1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/kmemtrace.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/kmemcheck.h> 118 119 #include <asm/cacheflush.h> 120 #include <asm/tlbflush.h> 121 #include <asm/page.h> 122 123 /* 124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 125 * 0 for faster, smaller code (especially in the critical paths). 126 * 127 * STATS - 1 to collect stats for /proc/slabinfo. 128 * 0 for faster, smaller code (especially in the critical paths). 129 * 130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 131 */ 132 133 #ifdef CONFIG_DEBUG_SLAB 134 #define DEBUG 1 135 #define STATS 1 136 #define FORCED_DEBUG 1 137 #else 138 #define DEBUG 0 139 #define STATS 0 140 #define FORCED_DEBUG 0 141 #endif 142 143 /* Shouldn't this be in a header file somewhere? */ 144 #define BYTES_PER_WORD sizeof(void *) 145 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 146 147 #ifndef ARCH_KMALLOC_MINALIGN 148 /* 149 * Enforce a minimum alignment for the kmalloc caches. 150 * Usually, the kmalloc caches are cache_line_size() aligned, except when 151 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. 152 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 153 * alignment larger than the alignment of a 64-bit integer. 154 * ARCH_KMALLOC_MINALIGN allows that. 155 * Note that increasing this value may disable some debug features. 156 */ 157 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 158 #endif 159 160 #ifndef ARCH_SLAB_MINALIGN 161 /* 162 * Enforce a minimum alignment for all caches. 163 * Intended for archs that get misalignment faults even for BYTES_PER_WORD 164 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. 165 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables 166 * some debug features. 167 */ 168 #define ARCH_SLAB_MINALIGN 0 169 #endif 170 171 #ifndef ARCH_KMALLOC_FLAGS 172 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 173 #endif 174 175 /* Legal flag mask for kmem_cache_create(). */ 176 #if DEBUG 177 # define CREATE_MASK (SLAB_RED_ZONE | \ 178 SLAB_POISON | SLAB_HWCACHE_ALIGN | \ 179 SLAB_CACHE_DMA | \ 180 SLAB_STORE_USER | \ 181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ 183 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) 184 #else 185 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ 186 SLAB_CACHE_DMA | \ 187 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 188 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ 189 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) 190 #endif 191 192 /* 193 * kmem_bufctl_t: 194 * 195 * Bufctl's are used for linking objs within a slab 196 * linked offsets. 197 * 198 * This implementation relies on "struct page" for locating the cache & 199 * slab an object belongs to. 200 * This allows the bufctl structure to be small (one int), but limits 201 * the number of objects a slab (not a cache) can contain when off-slab 202 * bufctls are used. The limit is the size of the largest general cache 203 * that does not use off-slab slabs. 204 * For 32bit archs with 4 kB pages, is this 56. 205 * This is not serious, as it is only for large objects, when it is unwise 206 * to have too many per slab. 207 * Note: This limit can be raised by introducing a general cache whose size 208 * is less than 512 (PAGE_SIZE<<3), but greater than 256. 209 */ 210 211 typedef unsigned int kmem_bufctl_t; 212 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) 213 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) 214 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) 215 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) 216 217 /* 218 * struct slab 219 * 220 * Manages the objs in a slab. Placed either at the beginning of mem allocated 221 * for a slab, or allocated from an general cache. 222 * Slabs are chained into three list: fully used, partial, fully free slabs. 223 */ 224 struct slab { 225 struct list_head list; 226 unsigned long colouroff; 227 void *s_mem; /* including colour offset */ 228 unsigned int inuse; /* num of objs active in slab */ 229 kmem_bufctl_t free; 230 unsigned short nodeid; 231 }; 232 233 /* 234 * struct slab_rcu 235 * 236 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to 237 * arrange for kmem_freepages to be called via RCU. This is useful if 238 * we need to approach a kernel structure obliquely, from its address 239 * obtained without the usual locking. We can lock the structure to 240 * stabilize it and check it's still at the given address, only if we 241 * can be sure that the memory has not been meanwhile reused for some 242 * other kind of object (which our subsystem's lock might corrupt). 243 * 244 * rcu_read_lock before reading the address, then rcu_read_unlock after 245 * taking the spinlock within the structure expected at that address. 246 * 247 * We assume struct slab_rcu can overlay struct slab when destroying. 248 */ 249 struct slab_rcu { 250 struct rcu_head head; 251 struct kmem_cache *cachep; 252 void *addr; 253 }; 254 255 /* 256 * struct array_cache 257 * 258 * Purpose: 259 * - LIFO ordering, to hand out cache-warm objects from _alloc 260 * - reduce the number of linked list operations 261 * - reduce spinlock operations 262 * 263 * The limit is stored in the per-cpu structure to reduce the data cache 264 * footprint. 265 * 266 */ 267 struct array_cache { 268 unsigned int avail; 269 unsigned int limit; 270 unsigned int batchcount; 271 unsigned int touched; 272 spinlock_t lock; 273 void *entry[]; /* 274 * Must have this definition in here for the proper 275 * alignment of array_cache. Also simplifies accessing 276 * the entries. 277 */ 278 }; 279 280 /* 281 * bootstrap: The caches do not work without cpuarrays anymore, but the 282 * cpuarrays are allocated from the generic caches... 283 */ 284 #define BOOT_CPUCACHE_ENTRIES 1 285 struct arraycache_init { 286 struct array_cache cache; 287 void *entries[BOOT_CPUCACHE_ENTRIES]; 288 }; 289 290 /* 291 * The slab lists for all objects. 