1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/kfence.h> 104 #include <linux/cpu.h> 105 #include <linux/sysctl.h> 106 #include <linux/module.h> 107 #include <linux/rcupdate.h> 108 #include <linux/string.h> 109 #include <linux/uaccess.h> 110 #include <linux/nodemask.h> 111 #include <linux/kmemleak.h> 112 #include <linux/mempolicy.h> 113 #include <linux/mutex.h> 114 #include <linux/fault-inject.h> 115 #include <linux/rtmutex.h> 116 #include <linux/reciprocal_div.h> 117 #include <linux/debugobjects.h> 118 #include <linux/memory.h> 119 #include <linux/prefetch.h> 120 #include <linux/sched/task_stack.h> 121 122 #include <net/sock.h> 123 124 #include <asm/cacheflush.h> 125 #include <asm/tlbflush.h> 126 #include <asm/page.h> 127 128 #include <trace/events/kmem.h> 129 130 #include "internal.h" 131 132 #include "slab.h" 133 134 /* 135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 136 * 0 for faster, smaller code (especially in the critical paths). 137 * 138 * STATS - 1 to collect stats for /proc/slabinfo. 139 * 0 for faster, smaller code (especially in the critical paths). 140 * 141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 142 */ 143 144 #ifdef CONFIG_DEBUG_SLAB 145 #define DEBUG 1 146 #define STATS 1 147 #define FORCED_DEBUG 1 148 #else 149 #define DEBUG 0 150 #define STATS 0 151 #define FORCED_DEBUG 0 152 #endif 153 154 /* Shouldn't this be in a header file somewhere? */ 155 #define BYTES_PER_WORD sizeof(void *) 156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 157 158 #ifndef ARCH_KMALLOC_FLAGS 159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 160 #endif 161 162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 164 165 #if FREELIST_BYTE_INDEX 166 typedef unsigned char freelist_idx_t; 167 #else 168 typedef unsigned short freelist_idx_t; 169 #endif 170 171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 172 173 /* 174 * struct array_cache 175 * 176 * Purpose: 177 * - LIFO ordering, to hand out cache-warm objects from _alloc 178 * - reduce the number of linked list operations 179 * - reduce spinlock operations 180 * 181 * The limit is stored in the per-cpu structure to reduce the data cache 182 * footprint. 183 * 184 */ 185 struct array_cache { 186 unsigned int avail; 187 unsigned int limit; 188 unsigned int batchcount; 189 unsigned int touched; 190 void *entry[]; /* 191 * Must have this definition in here for the proper 192 * alignment of array_cache. Also simplifies accessing 193 * the entries. 194 */ 195 }; 196 197 struct alien_cache { 198 spinlock_t lock; 199 struct array_cache ac; 200 }; 201 202 /* 203 * Need this for bootstrapping a per node allocator. 204 */ 205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 207 #define CACHE_CACHE 0 208 #define SIZE_NODE (MAX_NUMNODES) 209 210 static int drain_freelist(struct kmem_cache *cache, 211 struct kmem_cache_node *n, int tofree); 212 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 213 int node, struct list_head *list); 214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 216 static void cache_reap(struct work_struct *unused); 217 218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 219 void **list); 220 static inline void fixup_slab_list(struct kmem_cache *cachep, 221 struct kmem_cache_node *n, struct slab *slab, 222 void **list); 223 static int slab_early_init = 1; 224 225 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 226 227 static void kmem_cache_node_init(struct kmem_cache_node *parent) 228 { 229 INIT_LIST_HEAD(&parent->slabs_full); 230 INIT_LIST_HEAD(&parent->slabs_partial); 231 INIT_LIST_HEAD(&parent->slabs_free); 232 parent->total_slabs = 0; 233 parent->free_slabs = 0; 234 parent->shared = NULL; 235 parent->alien = NULL; 236 parent->colour_next = 0; 237 spin_lock_init(&parent->list_lock); 238 parent->free_objects = 0; 239 parent->free_touched = 0; 240 } 241 242 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 243 do { \ 244 INIT_LIST_HEAD(listp); \ 245 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 246 } while (0) 247 248 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 249 do { \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 253 } while (0) 254 255 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 256 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 257 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 258 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 259 260 #define BATCHREFILL_LIMIT 16 261 /* 262 * Optimization question: fewer reaps means less probability for unnecessary 263 * cpucache drain/refill cycles. 264 * 265 * OTOH the cpuarrays can contain lots of objects, 266 * which could lock up otherwise freeable slabs. 267 */ 268 #define REAPTIMEOUT_AC (2*HZ) 269 #define REAPTIMEOUT_NODE (4*HZ) 270 271 #if STATS 272 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 273 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 274 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 275 #define STATS_INC_GROWN(x) ((x)->grown++) 276 #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y)) 277 #define STATS_SET_HIGH(x) \ 278 do { \ 279 if ((x)->num_active > (x)->high_mark) \ 280 (x)->high_mark = (x)->num_active; \ 281 } while (0) 282 #define STATS_INC_ERR(x) ((x)->errors++) 283 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 284 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 285 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 286 #define STATS_SET_FREEABLE(x, i) \ 287 do { \ 288 if ((x)->max_freeable < i) \ 289 (x)->max_freeable = i; \ 290 } while (0) 291 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 292 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 293 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 294 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 295 #else 296 #define STATS_INC_ACTIVE(x) do { } while (0) 297 #define STATS_DEC_ACTIVE(x) do { } while (0) 298 #define STATS_INC_ALLOCED(x) do { } while (0) 299 #define STATS_INC_GROWN(x) do { } while (0) 300 #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0) 301 #define STATS_SET_HIGH(x) do { } while (0) 302 #define STATS_INC_ERR(x) do { } while (0) 303 #define STATS_INC_NODEALLOCS(x) do { } while (0) 304 #define STATS_INC_NODEFREES(x) do { } while (0) 305 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 306 #define STATS_SET_FREEABLE(x, i) do { } while (0) 307 #define STATS_INC_ALLOCHIT(x) do { } while (0) 308 #define STATS_INC_ALLOCMISS(x) do { } while (0) 309 #define STATS_INC_FREEHIT(x) do { } while (0) 310 #define STATS_INC_FREEMISS(x) do { } while (0) 311 #endif 312 313 #if DEBUG 314 315 /* 316 * memory layout of objects: 317 * 0 : objp 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 319 * the end of an object is aligned with the end of the real 320 * allocation. Catches writes behind the end of the allocation. 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 322 * redzone word. 323 * cachep->obj_offset: The real object. 324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 325 * cachep->size - 1* BYTES_PER_WORD: last caller address 326 * [BYTES_PER_WORD long] 327 */ 328 static int obj_offset(struct kmem_cache *cachep) 329 { 330 return cachep->obj_offset; 331 } 332 333 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 334 { 335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 336 return (unsigned long long *) (objp + obj_offset(cachep) - 337 sizeof(unsigned long long)); 338 } 339 340 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 341 { 342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 343 if (cachep->flags & SLAB_STORE_USER) 344 return (unsigned long long *)(objp + cachep->size - 345 sizeof(unsigned long long) - 346 REDZONE_ALIGN); 347 return (unsigned long long *) (objp + cachep->size - 348 sizeof(unsigned long long)); 349 } 350 351 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 352 { 353 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 354 return (void **)(objp + cachep->size - BYTES_PER_WORD); 355 } 356 357 #else 358 359 #define obj_offset(x) 0 360 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 362 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 363 364 #endif 365 366 /* 367 * Do not go above this order unless 0 objects fit into the slab or 368 * overridden on the command line. 369 */ 370 #define SLAB_MAX_ORDER_HI 1 371 #define SLAB_MAX_ORDER_LO 0 372 static int slab_max_order = SLAB_MAX_ORDER_LO; 373 static bool slab_max_order_set __initdata; 374 375 static inline void *index_to_obj(struct kmem_cache *cache, 376 const struct slab *slab, unsigned int idx) 377 { 378 return slab->s_mem + cache->size * idx; 379 } 380 381 #define BOOT_CPUCACHE_ENTRIES 1 382 /* internal cache of cache description objs */ 383 static struct kmem_cache kmem_cache_boot = { 384 .batchcount = 1, 385 .limit = BOOT_CPUCACHE_ENTRIES, 386 .shared = 1, 387 .size = sizeof(struct kmem_cache), 388 .name = "kmem_cache", 389 }; 390 391 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 392 393 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 394 { 395 return this_cpu_ptr(cachep->cpu_cache); 396 } 397 398 /* 399 * Calculate the number of objects and left-over bytes for a given buffer size. 400 */ 401 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 402 slab_flags_t flags, size_t *left_over) 403 { 404 unsigned int num; 405 size_t slab_size = PAGE_SIZE << gfporder; 406 407 /* 408 * The slab management structure can be either off the slab or 409 * on it. For the latter case, the memory allocated for a 410 * slab is used for: 411 * 412 * - @buffer_size bytes for each object 413 * - One freelist_idx_t for each object 414 * 415 * We don't need to consider alignment of freelist because 416 * freelist will be at the end of slab page. The objects will be 417 * at the correct alignment. 418 * 419 * If the slab management structure is off the slab, then the 420 * alignment will already be calculated into the size. Because 421 * the slabs are all pages aligned, the objects will be at the 422 * correct alignment when allocated. 423 */ 424 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 425 num = slab_size / buffer_size; 426 *left_over = slab_size % buffer_size; 427 } else { 428 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 429 *left_over = slab_size % 430 (buffer_size + sizeof(freelist_idx_t)); 431 } 432 433 return num; 434 } 435 436 #if DEBUG 437 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 438 439 static void __slab_error(const char *function, struct kmem_cache *cachep, 440 char *msg) 441 { 442 pr_err("slab error in %s(): cache `%s': %s\n", 443 function, cachep->name, msg); 444 dump_stack(); 445 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 446 } 447 #endif 448 449 /* 450 * By default on NUMA we use alien caches to stage the freeing of 451 * objects allocated from other nodes. This causes massive memory 452 * inefficiencies when using fake NUMA setup to split memory into a 453 * large number of small nodes, so it can be disabled on the command 454 * line 455 */ 456 457 static int use_alien_caches __read_mostly = 1; 458 static int __init noaliencache_setup(char *s) 459 { 460 use_alien_caches = 0; 461 return 1; 462 } 463 __setup("noaliencache", noaliencache_setup); 464 465 static int __init slab_max_order_setup(char *str) 466 { 467 get_option(&str, &slab_max_order); 468 slab_max_order = slab_max_order < 0 ? 0 : 469 min(slab_max_order, MAX_ORDER - 1); 470 slab_max_order_set = true; 471 472 return 1; 473 } 474 __setup("slab_max_order=", slab_max_order_setup); 475 476 #ifdef CONFIG_NUMA 477 /* 478 * Special reaping functions for NUMA systems called from cache_reap(). 479 * These take care of doing round robin flushing of alien caches (containing 480 * objects freed on different nodes from which they were allocated) and the 481 * flushing of remote pcps by calling drain_node_pages. 482 */ 483 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 484 485 static void init_reap_node(int cpu) 486 { 487 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 488 node_online_map); 489 } 490 491 static void next_reap_node(void) 492 { 493 int node = __this_cpu_read(slab_reap_node); 494 495 node = next_node_in(node, node_online_map); 496 __this_cpu_write(slab_reap_node, node); 497 } 498 499 #else 500 #define init_reap_node(cpu) do { } while (0) 501 #define next_reap_node(void) do { } while (0) 502 #endif 503 504 /* 505 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 506 * via the workqueue/eventd. 507 * Add the CPU number into the expiration time to minimize the possibility of 508 * the CPUs getting into lockstep and contending for the global cache chain 509 * lock. 510 */ 511 static void start_cpu_timer(int cpu) 512 { 513 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 514 515 if (reap_work->work.func == NULL) { 516 init_reap_node(cpu); 517 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 518 schedule_delayed_work_on(cpu, reap_work, 519 __round_jiffies_relative(HZ, cpu)); 520 } 521 } 522 523 static void init_arraycache(struct array_cache *ac, int limit, int batch) 524 { 525 if (ac) { 526 ac->avail = 0; 527 ac->limit = limit; 528 ac->batchcount = batch; 529 ac->touched = 0; 530 } 531 } 532 533 static struct array_cache *alloc_arraycache(int node, int entries, 534 int batchcount, gfp_t gfp) 535 { 536 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 537 struct array_cache *ac = NULL; 538 539 ac = kmalloc_node(memsize, gfp, node); 540 /* 541 * The array_cache structures contain pointers to free object. 542 * However, when such objects are allocated or transferred to another 543 * cache the pointers are not cleared and they could be counted as 544 * valid references during a kmemleak scan. Therefore, kmemleak must 545 * not scan such objects. 546 */ 547 kmemleak_no_scan(ac); 548 init_arraycache(ac, entries, batchcount); 549 return ac; 550 } 551 552 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 553 struct slab *slab, void *objp) 554 { 555 struct kmem_cache_node *n; 556 int slab_node; 557 LIST_HEAD(list); 558 559 slab_node = slab_nid(slab); 560 n = get_node(cachep, slab_node); 561 562 spin_lock(&n->list_lock); 563 free_block(cachep, &objp, 1, slab_node, &list); 564 spin_unlock(&n->list_lock); 565 566 slabs_destroy(cachep, &list); 567 } 568 569 /* 570 * Transfer objects in one arraycache to another. 571 * Locking must be handled by the caller. 572 * 573 * Return the number of entries transferred. 