xref: /openbmc/linux/mm/slab.c (revision a09d2831)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/kmemtrace.h>
106 #include	<linux/rcupdate.h>
107 #include	<linux/string.h>
108 #include	<linux/uaccess.h>
109 #include	<linux/nodemask.h>
110 #include	<linux/kmemleak.h>
111 #include	<linux/mempolicy.h>
112 #include	<linux/mutex.h>
113 #include	<linux/fault-inject.h>
114 #include	<linux/rtmutex.h>
115 #include	<linux/reciprocal_div.h>
116 #include	<linux/debugobjects.h>
117 #include	<linux/kmemcheck.h>
118 
119 #include	<asm/cacheflush.h>
120 #include	<asm/tlbflush.h>
121 #include	<asm/page.h>
122 
123 /*
124  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
125  *		  0 for faster, smaller code (especially in the critical paths).
126  *
127  * STATS	- 1 to collect stats for /proc/slabinfo.
128  *		  0 for faster, smaller code (especially in the critical paths).
129  *
130  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131  */
132 
133 #ifdef CONFIG_DEBUG_SLAB
134 #define	DEBUG		1
135 #define	STATS		1
136 #define	FORCED_DEBUG	1
137 #else
138 #define	DEBUG		0
139 #define	STATS		0
140 #define	FORCED_DEBUG	0
141 #endif
142 
143 /* Shouldn't this be in a header file somewhere? */
144 #define	BYTES_PER_WORD		sizeof(void *)
145 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
146 
147 #ifndef ARCH_KMALLOC_MINALIGN
148 /*
149  * Enforce a minimum alignment for the kmalloc caches.
150  * Usually, the kmalloc caches are cache_line_size() aligned, except when
151  * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
152  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
153  * alignment larger than the alignment of a 64-bit integer.
154  * ARCH_KMALLOC_MINALIGN allows that.
155  * Note that increasing this value may disable some debug features.
156  */
157 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158 #endif
159 
160 #ifndef ARCH_SLAB_MINALIGN
161 /*
162  * Enforce a minimum alignment for all caches.
163  * Intended for archs that get misalignment faults even for BYTES_PER_WORD
164  * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
165  * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
166  * some debug features.
167  */
168 #define ARCH_SLAB_MINALIGN 0
169 #endif
170 
171 #ifndef ARCH_KMALLOC_FLAGS
172 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173 #endif
174 
175 /* Legal flag mask for kmem_cache_create(). */
176 #if DEBUG
177 # define CREATE_MASK	(SLAB_RED_ZONE | \
178 			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
179 			 SLAB_CACHE_DMA | \
180 			 SLAB_STORE_USER | \
181 			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
183 			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
184 #else
185 # define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
186 			 SLAB_CACHE_DMA | \
187 			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
188 			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
189 			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
190 #endif
191 
192 /*
193  * kmem_bufctl_t:
194  *
195  * Bufctl's are used for linking objs within a slab
196  * linked offsets.
197  *
198  * This implementation relies on "struct page" for locating the cache &
199  * slab an object belongs to.
200  * This allows the bufctl structure to be small (one int), but limits
201  * the number of objects a slab (not a cache) can contain when off-slab
202  * bufctls are used. The limit is the size of the largest general cache
203  * that does not use off-slab slabs.
204  * For 32bit archs with 4 kB pages, is this 56.
205  * This is not serious, as it is only for large objects, when it is unwise
206  * to have too many per slab.
207  * Note: This limit can be raised by introducing a general cache whose size
208  * is less than 512 (PAGE_SIZE<<3), but greater than 256.
209  */
210 
211 typedef unsigned int kmem_bufctl_t;
212 #define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
213 #define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
214 #define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
215 #define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
216 
217 /*
218  * struct slab
219  *
220  * Manages the objs in a slab. Placed either at the beginning of mem allocated
221  * for a slab, or allocated from an general cache.
222  * Slabs are chained into three list: fully used, partial, fully free slabs.
223  */
224 struct slab {
225 	struct list_head list;
226 	unsigned long colouroff;
227 	void *s_mem;		/* including colour offset */
228 	unsigned int inuse;	/* num of objs active in slab */
229 	kmem_bufctl_t free;
230 	unsigned short nodeid;
231 };
232 
233 /*
234  * struct slab_rcu
235  *
236  * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
237  * arrange for kmem_freepages to be called via RCU.  This is useful if
238  * we need to approach a kernel structure obliquely, from its address
239  * obtained without the usual locking.  We can lock the structure to
240  * stabilize it and check it's still at the given address, only if we
241  * can be sure that the memory has not been meanwhile reused for some
242  * other kind of object (which our subsystem's lock might corrupt).
243  *
244  * rcu_read_lock before reading the address, then rcu_read_unlock after
245  * taking the spinlock within the structure expected at that address.
246  *
247  * We assume struct slab_rcu can overlay struct slab when destroying.
248  */
249 struct slab_rcu {
250 	struct rcu_head head;
251 	struct kmem_cache *cachep;
252 	void *addr;
253 };
254 
255 /*
256  * struct array_cache
257  *
258  * Purpose:
259  * - LIFO ordering, to hand out cache-warm objects from _alloc
260  * - reduce the number of linked list operations
261  * - reduce spinlock operations
262  *
263  * The limit is stored in the per-cpu structure to reduce the data cache
264  * footprint.
265  *
266  */
267 struct array_cache {
268 	unsigned int avail;
269 	unsigned int limit;
270 	unsigned int batchcount;
271 	unsigned int touched;
272 	spinlock_t lock;
273 	void *entry[];	/*
274 			 * Must have this definition in here for the proper
275 			 * alignment of array_cache. Also simplifies accessing
276 			 * the entries.
277 			 */
278 };
279 
280 /*
281  * bootstrap: The caches do not work without cpuarrays anymore, but the
282  * cpuarrays are allocated from the generic caches...
283  */
284 #define BOOT_CPUCACHE_ENTRIES	1
285 struct arraycache_init {
286 	struct array_cache cache;
287 	void *entries[BOOT_CPUCACHE_ENTRIES];
288 };
289 
290 /*
291  * The slab lists for all objects.
292  */
293 struct kmem_list3 {
294 	struct list_head slabs_partial;	/* partial list first, better asm code */
295 	struct list_head slabs_full;
296 	struct list_head slabs_free;
297 	unsigned long free_objects;
298 	unsigned int free_limit;
299 	unsigned int colour_next;	/* Per-node cache coloring */
300 	spinlock_t list_lock;
301 	struct array_cache *shared;	/* shared per node */
302 	struct array_cache **alien;	/* on other nodes */
303 	unsigned long next_reap;	/* updated without locking */
304 	int free_touched;		/* updated without locking */
305 };
306 
307 /*
308  * Need this for bootstrapping a per node allocator.
309  */
310 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
311 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
312 #define	CACHE_CACHE 0
313 #define	SIZE_AC MAX_NUMNODES
314 #define	SIZE_L3 (2 * MAX_NUMNODES)
315 
316 static int drain_freelist(struct kmem_cache *cache,
317 			struct kmem_list3 *l3, int tofree);
318 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
319 			int node);
320 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
321 static void cache_reap(struct work_struct *unused);
322 
323 /*
324  * This function must be completely optimized away if a constant is passed to
325  * it.  Mostly the same as what is in linux/slab.h except it returns an index.
326  */
327 static __always_inline int index_of(const size_t size)
328 {
329 	extern void __bad_size(void);
330 
331 	if (__builtin_constant_p(size)) {
332 		int i = 0;
333 
334 #define CACHE(x) \
335 	if (size <=x) \
336 		return i; \
337 	else \
338 		i++;
339 #include <linux/kmalloc_sizes.h>
340 #undef CACHE
341 		__bad_size();
342 	} else
343 		__bad_size();
344 	return 0;
345 }
346 
347 static int slab_early_init = 1;
348 
349 #define INDEX_AC index_of(sizeof(struct arraycache_init))
350 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
351 
352 static void kmem_list3_init(struct kmem_list3 *parent)
353 {
354 	INIT_LIST_HEAD(&parent->slabs_full);
355 	INIT_LIST_HEAD(&parent->slabs_partial);
356 	INIT_LIST_HEAD(&parent->slabs_free);
357 	parent->shared = NULL;
358 	parent->alien = NULL;
359 	parent->colour_next = 0;
360 	spin_lock_init(&parent->list_lock);
361 	parent->free_objects = 0;
362 	parent->free_touched = 0;
363 }
364 
365 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
366 	do {								\
367 		INIT_LIST_HEAD(listp);					\
368 		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
369 	} while (0)
370 
371 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
372 	do {								\
373 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
374 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
375 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
376 	} while (0)
377 
378 #define CFLGS_OFF_SLAB		(0x80000000UL)
379 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
380 
381 #define BATCHREFILL_LIMIT	16
382 /*
383  * Optimization question: fewer reaps means less probability for unnessary
384  * cpucache drain/refill cycles.
385  *
386  * OTOH the cpuarrays can contain lots of objects,
387  * which could lock up otherwise freeable slabs.
388  */
389 #define REAPTIMEOUT_CPUC	(2*HZ)
390 #define REAPTIMEOUT_LIST3	(4*HZ)
391 
392 #if STATS
393 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
394 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
395 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
396 #define	STATS_INC_GROWN(x)	((x)->grown++)
397 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
398 #define	STATS_SET_HIGH(x)						\
399 	do {								\
400 		if ((x)->num_active > (x)->high_mark)			\
401 			(x)->high_mark = (x)->num_active;		\
402 	} while (0)
403 #define	STATS_INC_ERR(x)	((x)->errors++)
404 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
405 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
406 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
407 #define	STATS_SET_FREEABLE(x, i)					\
408 	do {								\
409 		if ((x)->max_freeable < i)				\
410 			(x)->max_freeable = i;				\
411 	} while (0)
412 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
413 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
414 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
415 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
416 #else
417 #define	STATS_INC_ACTIVE(x)	do { } while (0)
418 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
419 #define	STATS_INC_ALLOCED(x)	do { } while (0)
420 #define	STATS_INC_GROWN(x)	do { } while (0)
421 #define	STATS_ADD_REAPED(x,y)	do { } while (0)
422 #define	STATS_SET_HIGH(x)	do { } while (0)
423 #define	STATS_INC_ERR(x)	do { } while (0)
424 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
425 #define	STATS_INC_NODEFREES(x)	do { } while (0)
426 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
427 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
428 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
429 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
430 #define STATS_INC_FREEHIT(x)	do { } while (0)
431 #define STATS_INC_FREEMISS(x)	do { } while (0)
432 #endif
433 
434 #if DEBUG
435 
436 /*
437  * memory layout of objects:
438  * 0		: objp
439  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
440  * 		the end of an object is aligned with the end of the real
441  * 		allocation. Catches writes behind the end of the allocation.
442  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
443  * 		redzone word.
444  * cachep->obj_offset: The real object.
445  * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
446  * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
447  *					[BYTES_PER_WORD long]
448  */
449 static int obj_offset(struct kmem_cache *cachep)
450 {
451 	return cachep->obj_offset;
452 }
453 
454 static int obj_size(struct kmem_cache *cachep)
455 {
456 	return cachep->obj_size;
457 }
458 
459 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
460 {
461 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
462 	return (unsigned long long*) (objp + obj_offset(cachep) -
463 				      sizeof(unsigned long long));
464 }
465 
466 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
467 {
468 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
469 	if (cachep->flags & SLAB_STORE_USER)
470 		return (unsigned long long *)(objp + cachep->buffer_size -
471 					      sizeof(unsigned long long) -
472 					      REDZONE_ALIGN);
473 	return (unsigned long long *) (objp + cachep->buffer_size -
474 				       sizeof(unsigned long long));
475 }
476 
477 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
478 {
479 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
480 	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
481 }
482 
483 #else
484 
485 #define obj_offset(x)			0
486 #define obj_size(cachep)		(cachep->buffer_size)
487 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
488 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
489 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
490 
491 #endif
492 
493 #ifdef CONFIG_TRACING
494 size_t slab_buffer_size(struct kmem_cache *cachep)
495 {
496 	return cachep->buffer_size;
497 }
498 EXPORT_SYMBOL(slab_buffer_size);
499 #endif
500 
501 /*
502  * Do not go above this order unless 0 objects fit into the slab.
503  */
504 #define	BREAK_GFP_ORDER_HI	1
505 #define	BREAK_GFP_ORDER_LO	0
506 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
507 
508 /*
509  * Functions for storing/retrieving the cachep and or slab from the page
510  * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
511  * these are used to find the cache which an obj belongs to.
512  */
513 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
514 {
515 	page->lru.next = (struct list_head *)cache;
516 }
517 
518 static inline struct kmem_cache *page_get_cache(struct page *page)
519 {
520 	page = compound_head(page);
521 	BUG_ON(!PageSlab(page));
522 	return (struct kmem_cache *)page->lru.next;
523 }
524 
525 static inline void page_set_slab(struct page *page, struct slab *slab)
526 {
527 	page->lru.prev = (struct list_head *)slab;
528 }
529 
530 static inline struct slab *page_get_slab(struct page *page)
531 {
532 	BUG_ON(!PageSlab(page));
533 	return (struct slab *)page->lru.prev;
534 }
535 
536 static inline struct kmem_cache *virt_to_cache(const void *obj)
537 {
538 	struct page *page = virt_to_head_page(obj);
539 	return page_get_cache(page);
540 }
541 
542 static inline struct slab *virt_to_slab(const void *obj)
543 {
544 	struct page *page = virt_to_head_page(obj);
545 	return page_get_slab(page);
546 }
547 
548 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
549 				 unsigned int idx)
550 {
551 	return slab->s_mem + cache->buffer_size * idx;
552 }
553 
554 /*
555  * We want to avoid an expensive divide : (offset / cache->buffer_size)
556  *   Using the fact that buffer_size is a constant for a particular cache,
557  *   we can replace (offset / cache->buffer_size) by
558  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
559  */
560 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
561 					const struct slab *slab, void *obj)
562 {
563 	u32 offset = (obj - slab->s_mem);
564 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
565 }
566 
567 /*
568  * These are the default caches for kmalloc. Custom caches can have other sizes.
569  */
570 struct cache_sizes malloc_sizes[] = {
571 #define CACHE(x) { .cs_size = (x) },
572 #include <linux/kmalloc_sizes.h>
573 	CACHE(ULONG_MAX)
574 #undef CACHE
575 };
576 EXPORT_SYMBOL(malloc_sizes);
577 
578 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
579 struct cache_names {
580 	char *name;
581 	char *name_dma;
582 };
583 
584 static struct cache_names __initdata cache_names[] = {
585 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
586 #include <linux/kmalloc_sizes.h>
587 	{NULL,}
588 #undef CACHE
589 };
590 
591 static struct arraycache_init initarray_cache __initdata =
592     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
593 static struct arraycache_init initarray_generic =
594     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
595 
596 /* internal cache of cache description objs */
597 static struct kmem_cache cache_cache = {
598 	.batchcount = 1,
599 	.limit = BOOT_CPUCACHE_ENTRIES,
600 	.shared = 1,
601 	.buffer_size = sizeof(struct kmem_cache),
602 	.name = "kmem_cache",
603 };
604 
605 #define BAD_ALIEN_MAGIC 0x01020304ul
606 
607 /*
608  * chicken and egg problem: delay the per-cpu array allocation
609  * until the general caches are up.
610  */
611 static enum {
612 	NONE,
613 	PARTIAL_AC,
614 	PARTIAL_L3,
615 	EARLY,
616 	FULL
617 } g_cpucache_up;
618 
619 /*
620  * used by boot code to determine if it can use slab based allocator
621  */
622 int slab_is_available(void)
623 {
624 	return g_cpucache_up >= EARLY;
625 }
626 
627 #ifdef CONFIG_LOCKDEP
628 
629 /*
630  * Slab sometimes uses the kmalloc slabs to store the slab headers
631  * for other slabs "off slab".
632  * The locking for this is tricky in that it nests within the locks
633  * of all other slabs in a few places; to deal with this special
634  * locking we put on-slab caches into a separate lock-class.
635  *
636  * We set lock class for alien array caches which are up during init.
637  * The lock annotation will be lost if all cpus of a node goes down and
638  * then comes back up during hotplug
639  */
640 static struct lock_class_key on_slab_l3_key;
641 static struct lock_class_key on_slab_alc_key;
642 
643 static void init_node_lock_keys(int q)
644 {
645 	struct cache_sizes *s = malloc_sizes;
646 
647 	if (g_cpucache_up != FULL)
648 		return;
649 
650 	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
651 		struct array_cache **alc;
652 		struct kmem_list3 *l3;
653 		int r;
654 
655 		l3 = s->cs_cachep->nodelists[q];
656 		if (!l3 || OFF_SLAB(s->cs_cachep))
657 			continue;
658 		lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
659 		alc = l3->alien;
660 		/*
661 		 * FIXME: This check for BAD_ALIEN_MAGIC
662 		 * should go away when common slab code is taught to
663 		 * work even without alien caches.
664 		 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
665 		 * for alloc_alien_cache,
666 		 */
667 		if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
668 			continue;
669 		for_each_node(r) {
670 			if (alc[r])
671 				lockdep_set_class(&alc[r]->lock,
672 					&on_slab_alc_key);
673 		}
674 	}
675 }
676 
677 static inline void init_lock_keys(void)
678 {
679 	int node;
680 
681 	for_each_node(node)
682 		init_node_lock_keys(node);
683 }
684 #else
685 static void init_node_lock_keys(int q)
686 {
687 }
688 
689 static inline void init_lock_keys(void)
690 {
691 }
692 #endif
693 
694 /*
695  * Guard access to the cache-chain.
