1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/cpu.h> 104 #include <linux/sysctl.h> 105 #include <linux/module.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 /* 366 * Do not go above this order unless 0 objects fit into the slab or 367 * overridden on the command line. 368 */ 369 #define SLAB_MAX_ORDER_HI 1 370 #define SLAB_MAX_ORDER_LO 0 371 static int slab_max_order = SLAB_MAX_ORDER_LO; 372 static bool slab_max_order_set __initdata; 373 374 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 375 unsigned int idx) 376 { 377 return page->s_mem + cache->size * idx; 378 } 379 380 #define BOOT_CPUCACHE_ENTRIES 1 381 /* internal cache of cache description objs */ 382 static struct kmem_cache kmem_cache_boot = { 383 .batchcount = 1, 384 .limit = BOOT_CPUCACHE_ENTRIES, 385 .shared = 1, 386 .size = sizeof(struct kmem_cache), 387 .name = "kmem_cache", 388 }; 389 390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 391 392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 393 { 394 return this_cpu_ptr(cachep->cpu_cache); 395 } 396 397 /* 398 * Calculate the number of objects and left-over bytes for a given buffer size. 399 */ 400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 401 slab_flags_t flags, size_t *left_over) 402 { 403 unsigned int num; 404 size_t slab_size = PAGE_SIZE << gfporder; 405 406 /* 407 * The slab management structure can be either off the slab or 408 * on it. For the latter case, the memory allocated for a 409 * slab is used for: 410 * 411 * - @buffer_size bytes for each object 412 * - One freelist_idx_t for each object 413 * 414 * We don't need to consider alignment of freelist because 415 * freelist will be at the end of slab page. The objects will be 416 * at the correct alignment. 417 * 418 * If the slab management structure is off the slab, then the 419 * alignment will already be calculated into the size. Because 420 * the slabs are all pages aligned, the objects will be at the 421 * correct alignment when allocated. 422 */ 423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 424 num = slab_size / buffer_size; 425 *left_over = slab_size % buffer_size; 426 } else { 427 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 428 *left_over = slab_size % 429 (buffer_size + sizeof(freelist_idx_t)); 430 } 431 432 return num; 433 } 434 435 #if DEBUG 436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 437 438 static void __slab_error(const char *function, struct kmem_cache *cachep, 439 char *msg) 440 { 441 pr_err("slab error in %s(): cache `%s': %s\n", 442 function, cachep->name, msg); 443 dump_stack(); 444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 445 } 446 #endif 447 448 /* 449 * By default on NUMA we use alien caches to stage the freeing of 450 * objects allocated from other nodes. This causes massive memory 451 * inefficiencies when using fake NUMA setup to split memory into a 452 * large number of small nodes, so it can be disabled on the command 453 * line 454 */ 455 456 static int use_alien_caches __read_mostly = 1; 457 static int __init noaliencache_setup(char *s) 458 { 459 use_alien_caches = 0; 460 return 1; 461 } 462 __setup("noaliencache", noaliencache_setup); 463 464 static int __init slab_max_order_setup(char *str) 465 { 466 get_option(&str, &slab_max_order); 467 slab_max_order = slab_max_order < 0 ? 0 : 468 min(slab_max_order, MAX_ORDER - 1); 469 slab_max_order_set = true; 470 471 return 1; 472 } 473 __setup("slab_max_order=", slab_max_order_setup); 474 475 #ifdef CONFIG_NUMA 476 /* 477 * Special reaping functions for NUMA systems called from cache_reap(). 478 * These take care of doing round robin flushing of alien caches (containing 479 * objects freed on different nodes from which they were allocated) and the 480 * flushing of remote pcps by calling drain_node_pages. 481 */ 482 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 483 484 static void init_reap_node(int cpu) 485 { 486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 487 node_online_map); 488 } 489 490 static void next_reap_node(void) 491 { 492 int node = __this_cpu_read(slab_reap_node); 493 494 node = next_node_in(node, node_online_map); 495 __this_cpu_write(slab_reap_node, node); 496 } 497 498 #else 499 #define init_reap_node(cpu) do { } while (0) 500 #define next_reap_node(void) do { } while (0) 501 #endif 502 503 /* 504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 505 * via the workqueue/eventd. 506 * Add the CPU number into the expiration time to minimize the possibility of 507 * the CPUs getting into lockstep and contending for the global cache chain 508 * lock. 509 */ 510 static void start_cpu_timer(int cpu) 511 { 512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 513 514 if (reap_work->work.func == NULL) { 515 init_reap_node(cpu); 516 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 517 schedule_delayed_work_on(cpu, reap_work, 518 __round_jiffies_relative(HZ, cpu)); 519 } 520 } 521 522 static void init_arraycache(struct array_cache *ac, int limit, int batch) 523 { 524 if (ac) { 525 ac->avail = 0; 526 ac->limit = limit; 527 ac->batchcount = batch; 528 ac->touched = 0; 529 } 530 } 531 532 static struct array_cache *alloc_arraycache(int node, int entries, 533 int batchcount, gfp_t gfp) 534 { 535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 536 struct array_cache *ac = NULL; 537 538 ac = kmalloc_node(memsize, gfp, node); 539 /* 540 * The array_cache structures contain pointers to free object. 541 * However, when such objects are allocated or transferred to another 542 * cache the pointers are not cleared and they could be counted as 543 * valid references during a kmemleak scan. Therefore, kmemleak must 544 * not scan such objects. 545 */ 546 kmemleak_no_scan(ac); 547 init_arraycache(ac, entries, batchcount); 548 return ac; 549 } 550 551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 552 struct page *page, void *objp) 553 { 554 struct kmem_cache_node *n; 555 int page_node; 556 LIST_HEAD(list); 557 558 page_node = page_to_nid(page); 559 n = get_node(cachep, page_node); 560 561 spin_lock(&n->list_lock); 562 free_block(cachep, &objp, 1, page_node, &list); 563 spin_unlock(&n->list_lock); 564 565 slabs_destroy(cachep, &list); 566 } 567 568 /* 569 * Transfer objects in one arraycache to another. 570 * Locking must be handled by the caller. 571 * 572 * Return the number of entries transferred. 573 */ 574 static int transfer_objects(struct array_cache *to, 575 struct array_cache *from, unsigned int max) 576 { 577 /* Figure out how many entries to transfer */ 578 int nr = min3(from->avail, max, to->limit - to->avail); 579 580 if (!nr) 581 return 0; 582 583 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 584 sizeof(void *) *nr); 585 586 from->avail -= nr; 587 to->avail += nr; 588 return nr; 589 } 590 591 #ifndef CONFIG_NUMA 592 593 #define drain_alien_cache(cachep, alien) do { } while (0) 594 #define reap_alien(cachep, n) do { } while (0) 595 596 static inline struct alien_cache **alloc_alien_cache(int node, 597 int limit, gfp_t gfp) 598 { 599 return NULL; 600 } 601 602 static inline void free_alien_cache(struct alien_cache **ac_ptr) 603 { 604 } 605 606 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 607 { 608 return 0; 609 } 610 611 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 612 gfp_t flags) 613 { 614 return NULL; 615 } 616 617 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 618 gfp_t flags, int nodeid) 619 { 620 return NULL; 621 } 622 623 static inline gfp_t gfp_exact_node(gfp_t flags) 624 { 625 return flags & ~__GFP_NOFAIL; 626 } 627 628 #else /* CONFIG_NUMA */ 629 630 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 631 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 632 633 static struct alien_cache *__alloc_alien_cache(int node, int entries, 634 int batch, gfp_t gfp) 635 { 636 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 637 struct alien_cache *alc = NULL; 638 639 alc = kmalloc_node(memsize, gfp, node); 640 if (alc) { 641 kmemleak_no_scan(alc); 642 init_arraycache(&alc->ac, entries, batch); 643 spin_lock_init(&alc->lock); 644 } 645 return alc; 646 } 647 648 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 649 { 650 struct alien_cache **alc_ptr; 651 int i; 652 653 if (limit > 1) 654 limit = 12; 655 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 656 if (!alc_ptr) 657 return NULL; 658 659 for_each_node(i) { 660 if (i == node || !node_online(i)) 661 continue; 662 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 663 if (!alc_ptr[i]) { 664 for (i--; i >= 0; i--) 665 kfree(alc_ptr[i]); 666 kfree(alc_ptr); 667 return NULL; 668 } 669 } 670 return alc_ptr; 671 } 672 673 static void free_alien_cache(struct alien_cache **alc_ptr) 674 { 675 int i; 676 677 if (!alc_ptr) 678 return; 679 for_each_node(i) 680 kfree(alc_ptr[i]); 681 kfree(alc_ptr); 682 } 683 684 static void __drain_alien_cache(struct kmem_cache *cachep, 685 struct array_cache *ac, int node, 686 struct list_head *list) 687 { 688 struct kmem_cache_node *n = get_node(cachep, node); 689 690 if (ac->avail) { 691 spin_lock(&n->list_lock); 692 /* 693 * Stuff objects into the remote nodes shared array first. 694 * That way we could avoid the overhead of putting the objects 695 * into the free lists and getting them back later. 696 */ 697 if (n->shared) 698 transfer_objects(n->shared, ac, ac->limit); 699 700 free_block(cachep, ac->entry, ac->avail, node, list); 701 ac->avail = 0; 702 spin_unlock(&n->list_lock); 703 } 704 } 705 706 /* 707 * Called from cache_reap() to regularly drain alien caches round robin. 708 */ 709 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 710 { 711 int node = __this_cpu_read(slab_reap_node); 712 713 if (n->alien) { 714 struct alien_cache *alc = n->alien[node]; 715 struct array_cache *ac; 716 717 if (alc) { 718 ac = &alc->ac; 719 if (ac->avail && spin_trylock_irq(&alc->lock)) { 720 LIST_HEAD(list); 721 722 __drain_alien_cache(cachep, ac, node, &list); 723 spin_unlock_irq(&alc->lock); 724 slabs_destroy(cachep, &list); 725 } 726 } 727 } 728 } 729 730 static void drain_alien_cache(struct kmem_cache *cachep, 731 struct alien_cache **alien) 732 { 733 int i = 0; 734 struct alien_cache *alc; 735 struct array_cache *ac; 736 unsigned long flags; 737 738 for_each_online_node(i) { 739 alc = alien[i]; 740 if (alc) { 741 LIST_HEAD(list); 742 743 ac = &alc->ac; 744 spin_lock_irqsave(&alc->lock, flags); 745 __drain_alien_cache(cachep, ac, i, &list); 746 spin_unlock_irqrestore(&alc->lock, flags); 747 slabs_destroy(cachep, &list); 748 } 749 } 750 } 751 752 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 753 int node, int page_node) 754 { 755 struct kmem_cache_node *n; 756 struct alien_cache *alien = NULL; 757 struct array_cache *ac; 758 LIST_HEAD(list); 759 760 n = get_node(cachep, node); 761 STATS_INC_NODEFREES(cachep); 762 if (n->alien && n->alien[page_node]) { 763 alien = n->alien[page_node]; 764 ac = &alien->ac; 765 spin_lock(&alien->lock); 766 if (unlikely(ac->avail == ac->limit)) { 767 STATS_INC_ACOVERFLOW(cachep); 768 __drain_alien_cache(cachep, ac, page_node, &list); 769 } 770 ac->entry[ac->avail++] = objp; 771 spin_unlock(&alien->lock); 772 slabs_destroy(cachep, &list); 773 } else { 774 n = get_node(cachep, page_node); 775 spin_lock(&n->list_lock); 776 free_block(cachep, &objp, 1, page_node, &list); 777 spin_unlock(&n->list_lock); 778 slabs_destroy(cachep, &list); 779 } 780 return 1; 781 } 782 783 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 784 { 785 int page_node = page_to_nid(virt_to_page(objp)); 786 int node = numa_mem_id(); 787 /* 788 * Make sure we are not freeing a object from another node to the array 789 * cache on this cpu. 790 */ 791 if (likely(node == page_node)) 792 return 0; 793 794 return __cache_free_alien(cachep, objp, node, page_node); 795 } 796 797 /* 798 * Construct gfp mask to allocate from a specific node but do not reclaim or 799 * warn about failures. 800 */ 801 static inline gfp_t gfp_exact_node(gfp_t flags) 802 { 803 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 804 } 805 #endif 806 807 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 808 { 809 struct kmem_cache_node *n; 810 811 /* 812 * Set up the kmem_cache_node for cpu before we can 813 * begin anything. Make sure some other cpu on this 814 * node has not already allocated this 815 */ 816 n = get_node(cachep, node); 817 if (n) { 818 spin_lock_irq(&n->list_lock); 819 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 820 cachep->num; 821 spin_unlock_irq(&n->list_lock); 822 823 return 0; 824 } 825 826 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 827 if (!n) 828 return -ENOMEM; 829 830 kmem_cache_node_init(n); 831 n->next_reap = jiffies + REAPTIMEOUT_NODE + 832 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 833 834 n->free_limit = 835 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 836 837 /* 838 * The kmem_cache_nodes don't come and go as CPUs 839 * come and go. slab_mutex is sufficient 840 * protection here. 841 */ 842 cachep->node[node] = n; 843 844 return 0; 845 } 846 847 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 848 /* 849 * Allocates and initializes node for a node on each slab cache, used for 850 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 851 * will be allocated off-node since memory is not yet online for the new node. 852 * When hotplugging memory or a cpu, existing node are not replaced if 853 * already in use. 854 * 855 * Must hold slab_mutex. 