574 */ 575 static int transfer_objects(struct array_cache *to, 576 struct array_cache *from, unsigned int max) 577 { 578 /* Figure out how many entries to transfer */ 579 int nr = min3(from->avail, max, to->limit - to->avail); 580 581 if (!nr) 582 return 0; 583 584 memcpy(to->entry + to->avail, from->entry + from->avail - nr, 585 sizeof(void *) *nr); 586 587 from->avail -= nr; 588 to->avail += nr; 589 return nr; 590 } 591 592 /* &alien->lock must be held by alien callers. */ 593 static __always_inline void __free_one(struct array_cache *ac, void *objp) 594 { 595 /* Avoid trivial double-free. */ 596 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 597 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) 598 return; 599 ac->entry[ac->avail++] = objp; 600 } 601 602 #ifndef CONFIG_NUMA 603 604 #define drain_alien_cache(cachep, alien) do { } while (0) 605 #define reap_alien(cachep, n) do { } while (0) 606 607 static inline struct alien_cache **alloc_alien_cache(int node, 608 int limit, gfp_t gfp) 609 { 610 return NULL; 611 } 612 613 static inline void free_alien_cache(struct alien_cache **ac_ptr) 614 { 615 } 616 617 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 618 { 619 return 0; 620 } 621 622 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 623 gfp_t flags) 624 { 625 return NULL; 626 } 627 628 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 629 gfp_t flags, int nodeid) 630 { 631 return NULL; 632 } 633 634 static inline gfp_t gfp_exact_node(gfp_t flags) 635 { 636 return flags & ~__GFP_NOFAIL; 637 } 638 639 #else /* CONFIG_NUMA */ 640 641 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 642 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 643 644 static struct alien_cache *__alloc_alien_cache(int node, int entries, 645 int batch, gfp_t gfp) 646 { 647 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 648 struct alien_cache *alc = NULL; 649 650 alc = kmalloc_node(memsize, gfp, node); 651 if (alc) { 652 kmemleak_no_scan(alc); 653 init_arraycache(&alc->ac, entries, batch); 654 spin_lock_init(&alc->lock); 655 } 656 return alc; 657 } 658 659 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 660 { 661 struct alien_cache **alc_ptr; 662 int i; 663 664 if (limit > 1) 665 limit = 12; 666 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 667 if (!alc_ptr) 668 return NULL; 669 670 for_each_node(i) { 671 if (i == node || !node_online(i)) 672 continue; 673 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 674 if (!alc_ptr[i]) { 675 for (i--; i >= 0; i--) 676 kfree(alc_ptr[i]); 677 kfree(alc_ptr); 678 return NULL; 679 } 680 } 681 return alc_ptr; 682 } 683 684 static void free_alien_cache(struct alien_cache **alc_ptr) 685 { 686 int i; 687 688 if (!alc_ptr) 689 return; 690 for_each_node(i) 691 kfree(alc_ptr[i]); 692 kfree(alc_ptr); 693 } 694 695 static void __drain_alien_cache(struct kmem_cache *cachep, 696 struct array_cache *ac, int node, 697 struct list_head *list) 698 { 699 struct kmem_cache_node *n = get_node(cachep, node); 700 701 if (ac->avail) { 702 spin_lock(&n->list_lock); 703 /* 704 * Stuff objects into the remote nodes shared array first. 705 * That way we could avoid the overhead of putting the objects 706 * into the free lists and getting them back later. 707 */ 708 if (n->shared) 709 transfer_objects(n->shared, ac, ac->limit); 710 711 free_block(cachep, ac->entry, ac->avail, node, list); 712 ac->avail = 0; 713 spin_unlock(&n->list_lock); 714 } 715 } 716 717 /* 718 * Called from cache_reap() to regularly drain alien caches round robin. 719 */ 720 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 721 { 722 int node = __this_cpu_read(slab_reap_node); 723 724 if (n->alien) { 725 struct alien_cache *alc = n->alien[node]; 726 struct array_cache *ac; 727 728 if (alc) { 729 ac = &alc->ac; 730 if (ac->avail && spin_trylock_irq(&alc->lock)) { 731 LIST_HEAD(list); 732 733 __drain_alien_cache(cachep, ac, node, &list); 734 spin_unlock_irq(&alc->lock); 735 slabs_destroy(cachep, &list); 736 } 737 } 738 } 739 } 740 741 static void drain_alien_cache(struct kmem_cache *cachep, 742 struct alien_cache **alien) 743 { 744 int i = 0; 745 struct alien_cache *alc; 746 struct array_cache *ac; 747 unsigned long flags; 748 749 for_each_online_node(i) { 750 alc = alien[i]; 751 if (alc) { 752 LIST_HEAD(list); 753 754 ac = &alc->ac; 755 spin_lock_irqsave(&alc->lock, flags); 756 __drain_alien_cache(cachep, ac, i, &list); 757 spin_unlock_irqrestore(&alc->lock, flags); 758 slabs_destroy(cachep, &list); 759 } 760 } 761 } 762 763 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 764 int node, int slab_node) 765 { 766 struct kmem_cache_node *n; 767 struct alien_cache *alien = NULL; 768 struct array_cache *ac; 769 LIST_HEAD(list); 770 771 n = get_node(cachep, node); 772 STATS_INC_NODEFREES(cachep); 773 if (n->alien && n->alien[slab_node]) { 774 alien = n->alien[slab_node]; 775 ac = &alien->ac; 776 spin_lock(&alien->lock); 777 if (unlikely(ac->avail == ac->limit)) { 778 STATS_INC_ACOVERFLOW(cachep); 779 __drain_alien_cache(cachep, ac, slab_node, &list); 780 } 781 __free_one(ac, objp); 782 spin_unlock(&alien->lock); 783 slabs_destroy(cachep, &list); 784 } else { 785 n = get_node(cachep, slab_node); 786 spin_lock(&n->list_lock); 787 free_block(cachep, &objp, 1, slab_node, &list); 788 spin_unlock(&n->list_lock); 789 slabs_destroy(cachep, &list); 790 } 791 return 1; 792 } 793 794 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 795 { 796 int slab_node = slab_nid(virt_to_slab(objp)); 797 int node = numa_mem_id(); 798 /* 799 * Make sure we are not freeing a object from another node to the array 800 * cache on this cpu. 801 */ 802 if (likely(node == slab_node)) 803 return 0; 804 805 return __cache_free_alien(cachep, objp, node, slab_node); 806 } 807 808 /* 809 * Construct gfp mask to allocate from a specific node but do not reclaim or 810 * warn about failures. 811 */ 812 static inline gfp_t gfp_exact_node(gfp_t flags) 813 { 814 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 815 } 816 #endif 817 818 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 819 { 820 struct kmem_cache_node *n; 821 822 /* 823 * Set up the kmem_cache_node for cpu before we can 824 * begin anything. Make sure some other cpu on this 825 * node has not already allocated this 826 */ 827 n = get_node(cachep, node); 828 if (n) { 829 spin_lock_irq(&n->list_lock); 830 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 831 cachep->num; 832 spin_unlock_irq(&n->list_lock); 833 834 return 0; 835 } 836 837 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 838 if (!n) 839 return -ENOMEM; 840 841 kmem_cache_node_init(n); 842 n->next_reap = jiffies + REAPTIMEOUT_NODE + 843 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 844 845 n->free_limit = 846 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 847 848 /* 849 * The kmem_cache_nodes don't come and go as CPUs 850 * come and go. slab_mutex is sufficient 851 * protection here. 852 */ 853 cachep->node[node] = n; 854 855 return 0; 856 } 857 858 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 859 /* 860 * Allocates and initializes node for a node on each slab cache, used for 861 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 862 * will be allocated off-node since memory is not yet online for the new node. 863 * When hotplugging memory or a cpu, existing node are not replaced if 864 * already in use. 865 * 866 * Must hold slab_mutex. 867 */ 868 static int init_cache_node_node(int node) 869 { 870 int ret; 871 struct kmem_cache *cachep; 872 873 list_for_each_entry(cachep, &slab_caches, list) { 874 ret = init_cache_node(cachep, node, GFP_KERNEL); 875 if (ret) 876 return ret; 877 } 878 879 return 0; 880 } 881 #endif 882 883 static int setup_kmem_cache_node(struct kmem_cache *cachep, 884 int node, gfp_t gfp, bool force_change) 885 { 886 int ret = -ENOMEM; 887 struct kmem_cache_node *n; 888 struct array_cache *old_shared = NULL; 889 struct array_cache *new_shared = NULL; 890 struct alien_cache **new_alien = NULL; 891 LIST_HEAD(list); 892 893 if (use_alien_caches) { 894 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 895 if (!new_alien) 896 goto fail; 897 } 898 899 if (cachep->shared) { 900 new_shared = alloc_arraycache(node, 901 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 902 if (!new_shared) 903 goto fail; 904 } 905 906 ret = init_cache_node(cachep, node, gfp); 907 if (ret) 908 goto fail; 909 910 n = get_node(cachep, node); 911 spin_lock_irq(&n->list_lock); 912 if (n->shared && force_change) { 913 free_block(cachep, n->shared->entry, 914 n->shared->avail, node, &list); 915 n->shared->avail = 0; 916 } 917 918 if (!n->shared || force_change) { 919 old_shared = n->shared; 920 n->shared = new_shared; 921 new_shared = NULL; 922 } 923 924 if (!n->alien) { 925 n->alien = new_alien; 926 new_alien = NULL; 927 } 928 929 spin_unlock_irq(&n->list_lock); 930 slabs_destroy(cachep, &list); 931 932 /* 933 * To protect lockless access to n->shared during irq disabled context. 934 * If n->shared isn't NULL in irq disabled context, accessing to it is 935 * guaranteed to be valid until irq is re-enabled, because it will be 936 * freed after synchronize_rcu(). 937 */ 938 if (old_shared && force_change) 939 synchronize_rcu(); 940 941 fail: 942 kfree(old_shared); 943 kfree(new_shared); 944 free_alien_cache(new_alien); 945 946 return ret; 947 } 948 949 #ifdef CONFIG_SMP 950 951 static void cpuup_canceled(long cpu) 952 { 953 struct kmem_cache *cachep; 954 struct kmem_cache_node *n = NULL; 955 int node = cpu_to_mem(cpu); 956 const struct cpumask *mask = cpumask_of_node(node); 957 958 list_for_each_entry(cachep, &slab_caches, list) { 959 struct array_cache *nc; 960 struct array_cache *shared; 961 struct alien_cache **alien; 962 LIST_HEAD(list); 963 964 n = get_node(cachep, node); 965 if (!n) 966 continue; 967 968 spin_lock_irq(&n->list_lock); 969 970 /* Free limit for this kmem_cache_node */ 971 n->free_limit -= cachep->batchcount; 972 973 /* cpu is dead; no one can alloc from it. */ 974 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 975 free_block(cachep, nc->entry, nc->avail, node, &list); 976 nc->avail = 0; 977 978 if (!cpumask_empty(mask)) { 979 spin_unlock_irq(&n->list_lock); 980 goto free_slab; 981 } 982 983 shared = n->shared; 984 if (shared) { 985 free_block(cachep, shared->entry, 986 shared->avail, node, &list); 987 n->shared = NULL; 988 } 989 990 alien = n->alien; 991 n->alien = NULL; 992 993 spin_unlock_irq(&n->list_lock); 994 995 kfree(shared); 996 if (alien) { 997 drain_alien_cache(cachep, alien); 998 free_alien_cache(alien); 999 } 1000 1001 free_slab: 1002 slabs_destroy(cachep, &list); 1003 } 1004 /* 1005 * In the previous loop, all the objects were freed to 1006 * the respective cache's slabs, now we can go ahead and 1007 * shrink each nodelist to its limit. 1008 */ 1009 list_for_each_entry(cachep, &slab_caches, list) { 1010 n = get_node(cachep, node); 1011 if (!n) 1012 continue; 1013 drain_freelist(cachep, n, INT_MAX); 1014 } 1015 } 1016 1017 static int cpuup_prepare(long cpu) 1018 { 1019 struct kmem_cache *cachep; 1020 int node = cpu_to_mem(cpu); 1021 int err; 1022 1023 /* 1024 * We need to do this right in the beginning since 1025 * alloc_arraycache's are going to use this list. 1026 * kmalloc_node allows us to add the slab to the right 1027 * kmem_cache_node and not this cpu's kmem_cache_node 1028 */ 1029 err = init_cache_node_node(node); 1030 if (err < 0) 1031 goto bad; 1032 1033 /* 1034 * Now we can go ahead with allocating the shared arrays and 1035 * array caches 1036 */ 1037 list_for_each_entry(cachep, &slab_caches, list) { 1038 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1039 if (err) 1040 goto bad; 1041 } 1042 1043 return 0; 1044 bad: 1045 cpuup_canceled(cpu); 1046 return -ENOMEM; 1047 } 1048 1049 int slab_prepare_cpu(unsigned int cpu) 1050 { 1051 int err; 1052 1053 mutex_lock(&slab_mutex); 1054 err = cpuup_prepare(cpu); 1055 mutex_unlock(&slab_mutex); 1056 return err; 1057 } 1058 1059 /* 1060 * This is called for a failed online attempt and for a successful 1061 * offline. 1062 * 1063 * Even if all the cpus of a node are down, we don't free the 1064 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and 1065 * a kmalloc allocation from another cpu for memory from the node of 1066 * the cpu going down. The kmem_cache_node structure is usually allocated from 1067 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1068 */ 1069 int slab_dead_cpu(unsigned int cpu) 1070 { 1071 mutex_lock(&slab_mutex); 1072 cpuup_canceled(cpu); 1073 mutex_unlock(&slab_mutex); 1074 return 0; 1075 } 1076 #endif 1077 1078 static int slab_online_cpu(unsigned int cpu) 1079 { 1080 start_cpu_timer(cpu); 1081 return 0; 1082 } 1083 1084 static int slab_offline_cpu(unsigned int cpu) 1085 { 1086 /* 1087 * Shutdown cache reaper. Note that the slab_mutex is held so 1088 * that if cache_reap() is invoked it cannot do anything 1089 * expensive but will only modify reap_work and reschedule the 1090 * timer. 1091 */ 1092 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1093 /* Now the cache_reaper is guaranteed to be not running. */ 1094 per_cpu(slab_reap_work, cpu).work.func = NULL; 1095 return 0; 1096 } 1097 1098 #if defined(CONFIG_NUMA) 1099 /* 1100 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1101 * Returns -EBUSY if all objects cannot be drained so that the node is not 1102 * removed. 1103 * 1104 * Must hold slab_mutex. 