696  */
697 static DEFINE_MUTEX(cache_chain_mutex);
698 static struct list_head cache_chain;
699 
700 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
701 
702 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
703 {
704 	return cachep->array[smp_processor_id()];
705 }
706 
707 static inline struct kmem_cache *__find_general_cachep(size_t size,
708 							gfp_t gfpflags)
709 {
710 	struct cache_sizes *csizep = malloc_sizes;
711 
712 #if DEBUG
713 	/* This happens if someone tries to call
714 	 * kmem_cache_create(), or __kmalloc(), before
715 	 * the generic caches are initialized.
716 	 */
717 	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
718 #endif
719 	if (!size)
720 		return ZERO_SIZE_PTR;
721 
722 	while (size > csizep->cs_size)
723 		csizep++;
724 
725 	/*
726 	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
727 	 * has cs_{dma,}cachep==NULL. Thus no special case
728 	 * for large kmalloc calls required.
729 	 */
730 #ifdef CONFIG_ZONE_DMA
731 	if (unlikely(gfpflags & GFP_DMA))
732 		return csizep->cs_dmacachep;
733 #endif
734 	return csizep->cs_cachep;
735 }
736 
737 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
738 {
739 	return __find_general_cachep(size, gfpflags);
740 }
741 
742 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
743 {
744 	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
745 }
746 
747 /*
748  * Calculate the number of objects and left-over bytes for a given buffer size.
749  */
750 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
751 			   size_t align, int flags, size_t *left_over,
752 			   unsigned int *num)
753 {
754 	int nr_objs;
755 	size_t mgmt_size;
756 	size_t slab_size = PAGE_SIZE << gfporder;
757 
758 	/*
759 	 * The slab management structure can be either off the slab or
760 	 * on it. For the latter case, the memory allocated for a
761 	 * slab is used for:
762 	 *
763 	 * - The struct slab
764 	 * - One kmem_bufctl_t for each object
765 	 * - Padding to respect alignment of @align
766 	 * - @buffer_size bytes for each object
767 	 *
768 	 * If the slab management structure is off the slab, then the
769 	 * alignment will already be calculated into the size. Because
770 	 * the slabs are all pages aligned, the objects will be at the
771 	 * correct alignment when allocated.
772 	 */
773 	if (flags & CFLGS_OFF_SLAB) {
774 		mgmt_size = 0;
775 		nr_objs = slab_size / buffer_size;
776 
777 		if (nr_objs > SLAB_LIMIT)
778 			nr_objs = SLAB_LIMIT;
779 	} else {
780 		/*
781 		 * Ignore padding for the initial guess. The padding
782 		 * is at most @align-1 bytes, and @buffer_size is at
783 		 * least @align. In the worst case, this result will
784 		 * be one greater than the number of objects that fit
785 		 * into the memory allocation when taking the padding
786 		 * into account.
787 		 */
788 		nr_objs = (slab_size - sizeof(struct slab)) /
789 			  (buffer_size + sizeof(kmem_bufctl_t));
790 
791 		/*
792 		 * This calculated number will be either the right
793 		 * amount, or one greater than what we want.
794 		 */
795 		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
796 		       > slab_size)
797 			nr_objs--;
798 
799 		if (nr_objs > SLAB_LIMIT)
800 			nr_objs = SLAB_LIMIT;
801 
802 		mgmt_size = slab_mgmt_size(nr_objs, align);
803 	}
804 	*num = nr_objs;
805 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
806 }
807 
808 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
809 
810 static void __slab_error(const char *function, struct kmem_cache *cachep,
811 			char *msg)
812 {
813 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
814 	       function, cachep->name, msg);
815 	dump_stack();
816 }
817 
818 /*
819  * By default on NUMA we use alien caches to stage the freeing of
820  * objects allocated from other nodes. This causes massive memory
821  * inefficiencies when using fake NUMA setup to split memory into a
822  * large number of small nodes, so it can be disabled on the command
823  * line
824   */
825 
826 static int use_alien_caches __read_mostly = 1;
827 static int __init noaliencache_setup(char *s)
828 {
829 	use_alien_caches = 0;
830 	return 1;
831 }
832 __setup("noaliencache", noaliencache_setup);
833 
834 #ifdef CONFIG_NUMA
835 /*
836  * Special reaping functions for NUMA systems called from cache_reap().
837  * These take care of doing round robin flushing of alien caches (containing
838  * objects freed on different nodes from which they were allocated) and the
839  * flushing of remote pcps by calling drain_node_pages.
840  */
841 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
842 
843 static void init_reap_node(int cpu)
844 {
845 	int node;
846 
847 	node = next_node(cpu_to_node(cpu), node_online_map);
848 	if (node == MAX_NUMNODES)
849 		node = first_node(node_online_map);
850 
851 	per_cpu(slab_reap_node, cpu) = node;
852 }
853 
854 static void next_reap_node(void)
855 {
856 	int node = __get_cpu_var(slab_reap_node);
857 
858 	node = next_node(node, node_online_map);
859 	if (unlikely(node >= MAX_NUMNODES))
860 		node = first_node(node_online_map);
861 	__get_cpu_var(slab_reap_node) = node;
862 }
863 
864 #else
865 #define init_reap_node(cpu) do { } while (0)
866 #define next_reap_node(void) do { } while (0)
867 #endif
868 
869 /*
870  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
871  * via the workqueue/eventd.
872  * Add the CPU number into the expiration time to minimize the possibility of
873  * the CPUs getting into lockstep and contending for the global cache chain
874  * lock.
875  */
876 static void __cpuinit start_cpu_timer(int cpu)
877 {
878 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
879 
880 	/*
881 	 * When this gets called from do_initcalls via cpucache_init(),
882 	 * init_workqueues() has already run, so keventd will be setup
883 	 * at that time.
884 	 */
885 	if (keventd_up() && reap_work->work.func == NULL) {
886 		init_reap_node(cpu);
887 		INIT_DELAYED_WORK(reap_work, cache_reap);
888 		schedule_delayed_work_on(cpu, reap_work,
889 					__round_jiffies_relative(HZ, cpu));
890 	}
891 }
892 
893 static struct array_cache *alloc_arraycache(int node, int entries,
894 					    int batchcount, gfp_t gfp)
895 {
896 	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
897 	struct array_cache *nc = NULL;
898 
899 	nc = kmalloc_node(memsize, gfp, node);
900 	/*
901 	 * The array_cache structures contain pointers to free object.
902 	 * However, when such objects are allocated or transfered to another
903 	 * cache the pointers are not cleared and they could be counted as
904 	 * valid references during a kmemleak scan. Therefore, kmemleak must
905 	 * not scan such objects.
906 	 */
907 	kmemleak_no_scan(nc);
908 	if (nc) {
909 		nc->avail = 0;
910 		nc->limit = entries;
911 		nc->batchcount = batchcount;
912 		nc->touched = 0;
913 		spin_lock_init(&nc->lock);
914 	}
915 	return nc;
916 }
917 
918 /*
919  * Transfer objects in one arraycache to another.
920  * Locking must be handled by the caller.
921  *
922  * Return the number of entries transferred.
923  */
924 static int transfer_objects(struct array_cache *to,
925 		struct array_cache *from, unsigned int max)
926 {
927 	/* Figure out how many entries to transfer */
928 	int nr = min(min(from->avail, max), to->limit - to->avail);
929 
930 	if (!nr)
931 		return 0;
932 
933 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
934 			sizeof(void *) *nr);
935 
936 	from->avail -= nr;
937 	to->avail += nr;
938 	to->touched = 1;
939 	return nr;
940 }
941 
942 #ifndef CONFIG_NUMA
943 
944 #define drain_alien_cache(cachep, alien) do { } while (0)
945 #define reap_alien(cachep, l3) do { } while (0)
946 
947 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
948 {
949 	return (struct array_cache **)BAD_ALIEN_MAGIC;
950 }
951 
952 static inline void free_alien_cache(struct array_cache **ac_ptr)
953 {
954 }
955 
956 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
957 {
958 	return 0;
959 }
960 
961 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
962 		gfp_t flags)
963 {
964 	return NULL;
965 }
966 
967 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
968 		 gfp_t flags, int nodeid)
969 {
970 	return NULL;
971 }
972 
973 #else	/* CONFIG_NUMA */
974 
975 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
976 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
977 
978 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
979 {
980 	struct array_cache **ac_ptr;
981 	int memsize = sizeof(void *) * nr_node_ids;
982 	int i;
983 
984 	if (limit > 1)
985 		limit = 12;
986 	ac_ptr = kmalloc_node(memsize, gfp, node);
987 	if (ac_ptr) {
988 		for_each_node(i) {
989 			if (i == node || !node_online(i)) {
990 				ac_ptr[i] = NULL;
991 				continue;
992 			}
993 			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
994 			if (!ac_ptr[i]) {
995 				for (i--; i >= 0; i--)
996 					kfree(ac_ptr[i]);
997 				kfree(ac_ptr);
998 				return NULL;
999 			}
1000 		}
1001 	}
1002 	return ac_ptr;
1003 }
1004 
1005 static void free_alien_cache(struct array_cache **ac_ptr)
1006 {
1007 	int i;
1008 
1009 	if (!ac_ptr)
1010 		return;
1011 	for_each_node(i)
1012 	    kfree(ac_ptr[i]);
1013 	kfree(ac_ptr);
1014 }
1015 
1016 static void __drain_alien_cache(struct kmem_cache *cachep,
1017 				struct array_cache *ac, int node)
1018 {
1019 	struct kmem_list3 *rl3 = cachep->nodelists[node];
1020 
1021 	if (ac->avail) {
1022 		spin_lock(&rl3->list_lock);
1023 		/*
1024 		 * Stuff objects into the remote nodes shared array first.
1025 		 * That way we could avoid the overhead of putting the objects
1026 		 * into the free lists and getting them back later.
1027 		 */
1028 		if (rl3->shared)
1029 			transfer_objects(rl3->shared, ac, ac->limit);
1030 
1031 		free_block(cachep, ac->entry, ac->avail, node);
1032 		ac->avail = 0;
1033 		spin_unlock(&rl3->list_lock);
1034 	}
1035 }
1036 
1037 /*
1038  * Called from cache_reap() to regularly drain alien caches round robin.
1039  */
1040 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1041 {
1042 	int node = __get_cpu_var(slab_reap_node);
1043 
1044 	if (l3->alien) {
1045 		struct array_cache *ac = l3->alien[node];
1046 
1047 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1048 			__drain_alien_cache(cachep, ac, node);
1049 			spin_unlock_irq(&ac->lock);
1050 		}
1051 	}
1052 }
1053 
1054 static void drain_alien_cache(struct kmem_cache *cachep,
1055 				struct array_cache **alien)
1056 {
1057 	int i = 0;
1058 	struct array_cache *ac;
1059 	unsigned long flags;
1060 
1061 	for_each_online_node(i) {
1062 		ac = alien[i];
1063 		if (ac) {
1064 			spin_lock_irqsave(&ac->lock, flags);
1065 			__drain_alien_cache(cachep, ac, i);
1066 			spin_unlock_irqrestore(&ac->lock, flags);
1067 		}
1068 	}
1069 }
1070 
1071 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1072 {
1073 	struct slab *slabp = virt_to_slab(objp);
1074 	int nodeid = slabp->nodeid;
1075 	struct kmem_list3 *l3;
1076 	struct array_cache *alien = NULL;
1077 	int node;
1078 
1079 	node = numa_node_id();
1080 
1081 	/*
1082 	 * Make sure we are not freeing a object from another node to the array
1083 	 * cache on this cpu.
1084 	 */
1085 	if (likely(slabp->nodeid == node))
1086 		return 0;
1087 
1088 	l3 = cachep->nodelists[node];
1089 	STATS_INC_NODEFREES(cachep);
1090 	if (l3->alien && l3->alien[nodeid]) {
1091 		alien = l3->alien[nodeid];
1092 		spin_lock(&alien->lock);
1093 		if (unlikely(alien->avail == alien->limit)) {
1094 			STATS_INC_ACOVERFLOW(cachep);
1095 			__drain_alien_cache(cachep, alien, nodeid);
1096 		}
1097 		alien->entry[alien->avail++] = objp;
1098 		spin_unlock(&alien->lock);
1099 	} else {
1100 		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1101 		free_block(cachep, &objp, 1, nodeid);
1102 		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1103 	}
1104 	return 1;
1105 }
1106 #endif
1107 
1108 static void __cpuinit cpuup_canceled(long cpu)
1109 {
1110 	struct kmem_cache *cachep;
1111 	struct kmem_list3 *l3 = NULL;
1112 	int node = cpu_to_node(cpu);
1113 	const struct cpumask *mask = cpumask_of_node(node);
1114 
1115 	list_for_each_entry(cachep, &cache_chain, next) {
1116 		struct array_cache *nc;
1117 		struct array_cache *shared;
1118 		struct array_cache **alien;
1119 
1120 		/* cpu is dead; no one can alloc from it. */
1121 		nc = cachep->array[cpu];
1122 		cachep->array[cpu] = NULL;
1123 		l3 = cachep->nodelists[node];
1124 
1125 		if (!l3)
1126 			goto free_array_cache;
1127 
1128 		spin_lock_irq(&l3->list_lock);
1129 
1130 		/* Free limit for this kmem_list3 */
1131 		l3->free_limit -= cachep->batchcount;
1132 		if (nc)
1133 			free_block(cachep, nc->entry, nc->avail, node);
1134 
1135 		if (!cpumask_empty(mask)) {
1136 			spin_unlock_irq(&l3->list_lock);
1137 			goto free_array_cache;
1138 		}
1139 
1140 		shared = l3->shared;
1141 		if (shared) {
1142 			free_block(cachep, shared->entry,
1143 				   shared->avail, node);
1144 			l3->shared = NULL;
1145 		}
1146 
1147 		alien = l3->alien;
1148 		l3->alien = NULL;
1149 
1150 		spin_unlock_irq(&l3->list_lock);
1151 
1152 		kfree(shared);
1153 		if (alien) {
1154 			drain_alien_cache(cachep, alien);
1155 			free_alien_cache(alien);
1156 		}
1157 free_array_cache:
1158 		kfree(nc);
1159 	}
1160 	/*
1161 	 * In the previous loop, all the objects were freed to
1162 	 * the respective cache's slabs,  now we can go ahead and
1163 	 * shrink each nodelist to its limit.
1164 	 */
1165 	list_for_each_entry(cachep, &cache_chain, next) {
1166 		l3 = cachep->nodelists[node];
1167 		if (!l3)
1168 			continue;
1169 		drain_freelist(cachep, l3, l3->free_objects);
1170 	}
1171 }
1172 
1173 static int __cpuinit cpuup_prepare(long cpu)
1174 {
1175 	struct kmem_cache *cachep;
1176 	struct kmem_list3 *l3 = NULL;
1177 	int node = cpu_to_node(cpu);
1178 	const int memsize = sizeof(struct kmem_list3);
1179 
1180 	/*
1181 	 * We need to do this right in the beginning since
1182 	 * alloc_arraycache's are going to use this list.
1183 	 * kmalloc_node allows us to add the slab to the right
1184 	 * kmem_list3 and not this cpu's kmem_list3
1185 	 */
1186 
1187 	list_for_each_entry(cachep, &cache_chain, next) {
1188 		/*
1189 		 * Set up the size64 kmemlist for cpu before we can
1190 		 * begin anything. Make sure some other cpu on this
1191 		 * node has not already allocated this
1192 		 */
1193 		if (!cachep->nodelists[node]) {
1194 			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1195 			if (!l3)
1196 				goto bad;
1197 			kmem_list3_init(l3);
1198 			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1199 			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1200 
1201 			/*
1202 			 * The l3s don't come and go as CPUs come and
1203 			 * go.  cache_chain_mutex is sufficient
1204 			 * protection here.
1205 			 */
1206 			cachep->nodelists[node] = l3;
1207 		}
1208 
1209 		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1210 		cachep->nodelists[node]->free_limit =
1211 			(1 + nr_cpus_node(node)) *
1212 			cachep->batchcount + cachep->num;
1213 		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1214 	}
1215 
1216 	/*
1217 	 * Now we can go ahead with allocating the shared arrays and
1218 	 * array caches
1219 	 */
1220 	list_for_each_entry(cachep, &cache_chain, next) {
1221 		struct array_cache *nc;
1222 		struct array_cache *shared = NULL;
1223 		struct array_cache **alien = NULL;
1224 
1225 		nc = alloc_arraycache(node, cachep->limit,
1226 					cachep->batchcount, GFP_KERNEL);
1227 		if (!nc)
1228 			goto bad;
1229 		if (cachep->shared) {
1230 			shared = alloc_arraycache(node,
1231 				cachep->shared * cachep->batchcount,
1232 				0xbaadf00d, GFP_KERNEL);
1233 			if (!shared) {
1234 				kfree(nc);
1235 				goto bad;
1236 			}
1237 		}
1238 		if (use_alien_caches) {
1239 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1240 			if (!alien) {
1241 				kfree(shared);
1242 				kfree(nc);
1243 				goto bad;
1244 			}
1245 		}
1246 		cachep->array[cpu] = nc;
1247 		l3 = cachep->nodelists[node];
1248 		BUG_ON(!l3);
1249 
1250 		spin_lock_irq(&l3->list_lock);
1251 		if (!l3->shared) {
1252 			/*
1253 			 * We are serialised from CPU_DEAD or
1254 			 * CPU_UP_CANCELLED by the cpucontrol lock
1255 			 */
1256 			l3->shared = shared;
1257 			shared = NULL;
1258 		}
1259 #ifdef CONFIG_NUMA
1260 		if (!l3->alien) {
1261 			l3->alien = alien;
1262 			alien = NULL;
1263 		}
1264 #endif
1265 		spin_unlock_irq(&l3->list_lock);
1266 		kfree(shared);
1267 		free_alien_cache(alien);
1268 	}
1269 	init_node_lock_keys(node);
1270 
1271 	return 0;
1272 bad:
1273 	cpuup_canceled(cpu);
1274 	return -ENOMEM;
1275 }
1276 
1277 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1278 				    unsigned long action, void *hcpu)
1279 {
1280 	long cpu = (long)hcpu;
1281 	int err = 0;
1282 
1283 	switch (action) {
1284 	case CPU_UP_PREPARE:
1285 	case CPU_UP_PREPARE_FROZEN:
1286 		mutex_lock(&cache_chain_mutex);
1287 		err = cpuup_prepare(cpu);
1288 		mutex_unlock(&cache_chain_mutex);
1289 		break;
1290 	case CPU_ONLINE:
1291 	case CPU_ONLINE_FROZEN:
1292 		start_cpu_timer(cpu);
1293 		break;
1294 #ifdef CONFIG_HOTPLUG_CPU
1295   	case CPU_DOWN_PREPARE:
1296   	case CPU_DOWN_PREPARE_FROZEN:
1297 		/*
1298 		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1299 		 * held so that if cache_reap() is invoked it cannot do
1300 		 * anything expensive but will only modify reap_work
1301 		 * and reschedule the timer.