856 */ 857 static int init_cache_node_node(int node) 858 { 859 int ret; 860 struct kmem_cache *cachep; 861 862 list_for_each_entry(cachep, &slab_caches, list) { 863 ret = init_cache_node(cachep, node, GFP_KERNEL); 864 if (ret) 865 return ret; 866 } 867 868 return 0; 869 } 870 #endif 871 872 static int setup_kmem_cache_node(struct kmem_cache *cachep, 873 int node, gfp_t gfp, bool force_change) 874 { 875 int ret = -ENOMEM; 876 struct kmem_cache_node *n; 877 struct array_cache *old_shared = NULL; 878 struct array_cache *new_shared = NULL; 879 struct alien_cache **new_alien = NULL; 880 LIST_HEAD(list); 881 882 if (use_alien_caches) { 883 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 884 if (!new_alien) 885 goto fail; 886 } 887 888 if (cachep->shared) { 889 new_shared = alloc_arraycache(node, 890 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 891 if (!new_shared) 892 goto fail; 893 } 894 895 ret = init_cache_node(cachep, node, gfp); 896 if (ret) 897 goto fail; 898 899 n = get_node(cachep, node); 900 spin_lock_irq(&n->list_lock); 901 if (n->shared && force_change) { 902 free_block(cachep, n->shared->entry, 903 n->shared->avail, node, &list); 904 n->shared->avail = 0; 905 } 906 907 if (!n->shared || force_change) { 908 old_shared = n->shared; 909 n->shared = new_shared; 910 new_shared = NULL; 911 } 912 913 if (!n->alien) { 914 n->alien = new_alien; 915 new_alien = NULL; 916 } 917 918 spin_unlock_irq(&n->list_lock); 919 slabs_destroy(cachep, &list); 920 921 /* 922 * To protect lockless access to n->shared during irq disabled context. 923 * If n->shared isn't NULL in irq disabled context, accessing to it is 924 * guaranteed to be valid until irq is re-enabled, because it will be 925 * freed after synchronize_rcu(). 926 */ 927 if (old_shared && force_change) 928 synchronize_rcu(); 929 930 fail: 931 kfree(old_shared); 932 kfree(new_shared); 933 free_alien_cache(new_alien); 934 935 return ret; 936 } 937 938 #ifdef CONFIG_SMP 939 940 static void cpuup_canceled(long cpu) 941 { 942 struct kmem_cache *cachep; 943 struct kmem_cache_node *n = NULL; 944 int node = cpu_to_mem(cpu); 945 const struct cpumask *mask = cpumask_of_node(node); 946 947 list_for_each_entry(cachep, &slab_caches, list) { 948 struct array_cache *nc; 949 struct array_cache *shared; 950 struct alien_cache **alien; 951 LIST_HEAD(list); 952 953 n = get_node(cachep, node); 954 if (!n) 955 continue; 956 957 spin_lock_irq(&n->list_lock); 958 959 /* Free limit for this kmem_cache_node */ 960 n->free_limit -= cachep->batchcount; 961 962 /* cpu is dead; no one can alloc from it. */ 963 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 964 free_block(cachep, nc->entry, nc->avail, node, &list); 965 nc->avail = 0; 966 967 if (!cpumask_empty(mask)) { 968 spin_unlock_irq(&n->list_lock); 969 goto free_slab; 970 } 971 972 shared = n->shared; 973 if (shared) { 974 free_block(cachep, shared->entry, 975 shared->avail, node, &list); 976 n->shared = NULL; 977 } 978 979 alien = n->alien; 980 n->alien = NULL; 981 982 spin_unlock_irq(&n->list_lock); 983 984 kfree(shared); 985 if (alien) { 986 drain_alien_cache(cachep, alien); 987 free_alien_cache(alien); 988 } 989 990 free_slab: 991 slabs_destroy(cachep, &list); 992 } 993 /* 994 * In the previous loop, all the objects were freed to 995 * the respective cache's slabs, now we can go ahead and 996 * shrink each nodelist to its limit. 997 */ 998 list_for_each_entry(cachep, &slab_caches, list) { 999 n = get_node(cachep, node); 1000 if (!n) 1001 continue; 1002 drain_freelist(cachep, n, INT_MAX); 1003 } 1004 } 1005 1006 static int cpuup_prepare(long cpu) 1007 { 1008 struct kmem_cache *cachep; 1009 int node = cpu_to_mem(cpu); 1010 int err; 1011 1012 /* 1013 * We need to do this right in the beginning since 1014 * alloc_arraycache's are going to use this list. 1015 * kmalloc_node allows us to add the slab to the right 1016 * kmem_cache_node and not this cpu's kmem_cache_node 1017 */ 1018 err = init_cache_node_node(node); 1019 if (err < 0) 1020 goto bad; 1021 1022 /* 1023 * Now we can go ahead with allocating the shared arrays and 1024 * array caches 1025 */ 1026 list_for_each_entry(cachep, &slab_caches, list) { 1027 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1028 if (err) 1029 goto bad; 1030 } 1031 1032 return 0; 1033 bad: 1034 cpuup_canceled(cpu); 1035 return -ENOMEM; 1036 } 1037 1038 int slab_prepare_cpu(unsigned int cpu) 1039 { 1040 int err; 1041 1042 mutex_lock(&slab_mutex); 1043 err = cpuup_prepare(cpu); 1044 mutex_unlock(&slab_mutex); 1045 return err; 1046 } 1047 1048 /* 1049 * This is called for a failed online attempt and for a successful 1050 * offline. 1051 * 1052 * Even if all the cpus of a node are down, we don't free the 1053 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1054 * a kmalloc allocation from another cpu for memory from the node of 1055 * the cpu going down. The list3 structure is usually allocated from 1056 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1057 */ 1058 int slab_dead_cpu(unsigned int cpu) 1059 { 1060 mutex_lock(&slab_mutex); 1061 cpuup_canceled(cpu); 1062 mutex_unlock(&slab_mutex); 1063 return 0; 1064 } 1065 #endif 1066 1067 static int slab_online_cpu(unsigned int cpu) 1068 { 1069 start_cpu_timer(cpu); 1070 return 0; 1071 } 1072 1073 static int slab_offline_cpu(unsigned int cpu) 1074 { 1075 /* 1076 * Shutdown cache reaper. Note that the slab_mutex is held so 1077 * that if cache_reap() is invoked it cannot do anything 1078 * expensive but will only modify reap_work and reschedule the 1079 * timer. 1080 */ 1081 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1082 /* Now the cache_reaper is guaranteed to be not running. */ 1083 per_cpu(slab_reap_work, cpu).work.func = NULL; 1084 return 0; 1085 } 1086 1087 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1088 /* 1089 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1090 * Returns -EBUSY if all objects cannot be drained so that the node is not 1091 * removed. 1092 * 1093 * Must hold slab_mutex. 1094 */ 1095 static int __meminit drain_cache_node_node(int node) 1096 { 1097 struct kmem_cache *cachep; 1098 int ret = 0; 1099 1100 list_for_each_entry(cachep, &slab_caches, list) { 1101 struct kmem_cache_node *n; 1102 1103 n = get_node(cachep, node); 1104 if (!n) 1105 continue; 1106 1107 drain_freelist(cachep, n, INT_MAX); 1108 1109 if (!list_empty(&n->slabs_full) || 1110 !list_empty(&n->slabs_partial)) { 1111 ret = -EBUSY; 1112 break; 1113 } 1114 } 1115 return ret; 1116 } 1117 1118 static int __meminit slab_memory_callback(struct notifier_block *self, 1119 unsigned long action, void *arg) 1120 { 1121 struct memory_notify *mnb = arg; 1122 int ret = 0; 1123 int nid; 1124 1125 nid = mnb->status_change_nid; 1126 if (nid < 0) 1127 goto out; 1128 1129 switch (action) { 1130 case MEM_GOING_ONLINE: 1131 mutex_lock(&slab_mutex); 1132 ret = init_cache_node_node(nid); 1133 mutex_unlock(&slab_mutex); 1134 break; 1135 case MEM_GOING_OFFLINE: 1136 mutex_lock(&slab_mutex); 1137 ret = drain_cache_node_node(nid); 1138 mutex_unlock(&slab_mutex); 1139 break; 1140 case MEM_ONLINE: 1141 case MEM_OFFLINE: 1142 case MEM_CANCEL_ONLINE: 1143 case MEM_CANCEL_OFFLINE: 1144 break; 1145 } 1146 out: 1147 return notifier_from_errno(ret); 1148 } 1149 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1150 1151 /* 1152 * swap the static kmem_cache_node with kmalloced memory 1153 */ 1154 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1155 int nodeid) 1156 { 1157 struct kmem_cache_node *ptr; 1158 1159 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1160 BUG_ON(!ptr); 1161 1162 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1163 /* 1164 * Do not assume that spinlocks can be initialized via memcpy: 1165 */ 1166 spin_lock_init(&ptr->list_lock); 1167 1168 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1169 cachep->node[nodeid] = ptr; 1170 } 1171 1172 /* 1173 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1174 * size of kmem_cache_node. 1175 */ 1176 static void __init set_up_node(struct kmem_cache *cachep, int index) 1177 { 1178 int node; 1179 1180 for_each_online_node(node) { 1181 cachep->node[node] = &init_kmem_cache_node[index + node]; 1182 cachep->node[node]->next_reap = jiffies + 1183 REAPTIMEOUT_NODE + 1184 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1185 } 1186 } 1187 1188 /* 1189 * Initialisation. Called after the page allocator have been initialised and 1190 * before smp_init(). 1191 */ 1192 void __init kmem_cache_init(void) 1193 { 1194 int i; 1195 1196 kmem_cache = &kmem_cache_boot; 1197 1198 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1199 use_alien_caches = 0; 1200 1201 for (i = 0; i < NUM_INIT_LISTS; i++) 1202 kmem_cache_node_init(&init_kmem_cache_node[i]); 1203 1204 /* 1205 * Fragmentation resistance on low memory - only use bigger 1206 * page orders on machines with more than 32MB of memory if 1207 * not overridden on the command line. 1208 */ 1209 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1210 slab_max_order = SLAB_MAX_ORDER_HI; 1211 1212 /* Bootstrap is tricky, because several objects are allocated 1213 * from caches that do not exist yet: 1214 * 1) initialize the kmem_cache cache: it contains the struct 1215 * kmem_cache structures of all caches, except kmem_cache itself: 1216 * kmem_cache is statically allocated. 1217 * Initially an __init data area is used for the head array and the 1218 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1219 * array at the end of the bootstrap. 1220 * 2) Create the first kmalloc cache. 1221 * The struct kmem_cache for the new cache is allocated normally. 1222 * An __init data area is used for the head array. 1223 * 3) Create the remaining kmalloc caches, with minimally sized 1224 * head arrays. 1225 * 4) Replace the __init data head arrays for kmem_cache and the first 1226 * kmalloc cache with kmalloc allocated arrays. 1227 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1228 * the other cache's with kmalloc allocated memory. 1229 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1230 */ 1231 1232 /* 1) create the kmem_cache */ 1233 1234 /* 1235 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1236 */ 1237 create_boot_cache(kmem_cache, "kmem_cache", 1238 offsetof(struct kmem_cache, node) + 1239 nr_node_ids * sizeof(struct kmem_cache_node *), 1240 SLAB_HWCACHE_ALIGN, 0, 0); 1241 list_add(&kmem_cache->list, &slab_caches); 1242 memcg_link_cache(kmem_cache, NULL); 1243 slab_state = PARTIAL; 1244 1245 /* 1246 * Initialize the caches that provide memory for the kmem_cache_node 1247 * structures first. Without this, further allocations will bug. 1248 */ 1249 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( 1250 kmalloc_info[INDEX_NODE].name, 1251 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS, 1252 0, kmalloc_size(INDEX_NODE)); 1253 slab_state = PARTIAL_NODE; 1254 setup_kmalloc_cache_index_table(); 1255 1256 slab_early_init = 0; 1257 1258 /* 5) Replace the bootstrap kmem_cache_node */ 1259 { 1260 int nid; 1261 1262 for_each_online_node(nid) { 1263 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1264 1265 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1266 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1267 } 1268 } 1269 1270 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1271 } 1272 1273 void __init kmem_cache_init_late(void) 1274 { 1275 struct kmem_cache *cachep; 1276 1277 /* 6) resize the head arrays to their final sizes */ 1278 mutex_lock(&slab_mutex); 1279 list_for_each_entry(cachep, &slab_caches, list) 1280 if (enable_cpucache(cachep, GFP_NOWAIT)) 1281 BUG(); 1282 mutex_unlock(&slab_mutex); 1283 1284 /* Done! */ 1285 slab_state = FULL; 1286 1287 #ifdef CONFIG_NUMA 1288 /* 1289 * Register a memory hotplug callback that initializes and frees 1290 * node. 1291 */ 1292 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1293 #endif 1294 1295 /* 1296 * The reap timers are started later, with a module init call: That part 1297 * of the kernel is not yet operational. 1298 */ 1299 } 1300 1301 static int __init cpucache_init(void) 1302 { 1303 int ret; 1304 1305 /* 1306 * Register the timers that return unneeded pages to the page allocator 1307 */ 1308 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1309 slab_online_cpu, slab_offline_cpu); 1310 WARN_ON(ret < 0); 1311 1312 return 0; 1313 } 1314 __initcall(cpucache_init); 1315 1316 static noinline void 1317 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1318 { 1319 #if DEBUG 1320 struct kmem_cache_node *n; 1321 unsigned long flags; 1322 int node; 1323 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1324 DEFAULT_RATELIMIT_BURST); 1325 1326 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1327 return; 1328 1329 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1330 nodeid, gfpflags, &gfpflags); 1331 pr_warn(" cache: %s, object size: %d, order: %d\n", 1332 cachep->name, cachep->size, cachep->gfporder); 1333 1334 for_each_kmem_cache_node(cachep, node, n) { 1335 unsigned long total_slabs, free_slabs, free_objs; 1336 1337 spin_lock_irqsave(&n->list_lock, flags); 1338 total_slabs = n->total_slabs; 1339 free_slabs = n->free_slabs; 1340 free_objs = n->free_objects; 1341 spin_unlock_irqrestore(&n->list_lock, flags); 1342 1343 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1344 node, total_slabs - free_slabs, total_slabs, 1345 (total_slabs * cachep->num) - free_objs, 1346 total_slabs * cachep->num); 1347 } 1348 #endif 1349 } 1350 1351 /* 1352 * Interface to system's page allocator. No need to hold the 1353 * kmem_cache_node ->list_lock. 1354 * 1355 * If we requested dmaable memory, we will get it. Even if we 1356 * did not request dmaable memory, we might get it, but that 1357 * would be relatively rare and ignorable. 