1105 */ 1106 static int __meminit drain_cache_node_node(int node) 1107 { 1108 struct kmem_cache *cachep; 1109 int ret = 0; 1110 1111 list_for_each_entry(cachep, &slab_caches, list) { 1112 struct kmem_cache_node *n; 1113 1114 n = get_node(cachep, node); 1115 if (!n) 1116 continue; 1117 1118 drain_freelist(cachep, n, INT_MAX); 1119 1120 if (!list_empty(&n->slabs_full) || 1121 !list_empty(&n->slabs_partial)) { 1122 ret = -EBUSY; 1123 break; 1124 } 1125 } 1126 return ret; 1127 } 1128 1129 static int __meminit slab_memory_callback(struct notifier_block *self, 1130 unsigned long action, void *arg) 1131 { 1132 struct memory_notify *mnb = arg; 1133 int ret = 0; 1134 int nid; 1135 1136 nid = mnb->status_change_nid; 1137 if (nid < 0) 1138 goto out; 1139 1140 switch (action) { 1141 case MEM_GOING_ONLINE: 1142 mutex_lock(&slab_mutex); 1143 ret = init_cache_node_node(nid); 1144 mutex_unlock(&slab_mutex); 1145 break; 1146 case MEM_GOING_OFFLINE: 1147 mutex_lock(&slab_mutex); 1148 ret = drain_cache_node_node(nid); 1149 mutex_unlock(&slab_mutex); 1150 break; 1151 case MEM_ONLINE: 1152 case MEM_OFFLINE: 1153 case MEM_CANCEL_ONLINE: 1154 case MEM_CANCEL_OFFLINE: 1155 break; 1156 } 1157 out: 1158 return notifier_from_errno(ret); 1159 } 1160 #endif /* CONFIG_NUMA */ 1161 1162 /* 1163 * swap the static kmem_cache_node with kmalloced memory 1164 */ 1165 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1166 int nodeid) 1167 { 1168 struct kmem_cache_node *ptr; 1169 1170 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1171 BUG_ON(!ptr); 1172 1173 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1174 /* 1175 * Do not assume that spinlocks can be initialized via memcpy: 1176 */ 1177 spin_lock_init(&ptr->list_lock); 1178 1179 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1180 cachep->node[nodeid] = ptr; 1181 } 1182 1183 /* 1184 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1185 * size of kmem_cache_node. 1186 */ 1187 static void __init set_up_node(struct kmem_cache *cachep, int index) 1188 { 1189 int node; 1190 1191 for_each_online_node(node) { 1192 cachep->node[node] = &init_kmem_cache_node[index + node]; 1193 cachep->node[node]->next_reap = jiffies + 1194 REAPTIMEOUT_NODE + 1195 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1196 } 1197 } 1198 1199 /* 1200 * Initialisation. Called after the page allocator have been initialised and 1201 * before smp_init(). 1202 */ 1203 void __init kmem_cache_init(void) 1204 { 1205 int i; 1206 1207 kmem_cache = &kmem_cache_boot; 1208 1209 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1210 use_alien_caches = 0; 1211 1212 for (i = 0; i < NUM_INIT_LISTS; i++) 1213 kmem_cache_node_init(&init_kmem_cache_node[i]); 1214 1215 /* 1216 * Fragmentation resistance on low memory - only use bigger 1217 * page orders on machines with more than 32MB of memory if 1218 * not overridden on the command line. 1219 */ 1220 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1221 slab_max_order = SLAB_MAX_ORDER_HI; 1222 1223 /* Bootstrap is tricky, because several objects are allocated 1224 * from caches that do not exist yet: 1225 * 1) initialize the kmem_cache cache: it contains the struct 1226 * kmem_cache structures of all caches, except kmem_cache itself: 1227 * kmem_cache is statically allocated. 1228 * Initially an __init data area is used for the head array and the 1229 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1230 * array at the end of the bootstrap. 1231 * 2) Create the first kmalloc cache. 1232 * The struct kmem_cache for the new cache is allocated normally. 1233 * An __init data area is used for the head array. 1234 * 3) Create the remaining kmalloc caches, with minimally sized 1235 * head arrays. 1236 * 4) Replace the __init data head arrays for kmem_cache and the first 1237 * kmalloc cache with kmalloc allocated arrays. 1238 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1239 * the other cache's with kmalloc allocated memory. 1240 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1241 */ 1242 1243 /* 1) create the kmem_cache */ 1244 1245 /* 1246 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1247 */ 1248 create_boot_cache(kmem_cache, "kmem_cache", 1249 offsetof(struct kmem_cache, node) + 1250 nr_node_ids * sizeof(struct kmem_cache_node *), 1251 SLAB_HWCACHE_ALIGN, 0, 0); 1252 list_add(&kmem_cache->list, &slab_caches); 1253 slab_state = PARTIAL; 1254 1255 /* 1256 * Initialize the caches that provide memory for the kmem_cache_node 1257 * structures first. Without this, further allocations will bug. 1258 */ 1259 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( 1260 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL], 1261 kmalloc_info[INDEX_NODE].size, 1262 ARCH_KMALLOC_FLAGS, 0, 1263 kmalloc_info[INDEX_NODE].size); 1264 slab_state = PARTIAL_NODE; 1265 setup_kmalloc_cache_index_table(); 1266 1267 slab_early_init = 0; 1268 1269 /* 5) Replace the bootstrap kmem_cache_node */ 1270 { 1271 int nid; 1272 1273 for_each_online_node(nid) { 1274 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1275 1276 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1277 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1278 } 1279 } 1280 1281 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1282 } 1283 1284 void __init kmem_cache_init_late(void) 1285 { 1286 struct kmem_cache *cachep; 1287 1288 /* 6) resize the head arrays to their final sizes */ 1289 mutex_lock(&slab_mutex); 1290 list_for_each_entry(cachep, &slab_caches, list) 1291 if (enable_cpucache(cachep, GFP_NOWAIT)) 1292 BUG(); 1293 mutex_unlock(&slab_mutex); 1294 1295 /* Done! */ 1296 slab_state = FULL; 1297 1298 #ifdef CONFIG_NUMA 1299 /* 1300 * Register a memory hotplug callback that initializes and frees 1301 * node. 1302 */ 1303 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1304 #endif 1305 1306 /* 1307 * The reap timers are started later, with a module init call: That part 1308 * of the kernel is not yet operational. 1309 */ 1310 } 1311 1312 static int __init cpucache_init(void) 1313 { 1314 int ret; 1315 1316 /* 1317 * Register the timers that return unneeded pages to the page allocator 1318 */ 1319 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1320 slab_online_cpu, slab_offline_cpu); 1321 WARN_ON(ret < 0); 1322 1323 return 0; 1324 } 1325 __initcall(cpucache_init); 1326 1327 static noinline void 1328 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1329 { 1330 #if DEBUG 1331 struct kmem_cache_node *n; 1332 unsigned long flags; 1333 int node; 1334 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1335 DEFAULT_RATELIMIT_BURST); 1336 1337 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1338 return; 1339 1340 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1341 nodeid, gfpflags, &gfpflags); 1342 pr_warn(" cache: %s, object size: %d, order: %d\n", 1343 cachep->name, cachep->size, cachep->gfporder); 1344 1345 for_each_kmem_cache_node(cachep, node, n) { 1346 unsigned long total_slabs, free_slabs, free_objs; 1347 1348 spin_lock_irqsave(&n->list_lock, flags); 1349 total_slabs = n->total_slabs; 1350 free_slabs = n->free_slabs; 1351 free_objs = n->free_objects; 1352 spin_unlock_irqrestore(&n->list_lock, flags); 1353 1354 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1355 node, total_slabs - free_slabs, total_slabs, 1356 (total_slabs * cachep->num) - free_objs, 1357 total_slabs * cachep->num); 1358 } 1359 #endif 1360 } 1361 1362 /* 1363 * Interface to system's page allocator. No need to hold the 1364 * kmem_cache_node ->list_lock. 1365 * 1366 * If we requested dmaable memory, we will get it. Even if we 1367 * did not request dmaable memory, we might get it, but that 1368 * would be relatively rare and ignorable. 1369 */ 1370 static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1371 int nodeid) 1372 { 1373 struct folio *folio; 1374 struct slab *slab; 1375 1376 flags |= cachep->allocflags; 1377 1378 folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder); 1379 if (!folio) { 1380 slab_out_of_memory(cachep, flags, nodeid); 1381 return NULL; 1382 } 1383 1384 slab = folio_slab(folio); 1385 1386 account_slab(slab, cachep->gfporder, cachep, flags); 1387 __folio_set_slab(folio); 1388 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1389 if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0))) 1390 slab_set_pfmemalloc(slab); 1391 1392 return slab; 1393 } 1394 1395 /* 1396 * Interface to system's page release. 1397 */ 1398 static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab) 1399 { 1400 int order = cachep->gfporder; 1401 struct folio *folio = slab_folio(slab); 1402 1403 BUG_ON(!folio_test_slab(folio)); 1404 __slab_clear_pfmemalloc(slab); 1405 __folio_clear_slab(folio); 1406 page_mapcount_reset(folio_page(folio, 0)); 1407 folio->mapping = NULL; 1408 1409 if (current->reclaim_state) 1410 current->reclaim_state->reclaimed_slab += 1 << order; 1411 unaccount_slab(slab, order, cachep); 1412 __free_pages(folio_page(folio, 0), order); 1413 } 1414 1415 static void kmem_rcu_free(struct rcu_head *head) 1416 { 1417 struct kmem_cache *cachep; 1418 struct slab *slab; 1419 1420 slab = container_of(head, struct slab, rcu_head); 1421 cachep = slab->slab_cache; 1422 1423 kmem_freepages(cachep, slab); 1424 } 1425 1426 #if DEBUG 1427 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1428 { 1429 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && 1430 (cachep->size % PAGE_SIZE) == 0) 1431 return true; 1432 1433 return false; 1434 } 1435 1436 #ifdef CONFIG_DEBUG_PAGEALLOC 1437 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1438 { 1439 if (!is_debug_pagealloc_cache(cachep)) 1440 return; 1441 1442 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1443 } 1444 1445 #else 1446 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1447 int map) {} 1448 1449 #endif 1450 1451 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1452 { 1453 int size = cachep->object_size; 1454 addr = &((char *)addr)[obj_offset(cachep)]; 1455 1456 memset(addr, val, size); 1457 *(unsigned char *)(addr + size - 1) = POISON_END; 1458 } 1459 1460 static void dump_line(char *data, int offset, int limit) 1461 { 1462 int i; 1463 unsigned char error = 0; 1464 int bad_count = 0; 1465 1466 pr_err("%03x: ", offset); 1467 for (i = 0; i < limit; i++) { 1468 if (data[offset + i] != POISON_FREE) { 1469 error = data[offset + i]; 1470 bad_count++; 1471 } 1472 } 1473 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1474 &data[offset], limit, 1); 1475 1476 if (bad_count == 1) { 1477 error ^= POISON_FREE; 1478 if (!(error & (error - 1))) { 1479 pr_err("Single bit error detected. Probably bad RAM.\n"); 1480 #ifdef CONFIG_X86 1481 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1482 #else 1483 pr_err("Run a memory test tool.\n"); 1484 #endif 1485 } 1486 } 1487 } 1488 #endif 1489 1490 #if DEBUG 1491 1492 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1493 { 1494 int i, size; 1495 char *realobj; 1496 1497 if (cachep->flags & SLAB_RED_ZONE) { 1498 pr_err("Redzone: 0x%llx/0x%llx\n", 1499 *dbg_redzone1(cachep, objp), 1500 *dbg_redzone2(cachep, objp)); 1501 } 1502 1503 if (cachep->flags & SLAB_STORE_USER) 1504 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1505 realobj = (char *)objp + obj_offset(cachep); 1506 size = cachep->object_size; 1507 for (i = 0; i < size && lines; i += 16, lines--) { 1508 int limit; 1509 limit = 16; 1510 if (i + limit > size) 1511 limit = size - i; 1512 dump_line(realobj, i, limit); 1513 } 1514 } 1515 1516 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1517 { 1518 char *realobj; 1519 int size, i; 1520 int lines = 0; 1521 1522 if (is_debug_pagealloc_cache(cachep)) 1523 return; 1524 1525 realobj = (char *)objp + obj_offset(cachep); 1526 size = cachep->object_size; 1527 1528 for (i = 0; i < size; i++) { 1529 char exp = POISON_FREE; 1530 if (i == size - 1) 1531 exp = POISON_END; 1532 if (realobj[i] != exp) { 1533 int limit; 1534 /* Mismatch ! */ 1535 /* Print header */ 1536 if (lines == 0) { 1537 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1538 print_tainted(), cachep->name, 1539 realobj, size); 1540 print_objinfo(cachep, objp, 0); 1541 } 1542 /* Hexdump the affected line */ 1543 i = (i / 16) * 16; 1544 limit = 16; 1545 if (i + limit > size) 1546 limit = size - i; 1547 dump_line(realobj, i, limit); 1548 i += 16; 1549 lines++; 1550 /* Limit to 5 lines */ 1551 if (lines > 5) 1552 break; 1553 } 1554 } 1555 if (lines != 0) { 1556 /* Print some data about the neighboring objects, if they 1557 * exist: 1558 */ 1559 struct slab *slab = virt_to_slab(objp); 1560 unsigned int objnr; 1561 1562 objnr = obj_to_index(cachep, slab, objp); 1563 if (objnr) { 1564 objp = index_to_obj(cachep, slab, objnr - 1); 1565 realobj = (char *)objp + obj_offset(cachep); 1566 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1567 print_objinfo(cachep, objp, 2); 1568 } 1569 if (objnr + 1 < cachep->num) { 1570 objp = index_to_obj(cachep, slab, objnr + 1); 1571 realobj = (char *)objp + obj_offset(cachep); 1572 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1573 print_objinfo(cachep, objp, 2); 1574 } 1575 } 1576 } 1577 #endif 1578 1579 #if DEBUG 1580 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1581 struct slab *slab) 1582 { 1583 int i; 1584 1585 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1586 poison_obj(cachep, slab->freelist - obj_offset(cachep), 1587 POISON_FREE); 1588 } 1589 1590 for (i = 0; i < cachep->num; i++) { 1591 void *objp = index_to_obj(cachep, slab, i); 1592 1593 if (cachep->flags & SLAB_POISON) { 1594 check_poison_obj(cachep, objp); 1595 slab_kernel_map(cachep, objp, 1); 1596 } 1597 if (cachep->flags & SLAB_RED_ZONE) { 1598 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1599 slab_error(cachep, "start of a freed object was overwritten"); 1600 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1601 slab_error(cachep, "end of a freed object was overwritten"); 1602 } 1603 } 1604 } 1605 #else 1606 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1607 struct slab *slab) 1608 { 1609 } 1610 #endif 1611 1612 /** 1613 * slab_destroy - destroy and release all objects in a slab 1614 * @cachep: cache pointer being destroyed 1615 * @slab: slab being destroyed 1616 * 1617 * Destroy all the objs in a slab, and release the mem back to the system. 1618 * Before calling the slab must have been unlinked from the cache. The 1619 * kmem_cache_node ->list_lock is not held/needed. 1620 */ 1621 static void slab_destroy(struct kmem_cache *cachep, struct slab *slab) 1622 { 1623 void *freelist; 1624 1625 freelist = slab->freelist; 1626 slab_destroy_debugcheck(cachep, slab); 1627 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1628 call_rcu(&slab->rcu_head, kmem_rcu_free); 1629 else 1630 kmem_freepages(cachep, slab); 1631 1632 /* 1633 * From now on, we don't use freelist 1634 * although actual page can be freed in rcu context 1635 */ 1636 if (OFF_SLAB(cachep)) 1637 kmem_cache_free(cachep->freelist_cache, freelist); 1638 } 1639 1640 /* 1641 * Update the size of the caches before calling slabs_destroy as it may 1642 * recursively call kfree. 1643 */ 1644 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1645 { 1646 struct slab *slab, *n; 1647 1648 list_for_each_entry_safe(slab, n, list, slab_list) { 1649 list_del(&slab->slab_list); 1650 slab_destroy(cachep, slab); 1651 } 1652 } 1653 1654 /** 1655 * calculate_slab_order - calculate size (page order) of slabs 1656 * @cachep: pointer to the cache that is being created 1657 * @size: size of objects to be created in this cache. 