1302 		*/
1303 		cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
1304 		/* Now the cache_reaper is guaranteed to be not running. */
1305 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1306   		break;
1307   	case CPU_DOWN_FAILED:
1308   	case CPU_DOWN_FAILED_FROZEN:
1309 		start_cpu_timer(cpu);
1310   		break;
1311 	case CPU_DEAD:
1312 	case CPU_DEAD_FROZEN:
1313 		/*
1314 		 * Even if all the cpus of a node are down, we don't free the
1315 		 * kmem_list3 of any cache. This to avoid a race between
1316 		 * cpu_down, and a kmalloc allocation from another cpu for
1317 		 * memory from the node of the cpu going down.  The list3
1318 		 * structure is usually allocated from kmem_cache_create() and
1319 		 * gets destroyed at kmem_cache_destroy().
1320 		 */
1321 		/* fall through */
1322 #endif
1323 	case CPU_UP_CANCELED:
1324 	case CPU_UP_CANCELED_FROZEN:
1325 		mutex_lock(&cache_chain_mutex);
1326 		cpuup_canceled(cpu);
1327 		mutex_unlock(&cache_chain_mutex);
1328 		break;
1329 	}
1330 	return err ? NOTIFY_BAD : NOTIFY_OK;
1331 }
1332 
1333 static struct notifier_block __cpuinitdata cpucache_notifier = {
1334 	&cpuup_callback, NULL, 0
1335 };
1336 
1337 /*
1338  * swap the static kmem_list3 with kmalloced memory
1339  */
1340 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1341 			int nodeid)
1342 {
1343 	struct kmem_list3 *ptr;
1344 
1345 	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1346 	BUG_ON(!ptr);
1347 
1348 	memcpy(ptr, list, sizeof(struct kmem_list3));
1349 	/*
1350 	 * Do not assume that spinlocks can be initialized via memcpy:
1351 	 */
1352 	spin_lock_init(&ptr->list_lock);
1353 
1354 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1355 	cachep->nodelists[nodeid] = ptr;
1356 }
1357 
1358 /*
1359  * For setting up all the kmem_list3s for cache whose buffer_size is same as
1360  * size of kmem_list3.
1361  */
1362 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1363 {
1364 	int node;
1365 
1366 	for_each_online_node(node) {
1367 		cachep->nodelists[node] = &initkmem_list3[index + node];
1368 		cachep->nodelists[node]->next_reap = jiffies +
1369 		    REAPTIMEOUT_LIST3 +
1370 		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1371 	}
1372 }
1373 
1374 /*
1375  * Initialisation.  Called after the page allocator have been initialised and
1376  * before smp_init().
1377  */
1378 void __init kmem_cache_init(void)
1379 {
1380 	size_t left_over;
1381 	struct cache_sizes *sizes;
1382 	struct cache_names *names;
1383 	int i;
1384 	int order;
1385 	int node;
1386 
1387 	if (num_possible_nodes() == 1)
1388 		use_alien_caches = 0;
1389 
1390 	for (i = 0; i < NUM_INIT_LISTS; i++) {
1391 		kmem_list3_init(&initkmem_list3[i]);
1392 		if (i < MAX_NUMNODES)
1393 			cache_cache.nodelists[i] = NULL;
1394 	}
1395 	set_up_list3s(&cache_cache, CACHE_CACHE);
1396 
1397 	/*
1398 	 * Fragmentation resistance on low memory - only use bigger
1399 	 * page orders on machines with more than 32MB of memory.
1400 	 */
1401 	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1402 		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1403 
1404 	/* Bootstrap is tricky, because several objects are allocated
1405 	 * from caches that do not exist yet:
1406 	 * 1) initialize the cache_cache cache: it contains the struct
1407 	 *    kmem_cache structures of all caches, except cache_cache itself:
1408 	 *    cache_cache is statically allocated.
1409 	 *    Initially an __init data area is used for the head array and the
1410 	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1411 	 *    array at the end of the bootstrap.
1412 	 * 2) Create the first kmalloc cache.
1413 	 *    The struct kmem_cache for the new cache is allocated normally.
1414 	 *    An __init data area is used for the head array.
1415 	 * 3) Create the remaining kmalloc caches, with minimally sized
1416 	 *    head arrays.
1417 	 * 4) Replace the __init data head arrays for cache_cache and the first
1418 	 *    kmalloc cache with kmalloc allocated arrays.
1419 	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1420 	 *    the other cache's with kmalloc allocated memory.
1421 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1422 	 */
1423 
1424 	node = numa_node_id();
1425 
1426 	/* 1) create the cache_cache */
1427 	INIT_LIST_HEAD(&cache_chain);
1428 	list_add(&cache_cache.next, &cache_chain);
1429 	cache_cache.colour_off = cache_line_size();
1430 	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1431 	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1432 
1433 	/*
1434 	 * struct kmem_cache size depends on nr_node_ids, which
1435 	 * can be less than MAX_NUMNODES.
1436 	 */
1437 	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1438 				 nr_node_ids * sizeof(struct kmem_list3 *);
1439 #if DEBUG
1440 	cache_cache.obj_size = cache_cache.buffer_size;
1441 #endif
1442 	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1443 					cache_line_size());
1444 	cache_cache.reciprocal_buffer_size =
1445 		reciprocal_value(cache_cache.buffer_size);
1446 
1447 	for (order = 0; order < MAX_ORDER; order++) {
1448 		cache_estimate(order, cache_cache.buffer_size,
1449 			cache_line_size(), 0, &left_over, &cache_cache.num);
1450 		if (cache_cache.num)
1451 			break;
1452 	}
1453 	BUG_ON(!cache_cache.num);
1454 	cache_cache.gfporder = order;
1455 	cache_cache.colour = left_over / cache_cache.colour_off;
1456 	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1457 				      sizeof(struct slab), cache_line_size());
1458 
1459 	/* 2+3) create the kmalloc caches */
1460 	sizes = malloc_sizes;
1461 	names = cache_names;
1462 
1463 	/*
1464 	 * Initialize the caches that provide memory for the array cache and the
1465 	 * kmem_list3 structures first.  Without this, further allocations will
1466 	 * bug.
1467 	 */
1468 
1469 	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1470 					sizes[INDEX_AC].cs_size,
1471 					ARCH_KMALLOC_MINALIGN,
1472 					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1473 					NULL);
1474 
1475 	if (INDEX_AC != INDEX_L3) {
1476 		sizes[INDEX_L3].cs_cachep =
1477 			kmem_cache_create(names[INDEX_L3].name,
1478 				sizes[INDEX_L3].cs_size,
1479 				ARCH_KMALLOC_MINALIGN,
1480 				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1481 				NULL);
1482 	}
1483 
1484 	slab_early_init = 0;
1485 
1486 	while (sizes->cs_size != ULONG_MAX) {
1487 		/*
1488 		 * For performance, all the general caches are L1 aligned.
1489 		 * This should be particularly beneficial on SMP boxes, as it
1490 		 * eliminates "false sharing".
1491 		 * Note for systems short on memory removing the alignment will
1492 		 * allow tighter packing of the smaller caches.
1493 		 */
1494 		if (!sizes->cs_cachep) {
1495 			sizes->cs_cachep = kmem_cache_create(names->name,
1496 					sizes->cs_size,
1497 					ARCH_KMALLOC_MINALIGN,
1498 					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1499 					NULL);
1500 		}
1501 #ifdef CONFIG_ZONE_DMA
1502 		sizes->cs_dmacachep = kmem_cache_create(
1503 					names->name_dma,
1504 					sizes->cs_size,
1505 					ARCH_KMALLOC_MINALIGN,
1506 					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1507 						SLAB_PANIC,
1508 					NULL);
1509 #endif
1510 		sizes++;
1511 		names++;
1512 	}
1513 	/* 4) Replace the bootstrap head arrays */
1514 	{
1515 		struct array_cache *ptr;
1516 
1517 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1518 
1519 		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1520 		memcpy(ptr, cpu_cache_get(&cache_cache),
1521 		       sizeof(struct arraycache_init));
1522 		/*
1523 		 * Do not assume that spinlocks can be initialized via memcpy:
1524 		 */
1525 		spin_lock_init(&ptr->lock);
1526 
1527 		cache_cache.array[smp_processor_id()] = ptr;
1528 
1529 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1530 
1531 		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1532 		       != &initarray_generic.cache);
1533 		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1534 		       sizeof(struct arraycache_init));
1535 		/*
1536 		 * Do not assume that spinlocks can be initialized via memcpy:
1537 		 */
1538 		spin_lock_init(&ptr->lock);
1539 
1540 		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1541 		    ptr;
1542 	}
1543 	/* 5) Replace the bootstrap kmem_list3's */
1544 	{
1545 		int nid;
1546 
1547 		for_each_online_node(nid) {
1548 			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1549 
1550 			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1551 				  &initkmem_list3[SIZE_AC + nid], nid);
1552 
1553 			if (INDEX_AC != INDEX_L3) {
1554 				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1555 					  &initkmem_list3[SIZE_L3 + nid], nid);
1556 			}
1557 		}
1558 	}
1559 
1560 	g_cpucache_up = EARLY;
1561 }
1562 
1563 void __init kmem_cache_init_late(void)
1564 {
1565 	struct kmem_cache *cachep;
1566 
1567 	/* 6) resize the head arrays to their final sizes */
1568 	mutex_lock(&cache_chain_mutex);
1569 	list_for_each_entry(cachep, &cache_chain, next)
1570 		if (enable_cpucache(cachep, GFP_NOWAIT))
1571 			BUG();
1572 	mutex_unlock(&cache_chain_mutex);
1573 
1574 	/* Done! */
1575 	g_cpucache_up = FULL;
1576 
1577 	/* Annotate slab for lockdep -- annotate the malloc caches */
1578 	init_lock_keys();
1579 
1580 	/*
1581 	 * Register a cpu startup notifier callback that initializes
1582 	 * cpu_cache_get for all new cpus
1583 	 */
1584 	register_cpu_notifier(&cpucache_notifier);
1585 
1586 	/*
1587 	 * The reap timers are started later, with a module init call: That part
1588 	 * of the kernel is not yet operational.
1589 	 */
1590 }
1591 
1592 static int __init cpucache_init(void)
1593 {
1594 	int cpu;
1595 
1596 	/*
1597 	 * Register the timers that return unneeded pages to the page allocator
1598 	 */
1599 	for_each_online_cpu(cpu)
1600 		start_cpu_timer(cpu);
1601 	return 0;
1602 }
1603 __initcall(cpucache_init);
1604 
1605 /*
1606  * Interface to system's page allocator. No need to hold the cache-lock.
1607  *
1608  * If we requested dmaable memory, we will get it. Even if we
1609  * did not request dmaable memory, we might get it, but that
1610  * would be relatively rare and ignorable.
1611  */
1612 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1613 {
1614 	struct page *page;
1615 	int nr_pages;
1616 	int i;
1617 
1618 #ifndef CONFIG_MMU
1619 	/*
1620 	 * Nommu uses slab's for process anonymous memory allocations, and thus
1621 	 * requires __GFP_COMP to properly refcount higher order allocations
1622 	 */
1623 	flags |= __GFP_COMP;
1624 #endif
1625 
1626 	flags |= cachep->gfpflags;
1627 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1628 		flags |= __GFP_RECLAIMABLE;
1629 
1630 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1631 	if (!page)
1632 		return NULL;
1633 
1634 	nr_pages = (1 << cachep->gfporder);
1635 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1636 		add_zone_page_state(page_zone(page),
1637 			NR_SLAB_RECLAIMABLE, nr_pages);
1638 	else
1639 		add_zone_page_state(page_zone(page),
1640 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1641 	for (i = 0; i < nr_pages; i++)
1642 		__SetPageSlab(page + i);
1643 
1644 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1645 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1646 
1647 		if (cachep->ctor)
1648 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1649 		else
1650 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1651 	}
1652 
1653 	return page_address(page);
1654 }
1655 
1656 /*
1657  * Interface to system's page release.
1658  */
1659 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1660 {
1661 	unsigned long i = (1 << cachep->gfporder);
1662 	struct page *page = virt_to_page(addr);
1663 	const unsigned long nr_freed = i;
1664 
1665 	kmemcheck_free_shadow(page, cachep->gfporder);
1666 
1667 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1668 		sub_zone_page_state(page_zone(page),
1669 				NR_SLAB_RECLAIMABLE, nr_freed);
1670 	else
1671 		sub_zone_page_state(page_zone(page),
1672 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1673 	while (i--) {
1674 		BUG_ON(!PageSlab(page));
1675 		__ClearPageSlab(page);
1676 		page++;
1677 	}
1678 	if (current->reclaim_state)
1679 		current->reclaim_state->reclaimed_slab += nr_freed;
1680 	free_pages((unsigned long)addr, cachep->gfporder);
1681 }
1682 
1683 static void kmem_rcu_free(struct rcu_head *head)
1684 {
1685 	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1686 	struct kmem_cache *cachep = slab_rcu->cachep;
1687 
1688 	kmem_freepages(cachep, slab_rcu->addr);
1689 	if (OFF_SLAB(cachep))
1690 		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1691 }
1692 
1693 #if DEBUG
1694 
1695 #ifdef CONFIG_DEBUG_PAGEALLOC
1696 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1697 			    unsigned long caller)
1698 {
1699 	int size = obj_size(cachep);
1700 
1701 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1702 
1703 	if (size < 5 * sizeof(unsigned long))
1704 		return;
1705 
1706 	*addr++ = 0x12345678;
1707 	*addr++ = caller;
1708 	*addr++ = smp_processor_id();
1709 	size -= 3 * sizeof(unsigned long);
1710 	{
1711 		unsigned long *sptr = &caller;
1712 		unsigned long svalue;
1713 
1714 		while (!kstack_end(sptr)) {
1715 			svalue = *sptr++;
1716 			if (kernel_text_address(svalue)) {
1717 				*addr++ = svalue;
1718 				size -= sizeof(unsigned long);
1719 				if (size <= sizeof(unsigned long))
1720 					break;
1721 			}
1722 		}
1723 
1724 	}
1725 	*addr++ = 0x87654321;
1726 }
1727 #endif
1728 
1729 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1730 {
1731 	int size = obj_size(cachep);
1732 	addr = &((char *)addr)[obj_offset(cachep)];
1733 
1734 	memset(addr, val, size);
1735 	*(unsigned char *)(addr + size - 1) = POISON_END;
1736 }
1737 
1738 static void dump_line(char *data, int offset, int limit)
1739 {
1740 	int i;
1741 	unsigned char error = 0;
1742 	int bad_count = 0;
1743 
1744 	printk(KERN_ERR "%03x:", offset);
1745 	for (i = 0; i < limit; i++) {
1746 		if (data[offset + i] != POISON_FREE) {
1747 			error = data[offset + i];
1748 			bad_count++;
1749 		}
1750 		printk(" %02x", (unsigned char)data[offset + i]);
1751 	}
1752 	printk("\n");
1753 
1754 	if (bad_count == 1) {
1755 		error ^= POISON_FREE;
1756 		if (!(error & (error - 1))) {
1757 			printk(KERN_ERR "Single bit error detected. Probably "
1758 					"bad RAM.\n");
1759 #ifdef CONFIG_X86
1760 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1761 					"test tool.\n");
1762 #else
1763 			printk(KERN_ERR "Run a memory test tool.\n");
1764 #endif
1765 		}
1766 	}
1767 }
1768 #endif
1769 
1770 #if DEBUG
1771 
1772 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1773 {
1774 	int i, size;
1775 	char *realobj;
1776 
1777 	if (cachep->flags & SLAB_RED_ZONE) {
1778 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1779 			*dbg_redzone1(cachep, objp),
1780 			*dbg_redzone2(cachep, objp));
1781 	}
1782 
1783 	if (cachep->flags & SLAB_STORE_USER) {
1784 		printk(KERN_ERR "Last user: [<%p>]",
1785 			*dbg_userword(cachep, objp));
1786 		print_symbol("(%s)",
1787 				(unsigned long)*dbg_userword(cachep, objp));
1788 		printk("\n");
1789 	}
1790 	realobj = (char *)objp + obj_offset(cachep);
1791 	size = obj_size(cachep);
1792 	for (i = 0; i < size && lines; i += 16, lines--) {
1793 		int limit;
1794 		limit = 16;
1795 		if (i + limit > size)
1796 			limit = size - i;
1797 		dump_line(realobj, i, limit);
1798 	}
1799 }
1800 
1801 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1802 {
1803 	char *realobj;
1804 	int size, i;
1805 	int lines = 0;
1806 
1807 	realobj = (char *)objp + obj_offset(cachep);
1808 	size = obj_size(cachep);
1809 
1810 	for (i = 0; i < size; i++) {
1811 		char exp = POISON_FREE;
1812 		if (i == size - 1)
1813 			exp = POISON_END;
1814 		if (realobj[i] != exp) {
1815 			int limit;
1816 			/* Mismatch ! */
1817 			/* Print header */
1818 			if (lines == 0) {
1819 				printk(KERN_ERR
1820 					"Slab corruption: %s start=%p, len=%d\n",
1821 					cachep->name, realobj, size);
1822 				print_objinfo(cachep, objp, 0);
1823 			}
1824 			/* Hexdump the affected line */
1825 			i = (i / 16) * 16;
1826 			limit = 16;
1827 			if (i + limit > size)
1828 				limit = size - i;
1829 			dump_line(realobj, i, limit);
1830 			i += 16;
1831 			lines++;
1832 			/* Limit to 5 lines */
1833 			if (lines > 5)
1834 				break;
1835 		}
1836 	}
1837 	if (lines != 0) {
1838 		/* Print some data about the neighboring objects, if they
1839 		 * exist:
1840 		 */
1841 		struct slab *slabp = virt_to_slab(objp);
1842 		unsigned int objnr;
1843 
1844 		objnr = obj_to_index(cachep, slabp, objp);
1845 		if (objnr) {
1846 			objp = index_to_obj(cachep, slabp, objnr - 1);
1847 			realobj = (char *)objp + obj_offset(cachep);
1848 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1849 			       realobj, size);
1850 			print_objinfo(cachep, objp, 2);
1851 		}
1852 		if (objnr + 1 < cachep->num) {
1853 			objp = index_to_obj(cachep, slabp, objnr + 1);
1854 			realobj = (char *)objp + obj_offset(cachep);
1855 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1856 			       realobj, size);
1857 			print_objinfo(cachep, objp, 2);
1858 		}
1859 	}
1860 }
1861 #endif
1862 
1863 #if DEBUG
1864 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1865 {
1866 	int i;
1867 	for (i = 0; i < cachep->num; i++) {
1868 		void *objp = index_to_obj(cachep, slabp, i);
1869 
1870 		if (cachep->flags & SLAB_POISON) {
1871 #ifdef CONFIG_DEBUG_PAGEALLOC
1872 			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1873 					OFF_SLAB(cachep))
1874 				kernel_map_pages(virt_to_page(objp),
1875 					cachep->buffer_size / PAGE_SIZE, 1);
1876 			else
1877 				check_poison_obj(cachep, objp);
1878 #else
1879 			check_poison_obj(cachep, objp);
1880 #endif
1881 		}
1882 		if (cachep->flags & SLAB_RED_ZONE) {
1883 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1884 				slab_error(cachep, "start of a freed object "
1885 					   "was overwritten");
1886 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1887 				slab_error(cachep, "end of a freed object "
1888 					   "was overwritten");
1889 		}
1890 	}
1891 }
1892 #else
1893 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1894 {
1895 }
1896 #endif
1897 
1898 /**
1899  * slab_destroy - destroy and release all objects in a slab
1900  * @cachep: cache pointer being destroyed
1901  * @slabp: slab pointer being destroyed
1902  *
1903  * Destroy all the objs in a slab, and release the mem back to the system.