1358 */ 1359 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1360 int nodeid) 1361 { 1362 struct page *page; 1363 1364 flags |= cachep->allocflags; 1365 1366 page = __alloc_pages_node(nodeid, flags, cachep->gfporder); 1367 if (!page) { 1368 slab_out_of_memory(cachep, flags, nodeid); 1369 return NULL; 1370 } 1371 1372 if (charge_slab_page(page, flags, cachep->gfporder, cachep)) { 1373 __free_pages(page, cachep->gfporder); 1374 return NULL; 1375 } 1376 1377 __SetPageSlab(page); 1378 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1379 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1380 SetPageSlabPfmemalloc(page); 1381 1382 return page; 1383 } 1384 1385 /* 1386 * Interface to system's page release. 1387 */ 1388 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1389 { 1390 int order = cachep->gfporder; 1391 1392 BUG_ON(!PageSlab(page)); 1393 __ClearPageSlabPfmemalloc(page); 1394 __ClearPageSlab(page); 1395 page_mapcount_reset(page); 1396 page->mapping = NULL; 1397 1398 if (current->reclaim_state) 1399 current->reclaim_state->reclaimed_slab += 1 << order; 1400 uncharge_slab_page(page, order, cachep); 1401 __free_pages(page, order); 1402 } 1403 1404 static void kmem_rcu_free(struct rcu_head *head) 1405 { 1406 struct kmem_cache *cachep; 1407 struct page *page; 1408 1409 page = container_of(head, struct page, rcu_head); 1410 cachep = page->slab_cache; 1411 1412 kmem_freepages(cachep, page); 1413 } 1414 1415 #if DEBUG 1416 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1417 { 1418 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1419 (cachep->size % PAGE_SIZE) == 0) 1420 return true; 1421 1422 return false; 1423 } 1424 1425 #ifdef CONFIG_DEBUG_PAGEALLOC 1426 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1427 { 1428 if (!is_debug_pagealloc_cache(cachep)) 1429 return; 1430 1431 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1432 } 1433 1434 #else 1435 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1436 int map) {} 1437 1438 #endif 1439 1440 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1441 { 1442 int size = cachep->object_size; 1443 addr = &((char *)addr)[obj_offset(cachep)]; 1444 1445 memset(addr, val, size); 1446 *(unsigned char *)(addr + size - 1) = POISON_END; 1447 } 1448 1449 static void dump_line(char *data, int offset, int limit) 1450 { 1451 int i; 1452 unsigned char error = 0; 1453 int bad_count = 0; 1454 1455 pr_err("%03x: ", offset); 1456 for (i = 0; i < limit; i++) { 1457 if (data[offset + i] != POISON_FREE) { 1458 error = data[offset + i]; 1459 bad_count++; 1460 } 1461 } 1462 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1463 &data[offset], limit, 1); 1464 1465 if (bad_count == 1) { 1466 error ^= POISON_FREE; 1467 if (!(error & (error - 1))) { 1468 pr_err("Single bit error detected. Probably bad RAM.\n"); 1469 #ifdef CONFIG_X86 1470 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1471 #else 1472 pr_err("Run a memory test tool.\n"); 1473 #endif 1474 } 1475 } 1476 } 1477 #endif 1478 1479 #if DEBUG 1480 1481 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1482 { 1483 int i, size; 1484 char *realobj; 1485 1486 if (cachep->flags & SLAB_RED_ZONE) { 1487 pr_err("Redzone: 0x%llx/0x%llx\n", 1488 *dbg_redzone1(cachep, objp), 1489 *dbg_redzone2(cachep, objp)); 1490 } 1491 1492 if (cachep->flags & SLAB_STORE_USER) 1493 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1494 realobj = (char *)objp + obj_offset(cachep); 1495 size = cachep->object_size; 1496 for (i = 0; i < size && lines; i += 16, lines--) { 1497 int limit; 1498 limit = 16; 1499 if (i + limit > size) 1500 limit = size - i; 1501 dump_line(realobj, i, limit); 1502 } 1503 } 1504 1505 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1506 { 1507 char *realobj; 1508 int size, i; 1509 int lines = 0; 1510 1511 if (is_debug_pagealloc_cache(cachep)) 1512 return; 1513 1514 realobj = (char *)objp + obj_offset(cachep); 1515 size = cachep->object_size; 1516 1517 for (i = 0; i < size; i++) { 1518 char exp = POISON_FREE; 1519 if (i == size - 1) 1520 exp = POISON_END; 1521 if (realobj[i] != exp) { 1522 int limit; 1523 /* Mismatch ! */ 1524 /* Print header */ 1525 if (lines == 0) { 1526 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1527 print_tainted(), cachep->name, 1528 realobj, size); 1529 print_objinfo(cachep, objp, 0); 1530 } 1531 /* Hexdump the affected line */ 1532 i = (i / 16) * 16; 1533 limit = 16; 1534 if (i + limit > size) 1535 limit = size - i; 1536 dump_line(realobj, i, limit); 1537 i += 16; 1538 lines++; 1539 /* Limit to 5 lines */ 1540 if (lines > 5) 1541 break; 1542 } 1543 } 1544 if (lines != 0) { 1545 /* Print some data about the neighboring objects, if they 1546 * exist: 1547 */ 1548 struct page *page = virt_to_head_page(objp); 1549 unsigned int objnr; 1550 1551 objnr = obj_to_index(cachep, page, objp); 1552 if (objnr) { 1553 objp = index_to_obj(cachep, page, objnr - 1); 1554 realobj = (char *)objp + obj_offset(cachep); 1555 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1556 print_objinfo(cachep, objp, 2); 1557 } 1558 if (objnr + 1 < cachep->num) { 1559 objp = index_to_obj(cachep, page, objnr + 1); 1560 realobj = (char *)objp + obj_offset(cachep); 1561 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1562 print_objinfo(cachep, objp, 2); 1563 } 1564 } 1565 } 1566 #endif 1567 1568 #if DEBUG 1569 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1570 struct page *page) 1571 { 1572 int i; 1573 1574 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1575 poison_obj(cachep, page->freelist - obj_offset(cachep), 1576 POISON_FREE); 1577 } 1578 1579 for (i = 0; i < cachep->num; i++) { 1580 void *objp = index_to_obj(cachep, page, i); 1581 1582 if (cachep->flags & SLAB_POISON) { 1583 check_poison_obj(cachep, objp); 1584 slab_kernel_map(cachep, objp, 1); 1585 } 1586 if (cachep->flags & SLAB_RED_ZONE) { 1587 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1588 slab_error(cachep, "start of a freed object was overwritten"); 1589 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1590 slab_error(cachep, "end of a freed object was overwritten"); 1591 } 1592 } 1593 } 1594 #else 1595 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1596 struct page *page) 1597 { 1598 } 1599 #endif 1600 1601 /** 1602 * slab_destroy - destroy and release all objects in a slab 1603 * @cachep: cache pointer being destroyed 1604 * @page: page pointer being destroyed 1605 * 1606 * Destroy all the objs in a slab page, and release the mem back to the system. 1607 * Before calling the slab page must have been unlinked from the cache. The 1608 * kmem_cache_node ->list_lock is not held/needed. 1609 */ 1610 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1611 { 1612 void *freelist; 1613 1614 freelist = page->freelist; 1615 slab_destroy_debugcheck(cachep, page); 1616 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1617 call_rcu(&page->rcu_head, kmem_rcu_free); 1618 else 1619 kmem_freepages(cachep, page); 1620 1621 /* 1622 * From now on, we don't use freelist 1623 * although actual page can be freed in rcu context 1624 */ 1625 if (OFF_SLAB(cachep)) 1626 kmem_cache_free(cachep->freelist_cache, freelist); 1627 } 1628 1629 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1630 { 1631 struct page *page, *n; 1632 1633 list_for_each_entry_safe(page, n, list, slab_list) { 1634 list_del(&page->slab_list); 1635 slab_destroy(cachep, page); 1636 } 1637 } 1638 1639 /** 1640 * calculate_slab_order - calculate size (page order) of slabs 1641 * @cachep: pointer to the cache that is being created 1642 * @size: size of objects to be created in this cache. 1643 * @flags: slab allocation flags 1644 * 1645 * Also calculates the number of objects per slab. 1646 * 1647 * This could be made much more intelligent. For now, try to avoid using 1648 * high order pages for slabs. When the gfp() functions are more friendly 1649 * towards high-order requests, this should be changed. 1650 * 1651 * Return: number of left-over bytes in a slab 1652 */ 1653 static size_t calculate_slab_order(struct kmem_cache *cachep, 1654 size_t size, slab_flags_t flags) 1655 { 1656 size_t left_over = 0; 1657 int gfporder; 1658 1659 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1660 unsigned int num; 1661 size_t remainder; 1662 1663 num = cache_estimate(gfporder, size, flags, &remainder); 1664 if (!num) 1665 continue; 1666 1667 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1668 if (num > SLAB_OBJ_MAX_NUM) 1669 break; 1670 1671 if (flags & CFLGS_OFF_SLAB) { 1672 struct kmem_cache *freelist_cache; 1673 size_t freelist_size; 1674 1675 freelist_size = num * sizeof(freelist_idx_t); 1676 freelist_cache = kmalloc_slab(freelist_size, 0u); 1677 if (!freelist_cache) 1678 continue; 1679 1680 /* 1681 * Needed to avoid possible looping condition 1682 * in cache_grow_begin() 1683 */ 1684 if (OFF_SLAB(freelist_cache)) 1685 continue; 1686 1687 /* check if off slab has enough benefit */ 1688 if (freelist_cache->size > cachep->size / 2) 1689 continue; 1690 } 1691 1692 /* Found something acceptable - save it away */ 1693 cachep->num = num; 1694 cachep->gfporder = gfporder; 1695 left_over = remainder; 1696 1697 /* 1698 * A VFS-reclaimable slab tends to have most allocations 1699 * as GFP_NOFS and we really don't want to have to be allocating 1700 * higher-order pages when we are unable to shrink dcache. 1701 */ 1702 if (flags & SLAB_RECLAIM_ACCOUNT) 1703 break; 1704 1705 /* 1706 * Large number of objects is good, but very large slabs are 1707 * currently bad for the gfp()s. 1708 */ 1709 if (gfporder >= slab_max_order) 1710 break; 1711 1712 /* 1713 * Acceptable internal fragmentation? 1714 */ 1715 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1716 break; 1717 } 1718 return left_over; 1719 } 1720 1721 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1722 struct kmem_cache *cachep, int entries, int batchcount) 1723 { 1724 int cpu; 1725 size_t size; 1726 struct array_cache __percpu *cpu_cache; 1727 1728 size = sizeof(void *) * entries + sizeof(struct array_cache); 1729 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1730 1731 if (!cpu_cache) 1732 return NULL; 1733 1734 for_each_possible_cpu(cpu) { 1735 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1736 entries, batchcount); 1737 } 1738 1739 return cpu_cache; 1740 } 1741 1742 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1743 { 1744 if (slab_state >= FULL) 1745 return enable_cpucache(cachep, gfp); 1746 1747 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1748 if (!cachep->cpu_cache) 1749 return 1; 1750 1751 if (slab_state == DOWN) { 1752 /* Creation of first cache (kmem_cache). */ 1753 set_up_node(kmem_cache, CACHE_CACHE); 1754 } else if (slab_state == PARTIAL) { 1755 /* For kmem_cache_node */ 1756 set_up_node(cachep, SIZE_NODE); 1757 } else { 1758 int node; 1759 1760 for_each_online_node(node) { 1761 cachep->node[node] = kmalloc_node( 1762 sizeof(struct kmem_cache_node), gfp, node); 1763 BUG_ON(!cachep->node[node]); 1764 kmem_cache_node_init(cachep->node[node]); 1765 } 1766 } 1767 1768 cachep->node[numa_mem_id()]->next_reap = 1769 jiffies + REAPTIMEOUT_NODE + 1770 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1771 1772 cpu_cache_get(cachep)->avail = 0; 1773 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1774 cpu_cache_get(cachep)->batchcount = 1; 1775 cpu_cache_get(cachep)->touched = 0; 1776 cachep->batchcount = 1; 1777 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1778 return 0; 1779 } 1780 1781 slab_flags_t kmem_cache_flags(unsigned int object_size, 1782 slab_flags_t flags, const char *name, 1783 void (*ctor)(void *)) 1784 { 1785 return flags; 1786 } 1787 1788 struct kmem_cache * 1789 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1790 slab_flags_t flags, void (*ctor)(void *)) 1791 { 1792 struct kmem_cache *cachep; 1793 1794 cachep = find_mergeable(size, align, flags, name, ctor); 1795 if (cachep) { 1796 cachep->refcount++; 1797 1798 /* 1799 * Adjust the object sizes so that we clear 1800 * the complete object on kzalloc. 1801 */ 1802 cachep->object_size = max_t(int, cachep->object_size, size); 1803 } 1804 return cachep; 1805 } 1806 1807 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1808 size_t size, slab_flags_t flags) 1809 { 1810 size_t left; 1811 1812 cachep->num = 0; 1813 1814 /* 1815 * If slab auto-initialization on free is enabled, store the freelist 1816 * off-slab, so that its contents don't end up in one of the allocated 1817 * objects. 1818 */ 1819 if (unlikely(slab_want_init_on_free(cachep))) 1820 return false; 1821 1822 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1823 return false; 1824 1825 left = calculate_slab_order(cachep, size, 1826 flags | CFLGS_OBJFREELIST_SLAB); 1827 if (!cachep->num) 1828 return false; 1829 1830 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1831 return false; 1832 1833 cachep->colour = left / cachep->colour_off; 1834 1835 return true; 1836 } 1837 1838 static bool set_off_slab_cache(struct kmem_cache *cachep, 1839 size_t size, slab_flags_t flags) 1840 { 1841 size_t left; 1842 1843 cachep->num = 0; 1844 1845 /* 1846 * Always use on-slab management when SLAB_NOLEAKTRACE 1847 * to avoid recursive calls into kmemleak. 