid(page)); 2745 2746 spin_lock(&n->list_lock); 2747 n->total_slabs++; 2748 if (!page->active) { 2749 list_add_tail(&page->lru, &(n->slabs_free)); 2750 n->free_slabs++; 2751 } else 2752 fixup_slab_list(cachep, n, page, &list); 2753 2754 STATS_INC_GROWN(cachep); 2755 n->free_objects += cachep->num - page->active; 2756 spin_unlock(&n->list_lock); 2757 2758 fixup_objfreelist_debug(cachep, &list); 2759 } 2760 2761 #if DEBUG 2762 2763 /* 2764 * Perform extra freeing checks: 2765 * - detect bad pointers. 2766 * - POISON/RED_ZONE checking 2767 */ 2768 static void kfree_debugcheck(const void *objp) 2769 { 2770 if (!virt_addr_valid(objp)) { 2771 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2772 (unsigned long)objp); 2773 BUG(); 2774 } 2775 } 2776 2777 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2778 { 2779 unsigned long long redzone1, redzone2; 2780 2781 redzone1 = *dbg_redzone1(cache, obj); 2782 redzone2 = *dbg_redzone2(cache, obj); 2783 2784 /* 2785 * Redzone is ok. 2786 */ 2787 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2788 return; 2789 2790 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2791 slab_error(cache, "double free detected"); 2792 else 2793 slab_error(cache, "memory outside object was overwritten"); 2794 2795 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2796 obj, redzone1, redzone2); 2797 } 2798 2799 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2800 unsigned long caller) 2801 { 2802 unsigned int objnr; 2803 struct page *page; 2804 2805 BUG_ON(virt_to_cache(objp) != cachep); 2806 2807 objp -= obj_offset(cachep); 2808 kfree_debugcheck(objp); 2809 page = virt_to_head_page(objp); 2810 2811 if (cachep->flags & SLAB_RED_ZONE) { 2812 verify_redzone_free(cachep, objp); 2813 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2814 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2815 } 2816 if (cachep->flags & SLAB_STORE_USER) { 2817 set_store_user_dirty(cachep); 2818 *dbg_userword(cachep, objp) = (void *)caller; 2819 } 2820 2821 objnr = obj_to_index(cachep, page, objp); 2822 2823 BUG_ON(objnr >= cachep->num); 2824 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2825 2826 if (cachep->flags & SLAB_POISON) { 2827 poison_obj(cachep, objp, POISON_FREE); 2828 slab_kernel_map(cachep, objp, 0, caller); 2829 } 2830 return objp; 2831 } 2832 2833 #else 2834 #define kfree_debugcheck(x) do { } while(0) 2835 #define cache_free_debugcheck(x,objp,z) (objp) 2836 #endif 2837 2838 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2839 void **list) 2840 { 2841 #if DEBUG 2842 void *next = *list; 2843 void *objp; 2844 2845 while (next) { 2846 objp = next - obj_offset(cachep); 2847 next = *(void **)next; 2848 poison_obj(cachep, objp, POISON_FREE); 2849 } 2850 #endif 2851 } 2852 2853 static inline void fixup_slab_list(struct kmem_cache *cachep, 2854 struct kmem_cache_node *n, struct page *page, 2855 void **list) 2856 { 2857 /* move slabp to correct slabp list: */ 2858 list_del(&page->lru); 2859 if (page->active == cachep->num) { 2860 list_add(&page->lru, &n->slabs_full); 2861 if (OBJFREELIST_SLAB(cachep)) { 2862 #if DEBUG 2863 /* Poisoning will be done without holding the lock */ 2864 if (cachep->flags & SLAB_POISON) { 2865 void **objp = page->freelist; 2866 2867 *objp = *list; 2868 *list = objp; 2869 } 2870 #endif 2871 page->freelist = NULL; 2872 } 2873 } else 2874 list_add(&page->lru, &n->slabs_partial); 2875 } 2876 2877 /* Try to find non-pfmemalloc slab if needed */ 2878 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2879 struct page *page, bool pfmemalloc) 2880 { 2881 if (!page) 2882 return NULL; 2883 2884 if (pfmemalloc) 2885 return page; 2886 2887 if (!PageSlabPfmemalloc(page)) 2888 return page; 2889 2890 /* No need to keep pfmemalloc slab if we have enough free objects */ 2891 if (n->free_objects > n->free_limit) { 2892 ClearPageSlabPfmemalloc(page); 2893 return page; 2894 } 2895 2896 /* Move pfmemalloc slab to the end of list to speed up next search */ 2897 list_del(&page->lru); 2898 if (!page->active) { 2899 list_add_tail(&page->lru, &n->slabs_free); 2900 n->free_slabs++; 2901 } else 2902 list_add_tail(&page->lru, &n->slabs_partial); 2903 2904 list_for_each_entry(page, &n->slabs_partial, lru) { 2905 if (!PageSlabPfmemalloc(page)) 2906 return page; 2907 } 2908 2909 n->free_touched = 1; 2910 list_for_each_entry(page, &n->slabs_free, lru) { 2911 if (!PageSlabPfmemalloc(page)) { 2912 n->free_slabs--; 2913 return page; 2914 } 2915 } 2916 2917 return NULL; 2918 } 2919 2920 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2921 { 2922 struct page *page; 2923 2924 assert_spin_locked(&n->list_lock); 2925 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru); 2926 if (!page) { 2927 n->free_touched = 1; 2928 page = list_first_entry_or_null(&n->slabs_free, struct page, 2929 lru); 2930 if (page) 2931 n->free_slabs--; 2932 } 2933 2934 if (sk_memalloc_socks()) 2935 page = get_valid_first_slab(n, page, pfmemalloc); 2936 2937 return page; 2938 } 2939 2940 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2941 struct kmem_cache_node *n, gfp_t flags) 2942 { 2943 struct page *page; 2944 void *obj; 2945 void *list = NULL; 2946 2947 if (!gfp_pfmemalloc_allowed(flags)) 2948 return NULL; 2949 2950 spin_lock(&n->list_lock); 2951 page = get_first_slab(n, true); 2952 if (!page) { 2953 spin_unlock(&n->list_lock); 2954 return NULL; 2955 } 2956 2957 obj = slab_get_obj(cachep, page); 2958 n->free_objects--; 2959 2960 fixup_slab_list(cachep, n, page, &list); 2961 2962 spin_unlock(&n->list_lock); 2963 fixup_objfreelist_debug(cachep, &list); 2964 2965 return obj; 2966 } 2967 2968 /* 2969 * Slab list should be fixed up by fixup_slab_list() for existing slab 2970 * or cache_grow_end() for new slab 2971 */ 2972 static __always_inline int alloc_block(struct kmem_cache *cachep, 2973 struct array_cache *ac, struct page *page, int batchcount) 2974 { 2975 /* 2976 * There must be at least one object available for 2977 * allocation. 