1658 * @flags: slab allocation flags 1659 * 1660 * Also calculates the number of objects per slab. 1661 * 1662 * This could be made much more intelligent. For now, try to avoid using 1663 * high order pages for slabs. When the gfp() functions are more friendly 1664 * towards high-order requests, this should be changed. 1665 * 1666 * Return: number of left-over bytes in a slab 1667 */ 1668 static size_t calculate_slab_order(struct kmem_cache *cachep, 1669 size_t size, slab_flags_t flags) 1670 { 1671 size_t left_over = 0; 1672 int gfporder; 1673 1674 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1675 unsigned int num; 1676 size_t remainder; 1677 1678 num = cache_estimate(gfporder, size, flags, &remainder); 1679 if (!num) 1680 continue; 1681 1682 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1683 if (num > SLAB_OBJ_MAX_NUM) 1684 break; 1685 1686 if (flags & CFLGS_OFF_SLAB) { 1687 struct kmem_cache *freelist_cache; 1688 size_t freelist_size; 1689 1690 freelist_size = num * sizeof(freelist_idx_t); 1691 freelist_cache = kmalloc_slab(freelist_size, 0u); 1692 if (!freelist_cache) 1693 continue; 1694 1695 /* 1696 * Needed to avoid possible looping condition 1697 * in cache_grow_begin() 1698 */ 1699 if (OFF_SLAB(freelist_cache)) 1700 continue; 1701 1702 /* check if off slab has enough benefit */ 1703 if (freelist_cache->size > cachep->size / 2) 1704 continue; 1705 } 1706 1707 /* Found something acceptable - save it away */ 1708 cachep->num = num; 1709 cachep->gfporder = gfporder; 1710 left_over = remainder; 1711 1712 /* 1713 * A VFS-reclaimable slab tends to have most allocations 1714 * as GFP_NOFS and we really don't want to have to be allocating 1715 * higher-order pages when we are unable to shrink dcache. 1716 */ 1717 if (flags & SLAB_RECLAIM_ACCOUNT) 1718 break; 1719 1720 /* 1721 * Large number of objects is good, but very large slabs are 1722 * currently bad for the gfp()s. 1723 */ 1724 if (gfporder >= slab_max_order) 1725 break; 1726 1727 /* 1728 * Acceptable internal fragmentation? 1729 */ 1730 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1731 break; 1732 } 1733 return left_over; 1734 } 1735 1736 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1737 struct kmem_cache *cachep, int entries, int batchcount) 1738 { 1739 int cpu; 1740 size_t size; 1741 struct array_cache __percpu *cpu_cache; 1742 1743 size = sizeof(void *) * entries + sizeof(struct array_cache); 1744 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1745 1746 if (!cpu_cache) 1747 return NULL; 1748 1749 for_each_possible_cpu(cpu) { 1750 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1751 entries, batchcount); 1752 } 1753 1754 return cpu_cache; 1755 } 1756 1757 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1758 { 1759 if (slab_state >= FULL) 1760 return enable_cpucache(cachep, gfp); 1761 1762 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1763 if (!cachep->cpu_cache) 1764 return 1; 1765 1766 if (slab_state == DOWN) { 1767 /* Creation of first cache (kmem_cache). */ 1768 set_up_node(kmem_cache, CACHE_CACHE); 1769 } else if (slab_state == PARTIAL) { 1770 /* For kmem_cache_node */ 1771 set_up_node(cachep, SIZE_NODE); 1772 } else { 1773 int node; 1774 1775 for_each_online_node(node) { 1776 cachep->node[node] = kmalloc_node( 1777 sizeof(struct kmem_cache_node), gfp, node); 1778 BUG_ON(!cachep->node[node]); 1779 kmem_cache_node_init(cachep->node[node]); 1780 } 1781 } 1782 1783 cachep->node[numa_mem_id()]->next_reap = 1784 jiffies + REAPTIMEOUT_NODE + 1785 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1786 1787 cpu_cache_get(cachep)->avail = 0; 1788 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1789 cpu_cache_get(cachep)->batchcount = 1; 1790 cpu_cache_get(cachep)->touched = 0; 1791 cachep->batchcount = 1; 1792 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1793 return 0; 1794 } 1795 1796 slab_flags_t kmem_cache_flags(unsigned int object_size, 1797 slab_flags_t flags, const char *name) 1798 { 1799 return flags; 1800 } 1801 1802 struct kmem_cache * 1803 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1804 slab_flags_t flags, void (*ctor)(void *)) 1805 { 1806 struct kmem_cache *cachep; 1807 1808 cachep = find_mergeable(size, align, flags, name, ctor); 1809 if (cachep) { 1810 cachep->refcount++; 1811 1812 /* 1813 * Adjust the object sizes so that we clear 1814 * the complete object on kzalloc. 1815 */ 1816 cachep->object_size = max_t(int, cachep->object_size, size); 1817 } 1818 return cachep; 1819 } 1820 1821 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1822 size_t size, slab_flags_t flags) 1823 { 1824 size_t left; 1825 1826 cachep->num = 0; 1827 1828 /* 1829 * If slab auto-initialization on free is enabled, store the freelist 1830 * off-slab, so that its contents don't end up in one of the allocated 1831 * objects. 1832 */ 1833 if (unlikely(slab_want_init_on_free(cachep))) 1834 return false; 1835 1836 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1837 return false; 1838 1839 left = calculate_slab_order(cachep, size, 1840 flags | CFLGS_OBJFREELIST_SLAB); 1841 if (!cachep->num) 1842 return false; 1843 1844 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1845 return false; 1846 1847 cachep->colour = left / cachep->colour_off; 1848 1849 return true; 1850 } 1851 1852 static bool set_off_slab_cache(struct kmem_cache *cachep, 1853 size_t size, slab_flags_t flags) 1854 { 1855 size_t left; 1856 1857 cachep->num = 0; 1858 1859 /* 1860 * Always use on-slab management when SLAB_NOLEAKTRACE 1861 * to avoid recursive calls into kmemleak. 1862 */ 1863 if (flags & SLAB_NOLEAKTRACE) 1864 return false; 1865 1866 /* 1867 * Size is large, assume best to place the slab management obj 1868 * off-slab (should allow better packing of objs). 1869 */ 1870 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1871 if (!cachep->num) 1872 return false; 1873 1874 /* 1875 * If the slab has been placed off-slab, and we have enough space then 1876 * move it on-slab. This is at the expense of any extra colouring. 1877 */ 1878 if (left >= cachep->num * sizeof(freelist_idx_t)) 1879 return false; 1880 1881 cachep->colour = left / cachep->colour_off; 1882 1883 return true; 1884 } 1885 1886 static bool set_on_slab_cache(struct kmem_cache *cachep, 1887 size_t size, slab_flags_t flags) 1888 { 1889 size_t left; 1890 1891 cachep->num = 0; 1892 1893 left = calculate_slab_order(cachep, size, flags); 1894 if (!cachep->num) 1895 return false; 1896 1897 cachep->colour = left / cachep->colour_off; 1898 1899 return true; 1900 } 1901 1902 /** 1903 * __kmem_cache_create - Create a cache. 1904 * @cachep: cache management descriptor 1905 * @flags: SLAB flags 1906 * 1907 * Returns a ptr to the cache on success, NULL on failure. 1908 * Cannot be called within a int, but can be interrupted. 1909 * The @ctor is run when new pages are allocated by the cache. 1910 * 1911 * The flags are 1912 * 1913 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1914 * to catch references to uninitialised memory. 1915 * 1916 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1917 * for buffer overruns. 1918 * 1919 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1920 * cacheline. This can be beneficial if you're counting cycles as closely 1921 * as davem. 1922 * 1923 * Return: a pointer to the created cache or %NULL in case of error 1924 */ 1925 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1926 { 1927 size_t ralign = BYTES_PER_WORD; 1928 gfp_t gfp; 1929 int err; 1930 unsigned int size = cachep->size; 1931 1932 #if DEBUG 1933 #if FORCED_DEBUG 1934 /* 1935 * Enable redzoning and last user accounting, except for caches with 1936 * large objects, if the increased size would increase the object size 1937 * above the next power of two: caches with object sizes just above a 1938 * power of two have a significant amount of internal fragmentation. 1939 */ 1940 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1941 2 * sizeof(unsigned long long))) 1942 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1943 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1944 flags |= SLAB_POISON; 1945 #endif 1946 #endif 1947 1948 /* 1949 * Check that size is in terms of words. This is needed to avoid 1950 * unaligned accesses for some archs when redzoning is used, and makes 1951 * sure any on-slab bufctl's are also correctly aligned. 1952 */ 1953 size = ALIGN(size, BYTES_PER_WORD); 1954 1955 if (flags & SLAB_RED_ZONE) { 1956 ralign = REDZONE_ALIGN; 1957 /* If redzoning, ensure that the second redzone is suitably 1958 * aligned, by adjusting the object size accordingly. */ 1959 size = ALIGN(size, REDZONE_ALIGN); 1960 } 1961 1962 /* 3) caller mandated alignment */ 1963 if (ralign < cachep->align) { 1964 ralign = cachep->align; 1965 } 1966 /* disable debug if necessary */ 1967 if (ralign > __alignof__(unsigned long long)) 1968 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1969 /* 1970 * 4) Store it. 1971 */ 1972 cachep->align = ralign; 1973 cachep->colour_off = cache_line_size(); 1974 /* Offset must be a multiple of the alignment. */ 1975 if (cachep->colour_off < cachep->align) 1976 cachep->colour_off = cachep->align; 1977 1978 if (slab_is_available()) 1979 gfp = GFP_KERNEL; 1980 else 1981 gfp = GFP_NOWAIT; 1982 1983 #if DEBUG 1984 1985 /* 1986 * Both debugging options require word-alignment which is calculated 1987 * into align above. 1988 */ 1989 if (flags & SLAB_RED_ZONE) { 1990 /* add space for red zone words */ 1991 cachep->obj_offset += sizeof(unsigned long long); 1992 size += 2 * sizeof(unsigned long long); 1993 } 1994 if (flags & SLAB_STORE_USER) { 1995 /* user store requires one word storage behind the end of 1996 * the real object. But if the second red zone needs to be 1997 * aligned to 64 bits, we must allow that much space. 1998 */ 1999 if (flags & SLAB_RED_ZONE) 2000 size += REDZONE_ALIGN; 2001 else 2002 size += BYTES_PER_WORD; 2003 } 2004 #endif 2005 2006 kasan_cache_create(cachep, &size, &flags); 2007 2008 size = ALIGN(size, cachep->align); 2009 /* 2010 * We should restrict the number of objects in a slab to implement 2011 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2012 */ 2013 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2014 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2015 2016 #if DEBUG 2017 /* 2018 * To activate debug pagealloc, off-slab management is necessary 2019 * requirement. In early phase of initialization, small sized slab 2020 * doesn't get initialized so it would not be possible. So, we need 2021 * to check size >= 256. It guarantees that all necessary small 2022 * sized slab is initialized in current slab initialization sequence. 2023 */ 2024 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && 2025 size >= 256 && cachep->object_size > cache_line_size()) { 2026 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2027 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2028 2029 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2030 flags |= CFLGS_OFF_SLAB; 2031 cachep->obj_offset += tmp_size - size; 2032 size = tmp_size; 2033 goto done; 2034 } 2035 } 2036 } 2037 #endif 2038 2039 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2040 flags |= CFLGS_OBJFREELIST_SLAB; 2041 goto done; 2042 } 2043 2044 if (set_off_slab_cache(cachep, size, flags)) { 2045 flags |= CFLGS_OFF_SLAB; 2046 goto done; 2047 } 2048 2049 if (set_on_slab_cache(cachep, size, flags)) 2050 goto done; 2051 2052 return -E2BIG; 2053 2054 done: 2055 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2056 cachep->flags = flags; 2057 cachep->allocflags = __GFP_COMP; 2058 if (flags & SLAB_CACHE_DMA) 2059 cachep->allocflags |= GFP_DMA; 2060 if (flags & SLAB_CACHE_DMA32) 2061 cachep->allocflags |= GFP_DMA32; 2062 if (flags & SLAB_RECLAIM_ACCOUNT) 2063 cachep->allocflags |= __GFP_RECLAIMABLE; 2064 cachep->size = size; 2065 cachep->reciprocal_buffer_size = reciprocal_value(size); 2066 2067 #if DEBUG 2068 /* 2069 * If we're going to use the generic kernel_map_pages() 2070 * poisoning, then it's going to smash the contents of 2071 * the redzone and userword anyhow, so switch them off. 2072 */ 2073 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2074 (cachep->flags & SLAB_POISON) && 2075 is_debug_pagealloc_cache(cachep)) 2076 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2077 #endif 2078 2079 if (OFF_SLAB(cachep)) { 2080 cachep->freelist_cache = 2081 kmalloc_slab(cachep->freelist_size, 0u); 2082 } 2083 2084 err = setup_cpu_cache(cachep, gfp); 2085 if (err) { 2086 __kmem_cache_release(cachep); 2087 return err; 2088 } 2089 2090 return 0; 2091 } 2092 2093 #if DEBUG 2094 static void check_irq_off(void) 2095 { 2096 BUG_ON(!irqs_disabled()); 2097 } 2098 2099 static void check_irq_on(void) 2100 { 2101 BUG_ON(irqs_disabled()); 2102 } 2103 2104 static void check_mutex_acquired(void) 2105 { 2106 BUG_ON(!mutex_is_locked(&slab_mutex)); 2107 } 2108 2109 static void check_spinlock_acquired(struct kmem_cache *cachep) 2110 { 2111 #ifdef CONFIG_SMP 2112 check_irq_off(); 2113 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2114 #endif 2115 } 2116 2117 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2118 { 2119 #ifdef CONFIG_SMP 2120 check_irq_off(); 2121 assert_spin_locked(&get_node(cachep, node)->list_lock); 2122 #endif 2123 } 2124 2125 #else 2126 #define check_irq_off() do { } while(0) 2127 #define check_irq_on() do { } while(0) 2128 #define check_mutex_acquired() do { } while(0) 2129 #define check_spinlock_acquired(x) do { } while(0) 2130 #define check_spinlock_acquired_node(x, y) do { } while(0) 2131 #endif 2132 2133 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2134 int node, bool free_all, struct list_head *list) 2135 { 2136 int tofree; 2137 2138 if (!ac || !ac->avail) 2139 return; 2140 2141 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2142 if (tofree > ac->avail) 2143 tofree = (ac->avail + 1) / 2; 2144 2145 free_block(cachep, ac->entry, tofree, node, list); 2146 ac->avail -= tofree; 2147 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2148 } 2149 2150 static void do_drain(void *arg) 2151 { 2152 struct kmem_cache *cachep = arg; 2153 struct array_cache *ac; 2154 int node = numa_mem_id(); 2155 struct kmem_cache_node *n; 2156 LIST_HEAD(list); 2157 2158 check_irq_off(); 2159 ac = cpu_cache_get(cachep); 2160 n = get_node(cachep, node); 2161 spin_lock(&n->list_lock); 2162 free_block(cachep, ac->entry, ac->avail, node, &list); 2163 spin_unlock(&n->list_lock); 2164 ac->avail = 0; 2165 slabs_destroy(cachep, &list); 2166 } 2167 2168 static void drain_cpu_caches(struct kmem_cache *cachep) 2169 { 2170 struct kmem_cache_node *n; 2171 int node; 2172 LIST_HEAD(list); 2173 2174 on_each_cpu(do_drain, cachep, 1); 2175 check_irq_on(); 2176 for_each_kmem_cache_node(cachep, node, n) 2177 if (n->alien) 2178 drain_alien_cache(cachep, n->alien); 2179 2180 for_each_kmem_cache_node(cachep, node, n) { 2181 spin_lock_irq(&n->list_lock); 2182 drain_array_locked(cachep, n->shared, node, true, &list); 2183 spin_unlock_irq(&n->list_lock); 2184 2185 slabs_destroy(cachep, &list); 2186 } 2187 } 2188 2189 /* 2190 * Remove slabs from the list of free slabs. 