1848 */ 1849 if (flags & SLAB_NOLEAKTRACE) 1850 return false; 1851 1852 /* 1853 * Size is large, assume best to place the slab management obj 1854 * off-slab (should allow better packing of objs). 1855 */ 1856 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1857 if (!cachep->num) 1858 return false; 1859 1860 /* 1861 * If the slab has been placed off-slab, and we have enough space then 1862 * move it on-slab. This is at the expense of any extra colouring. 1863 */ 1864 if (left >= cachep->num * sizeof(freelist_idx_t)) 1865 return false; 1866 1867 cachep->colour = left / cachep->colour_off; 1868 1869 return true; 1870 } 1871 1872 static bool set_on_slab_cache(struct kmem_cache *cachep, 1873 size_t size, slab_flags_t flags) 1874 { 1875 size_t left; 1876 1877 cachep->num = 0; 1878 1879 left = calculate_slab_order(cachep, size, flags); 1880 if (!cachep->num) 1881 return false; 1882 1883 cachep->colour = left / cachep->colour_off; 1884 1885 return true; 1886 } 1887 1888 /** 1889 * __kmem_cache_create - Create a cache. 1890 * @cachep: cache management descriptor 1891 * @flags: SLAB flags 1892 * 1893 * Returns a ptr to the cache on success, NULL on failure. 1894 * Cannot be called within a int, but can be interrupted. 1895 * The @ctor is run when new pages are allocated by the cache. 1896 * 1897 * The flags are 1898 * 1899 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1900 * to catch references to uninitialised memory. 1901 * 1902 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1903 * for buffer overruns. 1904 * 1905 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1906 * cacheline. This can be beneficial if you're counting cycles as closely 1907 * as davem. 1908 * 1909 * Return: a pointer to the created cache or %NULL in case of error 1910 */ 1911 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1912 { 1913 size_t ralign = BYTES_PER_WORD; 1914 gfp_t gfp; 1915 int err; 1916 unsigned int size = cachep->size; 1917 1918 #if DEBUG 1919 #if FORCED_DEBUG 1920 /* 1921 * Enable redzoning and last user accounting, except for caches with 1922 * large objects, if the increased size would increase the object size 1923 * above the next power of two: caches with object sizes just above a 1924 * power of two have a significant amount of internal fragmentation. 1925 */ 1926 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1927 2 * sizeof(unsigned long long))) 1928 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1929 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1930 flags |= SLAB_POISON; 1931 #endif 1932 #endif 1933 1934 /* 1935 * Check that size is in terms of words. This is needed to avoid 1936 * unaligned accesses for some archs when redzoning is used, and makes 1937 * sure any on-slab bufctl's are also correctly aligned. 1938 */ 1939 size = ALIGN(size, BYTES_PER_WORD); 1940 1941 if (flags & SLAB_RED_ZONE) { 1942 ralign = REDZONE_ALIGN; 1943 /* If redzoning, ensure that the second redzone is suitably 1944 * aligned, by adjusting the object size accordingly. */ 1945 size = ALIGN(size, REDZONE_ALIGN); 1946 } 1947 1948 /* 3) caller mandated alignment */ 1949 if (ralign < cachep->align) { 1950 ralign = cachep->align; 1951 } 1952 /* disable debug if necessary */ 1953 if (ralign > __alignof__(unsigned long long)) 1954 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1955 /* 1956 * 4) Store it. 1957 */ 1958 cachep->align = ralign; 1959 cachep->colour_off = cache_line_size(); 1960 /* Offset must be a multiple of the alignment. */ 1961 if (cachep->colour_off < cachep->align) 1962 cachep->colour_off = cachep->align; 1963 1964 if (slab_is_available()) 1965 gfp = GFP_KERNEL; 1966 else 1967 gfp = GFP_NOWAIT; 1968 1969 #if DEBUG 1970 1971 /* 1972 * Both debugging options require word-alignment which is calculated 1973 * into align above. 1974 */ 1975 if (flags & SLAB_RED_ZONE) { 1976 /* add space for red zone words */ 1977 cachep->obj_offset += sizeof(unsigned long long); 1978 size += 2 * sizeof(unsigned long long); 1979 } 1980 if (flags & SLAB_STORE_USER) { 1981 /* user store requires one word storage behind the end of 1982 * the real object. But if the second red zone needs to be 1983 * aligned to 64 bits, we must allow that much space. 1984 */ 1985 if (flags & SLAB_RED_ZONE) 1986 size += REDZONE_ALIGN; 1987 else 1988 size += BYTES_PER_WORD; 1989 } 1990 #endif 1991 1992 kasan_cache_create(cachep, &size, &flags); 1993 1994 size = ALIGN(size, cachep->align); 1995 /* 1996 * We should restrict the number of objects in a slab to implement 1997 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 1998 */ 1999 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2000 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2001 2002 #if DEBUG 2003 /* 2004 * To activate debug pagealloc, off-slab management is necessary 2005 * requirement. In early phase of initialization, small sized slab 2006 * doesn't get initialized so it would not be possible. So, we need 2007 * to check size >= 256. It guarantees that all necessary small 2008 * sized slab is initialized in current slab initialization sequence. 2009 */ 2010 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2011 size >= 256 && cachep->object_size > cache_line_size()) { 2012 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2013 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2014 2015 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2016 flags |= CFLGS_OFF_SLAB; 2017 cachep->obj_offset += tmp_size - size; 2018 size = tmp_size; 2019 goto done; 2020 } 2021 } 2022 } 2023 #endif 2024 2025 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2026 flags |= CFLGS_OBJFREELIST_SLAB; 2027 goto done; 2028 } 2029 2030 if (set_off_slab_cache(cachep, size, flags)) { 2031 flags |= CFLGS_OFF_SLAB; 2032 goto done; 2033 } 2034 2035 if (set_on_slab_cache(cachep, size, flags)) 2036 goto done; 2037 2038 return -E2BIG; 2039 2040 done: 2041 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2042 cachep->flags = flags; 2043 cachep->allocflags = __GFP_COMP; 2044 if (flags & SLAB_CACHE_DMA) 2045 cachep->allocflags |= GFP_DMA; 2046 if (flags & SLAB_CACHE_DMA32) 2047 cachep->allocflags |= GFP_DMA32; 2048 if (flags & SLAB_RECLAIM_ACCOUNT) 2049 cachep->allocflags |= __GFP_RECLAIMABLE; 2050 cachep->size = size; 2051 cachep->reciprocal_buffer_size = reciprocal_value(size); 2052 2053 #if DEBUG 2054 /* 2055 * If we're going to use the generic kernel_map_pages() 2056 * poisoning, then it's going to smash the contents of 2057 * the redzone and userword anyhow, so switch them off. 2058 */ 2059 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2060 (cachep->flags & SLAB_POISON) && 2061 is_debug_pagealloc_cache(cachep)) 2062 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2063 #endif 2064 2065 if (OFF_SLAB(cachep)) { 2066 cachep->freelist_cache = 2067 kmalloc_slab(cachep->freelist_size, 0u); 2068 } 2069 2070 err = setup_cpu_cache(cachep, gfp); 2071 if (err) { 2072 __kmem_cache_release(cachep); 2073 return err; 2074 } 2075 2076 return 0; 2077 } 2078 2079 #if DEBUG 2080 static void check_irq_off(void) 2081 { 2082 BUG_ON(!irqs_disabled()); 2083 } 2084 2085 static void check_irq_on(void) 2086 { 2087 BUG_ON(irqs_disabled()); 2088 } 2089 2090 static void check_mutex_acquired(void) 2091 { 2092 BUG_ON(!mutex_is_locked(&slab_mutex)); 2093 } 2094 2095 static void check_spinlock_acquired(struct kmem_cache *cachep) 2096 { 2097 #ifdef CONFIG_SMP 2098 check_irq_off(); 2099 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2100 #endif 2101 } 2102 2103 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2104 { 2105 #ifdef CONFIG_SMP 2106 check_irq_off(); 2107 assert_spin_locked(&get_node(cachep, node)->list_lock); 2108 #endif 2109 } 2110 2111 #else 2112 #define check_irq_off() do { } while(0) 2113 #define check_irq_on() do { } while(0) 2114 #define check_mutex_acquired() do { } while(0) 2115 #define check_spinlock_acquired(x) do { } while(0) 2116 #define check_spinlock_acquired_node(x, y) do { } while(0) 2117 #endif 2118 2119 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2120 int node, bool free_all, struct list_head *list) 2121 { 2122 int tofree; 2123 2124 if (!ac || !ac->avail) 2125 return; 2126 2127 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2128 if (tofree > ac->avail) 2129 tofree = (ac->avail + 1) / 2; 2130 2131 free_block(cachep, ac->entry, tofree, node, list); 2132 ac->avail -= tofree; 2133 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2134 } 2135 2136 static void do_drain(void *arg) 2137 { 2138 struct kmem_cache *cachep = arg; 2139 struct array_cache *ac; 2140 int node = numa_mem_id(); 2141 struct kmem_cache_node *n; 2142 LIST_HEAD(list); 2143 2144 check_irq_off(); 2145 ac = cpu_cache_get(cachep); 2146 n = get_node(cachep, node); 2147 spin_lock(&n->list_lock); 2148 free_block(cachep, ac->entry, ac->avail, node, &list); 2149 spin_unlock(&n->list_lock); 2150 slabs_destroy(cachep, &list); 2151 ac->avail = 0; 2152 } 2153 2154 static void drain_cpu_caches(struct kmem_cache *cachep) 2155 { 2156 struct kmem_cache_node *n; 2157 int node; 2158 LIST_HEAD(list); 2159 2160 on_each_cpu(do_drain, cachep, 1); 2161 check_irq_on(); 2162 for_each_kmem_cache_node(cachep, node, n) 2163 if (n->alien) 2164 drain_alien_cache(cachep, n->alien); 2165 2166 for_each_kmem_cache_node(cachep, node, n) { 2167 spin_lock_irq(&n->list_lock); 2168 drain_array_locked(cachep, n->shared, node, true, &list); 2169 spin_unlock_irq(&n->list_lock); 2170 2171 slabs_destroy(cachep, &list); 2172 } 2173 } 2174 2175 /* 2176 * Remove slabs from the list of free slabs. 2177 * Specify the number of slabs to drain in tofree. 2178 * 2179 * Returns the actual number of slabs released. 2180 */ 2181 static int drain_freelist(struct kmem_cache *cache, 2182 struct kmem_cache_node *n, int tofree) 2183 { 2184 struct list_head *p; 2185 int nr_freed; 2186 struct page *page; 2187 2188 nr_freed = 0; 2189 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2190 2191 spin_lock_irq(&n->list_lock); 2192 p = n->slabs_free.prev; 2193 if (p == &n->slabs_free) { 2194 spin_unlock_irq(&n->list_lock); 2195 goto out; 2196 } 2197 2198 page = list_entry(p, struct page, slab_list); 2199 list_del(&page->slab_list); 2200 n->free_slabs--; 2201 n->total_slabs--; 2202 /* 2203 * Safe to drop the lock. The slab is no longer linked 2204 * to the cache. 2205 */ 2206 n->free_objects -= cache->num; 2207 spin_unlock_irq(&n->list_lock); 2208 slab_destroy(cache, page); 2209 nr_freed++; 2210 } 2211 out: 2212 return nr_freed; 2213 } 2214 2215 bool __kmem_cache_empty(struct kmem_cache *s) 2216 { 2217 int node; 2218 struct kmem_cache_node *n; 2219 2220 for_each_kmem_cache_node(s, node, n) 2221 if (!list_empty(&n->slabs_full) || 2222 !list_empty(&n->slabs_partial)) 2223 return false; 2224 return true; 2225 } 2226 2227 int __kmem_cache_shrink(struct kmem_cache *cachep) 2228 { 2229 int ret = 0; 2230 int node; 2231 struct kmem_cache_node *n; 2232 2233 drain_cpu_caches(cachep); 2234 2235 check_irq_on(); 2236 for_each_kmem_cache_node(cachep, node, n) { 2237 drain_freelist(cachep, n, INT_MAX); 2238 2239 ret += !list_empty(&n->slabs_full) || 2240 !list_empty(&n->slabs_partial); 2241 } 2242 return (ret ? 1 : 0); 2243 } 2244 2245 #ifdef CONFIG_MEMCG 2246 void __kmemcg_cache_deactivate(struct kmem_cache *cachep) 2247 { 2248 __kmem_cache_shrink(cachep); 2249 } 2250 2251 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 2252 { 2253 } 2254 #endif 2255 2256 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2257 { 2258 return __kmem_cache_shrink(cachep); 2259 } 2260 2261 void __kmem_cache_release(struct kmem_cache *cachep) 2262 { 2263 int i; 2264 struct kmem_cache_node *n; 2265 2266 cache_random_seq_destroy(cachep); 2267 2268 free_percpu(cachep->cpu_cache); 2269 2270 /* NUMA: free the node structures */ 2271 for_each_kmem_cache_node(cachep, i, n) { 2272 kfree(n->shared); 2273 free_alien_cache(n->alien); 2274 kfree(n); 2275 cachep->node[i] = NULL; 2276 } 2277 } 2278 2279 /* 2280 * Get the memory for a slab management obj. 2281 * 2282 * For a slab cache when the slab descriptor is off-slab, the 2283 * slab descriptor can't come from the same cache which is being created, 2284 * Because if it is the case, that means we defer the creation of 2285 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2286 * And we eventually call down to __kmem_cache_create(), which 2287 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2288 * This is a "chicken-and-egg" problem. 2289 * 2290 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2291 * which are all initialized during kmem_cache_init(). 