2978 */ 2979 BUG_ON(page->active >= cachep->num); 2980 2981 while (page->active < cachep->num && batchcount--) { 2982 STATS_INC_ALLOCED(cachep); 2983 STATS_INC_ACTIVE(cachep); 2984 STATS_SET_HIGH(cachep); 2985 2986 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2987 } 2988 2989 return batchcount; 2990 } 2991 2992 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2993 { 2994 int batchcount; 2995 struct kmem_cache_node *n; 2996 struct array_cache *ac, *shared; 2997 int node; 2998 void *list = NULL; 2999 struct page *page; 3000 3001 check_irq_off(); 3002 node = numa_mem_id(); 3003 3004 ac = cpu_cache_get(cachep); 3005 batchcount = ac->batchcount; 3006 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 3007 /* 3008 * If there was little recent activity on this cache, then 3009 * perform only a partial refill. Otherwise we could generate 3010 * refill bouncing. 3011 */ 3012 batchcount = BATCHREFILL_LIMIT; 3013 } 3014 n = get_node(cachep, node); 3015 3016 BUG_ON(ac->avail > 0 || !n); 3017 shared = READ_ONCE(n->shared); 3018 if (!n->free_objects && (!shared || !shared->avail)) 3019 goto direct_grow; 3020 3021 spin_lock(&n->list_lock); 3022 shared = READ_ONCE(n->shared); 3023 3024 /* See if we can refill from the shared array */ 3025 if (shared && transfer_objects(ac, shared, batchcount)) { 3026 shared->touched = 1; 3027 goto alloc_done; 3028 } 3029 3030 while (batchcount > 0) { 3031 /* Get slab alloc is to come from. */ 3032 page = get_first_slab(n, false); 3033 if (!page) 3034 goto must_grow; 3035 3036 check_spinlock_acquired(cachep); 3037 3038 batchcount = alloc_block(cachep, ac, page, batchcount); 3039 fixup_slab_list(cachep, n, page, &list); 3040 } 3041 3042 must_grow: 3043 n->free_objects -= ac->avail; 3044 alloc_done: 3045 spin_unlock(&n->list_lock); 3046 fixup_objfreelist_debug(cachep, &list); 3047 3048 direct_grow: 3049 if (unlikely(!ac->avail)) { 3050 /* Check if we can use obj in pfmemalloc slab */ 3051 if (sk_memalloc_socks()) { 3052 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 3053 3054 if (obj) 3055 return obj; 3056 } 3057 3058 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 3059 3060 /* 3061 * cache_grow_begin() can reenable interrupts, 3062 * then ac could change. 3063 */ 3064 ac = cpu_cache_get(cachep); 3065 if (!ac->avail && page) 3066 alloc_block(cachep, ac, page, batchcount); 3067 cache_grow_end(cachep, page); 3068 3069 if (!ac->avail) 3070 return NULL; 3071 } 3072 ac->touched = 1; 3073 3074 return ac->entry[--ac->avail]; 3075 } 3076 3077 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3078 gfp_t flags) 3079 { 3080 might_sleep_if(gfpflags_allow_blocking(flags)); 3081 } 3082 3083 #if DEBUG 3084 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3085 gfp_t flags, void *objp, unsigned long caller) 3086 { 3087 if (!objp) 3088 return objp; 3089 if (cachep->flags & SLAB_POISON) { 3090 check_poison_obj(cachep, objp); 3091 slab_kernel_map(cachep, objp, 1, 0); 3092 poison_obj(cachep, objp, POISON_INUSE); 3093 } 3094 if (cachep->flags & SLAB_STORE_USER) 3095 *dbg_userword(cachep, objp) = (void *)caller; 3096 3097 if (cachep->flags & SLAB_RED_ZONE) { 3098 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3099 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3100 slab_error(cachep, "double free, or memory outside object was overwritten"); 3101 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3102 objp, *dbg_redzone1(cachep, objp), 3103 *dbg_redzone2(cachep, objp)); 3104 } 3105 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3106 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3107 } 3108 3109 objp += obj_offset(cachep); 3110 if (cachep->ctor && cachep->flags & SLAB_POISON) 3111 cachep->ctor(objp); 3112 if (ARCH_SLAB_MINALIGN && 3113 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3114 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3115 objp, (int)ARCH_SLAB_MINALIGN); 3116 } 3117 return objp; 3118 } 3119 #else 3120 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3121 #endif 3122 3123 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3124 { 3125 void *objp; 3126 struct array_cache *ac; 3127 3128 check_irq_off(); 3129 3130 ac = cpu_cache_get(cachep); 3131 if (likely(ac->avail)) { 3132 ac->touched = 1; 3133 objp = ac->entry[--ac->avail]; 3134 3135 STATS_INC_ALLOCHIT(cachep); 3136 goto out; 3137 } 3138 3139 STATS_INC_ALLOCMISS(cachep); 3140 objp = cache_alloc_refill(cachep, flags); 3141 /* 3142 * the 'ac' may be updated by cache_alloc_refill(), 3143 * and kmemleak_erase() requires its correct value. 3144 */ 3145 ac = cpu_cache_get(cachep); 3146 3147 out: 3148 /* 3149 * To avoid a false negative, if an object that is in one of the 3150 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3151 * treat the array pointers as a reference to the object. 3152 */ 3153 if (objp) 3154 kmemleak_erase(&ac->entry[ac->avail]); 3155 return objp; 3156 } 3157 3158 #ifdef CONFIG_NUMA 3159 /* 3160 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3161 * 3162 * If we are in_interrupt, then process context, including cpusets and 3163 * mempolicy, may not apply and should not be used for allocation policy. 