2191 * Specify the number of slabs to drain in tofree. 2192 * 2193 * Returns the actual number of slabs released. 2194 */ 2195 static int drain_freelist(struct kmem_cache *cache, 2196 struct kmem_cache_node *n, int tofree) 2197 { 2198 struct list_head *p; 2199 int nr_freed; 2200 struct slab *slab; 2201 2202 nr_freed = 0; 2203 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2204 2205 spin_lock_irq(&n->list_lock); 2206 p = n->slabs_free.prev; 2207 if (p == &n->slabs_free) { 2208 spin_unlock_irq(&n->list_lock); 2209 goto out; 2210 } 2211 2212 slab = list_entry(p, struct slab, slab_list); 2213 list_del(&slab->slab_list); 2214 n->free_slabs--; 2215 n->total_slabs--; 2216 /* 2217 * Safe to drop the lock. The slab is no longer linked 2218 * to the cache. 2219 */ 2220 n->free_objects -= cache->num; 2221 spin_unlock_irq(&n->list_lock); 2222 slab_destroy(cache, slab); 2223 nr_freed++; 2224 } 2225 out: 2226 return nr_freed; 2227 } 2228 2229 bool __kmem_cache_empty(struct kmem_cache *s) 2230 { 2231 int node; 2232 struct kmem_cache_node *n; 2233 2234 for_each_kmem_cache_node(s, node, n) 2235 if (!list_empty(&n->slabs_full) || 2236 !list_empty(&n->slabs_partial)) 2237 return false; 2238 return true; 2239 } 2240 2241 int __kmem_cache_shrink(struct kmem_cache *cachep) 2242 { 2243 int ret = 0; 2244 int node; 2245 struct kmem_cache_node *n; 2246 2247 drain_cpu_caches(cachep); 2248 2249 check_irq_on(); 2250 for_each_kmem_cache_node(cachep, node, n) { 2251 drain_freelist(cachep, n, INT_MAX); 2252 2253 ret += !list_empty(&n->slabs_full) || 2254 !list_empty(&n->slabs_partial); 2255 } 2256 return (ret ? 1 : 0); 2257 } 2258 2259 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2260 { 2261 return __kmem_cache_shrink(cachep); 2262 } 2263 2264 void __kmem_cache_release(struct kmem_cache *cachep) 2265 { 2266 int i; 2267 struct kmem_cache_node *n; 2268 2269 cache_random_seq_destroy(cachep); 2270 2271 free_percpu(cachep->cpu_cache); 2272 2273 /* NUMA: free the node structures */ 2274 for_each_kmem_cache_node(cachep, i, n) { 2275 kfree(n->shared); 2276 free_alien_cache(n->alien); 2277 kfree(n); 2278 cachep->node[i] = NULL; 2279 } 2280 } 2281 2282 /* 2283 * Get the memory for a slab management obj. 2284 * 2285 * For a slab cache when the slab descriptor is off-slab, the 2286 * slab descriptor can't come from the same cache which is being created, 2287 * Because if it is the case, that means we defer the creation of 2288 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2289 * And we eventually call down to __kmem_cache_create(), which 2290 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one. 2291 * This is a "chicken-and-egg" problem. 2292 * 2293 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2294 * which are all initialized during kmem_cache_init(). 2295 */ 2296 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2297 struct slab *slab, int colour_off, 2298 gfp_t local_flags, int nodeid) 2299 { 2300 void *freelist; 2301 void *addr = slab_address(slab); 2302 2303 slab->s_mem = addr + colour_off; 2304 slab->active = 0; 2305 2306 if (OBJFREELIST_SLAB(cachep)) 2307 freelist = NULL; 2308 else if (OFF_SLAB(cachep)) { 2309 /* Slab management obj is off-slab. */ 2310 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2311 local_flags, nodeid); 2312 } else { 2313 /* We will use last bytes at the slab for freelist */ 2314 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2315 cachep->freelist_size; 2316 } 2317 2318 return freelist; 2319 } 2320 2321 static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx) 2322 { 2323 return ((freelist_idx_t *) slab->freelist)[idx]; 2324 } 2325 2326 static inline void set_free_obj(struct slab *slab, 2327 unsigned int idx, freelist_idx_t val) 2328 { 2329 ((freelist_idx_t *)(slab->freelist))[idx] = val; 2330 } 2331 2332 static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab) 2333 { 2334 #if DEBUG 2335 int i; 2336 2337 for (i = 0; i < cachep->num; i++) { 2338 void *objp = index_to_obj(cachep, slab, i); 2339 2340 if (cachep->flags & SLAB_STORE_USER) 2341 *dbg_userword(cachep, objp) = NULL; 2342 2343 if (cachep->flags & SLAB_RED_ZONE) { 2344 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2345 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2346 } 2347 /* 2348 * Constructors are not allowed to allocate memory from the same 2349 * cache which they are a constructor for. Otherwise, deadlock. 2350 * They must also be threaded. 2351 */ 2352 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2353 kasan_unpoison_object_data(cachep, 2354 objp + obj_offset(cachep)); 2355 cachep->ctor(objp + obj_offset(cachep)); 2356 kasan_poison_object_data( 2357 cachep, objp + obj_offset(cachep)); 2358 } 2359 2360 if (cachep->flags & SLAB_RED_ZONE) { 2361 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2362 slab_error(cachep, "constructor overwrote the end of an object"); 2363 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2364 slab_error(cachep, "constructor overwrote the start of an object"); 2365 } 2366 /* need to poison the objs? */ 2367 if (cachep->flags & SLAB_POISON) { 2368 poison_obj(cachep, objp, POISON_FREE); 2369 slab_kernel_map(cachep, objp, 0); 2370 } 2371 } 2372 #endif 2373 } 2374 2375 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2376 /* Hold information during a freelist initialization */ 2377 union freelist_init_state { 2378 struct { 2379 unsigned int pos; 2380 unsigned int *list; 2381 unsigned int count; 2382 }; 2383 struct rnd_state rnd_state; 2384 }; 2385 2386 /* 2387 * Initialize the state based on the randomization method available. 2388 * return true if the pre-computed list is available, false otherwise. 2389 */ 2390 static bool freelist_state_initialize(union freelist_init_state *state, 2391 struct kmem_cache *cachep, 2392 unsigned int count) 2393 { 2394 bool ret; 2395 unsigned int rand; 2396 2397 /* Use best entropy available to define a random shift */ 2398 rand = get_random_int(); 2399 2400 /* Use a random state if the pre-computed list is not available */ 2401 if (!cachep->random_seq) { 2402 prandom_seed_state(&state->rnd_state, rand); 2403 ret = false; 2404 } else { 2405 state->list = cachep->random_seq; 2406 state->count = count; 2407 state->pos = rand % count; 2408 ret = true; 2409 } 2410 return ret; 2411 } 2412 2413 /* Get the next entry on the list and randomize it using a random shift */ 2414 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2415 { 2416 if (state->pos >= state->count) 2417 state->pos = 0; 2418 return state->list[state->pos++]; 2419 } 2420 2421 /* Swap two freelist entries */ 2422 static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b) 2423 { 2424 swap(((freelist_idx_t *) slab->freelist)[a], 2425 ((freelist_idx_t *) slab->freelist)[b]); 2426 } 2427 2428 /* 2429 * Shuffle the freelist initialization state based on pre-computed lists. 2430 * return true if the list was successfully shuffled, false otherwise. 2431 */ 2432 static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab) 2433 { 2434 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2435 union freelist_init_state state; 2436 bool precomputed; 2437 2438 if (count < 2) 2439 return false; 2440 2441 precomputed = freelist_state_initialize(&state, cachep, count); 2442 2443 /* Take a random entry as the objfreelist */ 2444 if (OBJFREELIST_SLAB(cachep)) { 2445 if (!precomputed) 2446 objfreelist = count - 1; 2447 else 2448 objfreelist = next_random_slot(&state); 2449 slab->freelist = index_to_obj(cachep, slab, objfreelist) + 2450 obj_offset(cachep); 2451 count--; 2452 } 2453 2454 /* 2455 * On early boot, generate the list dynamically. 2456 * Later use a pre-computed list for speed. 2457 */ 2458 if (!precomputed) { 2459 for (i = 0; i < count; i++) 2460 set_free_obj(slab, i, i); 2461 2462 /* Fisher-Yates shuffle */ 2463 for (i = count - 1; i > 0; i--) { 2464 rand = prandom_u32_state(&state.rnd_state); 2465 rand %= (i + 1); 2466 swap_free_obj(slab, i, rand); 2467 } 2468 } else { 2469 for (i = 0; i < count; i++) 2470 set_free_obj(slab, i, next_random_slot(&state)); 2471 } 2472 2473 if (OBJFREELIST_SLAB(cachep)) 2474 set_free_obj(slab, cachep->num - 1, objfreelist); 2475 2476 return true; 2477 } 2478 #else 2479 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2480 struct slab *slab) 2481 { 2482 return false; 2483 } 2484 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2485 2486 static void cache_init_objs(struct kmem_cache *cachep, 2487 struct slab *slab) 2488 { 2489 int i; 2490 void *objp; 2491 bool shuffled; 2492 2493 cache_init_objs_debug(cachep, slab); 2494 2495 /* Try to randomize the freelist if enabled */ 2496 shuffled = shuffle_freelist(cachep, slab); 2497 2498 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2499 slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) + 2500 obj_offset(cachep); 2501 } 2502 2503 for (i = 0; i < cachep->num; i++) { 2504 objp = index_to_obj(cachep, slab, i); 2505 objp = kasan_init_slab_obj(cachep, objp); 2506 2507 /* constructor could break poison info */ 2508 if (DEBUG == 0 && cachep->ctor) { 2509 kasan_unpoison_object_data(cachep, objp); 2510 cachep->ctor(objp); 2511 kasan_poison_object_data(cachep, objp); 2512 } 2513 2514 if (!shuffled) 2515 set_free_obj(slab, i, i); 2516 } 2517 } 2518 2519 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab) 2520 { 2521 void *objp; 2522 2523 objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active)); 2524 slab->active++; 2525 2526 return objp; 2527 } 2528 2529 static void slab_put_obj(struct kmem_cache *cachep, 2530 struct slab *slab, void *objp) 2531 { 2532 unsigned int objnr = obj_to_index(cachep, slab, objp); 2533 #if DEBUG 2534 unsigned int i; 2535 2536 /* Verify double free bug */ 2537 for (i = slab->active; i < cachep->num; i++) { 2538 if (get_free_obj(slab, i) == objnr) { 2539 pr_err("slab: double free detected in cache '%s', objp %px\n", 2540 cachep->name, objp); 2541 BUG(); 2542 } 2543 } 2544 #endif 2545 slab->active--; 2546 if (!slab->freelist) 2547 slab->freelist = objp + obj_offset(cachep); 2548 2549 set_free_obj(slab, slab->active, objnr); 2550 } 2551 2552 /* 2553 * Grow (by 1) the number of slabs within a cache. This is called by 2554 * kmem_cache_alloc() when there are no active objs left in a cache. 2555 */ 2556 static struct slab *cache_grow_begin(struct kmem_cache *cachep, 2557 gfp_t flags, int nodeid) 2558 { 2559 void *freelist; 2560 size_t offset; 2561 gfp_t local_flags; 2562 int slab_node; 2563 struct kmem_cache_node *n; 2564 struct slab *slab; 2565 2566 /* 2567 * Be lazy and only check for valid flags here, keeping it out of the 2568 * critical path in kmem_cache_alloc(). 2569 */ 2570 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2571 flags = kmalloc_fix_flags(flags); 2572 2573 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2574 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2575 2576 check_irq_off(); 2577 if (gfpflags_allow_blocking(local_flags)) 2578 local_irq_enable(); 2579 2580 /* 2581 * Get mem for the objs. Attempt to allocate a physical page from 2582 * 'nodeid'. 2583 */ 2584 slab = kmem_getpages(cachep, local_flags, nodeid); 2585 if (!slab) 2586 goto failed; 2587 2588 slab_node = slab_nid(slab); 2589 n = get_node(cachep, slab_node); 2590 2591 /* Get colour for the slab, and cal the next value. */ 2592 n->colour_next++; 2593 if (n->colour_next >= cachep->colour) 2594 n->colour_next = 0; 2595 2596 offset = n->colour_next; 2597 if (offset >= cachep->colour) 2598 offset = 0; 2599 2600 offset *= cachep->colour_off; 2601 2602 /* 2603 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2604 * page_address() in the latter returns a non-tagged pointer, 2605 * as it should be for slab pages. 2606 */ 2607 kasan_poison_slab(slab); 2608 2609 /* Get slab management. */ 2610 freelist = alloc_slabmgmt(cachep, slab, offset, 2611 local_flags & ~GFP_CONSTRAINT_MASK, slab_node); 2612 if (OFF_SLAB(cachep) && !freelist) 2613 goto opps1; 2614 2615 slab->slab_cache = cachep; 2616 slab->freelist = freelist; 2617 2618 cache_init_objs(cachep, slab); 2619 2620 if (gfpflags_allow_blocking(local_flags)) 2621 local_irq_disable(); 2622 2623 return slab; 2624 2625 opps1: 2626 kmem_freepages(cachep, slab); 2627 failed: 2628 if (gfpflags_allow_blocking(local_flags)) 2629 local_irq_disable(); 2630 return NULL; 2631 } 2632 2633 static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab) 2634 { 2635 struct kmem_cache_node *n; 2636 void *list = NULL; 2637 2638 check_irq_off(); 2639 2640 if (!slab) 2641 return; 2642 2643 INIT_LIST_HEAD(&slab->slab_list); 2644 n = get_node(cachep, slab_nid(slab)); 2645 2646 spin_lock(&n->list_lock); 2647 n->total_slabs++; 2648 if (!slab->active) { 2649 list_add_tail(&slab->slab_list, &n->slabs_free); 2650 n->free_slabs++; 2651 } else 2652 fixup_slab_list(cachep, n, slab, &list); 2653 2654 STATS_INC_GROWN(cachep); 2655 n->free_objects += cachep->num - slab->active; 2656 spin_unlock(&n->list_lock); 2657 2658 fixup_objfreelist_debug(cachep, &list); 2659 } 2660 2661 #if DEBUG 2662 2663 /* 2664 * Perform extra freeing checks: 2665 * - detect bad pointers. 