2292 */ 2293 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2294 struct page *page, int colour_off, 2295 gfp_t local_flags, int nodeid) 2296 { 2297 void *freelist; 2298 void *addr = page_address(page); 2299 2300 page->s_mem = addr + colour_off; 2301 page->active = 0; 2302 2303 if (OBJFREELIST_SLAB(cachep)) 2304 freelist = NULL; 2305 else if (OFF_SLAB(cachep)) { 2306 /* Slab management obj is off-slab. */ 2307 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2308 local_flags, nodeid); 2309 if (!freelist) 2310 return NULL; 2311 } else { 2312 /* We will use last bytes at the slab for freelist */ 2313 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2314 cachep->freelist_size; 2315 } 2316 2317 return freelist; 2318 } 2319 2320 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2321 { 2322 return ((freelist_idx_t *)page->freelist)[idx]; 2323 } 2324 2325 static inline void set_free_obj(struct page *page, 2326 unsigned int idx, freelist_idx_t val) 2327 { 2328 ((freelist_idx_t *)(page->freelist))[idx] = val; 2329 } 2330 2331 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2332 { 2333 #if DEBUG 2334 int i; 2335 2336 for (i = 0; i < cachep->num; i++) { 2337 void *objp = index_to_obj(cachep, page, i); 2338 2339 if (cachep->flags & SLAB_STORE_USER) 2340 *dbg_userword(cachep, objp) = NULL; 2341 2342 if (cachep->flags & SLAB_RED_ZONE) { 2343 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2344 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2345 } 2346 /* 2347 * Constructors are not allowed to allocate memory from the same 2348 * cache which they are a constructor for. Otherwise, deadlock. 2349 * They must also be threaded. 2350 */ 2351 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2352 kasan_unpoison_object_data(cachep, 2353 objp + obj_offset(cachep)); 2354 cachep->ctor(objp + obj_offset(cachep)); 2355 kasan_poison_object_data( 2356 cachep, objp + obj_offset(cachep)); 2357 } 2358 2359 if (cachep->flags & SLAB_RED_ZONE) { 2360 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2361 slab_error(cachep, "constructor overwrote the end of an object"); 2362 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2363 slab_error(cachep, "constructor overwrote the start of an object"); 2364 } 2365 /* need to poison the objs? */ 2366 if (cachep->flags & SLAB_POISON) { 2367 poison_obj(cachep, objp, POISON_FREE); 2368 slab_kernel_map(cachep, objp, 0); 2369 } 2370 } 2371 #endif 2372 } 2373 2374 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2375 /* Hold information during a freelist initialization */ 2376 union freelist_init_state { 2377 struct { 2378 unsigned int pos; 2379 unsigned int *list; 2380 unsigned int count; 2381 }; 2382 struct rnd_state rnd_state; 2383 }; 2384 2385 /* 2386 * Initialize the state based on the randomization methode available. 2387 * return true if the pre-computed list is available, false otherwize. 2388 */ 2389 static bool freelist_state_initialize(union freelist_init_state *state, 2390 struct kmem_cache *cachep, 2391 unsigned int count) 2392 { 2393 bool ret; 2394 unsigned int rand; 2395 2396 /* Use best entropy available to define a random shift */ 2397 rand = get_random_int(); 2398 2399 /* Use a random state if the pre-computed list is not available */ 2400 if (!cachep->random_seq) { 2401 prandom_seed_state(&state->rnd_state, rand); 2402 ret = false; 2403 } else { 2404 state->list = cachep->random_seq; 2405 state->count = count; 2406 state->pos = rand % count; 2407 ret = true; 2408 } 2409 return ret; 2410 } 2411 2412 /* Get the next entry on the list and randomize it using a random shift */ 2413 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2414 { 2415 if (state->pos >= state->count) 2416 state->pos = 0; 2417 return state->list[state->pos++]; 2418 } 2419 2420 /* Swap two freelist entries */ 2421 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2422 { 2423 swap(((freelist_idx_t *)page->freelist)[a], 2424 ((freelist_idx_t *)page->freelist)[b]); 2425 } 2426 2427 /* 2428 * Shuffle the freelist initialization state based on pre-computed lists. 2429 * return true if the list was successfully shuffled, false otherwise. 2430 */ 2431 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2432 { 2433 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2434 union freelist_init_state state; 2435 bool precomputed; 2436 2437 if (count < 2) 2438 return false; 2439 2440 precomputed = freelist_state_initialize(&state, cachep, count); 2441 2442 /* Take a random entry as the objfreelist */ 2443 if (OBJFREELIST_SLAB(cachep)) { 2444 if (!precomputed) 2445 objfreelist = count - 1; 2446 else 2447 objfreelist = next_random_slot(&state); 2448 page->freelist = index_to_obj(cachep, page, objfreelist) + 2449 obj_offset(cachep); 2450 count--; 2451 } 2452 2453 /* 2454 * On early boot, generate the list dynamically. 2455 * Later use a pre-computed list for speed. 2456 */ 2457 if (!precomputed) { 2458 for (i = 0; i < count; i++) 2459 set_free_obj(page, i, i); 2460 2461 /* Fisher-Yates shuffle */ 2462 for (i = count - 1; i > 0; i--) { 2463 rand = prandom_u32_state(&state.rnd_state); 2464 rand %= (i + 1); 2465 swap_free_obj(page, i, rand); 2466 } 2467 } else { 2468 for (i = 0; i < count; i++) 2469 set_free_obj(page, i, next_random_slot(&state)); 2470 } 2471 2472 if (OBJFREELIST_SLAB(cachep)) 2473 set_free_obj(page, cachep->num - 1, objfreelist); 2474 2475 return true; 2476 } 2477 #else 2478 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2479 struct page *page) 2480 { 2481 return false; 2482 } 2483 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2484 2485 static void cache_init_objs(struct kmem_cache *cachep, 2486 struct page *page) 2487 { 2488 int i; 2489 void *objp; 2490 bool shuffled; 2491 2492 cache_init_objs_debug(cachep, page); 2493 2494 /* Try to randomize the freelist if enabled */ 2495 shuffled = shuffle_freelist(cachep, page); 2496 2497 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2498 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2499 obj_offset(cachep); 2500 } 2501 2502 for (i = 0; i < cachep->num; i++) { 2503 objp = index_to_obj(cachep, page, i); 2504 objp = kasan_init_slab_obj(cachep, objp); 2505 2506 /* constructor could break poison info */ 2507 if (DEBUG == 0 && cachep->ctor) { 2508 kasan_unpoison_object_data(cachep, objp); 2509 cachep->ctor(objp); 2510 kasan_poison_object_data(cachep, objp); 2511 } 2512 2513 if (!shuffled) 2514 set_free_obj(page, i, i); 2515 } 2516 } 2517 2518 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2519 { 2520 void *objp; 2521 2522 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2523 page->active++; 2524 2525 return objp; 2526 } 2527 2528 static void slab_put_obj(struct kmem_cache *cachep, 2529 struct page *page, void *objp) 2530 { 2531 unsigned int objnr = obj_to_index(cachep, page, objp); 2532 #if DEBUG 2533 unsigned int i; 2534 2535 /* Verify double free bug */ 2536 for (i = page->active; i < cachep->num; i++) { 2537 if (get_free_obj(page, i) == objnr) { 2538 pr_err("slab: double free detected in cache '%s', objp %px\n", 2539 cachep->name, objp); 2540 BUG(); 2541 } 2542 } 2543 #endif 2544 page->active--; 2545 if (!page->freelist) 2546 page->freelist = objp + obj_offset(cachep); 2547 2548 set_free_obj(page, page->active, objnr); 2549 } 2550 2551 /* 2552 * Map pages beginning at addr to the given cache and slab. This is required 2553 * for the slab allocator to be able to lookup the cache and slab of a 2554 * virtual address for kfree, ksize, and slab debugging. 2555 */ 2556 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2557 void *freelist) 2558 { 2559 page->slab_cache = cache; 2560 page->freelist = freelist; 2561 } 2562 2563 /* 2564 * Grow (by 1) the number of slabs within a cache. This is called by 2565 * kmem_cache_alloc() when there are no active objs left in a cache. 2566 */ 2567 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2568 gfp_t flags, int nodeid) 2569 { 2570 void *freelist; 2571 size_t offset; 2572 gfp_t local_flags; 2573 int page_node; 2574 struct kmem_cache_node *n; 2575 struct page *page; 2576 2577 /* 2578 * Be lazy and only check for valid flags here, keeping it out of the 2579 * critical path in kmem_cache_alloc(). 2580 */ 2581 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2582 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2583 flags &= ~GFP_SLAB_BUG_MASK; 2584 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2585 invalid_mask, &invalid_mask, flags, &flags); 2586 dump_stack(); 2587 } 2588 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2589 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2590 2591 check_irq_off(); 2592 if (gfpflags_allow_blocking(local_flags)) 2593 local_irq_enable(); 2594 2595 /* 2596 * Get mem for the objs. Attempt to allocate a physical page from 2597 * 'nodeid'. 2598 */ 2599 page = kmem_getpages(cachep, local_flags, nodeid); 2600 if (!page) 2601 goto failed; 2602 2603 page_node = page_to_nid(page); 2604 n = get_node(cachep, page_node); 2605 2606 /* Get colour for the slab, and cal the next value. */ 2607 n->colour_next++; 2608 if (n->colour_next >= cachep->colour) 2609 n->colour_next = 0; 2610 2611 offset = n->colour_next; 2612 if (offset >= cachep->colour) 2613 offset = 0; 2614 2615 offset *= cachep->colour_off; 2616 2617 /* 2618 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2619 * page_address() in the latter returns a non-tagged pointer, 2620 * as it should be for slab pages. 2621 */ 2622 kasan_poison_slab(page); 2623 2624 /* Get slab management. */ 2625 freelist = alloc_slabmgmt(cachep, page, offset, 2626 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2627 if (OFF_SLAB(cachep) && !freelist) 2628 goto opps1; 2629 2630 slab_map_pages(cachep, page, freelist); 2631 2632 cache_init_objs(cachep, page); 2633 2634 if (gfpflags_allow_blocking(local_flags)) 2635 local_irq_disable(); 2636 2637 return page; 2638 2639 opps1: 2640 kmem_freepages(cachep, page); 2641 failed: 2642 if (gfpflags_allow_blocking(local_flags)) 2643 local_irq_disable(); 2644 return NULL; 2645 } 2646 2647 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2648 { 2649 struct kmem_cache_node *n; 2650 void *list = NULL; 2651 2652 check_irq_off(); 2653 2654 if (!page) 2655 return; 2656 2657 INIT_LIST_HEAD(&page->slab_list); 2658 n = get_node(cachep, page_to_nid(page)); 2659 2660 spin_lock(&n->list_lock); 2661 n->total_slabs++; 2662 if (!page->active) { 2663 list_add_tail(&page->slab_list, &n->slabs_free); 2664 n->free_slabs++; 2665 } else 2666 fixup_slab_list(cachep, n, page, &list); 2667 2668 STATS_INC_GROWN(cachep); 2669 n->free_objects += cachep->num - page->active; 2670 spin_unlock(&n->list_lock); 2671 2672 fixup_objfreelist_debug(cachep, &list); 2673 } 2674 2675 #if DEBUG 2676 2677 /* 2678 * Perform extra freeing checks: 2679 * - detect bad pointers. 2680 * - POISON/RED_ZONE checking 2681 */ 2682 static void kfree_debugcheck(const void *objp) 2683 { 2684 if (!virt_addr_valid(objp)) { 2685 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2686 (unsigned long)objp); 2687 BUG(); 2688 } 2689 } 2690 2691 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2692 { 2693 unsigned long long redzone1, redzone2; 2694 2695 redzone1 = *dbg_redzone1(cache, obj); 2696 redzone2 = *dbg_redzone2(cache, obj); 2697 2698 /* 2699 * Redzone is ok. 2700 */ 2701 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2702 return; 2703 2704 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2705 slab_error(cache, "double free detected"); 2706 else 2707 slab_error(cache, "memory outside object was overwritten"); 2708 2709 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2710 obj, redzone1, redzone2); 2711 } 2712 2713 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2714 unsigned long caller) 2715 { 2716 unsigned int objnr; 2717 struct page *page; 2718 2719 BUG_ON(virt_to_cache(objp) != cachep); 2720 2721 objp -= obj_offset(cachep); 2722 kfree_debugcheck(objp); 2723 page = virt_to_head_page(objp); 2724 2725 if (cachep->flags & SLAB_RED_ZONE) { 2726 verify_redzone_free(cachep, objp); 2727 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2728 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2729 } 2730 if (cachep->flags & SLAB_STORE_USER) 2731 *dbg_userword(cachep, objp) = (void *)caller; 2732 2733 objnr = obj_to_index(cachep, page, objp); 2734 2735 BUG_ON(objnr >= cachep->num); 2736 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2737 2738 if (cachep->flags & SLAB_POISON) { 2739 poison_obj(cachep, objp, POISON_FREE); 2740 slab_kernel_map(cachep, objp, 0); 2741 } 2742 return objp; 2743 } 2744 2745 #else 2746 #define kfree_debugcheck(x) do { } while(0) 2747 #define cache_free_debugcheck(x,objp,z) (objp) 2748 #endif 2749 2750 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2751 void **list) 2752 { 2753 #if DEBUG 2754 void *next = *list; 2755 void *objp; 2756 2757 while (next) { 2758 objp = next - obj_offset(cachep); 2759 next = *(void **)next; 2760 poison_obj(cachep, objp, POISON_FREE); 2761 } 2762 #endif 2763 } 2764 2765 static inline void fixup_slab_list(struct kmem_cache *cachep, 2766 struct kmem_cache_node *n, struct page *page, 2767 void **list) 2768 { 2769 /* move slabp to correct slabp list: */ 2770 list_del(&page->slab_list); 2771 if (page->active == cachep->num) { 2772 list_add(&page->slab_list, &n->slabs_full); 2773 if (OBJFREELIST_SLAB(cachep)) { 2774 #if DEBUG 2775 /* Poisoning will be done without holding the lock */ 2776 if (cachep->flags & SLAB_POISON) { 2777 void **objp = page->freelist; 2778 2779 *objp = *list; 2780 *list = objp; 2781 } 2782 #endif 2783 page->freelist = NULL; 2784 } 2785 } else 2786 list_add(&page->slab_list, &n->slabs_partial); 2787 } 2788 2789 /* Try to find non-pfmemalloc slab if needed */ 2790 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2791 struct page *page, bool pfmemalloc) 2792 { 2793 if (!page) 2794 return NULL; 