3164 */ 3165 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3166 { 3167 int nid_alloc, nid_here; 3168 3169 if (in_interrupt() || (flags & __GFP_THISNODE)) 3170 return NULL; 3171 nid_alloc = nid_here = numa_mem_id(); 3172 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3173 nid_alloc = cpuset_slab_spread_node(); 3174 else if (current->mempolicy) 3175 nid_alloc = mempolicy_slab_node(); 3176 if (nid_alloc != nid_here) 3177 return ____cache_alloc_node(cachep, flags, nid_alloc); 3178 return NULL; 3179 } 3180 3181 /* 3182 * Fallback function if there was no memory available and no objects on a 3183 * certain node and fall back is permitted. First we scan all the 3184 * available node for available objects. If that fails then we 3185 * perform an allocation without specifying a node. This allows the page 3186 * allocator to do its reclaim / fallback magic. We then insert the 3187 * slab into the proper nodelist and then allocate from it. 3188 */ 3189 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3190 { 3191 struct zonelist *zonelist; 3192 struct zoneref *z; 3193 struct zone *zone; 3194 enum zone_type high_zoneidx = gfp_zone(flags); 3195 void *obj = NULL; 3196 struct page *page; 3197 int nid; 3198 unsigned int cpuset_mems_cookie; 3199 3200 if (flags & __GFP_THISNODE) 3201 return NULL; 3202 3203 retry_cpuset: 3204 cpuset_mems_cookie = read_mems_allowed_begin(); 3205 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3206 3207 retry: 3208 /* 3209 * Look through allowed nodes for objects available 3210 * from existing per node queues. 3211 */ 3212 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3213 nid = zone_to_nid(zone); 3214 3215 if (cpuset_zone_allowed(zone, flags) && 3216 get_node(cache, nid) && 3217 get_node(cache, nid)->free_objects) { 3218 obj = ____cache_alloc_node(cache, 3219 gfp_exact_node(flags), nid); 3220 if (obj) 3221 break; 3222 } 3223 } 3224 3225 if (!obj) { 3226 /* 3227 * This allocation will be performed within the constraints 3228 * of the current cpuset / memory policy requirements. 3229 * We may trigger various forms of reclaim on the allowed 3230 * set and go into memory reserves if necessary. 3231 */ 3232 page = cache_grow_begin(cache, flags, numa_mem_id()); 3233 cache_grow_end(cache, page); 3234 if (page) { 3235 nid = page_to_nid(page); 3236 obj = ____cache_alloc_node(cache, 3237 gfp_exact_node(flags), nid); 3238 3239 /* 3240 * Another processor may allocate the objects in 3241 * the slab since we are not holding any locks. 3242 */ 3243 if (!obj) 3244 goto retry; 3245 } 3246 } 3247 3248 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3249 goto retry_cpuset; 3250 return obj; 3251 } 3252 3253 /* 3254 * A interface to enable slab creation on nodeid 3255 */ 3256 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3257 int nodeid) 3258 { 3259 struct page *page; 3260 struct kmem_cache_node *n; 3261 void *obj = NULL; 3262 void *list = NULL; 3263 3264 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3265 n = get_node(cachep, nodeid); 3266 BUG_ON(!n); 3267 3268 check_irq_off(); 3269 spin_lock(&n->list_lock); 3270 page = get_first_slab(n, false); 3271 if (!page) 3272 goto must_grow; 3273 3274 check_spinlock_acquired_node(cachep, nodeid); 3275 3276 STATS_INC_NODEALLOCS(cachep); 3277 STATS_INC_ACTIVE(cachep); 3278 STATS_SET_HIGH(cachep); 3279 3280 BUG_ON(page->active == cachep->num); 3281 3282 obj = slab_get_obj(cachep, page); 3283 n->free_objects--; 3284 3285 fixup_slab_list(cachep, n, page, &list); 3286 3287 spin_unlock(&n->list_lock); 3288 fixup_objfreelist_debug(cachep, &list); 3289 return obj; 3290 3291 must_grow: 3292 spin_unlock(&n->list_lock); 3293 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3294 if (page) { 3295 /* This slab isn't counted yet so don't update free_objects */ 3296 obj = slab_get_obj(cachep, page); 3297 } 3298 cache_grow_end(cachep, page); 3299 3300 return obj ? obj : fallback_alloc(cachep, flags); 3301 } 3302 3303 static __always_inline void * 3304 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3305 unsigned long caller) 3306 { 3307 unsigned long save_flags; 3308 void *ptr; 3309 int slab_node = numa_mem_id(); 3310 3311 flags &= gfp_allowed_mask; 3312 cachep = slab_pre_alloc_hook(cachep, flags); 3313 if (unlikely(!cachep)) 3314 return NULL; 3315 3316 cache_alloc_debugcheck_before(cachep, flags); 3317 local_irq_save(save_flags); 3318 3319 if (nodeid == NUMA_NO_NODE) 3320 nodeid = slab_node; 3321 3322 if (unlikely(!get_node(cachep, nodeid))) { 3323 /* Node not bootstrapped yet */ 3324 ptr = fallback_alloc(cachep, flags); 3325 goto out; 3326 } 3327 3328 if (nodeid == slab_node) { 3329 /* 3330 * Use the locally cached objects if possible. 3331 * However ____cache_alloc does not allow fallback 3332 * to other nodes. It may fail while we still have 3333 * objects on other nodes available. 3334 */ 3335 ptr = ____cache_alloc(cachep, flags); 3336 if (ptr) 3337 goto out; 3338 } 3339 /* ___cache_alloc_node can fall back to other nodes */ 3340 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3341 out: 3342 local_irq_restore(save_flags); 3343 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3344 3345 if (unlikely(flags & __GFP_ZERO) && ptr) 3346 memset(ptr, 0, cachep->object_size); 3347 3348 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3349 return ptr; 3350 } 3351 3352 static __always_inline void * 3353 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3354 { 3355 void *objp; 3356 3357 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3358 objp = alternate_node_alloc(cache, flags); 3359 if (objp) 3360 goto out; 3361 } 3362 objp = ____cache_alloc(cache, flags); 3363 3364 /* 3365 * We may just have run out of memory on the local node. 3366 * ____cache_alloc_node() knows how to locate memory on other nodes 3367 */ 3368 if (!objp) 3369 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3370 3371 out: 3372 return objp; 3373 } 3374 #else 3375 3376 static __always_inline void * 3377 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3378 { 3379 return ____cache_alloc(cachep, flags); 3380 } 3381 3382 #endif /* CONFIG_NUMA */ 3383 3384 static __always_inline void * 3385 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3386 { 3387 unsigned long save_flags; 3388 void *objp; 3389 3390 flags &= gfp_allowed_mask; 3391 cachep = slab_pre_alloc_hook(cachep, flags); 3392 if (unlikely(!cachep)) 3393 return NULL; 3394 3395 cache_alloc_debugcheck_before(cachep, flags); 3396 local_irq_save(save_flags); 3397 objp = __do_cache_alloc(cachep, flags); 3398 local_irq_restore(save_flags); 3399 