1904  * Before calling the slab must have been unlinked from the cache.  The
1905  * cache-lock is not held/needed.
1906  */
1907 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1908 {
1909 	void *addr = slabp->s_mem - slabp->colouroff;
1910 
1911 	slab_destroy_debugcheck(cachep, slabp);
1912 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1913 		struct slab_rcu *slab_rcu;
1914 
1915 		slab_rcu = (struct slab_rcu *)slabp;
1916 		slab_rcu->cachep = cachep;
1917 		slab_rcu->addr = addr;
1918 		call_rcu(&slab_rcu->head, kmem_rcu_free);
1919 	} else {
1920 		kmem_freepages(cachep, addr);
1921 		if (OFF_SLAB(cachep))
1922 			kmem_cache_free(cachep->slabp_cache, slabp);
1923 	}
1924 }
1925 
1926 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1927 {
1928 	int i;
1929 	struct kmem_list3 *l3;
1930 
1931 	for_each_online_cpu(i)
1932 	    kfree(cachep->array[i]);
1933 
1934 	/* NUMA: free the list3 structures */
1935 	for_each_online_node(i) {
1936 		l3 = cachep->nodelists[i];
1937 		if (l3) {
1938 			kfree(l3->shared);
1939 			free_alien_cache(l3->alien);
1940 			kfree(l3);
1941 		}
1942 	}
1943 	kmem_cache_free(&cache_cache, cachep);
1944 }
1945 
1946 
1947 /**
1948  * calculate_slab_order - calculate size (page order) of slabs
1949  * @cachep: pointer to the cache that is being created
1950  * @size: size of objects to be created in this cache.
1951  * @align: required alignment for the objects.
1952  * @flags: slab allocation flags
1953  *
1954  * Also calculates the number of objects per slab.
1955  *
1956  * This could be made much more intelligent.  For now, try to avoid using
1957  * high order pages for slabs.  When the gfp() functions are more friendly
1958  * towards high-order requests, this should be changed.
1959  */
1960 static size_t calculate_slab_order(struct kmem_cache *cachep,
1961 			size_t size, size_t align, unsigned long flags)
1962 {
1963 	unsigned long offslab_limit;
1964 	size_t left_over = 0;
1965 	int gfporder;
1966 
1967 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1968 		unsigned int num;
1969 		size_t remainder;
1970 
1971 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1972 		if (!num)
1973 			continue;
1974 
1975 		if (flags & CFLGS_OFF_SLAB) {
1976 			/*
1977 			 * Max number of objs-per-slab for caches which
1978 			 * use off-slab slabs. Needed to avoid a possible
1979 			 * looping condition in cache_grow().
1980 			 */
1981 			offslab_limit = size - sizeof(struct slab);
1982 			offslab_limit /= sizeof(kmem_bufctl_t);
1983 
1984  			if (num > offslab_limit)
1985 				break;
1986 		}
1987 
1988 		/* Found something acceptable - save it away */
1989 		cachep->num = num;
1990 		cachep->gfporder = gfporder;
1991 		left_over = remainder;
1992 
1993 		/*
1994 		 * A VFS-reclaimable slab tends to have most allocations
1995 		 * as GFP_NOFS and we really don't want to have to be allocating
1996 		 * higher-order pages when we are unable to shrink dcache.
1997 		 */
1998 		if (flags & SLAB_RECLAIM_ACCOUNT)
1999 			break;
2000 
2001 		/*
2002 		 * Large number of objects is good, but very large slabs are
2003 		 * currently bad for the gfp()s.
2004 		 */
2005 		if (gfporder >= slab_break_gfp_order)
2006 			break;
2007 
2008 		/*
2009 		 * Acceptable internal fragmentation?
2010 		 */
2011 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2012 			break;
2013 	}
2014 	return left_over;
2015 }
2016 
2017 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2018 {
2019 	if (g_cpucache_up == FULL)
2020 		return enable_cpucache(cachep, gfp);
2021 
2022 	if (g_cpucache_up == NONE) {
2023 		/*
2024 		 * Note: the first kmem_cache_create must create the cache
2025 		 * that's used by kmalloc(24), otherwise the creation of
2026 		 * further caches will BUG().
2027 		 */
2028 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2029 
2030 		/*
2031 		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2032 		 * the first cache, then we need to set up all its list3s,
2033 		 * otherwise the creation of further caches will BUG().
2034 		 */
2035 		set_up_list3s(cachep, SIZE_AC);
2036 		if (INDEX_AC == INDEX_L3)
2037 			g_cpucache_up = PARTIAL_L3;
2038 		else
2039 			g_cpucache_up = PARTIAL_AC;
2040 	} else {
2041 		cachep->array[smp_processor_id()] =
2042 			kmalloc(sizeof(struct arraycache_init), gfp);
2043 
2044 		if (g_cpucache_up == PARTIAL_AC) {
2045 			set_up_list3s(cachep, SIZE_L3);
2046 			g_cpucache_up = PARTIAL_L3;
2047 		} else {
2048 			int node;
2049 			for_each_online_node(node) {
2050 				cachep->nodelists[node] =
2051 				    kmalloc_node(sizeof(struct kmem_list3),
2052 						gfp, node);
2053 				BUG_ON(!cachep->nodelists[node]);
2054 				kmem_list3_init(cachep->nodelists[node]);
2055 			}
2056 		}
2057 	}
2058 	cachep->nodelists[numa_node_id()]->next_reap =
2059 			jiffies + REAPTIMEOUT_LIST3 +
2060 			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2061 
2062 	cpu_cache_get(cachep)->avail = 0;
2063 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2064 	cpu_cache_get(cachep)->batchcount = 1;
2065 	cpu_cache_get(cachep)->touched = 0;
2066 	cachep->batchcount = 1;
2067 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2068 	return 0;
2069 }
2070 
2071 /**
2072  * kmem_cache_create - Create a cache.
2073  * @name: A string which is used in /proc/slabinfo to identify this cache.
2074  * @size: The size of objects to be created in this cache.
2075  * @align: The required alignment for the objects.
2076  * @flags: SLAB flags
2077  * @ctor: A constructor for the objects.
2078  *
2079  * Returns a ptr to the cache on success, NULL on failure.
2080  * Cannot be called within a int, but can be interrupted.
2081  * The @ctor is run when new pages are allocated by the cache.
2082  *
2083  * @name must be valid until the cache is destroyed. This implies that
2084  * the module calling this has to destroy the cache before getting unloaded.
2085  * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2086  * therefore applications must manage it themselves.
2087  *
2088  * The flags are
2089  *
2090  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2091  * to catch references to uninitialised memory.
2092  *
2093  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2094  * for buffer overruns.
2095  *
2096  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2097  * cacheline.  This can be beneficial if you're counting cycles as closely
2098  * as davem.
2099  */
2100 struct kmem_cache *
2101 kmem_cache_create (const char *name, size_t size, size_t align,
2102 	unsigned long flags, void (*ctor)(void *))
2103 {
2104 	size_t left_over, slab_size, ralign;
2105 	struct kmem_cache *cachep = NULL, *pc;
2106 	gfp_t gfp;
2107 
2108 	/*
2109 	 * Sanity checks... these are all serious usage bugs.
2110 	 */
2111 	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2112 	    size > KMALLOC_MAX_SIZE) {
2113 		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2114 				name);
2115 		BUG();
2116 	}
2117 
2118 	/*
2119 	 * We use cache_chain_mutex to ensure a consistent view of
2120 	 * cpu_online_mask as well.  Please see cpuup_callback
2121 	 */
2122 	if (slab_is_available()) {
2123 		get_online_cpus();
2124 		mutex_lock(&cache_chain_mutex);
2125 	}
2126 
2127 	list_for_each_entry(pc, &cache_chain, next) {
2128 		char tmp;
2129 		int res;
2130 
2131 		/*
2132 		 * This happens when the module gets unloaded and doesn't
2133 		 * destroy its slab cache and no-one else reuses the vmalloc
2134 		 * area of the module.  Print a warning.
2135 		 */
2136 		res = probe_kernel_address(pc->name, tmp);
2137 		if (res) {
2138 			printk(KERN_ERR
2139 			       "SLAB: cache with size %d has lost its name\n",
2140 			       pc->buffer_size);
2141 			continue;
2142 		}
2143 
2144 		if (!strcmp(pc->name, name)) {
2145 			printk(KERN_ERR
2146 			       "kmem_cache_create: duplicate cache %s\n", name);
2147 			dump_stack();
2148 			goto oops;
2149 		}
2150 	}
2151 
2152 #if DEBUG
2153 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2154 #if FORCED_DEBUG
2155 	/*
2156 	 * Enable redzoning and last user accounting, except for caches with
2157 	 * large objects, if the increased size would increase the object size
2158 	 * above the next power of two: caches with object sizes just above a
2159 	 * power of two have a significant amount of internal fragmentation.
2160 	 */
2161 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2162 						2 * sizeof(unsigned long long)))
2163 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2164 	if (!(flags & SLAB_DESTROY_BY_RCU))
2165 		flags |= SLAB_POISON;
2166 #endif
2167 	if (flags & SLAB_DESTROY_BY_RCU)
2168 		BUG_ON(flags & SLAB_POISON);
2169 #endif
2170 	/*
2171 	 * Always checks flags, a caller might be expecting debug support which
2172 	 * isn't available.
2173 	 */
2174 	BUG_ON(flags & ~CREATE_MASK);
2175 
2176 	/*
2177 	 * Check that size is in terms of words.  This is needed to avoid
2178 	 * unaligned accesses for some archs when redzoning is used, and makes
2179 	 * sure any on-slab bufctl's are also correctly aligned.
2180 	 */
2181 	if (size & (BYTES_PER_WORD - 1)) {
2182 		size += (BYTES_PER_WORD - 1);
2183 		size &= ~(BYTES_PER_WORD - 1);
2184 	}
2185 
2186 	/* calculate the final buffer alignment: */
2187 
2188 	/* 1) arch recommendation: can be overridden for debug */
2189 	if (flags & SLAB_HWCACHE_ALIGN) {
2190 		/*
2191 		 * Default alignment: as specified by the arch code.  Except if
2192 		 * an object is really small, then squeeze multiple objects into
2193 		 * one cacheline.
2194 		 */
2195 		ralign = cache_line_size();
2196 		while (size <= ralign / 2)
2197 			ralign /= 2;
2198 	} else {
2199 		ralign = BYTES_PER_WORD;
2200 	}
2201 
2202 	/*
2203 	 * Redzoning and user store require word alignment or possibly larger.
2204 	 * Note this will be overridden by architecture or caller mandated
2205 	 * alignment if either is greater than BYTES_PER_WORD.
2206 	 */
2207 	if (flags & SLAB_STORE_USER)
2208 		ralign = BYTES_PER_WORD;
2209 
2210 	if (flags & SLAB_RED_ZONE) {
2211 		ralign = REDZONE_ALIGN;
2212 		/* If redzoning, ensure that the second redzone is suitably
2213 		 * aligned, by adjusting the object size accordingly. */
2214 		size += REDZONE_ALIGN - 1;
2215 		size &= ~(REDZONE_ALIGN - 1);
2216 	}
2217 
2218 	/* 2) arch mandated alignment */
2219 	if (ralign < ARCH_SLAB_MINALIGN) {
2220 		ralign = ARCH_SLAB_MINALIGN;
2221 	}
2222 	/* 3) caller mandated alignment */
2223 	if (ralign < align) {
2224 		ralign = align;
2225 	}
2226 	/* disable debug if necessary */
2227 	if (ralign > __alignof__(unsigned long long))
2228 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2229 	/*
2230 	 * 4) Store it.
2231 	 */
2232 	align = ralign;
2233 
2234 	if (slab_is_available())
2235 		gfp = GFP_KERNEL;
2236 	else
2237 		gfp = GFP_NOWAIT;
2238 
2239 	/* Get cache's description obj. */
2240 	cachep = kmem_cache_zalloc(&cache_cache, gfp);
2241 	if (!cachep)
2242 		goto oops;
2243 
2244 #if DEBUG
2245 	cachep->obj_size = size;
2246 
2247 	/*
2248 	 * Both debugging options require word-alignment which is calculated
2249 	 * into align above.
2250 	 */
2251 	if (flags & SLAB_RED_ZONE) {
2252 		/* add space for red zone words */
2253 		cachep->obj_offset += sizeof(unsigned long long);
2254 		size += 2 * sizeof(unsigned long long);
2255 	}
2256 	if (flags & SLAB_STORE_USER) {
2257 		/* user store requires one word storage behind the end of
2258 		 * the real object. But if the second red zone needs to be
2259 		 * aligned to 64 bits, we must allow that much space.
2260 		 */
2261 		if (flags & SLAB_RED_ZONE)
2262 			size += REDZONE_ALIGN;
2263 		else
2264 			size += BYTES_PER_WORD;
2265 	}
2266 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2267 	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2268 	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2269 		cachep->obj_offset += PAGE_SIZE - size;
2270 		size = PAGE_SIZE;
2271 	}
2272 #endif
2273 #endif
2274 
2275 	/*
2276 	 * Determine if the slab management is 'on' or 'off' slab.
2277 	 * (bootstrapping cannot cope with offslab caches so don't do
2278 	 * it too early on. Always use on-slab management when
2279 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2280 	 */
2281 	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2282 	    !(flags & SLAB_NOLEAKTRACE))
2283 		/*
2284 		 * Size is large, assume best to place the slab management obj
2285 		 * off-slab (should allow better packing of objs).
2286 		 */
2287 		flags |= CFLGS_OFF_SLAB;
2288 
2289 	size = ALIGN(size, align);
2290 
2291 	left_over = calculate_slab_order(cachep, size, align, flags);
2292 
2293 	if (!cachep->num) {
2294 		printk(KERN_ERR
2295 		       "kmem_cache_create: couldn't create cache %s.\n", name);
2296 		kmem_cache_free(&cache_cache, cachep);
2297 		cachep = NULL;
2298 		goto oops;
2299 	}
2300 	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2301 			  + sizeof(struct slab), align);
2302 
2303 	/*
2304 	 * If the slab has been placed off-slab, and we have enough space then
2305 	 * move it on-slab. This is at the expense of any extra colouring.