2795 2796 if (pfmemalloc) 2797 return page; 2798 2799 if (!PageSlabPfmemalloc(page)) 2800 return page; 2801 2802 /* No need to keep pfmemalloc slab if we have enough free objects */ 2803 if (n->free_objects > n->free_limit) { 2804 ClearPageSlabPfmemalloc(page); 2805 return page; 2806 } 2807 2808 /* Move pfmemalloc slab to the end of list to speed up next search */ 2809 list_del(&page->slab_list); 2810 if (!page->active) { 2811 list_add_tail(&page->slab_list, &n->slabs_free); 2812 n->free_slabs++; 2813 } else 2814 list_add_tail(&page->slab_list, &n->slabs_partial); 2815 2816 list_for_each_entry(page, &n->slabs_partial, slab_list) { 2817 if (!PageSlabPfmemalloc(page)) 2818 return page; 2819 } 2820 2821 n->free_touched = 1; 2822 list_for_each_entry(page, &n->slabs_free, slab_list) { 2823 if (!PageSlabPfmemalloc(page)) { 2824 n->free_slabs--; 2825 return page; 2826 } 2827 } 2828 2829 return NULL; 2830 } 2831 2832 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2833 { 2834 struct page *page; 2835 2836 assert_spin_locked(&n->list_lock); 2837 page = list_first_entry_or_null(&n->slabs_partial, struct page, 2838 slab_list); 2839 if (!page) { 2840 n->free_touched = 1; 2841 page = list_first_entry_or_null(&n->slabs_free, struct page, 2842 slab_list); 2843 if (page) 2844 n->free_slabs--; 2845 } 2846 2847 if (sk_memalloc_socks()) 2848 page = get_valid_first_slab(n, page, pfmemalloc); 2849 2850 return page; 2851 } 2852 2853 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2854 struct kmem_cache_node *n, gfp_t flags) 2855 { 2856 struct page *page; 2857 void *obj; 2858 void *list = NULL; 2859 2860 if (!gfp_pfmemalloc_allowed(flags)) 2861 return NULL; 2862 2863 spin_lock(&n->list_lock); 2864 page = get_first_slab(n, true); 2865 if (!page) { 2866 spin_unlock(&n->list_lock); 2867 return NULL; 2868 } 2869 2870 obj = slab_get_obj(cachep, page); 2871 n->free_objects--; 2872 2873 fixup_slab_list(cachep, n, page, &list); 2874 2875 spin_unlock(&n->list_lock); 2876 fixup_objfreelist_debug(cachep, &list); 2877 2878 return obj; 2879 } 2880 2881 /* 2882 * Slab list should be fixed up by fixup_slab_list() for existing slab 2883 * or cache_grow_end() for new slab 2884 */ 2885 static __always_inline int alloc_block(struct kmem_cache *cachep, 2886 struct array_cache *ac, struct page *page, int batchcount) 2887 { 2888 /* 2889 * There must be at least one object available for 2890 * allocation. 2891 */ 2892 BUG_ON(page->active >= cachep->num); 2893 2894 while (page->active < cachep->num && batchcount--) { 2895 STATS_INC_ALLOCED(cachep); 2896 STATS_INC_ACTIVE(cachep); 2897 STATS_SET_HIGH(cachep); 2898 2899 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2900 } 2901 2902 return batchcount; 2903 } 2904 2905 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2906 { 2907 int batchcount; 2908 struct kmem_cache_node *n; 2909 struct array_cache *ac, *shared; 2910 int node; 2911 void *list = NULL; 2912 struct page *page; 2913 2914 check_irq_off(); 2915 node = numa_mem_id(); 2916 2917 ac = cpu_cache_get(cachep); 2918 batchcount = ac->batchcount; 2919 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2920 /* 2921 * If there was little recent activity on this cache, then 2922 * perform only a partial refill. Otherwise we could generate 2923 * refill bouncing. 2924 */ 2925 batchcount = BATCHREFILL_LIMIT; 2926 } 2927 n = get_node(cachep, node); 2928 2929 BUG_ON(ac->avail > 0 || !n); 2930 shared = READ_ONCE(n->shared); 2931 if (!n->free_objects && (!shared || !shared->avail)) 2932 goto direct_grow; 2933 2934 spin_lock(&n->list_lock); 2935 shared = READ_ONCE(n->shared); 2936 2937 /* See if we can refill from the shared array */ 2938 if (shared && transfer_objects(ac, shared, batchcount)) { 2939 shared->touched = 1; 2940 goto alloc_done; 2941 } 2942 2943 while (batchcount > 0) { 2944 /* Get slab alloc is to come from. */ 2945 page = get_first_slab(n, false); 2946 if (!page) 2947 goto must_grow; 2948 2949 check_spinlock_acquired(cachep); 2950 2951 batchcount = alloc_block(cachep, ac, page, batchcount); 2952 fixup_slab_list(cachep, n, page, &list); 2953 } 2954 2955 must_grow: 2956 n->free_objects -= ac->avail; 2957 alloc_done: 2958 spin_unlock(&n->list_lock); 2959 fixup_objfreelist_debug(cachep, &list); 2960 2961 direct_grow: 2962 if (unlikely(!ac->avail)) { 2963 /* Check if we can use obj in pfmemalloc slab */ 2964 if (sk_memalloc_socks()) { 2965 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2966 2967 if (obj) 2968 return obj; 2969 } 2970 2971 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 2972 2973 /* 2974 * cache_grow_begin() can reenable interrupts, 2975 * then ac could change. 2976 */ 2977 ac = cpu_cache_get(cachep); 2978 if (!ac->avail && page) 2979 alloc_block(cachep, ac, page, batchcount); 2980 cache_grow_end(cachep, page); 2981 2982 if (!ac->avail) 2983 return NULL; 2984 } 2985 ac->touched = 1; 2986 2987 return ac->entry[--ac->avail]; 2988 } 2989 2990 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 2991 gfp_t flags) 2992 { 2993 might_sleep_if(gfpflags_allow_blocking(flags)); 2994 } 2995 2996 #if DEBUG 2997 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2998 gfp_t flags, void *objp, unsigned long caller) 2999 { 3000 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 3001 if (!objp) 3002 return objp; 3003 if (cachep->flags & SLAB_POISON) { 3004 check_poison_obj(cachep, objp); 3005 slab_kernel_map(cachep, objp, 1); 3006 poison_obj(cachep, objp, POISON_INUSE); 3007 } 3008 if (cachep->flags & SLAB_STORE_USER) 3009 *dbg_userword(cachep, objp) = (void *)caller; 3010 3011 if (cachep->flags & SLAB_RED_ZONE) { 3012 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3013 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3014 slab_error(cachep, "double free, or memory outside object was overwritten"); 3015 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 3016 objp, *dbg_redzone1(cachep, objp), 3017 *dbg_redzone2(cachep, objp)); 3018 } 3019 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3020 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3021 } 3022 3023 objp += obj_offset(cachep); 3024 if (cachep->ctor && cachep->flags & SLAB_POISON) 3025 cachep->ctor(objp); 3026 if (ARCH_SLAB_MINALIGN && 3027 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3028 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3029 objp, (int)ARCH_SLAB_MINALIGN); 3030 } 3031 return objp; 3032 } 3033 #else 3034 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3035 #endif 3036 3037 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3038 { 3039 void *objp; 3040 struct array_cache *ac; 3041 3042 check_irq_off(); 3043 3044 ac = cpu_cache_get(cachep); 3045 if (likely(ac->avail)) { 3046 ac->touched = 1; 3047 objp = ac->entry[--ac->avail]; 3048 3049 STATS_INC_ALLOCHIT(cachep); 3050 goto out; 3051 } 3052 3053 STATS_INC_ALLOCMISS(cachep); 3054 objp = cache_alloc_refill(cachep, flags); 3055 /* 3056 * the 'ac' may be updated by cache_alloc_refill(), 3057 * and kmemleak_erase() requires its correct value. 3058 */ 3059 ac = cpu_cache_get(cachep); 3060 3061 out: 3062 /* 3063 * To avoid a false negative, if an object that is in one of the 3064 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3065 * treat the array pointers as a reference to the object. 3066 */ 3067 if (objp) 3068 kmemleak_erase(&ac->entry[ac->avail]); 3069 return objp; 3070 } 3071 3072 #ifdef CONFIG_NUMA 3073 /* 3074 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3075 * 3076 * If we are in_interrupt, then process context, including cpusets and 3077 * mempolicy, may not apply and should not be used for allocation policy. 3078 */ 3079 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3080 { 3081 int nid_alloc, nid_here; 3082 3083 if (in_interrupt() || (flags & __GFP_THISNODE)) 3084 return NULL; 3085 nid_alloc = nid_here = numa_mem_id(); 3086 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3087 nid_alloc = cpuset_slab_spread_node(); 3088 else if (current->mempolicy) 3089 nid_alloc = mempolicy_slab_node(); 3090 if (nid_alloc != nid_here) 3091 return ____cache_alloc_node(cachep, flags, nid_alloc); 3092 return NULL; 3093 } 3094 3095 /* 3096 * Fallback function if there was no memory available and no objects on a 3097 * certain node and fall back is permitted. First we scan all the 3098 * available node for available objects. If that fails then we 3099 * perform an allocation without specifying a node. This allows the page 3100 * allocator to do its reclaim / fallback magic. We then insert the 3101 * slab into the proper nodelist and then allocate from it. 3102 */ 3103 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3104 { 3105 struct zonelist *zonelist; 3106 struct zoneref *z; 3107 struct zone *zone; 3108 enum zone_type high_zoneidx = gfp_zone(flags); 3109 void *obj = NULL; 3110 struct page *page; 3111 int nid; 3112 unsigned int cpuset_mems_cookie; 3113 3114 if (flags & __GFP_THISNODE) 3115 return NULL; 3116 3117 retry_cpuset: 3118 cpuset_mems_cookie = read_mems_allowed_begin(); 3119 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3120 3121 retry: 3122 /* 3123 * Look through allowed nodes for objects available 3124 * from existing per node queues. 3125 */ 3126 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3127 nid = zone_to_nid(zone); 3128 3129 if (cpuset_zone_allowed(zone, flags) && 3130 get_node(cache, nid) && 3131 get_node(cache, nid)->free_objects) { 3132 obj = ____cache_alloc_node(cache, 3133 gfp_exact_node(flags), nid); 3134 if (obj) 3135 break; 3136 } 3137 } 3138 3139 if (!obj) { 3140 /* 3141 * This allocation will be performed within the constraints 3142 * of the current cpuset / memory policy requirements. 3143 * We may trigger various forms of reclaim on the allowed 3144 * set and go into memory reserves if necessary. 3145 */ 3146 page = cache_grow_begin(cache, flags, numa_mem_id()); 3147 cache_grow_end(cache, page); 3148 if (page) { 3149 nid = page_to_nid(page); 3150 obj = ____cache_alloc_node(cache, 3151 gfp_exact_node(flags), nid); 3152 3153 /* 3154 * Another processor may allocate the objects in 3155 * the slab since we are not holding any locks. 3156 */ 3157 if (!obj) 3158 goto retry; 3159 } 3160 } 3161 3162 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3163 goto retry_cpuset; 3164 return obj; 3165 } 3166 3167 /* 3168 * A interface to enable slab creation on nodeid 3169 */ 3170 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3171 int nodeid) 3172 { 3173 struct page *page; 3174 struct kmem_cache_node *n; 3175 void *obj = NULL; 3176 void *list = NULL; 3177 3178 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3179 n = get_node(cachep, nodeid); 3180 BUG_ON(!n); 3181 3182 check_irq_off(); 3183 spin_lock(&n->list_lock); 3184 page = get_first_slab(n, false); 3185 if (!page) 3186 goto must_grow; 3187 3188 check_spinlock_acquired_node(cachep, nodeid); 3189 3190 STATS_INC_NODEALLOCS(cachep); 3191 STATS_INC_ACTIVE(cachep); 3192 STATS_SET_HIGH(cachep); 3193 3194 BUG_ON(page->active == cachep->num); 3195 3196 obj = slab_get_obj(cachep, page); 3197 n->free_objects--; 3198 3199 fixup_slab_list(cachep, n, page, &list); 3200 3201 spin_unlock(&n->list_lock); 3202 fixup_objfreelist_debug(cachep, &list); 3203 return obj; 3204 3205 must_grow: 3206 spin_unlock(&n->list_lock); 3207 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3208 if (page) { 3209 /* This slab isn't counted yet so don't update free_objects */ 3210 obj = slab_get_obj(cachep, page); 3211 } 3212 cache_grow_end(cachep, page); 3213 3214 return obj ? obj : fallback_alloc(cachep, flags); 3215 } 3216 3217 static __always_inline void * 3218 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3219 unsigned long caller) 3220 { 3221 unsigned long save_flags; 3222 void *ptr; 3223 int slab_node = numa_mem_id(); 3224 3225 flags &= gfp_allowed_mask; 3226 cachep = slab_pre_alloc_hook(cachep, flags); 3227 if (unlikely(!cachep)) 3228 return NULL; 3229 3230 cache_alloc_debugcheck_before(cachep, flags); 3231 local_irq_save(save_flags); 3232 3233 if (nodeid == NUMA_NO_NODE) 3234 nodeid = slab_node; 3235 3236 if (unlikely(!get_node(cachep, nodeid))) { 3237 /* Node not bootstrapped yet */ 3238 ptr = fallback_alloc(cachep, flags); 3239 goto out; 3240 } 3241 3242 if (nodeid == slab_node) { 3243 /* 3244 * Use the locally cached objects if possible. 3245 * However ____cache_alloc does not allow fallback 3246 * to other nodes. It may fail while we still have 3247 * objects on other nodes available. 