292 */ 293 struct kmem_list3 { 294 struct list_head slabs_partial; /* partial list first, better asm code */ 295 struct list_head slabs_full; 296 struct list_head slabs_free; 297 unsigned long free_objects; 298 unsigned int free_limit; 299 unsigned int colour_next; /* Per-node cache coloring */ 300 spinlock_t list_lock; 301 struct array_cache *shared; /* shared per node */ 302 struct array_cache **alien; /* on other nodes */ 303 unsigned long next_reap; /* updated without locking */ 304 int free_touched; /* updated without locking */ 305 }; 306 307 /* 308 * Need this for bootstrapping a per node allocator. 309 */ 310 #define NUM_INIT_LISTS (3 * MAX_NUMNODES) 311 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; 312 #define CACHE_CACHE 0 313 #define SIZE_AC MAX_NUMNODES 314 #define SIZE_L3 (2 * MAX_NUMNODES) 315 316 static int drain_freelist(struct kmem_cache *cache, 317 struct kmem_list3 *l3, int tofree); 318 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 319 int node); 320 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 321 static void cache_reap(struct work_struct *unused); 322 323 /* 324 * This function must be completely optimized away if a constant is passed to 325 * it. Mostly the same as what is in linux/slab.h except it returns an index. 326 */ 327 static __always_inline int index_of(const size_t size) 328 { 329 extern void __bad_size(void); 330 331 if (__builtin_constant_p(size)) { 332 int i = 0; 333 334 #define CACHE(x) \ 335 if (size <=x) \ 336 return i; \ 337 else \ 338 i++; 339 #include <linux/kmalloc_sizes.h> 340 #undef CACHE 341 __bad_size(); 342 } else 343 __bad_size(); 344 return 0; 345 } 346 347 static int slab_early_init = 1; 348 349 #define INDEX_AC index_of(sizeof(struct arraycache_init)) 350 #define INDEX_L3 index_of(sizeof(struct kmem_list3)) 351 352 static void kmem_list3_init(struct kmem_list3 *parent) 353 { 354 INIT_LIST_HEAD(&parent->slabs_full); 355 INIT_LIST_HEAD(&parent->slabs_partial); 356 INIT_LIST_HEAD(&parent->slabs_free); 357 parent->shared = NULL; 358 parent->alien = NULL; 359 parent->colour_next = 0; 360 spin_lock_init(&parent->list_lock); 361 parent->free_objects = 0; 362 parent->free_touched = 0; 363 } 364 365 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 366 do { \ 367 INIT_LIST_HEAD(listp); \ 368 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ 369 } while (0) 370 371 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 372 do { \ 373 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 374 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 375 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 376 } while (0) 377 378 #define CFLGS_OFF_SLAB (0x80000000UL) 379 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 380 381 #define BATCHREFILL_LIMIT 16 382 /* 383 * Optimization question: fewer reaps means less probability for unnessary 384 * cpucache drain/refill cycles. 385 * 386 * OTOH the cpuarrays can contain lots of objects, 387 * which could lock up otherwise freeable slabs. 388 */ 389 #define REAPTIMEOUT_CPUC (2*HZ) 390 #define REAPTIMEOUT_LIST3 (4*HZ) 391 392 #if STATS 393 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 394 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 395 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 396 #define STATS_INC_GROWN(x) ((x)->grown++) 397 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 398 #define STATS_SET_HIGH(x) \ 399 do { \ 400 if ((x)->num_active > (x)->high_mark) \ 401 (x)->high_mark = (x)->num_active; \ 402 } while (0) 403 #define STATS_INC_ERR(x) ((x)->errors++) 404 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 405 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 406 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 407 #define STATS_SET_FREEABLE(x, i) \ 408 do { \ 409 if ((x)->max_freeable < i) \ 410 (x)->max_freeable = i; \ 411 } while (0) 412 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 413 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 414 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 415 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 416 #else 417 #define STATS_INC_ACTIVE(x) do { } while (0) 418 #define STATS_DEC_ACTIVE(x) do { } while (0) 419 #define STATS_INC_ALLOCED(x) do { } while (0) 420 #define STATS_INC_GROWN(x) do { } while (0) 421 #define STATS_ADD_REAPED(x,y) do { } while (0) 422 #define STATS_SET_HIGH(x) do { } while (0) 423 #define STATS_INC_ERR(x) do { } while (0) 424 #define STATS_INC_NODEALLOCS(x) do { } while (0) 425 #define STATS_INC_NODEFREES(x) do { } while (0) 426 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 427 #define STATS_SET_FREEABLE(x, i) do { } while (0) 428 #define STATS_INC_ALLOCHIT(x) do { } while (0) 429 #define STATS_INC_ALLOCMISS(x) do { } while (0) 430 #define STATS_INC_FREEHIT(x) do { } while (0) 431 #define STATS_INC_FREEMISS(x) do { } while (0) 432 #endif 433 434 #if DEBUG 435 436 /* 437 * memory layout of objects: 438 * 0 : objp 439 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 440 * the end of an object is aligned with the end of the real 441 * allocation. Catches writes behind the end of the allocation. 442 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 443 * redzone word. 444 * cachep->obj_offset: The real object. 445 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 446 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address 447 * [BYTES_PER_WORD long] 448 */ 449 static int obj_offset(struct kmem_cache *cachep) 450 { 451 return cachep->obj_offset; 452 } 453 454 static int obj_size(struct kmem_cache *cachep) 455 { 456 return cachep->obj_size; 457 } 458 459 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 460 { 461 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 462 return (unsigned long long*) (objp + obj_offset(cachep) - 463 sizeof(unsigned long long)); 464 } 465 466 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 467 { 468 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 469 if (cachep->flags & SLAB_STORE_USER) 470 return (unsigned long long *)(objp + cachep->buffer_size - 471 sizeof(unsigned long long) - 472 REDZONE_ALIGN); 473 return (unsigned long long *) (objp + cachep->buffer_size - 474 sizeof(unsigned long long)); 475 } 476 477 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 