2306 	 */
2307 	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2308 		flags &= ~CFLGS_OFF_SLAB;
2309 		left_over -= slab_size;
2310 	}
2311 
2312 	if (flags & CFLGS_OFF_SLAB) {
2313 		/* really off slab. No need for manual alignment */
2314 		slab_size =
2315 		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2316 
2317 #ifdef CONFIG_PAGE_POISONING
2318 		/* If we're going to use the generic kernel_map_pages()
2319 		 * poisoning, then it's going to smash the contents of
2320 		 * the redzone and userword anyhow, so switch them off.
2321 		 */
2322 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2323 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2324 #endif
2325 	}
2326 
2327 	cachep->colour_off = cache_line_size();
2328 	/* Offset must be a multiple of the alignment. */
2329 	if (cachep->colour_off < align)
2330 		cachep->colour_off = align;
2331 	cachep->colour = left_over / cachep->colour_off;
2332 	cachep->slab_size = slab_size;
2333 	cachep->flags = flags;
2334 	cachep->gfpflags = 0;
2335 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2336 		cachep->gfpflags |= GFP_DMA;
2337 	cachep->buffer_size = size;
2338 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2339 
2340 	if (flags & CFLGS_OFF_SLAB) {
2341 		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2342 		/*
2343 		 * This is a possibility for one of the malloc_sizes caches.
2344 		 * But since we go off slab only for object size greater than
2345 		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2346 		 * this should not happen at all.
2347 		 * But leave a BUG_ON for some lucky dude.
2348 		 */
2349 		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2350 	}
2351 	cachep->ctor = ctor;
2352 	cachep->name = name;
2353 
2354 	if (setup_cpu_cache(cachep, gfp)) {
2355 		__kmem_cache_destroy(cachep);
2356 		cachep = NULL;
2357 		goto oops;
2358 	}
2359 
2360 	/* cache setup completed, link it into the list */
2361 	list_add(&cachep->next, &cache_chain);
2362 oops:
2363 	if (!cachep && (flags & SLAB_PANIC))
2364 		panic("kmem_cache_create(): failed to create slab `%s'\n",
2365 		      name);
2366 	if (slab_is_available()) {
2367 		mutex_unlock(&cache_chain_mutex);
2368 		put_online_cpus();
2369 	}
2370 	return cachep;
2371 }
2372 EXPORT_SYMBOL(kmem_cache_create);
2373 
2374 #if DEBUG
2375 static void check_irq_off(void)
2376 {
2377 	BUG_ON(!irqs_disabled());
2378 }
2379 
2380 static void check_irq_on(void)
2381 {
2382 	BUG_ON(irqs_disabled());
2383 }
2384 
2385 static void check_spinlock_acquired(struct kmem_cache *cachep)
2386 {
2387 #ifdef CONFIG_SMP
2388 	check_irq_off();
2389 	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2390 #endif
2391 }
2392 
2393 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2394 {
2395 #ifdef CONFIG_SMP
2396 	check_irq_off();
2397 	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2398 #endif
2399 }
2400 
2401 #else
2402 #define check_irq_off()	do { } while(0)
2403 #define check_irq_on()	do { } while(0)
2404 #define check_spinlock_acquired(x) do { } while(0)
2405 #define check_spinlock_acquired_node(x, y) do { } while(0)
2406 #endif
2407 
2408 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2409 			struct array_cache *ac,
2410 			int force, int node);
2411 
2412 static void do_drain(void *arg)
2413 {
2414 	struct kmem_cache *cachep = arg;
2415 	struct array_cache *ac;
2416 	int node = numa_node_id();
2417 
2418 	check_irq_off();
2419 	ac = cpu_cache_get(cachep);
2420 	spin_lock(&cachep->nodelists[node]->list_lock);
2421 	free_block(cachep, ac->entry, ac->avail, node);
2422 	spin_unlock(&cachep->nodelists[node]->list_lock);
2423 	ac->avail = 0;
2424 }
2425 
2426 static void drain_cpu_caches(struct kmem_cache *cachep)
2427 {
2428 	struct kmem_list3 *l3;
2429 	int node;
2430 
2431 	on_each_cpu(do_drain, cachep, 1);
2432 	check_irq_on();
2433 	for_each_online_node(node) {
2434 		l3 = cachep->nodelists[node];
2435 		if (l3 && l3->alien)
2436 			drain_alien_cache(cachep, l3->alien);
2437 	}
2438 
2439 	for_each_online_node(node) {
2440 		l3 = cachep->nodelists[node];
2441 		if (l3)
2442 			drain_array(cachep, l3, l3->shared, 1, node);
2443 	}
2444 }
2445 
2446 /*
2447  * Remove slabs from the list of free slabs.
2448  * Specify the number of slabs to drain in tofree.
2449  *
2450  * Returns the actual number of slabs released.
2451  */
2452 static int drain_freelist(struct kmem_cache *cache,
2453 			struct kmem_list3 *l3, int tofree)
2454 {
2455 	struct list_head *p;
2456 	int nr_freed;
2457 	struct slab *slabp;
2458 
2459 	nr_freed = 0;
2460 	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2461 
2462 		spin_lock_irq(&l3->list_lock);
2463 		p = l3->slabs_free.prev;
2464 		if (p == &l3->slabs_free) {
2465 			spin_unlock_irq(&l3->list_lock);
2466 			goto out;
2467 		}
2468 
2469 		slabp = list_entry(p, struct slab, list);
2470 #if DEBUG
2471 		BUG_ON(slabp->inuse);
2472 #endif
2473 		list_del(&slabp->list);
2474 		/*
2475 		 * Safe to drop the lock. The slab is no longer linked
2476 		 * to the cache.
2477 		 */
2478 		l3->free_objects -= cache->num;
2479 		spin_unlock_irq(&l3->list_lock);
2480 		slab_destroy(cache, slabp);
2481 		nr_freed++;
2482 	}
2483 out:
2484 	return nr_freed;
2485 }
2486 
2487 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2488 static int __cache_shrink(struct kmem_cache *cachep)
2489 {
2490 	int ret = 0, i = 0;
2491 	struct kmem_list3 *l3;
2492 
2493 	drain_cpu_caches(cachep);
2494 
2495 	check_irq_on();
2496 	for_each_online_node(i) {
2497 		l3 = cachep->nodelists[i];
2498 		if (!l3)
2499 			continue;
2500 
2501 		drain_freelist(cachep, l3, l3->free_objects);
2502 
2503 		ret += !list_empty(&l3->slabs_full) ||
2504 			!list_empty(&l3->slabs_partial);
2505 	}
2506 	return (ret ? 1 : 0);
2507 }
2508 
2509 /**
2510  * kmem_cache_shrink - Shrink a cache.
2511  * @cachep: The cache to shrink.
2512  *
2513  * Releases as many slabs as possible for a cache.
2514  * To help debugging, a zero exit status indicates all slabs were released.
2515  */
2516 int kmem_cache_shrink(struct kmem_cache *cachep)
2517 {
2518 	int ret;
2519 	BUG_ON(!cachep || in_interrupt());
2520 
2521 	get_online_cpus();
2522 	mutex_lock(&cache_chain_mutex);
2523 	ret = __cache_shrink(cachep);
2524 	mutex_unlock(&cache_chain_mutex);
2525 	put_online_cpus();
2526 	return ret;
2527 }
2528 EXPORT_SYMBOL(kmem_cache_shrink);
2529 
2530 /**
2531  * kmem_cache_destroy - delete a cache
2532  * @cachep: the cache to destroy
2533  *
2534  * Remove a &struct kmem_cache object from the slab cache.
2535  *
2536  * It is expected this function will be called by a module when it is
2537  * unloaded.  This will remove the cache completely, and avoid a duplicate
2538  * cache being allocated each time a module is loaded and unloaded, if the
2539  * module doesn't have persistent in-kernel storage across loads and unloads.
2540  *
2541  * The cache must be empty before calling this function.
2542  *
2543  * The caller must guarantee that noone will allocate memory from the cache
2544  * during the kmem_cache_destroy().
2545  */
2546 void kmem_cache_destroy(struct kmem_cache *cachep)
2547 {
2548 	BUG_ON(!cachep || in_interrupt());
2549 
2550 	/* Find the cache in the chain of caches. */
2551 	get_online_cpus();
2552 	mutex_lock(&cache_chain_mutex);
2553 	/*
2554 	 * the chain is never empty, cache_cache is never destroyed
2555 	 */
2556 	list_del(&cachep->next);
2557 	if (__cache_shrink(cachep)) {
2558 		slab_error(cachep, "Can't free all objects");
2559 		list_add(&cachep->next, &cache_chain);
2560 		mutex_unlock(&cache_chain_mutex);
2561 		put_online_cpus();
2562 		return;
2563 	}
2564 
2565 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2566 		rcu_barrier();
2567 
2568 	__kmem_cache_destroy(cachep);
2569 	mutex_unlock(&cache_chain_mutex);
2570 	put_online_cpus();
2571 }
2572 EXPORT_SYMBOL(kmem_cache_destroy);
2573 
2574 /*
2575  * Get the memory for a slab management obj.
2576  * For a slab cache when the slab descriptor is off-slab, slab descriptors
2577  * always come from malloc_sizes caches.  The slab descriptor cannot
2578  * come from the same cache which is getting created because,
2579  * when we are searching for an appropriate cache for these
2580  * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2581  * If we are creating a malloc_sizes cache here it would not be visible to
2582  * kmem_find_general_cachep till the initialization is complete.
2583  * Hence we cannot have slabp_cache same as the original cache.
2584  */
2585 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2586 				   int colour_off, gfp_t local_flags,
2587 				   int nodeid)
2588 {
2589 	struct slab *slabp;
2590 
2591 	if (OFF_SLAB(cachep)) {
2592 		/* Slab management obj is off-slab. */
2593 		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2594 					      local_flags, nodeid);
2595 		/*
2596 		 * If the first object in the slab is leaked (it's allocated
2597 		 * but no one has a reference to it), we want to make sure
2598 		 * kmemleak does not treat the ->s_mem pointer as a reference
2599 		 * to the object. Otherwise we will not report the leak.
2600 		 */
2601 		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2602 				   local_flags);
2603 		if (!slabp)
2604 			return NULL;
2605 	} else {
2606 		slabp = objp + colour_off;
2607 		colour_off += cachep->slab_size;
2608 	}
2609 	slabp->inuse = 0;
2610 	slabp->colouroff = colour_off;
2611 	slabp->s_mem = objp + colour_off;
2612 	slabp->nodeid = nodeid;
2613 	slabp->free = 0;
2614 	return slabp;
2615 }
2616 
2617 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2618 {
2619 	return (kmem_bufctl_t *) (slabp + 1);
2620 }
2621 
2622 static void cache_init_objs(struct kmem_cache *cachep,
2623 			    struct slab *slabp)
2624 {
2625 	int i;
2626 
2627 	for (i = 0; i < cachep->num; i++) {
2628 		void *objp = index_to_obj(cachep, slabp, i);
2629 #if DEBUG
2630 		/* need to poison the objs? */
2631 		if (cachep->flags & SLAB_POISON)
2632 			poison_obj(cachep, objp, POISON_FREE);
2633 		if (cachep->flags & SLAB_STORE_USER)
2634 			*dbg_userword(cachep, objp) = NULL;
2635 
2636 		if (cachep->flags & SLAB_RED_ZONE) {
2637 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2638 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2639 		}
2640 		/*
2641 		 * Constructors are not allowed to allocate memory from the same
2642 		 * cache which they are a constructor for.  Otherwise, deadlock.
2643 		 * They must also be threaded.
2644 		 */
2645 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2646 			cachep->ctor(objp + obj_offset(cachep));
2647 
2648 		if (cachep->flags & SLAB_RED_ZONE) {
2649 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2650 				slab_error(cachep, "constructor overwrote the"
2651 					   " end of an object");
2652 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2653 				slab_error(cachep, "constructor overwrote the"
2654 					   " start of an object");
2655 		}
2656 		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2657 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2658 			kernel_map_pages(virt_to_page(objp),
2659 					 cachep->buffer_size / PAGE_SIZE, 0);
2660 #else
2661 		if (cachep->ctor)
2662 			cachep->ctor(objp);
2663 #endif
2664 		slab_bufctl(slabp)[i] = i + 1;
2665 	}
2666 	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2667 }
2668 
2669 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2670 {
2671 	if (CONFIG_ZONE_DMA_FLAG) {
2672 		if (flags & GFP_DMA)
2673 			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2674 		else
2675 			BUG_ON(cachep->gfpflags & GFP_DMA);
2676 	}
2677 }
2678 
2679 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2680 				int nodeid)
2681 {
2682 	void *objp = index_to_obj(cachep, slabp, slabp->free);
2683 	kmem_bufctl_t next;
2684 
2685 	slabp->inuse++;
2686 	next = slab_bufctl(slabp)[slabp->free];
2687 #if DEBUG
2688 	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2689 	WARN_ON(slabp->nodeid != nodeid);
2690 #endif
2691 	slabp->free = next;
2692 
2693 	return objp;
2694 }
2695 
2696 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2697 				void *objp, int nodeid)
2698 {
2699 	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2700 
2701 #if DEBUG
2702 	/* Verify that the slab belongs to the intended node */
2703 	WARN_ON(slabp->nodeid != nodeid);
2704 
2705 	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2706 		printk(KERN_ERR "slab: double free detected in cache "
2707 				"'%s', objp %p\n", cachep->name, objp);
2708 		BUG();
2709 	}
2710 #endif
2711 	slab_bufctl(slabp)[objnr] = slabp->free;
2712 	slabp->free = objnr;
2713 	slabp->inuse--;
2714 }
2715 
2716 /*
2717  * Map pages beginning at addr to the given cache and slab. This is required
2718  * for the slab allocator to be able to lookup the cache and slab of a
2719  * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2720  */
2721 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2722 			   void *addr)
2723 {
2724 	int nr_pages;
2725 	struct page *page;
2726 
2727 	page = virt_to_page(addr);
2728 
2729 	nr_pages = 1;
2730 	if (likely(!PageCompound(page)))
2731 		nr_pages <<= cache->gfporder;
2732 
2733 	do {
2734 		page_set_cache(page, cache);
2735 		page_set_slab(page, slab);
2736 		page++;
2737 	} while (--nr_pages);
2738 }
2739 
2740 /*
2741  * Grow (by 1) the number of slabs within a cache.  This is called by
2742  * kmem_cache_alloc() when there are no active objs left in a cache.
2743  */
2744 static int cache_grow(struct kmem_cache *cachep,
2745 		gfp_t flags, int nodeid, void *objp)
2746 {
2747 	struct slab *slabp;
2748 	size_t offset;
2749 	gfp_t local_flags;
2750 	struct kmem_list3 *l3;
2751 
2752 	/*
2753 	 * Be lazy and only check for valid flags here,  keeping it out of the
2754 	 * critical path in kmem_cache_alloc().
2755 	 */
2756 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2757 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2758 
2759 	/* Take the l3 list lock to change the colour_next on this node */
2760 	check_irq_off();
2761 	l3 = cachep->nodelists[nodeid];
2762 	spin_lock(&l3->list_lock);
2763 
2764 	/* Get colour for the slab, and cal the next value. */
2765 	offset = l3->colour_next;
2766 	l3->colour_next++;
2767 	if (l3->colour_next >= cachep->colour)
2768 		l3->colour_next = 0;
2769 	spin_unlock(&l3->list_lock);
2770 
2771 	offset *= cachep->colour_off;
2772 
2773 	if (local_flags & __GFP_WAIT)
2774 		local_irq_enable();
2775 
2776 	/*
2777 	 * The test for missing atomic flag is performed here, rather than
2778 	 * the more obvious place, simply to reduce the critical path length
2779 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2780 	 * will eventually be caught here (where it matters).
2781 	 */
2782 	kmem_flagcheck(cachep, flags);
2783 
2784 	/*
2785 	 * Get mem for the objs.  Attempt to allocate a physical page from
2786 	 * 'nodeid'.
2787 	 */
2788 	if (!objp)
2789 		objp = kmem_getpages(cachep, local_flags, nodeid);
2790 	if (!objp)
2791 		goto failed;
2792 
2793 	/* Get slab management. */
2794 	slabp = alloc_slabmgmt(cachep, objp, offset,
2795 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2796 	if (!slabp)
2797 		goto opps1;
2798 
2799 	slab_map_pages(cachep, slabp, objp);
2800 
2801 	cache_init_objs(cachep, slabp);
2802 
2803 	if (local_flags & __GFP_WAIT)
2804 		local_irq_disable();
2805 	check_irq_off();
2806 	spin_lock(&l3->list_lock);
2807 
2808 	/* Make slab active. */
2809 	list_add_tail(&slabp->list, &(l3->slabs_free));
2810 	STATS_INC_GROWN(cachep);
2811 	l3->free_objects += cachep->num;
2812 	spin_unlock(&l3->list_lock);
2813 	return 1;
2814 opps1:
2815 	kmem_freepages(cachep, objp);
2816 failed:
2817 	if (local_flags & __GFP_WAIT)
2818 		local_irq_disable();
2819 	return 0;
2820 }
2821 
2822 #if DEBUG
2823 
2824 /*
2825  * Perform extra freeing checks:
2826  * - detect bad pointers.