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3400 prefetchw(objp); 3401 3402 if (unlikely(flags & __GFP_ZERO) && objp) 3403 memset(objp, 0, cachep->object_size); 3404 3405 slab_post_alloc_hook(cachep, flags, 1, &objp); 3406 return objp; 3407 } 3408 3409 /* 3410 * Caller needs to acquire correct kmem_cache_node's list_lock 3411 * @list: List of detached free slabs should be freed by caller 3412 */ 3413 static void free_block(struct kmem_cache *cachep, void **objpp, 3414 int nr_objects, int node, struct list_head *list) 3415 { 3416 int i; 3417 struct kmem_cache_node *n = get_node(cachep, node); 3418 struct page *page; 3419 3420 n->free_objects += nr_objects; 3421 3422 for (i = 0; i < nr_objects; i++) { 3423 void *objp; 3424 struct page *page; 3425 3426 objp = objpp[i]; 3427 3428 page = virt_to_head_page(objp); 3429 list_del(&page->lru); 3430 check_spinlock_acquired_node(cachep, node); 3431 slab_put_obj(cachep, page, objp); 3432 STATS_DEC_ACTIVE(cachep); 3433 3434 /* fixup slab chains */ 3435 if (page->active == 0) { 3436 list_add(&page->lru, &n->slabs_free); 3437 n->free_slabs++; 3438 } else { 3439 /* Unconditionally move a slab to the end of the 3440 * partial list on free - maximum time for the 3441 * other objects to be freed, too. 3442 */ 3443 list_add_tail(&page->lru, &n->slabs_partial); 3444 } 3445 } 3446 3447 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3448 n->free_objects -= cachep->num; 3449 3450 page = list_last_entry(&n->slabs_free, struct page, lru); 3451 list_move(&page->lru, list); 3452 n->free_slabs--; 3453 n->total_slabs--; 3454 } 3455 } 3456 3457 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3458 { 3459 int batchcount; 3460 struct kmem_cache_node *n; 3461 int node = numa_mem_id(); 3462 LIST_HEAD(list); 3463 3464 batchcount = ac->batchcount; 3465 3466 check_irq_off(); 3467 n = get_node(cachep, node); 3468 spin_lock(&n->list_lock); 3469 if (n->shared) { 3470 struct array_cache *shared_array = n->shared; 3471 int max = shared_array->limit - shared_array->avail; 3472 if (max) { 3473 if (batchcount > max) 3474 batchcount = max; 3475 memcpy(&(shared_array->entry[shared_array->avail]), 3476 ac->entry, sizeof(void *) * batchcount); 3477 shared_array->avail += batchcount; 3478 goto free_done; 3479 } 3480 } 3481 3482 free_block(cachep, ac->entry, batchcount, node, &list); 3483 free_done: 3484 #if STATS 3485 { 3486 int i = 0; 3487 struct page *page; 3488 3489 list_for_each_entry(page, &n->slabs_free, lru) { 3490 BUG_ON(page->active); 3491 3492 i++; 3493 } 3494 STATS_SET_FREEABLE(cachep, i); 3495 } 3496 #endif 3497 spin_unlock(&n->list_lock); 3498 slabs_destroy(cachep, &list); 3499 ac->avail -= batchcount; 3500 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3501 } 3502 3503 /* 3504 * Release an obj back to its cache. If the obj has a constructed state, it must 3505 * be in this state _before_ it is released. Called with disabled ints. 3506 */ 3507 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3508 unsigned long caller) 3509 { 3510 /* Put the object into the quarantine, don't touch it for now. */ 3511 if (kasan_slab_free(cachep, objp)) 3512 return; 3513 3514 ___cache_free(cachep, objp, caller); 3515 } 3516 3517 void ___cache_free(struct kmem_cache *cachep, void *objp, 3518 unsigned long caller) 3519 { 3520 struct array_cache *ac = cpu_cache_get(cachep); 3521 3522 check_irq_off(); 3523 kmemleak_free_recursive(objp, cachep->flags); 3524 objp = cache_free_debugcheck(cachep, objp, caller); 3525 3526 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3527 3528 /* 3529 * Skip calling cache_free_alien() when the platform is not numa. 3530 * This will avoid cache misses that happen while accessing slabp (which 3531 * is per page memory reference) to get nodeid. Instead use a global 3532 * variable to skip the call, which is mostly likely to be present in 3533 * the cache. 3534 */ 3535 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3536 return; 3537 3538 if (ac->avail < ac->limit) { 3539 STATS_INC_FREEHIT(cachep); 3540 } else { 3541 STATS_INC_FREEMISS(cachep); 3542 cache_flusharray(cachep, ac); 3543 } 3544 3545 if (sk_memalloc_socks()) { 3546 struct page *page = virt_to_head_page(objp); 3547 3548 if (unlikely(PageSlabPfmemalloc(page))) { 3549 cache_free_pfmemalloc(cachep, page, objp); 3550 return; 3551 } 3552 } 3553 3554 ac->entry[ac->avail++] = objp; 3555 } 3556 3557 /** 3558 * kmem_cache_alloc - Allocate an object 3559 * @cachep: The cache to allocate from. 3560 * @flags: See kmalloc(). 3561 * 3562 * Allocate an object from this cache. The flags are only relevant 3563 * if the cache has no available objects. 3564 */ 3565 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3566 { 3567 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3568 3569 kasan_slab_alloc(cachep, ret, flags); 3570 trace_kmem_cache_alloc(_RET_IP_, ret, 3571 cachep->object_size, cachep->size, flags); 3572 3573 return ret; 3574 } 3575 EXPORT_SYMBOL(kmem_cache_alloc); 3576 3577 static __always_inline void 3578 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3579 size_t size, void **p, unsigned long caller) 3580 { 3581 size_t i; 3582 3583 for (i = 0; i < size; i++) 3584 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3585 } 3586 3587 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3588 void **p) 3589 { 3590 size_t i; 3591 3592 s = slab_pre_alloc_hook(s, flags); 3593 if (!s) 3594 return 0; 3595 3596 cache_alloc_debugcheck_before(s, flags); 3597 3598 local_irq_disable(); 3599 for (i = 0; i < size; i++) { 3600 void *objp = __do_cache_alloc(s, flags); 3601 3602 if (unlikely(!objp)) 3603 goto error; 3604 p[i] = objp; 3605 } 3606 local_irq_enable(); 3607 3608 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3609 3610 /* Clear memory outside IRQ disabled section */ 3611 if (unlikely(flags & __GFP_ZERO)) 3612 for (i = 0; i < size; i++) 3613 memset(p[i], 0, s->object_size); 3614 3615 