478 { 479 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 480 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); 481 } 482 483 #else 484 485 #define obj_offset(x) 0 486 #define obj_size(cachep) (cachep->buffer_size) 487 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 488 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 489 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 490 491 #endif 492 493 #ifdef CONFIG_TRACING 494 size_t slab_buffer_size(struct kmem_cache *cachep) 495 { 496 return cachep->buffer_size; 497 } 498 EXPORT_SYMBOL(slab_buffer_size); 499 #endif 500 501 /* 502 * Do not go above this order unless 0 objects fit into the slab. 503 */ 504 #define BREAK_GFP_ORDER_HI 1 505 #define BREAK_GFP_ORDER_LO 0 506 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; 507 508 /* 509 * Functions for storing/retrieving the cachep and or slab from the page 510 * allocator. These are used to find the slab an obj belongs to. With kfree(), 511 * these are used to find the cache which an obj belongs to. 512 */ 513 static inline void page_set_cache(struct page *page, struct kmem_cache *cache) 514 { 515 page->lru.next = (struct list_head *)cache; 516 } 517 518 static inline struct kmem_cache *page_get_cache(struct page *page) 519 { 520 page = compound_head(page); 521 BUG_ON(!PageSlab(page)); 522 return (struct kmem_cache *)page->lru.next; 523 } 524 525 static inline void page_set_slab(struct page *page, struct slab *slab) 526 { 527 page->lru.prev = (struct list_head *)slab; 528 } 529 530 static inline struct slab *page_get_slab(struct page *page) 531 { 532 BUG_ON(!PageSlab(page)); 533 return (struct slab *)page->lru.prev; 534 } 535 536 static inline struct kmem_cache *virt_to_cache(const void *obj) 537 { 538 struct page *page = virt_to_head_page(obj); 539 return page_get_cache(page); 540 } 541 542 static inline struct slab *virt_to_slab(const void *obj) 543 { 544 struct page *page = virt_to_head_page(obj); 545 return page_get_slab(page); 546 } 547 548 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, 549 unsigned int idx) 550 { 551 return slab->s_mem + cache->buffer_size * idx; 552 } 553 554 /* 555 * We want to avoid an expensive divide : (offset / cache->buffer_size) 556 * Using the fact that buffer_size is a constant for a particular cache, 557 * we can replace (offset / cache->buffer_size) by 558 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 559 */ 560 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 561 const struct slab *slab, void *obj) 562 { 563 u32 offset = (obj - slab->s_mem); 564 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 565 } 566 567 /* 568 * These are the default caches for kmalloc. Custom caches can have other sizes. 569 */ 570 struct cache_sizes malloc_sizes[] = { 571 #define CACHE(x) { .cs_size = (x) }, 572 #include <linux/kmalloc_sizes.h> 573 CACHE(ULONG_MAX) 574 #undef CACHE 575 }; 576 EXPORT_SYMBOL(malloc_sizes); 577 578 /* Must match cache_sizes above. Out of line to keep cache footprint low. */ 579 struct cache_names { 580 char *name; 581 char *name_dma; 582 }; 583 584 static struct cache_names __initdata cache_names[] = { 585 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, 586 #include <linux/kmalloc_sizes.h> 587 {NULL,} 588 #undef CACHE 589 }; 590 591 static struct arraycache_init initarray_cache __initdata = 592 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 593 static struct arraycache_init initarray_generic = 594 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 595 596 /* internal cache of cache description objs */ 597 static struct kmem_cache cache_cache = { 598 .batchcount = 1, 599 .limit = BOOT_CPUCACHE_ENTRIES, 600 .shared = 1, 601 .buffer_size = sizeof(struct kmem_cache), 602 .name = "kmem_cache", 603 }; 604 605 #define BAD_ALIEN_MAGIC 0x01020304ul 606 607 /* 608 * chicken and egg problem: delay the per-cpu array allocation 609 * until the general caches are up. 610 */ 611 static enum { 612 NONE, 613 PARTIAL_AC, 614 PARTIAL_L3, 615 EARLY, 616 FULL 617 } g_cpucache_up; 618 619 /* 620 * used by boot code to determine if it can use slab based allocator 621 */ 622 int slab_is_available(void) 623 { 624 return g_cpucache_up >= EARLY; 625 } 626 627 #ifdef CONFIG_LOCKDEP 628 629 /* 630 * Slab sometimes uses the kmalloc slabs to store the slab headers 631 * for other slabs "off slab". 632 * The locking for this is tricky in that it nests within the locks 633 * of all other slabs in a few places; to deal with this special 634 * locking we put on-slab caches into a separate lock-class. 635 * 636 * We set lock class for alien array caches which are up during init. 637 * The lock annotation will be lost if all cpus of a node goes down and 638 * then comes back up during hotplug 639 */ 640 static struct lock_class_key on_slab_l3_key; 641 static struct lock_class_key on_slab_alc_key; 642 643 static void init_node_lock_keys(int q) 644 { 645 struct cache_sizes *s = malloc_sizes; 646 647 if (g_cpucache_up != FULL) 648 return; 649 650 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) { 651 struct array_cache **alc; 652 struct kmem_list3 *l3; 653 int r; 654 655 l3 = s->cs_cachep->nodelists[q]; 656 if (!l3 || OFF_SLAB(s->cs_cachep)) 657 continue; 658 lockdep_set_class(&l3->list_lock, &on_slab_l3_key); 659 alc = l3->alien; 660 /* 661 * FIXME: This check for BAD_ALIEN_MAGIC 662 * should go away when common slab code is taught to 663 * work even without alien caches. 664 * Currently, non NUMA code returns BAD_ALIEN_MAGIC 665 * for alloc_alien_cache, 666 */ 667 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) 668 continue; 669 for_each_node(r) { 670 if (alc[r]) 671 lockdep_set_class(&alc[r]->lock, 672 &on_slab_alc_key); 673 } 674 } 675 } 676 677 static inline void init_lock_keys(void) 678 { 679 int node; 680 681 for_each_node(node) 682 init_node_lock_keys(node); 683 } 684 #else 685 static void init_node_lock_keys(int q) 686 { 687 } 688 689 static inline void init_lock_keys(void) 690 { 691 } 692 #endif 693 694 /* 695 * Guard access to the cache-chain. 