2827  * - POISON/RED_ZONE checking
2828  */
2829 static void kfree_debugcheck(const void *objp)
2830 {
2831 	if (!virt_addr_valid(objp)) {
2832 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2833 		       (unsigned long)objp);
2834 		BUG();
2835 	}
2836 }
2837 
2838 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2839 {
2840 	unsigned long long redzone1, redzone2;
2841 
2842 	redzone1 = *dbg_redzone1(cache, obj);
2843 	redzone2 = *dbg_redzone2(cache, obj);
2844 
2845 	/*
2846 	 * Redzone is ok.
2847 	 */
2848 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2849 		return;
2850 
2851 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2852 		slab_error(cache, "double free detected");
2853 	else
2854 		slab_error(cache, "memory outside object was overwritten");
2855 
2856 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2857 			obj, redzone1, redzone2);
2858 }
2859 
2860 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2861 				   void *caller)
2862 {
2863 	struct page *page;
2864 	unsigned int objnr;
2865 	struct slab *slabp;
2866 
2867 	BUG_ON(virt_to_cache(objp) != cachep);
2868 
2869 	objp -= obj_offset(cachep);
2870 	kfree_debugcheck(objp);
2871 	page = virt_to_head_page(objp);
2872 
2873 	slabp = page_get_slab(page);
2874 
2875 	if (cachep->flags & SLAB_RED_ZONE) {
2876 		verify_redzone_free(cachep, objp);
2877 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2878 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2879 	}
2880 	if (cachep->flags & SLAB_STORE_USER)
2881 		*dbg_userword(cachep, objp) = caller;
2882 
2883 	objnr = obj_to_index(cachep, slabp, objp);
2884 
2885 	BUG_ON(objnr >= cachep->num);
2886 	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2887 
2888 #ifdef CONFIG_DEBUG_SLAB_LEAK
2889 	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2890 #endif
2891 	if (cachep->flags & SLAB_POISON) {
2892 #ifdef CONFIG_DEBUG_PAGEALLOC
2893 		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2894 			store_stackinfo(cachep, objp, (unsigned long)caller);
2895 			kernel_map_pages(virt_to_page(objp),
2896 					 cachep->buffer_size / PAGE_SIZE, 0);
2897 		} else {
2898 			poison_obj(cachep, objp, POISON_FREE);
2899 		}
2900 #else
2901 		poison_obj(cachep, objp, POISON_FREE);
2902 #endif
2903 	}
2904 	return objp;
2905 }
2906 
2907 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2908 {
2909 	kmem_bufctl_t i;
2910 	int entries = 0;
2911 
2912 	/* Check slab's freelist to see if this obj is there. */
2913 	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2914 		entries++;
2915 		if (entries > cachep->num || i >= cachep->num)
2916 			goto bad;
2917 	}
2918 	if (entries != cachep->num - slabp->inuse) {
2919 bad:
2920 		printk(KERN_ERR "slab: Internal list corruption detected in "
2921 				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2922 			cachep->name, cachep->num, slabp, slabp->inuse);
2923 		for (i = 0;
2924 		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2925 		     i++) {
2926 			if (i % 16 == 0)
2927 				printk("\n%03x:", i);
2928 			printk(" %02x", ((unsigned char *)slabp)[i]);
2929 		}
2930 		printk("\n");
2931 		BUG();
2932 	}
2933 }
2934 #else
2935 #define kfree_debugcheck(x) do { } while(0)
2936 #define cache_free_debugcheck(x,objp,z) (objp)
2937 #define check_slabp(x,y) do { } while(0)
2938 #endif
2939 
2940 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2941 {
2942 	int batchcount;
2943 	struct kmem_list3 *l3;
2944 	struct array_cache *ac;
2945 	int node;
2946 
2947 retry:
2948 	check_irq_off();
2949 	node = numa_node_id();
2950 	ac = cpu_cache_get(cachep);
2951 	batchcount = ac->batchcount;
2952 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2953 		/*
2954 		 * If there was little recent activity on this cache, then
2955 		 * perform only a partial refill.  Otherwise we could generate
2956 		 * refill bouncing.
2957 		 */
2958 		batchcount = BATCHREFILL_LIMIT;
2959 	}
2960 	l3 = cachep->nodelists[node];
2961 
2962 	BUG_ON(ac->avail > 0 || !l3);
2963 	spin_lock(&l3->list_lock);
2964 
2965 	/* See if we can refill from the shared array */
2966 	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2967 		goto alloc_done;
2968 
2969 	while (batchcount > 0) {
2970 		struct list_head *entry;
2971 		struct slab *slabp;
2972 		/* Get slab alloc is to come from. */
2973 		entry = l3->slabs_partial.next;
2974 		if (entry == &l3->slabs_partial) {
2975 			l3->free_touched = 1;
2976 			entry = l3->slabs_free.next;
2977 			if (entry == &l3->slabs_free)
2978 				goto must_grow;
2979 		}
2980 
2981 		slabp = list_entry(entry, struct slab, list);
2982 		check_slabp(cachep, slabp);
2983 		check_spinlock_acquired(cachep);
2984 
2985 		/*
2986 		 * The slab was either on partial or free list so
2987 		 * there must be at least one object available for
2988 		 * allocation.
2989 		 */
2990 		BUG_ON(slabp->inuse >= cachep->num);
2991 
2992 		while (slabp->inuse < cachep->num && batchcount--) {
2993 			STATS_INC_ALLOCED(cachep);
2994 			STATS_INC_ACTIVE(cachep);
2995 			STATS_SET_HIGH(cachep);
2996 
2997 			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2998 							    node);
2999 		}
3000 		check_slabp(cachep, slabp);
3001 
3002 		/* move slabp to correct slabp list: */
3003 		list_del(&slabp->list);
3004 		if (slabp->free == BUFCTL_END)
3005 			list_add(&slabp->list, &l3->slabs_full);
3006 		else
3007 			list_add(&slabp->list, &l3->slabs_partial);
3008 	}
3009 
3010 must_grow:
3011 	l3->free_objects -= ac->avail;
3012 alloc_done:
3013 	spin_unlock(&l3->list_lock);
3014 
3015 	if (unlikely(!ac->avail)) {
3016 		int x;
3017 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3018 
3019 		/* cache_grow can reenable interrupts, then ac could change. */
3020 		ac = cpu_cache_get(cachep);
3021 		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3022 			return NULL;
3023 
3024 		if (!ac->avail)		/* objects refilled by interrupt? */
3025 			goto retry;
3026 	}
3027 	ac->touched = 1;
3028 	return ac->entry[--ac->avail];
3029 }
3030 
3031 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3032 						gfp_t flags)
3033 {
3034 	might_sleep_if(flags & __GFP_WAIT);
3035 #if DEBUG
3036 	kmem_flagcheck(cachep, flags);
3037 #endif
3038 }
3039 
3040 #if DEBUG
3041 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3042 				gfp_t flags, void *objp, void *caller)
3043 {
3044 	if (!objp)
3045 		return objp;
3046 	if (cachep->flags & SLAB_POISON) {
3047 #ifdef CONFIG_DEBUG_PAGEALLOC
3048 		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3049 			kernel_map_pages(virt_to_page(objp),
3050 					 cachep->buffer_size / PAGE_SIZE, 1);
3051 		else
3052 			check_poison_obj(cachep, objp);
3053 #else
3054 		check_poison_obj(cachep, objp);
3055 #endif
3056 		poison_obj(cachep, objp, POISON_INUSE);
3057 	}
3058 	if (cachep->flags & SLAB_STORE_USER)
3059 		*dbg_userword(cachep, objp) = caller;
3060 
3061 	if (cachep->flags & SLAB_RED_ZONE) {
3062 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3063 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3064 			slab_error(cachep, "double free, or memory outside"
3065 						" object was overwritten");
3066 			printk(KERN_ERR
3067 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3068 				objp, *dbg_redzone1(cachep, objp),
3069 				*dbg_redzone2(cachep, objp));
3070 		}
3071 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3072 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3073 	}
3074 #ifdef CONFIG_DEBUG_SLAB_LEAK
3075 	{
3076 		struct slab *slabp;
3077 		unsigned objnr;
3078 
3079 		slabp = page_get_slab(virt_to_head_page(objp));
3080 		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3081 		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3082 	}
3083 #endif
3084 	objp += obj_offset(cachep);
3085 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3086 		cachep->ctor(objp);
3087 #if ARCH_SLAB_MINALIGN
3088 	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3089 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3090 		       objp, ARCH_SLAB_MINALIGN);
3091 	}
3092 #endif
3093 	return objp;
3094 }
3095 #else
3096 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3097 #endif
3098 
3099 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3100 {
3101 	if (cachep == &cache_cache)
3102 		return false;
3103 
3104 	return should_failslab(obj_size(cachep), flags);
3105 }
3106 
3107 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3108 {
3109 	void *objp;
3110 	struct array_cache *ac;
3111 
3112 	check_irq_off();
3113 
3114 	ac = cpu_cache_get(cachep);
3115 	if (likely(ac->avail)) {
3116 		STATS_INC_ALLOCHIT(cachep);
3117 		ac->touched = 1;
3118 		objp = ac->entry[--ac->avail];
3119 	} else {
3120 		STATS_INC_ALLOCMISS(cachep);
3121 		objp = cache_alloc_refill(cachep, flags);
3122 		/*
3123 		 * the 'ac' may be updated by cache_alloc_refill(),
3124 		 * and kmemleak_erase() requires its correct value.
3125 		 */
3126 		ac = cpu_cache_get(cachep);
3127 	}
3128 	/*
3129 	 * To avoid a false negative, if an object that is in one of the
3130 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3131 	 * treat the array pointers as a reference to the object.
3132 	 */
3133 	if (objp)
3134 		kmemleak_erase(&ac->entry[ac->avail]);
3135 	return objp;
3136 }
3137 
3138 #ifdef CONFIG_NUMA
3139 /*
3140  * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3141  *
3142  * If we are in_interrupt, then process context, including cpusets and
3143  * mempolicy, may not apply and should not be used for allocation policy.
3144  */
3145 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3146 {
3147 	int nid_alloc, nid_here;
3148 
3149 	if (in_interrupt() || (flags & __GFP_THISNODE))
3150 		return NULL;
3151 	nid_alloc = nid_here = numa_node_id();
3152 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3153 		nid_alloc = cpuset_mem_spread_node();
3154 	else if (current->mempolicy)
3155 		nid_alloc = slab_node(current->mempolicy);
3156 	if (nid_alloc != nid_here)
3157 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3158 	return NULL;
3159 }
3160 
3161 /*
3162  * Fallback function if there was no memory available and no objects on a
3163  * certain node and fall back is permitted. First we scan all the
3164  * available nodelists for available objects. If that fails then we
3165  * perform an allocation without specifying a node. This allows the page
3166  * allocator to do its reclaim / fallback magic. We then insert the
3167  * slab into the proper nodelist and then allocate from it.
3168  */
3169 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3170 {
3171 	struct zonelist *zonelist;
3172 	gfp_t local_flags;
3173 	struct zoneref *z;
3174 	struct zone *zone;
3175 	enum zone_type high_zoneidx = gfp_zone(flags);
3176 	void *obj = NULL;
3177 	int nid;
3178 
3179 	if (flags & __GFP_THISNODE)
3180 		return NULL;
3181 
3182 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3183 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3184 
3185 retry:
3186 	/*
3187 	 * Look through allowed nodes for objects available
3188 	 * from existing per node queues.
3189 	 */
3190 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3191 		nid = zone_to_nid(zone);
3192 
3193 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3194 			cache->nodelists[nid] &&
3195 			cache->nodelists[nid]->free_objects) {
3196 				obj = ____cache_alloc_node(cache,
3197 					flags | GFP_THISNODE, nid);
3198 				if (obj)
3199 					break;
3200 		}
3201 	}
3202 
3203 	if (!obj) {
3204 		/*
3205 		 * This allocation will be performed within the constraints
3206 		 * of the current cpuset / memory policy requirements.
3207 		 * We may trigger various forms of reclaim on the allowed
3208 		 * set and go into memory reserves if necessary.
3209 		 */
3210 		if (local_flags & __GFP_WAIT)
3211 			local_irq_enable();
3212 		kmem_flagcheck(cache, flags);
3213 		obj = kmem_getpages(cache, local_flags, numa_node_id());
3214 		if (local_flags & __GFP_WAIT)
3215 			local_irq_disable();
3216 		if (obj) {
3217 			/*
3218 			 * Insert into the appropriate per node queues
3219 			 */
3220 			nid = page_to_nid(virt_to_page(obj));
3221 			if (cache_grow(cache, flags, nid, obj)) {
3222 				obj = ____cache_alloc_node(cache,
3223 					flags | GFP_THISNODE, nid);
3224 				if (!obj)
3225 					/*
3226 					 * Another processor may allocate the
3227 					 * objects in the slab since we are
3228 					 * not holding any locks.
3229 					 */
3230 					goto retry;
3231 			} else {
3232 				/* cache_grow already freed obj */
3233 				obj = NULL;
3234 			}
3235 		}
3236 	}
3237 	return obj;
3238 }
3239 
3240 /*
3241  * A interface to enable slab creation on nodeid
3242  */
3243 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3244 				int nodeid)
3245 {
3246 	struct list_head *entry;
3247 	struct slab *slabp;
3248 	struct kmem_list3 *l3;
3249 	void *obj;
3250 	int x;
3251 
3252 	l3 = cachep->nodelists[nodeid];
3253 	BUG_ON(!l3);
3254 
3255 retry:
3256 	check_irq_off();
3257 	spin_lock(&l3->list_lock);
3258 	entry = l3->slabs_partial.next;
3259 	if (entry == &l3->slabs_partial) {
3260 		l3->free_touched = 1;
3261 		entry = l3->slabs_free.next;
3262 		if (entry == &l3->slabs_free)
3263 			goto must_grow;
3264 	}
3265 
3266 	slabp = list_entry(entry, struct slab, list);
3267 	check_spinlock_acquired_node(cachep, nodeid);
3268 	check_slabp(cachep, slabp);
3269 
3270 	STATS_INC_NODEALLOCS(cachep);
3271 	STATS_INC_ACTIVE(cachep);
3272 	STATS_SET_HIGH(cachep);
3273 
3274 	BUG_ON(slabp->inuse == cachep->num);
3275 
3276 	obj = slab_get_obj(cachep, slabp, nodeid);
3277 	check_slabp(cachep, slabp);
3278 	l3->free_objects--;
3279 	/* move slabp to correct slabp list: */
3280 	list_del(&slabp->list);
3281 
3282 	if (slabp->free == BUFCTL_END)
3283 		list_add(&slabp->list, &l3->slabs_full);
3284 	else
3285 		list_add(&slabp->list, &l3->slabs_partial);
3286 
3287 	spin_unlock(&l3->list_lock);
3288 	goto done;
3289 
3290 must_grow:
3291 	spin_unlock(&l3->list_lock);
3292 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3293 	if (x)
3294 		goto retry;
3295 
3296 	return fallback_alloc(cachep, flags);
3297 
3298 done:
3299 	return obj;
3300 }
3301 
3302 /**
3303  * kmem_cache_alloc_node - Allocate an object on the specified node
3304  * @cachep: The cache to allocate from.
3305  * @flags: See kmalloc().
3306  * @nodeid: node number of the target node.
3307  * @caller: return address of caller, used for debug information
3308  *
3309  * Identical to kmem_cache_alloc but it will allocate memory on the given
3310  * node, which can improve the performance for cpu bound structures.
3311  *
3312  * Fallback to other node is possible if __GFP_THISNODE is not set.
3313  */
3314 static __always_inline void *
3315 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3316 		   void *caller)
3317 {
3318 	unsigned long save_flags;
3319 	void *ptr;
3320 
3321 	flags &= gfp_allowed_mask;
3322 
3323 	lockdep_trace_alloc(flags);
3324 
3325 	if (slab_should_failslab(cachep, flags))
3326 		return NULL;
3327 
3328 	cache_alloc_debugcheck_before(cachep, flags);
3329 	local_irq_save(save_flags);
3330 
3331 	if (nodeid == -1)
3332 		nodeid = numa_node_id();
3333 
3334 	if (unlikely(!cachep->nodelists[nodeid])) {
3335 		/* Node not bootstrapped yet */
3336 		ptr = fallback_alloc(cachep, flags);
3337 		goto out;
3338 	}
3339 
3340 	if (nodeid == numa_node_id()) {
3341 		/*
3342 		 * Use the locally cached objects if possible.
3343 		 * However ____cache_alloc does not allow fallback
3344 		 * to other nodes. It may fail while we still have
3345 		 * objects on other nodes available.
3346 		 */
3347 		ptr = ____cache_alloc(cachep, flags);
3348 		if (ptr)
3349 			goto out;
3350 	}
3351 	/* ___cache_alloc_node can fall back to other nodes */
3352 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3353   out:
3354 	local_irq_restore(save_flags);
3355 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3356 	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3357 				 flags);
3358 
3359 	if (likely(ptr))
3360 		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3361 
3362 	if (unlikely((flags & __GFP_ZERO) && ptr))
3363 		memset(ptr, 0, obj_size(cachep));
3364 
3365 	return ptr;
3366 }
3367 
3368 static __always_inline void *
3369 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3370 {
3371 	void *objp;
3372 
3373 	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3374 		objp = alternate_node_alloc(cache, flags);
3375 		if (objp)
3376 			goto out;
3377 	}
3378 	objp = ____cache_alloc(cache, flags);
3379 
3380 	/*
3381 	 * We may just have run out of memory on the local node.