slab_post_alloc_hook(s, flags, size, p); 3616 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3617 return size; 3618 error: 3619 local_irq_enable(); 3620 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3621 slab_post_alloc_hook(s, flags, i, p); 3622 __kmem_cache_free_bulk(s, i, p); 3623 return 0; 3624 } 3625 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3626 3627 #ifdef CONFIG_TRACING 3628 void * 3629 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3630 { 3631 void *ret; 3632 3633 ret = slab_alloc(cachep, flags, _RET_IP_); 3634 3635 kasan_kmalloc(cachep, ret, size, flags); 3636 trace_kmalloc(_RET_IP_, ret, 3637 size, cachep->size, flags); 3638 return ret; 3639 } 3640 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3641 #endif 3642 3643 #ifdef CONFIG_NUMA 3644 /** 3645 * kmem_cache_alloc_node - Allocate an object on the specified node 3646 * @cachep: The cache to allocate from. 3647 * @flags: See kmalloc(). 3648 * @nodeid: node number of the target node. 3649 * 3650 * Identical to kmem_cache_alloc but it will allocate memory on the given 3651 * node, which can improve the performance for cpu bound structures. 3652 * 3653 * Fallback to other node is possible if __GFP_THISNODE is not set. 3654 */ 3655 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3656 { 3657 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3658 3659 kasan_slab_alloc(cachep, ret, flags); 3660 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3661 cachep->object_size, cachep->size, 3662 flags, nodeid); 3663 3664 return ret; 3665 } 3666 EXPORT_SYMBOL(kmem_cache_alloc_node); 3667 3668 #ifdef CONFIG_TRACING 3669 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3670 gfp_t flags, 3671 int nodeid, 3672 size_t size) 3673 { 3674 void *ret; 3675 3676 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3677 3678 kasan_kmalloc(cachep, ret, size, flags); 3679 trace_kmalloc_node(_RET_IP_, ret, 3680 size, cachep->size, 3681 flags, nodeid); 3682 return ret; 3683 } 3684 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3685 #endif 3686 3687 static __always_inline void * 3688 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3689 { 3690 struct kmem_cache *cachep; 3691 void *ret; 3692 3693 cachep = kmalloc_slab(size, flags); 3694 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3695 return cachep; 3696 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3697 kasan_kmalloc(cachep, ret, size, flags); 3698 3699 return ret; 3700 } 3701 3702 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3703 { 3704 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3705 } 3706 EXPORT_SYMBOL(__kmalloc_node); 3707 3708 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3709 int node, unsigned long caller) 3710 { 3711 return __do_kmalloc_node(size, flags, node, caller); 3712 } 3713 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3714 #endif /* CONFIG_NUMA */ 3715 3716 /** 3717 * __do_kmalloc - allocate memory 3718 * @size: how many bytes of memory are required. 3719 * @flags: the type of memory to allocate (see kmalloc). 3720 * @caller: function caller for debug tracking of the caller 3721 */ 3722 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3723 unsigned long caller) 3724 { 3725 struct kmem_cache *cachep; 3726 void *ret; 3727 3728 cachep = kmalloc_slab(size, flags); 3729 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3730 return cachep; 3731 ret = slab_alloc(cachep, flags, caller); 3732 3733 kasan_kmalloc(cachep, ret, size, flags); 3734 trace_kmalloc(caller, ret, 3735 size, cachep->size, flags); 3736 3737 return ret; 3738 } 3739 3740 void *__kmalloc(size_t size, gfp_t flags) 3741 { 3742 return __do_kmalloc(size, flags, _RET_IP_); 3743 } 3744 EXPORT_SYMBOL(__kmalloc); 3745 3746 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3747 { 3748 return __do_kmalloc(size, flags, caller); 3749 } 3750 EXPORT_SYMBOL(__kmalloc_track_caller); 3751 3752 /** 3753 * kmem_cache_free - Deallocate an object 3754 * @cachep: The cache the allocation was from. 3755 * @objp: The previously allocated object. 3756 * 3757 * Free an object which was previously allocated from this 3758 * cache. 3759 */ 3760 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3761 { 3762 unsigned long flags; 3763 cachep = cache_from_obj(cachep, objp); 3764 if (!cachep) 3765 return; 3766 3767 local_irq_save(flags); 3768 debug_check_no_locks_freed(objp, cachep->object_size); 3769 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3770 debug_check_no_obj_freed(objp, cachep->object_size); 3771 __cache_free(cachep, objp, _RET_IP_); 3772 local_irq_restore(flags); 3773 3774 trace_kmem_cache_free(_RET_IP_, objp); 3775 } 3776 EXPORT_SYMBOL(kmem_cache_free); 3777 3778 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3779 { 3780 struct kmem_cache *s; 3781 size_t i; 3782 3783 local_irq_disable(); 3784 for (i = 0; i < size; i++) { 3785 void *objp = p[i]; 3786 3787 if (!orig_s) /* called via kfree_bulk */ 3788 s = virt_to_cache(objp); 3789 else 3790 s = cache_from_obj(orig_s, objp); 3791 3792 debug_check_no_locks_freed(objp, s->object_size); 3793 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3794 debug_check_no_obj_freed(objp, s->object_size); 3795 3796 __cache_free(s, objp, _RET_IP_); 3797 } 3798 local_irq_enable(); 3799 3800 /* FIXME: add tracing */ 3801 } 3802 EXPORT_SYMBOL(kmem_cache_free_bulk); 3803 3804 /** 3805 * kfree - free previously allocated memory 3806 * @objp: pointer returned by kmalloc. 3807 * 3808 * If @objp is NULL, no operation is performed. 3809 * 3810 * Don't free memory not originally allocated by kmalloc() 3811 * or you will run into trouble. 