3248 */ 3249 ptr = ____cache_alloc(cachep, flags); 3250 if (ptr) 3251 goto out; 3252 } 3253 /* ___cache_alloc_node can fall back to other nodes */ 3254 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3255 out: 3256 local_irq_restore(save_flags); 3257 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3258 3259 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr) 3260 memset(ptr, 0, cachep->object_size); 3261 3262 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3263 return ptr; 3264 } 3265 3266 static __always_inline void * 3267 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3268 { 3269 void *objp; 3270 3271 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3272 objp = alternate_node_alloc(cache, flags); 3273 if (objp) 3274 goto out; 3275 } 3276 objp = ____cache_alloc(cache, flags); 3277 3278 /* 3279 * We may just have run out of memory on the local node. 3280 * ____cache_alloc_node() knows how to locate memory on other nodes 3281 */ 3282 if (!objp) 3283 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3284 3285 out: 3286 return objp; 3287 } 3288 #else 3289 3290 static __always_inline void * 3291 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3292 { 3293 return ____cache_alloc(cachep, flags); 3294 } 3295 3296 #endif /* CONFIG_NUMA */ 3297 3298 static __always_inline void * 3299 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3300 { 3301 unsigned long save_flags; 3302 void *objp; 3303 3304 flags &= gfp_allowed_mask; 3305 cachep = slab_pre_alloc_hook(cachep, flags); 3306 if (unlikely(!cachep)) 3307 return NULL; 3308 3309 cache_alloc_debugcheck_before(cachep, flags); 3310 local_irq_save(save_flags); 3311 objp = __do_cache_alloc(cachep, flags); 3312 local_irq_restore(save_flags); 3313 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3314 prefetchw(objp); 3315 3316 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp) 3317 memset(objp, 0, cachep->object_size); 3318 3319 slab_post_alloc_hook(cachep, flags, 1, &objp); 3320 return objp; 3321 } 3322 3323 /* 3324 * Caller needs to acquire correct kmem_cache_node's list_lock 3325 * @list: List of detached free slabs should be freed by caller 3326 */ 3327 static void free_block(struct kmem_cache *cachep, void **objpp, 3328 int nr_objects, int node, struct list_head *list) 3329 { 3330 int i; 3331 struct kmem_cache_node *n = get_node(cachep, node); 3332 struct page *page; 3333 3334 n->free_objects += nr_objects; 3335 3336 for (i = 0; i < nr_objects; i++) { 3337 void *objp; 3338 struct page *page; 3339 3340 objp = objpp[i]; 3341 3342 page = virt_to_head_page(objp); 3343 list_del(&page->slab_list); 3344 check_spinlock_acquired_node(cachep, node); 3345 slab_put_obj(cachep, page, objp); 3346 STATS_DEC_ACTIVE(cachep); 3347 3348 /* fixup slab chains */ 3349 if (page->active == 0) { 3350 list_add(&page->slab_list, &n->slabs_free); 3351 n->free_slabs++; 3352 } else { 3353 /* Unconditionally move a slab to the end of the 3354 * partial list on free - maximum time for the 3355 * other objects to be freed, too. 3356 */ 3357 list_add_tail(&page->slab_list, &n->slabs_partial); 3358 } 3359 } 3360 3361 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3362 n->free_objects -= cachep->num; 3363 3364 page = list_last_entry(&n->slabs_free, struct page, slab_list); 3365 list_move(&page->slab_list, list); 3366 n->free_slabs--; 3367 n->total_slabs--; 3368 } 3369 } 3370 3371 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3372 { 3373 int batchcount; 3374 struct kmem_cache_node *n; 3375 int node = numa_mem_id(); 3376 LIST_HEAD(list); 3377 3378 batchcount = ac->batchcount; 3379 3380 check_irq_off(); 3381 n = get_node(cachep, node); 3382 spin_lock(&n->list_lock); 3383 if (n->shared) { 3384 struct array_cache *shared_array = n->shared; 3385 int max = shared_array->limit - shared_array->avail; 3386 if (max) { 3387 if (batchcount > max) 3388 batchcount = max; 3389 memcpy(&(shared_array->entry[shared_array->avail]), 3390 ac->entry, sizeof(void *) * batchcount); 3391 shared_array->avail += batchcount; 3392 goto free_done; 3393 } 3394 } 3395 3396 free_block(cachep, ac->entry, batchcount, node, &list); 3397 free_done: 3398 #if STATS 3399 { 3400 int i = 0; 3401 struct page *page; 3402 3403 list_for_each_entry(page, &n->slabs_free, slab_list) { 3404 BUG_ON(page->active); 3405 3406 i++; 3407 } 3408 STATS_SET_FREEABLE(cachep, i); 3409 } 3410 #endif 3411 spin_unlock(&n->list_lock); 3412 slabs_destroy(cachep, &list); 3413 ac->avail -= batchcount; 3414 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3415 } 3416 3417 /* 3418 * Release an obj back to its cache. If the obj has a constructed state, it must 3419 * be in this state _before_ it is released. Called with disabled ints. 3420 */ 3421 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3422 unsigned long caller) 3423 { 3424 /* Put the object into the quarantine, don't touch it for now. */ 3425 if (kasan_slab_free(cachep, objp, _RET_IP_)) 3426 return; 3427 3428 ___cache_free(cachep, objp, caller); 3429 } 3430 3431 void ___cache_free(struct kmem_cache *cachep, void *objp, 3432 unsigned long caller) 3433 { 3434 struct array_cache *ac = cpu_cache_get(cachep); 3435 3436 check_irq_off(); 3437 if (unlikely(slab_want_init_on_free(cachep))) 3438 memset(objp, 0, cachep->object_size); 3439 kmemleak_free_recursive(objp, cachep->flags); 3440 objp = cache_free_debugcheck(cachep, objp, caller); 3441 3442 /* 3443 * Skip calling cache_free_alien() when the platform is not numa. 3444 * This will avoid cache misses that happen while accessing slabp (which 3445 * is per page memory reference) to get nodeid. Instead use a global 3446 * variable to skip the call, which is mostly likely to be present in 3447 * the cache. 3448 */ 3449 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3450 return; 3451 3452 if (ac->avail < ac->limit) { 3453 STATS_INC_FREEHIT(cachep); 3454 } else { 3455 STATS_INC_FREEMISS(cachep); 3456 cache_flusharray(cachep, ac); 3457 } 3458 3459 if (sk_memalloc_socks()) { 3460 struct page *page = virt_to_head_page(objp); 3461 3462 if (unlikely(PageSlabPfmemalloc(page))) { 3463 cache_free_pfmemalloc(cachep, page, objp); 3464 return; 3465 } 3466 } 3467 3468 ac->entry[ac->avail++] = objp; 3469 } 3470 3471 /** 3472 * kmem_cache_alloc - Allocate an object 3473 * @cachep: The cache to allocate from. 3474 * @flags: See kmalloc(). 3475 * 3476 * Allocate an object from this cache. The flags are only relevant 3477 * if the cache has no available objects. 3478 * 3479 * Return: pointer to the new object or %NULL in case of error 3480 */ 3481 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3482 { 3483 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3484 3485 trace_kmem_cache_alloc(_RET_IP_, ret, 3486 cachep->object_size, cachep->size, flags); 3487 3488 return ret; 3489 } 3490 EXPORT_SYMBOL(kmem_cache_alloc); 3491 3492 static __always_inline void 3493 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3494 size_t size, void **p, unsigned long caller) 3495 { 3496 size_t i; 3497 3498 for (i = 0; i < size; i++) 3499 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3500 } 3501 3502 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3503 void **p) 3504 { 3505 size_t i; 3506 3507 s = slab_pre_alloc_hook(s, flags); 3508 if (!s) 3509 return 0; 3510 3511 cache_alloc_debugcheck_before(s, flags); 3512 3513 local_irq_disable(); 3514 for (i = 0; i < size; i++) { 3515 void *objp = __do_cache_alloc(s, flags); 3516 3517 if (unlikely(!objp)) 3518 goto error; 3519 p[i] = objp; 3520 } 3521 local_irq_enable(); 3522 3523 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3524 3525 /* Clear memory outside IRQ disabled section */ 3526 if (unlikely(slab_want_init_on_alloc(flags, s))) 3527 for (i = 0; i < size; i++) 3528 memset(p[i], 0, s->object_size); 3529 3530 slab_post_alloc_hook(s, flags, size, p); 3531 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3532 return size; 3533 error: 3534 local_irq_enable(); 3535 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3536 slab_post_alloc_hook(s, flags, i, p); 3537 __kmem_cache_free_bulk(s, i, p); 3538 return 0; 3539 } 3540 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3541 3542 #ifdef CONFIG_TRACING 3543 void * 3544 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3545 { 3546 void *ret; 3547 3548 ret = slab_alloc(cachep, flags, _RET_IP_); 3549 3550 ret = kasan_kmalloc(cachep, ret, size, flags); 3551 trace_kmalloc(_RET_IP_, ret, 3552 size, cachep->size, flags); 3553 return ret; 3554 } 3555 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3556 #endif 3557 3558 #ifdef CONFIG_NUMA 3559 /** 3560 * kmem_cache_alloc_node - Allocate an object on the specified node 3561 * @cachep: The cache to allocate from. 3562 * @flags: See kmalloc(). 3563 * @nodeid: node number of the target node. 3564 * 3565 * Identical to kmem_cache_alloc but it will allocate memory on the given 3566 * node, which can improve the performance for cpu bound structures. 3567 * 3568 * Fallback to other node is possible if __GFP_THISNODE is not set. 3569 * 3570 * Return: pointer to the new object or %NULL in case of error 3571 */ 3572 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3573 { 3574 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3575 3576 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3577 cachep->object_size, cachep->size, 3578 flags, nodeid); 3579 3580 return ret; 3581 } 3582 EXPORT_SYMBOL(kmem_cache_alloc_node); 3583 3584 #ifdef CONFIG_TRACING 3585 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3586 gfp_t flags, 3587 int nodeid, 3588 size_t size) 3589 { 3590 void *ret; 3591 3592 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3593 3594 ret = kasan_kmalloc(cachep, ret, size, flags); 3595 trace_kmalloc_node(_RET_IP_, ret, 3596 size, cachep->size, 3597 flags, nodeid); 3598 return ret; 3599 } 3600 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3601 #endif 3602 3603 static __always_inline void * 3604 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3605 { 3606 struct kmem_cache *cachep; 3607 void *ret; 3608 3609 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3610 return NULL; 3611 cachep = kmalloc_slab(size, flags); 3612 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3613 return cachep; 3614 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3615 ret = kasan_kmalloc(cachep, ret, size, flags); 3616 3617 return ret; 3618 } 3619 3620 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3621 { 3622 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3623 } 3624 EXPORT_SYMBOL(__kmalloc_node); 3625 3626 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3627 int node, unsigned long caller) 3628 { 3629 return __do_kmalloc_node(size, flags, node, caller); 3630 } 3631 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3632 #endif /* CONFIG_NUMA */ 3633 3634 /** 3635 * __do_kmalloc - allocate memory 3636 * @size: how many bytes of memory are required. 3637 * @flags: the type of memory to allocate (see kmalloc). 3638 * @caller: function caller for debug tracking of the caller 3639 * 3640 * Return: pointer to the allocated memory or %NULL in case of error 3641 */ 3642 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3643 unsigned long caller) 3644 { 3645 struct kmem_cache *cachep; 3646 void *ret; 3647 3648 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3649 return NULL; 3650 cachep = kmalloc_slab(size, flags); 3651 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3652 return cachep; 3653 ret = slab_alloc(cachep, flags, caller); 3654 3655 ret = kasan_kmalloc(cachep, ret, size, flags); 3656 trace_kmalloc(caller, ret, 3657 size, cachep->size, flags); 3658 3659 return ret; 3660 } 3661 3662 void *__kmalloc(size_t size, gfp_t flags) 3663 { 3664 return __do_kmalloc(size, flags, _RET_IP_); 3665 } 3666 EXPORT_SYMBOL(__kmalloc); 3667 3668 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3669 { 3670 return __do_kmalloc(size, flags, caller); 3671 } 3672 EXPORT_SYMBOL(__kmalloc_track_caller); 3673 3674 /** 3675 * kmem_cache_free - Deallocate an object 3676 * @cachep: The cache the allocation was from. 3677 * @objp: The previously allocated object. 3678 * 3679 * Free an object which was previously allocated from this 3680 * cache. 3681 */ 3682 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3683 { 3684 unsigned long flags; 3685 cachep = cache_from_obj(cachep, objp); 3686 if (!cachep) 3687 return; 3688 3689 local_irq_save(flags); 3690 debug_check_no_locks_freed(objp, cachep->object_size); 3691 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3692 debug_check_no_obj_freed(objp, cachep->object_size); 3693 __cache_free(cachep, objp, _RET_IP_); 3694 local_irq_restore(flags); 3695 3696 trace_kmem_cache_free(_RET_IP_, objp); 3697 } 3698 EXPORT_SYMBOL(kmem_cache_free); 3699 3700 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3701 { 3702 struct kmem_cache *s; 3703 size_t i; 3704 3705 local_irq_disable(); 3706 for (i = 0; i < size; i++) { 3707 void *objp = p[i]; 3708 3709 if (!orig_s) /* called via kfree_bulk */ 3710 s = virt_to_cache(objp); 3711 else 3712 s = cache_from_obj(orig_s, objp); 3713 if (!s) 3714 continue; 3715 3716 debug_check_no_locks_freed(objp, s->object_size); 3717 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3718 debug_check_no_obj_freed(objp, s->object_size); 3719 3720 __cache_free(s, objp, _RET_IP_); 3721 } 3722 local_irq_enable(); 3723 3724 /* FIXME: add tracing */ 3725 } 3726 EXPORT_SYMBOL(kmem_cache_free_bulk); 3727 3728 /** 3729 * kfree - free previously allocated memory 3730 * @objp: pointer returned by kmalloc. 3731 * 3732 * If @objp is NULL, no operation is performed. 3733 * 3734 * Don't free memory not originally allocated by kmalloc() 3735 * or you will run into trouble. 3736 */ 3737 void kfree(const void *objp) 3738 { 3739 struct kmem_cache *c; 3740 unsigned long flags; 3741 3742 trace_kfree(_RET_IP_, objp); 3743 3744 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3745 return; 3746 local_irq_save(flags); 3747 kfree_debugcheck(objp); 3748 c = virt_to_cache(objp); 3749 if (!c) { 3750 local_irq_restore(flags); 3751 return; 3752 } 3753 debug_check_no_locks_freed(objp, c->object_size); 3754 3755 debug_check_no_obj_freed(objp, c->object_size); 3756 __cache_free(c, (void *)objp, _RET_IP_); 3757 local_irq_restore(flags); 3758 } 3759 EXPORT_SYMBOL(kfree); 3760 3761 /* 3762 * This initializes kmem_cache_node or resizes various caches for all nodes. 