2666 * - POISON/RED_ZONE checking 2667 */ 2668 static void kfree_debugcheck(const void *objp) 2669 { 2670 if (!virt_addr_valid(objp)) { 2671 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2672 (unsigned long)objp); 2673 BUG(); 2674 } 2675 } 2676 2677 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2678 { 2679 unsigned long long redzone1, redzone2; 2680 2681 redzone1 = *dbg_redzone1(cache, obj); 2682 redzone2 = *dbg_redzone2(cache, obj); 2683 2684 /* 2685 * Redzone is ok. 2686 */ 2687 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2688 return; 2689 2690 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2691 slab_error(cache, "double free detected"); 2692 else 2693 slab_error(cache, "memory outside object was overwritten"); 2694 2695 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2696 obj, redzone1, redzone2); 2697 } 2698 2699 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2700 unsigned long caller) 2701 { 2702 unsigned int objnr; 2703 struct slab *slab; 2704 2705 BUG_ON(virt_to_cache(objp) != cachep); 2706 2707 objp -= obj_offset(cachep); 2708 kfree_debugcheck(objp); 2709 slab = virt_to_slab(objp); 2710 2711 if (cachep->flags & SLAB_RED_ZONE) { 2712 verify_redzone_free(cachep, objp); 2713 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2714 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2715 } 2716 if (cachep->flags & SLAB_STORE_USER) 2717 *dbg_userword(cachep, objp) = (void *)caller; 2718 2719 objnr = obj_to_index(cachep, slab, objp); 2720 2721 BUG_ON(objnr >= cachep->num); 2722 BUG_ON(objp != index_to_obj(cachep, slab, objnr)); 2723 2724 if (cachep->flags & SLAB_POISON) { 2725 poison_obj(cachep, objp, POISON_FREE); 2726 slab_kernel_map(cachep, objp, 0); 2727 } 2728 return objp; 2729 } 2730 2731 #else 2732 #define kfree_debugcheck(x) do { } while(0) 2733 #define cache_free_debugcheck(x, objp, z) (objp) 2734 #endif 2735 2736 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2737 void **list) 2738 { 2739 #if DEBUG 2740 void *next = *list; 2741 void *objp; 2742 2743 while (next) { 2744 objp = next - obj_offset(cachep); 2745 next = *(void **)next; 2746 poison_obj(cachep, objp, POISON_FREE); 2747 } 2748 #endif 2749 } 2750 2751 static inline void fixup_slab_list(struct kmem_cache *cachep, 2752 struct kmem_cache_node *n, struct slab *slab, 2753 void **list) 2754 { 2755 /* move slabp to correct slabp list: */ 2756 list_del(&slab->slab_list); 2757 if (slab->active == cachep->num) { 2758 list_add(&slab->slab_list, &n->slabs_full); 2759 if (OBJFREELIST_SLAB(cachep)) { 2760 #if DEBUG 2761 /* Poisoning will be done without holding the lock */ 2762 if (cachep->flags & SLAB_POISON) { 2763 void **objp = slab->freelist; 2764 2765 *objp = *list; 2766 *list = objp; 2767 } 2768 #endif 2769 slab->freelist = NULL; 2770 } 2771 } else 2772 list_add(&slab->slab_list, &n->slabs_partial); 2773 } 2774 2775 /* Try to find non-pfmemalloc slab if needed */ 2776 static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n, 2777 struct slab *slab, bool pfmemalloc) 2778 { 2779 if (!slab) 2780 return NULL; 2781 2782 if (pfmemalloc) 2783 return slab; 2784 2785 if (!slab_test_pfmemalloc(slab)) 2786 return slab; 2787 2788 /* No need to keep pfmemalloc slab if we have enough free objects */ 2789 if (n->free_objects > n->free_limit) { 2790 slab_clear_pfmemalloc(slab); 2791 return slab; 2792 } 2793 2794 /* Move pfmemalloc slab to the end of list to speed up next search */ 2795 list_del(&slab->slab_list); 2796 if (!slab->active) { 2797 list_add_tail(&slab->slab_list, &n->slabs_free); 2798 n->free_slabs++; 2799 } else 2800 list_add_tail(&slab->slab_list, &n->slabs_partial); 2801 2802 list_for_each_entry(slab, &n->slabs_partial, slab_list) { 2803 if (!slab_test_pfmemalloc(slab)) 2804 return slab; 2805 } 2806 2807 n->free_touched = 1; 2808 list_for_each_entry(slab, &n->slabs_free, slab_list) { 2809 if (!slab_test_pfmemalloc(slab)) { 2810 n->free_slabs--; 2811 return slab; 2812 } 2813 } 2814 2815 return NULL; 2816 } 2817 2818 static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2819 { 2820 struct slab *slab; 2821 2822 assert_spin_locked(&n->list_lock); 2823 slab = list_first_entry_or_null(&n->slabs_partial, struct slab, 2824 slab_list); 2825 if (!slab) { 2826 n->free_touched = 1; 2827 slab = list_first_entry_or_null(&n->slabs_free, struct slab, 2828 slab_list); 2829 if (slab) 2830 n->free_slabs--; 2831 } 2832 2833 if (sk_memalloc_socks()) 2834 slab = get_valid_first_slab(n, slab, pfmemalloc); 2835 2836 return slab; 2837 } 2838 2839 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2840 struct kmem_cache_node *n, gfp_t flags) 2841 { 2842 struct slab *slab; 2843 void *obj; 2844 void *list = NULL; 2845 2846 if (!gfp_pfmemalloc_allowed(flags)) 2847 return NULL; 2848 2849 spin_lock(&n->list_lock); 2850 slab = get_first_slab(n, true); 2851 if (!slab) { 2852 spin_unlock(&n->list_lock); 2853 return NULL; 2854 } 2855 2856 obj = slab_get_obj(cachep, slab); 2857 n->free_objects--; 2858 2859 fixup_slab_list(cachep, n, slab, &list); 2860 2861 spin_unlock(&n->list_lock); 2862 fixup_objfreelist_debug(cachep, &list); 2863 2864 return obj; 2865 } 2866 2867 /* 2868 * Slab list should be fixed up by fixup_slab_list() for existing slab 2869 * or cache_grow_end() for new slab 2870 */ 2871 static __always_inline int alloc_block(struct kmem_cache *cachep, 2872 struct array_cache *ac, struct slab *slab, int batchcount) 2873 { 2874 /* 2875 * There must be at least one object available for 2876 * allocation. 2877 */ 2878 BUG_ON(slab->active >= cachep->num); 2879 2880 while (slab->active < cachep->num && batchcount--) { 2881 STATS_INC_ALLOCED(cachep); 2882 STATS_INC_ACTIVE(cachep); 2883 STATS_SET_HIGH(cachep); 2884 2885 ac->entry[ac->avail++] = slab_get_obj(cachep, slab); 2886 } 2887 2888 return batchcount; 2889 } 2890 2891 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2892 { 2893 int batchcount; 2894 struct kmem_cache_node *n; 2895 struct array_cache *ac, *shared; 2896 int node; 2897 void *list = NULL; 2898 struct slab *slab; 2899 2900 check_irq_off(); 2901 node = numa_mem_id(); 2902 2903 ac = cpu_cache_get(cachep); 2904 batchcount = ac->batchcount; 2905 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2906 /* 2907 * If there was little recent activity on this cache, then 2908 * perform only a partial refill. Otherwise we could generate 2909 * refill bouncing. 2910 */ 2911 batchcount = BATCHREFILL_LIMIT; 2912 } 2913 n = get_node(cachep, node); 2914 2915 BUG_ON(ac->avail > 0 || !n); 2916 shared = READ_ONCE(n->shared); 2917 if (!n->free_objects && (!shared || !shared->avail)) 2918 goto direct_grow; 2919 2920 spin_lock(&n->list_lock); 2921 shared = READ_ONCE(n->shared); 2922 2923 /* See if we can refill from the shared array */ 2924 if (shared && transfer_objects(ac, shared, batchcount)) { 2925 shared->touched = 1; 2926 goto alloc_done; 2927 } 2928 2929 while (batchcount > 0) { 2930 /* Get slab alloc is to come from. */ 2931 slab = get_first_slab(n, false); 2932 if (!slab) 2933 goto must_grow; 2934 2935 check_spinlock_acquired(cachep); 2936 2937 batchcount = alloc_block(cachep, ac, slab, batchcount); 2938 fixup_slab_list(cachep, n, slab, &list); 2939 } 2940 2941 must_grow: 2942 n->free_objects -= ac->avail; 2943 alloc_done: 2944 spin_unlock(&n->list_lock); 2945 fixup_objfreelist_debug(cachep, &list); 2946 2947 direct_grow: 2948 if (unlikely(!ac->avail)) { 2949 /* Check if we can use obj in pfmemalloc slab */ 2950 if (sk_memalloc_socks()) { 2951 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2952 2953 if (obj) 2954 return obj; 2955 } 2956 2957 slab = cache_grow_begin(cachep, gfp_exact_node(flags), node); 2958 2959 /* 2960 * cache_grow_begin() can reenable interrupts, 2961 * then ac could change. 2962 */ 2963 ac = cpu_cache_get(cachep); 2964 if (!ac->avail && slab) 2965 alloc_block(cachep, ac, slab, batchcount); 2966 cache_grow_end(cachep, slab); 2967 2968 if (!ac->avail) 2969 return NULL; 2970 } 2971 ac->touched = 1; 2972 2973 return ac->entry[--ac->avail]; 2974 } 2975 2976 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 2977 gfp_t flags) 2978 { 2979 might_sleep_if(gfpflags_allow_blocking(flags)); 2980 } 2981 2982 #if DEBUG 2983 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2984 gfp_t flags, void *objp, unsigned long caller) 2985 { 2986 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2987 if (!objp || is_kfence_address(objp)) 2988 return objp; 2989 if (cachep->flags & SLAB_POISON) { 2990 check_poison_obj(cachep, objp); 2991 slab_kernel_map(cachep, objp, 1); 2992 poison_obj(cachep, objp, POISON_INUSE); 2993 } 2994 if (cachep->flags & SLAB_STORE_USER) 2995 *dbg_userword(cachep, objp) = (void *)caller; 2996 2997 if (cachep->flags & SLAB_RED_ZONE) { 2998 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 2999 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3000 slab_error(cachep, "double free, or memory outside object was overwritten"); 3001 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 3002 objp, *dbg_redzone1(cachep, objp), 3003 *dbg_redzone2(cachep, objp)); 3004 } 3005 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3006 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3007 } 3008 3009 objp += obj_offset(cachep); 3010 if (cachep->ctor && cachep->flags & SLAB_POISON) 3011 cachep->ctor(objp); 3012 if (ARCH_SLAB_MINALIGN && 3013 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3014 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3015 objp, (int)ARCH_SLAB_MINALIGN); 3016 } 3017 return objp; 3018 } 3019 #else 3020 #define cache_alloc_debugcheck_after(a, b, objp, d) (objp) 3021 #endif 3022 3023 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3024 { 3025 void *objp; 3026 struct array_cache *ac; 3027 3028 check_irq_off(); 3029 3030 ac = cpu_cache_get(cachep); 3031 if (likely(ac->avail)) { 3032 ac->touched = 1; 3033 objp = ac->entry[--ac->avail]; 3034 3035 STATS_INC_ALLOCHIT(cachep); 3036 goto out; 3037 } 3038 3039 STATS_INC_ALLOCMISS(cachep); 3040 objp = cache_alloc_refill(cachep, flags); 3041 /* 3042 * the 'ac' may be updated by cache_alloc_refill(), 3043 * and kmemleak_erase() requires its correct value. 3044 */ 3045 ac = cpu_cache_get(cachep); 3046 3047 out: 3048 /* 3049 * To avoid a false negative, if an object that is in one of the 3050 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3051 * treat the array pointers as a reference to the object. 3052 */ 3053 if (objp) 3054 kmemleak_erase(&ac->entry[ac->avail]); 3055 return objp; 3056 } 3057 3058 #ifdef CONFIG_NUMA 3059 /* 3060 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3061 * 3062 * If we are in_interrupt, then process context, including cpusets and 3063 * mempolicy, may not apply and should not be used for allocation policy. 3064 */ 3065 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3066 { 3067 int nid_alloc, nid_here; 3068 3069 if (in_interrupt() || (flags & __GFP_THISNODE)) 3070 return NULL; 3071 nid_alloc = nid_here = numa_mem_id(); 3072 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3073 nid_alloc = cpuset_slab_spread_node(); 3074 else if (current->mempolicy) 3075 nid_alloc = mempolicy_slab_node(); 3076 if (nid_alloc != nid_here) 3077 return ____cache_alloc_node(cachep, flags, nid_alloc); 3078 return NULL; 3079 } 3080 3081 /* 3082 * Fallback function if there was no memory available and no objects on a 3083 * certain node and fall back is permitted. First we scan all the 3084 * available node for available objects. If that fails then we 3085 * perform an allocation without specifying a node. This allows the page 3086 * allocator to do its reclaim / fallback magic. We then insert the 3087 * slab into the proper nodelist and then allocate from it. 3088 */ 3089 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3090 { 3091 struct zonelist *zonelist; 3092 struct zoneref *z; 3093 struct zone *zone; 3094 enum zone_type highest_zoneidx = gfp_zone(flags); 3095 void *obj = NULL; 3096 struct slab *slab; 3097 int nid; 3098 unsigned int cpuset_mems_cookie; 3099 3100 if (flags & __GFP_THISNODE) 3101 return NULL; 3102 3103 retry_cpuset: 3104 cpuset_mems_cookie = read_mems_allowed_begin(); 3105 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3106 3107 retry: 3108 /* 3109 * Look through allowed nodes for objects available 3110 * from existing per node queues. 3111 */ 3112 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 3113 nid = zone_to_nid(zone); 3114 3115 if (cpuset_zone_allowed(zone, flags) && 3116 get_node(cache, nid) && 3117 get_node(cache, nid)->free_objects) { 3118 obj = ____cache_alloc_node(cache, 3119 gfp_exact_node(flags), nid); 3120 if (obj) 3121 break; 3122 } 3123 } 3124 3125 if (!obj) { 3126 /* 3127 * This allocation will be performed within the constraints 3128 * of the current cpuset / memory policy requirements. 3129 * We may trigger various forms of reclaim on the allowed 3130 * set and go into memory reserves if necessary. 3131 */ 3132 slab = cache_grow_begin(cache, flags, numa_mem_id()); 3133 cache_grow_end(cache, slab); 3134 if (slab) { 3135 nid = slab_nid(slab); 3136 obj = ____cache_alloc_node(cache, 3137 gfp_exact_node(flags), nid); 3138 3139 /* 3140 * Another processor may allocate the objects in 3141 * the slab since we are not holding any locks. 3142 */ 3143 if (!obj) 3144 goto retry; 3145 } 3146 } 3147 3148 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3149 goto retry_cpuset; 3150 return obj; 3151 } 3152 3153 /* 3154 * A interface to enable slab creation on nodeid 3155 */ 3156 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3157 int nodeid) 3158 { 3159 struct slab *slab; 3160 struct kmem_cache_node *n; 3161 void *obj = NULL; 3162 void *list = NULL; 3163 3164 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3165 n = get_node(cachep, nodeid); 3166 BUG_ON(!n); 3167 3168 check_irq_off(); 3169 spin_lock(&n->list_lock); 3170 slab = get_first_slab(n, false); 3171 if (!slab) 3172 goto must_grow; 3173 3174 check_spinlock_acquired_node(cachep, nodeid); 3175 3176 STATS_INC_NODEALLOCS(cachep); 3177 STATS_INC_ACTIVE(cachep); 3178 STATS_SET_HIGH(cachep); 3179 3180 BUG_ON(slab->active == cachep->num); 3181 3182 obj = slab_get_obj(cachep, slab); 3183 n->free_objects--; 3184 3185 fixup_slab_list(cachep, n, slab, &list); 3186 3187 spin_unlock(&n->list_lock); 3188 fixup_objfreelist_debug(cachep, &list); 3189 return obj; 3190 3191 must_grow: 3192 spin_unlock(&n->list_lock); 3193 slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3194 if (slab) { 3195 /* This slab isn't counted yet so don't update free_objects */ 3196 obj = slab_get_obj(cachep, slab); 3197 } 3198 cache_grow_end(cachep, slab); 3199 3200 return obj ? obj : fallback_alloc(cachep, flags); 3201 } 3202 3203 static __always_inline void * 3204 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size, 3205 unsigned long caller) 3206 { 3207 unsigned long save_flags; 3208 void *ptr; 3209 int slab_node = numa_mem_id(); 3210 struct obj_cgroup *objcg = NULL; 3211 bool init = false; 3212 3213 flags &= gfp_allowed_mask; 3214 cachep = slab_pre_alloc_hook(cachep, NULL, &objcg, 1, flags); 3215 if (unlikely(!cachep)) 3216 return NULL; 3217 3218 ptr = kfence_alloc(cachep, orig_size, flags); 3219 if (unlikely(ptr)) 3220 goto out_hooks; 3221 3222 cache_alloc_debugcheck_before(cachep, flags); 3223 local_irq_save(save_flags); 3224 3225 if (nodeid == NUMA_NO_NODE) 3226 nodeid = slab_node; 3227 3228 if (unlikely(!get_node(cachep, nodeid))) { 3229 /* Node not bootstrapped yet */ 3230 ptr = fallback_alloc(cachep, flags); 3231 goto out; 3232 } 3233 3234 if (nodeid == slab_node) { 3235 /* 3236 * Use the locally cached objects if possible. 