3812 */ 3813 void kfree(const void *objp) 3814 { 3815 struct kmem_cache *c; 3816 unsigned long flags; 3817 3818 trace_kfree(_RET_IP_, objp); 3819 3820 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3821 return; 3822 local_irq_save(flags); 3823 kfree_debugcheck(objp); 3824 c = virt_to_cache(objp); 3825 debug_check_no_locks_freed(objp, c->object_size); 3826 3827 debug_check_no_obj_freed(objp, c->object_size); 3828 __cache_free(c, (void *)objp, _RET_IP_); 3829 local_irq_restore(flags); 3830 } 3831 EXPORT_SYMBOL(kfree); 3832 3833 /* 3834 * This initializes kmem_cache_node or resizes various caches for all nodes. 3835 */ 3836 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3837 { 3838 int ret; 3839 int node; 3840 struct kmem_cache_node *n; 3841 3842 for_each_online_node(node) { 3843 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3844 if (ret) 3845 goto fail; 3846 3847 } 3848 3849 return 0; 3850 3851 fail: 3852 if (!cachep->list.next) { 3853 /* Cache is not active yet. Roll back what we did */ 3854 node--; 3855 while (node >= 0) { 3856 n = get_node(cachep, node); 3857 if (n) { 3858 kfree(n->shared); 3859 free_alien_cache(n->alien); 3860 kfree(n); 3861 cachep->node[node] = NULL; 3862 } 3863 node--; 3864 } 3865 } 3866 return -ENOMEM; 3867 } 3868 3869 /* Always called with the slab_mutex held */ 3870 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3871 int batchcount, int shared, gfp_t gfp) 3872 { 3873 struct array_cache __percpu *cpu_cache, *prev; 3874 int cpu; 3875 3876 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3877 if (!cpu_cache) 3878 return -ENOMEM; 3879 3880 prev = cachep->cpu_cache; 3881 cachep->cpu_cache = cpu_cache; 3882 kick_all_cpus_sync(); 3883 3884 check_irq_on(); 3885 cachep->batchcount = batchcount; 3886 cachep->limit = limit; 3887 cachep->shared = shared; 3888 3889 if (!prev) 3890 goto setup_node; 3891 3892 for_each_online_cpu(cpu) { 3893 LIST_HEAD(list); 3894 int node; 3895 struct kmem_cache_node *n; 3896 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3897 3898 node = cpu_to_mem(cpu); 3899 n = get_node(cachep, node); 3900 spin_lock_irq(&n->list_lock); 3901 free_block(cachep, ac->entry, ac->avail, node, &list); 3902 spin_unlock_irq(&n->list_lock); 3903 slabs_destroy(cachep, &list); 3904 } 3905 free_percpu(prev); 3906 3907 setup_node: 3908 return setup_kmem_cache_nodes(cachep, gfp); 3909 } 3910 3911 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3912 int batchcount, int shared, gfp_t gfp) 3913 { 3914 int ret; 3915 struct kmem_cache *c; 3916 3917 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3918 3919 if (slab_state < FULL) 3920 return ret; 3921 3922 if ((ret < 0) || !is_root_cache(cachep)) 3923 return ret; 3924 3925 lockdep_assert_held(&slab_mutex); 3926 for_each_memcg_cache(c, cachep) { 3927 /* return value determined by the root cache only */ 3928 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3929 } 3930 3931 return ret; 3932 } 3933 3934 /* Called with slab_mutex held always */ 3935 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3936 { 3937 int err; 3938 int limit = 0; 3939 int shared = 0; 3940 int batchcount = 0; 3941 3942 err = cache_random_seq_create(cachep, cachep->num, gfp); 3943 if (err) 3944 goto end; 3945 3946 if (!is_root_cache(cachep)) { 3947 struct kmem_cache *root = memcg_root_cache(cachep); 3948 limit = root->limit; 3949 shared = root->shared; 3950 batchcount = root->batchcount; 3951 } 3952 3953 if (limit && shared && batchcount) 3954 goto skip_setup; 3955 /* 3956 * The head array serves three purposes: 3957 * - create a LIFO ordering, i.e. return objects that are cache-warm 3958 * - reduce the number of spinlock operations. 3959 * - reduce the number of linked list operations on the slab and 3960 * bufctl chains: array operations are cheaper. 3961 * The numbers are guessed, we should auto-tune as described by 3962 * Bonwick. 3963 */ 3964 if (cachep->size > 131072) 3965 limit = 1; 3966 else if (cachep->size > PAGE_SIZE) 3967 limit = 8; 3968 else if (cachep->size > 1024) 3969 limit = 24; 3970 else if (cachep->size > 256) 3971 limit = 54; 3972 else 3973 limit = 120; 3974 3975 /* 3976 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3977 * allocation behaviour: Most allocs on one cpu, most free operations 3978 * on another cpu. For these cases, an efficient object passing between 3979 * cpus is necessary. This is provided by a shared array. The array 3980 * replaces Bonwick's magazine layer. 3981 * On uniprocessor, it's functionally equivalent (but less efficient) 3982 * to a larger limit. Thus disabled by default. 3983 */ 3984 shared = 0; 3985 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3986 shared = 8; 3987 3988 #if DEBUG 3989 /* 3990 * With debugging enabled, large batchcount lead to excessively long 3991 * periods with disabled local interrupts. Limit the batchcount 3992 */ 3993 if (limit > 32) 3994 limit = 32; 3995 #endif 3996 batchcount = (limit + 1) / 2; 3997 skip_setup: 3998 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3999 end: 4000 if (err) 4001 pr_err("enable_cpucache failed for %s, error %d\n", 4002 cachep->name, -err); 4003 return err; 4004 } 4005 4006 /* 4007 * Drain an array if it contains any elements taking the node lock only if 4008 * necessary. Note that the node listlock also protects the array_cache 4009 * if drain_array() is used on the shared array. 4010 */ 4011 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 4012 struct array_cache *ac, int node) 4013 { 4014 LIST_HEAD(list); 4015 4016 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 4017 check_mutex_acquired(); 4018 4019 if (!ac || !ac->avail) 4020 return; 4021 4022 if (ac->touched) { 4023 ac->touched = 0; 4024 return; 4025 } 4026 4027 spin_lock_irq(&n->list_lock); 4028 drain_array_locked(cachep, ac, node, false, &list); 4029 spin_unlock_irq(&n->list_lock); 4030 4031 slabs_destroy(cachep, &list); 4032 } 4033 4034 /** 4035 * cache_reap - Reclaim memory from caches. 4036 * @w: work descriptor 4037 * 4038 * Called from workqueue/eventd every few seconds. 