3763 */ 3764 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3765 { 3766 int ret; 3767 int node; 3768 struct kmem_cache_node *n; 3769 3770 for_each_online_node(node) { 3771 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3772 if (ret) 3773 goto fail; 3774 3775 } 3776 3777 return 0; 3778 3779 fail: 3780 if (!cachep->list.next) { 3781 /* Cache is not active yet. Roll back what we did */ 3782 node--; 3783 while (node >= 0) { 3784 n = get_node(cachep, node); 3785 if (n) { 3786 kfree(n->shared); 3787 free_alien_cache(n->alien); 3788 kfree(n); 3789 cachep->node[node] = NULL; 3790 } 3791 node--; 3792 } 3793 } 3794 return -ENOMEM; 3795 } 3796 3797 /* Always called with the slab_mutex held */ 3798 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3799 int batchcount, int shared, gfp_t gfp) 3800 { 3801 struct array_cache __percpu *cpu_cache, *prev; 3802 int cpu; 3803 3804 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3805 if (!cpu_cache) 3806 return -ENOMEM; 3807 3808 prev = cachep->cpu_cache; 3809 cachep->cpu_cache = cpu_cache; 3810 /* 3811 * Without a previous cpu_cache there's no need to synchronize remote 3812 * cpus, so skip the IPIs. 3813 */ 3814 if (prev) 3815 kick_all_cpus_sync(); 3816 3817 check_irq_on(); 3818 cachep->batchcount = batchcount; 3819 cachep->limit = limit; 3820 cachep->shared = shared; 3821 3822 if (!prev) 3823 goto setup_node; 3824 3825 for_each_online_cpu(cpu) { 3826 LIST_HEAD(list); 3827 int node; 3828 struct kmem_cache_node *n; 3829 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3830 3831 node = cpu_to_mem(cpu); 3832 n = get_node(cachep, node); 3833 spin_lock_irq(&n->list_lock); 3834 free_block(cachep, ac->entry, ac->avail, node, &list); 3835 spin_unlock_irq(&n->list_lock); 3836 slabs_destroy(cachep, &list); 3837 } 3838 free_percpu(prev); 3839 3840 setup_node: 3841 return setup_kmem_cache_nodes(cachep, gfp); 3842 } 3843 3844 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3845 int batchcount, int shared, gfp_t gfp) 3846 { 3847 int ret; 3848 struct kmem_cache *c; 3849 3850 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3851 3852 if (slab_state < FULL) 3853 return ret; 3854 3855 if ((ret < 0) || !is_root_cache(cachep)) 3856 return ret; 3857 3858 lockdep_assert_held(&slab_mutex); 3859 for_each_memcg_cache(c, cachep) { 3860 /* return value determined by the root cache only */ 3861 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3862 } 3863 3864 return ret; 3865 } 3866 3867 /* Called with slab_mutex held always */ 3868 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3869 { 3870 int err; 3871 int limit = 0; 3872 int shared = 0; 3873 int batchcount = 0; 3874 3875 err = cache_random_seq_create(cachep, cachep->num, gfp); 3876 if (err) 3877 goto end; 3878 3879 if (!is_root_cache(cachep)) { 3880 struct kmem_cache *root = memcg_root_cache(cachep); 3881 limit = root->limit; 3882 shared = root->shared; 3883 batchcount = root->batchcount; 3884 } 3885 3886 if (limit && shared && batchcount) 3887 goto skip_setup; 3888 /* 3889 * The head array serves three purposes: 3890 * - create a LIFO ordering, i.e. return objects that are cache-warm 3891 * - reduce the number of spinlock operations. 3892 * - reduce the number of linked list operations on the slab and 3893 * bufctl chains: array operations are cheaper. 3894 * The numbers are guessed, we should auto-tune as described by 3895 * Bonwick. 3896 */ 3897 if (cachep->size > 131072) 3898 limit = 1; 3899 else if (cachep->size > PAGE_SIZE) 3900 limit = 8; 3901 else if (cachep->size > 1024) 3902 limit = 24; 3903 else if (cachep->size > 256) 3904 limit = 54; 3905 else 3906 limit = 120; 3907 3908 /* 3909 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3910 * allocation behaviour: Most allocs on one cpu, most free operations 3911 * on another cpu. For these cases, an efficient object passing between 3912 * cpus is necessary. This is provided by a shared array. The array 3913 * replaces Bonwick's magazine layer. 3914 * On uniprocessor, it's functionally equivalent (but less efficient) 3915 * to a larger limit. Thus disabled by default. 3916 */ 3917 shared = 0; 3918 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3919 shared = 8; 3920 3921 #if DEBUG 3922 /* 3923 * With debugging enabled, large batchcount lead to excessively long 3924 * periods with disabled local interrupts. Limit the batchcount 3925 */ 3926 if (limit > 32) 3927 limit = 32; 3928 #endif 3929 batchcount = (limit + 1) / 2; 3930 skip_setup: 3931 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3932 end: 3933 if (err) 3934 pr_err("enable_cpucache failed for %s, error %d\n", 3935 cachep->name, -err); 3936 return err; 3937 } 3938 3939 /* 3940 * Drain an array if it contains any elements taking the node lock only if 3941 * necessary. Note that the node listlock also protects the array_cache 3942 * if drain_array() is used on the shared array. 3943 */ 3944 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3945 struct array_cache *ac, int node) 3946 { 3947 LIST_HEAD(list); 3948 3949 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3950 check_mutex_acquired(); 3951 3952 if (!ac || !ac->avail) 3953 return; 3954 3955 if (ac->touched) { 3956 ac->touched = 0; 3957 return; 3958 } 3959 3960 spin_lock_irq(&n->list_lock); 3961 drain_array_locked(cachep, ac, node, false, &list); 3962 spin_unlock_irq(&n->list_lock); 3963 3964 slabs_destroy(cachep, &list); 3965 } 3966 3967 /** 3968 * cache_reap - Reclaim memory from caches. 3969 * @w: work descriptor 3970 * 3971 * Called from workqueue/eventd every few seconds. 3972 * Purpose: 3973 * - clear the per-cpu caches for this CPU. 3974 * - return freeable pages to the main free memory pool. 3975 * 3976 * If we cannot acquire the cache chain mutex then just give up - we'll try 3977 * again on the next iteration. 3978 */ 3979 static void cache_reap(struct work_struct *w) 3980 { 3981 struct kmem_cache *searchp; 3982 struct kmem_cache_node *n; 3983 int node = numa_mem_id(); 3984 struct delayed_work *work = to_delayed_work(w); 3985 3986 if (!mutex_trylock(&slab_mutex)) 3987 /* Give up. Setup the next iteration. */ 3988 goto out; 3989 3990 list_for_each_entry(searchp, &slab_caches, list) { 3991 check_irq_on(); 3992 3993 /* 3994 * We only take the node lock if absolutely necessary and we 3995 * have established with reasonable certainty that 3996 * we can do some work if the lock was obtained. 3997 */ 3998 n = get_node(searchp, node); 3999 4000 reap_alien(searchp, n); 4001 4002 drain_array(searchp, n, cpu_cache_get(searchp), node); 4003 4004 /* 4005 * These are racy checks but it does not matter 4006 * if we skip one check or scan twice. 4007 */ 4008 if (time_after(n->next_reap, jiffies)) 4009 goto next; 4010 4011 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4012 4013 drain_array(searchp, n, n->shared, node); 4014 4015 if (n->free_touched) 4016 n->free_touched = 0; 4017 else { 4018 int freed; 4019 4020 freed = drain_freelist(searchp, n, (n->free_limit + 4021 5 * searchp->num - 1) / (5 * searchp->num)); 4022 STATS_ADD_REAPED(searchp, freed); 4023 } 4024 next: 4025 cond_resched(); 4026 } 4027 check_irq_on(); 4028 mutex_unlock(&slab_mutex); 4029 next_reap_node(); 4030 out: 4031 /* Set up the next iteration */ 4032 schedule_delayed_work_on(smp_processor_id(), work, 4033 round_jiffies_relative(REAPTIMEOUT_AC)); 4034 } 4035 4036 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4037 { 4038 unsigned long active_objs, num_objs, active_slabs; 4039 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4040 unsigned long free_slabs = 0; 4041 int node; 4042 struct kmem_cache_node *n; 4043 4044 for_each_kmem_cache_node(cachep, node, n) { 4045 check_irq_on(); 4046 spin_lock_irq(&n->list_lock); 4047 4048 total_slabs += n->total_slabs; 4049 free_slabs += n->free_slabs; 4050 free_objs += n->free_objects; 4051 4052 if (n->shared) 4053 shared_avail += n->shared->avail; 4054 4055 spin_unlock_irq(&n->list_lock); 4056 } 4057 num_objs = total_slabs * cachep->num; 4058 active_slabs = total_slabs - free_slabs; 4059 active_objs = num_objs - free_objs; 4060 4061 sinfo->active_objs = active_objs; 4062 sinfo->num_objs = num_objs; 4063 sinfo->active_slabs = active_slabs; 4064 sinfo->num_slabs = total_slabs; 4065 sinfo->shared_avail = shared_avail; 4066 sinfo->limit = cachep->limit; 4067 sinfo->batchcount = cachep->batchcount; 4068 sinfo->shared = cachep->shared; 4069 sinfo->objects_per_slab = cachep->num; 4070 sinfo->cache_order = cachep->gfporder; 4071 } 4072 4073 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4074 { 4075 #if STATS 4076 { /* node stats */ 4077 unsigned long high = cachep->high_mark; 4078 unsigned long allocs = cachep->num_allocations; 4079 unsigned long grown = cachep->grown; 4080 unsigned long reaped = cachep->reaped; 4081 unsigned long errors = cachep->errors; 4082 unsigned long max_freeable = cachep->max_freeable; 4083 unsigned long node_allocs = cachep->node_allocs; 4084 unsigned long node_frees = cachep->node_frees; 4085 unsigned long overflows = cachep->node_overflow; 4086 4087 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4088 allocs, high, grown, 4089 reaped, errors, max_freeable, node_allocs, 4090 node_frees, overflows); 4091 } 4092 /* cpu stats */ 4093 { 4094 unsigned long allochit = atomic_read(&cachep->allochit); 4095 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4096 unsigned long freehit = atomic_read(&cachep->freehit); 4097 unsigned long freemiss = atomic_read(&cachep->freemiss); 4098 4099 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4100 allochit, allocmiss, freehit, freemiss); 4101 } 4102 #endif 4103 } 4104 4105 #define MAX_SLABINFO_WRITE 128 4106 /** 4107 * slabinfo_write - Tuning for the slab allocator 4108 * @file: unused 4109 * @buffer: user buffer 4110 * @count: data length 4111 * @ppos: unused 4112 * 4113 * Return: %0 on success, negative error code otherwise. 4114 */ 4115 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4116 size_t count, loff_t *ppos) 4117 { 4118 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4119 int limit, batchcount, shared, res; 4120 struct kmem_cache *cachep; 4121 4122 if (count > MAX_SLABINFO_WRITE) 4123 return -EINVAL; 4124 if (copy_from_user(&kbuf, buffer, count)) 4125 return -EFAULT; 4126 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4127 4128 tmp = strchr(kbuf, ' '); 4129 if (!tmp) 4130 return -EINVAL; 4131 *tmp = '\0'; 4132 tmp++; 4133 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4134 return -EINVAL; 4135 4136 /* Find the cache in the chain of caches. */ 4137 mutex_lock(&slab_mutex); 4138 res = -EINVAL; 4139 list_for_each_entry(cachep, &slab_caches, list) { 4140 if (!strcmp(cachep->name, kbuf)) { 4141 if (limit < 1 || batchcount < 1 || 4142 batchcount > limit || shared < 0) { 4143 res = 0; 4144 } else { 4145 res = do_tune_cpucache(cachep, limit, 4146 batchcount, shared, 4147 GFP_KERNEL); 4148 } 4149 break; 4150 } 4151 } 4152 mutex_unlock(&slab_mutex); 4153 if (res >= 0) 4154 res = count; 4155 return res; 4156 } 4157 4158 #ifdef CONFIG_HARDENED_USERCOPY 4159 /* 4160 * Rejects incorrectly sized objects and objects that are to be copied 4161 * to/from userspace but do not fall entirely within the containing slab 4162 * cache's usercopy region. 4163 * 4164 * Returns NULL if check passes, otherwise const char * to name of cache 4165 * to indicate an error. 4166 */ 4167 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4168 bool to_user) 4169 { 4170 struct kmem_cache *cachep; 4171 unsigned int objnr; 4172 unsigned long offset; 4173 4174 ptr = kasan_reset_tag(ptr); 4175 4176 /* Find and validate object. */ 4177 cachep = page->slab_cache; 4178 objnr = obj_to_index(cachep, page, (void *)ptr); 4179 BUG_ON(objnr >= cachep->num); 4180 4181 /* Find offset within object. */ 4182 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4183 4184 /* Allow address range falling entirely within usercopy region. */ 4185 if (offset >= cachep->useroffset && 4186 offset - cachep->useroffset <= cachep->usersize && 4187 n <= cachep->useroffset - offset + cachep->usersize) 4188 return; 4189 4190 /* 4191 * If the copy is still within the allocated object, produce 4192 * a warning instead of rejecting the copy. This is intended 4193 * to be a temporary method to find any missing usercopy 4194 * whitelists. 4195 */ 4196 if (usercopy_fallback && 4197 offset <= cachep->object_size && 4198 n <= cachep->object_size - offset) { 4199 usercopy_warn("SLAB object", cachep->name, to_user, offset, n); 4200 return; 4201 } 4202 4203 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4204 } 4205 #endif /* CONFIG_HARDENED_USERCOPY */ 4206 4207 /** 4208 * __ksize -- Uninstrumented ksize. 4209 * @objp: pointer to the object 4210 * 4211 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same 4212 * safety checks as ksize() with KASAN instrumentation enabled. 4213 * 4214 * Return: size of the actual memory used by @objp in bytes 4215 */ 4216 size_t __ksize(const void *objp) 4217 { 4218 struct kmem_cache *c; 4219 size_t size; 4220 4221 BUG_ON(!objp); 4222 if (unlikely(objp == ZERO_SIZE_PTR)) 4223 return 0; 4224 4225 c = virt_to_cache(objp); 4226 size = c ? c->object_size : 0; 4227 4228 return size; 4229 } 4230 EXPORT_SYMBOL(__ksize); 4231