696 */ 697 static DEFINE_MUTEX(cache_chain_mutex); 698 static struct list_head cache_chain; 699 700 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 701 702 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 703 { 704 return cachep->array[smp_processor_id()]; 705 } 706 707 static inline struct kmem_cache *__find_general_cachep(size_t size, 708 gfp_t gfpflags) 709 { 710 struct cache_sizes *csizep = malloc_sizes; 711 712 #if DEBUG 713 /* This happens if someone tries to call 714 * kmem_cache_create(), or __kmalloc(), before 715 * the generic caches are initialized. 716 */ 717 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); 718 #endif 719 if (!size) 720 return ZERO_SIZE_PTR; 721 722 while (size > csizep->cs_size) 723 csizep++; 724 725 /* 726 * Really subtle: The last entry with cs->cs_size==ULONG_MAX 727 * has cs_{dma,}cachep==NULL. Thus no special case 728 * for large kmalloc calls required. 729 */ 730 #ifdef CONFIG_ZONE_DMA 731 if (unlikely(gfpflags & GFP_DMA)) 732 return csizep->cs_dmacachep; 733 #endif 734 return csizep->cs_cachep; 735 } 736 737 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) 738 { 739 return __find_general_cachep(size, gfpflags); 740 } 741 742 static size_t slab_mgmt_size(size_t nr_objs, size_t align) 743 { 744 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); 745 } 746 747 /* 748 * Calculate the number of objects and left-over bytes for a given buffer size. 749 */ 750 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 751 size_t align, int flags, size_t *left_over, 752 unsigned int *num) 753 { 754 int nr_objs; 755 size_t mgmt_size; 756 size_t slab_size = PAGE_SIZE << gfporder; 757 758 /* 759 * The slab management structure can be either off the slab or 760 * on it. For the latter case, the memory allocated for a 761 * slab is used for: 762 * 763 * - The struct slab 764 * - One kmem_bufctl_t for each object 765 * - Padding to respect alignment of @align 766 * - @buffer_size bytes for each object 767 * 768 * If the slab management structure is off the slab, then the 769 * alignment will already be calculated into the size. Because 770 * the slabs are all pages aligned, the objects will be at the 771 * correct alignment when allocated. 772 */ 773 if (flags & CFLGS_OFF_SLAB) { 774 mgmt_size = 0; 775 nr_objs = slab_size / buffer_size; 776 777 if (nr_objs > SLAB_LIMIT) 778 nr_objs = SLAB_LIMIT; 779 } else { 780 /* 781 * Ignore padding for the initial guess. The padding 782 * is at most @align-1 bytes, and @buffer_size is at 783 * least @align. In the worst case, this result will 784 * be one greater than the number of objects that fit 785 * into the memory allocation when taking the padding 786 * into account. 787 */ 788 nr_objs = (slab_size - sizeof(struct slab)) / 789 (buffer_size + sizeof(kmem_bufctl_t)); 790 791 /* 792 * This calculated number will be either the right 793 * amount, or one greater than what we want. 794 */ 795 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size 796 > slab_size) 797 nr_objs--; 798 799 if (nr_objs > SLAB_LIMIT) 800 nr_objs = SLAB_LIMIT; 801 802 mgmt_size = slab_mgmt_size(nr_objs, align); 803 } 804 *num = nr_objs; 805 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 806 } 807 808 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 809 810 static void __slab_error(const char *function, struct kmem_cache *cachep, 811 char *msg) 812 { 813 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 814 function, cachep->name, msg); 815 dump_stack(); 816 } 817 818 /* 819 * By default on NUMA we use alien caches to stage the freeing of 820 * objects allocated from other nodes. This causes massive memory 821 * inefficiencies when using fake NUMA setup to split memory into a 822 * large number of small nodes, so it can be disabled on the command 823 * line 824 */ 825 826 static int use_alien_caches __read_mostly = 1; 827 static int __init noaliencache_setup(char *s) 828 { 829 use_alien_caches = 0; 830 return 1; 831 } 832 __setup("noaliencache", noaliencache_setup); 833 834 #ifdef CONFIG_NUMA 835 /* 836 * Special reaping functions for NUMA systems called from cache_reap(). 837 * These take care of doing round robin flushing of alien caches (containing 838 * objects freed on different nodes from which they were allocated) and the 839 * flushing of remote pcps by calling drain_node_pages. 840 */ 841 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 842 843 static void init_reap_node(int cpu) 844 { 845 int node; 846 847 node = next_node(cpu_to_node(cpu), node_online_map); 848 if (node == MAX_NUMNODES) 849 node = first_node(node_online_map); 850 851 per_cpu(slab_reap_node, cpu) = node; 852 } 853 854 static void next_reap_node(void) 855 { 856 int node = __get_cpu_var(slab_reap_node); 857 858 node = next_node(node, node_online_map); 859 if (unlikely(node >= MAX_NUMNODES)) 860 node = first_node(node_online_map); 861 __get_cpu_var(slab_reap_node) = node; 862 } 863 864 #else 865 #define init_reap_node(cpu) do { } while (0) 866 #define next_reap_node(void) do { } while (0) 867 #endif 868 869 /* 870 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 871 * via the workqueue/eventd. 872 * Add the CPU number into the expiration time to minimize the possibility of 873 * the CPUs getting into lockstep and contending for the global cache chain 874 * lock. 875 */ 876 static void __cpuinit start_cpu_timer(int cpu) 877 { 878 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 879 880 /* 881 * When this gets called from do_initcalls via cpucache_init(), 882 * init_workqueues() has already run, so keventd will be setup 883 * at that time. 884 */ 885 if (keventd_up() && reap_work->work.func == NULL) { 886 init_reap_node(cpu); 887 INIT_DELAYED_WORK(reap_work, cache_reap); 888 schedule_delayed_work_on(cpu, reap_work, 889 __round_jiffies_relative(HZ, cpu)); 890 } 891 } 892 893 static struct array_cache *alloc_arraycache(int node, int entries, 894 int batchcount, gfp_t gfp) 895 { 896 int memsize = sizeof(void *) * entries + sizeof(struct array_cache); 897 struct array_cache *nc = NULL; 898 899 nc = kmalloc_node(memsize, gfp, node); 900 /* 901 * The array_cache structures contain pointers to free object. 