4039 * Purpose: 4040 * - clear the per-cpu caches for this CPU. 4041 * - return freeable pages to the main free memory pool. 4042 * 4043 * If we cannot acquire the cache chain mutex then just give up - we'll try 4044 * again on the next iteration. 4045 */ 4046 static void cache_reap(struct work_struct *w) 4047 { 4048 struct kmem_cache *searchp; 4049 struct kmem_cache_node *n; 4050 int node = numa_mem_id(); 4051 struct delayed_work *work = to_delayed_work(w); 4052 4053 if (!mutex_trylock(&slab_mutex)) 4054 /* Give up. Setup the next iteration. */ 4055 goto out; 4056 4057 list_for_each_entry(searchp, &slab_caches, list) { 4058 check_irq_on(); 4059 4060 /* 4061 * We only take the node lock if absolutely necessary and we 4062 * have established with reasonable certainty that 4063 * we can do some work if the lock was obtained. 4064 */ 4065 n = get_node(searchp, node); 4066 4067 reap_alien(searchp, n); 4068 4069 drain_array(searchp, n, cpu_cache_get(searchp), node); 4070 4071 /* 4072 * These are racy checks but it does not matter 4073 * if we skip one check or scan twice. 4074 */ 4075 if (time_after(n->next_reap, jiffies)) 4076 goto next; 4077 4078 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4079 4080 drain_array(searchp, n, n->shared, node); 4081 4082 if (n->free_touched) 4083 n->free_touched = 0; 4084 else { 4085 int freed; 4086 4087 freed = drain_freelist(searchp, n, (n->free_limit + 4088 5 * searchp->num - 1) / (5 * searchp->num)); 4089 STATS_ADD_REAPED(searchp, freed); 4090 } 4091 next: 4092 cond_resched(); 4093 } 4094 check_irq_on(); 4095 mutex_unlock(&slab_mutex); 4096 next_reap_node(); 4097 out: 4098 /* Set up the next iteration */ 4099 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 4100 } 4101 4102 #ifdef CONFIG_SLABINFO 4103 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4104 { 4105 unsigned long active_objs, num_objs, active_slabs; 4106 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4107 unsigned long free_slabs = 0; 4108 int node; 4109 struct kmem_cache_node *n; 4110 4111 for_each_kmem_cache_node(cachep, node, n) { 4112 check_irq_on(); 4113 spin_lock_irq(&n->list_lock); 4114 4115 total_slabs += n->total_slabs; 4116 free_slabs += n->free_slabs; 4117 free_objs += n->free_objects; 4118 4119 if (n->shared) 4120 shared_avail += n->shared->avail; 4121 4122 spin_unlock_irq(&n->list_lock); 4123 } 4124 num_objs = total_slabs * cachep->num; 4125 active_slabs = total_slabs - free_slabs; 4126 active_objs = num_objs - free_objs; 4127 4128 sinfo->active_objs = active_objs; 4129 sinfo->num_objs = num_objs; 4130 sinfo->active_slabs = active_slabs; 4131 sinfo->num_slabs = total_slabs; 4132 sinfo->shared_avail = shared_avail; 4133 sinfo->limit = cachep->limit; 4134 sinfo->batchcount = cachep->batchcount; 4135 sinfo->shared = cachep->shared; 4136 sinfo->objects_per_slab = cachep->num; 4137 sinfo->cache_order = cachep->gfporder; 4138 } 4139 4140 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4141 { 4142 #if STATS 4143 { /* node stats */ 4144 unsigned long high = cachep->high_mark; 4145 unsigned long allocs = cachep->num_allocations; 4146 unsigned long grown = cachep->grown; 4147 unsigned long reaped = cachep->reaped; 4148 unsigned long errors = cachep->errors; 4149 unsigned long max_freeable = cachep->max_freeable; 4150 unsigned long node_allocs = cachep->node_allocs; 4151 unsigned long node_frees = cachep->node_frees; 4152 unsigned long overflows = cachep->node_overflow; 4153 4154 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4155 allocs, high, grown, 4156 reaped, errors, max_freeable, node_allocs, 4157 node_frees, overflows); 4158 } 4159 /* cpu stats */ 4160 { 4161 unsigned long allochit = atomic_read(&cachep->allochit); 4162 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4163 unsigned long freehit = atomic_read(&cachep->freehit); 4164 unsigned long freemiss = atomic_read(&cachep->freemiss); 4165 4166 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4167 allochit, allocmiss, freehit, freemiss); 4168 } 4169 #endif 4170 } 4171 4172 #define MAX_SLABINFO_WRITE 128 4173 /** 4174 * slabinfo_write - Tuning for the slab allocator 4175 * @file: unused 4176 * @buffer: user buffer 4177 * @count: data length 4178 * @ppos: unused 4179 */ 4180 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4181 size_t count, loff_t *ppos) 4182 { 4183 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4184 int limit, batchcount, shared, res; 4185 struct kmem_cache *cachep; 4186 4187 if (count > MAX_SLABINFO_WRITE) 4188 return -EINVAL; 4189 if (copy_from_user(&kbuf, buffer, count)) 4190 return -EFAULT; 4191 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4192 4193 tmp = strchr(kbuf, ' '); 4194 if (!tmp) 4195 return -EINVAL; 4196 *tmp = '\0'; 4197 tmp++; 4198 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4199 return -EINVAL; 4200 4201 /* Find the cache in the chain of caches. */ 4202 mutex_lock(&slab_mutex); 4203 res = -EINVAL; 4204 list_for_each_entry(cachep, &slab_caches, list) { 4205 if (!strcmp(cachep->name, kbuf)) { 4206 if (limit < 1 || batchcount < 1 || 4207 batchcount > limit || shared < 0) { 4208 res = 0; 4209 } else { 4210 res = do_tune_cpucache(cachep, limit, 4211 batchcount, shared, 4212 GFP_KERNEL); 4213 } 4214 break; 4215 } 4216 } 4217 mutex_unlock(&slab_mutex); 4218 if (res >= 0) 4219 res = count; 4220 return res; 4221 } 4222 4223 #ifdef CONFIG_DEBUG_SLAB_LEAK 4224 4225 static inline int add_caller(unsigned long *n, unsigned long v) 4226 { 4227 unsigned long *p; 4228 int l; 4229 if (!v) 4230 return 1; 4231 l = n[1]; 4232 p = n + 2; 4233 while (l) { 4234 int i = l/2; 4235 unsigned long *q = p + 2 * i; 4236 if (*q == v) { 4237 q[1]++; 4238 return 1; 4239 } 4240 if (*q > v) { 4241 l = i; 4242 } else { 4243 p = q + 2; 4244 l -= i + 1; 4245 } 4246 } 4247 if (++n[1] == n[0]) 4248 return 0; 4249 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4250 p[0] = v; 4251 p[1] = 1; 4252 return 1; 4253 } 4254 4255 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4256 struct page *page) 4257 { 4258 void *p; 4259 int i, j; 4260 unsigned long v; 4261 4262 if (n[0] == n[1]) 4263 return; 4264 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4265 bool active = true; 4266 4267 for (j = page->active; j < c->num; j++) { 4268 if (get_free_obj(page, j) == i) { 4269 active = false; 4270 break; 4271 } 4272 } 4273 4274 if (!active) 4275 continue; 4276 4277 /* 4278 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4279 * mapping is established when actual object allocation and 4280 * we could mistakenly access the unmapped object in the cpu 4281 * cache. 