3237 * However ____cache_alloc does not allow fallback 3238 * to other nodes. It may fail while we still have 3239 * objects on other nodes available. 3240 */ 3241 ptr = ____cache_alloc(cachep, flags); 3242 if (ptr) 3243 goto out; 3244 } 3245 /* ___cache_alloc_node can fall back to other nodes */ 3246 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3247 out: 3248 local_irq_restore(save_flags); 3249 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3250 init = slab_want_init_on_alloc(flags, cachep); 3251 3252 out_hooks: 3253 slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init); 3254 return ptr; 3255 } 3256 3257 static __always_inline void * 3258 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3259 { 3260 void *objp; 3261 3262 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3263 objp = alternate_node_alloc(cache, flags); 3264 if (objp) 3265 goto out; 3266 } 3267 objp = ____cache_alloc(cache, flags); 3268 3269 /* 3270 * We may just have run out of memory on the local node. 3271 * ____cache_alloc_node() knows how to locate memory on other nodes 3272 */ 3273 if (!objp) 3274 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3275 3276 out: 3277 return objp; 3278 } 3279 #else 3280 3281 static __always_inline void * 3282 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3283 { 3284 return ____cache_alloc(cachep, flags); 3285 } 3286 3287 #endif /* CONFIG_NUMA */ 3288 3289 static __always_inline void * 3290 slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, 3291 size_t orig_size, unsigned long caller) 3292 { 3293 unsigned long save_flags; 3294 void *objp; 3295 struct obj_cgroup *objcg = NULL; 3296 bool init = false; 3297 3298 flags &= gfp_allowed_mask; 3299 cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags); 3300 if (unlikely(!cachep)) 3301 return NULL; 3302 3303 objp = kfence_alloc(cachep, orig_size, flags); 3304 if (unlikely(objp)) 3305 goto out; 3306 3307 cache_alloc_debugcheck_before(cachep, flags); 3308 local_irq_save(save_flags); 3309 objp = __do_cache_alloc(cachep, flags); 3310 local_irq_restore(save_flags); 3311 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3312 prefetchw(objp); 3313 init = slab_want_init_on_alloc(flags, cachep); 3314 3315 out: 3316 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init); 3317 return objp; 3318 } 3319 3320 /* 3321 * Caller needs to acquire correct kmem_cache_node's list_lock 3322 * @list: List of detached free slabs should be freed by caller 3323 */ 3324 static void free_block(struct kmem_cache *cachep, void **objpp, 3325 int nr_objects, int node, struct list_head *list) 3326 { 3327 int i; 3328 struct kmem_cache_node *n = get_node(cachep, node); 3329 struct slab *slab; 3330 3331 n->free_objects += nr_objects; 3332 3333 for (i = 0; i < nr_objects; i++) { 3334 void *objp; 3335 struct slab *slab; 3336 3337 objp = objpp[i]; 3338 3339 slab = virt_to_slab(objp); 3340 list_del(&slab->slab_list); 3341 check_spinlock_acquired_node(cachep, node); 3342 slab_put_obj(cachep, slab, objp); 3343 STATS_DEC_ACTIVE(cachep); 3344 3345 /* fixup slab chains */ 3346 if (slab->active == 0) { 3347 list_add(&slab->slab_list, &n->slabs_free); 3348 n->free_slabs++; 3349 } else { 3350 /* Unconditionally move a slab to the end of the 3351 * partial list on free - maximum time for the 3352 * other objects to be freed, too. 3353 */ 3354 list_add_tail(&slab->slab_list, &n->slabs_partial); 3355 } 3356 } 3357 3358 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3359 n->free_objects -= cachep->num; 3360 3361 slab = list_last_entry(&n->slabs_free, struct slab, slab_list); 3362 list_move(&slab->slab_list, list); 3363 n->free_slabs--; 3364 n->total_slabs--; 3365 } 3366 } 3367 3368 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3369 { 3370 int batchcount; 3371 struct kmem_cache_node *n; 3372 int node = numa_mem_id(); 3373 LIST_HEAD(list); 3374 3375 batchcount = ac->batchcount; 3376 3377 check_irq_off(); 3378 n = get_node(cachep, node); 3379 spin_lock(&n->list_lock); 3380 if (n->shared) { 3381 struct array_cache *shared_array = n->shared; 3382 int max = shared_array->limit - shared_array->avail; 3383 if (max) { 3384 if (batchcount > max) 3385 batchcount = max; 3386 memcpy(&(shared_array->entry[shared_array->avail]), 3387 ac->entry, sizeof(void *) * batchcount); 3388 shared_array->avail += batchcount; 3389 goto free_done; 3390 } 3391 } 3392 3393 free_block(cachep, ac->entry, batchcount, node, &list); 3394 free_done: 3395 #if STATS 3396 { 3397 int i = 0; 3398 struct slab *slab; 3399 3400 list_for_each_entry(slab, &n->slabs_free, slab_list) { 3401 BUG_ON(slab->active); 3402 3403 i++; 3404 } 3405 STATS_SET_FREEABLE(cachep, i); 3406 } 3407 #endif 3408 spin_unlock(&n->list_lock); 3409 ac->avail -= batchcount; 3410 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3411 slabs_destroy(cachep, &list); 3412 } 3413 3414 /* 3415 * Release an obj back to its cache. If the obj has a constructed state, it must 3416 * be in this state _before_ it is released. Called with disabled ints. 3417 */ 3418 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3419 unsigned long caller) 3420 { 3421 bool init; 3422 3423 if (is_kfence_address(objp)) { 3424 kmemleak_free_recursive(objp, cachep->flags); 3425 memcg_slab_free_hook(cachep, &objp, 1); 3426 __kfence_free(objp); 3427 return; 3428 } 3429 3430 /* 3431 * As memory initialization might be integrated into KASAN, 3432 * kasan_slab_free and initialization memset must be 3433 * kept together to avoid discrepancies in behavior. 3434 */ 3435 init = slab_want_init_on_free(cachep); 3436 if (init && !kasan_has_integrated_init()) 3437 memset(objp, 0, cachep->object_size); 3438 /* KASAN might put objp into memory quarantine, delaying its reuse. */ 3439 if (kasan_slab_free(cachep, objp, init)) 3440 return; 3441 3442 /* Use KCSAN to help debug racy use-after-free. */ 3443 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 3444 __kcsan_check_access(objp, cachep->object_size, 3445 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 3446 3447 ___cache_free(cachep, objp, caller); 3448 } 3449 3450 void ___cache_free(struct kmem_cache *cachep, void *objp, 3451 unsigned long caller) 3452 { 3453 struct array_cache *ac = cpu_cache_get(cachep); 3454 3455 check_irq_off(); 3456 kmemleak_free_recursive(objp, cachep->flags); 3457 objp = cache_free_debugcheck(cachep, objp, caller); 3458 memcg_slab_free_hook(cachep, &objp, 1); 3459 3460 /* 3461 * Skip calling cache_free_alien() when the platform is not numa. 3462 * This will avoid cache misses that happen while accessing slabp (which 3463 * is per page memory reference) to get nodeid. Instead use a global 3464 * variable to skip the call, which is mostly likely to be present in 3465 * the cache. 3466 */ 3467 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3468 return; 3469 3470 if (ac->avail < ac->limit) { 3471 STATS_INC_FREEHIT(cachep); 3472 } else { 3473 STATS_INC_FREEMISS(cachep); 3474 cache_flusharray(cachep, ac); 3475 } 3476 3477 if (sk_memalloc_socks()) { 3478 struct slab *slab = virt_to_slab(objp); 3479 3480 if (unlikely(slab_test_pfmemalloc(slab))) { 3481 cache_free_pfmemalloc(cachep, slab, objp); 3482 return; 3483 } 3484 } 3485 3486 __free_one(ac, objp); 3487 } 3488 3489 static __always_inline 3490 void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3491 gfp_t flags) 3492 { 3493 void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_); 3494 3495 trace_kmem_cache_alloc(_RET_IP_, ret, 3496 cachep->object_size, cachep->size, flags); 3497 3498 return ret; 3499 } 3500 3501 /** 3502 * kmem_cache_alloc - Allocate an object 3503 * @cachep: The cache to allocate from. 3504 * @flags: See kmalloc(). 3505 * 3506 * Allocate an object from this cache. The flags are only relevant 3507 * if the cache has no available objects. 3508 * 3509 * Return: pointer to the new object or %NULL in case of error 3510 */ 3511 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3512 { 3513 return __kmem_cache_alloc_lru(cachep, NULL, flags); 3514 } 3515 EXPORT_SYMBOL(kmem_cache_alloc); 3516 3517 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3518 gfp_t flags) 3519 { 3520 return __kmem_cache_alloc_lru(cachep, lru, flags); 3521 } 3522 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3523 3524 static __always_inline void 3525 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3526 size_t size, void **p, unsigned long caller) 3527 { 3528 size_t i; 3529 3530 for (i = 0; i < size; i++) 3531 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3532 } 3533 3534 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3535 void **p) 3536 { 3537 size_t i; 3538 struct obj_cgroup *objcg = NULL; 3539 3540 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3541 if (!s) 3542 return 0; 3543 3544 cache_alloc_debugcheck_before(s, flags); 3545 3546 local_irq_disable(); 3547 for (i = 0; i < size; i++) { 3548 void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags); 3549 3550 if (unlikely(!objp)) 3551 goto error; 3552 p[i] = objp; 3553 } 3554 local_irq_enable(); 3555 3556 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3557 3558 /* 3559 * memcg and kmem_cache debug support and memory initialization. 3560 * Done outside of the IRQ disabled section. 3561 */ 3562 slab_post_alloc_hook(s, objcg, flags, size, p, 3563 slab_want_init_on_alloc(flags, s)); 3564 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3565 return size; 3566 error: 3567 local_irq_enable(); 3568 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3569 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3570 __kmem_cache_free_bulk(s, i, p); 3571 return 0; 3572 } 3573 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3574 3575 #ifdef CONFIG_TRACING 3576 void * 3577 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3578 { 3579 void *ret; 3580 3581 ret = slab_alloc(cachep, NULL, flags, size, _RET_IP_); 3582 3583 ret = kasan_kmalloc(cachep, ret, size, flags); 3584 trace_kmalloc(_RET_IP_, ret, 3585 size, cachep->size, flags); 3586 return ret; 3587 } 3588 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3589 #endif 3590 3591 #ifdef CONFIG_NUMA 3592 /** 3593 * kmem_cache_alloc_node - Allocate an object on the specified node 3594 * @cachep: The cache to allocate from. 3595 * @flags: See kmalloc(). 3596 * @nodeid: node number of the target node. 3597 * 3598 * Identical to kmem_cache_alloc but it will allocate memory on the given 3599 * node, which can improve the performance for cpu bound structures. 3600 * 3601 * Fallback to other node is possible if __GFP_THISNODE is not set. 3602 * 3603 * Return: pointer to the new object or %NULL in case of error 3604 */ 3605 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3606 { 3607 void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_); 3608 3609 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3610 cachep->object_size, cachep->size, 3611 flags, nodeid); 3612 3613 return ret; 3614 } 3615 EXPORT_SYMBOL(kmem_cache_alloc_node); 3616 3617 #ifdef CONFIG_TRACING 3618 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3619 gfp_t flags, 3620 int nodeid, 3621 size_t size) 3622 { 3623 void *ret; 3624 3625 ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_); 3626 3627 ret = kasan_kmalloc(cachep, ret, size, flags); 3628 trace_kmalloc_node(_RET_IP_, ret, 3629 size, cachep->size, 3630 flags, nodeid); 3631 return ret; 3632 } 3633 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3634 #endif 3635 3636 static __always_inline void * 3637 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3638 { 3639 struct kmem_cache *cachep; 3640 void *ret; 3641 3642 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3643 return NULL; 3644 cachep = kmalloc_slab(size, flags); 3645 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3646 return cachep; 3647 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3648 ret = kasan_kmalloc(cachep, ret, size, flags); 3649 3650 return ret; 3651 } 3652 3653 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3654 { 3655 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3656 } 3657 EXPORT_SYMBOL(__kmalloc_node); 3658 3659 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3660 int node, unsigned long caller) 3661 { 3662 return __do_kmalloc_node(size, flags, node, caller); 3663 } 3664 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3665 #endif /* CONFIG_NUMA */ 3666 3667 #ifdef CONFIG_PRINTK 3668 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 3669 { 3670 struct kmem_cache *cachep; 3671 unsigned int objnr; 3672 void *objp; 3673 3674 kpp->kp_ptr = object; 3675 kpp->kp_slab = slab; 3676 cachep = slab->slab_cache; 3677 kpp->kp_slab_cache = cachep; 3678 objp = object - obj_offset(cachep); 3679 kpp->kp_data_offset = obj_offset(cachep); 3680 slab = virt_to_slab(objp); 3681 objnr = obj_to_index(cachep, slab, objp); 3682 objp = index_to_obj(cachep, slab, objnr); 3683 kpp->kp_objp = objp; 3684 if (DEBUG && cachep->flags & SLAB_STORE_USER) 3685 kpp->kp_ret = *dbg_userword(cachep, objp); 3686 } 3687 #endif 3688 3689 /** 3690 * __do_kmalloc - allocate memory 3691 * @size: how many bytes of memory are required. 3692 * @flags: the type of memory to allocate (see kmalloc). 3693 * @caller: function caller for debug tracking of the caller 3694 * 3695 * Return: pointer to the allocated memory or %NULL in case of error 3696 */ 3697 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3698 unsigned long caller) 3699 { 3700 struct kmem_cache *cachep; 3701 void *ret; 3702 3703 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3704 return NULL; 3705 cachep = kmalloc_slab(size, flags); 3706 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3707 return cachep; 3708 ret = slab_alloc(cachep, NULL, flags, size, caller); 3709 3710 ret = kasan_kmalloc(cachep, ret, size, flags); 3711 trace_kmalloc(caller, ret, 3712 size, cachep->size, flags); 3713 3714 return ret; 3715 } 3716 3717 void *__kmalloc(size_t size, gfp_t flags) 3718 { 3719 return __do_kmalloc(size, flags, _RET_IP_); 3720 } 3721 EXPORT_SYMBOL(__kmalloc); 3722 3723 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3724 { 3725 return __do_kmalloc(size, flags, caller); 3726 } 3727 EXPORT_SYMBOL(__kmalloc_track_caller); 3728 3729 /** 3730 * kmem_cache_free - Deallocate an object 3731 * @cachep: The cache the allocation was from. 3732 * @objp: The previously allocated object. 