902 * However, when such objects are allocated or transfered to another 903 * cache the pointers are not cleared and they could be counted as 904 * valid references during a kmemleak scan. Therefore, kmemleak must 905 * not scan such objects. 906 */ 907 kmemleak_no_scan(nc); 908 if (nc) { 909 nc->avail = 0; 910 nc->limit = entries; 911 nc->batchcount = batchcount; 912 nc->touched = 0; 913 spin_lock_init(&nc->lock); 914 } 915 return nc; 916 } 917 918 /* 919 * Transfer objects in one arraycache to another. 920 * Locking must be handled by the caller. 921 * 922 * Return the number of entries transferred. 923 */ 924 static int transfer_objects(struct array_cache *to, 925 struct array_cache *from, unsigned int max) 926 { 927 /* Figure out how many entries to transfer */ 928 int nr = min(min(from->avail, max), to->limit - to->avail); 929 930 if (!nr) 931 return 0; 932 933 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 934 sizeof(void *) *nr); 935 936 from->avail -= nr; 937 to->avail += nr; 938 to->touched = 1; 939 return nr; 940 } 941 942 #ifndef CONFIG_NUMA 943 944 #define drain_alien_cache(cachep, alien) do { } while (0) 945 #define reap_alien(cachep, l3) do { } while (0) 946 947 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 948 { 949 return (struct array_cache **)BAD_ALIEN_MAGIC; 950 } 951 952 static inline void free_alien_cache(struct array_cache **ac_ptr) 953 { 954 } 955 956 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 957 { 958 return 0; 959 } 960 961 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 962 gfp_t flags) 963 { 964 return NULL; 965 } 966 967 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 968 gfp_t flags, int nodeid) 969 { 970 return NULL; 971 } 972 973 #else /* CONFIG_NUMA */ 974 975 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 976 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 977 978 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 979 { 980 struct array_cache **ac_ptr; 981 int memsize = sizeof(void *) * nr_node_ids; 982 int i; 983 984 if (limit > 1) 985 limit = 12; 986 ac_ptr = kmalloc_node(memsize, gfp, node); 987 if (ac_ptr) { 988 for_each_node(i) { 989 if (i == node || !node_online(i)) { 990 ac_ptr[i] = NULL; 991 continue; 992 } 993 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); 994 if (!ac_ptr[i]) { 995 for (i--; i >= 0; i--) 996 kfree(ac_ptr[i]); 997 kfree(ac_ptr); 998 return NULL; 999 } 1000 } 1001 } 1002 return ac_ptr; 1003 } 1004 1005 static void free_alien_cache(struct array_cache **ac_ptr) 1006 { 1007 int i; 1008 1009 if (!ac_ptr) 1010 return; 1011 for_each_node(i) 1012 kfree(ac_ptr[i]); 1013 kfree(ac_ptr); 1014 } 1015 1016 static void __drain_alien_cache(struct kmem_cache *cachep, 1017 struct array_cache *ac, int node) 1018 { 1019 struct kmem_list3 *rl3 = cachep->nodelists[node]; 1020 1021 if (ac->avail) { 1022 spin_lock(&rl3->list_lock); 1023 /* 1024 * Stuff objects into the remote nodes shared array first. 1025 * That way we could avoid the overhead of putting the objects 1026 * into the free lists and getting them back later. 1027 */ 1028 if (rl3->shared) 1029 transfer_objects(rl3->shared, ac, ac->limit); 1030 1031 free_block(cachep, ac->entry, ac->avail, node); 1032 ac->avail = 0; 1033 spin_unlock(&rl3->list_lock); 1034 } 1035 } 1036 1037 /* 1038 * Called from cache_reap() to regularly drain alien caches round robin. 1039 */ 1040 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) 1041 { 1042 int node = __get_cpu_var(slab_reap_node); 1043 1044 if (l3->alien) { 1045 struct array_cache *ac = l3->alien[node]; 1046 1047 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { 1048 __drain_alien_cache(cachep, ac, node); 1049 spin_unlock_irq(&ac->lock); 1050 } 1051 } 1052 } 1053 1054 static void drain_alien_cache(struct kmem_cache *cachep, 1055 struct array_cache **alien) 1056 { 1057 int i = 0; 1058 struct array_cache *ac; 1059 unsigned long flags; 1060 1061 for_each_online_node(i) { 1062 ac = alien[i]; 1063 if (ac) { 1064 spin_lock_irqsave(&ac->lock, flags); 1065 __drain_alien_cache(cachep, ac, i); 1066 spin_unlock_irqrestore(&ac->lock, flags); 1067 } 1068 } 1069 } 1070 1071 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1072 { 1073 struct slab *slabp = virt_to_slab(objp); 1074 int nodeid = slabp->nodeid; 1075 struct kmem_list3 *l3; 1076 struct array_cache *alien = NULL; 1077 int node; 1078 1079 node = numa_node_id(); 1080 1081 /* 1082 * Make sure we are not freeing a object from another node to the array 1083 * cache on this cpu. 1084 */ 1085 if (likely(slabp->nodeid == node)) 1086 return 0; 1087 1088 l3 = cachep->nodelists[node]; 1089 STATS_INC_NODEFREES(cachep); 1090 if (l3->alien && l3->alien[nodeid]) { 1091 alien = l3->alien[nodeid]; 1092 spin_lock(&alien->lock); 1093 if (unlikely(alien->avail == alien->limit)) { 1094 STATS_INC_ACOVERFLOW(cachep); 1095 __drain_alien_cache(cachep, alien, nodeid); 1096 } 1097 alien->entry[alien->avail++] = objp; 1098 spin_unlock(&alien->lock); 1099 } else { 1100 spin_lock(&(cachep->nodelists[nodeid])->list_lock); 1101 free_block(cachep, &objp, 1, nodeid); 1102 spin_unlock(&(cachep->nodelists[nodeid])->list_lock); 1103 } 1104 return 1; 1105 } 1106 #endif 1107 1108 static void __cpuinit cpuup_canceled(long cpu) 1109 { 1110 struct kmem_cache *cachep; 1111 struct kmem_list3 *l3 = NULL; 1112 int node = cpu_to_node(cpu); 1113 const struct cpumask *mask = cpumask_of_node(node); 1114 1115 list_for_each_entry(cachep, &cache_chain, next) { 1116 struct array_cache *nc; 1117 struct array_cache *shared; 1118 struct array_cache **alien; 1119 1120 /* cpu is dead; no one can alloc from it. */ 1121 nc = cachep->array[cpu]; 1122 cachep->array[cpu] = NULL; 1123 l3 = cachep->nodelists[node]; 1124 1125 if (!l3) 1126 goto free_array_cache; 1127 1128 spin_lock_irq(&l3->list_lock); 1129 1130 /* Free limit for this kmem_list3 */ 1131 l3->free_limit -= cachep->batchcount; 1132 if (nc) 1133 free_block(cachep, nc->entry, nc->avail, node); 1134 1135 if (!cpumask_empty(mask)) { 1136 spin_unlock_irq(&l3->list_lock); 1137 goto free_array_cache; 1138 } 1139 1140 shared = l3->shared; 1141 if (shared) { 1142 free_block(cachep, shared->entry, 1143 shared->avail, node); 1144 l3->shared = NULL; 1145 } 1146 1147 alien = l3->alien; 1148 l3->alien = NULL; 1149 1150 spin_unlock_irq(&l3->list_lock); 1151 1152 kfree(shared); 1153 if (alien) { 1154 drain_alien_cache(cachep, alien); 1155 free_alien_cache(alien); 1156 } 1157 free_array_cache: 1158 kfree(nc); 1159 } 1160 /* 1161 * In the previous loop, all the objects were freed to 1162 * the respective cache's slabs, now we can go ahead and 1163 * shrink each nodelist to its limit. 