3382 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3383 	 */
3384  	if (!objp)
3385  		objp = ____cache_alloc_node(cache, flags, numa_node_id());
3386 
3387   out:
3388 	return objp;
3389 }
3390 #else
3391 
3392 static __always_inline void *
3393 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3394 {
3395 	return ____cache_alloc(cachep, flags);
3396 }
3397 
3398 #endif /* CONFIG_NUMA */
3399 
3400 static __always_inline void *
3401 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3402 {
3403 	unsigned long save_flags;
3404 	void *objp;
3405 
3406 	flags &= gfp_allowed_mask;
3407 
3408 	lockdep_trace_alloc(flags);
3409 
3410 	if (slab_should_failslab(cachep, flags))
3411 		return NULL;
3412 
3413 	cache_alloc_debugcheck_before(cachep, flags);
3414 	local_irq_save(save_flags);
3415 	objp = __do_cache_alloc(cachep, flags);
3416 	local_irq_restore(save_flags);
3417 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3418 	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3419 				 flags);
3420 	prefetchw(objp);
3421 
3422 	if (likely(objp))
3423 		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3424 
3425 	if (unlikely((flags & __GFP_ZERO) && objp))
3426 		memset(objp, 0, obj_size(cachep));
3427 
3428 	return objp;
3429 }
3430 
3431 /*
3432  * Caller needs to acquire correct kmem_list's list_lock
3433  */
3434 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3435 		       int node)
3436 {
3437 	int i;
3438 	struct kmem_list3 *l3;
3439 
3440 	for (i = 0; i < nr_objects; i++) {
3441 		void *objp = objpp[i];
3442 		struct slab *slabp;
3443 
3444 		slabp = virt_to_slab(objp);
3445 		l3 = cachep->nodelists[node];
3446 		list_del(&slabp->list);
3447 		check_spinlock_acquired_node(cachep, node);
3448 		check_slabp(cachep, slabp);
3449 		slab_put_obj(cachep, slabp, objp, node);
3450 		STATS_DEC_ACTIVE(cachep);
3451 		l3->free_objects++;
3452 		check_slabp(cachep, slabp);
3453 
3454 		/* fixup slab chains */
3455 		if (slabp->inuse == 0) {
3456 			if (l3->free_objects > l3->free_limit) {
3457 				l3->free_objects -= cachep->num;
3458 				/* No need to drop any previously held
3459 				 * lock here, even if we have a off-slab slab
3460 				 * descriptor it is guaranteed to come from
3461 				 * a different cache, refer to comments before
3462 				 * alloc_slabmgmt.
3463 				 */
3464 				slab_destroy(cachep, slabp);
3465 			} else {
3466 				list_add(&slabp->list, &l3->slabs_free);
3467 			}
3468 		} else {
3469 			/* Unconditionally move a slab to the end of the
3470 			 * partial list on free - maximum time for the
3471 			 * other objects to be freed, too.
3472 			 */
3473 			list_add_tail(&slabp->list, &l3->slabs_partial);
3474 		}
3475 	}
3476 }
3477 
3478 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3479 {
3480 	int batchcount;
3481 	struct kmem_list3 *l3;
3482 	int node = numa_node_id();
3483 
3484 	batchcount = ac->batchcount;
3485 #if DEBUG
3486 	BUG_ON(!batchcount || batchcount > ac->avail);
3487 #endif
3488 	check_irq_off();
3489 	l3 = cachep->nodelists[node];
3490 	spin_lock(&l3->list_lock);
3491 	if (l3->shared) {
3492 		struct array_cache *shared_array = l3->shared;
3493 		int max = shared_array->limit - shared_array->avail;
3494 		if (max) {
3495 			if (batchcount > max)
3496 				batchcount = max;
3497 			memcpy(&(shared_array->entry[shared_array->avail]),
3498 			       ac->entry, sizeof(void *) * batchcount);
3499 			shared_array->avail += batchcount;
3500 			goto free_done;
3501 		}
3502 	}
3503 
3504 	free_block(cachep, ac->entry, batchcount, node);
3505 free_done:
3506 #if STATS
3507 	{
3508 		int i = 0;
3509 		struct list_head *p;
3510 
3511 		p = l3->slabs_free.next;
3512 		while (p != &(l3->slabs_free)) {
3513 			struct slab *slabp;
3514 
3515 			slabp = list_entry(p, struct slab, list);
3516 			BUG_ON(slabp->inuse);
3517 
3518 			i++;
3519 			p = p->next;
3520 		}
3521 		STATS_SET_FREEABLE(cachep, i);
3522 	}
3523 #endif
3524 	spin_unlock(&l3->list_lock);
3525 	ac->avail -= batchcount;
3526 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3527 }
3528 
3529 /*
3530  * Release an obj back to its cache. If the obj has a constructed state, it must
3531  * be in this state _before_ it is released.  Called with disabled ints.
3532  */
3533 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3534 {
3535 	struct array_cache *ac = cpu_cache_get(cachep);
3536 
3537 	check_irq_off();
3538 	kmemleak_free_recursive(objp, cachep->flags);
3539 	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3540 
3541 	kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3542 
3543 	/*
3544 	 * Skip calling cache_free_alien() when the platform is not numa.
3545 	 * This will avoid cache misses that happen while accessing slabp (which
3546 	 * is per page memory  reference) to get nodeid. Instead use a global
3547 	 * variable to skip the call, which is mostly likely to be present in
3548 	 * the cache.
3549 	 */
3550 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3551 		return;
3552 
3553 	if (likely(ac->avail < ac->limit)) {
3554 		STATS_INC_FREEHIT(cachep);
3555 		ac->entry[ac->avail++] = objp;
3556 		return;
3557 	} else {
3558 		STATS_INC_FREEMISS(cachep);
3559 		cache_flusharray(cachep, ac);
3560 		ac->entry[ac->avail++] = objp;
3561 	}
3562 }
3563 
3564 /**
3565  * kmem_cache_alloc - Allocate an object
3566  * @cachep: The cache to allocate from.
3567  * @flags: See kmalloc().
3568  *
3569  * Allocate an object from this cache.  The flags are only relevant
3570  * if the cache has no available objects.
3571  */
3572 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3573 {
3574 	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3575 
3576 	trace_kmem_cache_alloc(_RET_IP_, ret,
3577 			       obj_size(cachep), cachep->buffer_size, flags);
3578 
3579 	return ret;
3580 }
3581 EXPORT_SYMBOL(kmem_cache_alloc);
3582 
3583 #ifdef CONFIG_TRACING
3584 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3585 {
3586 	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3587 }
3588 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3589 #endif
3590 
3591 /**
3592  * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3593  * @cachep: the cache we're checking against
3594  * @ptr: pointer to validate
3595  *
3596  * This verifies that the untrusted pointer looks sane;
3597  * it is _not_ a guarantee that the pointer is actually
3598  * part of the slab cache in question, but it at least
3599  * validates that the pointer can be dereferenced and
3600  * looks half-way sane.
3601  *
3602  * Currently only used for dentry validation.
3603  */
3604 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3605 {
3606 	unsigned long addr = (unsigned long)ptr;
3607 	unsigned long min_addr = PAGE_OFFSET;
3608 	unsigned long align_mask = BYTES_PER_WORD - 1;
3609 	unsigned long size = cachep->buffer_size;
3610 	struct page *page;
3611 
3612 	if (unlikely(addr < min_addr))
3613 		goto out;
3614 	if (unlikely(addr > (unsigned long)high_memory - size))
3615 		goto out;
3616 	if (unlikely(addr & align_mask))
3617 		goto out;
3618 	if (unlikely(!kern_addr_valid(addr)))
3619 		goto out;
3620 	if (unlikely(!kern_addr_valid(addr + size - 1)))
3621 		goto out;
3622 	page = virt_to_page(ptr);
3623 	if (unlikely(!PageSlab(page)))
3624 		goto out;
3625 	if (unlikely(page_get_cache(page) != cachep))
3626 		goto out;
3627 	return 1;
3628 out:
3629 	return 0;
3630 }
3631 
3632 #ifdef CONFIG_NUMA
3633 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3634 {
3635 	void *ret = __cache_alloc_node(cachep, flags, nodeid,
3636 				       __builtin_return_address(0));
3637 
3638 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3639 				    obj_size(cachep), cachep->buffer_size,
3640 				    flags, nodeid);
3641 
3642 	return ret;
3643 }
3644 EXPORT_SYMBOL(kmem_cache_alloc_node);
3645 
3646 #ifdef CONFIG_TRACING
3647 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3648 				    gfp_t flags,
3649 				    int nodeid)
3650 {
3651 	return __cache_alloc_node(cachep, flags, nodeid,
3652 				  __builtin_return_address(0));
3653 }
3654 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3655 #endif
3656 
3657 static __always_inline void *
3658 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3659 {
3660 	struct kmem_cache *cachep;
3661 	void *ret;
3662 
3663 	cachep = kmem_find_general_cachep(size, flags);
3664 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3665 		return cachep;
3666 	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3667 
3668 	trace_kmalloc_node((unsigned long) caller, ret,
3669 			   size, cachep->buffer_size, flags, node);
3670 
3671 	return ret;
3672 }
3673 
3674 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3675 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3676 {
3677 	return __do_kmalloc_node(size, flags, node,
3678 			__builtin_return_address(0));
3679 }
3680 EXPORT_SYMBOL(__kmalloc_node);
3681 
3682 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3683 		int node, unsigned long caller)
3684 {
3685 	return __do_kmalloc_node(size, flags, node, (void *)caller);
3686 }
3687 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3688 #else
3689 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3690 {
3691 	return __do_kmalloc_node(size, flags, node, NULL);
3692 }
3693 EXPORT_SYMBOL(__kmalloc_node);
3694 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3695 #endif /* CONFIG_NUMA */
3696 
3697 /**
3698  * __do_kmalloc - allocate memory
3699  * @size: how many bytes of memory are required.
3700  * @flags: the type of memory to allocate (see kmalloc).
3701  * @caller: function caller for debug tracking of the caller
3702  */
3703 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3704 					  void *caller)
3705 {
3706 	struct kmem_cache *cachep;
3707 	void *ret;
3708 
3709 	/* If you want to save a few bytes .text space: replace
3710 	 * __ with kmem_.
3711 	 * Then kmalloc uses the uninlined functions instead of the inline
3712 	 * functions.
3713 	 */
3714 	cachep = __find_general_cachep(size, flags);
3715 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3716 		return cachep;
3717 	ret = __cache_alloc(cachep, flags, caller);
3718 
3719 	trace_kmalloc((unsigned long) caller, ret,
3720 		      size, cachep->buffer_size, flags);
3721 
3722 	return ret;
3723 }
3724 
3725 
3726 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3727 void *__kmalloc(size_t size, gfp_t flags)
3728 {
3729 	return __do_kmalloc(size, flags, __builtin_return_address(0));
3730 }
3731 EXPORT_SYMBOL(__kmalloc);
3732 
3733 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3734 {
3735 	return __do_kmalloc(size, flags, (void *)caller);
3736 }
3737 EXPORT_SYMBOL(__kmalloc_track_caller);
3738 
3739 #else
3740 void *__kmalloc(size_t size, gfp_t flags)
3741 {
3742 	return __do_kmalloc(size, flags, NULL);
3743 }
3744 EXPORT_SYMBOL(__kmalloc);
3745 #endif
3746 
3747 /**
3748  * kmem_cache_free - Deallocate an object
3749  * @cachep: The cache the allocation was from.
3750  * @objp: The previously allocated object.
3751  *
3752  * Free an object which was previously allocated from this
3753  * cache.
3754  */
3755 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3756 {
3757 	unsigned long flags;
3758 
3759 	local_irq_save(flags);
3760 	debug_check_no_locks_freed(objp, obj_size(cachep));
3761 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3762 		debug_check_no_obj_freed(objp, obj_size(cachep));
3763 	__cache_free(cachep, objp);
3764 	local_irq_restore(flags);
3765 
3766 	trace_kmem_cache_free(_RET_IP_, objp);
3767 }
3768 EXPORT_SYMBOL(kmem_cache_free);
3769 
3770 /**
3771  * kfree - free previously allocated memory
3772  * @objp: pointer returned by kmalloc.
3773  *
3774  * If @objp is NULL, no operation is performed.
3775  *
3776  * Don't free memory not originally allocated by kmalloc()
3777  * or you will run into trouble.
3778  */
3779 void kfree(const void *objp)
3780 {
3781 	struct kmem_cache *c;
3782 	unsigned long flags;
3783 
3784 	trace_kfree(_RET_IP_, objp);
3785 
3786 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3787 		return;
3788 	local_irq_save(flags);
3789 	kfree_debugcheck(objp);
3790 	c = virt_to_cache(objp);
3791 	debug_check_no_locks_freed(objp, obj_size(c));
3792 	debug_check_no_obj_freed(objp, obj_size(c));
3793 	__cache_free(c, (void *)objp);
3794 	local_irq_restore(flags);
3795 }
3796 EXPORT_SYMBOL(kfree);
3797 
3798 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3799 {
3800 	return obj_size(cachep);
3801 }
3802 EXPORT_SYMBOL(kmem_cache_size);
3803 
3804 const char *kmem_cache_name(struct kmem_cache *cachep)
3805 {
3806 	return cachep->name;
3807 }
3808 EXPORT_SYMBOL_GPL(kmem_cache_name);
3809 
3810 /*
3811  * This initializes kmem_list3 or resizes various caches for all nodes.
3812  */
3813 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3814 {
3815 	int node;
3816 	struct kmem_list3 *l3;
3817 	struct array_cache *new_shared;
3818 	struct array_cache **new_alien = NULL;
3819 
3820 	for_each_online_node(node) {
3821 
3822                 if (use_alien_caches) {
3823                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3824                         if (!new_alien)
3825                                 goto fail;
3826                 }
3827 
3828 		new_shared = NULL;
3829 		if (cachep->shared) {
3830 			new_shared = alloc_arraycache(node,
3831 				cachep->shared*cachep->batchcount,
3832 					0xbaadf00d, gfp);
3833 			if (!new_shared) {
3834 				free_alien_cache(new_alien);
3835 				goto fail;
3836 			}
3837 		}
3838 
3839 		l3 = cachep->nodelists[node];
3840 		if (l3) {
3841 			struct array_cache *shared = l3->shared;
3842 
3843 			spin_lock_irq(&l3->list_lock);
3844 
3845 			if (shared)
3846 				free_block(cachep, shared->entry,
3847 						shared->avail, node);
3848 
3849 			l3->shared = new_shared;
3850 			if (!l3->alien) {
3851 				l3->alien = new_alien;
3852 				new_alien = NULL;
3853 			}
3854 			l3->free_limit = (1 + nr_cpus_node(node)) *
3855 					cachep->batchcount + cachep->num;
3856 			spin_unlock_irq(&l3->list_lock);
3857 			kfree(shared);
3858 			free_alien_cache(new_alien);
3859 			continue;
3860 		}
3861 		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3862 		if (!l3) {
3863 			free_alien_cache(new_alien);
3864 			kfree(new_shared);
3865 			goto fail;
3866 		}
3867 
3868 		kmem_list3_init(l3);
3869 		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3870 				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3871 		l3->shared = new_shared;
3872 		l3->alien = new_alien;
3873 		l3->free_limit = (1 + nr_cpus_node(node)) *
3874 					cachep->batchcount + cachep->num;
3875 		cachep->nodelists[node] = l3;
3876 	}
3877 	return 0;
3878 
3879 fail:
3880 	if (!cachep->next.next) {
3881 		/* Cache is not active yet. Roll back what we did */
3882 		node--;
3883 		while (node >= 0) {
3884 			if (cachep->nodelists[node]) {
3885 				l3 = cachep->nodelists[node];
3886 
3887 				kfree(l3->shared);
3888 				free_alien_cache(l3->alien);
3889 				kfree(l3);
3890 				cachep->nodelists[node] = NULL;
3891 			}
3892 			node--;
3893 		}
3894 	}
3895 	return -ENOMEM;
3896 }
3897 
3898 struct ccupdate_struct {
3899 	struct kmem_cache *cachep;
3900 	struct array_cache *new[NR_CPUS];
3901 };
3902 
3903 static void do_ccupdate_local(void *info)
3904 {
3905 	struct ccupdate_struct *new = info;
3906 	struct array_cache *old;
3907 
3908 	check_irq_off();
3909 	old = cpu_cache_get(new->cachep);
3910 
3911 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3912 	new->new[smp_processor_id()] = old;
3913 }
3914 
3915 /* Always called with the cache_chain_mutex held */
3916 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3917 				int batchcount, int shared, gfp_t gfp)
3918 {
3919 	struct ccupdate_struct *new;
3920 	int i;
3921 
3922 	new = kzalloc(sizeof(*new), gfp);
3923 	if (!new)
3924 		return -ENOMEM;
3925 
3926 	for_each_online_cpu(i) {
3927 		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3928 						batchcount, gfp);
3929 		if (!new->new[i]) {
3930 			for (i--; i >= 0; i--)
3931 				kfree(new->new[i]);
3932 			kfree(new);
3933 			return -ENOMEM;
3934 		}
3935 	}
3936 	new->cachep = cachep;
3937 
3938 	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3939 
3940 	check_irq_on();
3941 	cachep->batchcount = batchcount;
3942 	cachep->limit = limit;
3943 	cachep->shared = shared;
3944 
3945 	for_each_online_cpu(i) {
3946 		struct array_cache *ccold = new->new[i];
3947 		if (!ccold)
3948 			continue;
3949 		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3950 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3951 		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3952 		kfree(ccold);
3953 	}
3954 	kfree(new);
3955 	return alloc_kmemlist(cachep, gfp);
3956 }
3957 
3958 /* Called with cache_chain_mutex held always */
3959 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3960 {
3961 	int err;
3962 	int limit, shared;
3963 
3964 	/*
3965 	 * The head array serves three purposes:
3966 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3967 	 * - reduce the number of spinlock operations.