3733 * 3734 * Free an object which was previously allocated from this 3735 * cache. 3736 */ 3737 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3738 { 3739 unsigned long flags; 3740 cachep = cache_from_obj(cachep, objp); 3741 if (!cachep) 3742 return; 3743 3744 trace_kmem_cache_free(_RET_IP_, objp, cachep->name); 3745 local_irq_save(flags); 3746 debug_check_no_locks_freed(objp, cachep->object_size); 3747 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3748 debug_check_no_obj_freed(objp, cachep->object_size); 3749 __cache_free(cachep, objp, _RET_IP_); 3750 local_irq_restore(flags); 3751 } 3752 EXPORT_SYMBOL(kmem_cache_free); 3753 3754 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3755 { 3756 struct kmem_cache *s; 3757 size_t i; 3758 3759 local_irq_disable(); 3760 for (i = 0; i < size; i++) { 3761 void *objp = p[i]; 3762 3763 if (!orig_s) /* called via kfree_bulk */ 3764 s = virt_to_cache(objp); 3765 else 3766 s = cache_from_obj(orig_s, objp); 3767 if (!s) 3768 continue; 3769 3770 debug_check_no_locks_freed(objp, s->object_size); 3771 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3772 debug_check_no_obj_freed(objp, s->object_size); 3773 3774 __cache_free(s, objp, _RET_IP_); 3775 } 3776 local_irq_enable(); 3777 3778 /* FIXME: add tracing */ 3779 } 3780 EXPORT_SYMBOL(kmem_cache_free_bulk); 3781 3782 /** 3783 * kfree - free previously allocated memory 3784 * @objp: pointer returned by kmalloc. 3785 * 3786 * If @objp is NULL, no operation is performed. 3787 * 3788 * Don't free memory not originally allocated by kmalloc() 3789 * or you will run into trouble. 3790 */ 3791 void kfree(const void *objp) 3792 { 3793 struct kmem_cache *c; 3794 unsigned long flags; 3795 3796 trace_kfree(_RET_IP_, objp); 3797 3798 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3799 return; 3800 local_irq_save(flags); 3801 kfree_debugcheck(objp); 3802 c = virt_to_cache(objp); 3803 if (!c) { 3804 local_irq_restore(flags); 3805 return; 3806 } 3807 debug_check_no_locks_freed(objp, c->object_size); 3808 3809 debug_check_no_obj_freed(objp, c->object_size); 3810 __cache_free(c, (void *)objp, _RET_IP_); 3811 local_irq_restore(flags); 3812 } 3813 EXPORT_SYMBOL(kfree); 3814 3815 /* 3816 * This initializes kmem_cache_node or resizes various caches for all nodes. 3817 */ 3818 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3819 { 3820 int ret; 3821 int node; 3822 struct kmem_cache_node *n; 3823 3824 for_each_online_node(node) { 3825 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3826 if (ret) 3827 goto fail; 3828 3829 } 3830 3831 return 0; 3832 3833 fail: 3834 if (!cachep->list.next) { 3835 /* Cache is not active yet. Roll back what we did */ 3836 node--; 3837 while (node >= 0) { 3838 n = get_node(cachep, node); 3839 if (n) { 3840 kfree(n->shared); 3841 free_alien_cache(n->alien); 3842 kfree(n); 3843 cachep->node[node] = NULL; 3844 } 3845 node--; 3846 } 3847 } 3848 return -ENOMEM; 3849 } 3850 3851 /* Always called with the slab_mutex held */ 3852 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3853 int batchcount, int shared, gfp_t gfp) 3854 { 3855 struct array_cache __percpu *cpu_cache, *prev; 3856 int cpu; 3857 3858 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3859 if (!cpu_cache) 3860 return -ENOMEM; 3861 3862 prev = cachep->cpu_cache; 3863 cachep->cpu_cache = cpu_cache; 3864 /* 3865 * Without a previous cpu_cache there's no need to synchronize remote 3866 * cpus, so skip the IPIs. 3867 */ 3868 if (prev) 3869 kick_all_cpus_sync(); 3870 3871 check_irq_on(); 3872 cachep->batchcount = batchcount; 3873 cachep->limit = limit; 3874 cachep->shared = shared; 3875 3876 if (!prev) 3877 goto setup_node; 3878 3879 for_each_online_cpu(cpu) { 3880 LIST_HEAD(list); 3881 int node; 3882 struct kmem_cache_node *n; 3883 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3884 3885 node = cpu_to_mem(cpu); 3886 n = get_node(cachep, node); 3887 spin_lock_irq(&n->list_lock); 3888 free_block(cachep, ac->entry, ac->avail, node, &list); 3889 spin_unlock_irq(&n->list_lock); 3890 slabs_destroy(cachep, &list); 3891 } 3892 free_percpu(prev); 3893 3894 setup_node: 3895 return setup_kmem_cache_nodes(cachep, gfp); 3896 } 3897 3898 /* Called with slab_mutex held always */ 3899 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3900 { 3901 int err; 3902 int limit = 0; 3903 int shared = 0; 3904 int batchcount = 0; 3905 3906 err = cache_random_seq_create(cachep, cachep->num, gfp); 3907 if (err) 3908 goto end; 3909 3910 /* 3911 * The head array serves three purposes: 3912 * - create a LIFO ordering, i.e. return objects that are cache-warm 3913 * - reduce the number of spinlock operations. 3914 * - reduce the number of linked list operations on the slab and 3915 * bufctl chains: array operations are cheaper. 3916 * The numbers are guessed, we should auto-tune as described by 3917 * Bonwick. 3918 */ 3919 if (cachep->size > 131072) 3920 limit = 1; 3921 else if (cachep->size > PAGE_SIZE) 3922 limit = 8; 3923 else if (cachep->size > 1024) 3924 limit = 24; 3925 else if (cachep->size > 256) 3926 limit = 54; 3927 else 3928 limit = 120; 3929 3930 /* 3931 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3932 * allocation behaviour: Most allocs on one cpu, most free operations 3933 * on another cpu. For these cases, an efficient object passing between 3934 * cpus is necessary. This is provided by a shared array. The array 3935 * replaces Bonwick's magazine layer. 3936 * On uniprocessor, it's functionally equivalent (but less efficient) 3937 * to a larger limit. Thus disabled by default. 3938 */ 3939 shared = 0; 3940 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3941 shared = 8; 3942 3943 #if DEBUG 3944 /* 3945 * With debugging enabled, large batchcount lead to excessively long 3946 * periods with disabled local interrupts. Limit the batchcount 3947 */ 3948 if (limit > 32) 3949 limit = 32; 3950 #endif 3951 batchcount = (limit + 1) / 2; 3952 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3953 end: 3954 if (err) 3955 pr_err("enable_cpucache failed for %s, error %d\n", 3956 cachep->name, -err); 3957 return err; 3958 } 3959 3960 /* 3961 * Drain an array if it contains any elements taking the node lock only if 3962 * necessary. Note that the node listlock also protects the array_cache 3963 * if drain_array() is used on the shared array. 3964 */ 3965 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3966 struct array_cache *ac, int node) 3967 { 3968 LIST_HEAD(list); 3969 3970 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3971 check_mutex_acquired(); 3972 3973 if (!ac || !ac->avail) 3974 return; 3975 3976 if (ac->touched) { 3977 ac->touched = 0; 3978 return; 3979 } 3980 3981 spin_lock_irq(&n->list_lock); 3982 drain_array_locked(cachep, ac, node, false, &list); 3983 spin_unlock_irq(&n->list_lock); 3984 3985 slabs_destroy(cachep, &list); 3986 } 3987 3988 /** 3989 * cache_reap - Reclaim memory from caches. 3990 * @w: work descriptor 3991 * 3992 * Called from workqueue/eventd every few seconds. 3993 * Purpose: 3994 * - clear the per-cpu caches for this CPU. 3995 * - return freeable pages to the main free memory pool. 3996 * 3997 * If we cannot acquire the cache chain mutex then just give up - we'll try 3998 * again on the next iteration. 3999 */ 4000 static void cache_reap(struct work_struct *w) 4001 { 4002 struct kmem_cache *searchp; 4003 struct kmem_cache_node *n; 4004 int node = numa_mem_id(); 4005 struct delayed_work *work = to_delayed_work(w); 4006 4007 if (!mutex_trylock(&slab_mutex)) 4008 /* Give up. Setup the next iteration. */ 4009 goto out; 4010 4011 list_for_each_entry(searchp, &slab_caches, list) { 4012 check_irq_on(); 4013 4014 /* 4015 * We only take the node lock if absolutely necessary and we 4016 * have established with reasonable certainty that 4017 * we can do some work if the lock was obtained. 4018 */ 4019 n = get_node(searchp, node); 4020 4021 reap_alien(searchp, n); 4022 4023 drain_array(searchp, n, cpu_cache_get(searchp), node); 4024 4025 /* 4026 * These are racy checks but it does not matter 4027 * if we skip one check or scan twice. 4028 */ 4029 if (time_after(n->next_reap, jiffies)) 4030 goto next; 4031 4032 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4033 4034 drain_array(searchp, n, n->shared, node); 4035 4036 if (n->free_touched) 4037 n->free_touched = 0; 4038 else { 4039 int freed; 4040 4041 freed = drain_freelist(searchp, n, (n->free_limit + 4042 5 * searchp->num - 1) / (5 * searchp->num)); 4043 STATS_ADD_REAPED(searchp, freed); 4044 } 4045 next: 4046 cond_resched(); 4047 } 4048 check_irq_on(); 4049 mutex_unlock(&slab_mutex); 4050 next_reap_node(); 4051 out: 4052 /* Set up the next iteration */ 4053 schedule_delayed_work_on(smp_processor_id(), work, 4054 round_jiffies_relative(REAPTIMEOUT_AC)); 4055 } 4056 4057 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4058 { 4059 unsigned long active_objs, num_objs, active_slabs; 4060 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4061 unsigned long free_slabs = 0; 4062 int node; 4063 struct kmem_cache_node *n; 4064 4065 for_each_kmem_cache_node(cachep, node, n) { 4066 check_irq_on(); 4067 spin_lock_irq(&n->list_lock); 4068 4069 total_slabs += n->total_slabs; 4070 free_slabs += n->free_slabs; 4071 free_objs += n->free_objects; 4072 4073 if (n->shared) 4074 shared_avail += n->shared->avail; 4075 4076 spin_unlock_irq(&n->list_lock); 4077 } 4078 num_objs = total_slabs * cachep->num; 4079 active_slabs = total_slabs - free_slabs; 4080 active_objs = num_objs - free_objs; 4081 4082 sinfo->active_objs = active_objs; 4083 sinfo->num_objs = num_objs; 4084 sinfo->active_slabs = active_slabs; 4085 sinfo->num_slabs = total_slabs; 4086 sinfo->shared_avail = shared_avail; 4087 sinfo->limit = cachep->limit; 4088 sinfo->batchcount = cachep->batchcount; 4089 sinfo->shared = cachep->shared; 4090 sinfo->objects_per_slab = cachep->num; 4091 sinfo->cache_order = cachep->gfporder; 4092 } 4093 4094 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4095 { 4096 #if STATS 4097 { /* node stats */ 4098 unsigned long high = cachep->high_mark; 4099 unsigned long allocs = cachep->num_allocations; 4100 unsigned long grown = cachep->grown; 4101 unsigned long reaped = cachep->reaped; 4102 unsigned long errors = cachep->errors; 4103 unsigned long max_freeable = cachep->max_freeable; 4104 unsigned long node_allocs = cachep->node_allocs; 4105 unsigned long node_frees = cachep->node_frees; 4106 unsigned long overflows = cachep->node_overflow; 4107 4108 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4109 allocs, high, grown, 4110 reaped, errors, max_freeable, node_allocs, 4111 node_frees, overflows); 4112 } 4113 /* cpu stats */ 4114 { 4115 unsigned long allochit = atomic_read(&cachep->allochit); 4116 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4117 unsigned long freehit = atomic_read(&cachep->freehit); 4118 unsigned long freemiss = atomic_read(&cachep->freemiss); 4119 4120 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4121 allochit, allocmiss, freehit, freemiss); 4122 } 4123 #endif 4124 } 4125 4126 #define MAX_SLABINFO_WRITE 128 4127 /** 4128 * slabinfo_write - Tuning for the slab allocator 4129 * @file: unused 4130 * @buffer: user buffer 4131 * @count: data length 4132 * @ppos: unused 4133 * 4134 * Return: %0 on success, negative error code otherwise. 4135 */ 4136 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4137 size_t count, loff_t *ppos) 4138 { 4139 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4140 int limit, batchcount, shared, res; 4141 struct kmem_cache *cachep; 4142 4143 if (count > MAX_SLABINFO_WRITE) 4144 return -EINVAL; 4145 if (copy_from_user(&kbuf, buffer, count)) 4146 return -EFAULT; 4147 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4148 4149 tmp = strchr(kbuf, ' '); 4150 if (!tmp) 4151 return -EINVAL; 4152 *tmp = '\0'; 4153 tmp++; 4154 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4155 return -EINVAL; 4156 4157 /* Find the cache in the chain of caches. */ 4158 mutex_lock(&slab_mutex); 4159 res = -EINVAL; 4160 list_for_each_entry(cachep, &slab_caches, list) { 4161 if (!strcmp(cachep->name, kbuf)) { 4162 if (limit < 1 || batchcount < 1 || 4163 batchcount > limit || shared < 0) { 4164 res = 0; 4165 } else { 4166 res = do_tune_cpucache(cachep, limit, 4167 batchcount, shared, 4168 GFP_KERNEL); 4169 } 4170 break; 4171 } 4172 } 4173 mutex_unlock(&slab_mutex); 4174 if (res >= 0) 4175 res = count; 4176 return res; 4177 } 4178 4179 #ifdef CONFIG_HARDENED_USERCOPY 4180 /* 4181 * Rejects incorrectly sized objects and objects that are to be copied 4182 * to/from userspace but do not fall entirely within the containing slab 4183 * cache's usercopy region. 4184 * 4185 * Returns NULL if check passes, otherwise const char * to name of cache 4186 * to indicate an error. 4187 */ 4188 void __check_heap_object(const void *ptr, unsigned long n, 4189 const struct slab *slab, bool to_user) 4190 { 4191 struct kmem_cache *cachep; 4192 unsigned int objnr; 4193 unsigned long offset; 4194 4195 ptr = kasan_reset_tag(ptr); 4196 4197 /* Find and validate object. */ 4198 cachep = slab->slab_cache; 4199 objnr = obj_to_index(cachep, slab, (void *)ptr); 4200 BUG_ON(objnr >= cachep->num); 4201 4202 /* Find offset within object. */ 4203 if (is_kfence_address(ptr)) 4204 offset = ptr - kfence_object_start(ptr); 4205 else 4206 offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep); 4207 4208 /* Allow address range falling entirely within usercopy region. */ 4209 if (offset >= cachep->useroffset && 4210 offset - cachep->useroffset <= cachep->usersize && 4211 n <= cachep->useroffset - offset + cachep->usersize) 4212 return; 4213 4214 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4215 } 4216 #endif /* CONFIG_HARDENED_USERCOPY */ 4217 4218 /** 4219 * __ksize -- Uninstrumented ksize. 4220 * @objp: pointer to the object 4221 * 4222 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same 4223 * safety checks as ksize() with KASAN instrumentation enabled. 4224 * 4225 * Return: size of the actual memory used by @objp in bytes 4226 */ 4227 size_t __ksize(const void *objp) 4228 { 4229 struct kmem_cache *c; 4230 size_t size; 4231 4232 BUG_ON(!objp); 4233 if (unlikely(objp == ZERO_SIZE_PTR)) 4234 return 0; 4235 4236 c = virt_to_cache(objp); 4237 size = c ? c->object_size : 0; 4238 4239 return size; 4240 } 4241 EXPORT_SYMBOL(__ksize); 4242