1164 */ 1165 list_for_each_entry(cachep, &cache_chain, next) { 1166 l3 = cachep->nodelists[node]; 1167 if (!l3) 1168 continue; 1169 drain_freelist(cachep, l3, l3->free_objects); 1170 } 1171 } 1172 1173 static int __cpuinit cpuup_prepare(long cpu) 1174 { 1175 struct kmem_cache *cachep; 1176 struct kmem_list3 *l3 = NULL; 1177 int node = cpu_to_node(cpu); 1178 const int memsize = sizeof(struct kmem_list3); 1179 1180 /* 1181 * We need to do this right in the beginning since 1182 * alloc_arraycache's are going to use this list. 1183 * kmalloc_node allows us to add the slab to the right 1184 * kmem_list3 and not this cpu's kmem_list3 1185 */ 1186 1187 list_for_each_entry(cachep, &cache_chain, next) { 1188 /* 1189 * Set up the size64 kmemlist for cpu before we can 1190 * begin anything. Make sure some other cpu on this 1191 * node has not already allocated this 1192 */ 1193 if (!cachep->nodelists[node]) { 1194 l3 = kmalloc_node(memsize, GFP_KERNEL, node); 1195 if (!l3) 1196 goto bad; 1197 kmem_list3_init(l3); 1198 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 1199 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1200 1201 /* 1202 * The l3s don't come and go as CPUs come and 1203 * go. cache_chain_mutex is sufficient 1204 * protection here. 1205 */ 1206 cachep->nodelists[node] = l3; 1207 } 1208 1209 spin_lock_irq(&cachep->nodelists[node]->list_lock); 1210 cachep->nodelists[node]->free_limit = 1211 (1 + nr_cpus_node(node)) * 1212 cachep->batchcount + cachep->num; 1213 spin_unlock_irq(&cachep->nodelists[node]->list_lock); 1214 } 1215 1216 /* 1217 * Now we can go ahead with allocating the shared arrays and 1218 * array caches 1219 */ 1220 list_for_each_entry(cachep, &cache_chain, next) { 1221 struct array_cache *nc; 1222 struct array_cache *shared = NULL; 1223 struct array_cache **alien = NULL; 1224 1225 nc = alloc_arraycache(node, cachep->limit, 1226 cachep->batchcount, GFP_KERNEL); 1227 if (!nc) 1228 goto bad; 1229 if (cachep->shared) { 1230 shared = alloc_arraycache(node, 1231 cachep->shared * cachep->batchcount, 1232 0xbaadf00d, GFP_KERNEL); 1233 if (!shared) { 1234 kfree(nc); 1235 goto bad; 1236 } 1237 } 1238 if (use_alien_caches) { 1239 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); 1240 if (!alien) { 1241 kfree(shared); 1242 kfree(nc); 1243 goto bad; 1244 } 1245 } 1246 cachep->array[cpu] = nc; 1247 l3 = cachep->nodelists[node]; 1248 BUG_ON(!l3); 1249 1250 spin_lock_irq(&l3->list_lock); 1251 if (!l3->shared) { 1252 /* 1253 * We are serialised from CPU_DEAD or 1254 * CPU_UP_CANCELLED by the cpucontrol lock 1255 */ 1256 l3->shared = shared; 1257 shared = NULL; 1258 } 1259 #ifdef CONFIG_NUMA 1260 if (!l3->alien) { 1261 l3->alien = alien; 1262 alien = NULL; 1263 } 1264 #endif 1265 spin_unlock_irq(&l3->list_lock); 1266 kfree(shared); 1267 free_alien_cache(alien); 1268 } 1269 init_node_lock_keys(node); 1270 1271 return 0; 1272 bad: 1273 cpuup_canceled(cpu); 1274 return -ENOMEM; 1275 } 1276 1277 static int __cpuinit cpuup_callback(struct notifier_block *nfb, 1278 unsigned long action, void *hcpu) 1279 { 1280 long cpu = (long)hcpu; 1281 int err = 0; 1282 1283 switch (action) { 1284 case CPU_UP_PREPARE: 1285 case CPU_UP_PREPARE_FROZEN: 1286 mutex_lock(&cache_chain_mutex); 1287 err = cpuup_prepare(cpu); 1288 mutex_unlock(&cache_chain_mutex); 1289 break; 1290 case CPU_ONLINE: 1291 case CPU_ONLINE_FROZEN: 1292 start_cpu_timer(cpu); 1293 break; 1294 #ifdef CONFIG_HOTPLUG_CPU 1295 case CPU_DOWN_PREPARE: 1296 case CPU_DOWN_PREPARE_FROZEN: 1297 /* 1298 * Shutdown cache reaper. Note that the cache_chain_mutex is 1299 * held so that if cache_reap() is invoked it cannot do 1300 * anything expensive but will only modify reap_work 1301 * and reschedule the timer. 1302 */ 1303 cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu)); 1304 /* Now the cache_reaper is guaranteed to be not running. */ 1305 per_cpu(slab_reap_work, cpu).work.func = NULL; 1306 break; 1307 case CPU_DOWN_FAILED: 1308 case CPU_DOWN_FAILED_FROZEN: 1309 start_cpu_timer(cpu); 1310 break; 1311 case CPU_DEAD: 1312 case CPU_DEAD_FROZEN: 1313 /* 1314 * Even if all the cpus of a node are down, we don't free the 1315 * kmem_list3 of any cache. This to avoid a race between 1316 * cpu_down, and a kmalloc allocation from another cpu for 1317 * memory from the node of the cpu going down. The list3 1318 * structure is usually allocated from kmem_cache_create() and 1319 * gets destroyed at kmem_cache_destroy(). 1320 */ 1321 /* fall through */ 1322 #endif 1323 case CPU_UP_CANCELED: 1324 case CPU_UP_CANCELED_FROZEN: 1325 mutex_lock(&cache_chain_mutex); 1326 cpuup_canceled(cpu); 1327 mutex_unlock(&cache_chain_mutex); 1328 break; 1329 } 1330 return err ? NOTIFY_BAD : NOTIFY_OK; 1331 } 1332 1333 static struct notifier_block __cpuinitdata cpucache_notifier = { 1334 &cpuup_callback, NULL, 0 1335 }; 1336 1337 /* 1338 * swap the static kmem_list3 with kmalloced memory 1339 */ 1340 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, 1341 int nodeid) 1342 { 1343 struct kmem_list3 *ptr; 1344 1345 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); 1346 BUG_ON(!ptr); 1347 1348 memcpy(ptr, list, sizeof(struct kmem_list3)); 1349 /* 1350 * Do not assume that spinlocks can be initialized via memcpy: 1351 */ 1352 spin_lock_init(&ptr->list_lock); 1353 1354 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1355 cachep->nodelists[nodeid] = ptr; 1356 } 1357 1358 /* 1359 * For setting up all the kmem_list3s for cache whose buffer_size is same as 1360 * size of kmem_list3. 