3968 	 * - reduce the number of linked list operations on the slab and
3969 	 *   bufctl chains: array operations are cheaper.
3970 	 * The numbers are guessed, we should auto-tune as described by
3971 	 * Bonwick.
3972 	 */
3973 	if (cachep->buffer_size > 131072)
3974 		limit = 1;
3975 	else if (cachep->buffer_size > PAGE_SIZE)
3976 		limit = 8;
3977 	else if (cachep->buffer_size > 1024)
3978 		limit = 24;
3979 	else if (cachep->buffer_size > 256)
3980 		limit = 54;
3981 	else
3982 		limit = 120;
3983 
3984 	/*
3985 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3986 	 * allocation behaviour: Most allocs on one cpu, most free operations
3987 	 * on another cpu. For these cases, an efficient object passing between
3988 	 * cpus is necessary. This is provided by a shared array. The array
3989 	 * replaces Bonwick's magazine layer.
3990 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3991 	 * to a larger limit. Thus disabled by default.
3992 	 */
3993 	shared = 0;
3994 	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3995 		shared = 8;
3996 
3997 #if DEBUG
3998 	/*
3999 	 * With debugging enabled, large batchcount lead to excessively long
4000 	 * periods with disabled local interrupts. Limit the batchcount
4001 	 */
4002 	if (limit > 32)
4003 		limit = 32;
4004 #endif
4005 	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4006 	if (err)
4007 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4008 		       cachep->name, -err);
4009 	return err;
4010 }
4011 
4012 /*
4013  * Drain an array if it contains any elements taking the l3 lock only if
4014  * necessary. Note that the l3 listlock also protects the array_cache
4015  * if drain_array() is used on the shared array.
4016  */
4017 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4018 			 struct array_cache *ac, int force, int node)
4019 {
4020 	int tofree;
4021 
4022 	if (!ac || !ac->avail)
4023 		return;
4024 	if (ac->touched && !force) {
4025 		ac->touched = 0;
4026 	} else {
4027 		spin_lock_irq(&l3->list_lock);
4028 		if (ac->avail) {
4029 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4030 			if (tofree > ac->avail)
4031 				tofree = (ac->avail + 1) / 2;
4032 			free_block(cachep, ac->entry, tofree, node);
4033 			ac->avail -= tofree;
4034 			memmove(ac->entry, &(ac->entry[tofree]),
4035 				sizeof(void *) * ac->avail);
4036 		}
4037 		spin_unlock_irq(&l3->list_lock);
4038 	}
4039 }
4040 
4041 /**
4042  * cache_reap - Reclaim memory from caches.
4043  * @w: work descriptor
4044  *
4045  * Called from workqueue/eventd every few seconds.
4046  * Purpose:
4047  * - clear the per-cpu caches for this CPU.
4048  * - return freeable pages to the main free memory pool.
4049  *
4050  * If we cannot acquire the cache chain mutex then just give up - we'll try
4051  * again on the next iteration.
4052  */
4053 static void cache_reap(struct work_struct *w)
4054 {
4055 	struct kmem_cache *searchp;
4056 	struct kmem_list3 *l3;
4057 	int node = numa_node_id();
4058 	struct delayed_work *work = to_delayed_work(w);
4059 
4060 	if (!mutex_trylock(&cache_chain_mutex))
4061 		/* Give up. Setup the next iteration. */
4062 		goto out;
4063 
4064 	list_for_each_entry(searchp, &cache_chain, next) {
4065 		check_irq_on();
4066 
4067 		/*
4068 		 * We only take the l3 lock if absolutely necessary and we
4069 		 * have established with reasonable certainty that
4070 		 * we can do some work if the lock was obtained.
4071 		 */
4072 		l3 = searchp->nodelists[node];
4073 
4074 		reap_alien(searchp, l3);
4075 
4076 		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4077 
4078 		/*
4079 		 * These are racy checks but it does not matter
4080 		 * if we skip one check or scan twice.
4081 		 */
4082 		if (time_after(l3->next_reap, jiffies))
4083 			goto next;
4084 
4085 		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4086 
4087 		drain_array(searchp, l3, l3->shared, 0, node);
4088 
4089 		if (l3->free_touched)
4090 			l3->free_touched = 0;
4091 		else {
4092 			int freed;
4093 
4094 			freed = drain_freelist(searchp, l3, (l3->free_limit +
4095 				5 * searchp->num - 1) / (5 * searchp->num));
4096 			STATS_ADD_REAPED(searchp, freed);
4097 		}
4098 next:
4099 		cond_resched();
4100 	}
4101 	check_irq_on();
4102 	mutex_unlock(&cache_chain_mutex);
4103 	next_reap_node();
4104 out:
4105 	/* Set up the next iteration */
4106 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4107 }
4108 
4109 #ifdef CONFIG_SLABINFO
4110 
4111 static void print_slabinfo_header(struct seq_file *m)
4112 {
4113 	/*
4114 	 * Output format version, so at least we can change it
4115 	 * without _too_ many complaints.
4116 	 */
4117 #if STATS
4118 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4119 #else
4120 	seq_puts(m, "slabinfo - version: 2.1\n");
4121 #endif
4122 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4123 		 "<objperslab> <pagesperslab>");
4124 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4125 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4126 #if STATS
4127 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4128 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4129 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4130 #endif
4131 	seq_putc(m, '\n');
4132 }
4133 
4134 static void *s_start(struct seq_file *m, loff_t *pos)
4135 {
4136 	loff_t n = *pos;
4137 
4138 	mutex_lock(&cache_chain_mutex);
4139 	if (!n)
4140 		print_slabinfo_header(m);
4141 
4142 	return seq_list_start(&cache_chain, *pos);
4143 }
4144 
4145 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4146 {
4147 	return seq_list_next(p, &cache_chain, pos);
4148 }
4149 
4150 static void s_stop(struct seq_file *m, void *p)
4151 {
4152 	mutex_unlock(&cache_chain_mutex);
4153 }
4154 
4155 static int s_show(struct seq_file *m, void *p)
4156 {
4157 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4158 	struct slab *slabp;
4159 	unsigned long active_objs;
4160 	unsigned long num_objs;
4161 	unsigned long active_slabs = 0;
4162 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4163 	const char *name;
4164 	char *error = NULL;
4165 	int node;
4166 	struct kmem_list3 *l3;
4167 
4168 	active_objs = 0;
4169 	num_slabs = 0;
4170 	for_each_online_node(node) {
4171 		l3 = cachep->nodelists[node];
4172 		if (!l3)
4173 			continue;
4174 
4175 		check_irq_on();
4176 		spin_lock_irq(&l3->list_lock);
4177 
4178 		list_for_each_entry(slabp, &l3->slabs_full, list) {
4179 			if (slabp->inuse != cachep->num && !error)
4180 				error = "slabs_full accounting error";
4181 			active_objs += cachep->num;
4182 			active_slabs++;
4183 		}
4184 		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4185 			if (slabp->inuse == cachep->num && !error)
4186 				error = "slabs_partial inuse accounting error";
4187 			if (!slabp->inuse && !error)
4188 				error = "slabs_partial/inuse accounting error";
4189 			active_objs += slabp->inuse;
4190 			active_slabs++;
4191 		}
4192 		list_for_each_entry(slabp, &l3->slabs_free, list) {
4193 			if (slabp->inuse && !error)
4194 				error = "slabs_free/inuse accounting error";
4195 			num_slabs++;
4196 		}
4197 		free_objects += l3->free_objects;
4198 		if (l3->shared)
4199 			shared_avail += l3->shared->avail;
4200 
4201 		spin_unlock_irq(&l3->list_lock);
4202 	}
4203 	num_slabs += active_slabs;
4204 	num_objs = num_slabs * cachep->num;
4205 	if (num_objs - active_objs != free_objects && !error)
4206 		error = "free_objects accounting error";
4207 
4208 	name = cachep->name;
4209 	if (error)
4210 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4211 
4212 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4213 		   name, active_objs, num_objs, cachep->buffer_size,
4214 		   cachep->num, (1 << cachep->gfporder));
4215 	seq_printf(m, " : tunables %4u %4u %4u",
4216 		   cachep->limit, cachep->batchcount, cachep->shared);
4217 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4218 		   active_slabs, num_slabs, shared_avail);
4219 #if STATS
4220 	{			/* list3 stats */
4221 		unsigned long high = cachep->high_mark;
4222 		unsigned long allocs = cachep->num_allocations;
4223 		unsigned long grown = cachep->grown;
4224 		unsigned long reaped = cachep->reaped;
4225 		unsigned long errors = cachep->errors;
4226 		unsigned long max_freeable = cachep->max_freeable;
4227 		unsigned long node_allocs = cachep->node_allocs;
4228 		unsigned long node_frees = cachep->node_frees;
4229 		unsigned long overflows = cachep->node_overflow;
4230 
4231 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4232 				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4233 				reaped, errors, max_freeable, node_allocs,
4234 				node_frees, overflows);
4235 	}
4236 	/* cpu stats */
4237 	{
4238 		unsigned long allochit = atomic_read(&cachep->allochit);
4239 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4240 		unsigned long freehit = atomic_read(&cachep->freehit);
4241 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4242 
4243 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4244 			   allochit, allocmiss, freehit, freemiss);
4245 	}
4246 #endif
4247 	seq_putc(m, '\n');
4248 	return 0;
4249 }
4250 
4251 /*
4252  * slabinfo_op - iterator that generates /proc/slabinfo
4253  *
4254  * Output layout:
4255  * cache-name
4256  * num-active-objs
4257  * total-objs
4258  * object size
4259  * num-active-slabs
4260  * total-slabs
4261  * num-pages-per-slab
4262  * + further values on SMP and with statistics enabled
4263  */
4264 
4265 static const struct seq_operations slabinfo_op = {
4266 	.start = s_start,
4267 	.next = s_next,
4268 	.stop = s_stop,
4269 	.show = s_show,
4270 };
4271 
4272 #define MAX_SLABINFO_WRITE 128
4273 /**
4274  * slabinfo_write - Tuning for the slab allocator
4275  * @file: unused
4276  * @buffer: user buffer
4277  * @count: data length
4278  * @ppos: unused
4279  */
4280 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4281 		       size_t count, loff_t *ppos)
4282 {
4283 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4284 	int limit, batchcount, shared, res;
4285 	struct kmem_cache *cachep;
4286 
4287 	if (count > MAX_SLABINFO_WRITE)
4288 		return -EINVAL;
4289 	if (copy_from_user(&kbuf, buffer, count))
4290 		return -EFAULT;
4291 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4292 
4293 	tmp = strchr(kbuf, ' ');
4294 	if (!tmp)
4295 		return -EINVAL;
4296 	*tmp = '\0';
4297 	tmp++;
4298 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4299 		return -EINVAL;
4300 
4301 	/* Find the cache in the chain of caches. */
4302 	mutex_lock(&cache_chain_mutex);
4303 	res = -EINVAL;
4304 	list_for_each_entry(cachep, &cache_chain, next) {
4305 		if (!strcmp(cachep->name, kbuf)) {
4306 			if (limit < 1 || batchcount < 1 ||
4307 					batchcount > limit || shared < 0) {
4308 				res = 0;
4309 			} else {
4310 				res = do_tune_cpucache(cachep, limit,
4311 						       batchcount, shared,
4312 						       GFP_KERNEL);
4313 			}
4314 			break;
4315 		}
4316 	}
4317 	mutex_unlock(&cache_chain_mutex);
4318 	if (res >= 0)
4319 		res = count;
4320 	return res;
4321 }
4322 
4323 static int slabinfo_open(struct inode *inode, struct file *file)
4324 {
4325 	return seq_open(file, &slabinfo_op);
4326 }
4327 
4328 static const struct file_operations proc_slabinfo_operations = {
4329 	.open		= slabinfo_open,
4330 	.read		= seq_read,
4331 	.write		= slabinfo_write,
4332 	.llseek		= seq_lseek,
4333 	.release	= seq_release,
4334 };
4335 
4336 #ifdef CONFIG_DEBUG_SLAB_LEAK
4337 
4338 static void *leaks_start(struct seq_file *m, loff_t *pos)
4339 {
4340 	mutex_lock(&cache_chain_mutex);
4341 	return seq_list_start(&cache_chain, *pos);
4342 }
4343 
4344 static inline int add_caller(unsigned long *n, unsigned long v)
4345 {
4346 	unsigned long *p;
4347 	int l;
4348 	if (!v)
4349 		return 1;
4350 	l = n[1];
4351 	p = n + 2;
4352 	while (l) {
4353 		int i = l/2;
4354 		unsigned long *q = p + 2 * i;
4355 		if (*q == v) {
4356 			q[1]++;
4357 			return 1;
4358 		}
4359 		if (*q > v) {
4360 			l = i;
4361 		} else {
4362 			p = q + 2;
4363 			l -= i + 1;
4364 		}
4365 	}
4366 	if (++n[1] == n[0])
4367 		return 0;
4368 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4369 	p[0] = v;
4370 	p[1] = 1;
4371 	return 1;
4372 }
4373 
4374 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4375 {
4376 	void *p;
4377 	int i;
4378 	if (n[0] == n[1])
4379 		return;
4380 	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4381 		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4382 			continue;
4383 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4384 			return;
4385 	}
4386 }
4387 
4388 static void show_symbol(struct seq_file *m, unsigned long address)
4389 {
4390 #ifdef CONFIG_KALLSYMS
4391 	unsigned long offset, size;
4392 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4393 
4394 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4395 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4396 		if (modname[0])
4397 			seq_printf(m, " [%s]", modname);
4398 		return;
4399 	}
4400 #endif
4401 	seq_printf(m, "%p", (void *)address);
4402 }
4403 
4404 static int leaks_show(struct seq_file *m, void *p)
4405 {
4406 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4407 	struct slab *slabp;
4408 	struct kmem_list3 *l3;
4409 	const char *name;
4410 	unsigned long *n = m->private;
4411 	int node;
4412 	int i;
4413 
4414 	if (!(cachep->flags & SLAB_STORE_USER))
4415 		return 0;
4416 	if (!(cachep->flags & SLAB_RED_ZONE))
4417 		return 0;
4418 
4419 	/* OK, we can do it */
4420 
4421 	n[1] = 0;
4422 
4423 	for_each_online_node(node) {
4424 		l3 = cachep->nodelists[node];
4425 		if (!l3)
4426 			continue;
4427 
4428 		check_irq_on();
4429 		spin_lock_irq(&l3->list_lock);
4430 
4431 		list_for_each_entry(slabp, &l3->slabs_full, list)
4432 			handle_slab(n, cachep, slabp);
4433 		list_for_each_entry(slabp, &l3->slabs_partial, list)
4434 			handle_slab(n, cachep, slabp);
4435 		spin_unlock_irq(&l3->list_lock);
4436 	}
4437 	name = cachep->name;
4438 	if (n[0] == n[1]) {
4439 		/* Increase the buffer size */
4440 		mutex_unlock(&cache_chain_mutex);
4441 		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4442 		if (!m->private) {
4443 			/* Too bad, we are really out */
4444 			m->private = n;
4445 			mutex_lock(&cache_chain_mutex);
4446 			return -ENOMEM;
4447 		}
4448 		*(unsigned long *)m->private = n[0] * 2;
4449 		kfree(n);
4450 		mutex_lock(&cache_chain_mutex);
4451 		/* Now make sure this entry will be retried */
4452 		m->count = m->size;
4453 		return 0;
4454 	}
4455 	for (i = 0; i < n[1]; i++) {
4456 		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4457 		show_symbol(m, n[2*i+2]);
4458 		seq_putc(m, '\n');
4459 	}
4460 
4461 	return 0;
4462 }
4463 
4464 static const struct seq_operations slabstats_op = {
4465 	.start = leaks_start,
4466 	.next = s_next,
4467 	.stop = s_stop,
4468 	.show = leaks_show,
4469 };
4470 
4471 static int slabstats_open(struct inode *inode, struct file *file)
4472 {
4473 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4474 	int ret = -ENOMEM;
4475 	if (n) {
4476 		ret = seq_open(file, &slabstats_op);
4477 		if (!ret) {
4478 			struct seq_file *m = file->private_data;
4479 			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4480 			m->private = n;
4481 			n = NULL;
4482 		}
4483 		kfree(n);
4484 	}
4485 	return ret;
4486 }
4487 
4488 static const struct file_operations proc_slabstats_operations = {
4489 	.open		= slabstats_open,
4490 	.read		= seq_read,
4491 	.llseek		= seq_lseek,
4492 	.release	= seq_release_private,
4493 };
4494 #endif
4495 
4496 static int __init slab_proc_init(void)
4497 {
4498 	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4499 #ifdef CONFIG_DEBUG_SLAB_LEAK
4500 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4501 #endif
4502 	return 0;
4503 }
4504 module_init(slab_proc_init);
4505 #endif
4506 
4507 /**
4508  * ksize - get the actual amount of memory allocated for a given object
4509  * @objp: Pointer to the object
4510  *
4511  * kmalloc may internally round up allocations and return more memory
4512  * than requested. ksize() can be used to determine the actual amount of
4513  * memory allocated. The caller may use this additional memory, even though
4514  * a smaller amount of memory was initially specified with the kmalloc call.
4515  * The caller must guarantee that objp points to a valid object previously
4516  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4517  * must not be freed during the duration of the call.
4518  */
4519 size_t ksize(const void *objp)
4520 {
4521 	BUG_ON(!objp);
4522 	if (unlikely(objp == ZERO_SIZE_PTR))
4523 		return 0;
4524 
4525 	return obj_size(virt_to_cache(objp));
4526 }
4527 EXPORT_SYMBOL(ksize);
4528