4282 */ 4283 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4284 continue; 4285 4286 if (!add_caller(n, v)) 4287 return; 4288 } 4289 } 4290 4291 static void show_symbol(struct seq_file *m, unsigned long address) 4292 { 4293 #ifdef CONFIG_KALLSYMS 4294 unsigned long offset, size; 4295 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4296 4297 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4298 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4299 if (modname[0]) 4300 seq_printf(m, " [%s]", modname); 4301 return; 4302 } 4303 #endif 4304 seq_printf(m, "%p", (void *)address); 4305 } 4306 4307 static int leaks_show(struct seq_file *m, void *p) 4308 { 4309 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4310 struct page *page; 4311 struct kmem_cache_node *n; 4312 const char *name; 4313 unsigned long *x = m->private; 4314 int node; 4315 int i; 4316 4317 if (!(cachep->flags & SLAB_STORE_USER)) 4318 return 0; 4319 if (!(cachep->flags & SLAB_RED_ZONE)) 4320 return 0; 4321 4322 /* 4323 * Set store_user_clean and start to grab stored user information 4324 * for all objects on this cache. If some alloc/free requests comes 4325 * during the processing, information would be wrong so restart 4326 * whole processing. 4327 */ 4328 do { 4329 set_store_user_clean(cachep); 4330 drain_cpu_caches(cachep); 4331 4332 x[1] = 0; 4333 4334 for_each_kmem_cache_node(cachep, node, n) { 4335 4336 check_irq_on(); 4337 spin_lock_irq(&n->list_lock); 4338 4339 list_for_each_entry(page, &n->slabs_full, lru) 4340 handle_slab(x, cachep, page); 4341 list_for_each_entry(page, &n->slabs_partial, lru) 4342 handle_slab(x, cachep, page); 4343 spin_unlock_irq(&n->list_lock); 4344 } 4345 } while (!is_store_user_clean(cachep)); 4346 4347 name = cachep->name; 4348 if (x[0] == x[1]) { 4349 /* Increase the buffer size */ 4350 mutex_unlock(&slab_mutex); 4351 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4352 if (!m->private) { 4353 /* Too bad, we are really out */ 4354 m->private = x; 4355 mutex_lock(&slab_mutex); 4356 return -ENOMEM; 4357 } 4358 *(unsigned long *)m->private = x[0] * 2; 4359 kfree(x); 4360 mutex_lock(&slab_mutex); 4361 /* Now make sure this entry will be retried */ 4362 m->count = m->size; 4363 return 0; 4364 } 4365 for (i = 0; i < x[1]; i++) { 4366 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4367 show_symbol(m, x[2*i+2]); 4368 seq_putc(m, '\n'); 4369 } 4370 4371 return 0; 4372 } 4373 4374 static const struct seq_operations slabstats_op = { 4375 .start = slab_start, 4376 .next = slab_next, 4377 .stop = slab_stop, 4378 .show = leaks_show, 4379 }; 4380 4381 static int slabstats_open(struct inode *inode, struct file *file) 4382 { 4383 unsigned long *n; 4384 4385 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4386 if (!n) 4387 return -ENOMEM; 4388 4389 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4390 4391 return 0; 4392 } 4393 4394 static const struct file_operations proc_slabstats_operations = { 4395 .open = slabstats_open, 4396 .read = seq_read, 4397 .llseek = seq_lseek, 4398 .release = seq_release_private, 4399 }; 4400 #endif 4401 4402 static int __init slab_proc_init(void) 4403 { 4404 #ifdef CONFIG_DEBUG_SLAB_LEAK 4405 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4406 #endif 4407 return 0; 4408 } 4409 module_init(slab_proc_init); 4410 #endif 4411 4412 #ifdef CONFIG_HARDENED_USERCOPY 4413 /* 4414 * Rejects objects that are incorrectly sized. 4415 * 4416 * Returns NULL if check passes, otherwise const char * to name of cache 4417 * to indicate an error. 4418 */ 4419 const char *__check_heap_object(const void *ptr, unsigned long n, 4420 struct page *page) 4421 { 4422 struct kmem_cache *cachep; 4423 unsigned int objnr; 4424 unsigned long offset; 4425 4426 /* Find and validate object. */ 4427 cachep = page->slab_cache; 4428 objnr = obj_to_index(cachep, page, (void *)ptr); 4429 BUG_ON(objnr >= cachep->num); 4430 4431 /* Find offset within object. */ 4432 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4433 4434 /* Allow address range falling entirely within object size. */ 4435 if (offset <= cachep->object_size && n <= cachep->object_size - offset) 4436 return NULL; 4437 4438 return cachep->name; 4439 } 4440 #endif /* CONFIG_HARDENED_USERCOPY */ 4441 4442 /** 4443 * ksize - get the actual amount of memory allocated for a given object 4444 * @objp: Pointer to the object 4445 * 4446 * kmalloc may internally round up allocations and return more memory 4447 * than requested. ksize() can be used to determine the actual amount of 4448 * memory allocated. The caller may use this additional memory, even though 4449 * a smaller amount of memory was initially specified with the kmalloc call. 4450 * The caller must guarantee that objp points to a valid object previously 4451 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4452 * must not be freed during the duration of the call. 4453 */ 4454 size_t ksize(const void *objp) 4455 { 4456 size_t size; 4457 4458 BUG_ON(!objp); 4459 if (unlikely(objp == ZERO_SIZE_PTR)) 4460 return 0; 4461 4462 size = virt_to_cache(objp)->object_size; 4463 /* We assume that ksize callers could use the whole allocated area, 4464 * so we need to unpoison this area. 4465 */ 4466 kasan_unpoison_shadow(objp, size); 4467 4468 return size; 4469 } 4470 EXPORT_SYMBOL(ksize); 4471