1361 */ 1362 static void __init set_up_list3s(struct kmem_cache *cachep, int index) 1363 { 1364 int node; 1365 1366 for_each_online_node(node) { 1367 cachep->nodelists[node] = &initkmem_list3[index + node]; 1368 cachep->nodelists[node]->next_reap = jiffies + 1369 REAPTIMEOUT_LIST3 + 1370 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1371 } 1372 } 1373 1374 /* 1375 * Initialisation. Called after the page allocator have been initialised and 1376 * before smp_init(). 1377 */ 1378 void __init kmem_cache_init(void) 1379 { 1380 size_t left_over; 1381 struct cache_sizes *sizes; 1382 struct cache_names *names; 1383 int i; 1384 int order; 1385 int node; 1386 1387 if (num_possible_nodes() == 1) 1388 use_alien_caches = 0; 1389 1390 for (i = 0; i < NUM_INIT_LISTS; i++) { 1391 kmem_list3_init(&initkmem_list3[i]); 1392 if (i < MAX_NUMNODES) 1393 cache_cache.nodelists[i] = NULL; 1394 } 1395 set_up_list3s(&cache_cache, CACHE_CACHE); 1396 1397 /* 1398 * Fragmentation resistance on low memory - only use bigger 1399 * page orders on machines with more than 32MB of memory. 1400 */ 1401 if (totalram_pages > (32 << 20) >> PAGE_SHIFT) 1402 slab_break_gfp_order = BREAK_GFP_ORDER_HI; 1403 1404 /* Bootstrap is tricky, because several objects are allocated 1405 * from caches that do not exist yet: 1406 * 1) initialize the cache_cache cache: it contains the struct 1407 * kmem_cache structures of all caches, except cache_cache itself: 1408 * cache_cache is statically allocated. 1409 * Initially an __init data area is used for the head array and the 1410 * kmem_list3 structures, it's replaced with a kmalloc allocated 1411 * array at the end of the bootstrap. 1412 * 2) Create the first kmalloc cache. 1413 * The struct kmem_cache for the new cache is allocated normally. 1414 * An __init data area is used for the head array. 1415 * 3) Create the remaining kmalloc caches, with minimally sized 1416 * head arrays. 1417 * 4) Replace the __init data head arrays for cache_cache and the first 1418 * kmalloc cache with kmalloc allocated arrays. 1419 * 5) Replace the __init data for kmem_list3 for cache_cache and 1420 * the other cache's with kmalloc allocated memory. 1421 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1422 */ 1423 1424 node = numa_node_id(); 1425 1426 /* 1) create the cache_cache */ 1427 INIT_LIST_HEAD(&cache_chain); 1428 list_add(&cache_cache.next, &cache_chain); 1429 cache_cache.colour_off = cache_line_size(); 1430 cache_cache.array[smp_processor_id()] = &initarray_cache.cache; 1431 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; 1432 1433 /* 1434 * struct kmem_cache size depends on nr_node_ids, which 1435 * can be less than MAX_NUMNODES. 1436 */ 1437 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) + 1438 nr_node_ids * sizeof(struct kmem_list3 *); 1439 #if DEBUG 1440 cache_cache.obj_size = cache_cache.buffer_size; 1441 #endif 1442 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, 1443 cache_line_size()); 1444 cache_cache.reciprocal_buffer_size = 1445 reciprocal_value(cache_cache.buffer_size); 1446 1447 for (order = 0; order < MAX_ORDER; order++) { 1448 cache_estimate(order, cache_cache.buffer_size, 1449 cache_line_size(), 0, &left_over, &cache_cache.num); 1450 if (cache_cache.num) 1451 break; 1452 } 1453 BUG_ON(!cache_cache.num); 1454 cache_cache.gfporder = order; 1455 cache_cache.colour = left_over / cache_cache.colour_off; 1456 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + 1457 sizeof(struct slab), cache_line_size()); 1458 1459 /* 2+3) create the kmalloc caches */ 1460 sizes = malloc_sizes; 1461 names = cache_names; 1462 1463 /* 1464 * Initialize the caches that provide memory for the array cache and the 1465 * kmem_list3 structures first. Without this, further allocations will 1466 * bug. 1467 */ 1468 1469 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, 1470 sizes[INDEX_AC].cs_size, 1471 ARCH_KMALLOC_MINALIGN, 1472 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1473 NULL); 1474 1475 if (INDEX_AC != INDEX_L3) { 1476 sizes[INDEX_L3].cs_cachep = 1477 kmem_cache_create(names[INDEX_L3].name, 1478 sizes[INDEX_L3].cs_size, 1479 ARCH_KMALLOC_MINALIGN, 1480 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1481 NULL); 1482 } 1483 1484 slab_early_init = 0; 1485 1486 while (sizes->cs_size != ULONG_MAX) { 1487 /* 1488 * For performance, all the general caches are L1 aligned. 1489 * This should be particularly beneficial on SMP boxes, as it 1490 * eliminates "false sharing". 1491 * Note for systems short on memory removing the alignment will 1492 * allow tighter packing of the smaller caches. 1493 */ 1494 if (!sizes->cs_cachep) { 1495 sizes->cs_cachep = kmem_cache_create(names->name, 1496 sizes->cs_size, 1497 ARCH_KMALLOC_MINALIGN, 1498 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1499 NULL); 1500 } 1501 #ifdef CONFIG_ZONE_DMA 1502 sizes->cs_dmacachep = kmem_cache_create( 1503 names->name_dma, 1504 sizes->cs_size, 1505 ARCH_KMALLOC_MINALIGN, 1506 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| 1507 SLAB_PANIC, 1508 NULL); 1509 #endif 1510 sizes++; 1511 names++; 1512 } 1513 /* 4) Replace the bootstrap head arrays */ 1514 { 1515 struct array_cache *ptr; 1516 1517 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1518 1519 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); 1520 memcpy(ptr, cpu_cache_get(&cache_cache), 1521 sizeof(struct arraycache_init)); 1522 /* 1523 * Do not assume that spinlocks can be initialized via memcpy: 1524 */ 1525 spin_lock_init(&ptr->lock); 1526 1527 cache_cache.array[smp_processor_id()] = ptr; 1528 1529 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1530 1531 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) 1532 != &initarray_generic.cache); 1533 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), 1534 sizeof(struct arraycache_init)); 1535 /* 1536 * Do not assume that spinlocks can be initialized via memcpy: 1537 */ 1538 spin_lock_init(&ptr->lock); 1539 1540 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = 1541 ptr; 1542 } 1543 /* 5) Replace the bootstrap kmem_list3's */ 1544 { 1545 int nid; 1546 1547 for_each_online_node(nid) { 1548 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); 1549 1550 init_list(malloc_sizes[INDEX_AC].cs_cachep, 1551 &initkmem_list3[SIZE_AC + nid], nid); 1552 1553 if (INDEX_AC != INDEX_L3) { 1554 init_list(malloc_sizes[INDEX_L3].cs_cachep, 1555 &initkmem_list3[SIZE_L3 + nid], nid); 1556 } 1557 } 1558 } 1559 1560 g_cpucache_up = EARLY; 1561 } 1562 1563 void __init kmem_cache_init_late(void) 1564 { 1565 struct kmem_cache *cachep; 1566 1567 /* 6) resize the head arrays to their final sizes */ 1568 mutex_lock(&cache_chain_mutex); 1569 list_for_each_entry(cachep, &cache_chain, next) 1570 if (enable_cpucache(cachep, GFP_NOWAIT)) 1571 BUG(); 1572 mutex_unlock(&cache_chain_mutex); 1573 1574 /* Done! */ 1575 g_cpucache_up = FULL; 1576 1577 /* Annotate slab for lockdep -- annotate the malloc caches */ 1578 init_lock_keys(); 1579 1580 /* 1581 * Register a cpu startup notifier callback that initializes 1582 * cpu_cache_get for all new cpus 1583 */ 1584 register_cpu_notifier(&cpucache_notifier); 1585 1586 /* 1587 * The reap timers are started later, with a module init call: That part 1588 * of the kernel is not yet operational. 1589 */ 1590 } 1591 1592 static int __init cpucache_init(void) 1593 { 1594 int cpu; 1595 1596 /* 1597 * Register the timers that return unneeded pages to the page allocator 1598 */ 1599 for_each_online_cpu(cpu) 1600 start_cpu_timer(cpu); 1601 return 0; 1602 } 1603 __initcall(cpucache_init); 1604 1605 /* 1606 * Interface to system's page allocator. No need to hold the cache-lock. 1607 * 1608 * If we requested dmaable memory, we will get it. Even if we 1609 * did not request dmaable memory, we might get it, but that 1610 * would be relatively rare and ignorable. 1611 */ 1612 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) 1613 { 1614 struct page *page; 1615 int nr_pages; 1616 int i; 1617 1618 #ifndef CONFIG_MMU 1619 /* 1620 * Nommu uses slab's for process anonymous memory allocations, and thus 1621 * requires __GFP_COMP to properly refcount higher order allocations 1622 */ 1623 flags |= __GFP_COMP; 1624 #endif 1625 1626 flags |= cachep->gfpflags; 1627 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1628 flags |= __GFP_RECLAIMABLE; 1629 1630 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1631 if (!page) 1632 return NULL; 1633 1634 nr_pages = (1 << cachep->gfporder); 1635 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1636 add_zone_page_state(page_zone(page), 1637 NR_SLAB_RECLAIMABLE, nr_pages); 1638 else 1639 add_zone_page_state(page_zone(page), 1640 NR_SLAB_UNRECLAIMABLE, nr_pages); 1641 for (i = 0; i < nr_pages; i++) 1642 __SetPageSlab(page + i); 1643 1644 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1645 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1646 1647 if (cachep->ctor) 1648 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1649 else 1650 kmemcheck_mark_unallocated_pages(page, nr_pages); 1651 } 1652 1653 return page_address(page); 1654 } 1655 1656 /* 1657 * Interface to system's page release. 1658 */ 1659 static void kmem_freepages(struct kmem_cache *cachep, void *addr) 1660 { 1661 unsigned long i = (1 << cachep->gfporder); 1662 struct page *page = virt_to_page(addr); 1663 const unsigned long nr_freed = i; 1664 1665 kmemcheck_free_shadow(page, cachep->gfporder); 1666 1667 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1668 sub_zone_page_state(page_zone(page), 1669 NR_SLAB_RECLAIMABLE, nr_freed); 1670 else 1671 sub_zone_page_state(page_zone(page), 1672 NR_SLAB_UNRECLAIMABLE, nr_freed); 1673 while (i--) { 1674 BUG_ON(!PageSlab(page)); 1675 __ClearPageSlab(page); 1676 page++; 1677 } 1678 if (current->reclaim_state) 1679 current->reclaim_state->reclaimed_slab += nr_freed; 1680 free_pages((unsigned long)addr, cachep->gfporder); 1681 } 1682 1683 static void kmem_rcu_free(struct rcu_head *head) 1684 { 1685 struct slab_rcu *slab_rcu = (struct slab_rcu *)head; 1686 struct kmem_cache *cachep = slab_rcu->cachep; 1687 1688 kmem_freepages(cachep, slab_rcu->addr); 1689 if (OFF_SLAB(cachep)) 1690 kmem_cache_free(cachep->slabp_cache, slab_rcu); 1691 } 1692 1693 #if DEBUG 1694 1695 #ifdef CONFIG_DEBUG_PAGEALLOC 1696 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1697 unsigned long caller) 1698 { 1699 int size = obj_size(cachep); 1700 1701 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1702 1703 if (size < 5 * sizeof(unsigned long)) 1704 return; 1705 1706 *addr++ = 0x12345678; 1707 *addr++ = caller; 1708 *addr++ = smp_processor_id(); 1709 size -= 3 * sizeof(unsigned long); 1710 { 1711 unsigned long *sptr = &caller; 1712 unsigned long svalue; 1713 1714 while (!kstack_end(sptr)) { 1715 svalue = *sptr++; 1716 if (kernel_text_address(svalue)) { 1717 *addr++ = svalue; 1718 size -= sizeof(unsigned long); 1719 if (size <= sizeof(unsigned long)) 1720 break; 1721 } 1722 } 1723 1724 } 1725 *addr++ = 0x87654321; 1726 } 1727 #endif 1728 1729 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1730 { 1731 int size = obj_size(cachep); 1732 addr = &((char *)addr)[obj_offset(cachep)]; 1733 1734 memset(addr, val, size); 1735 *(unsigned char *)(addr + size - 1) = POISON_END; 1736 } 1737 1738 static void dump_line(char *data, int offset, int limit) 1739 { 1740 int i; 1741 unsigned char error = 0; 1742 int bad_count = 0; 1743 1744 printk(KERN_ERR "%03x:", offset); 1745 for (i = 0; i < limit; i++) { 1746 if (data[offset + i] != POISON_FREE) { 1747 error = data[offset + i]; 1748 bad_count++; 1749 } 1750 printk(" %02x", (unsigned char)data[offset + i]); 1751 } 1752 printk("\n"); 1753 1754 if (bad_count == 1) { 1755 error ^= POISON_FREE; 1756 if (!(error & (error - 1))) { 1757 printk(KERN_ERR "Single bit error detected. Probably " 1758 "bad RAM.\n"); 1759 #ifdef CONFIG_X86 1760 printk(KERN_ERR "Run memtest86+ or a similar memory " 1761 "test tool.\n"); 1762 #else 1763 printk(KERN_ERR "Run a memory test tool.\n"); 1764 #endif 1765 } 1766 } 1767 } 1768 #endif 1769 1770 #if DEBUG 1771 1772 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1773 { 1774 int i, size; 1775 char *realobj; 1776 1777 if (cachep->flags & SLAB_RED_ZONE) { 1778 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 1779 *dbg_redzone1(cachep, objp), 1780 *dbg_redzone2(cachep, objp)); 1781 } 1782 1783 if (cachep->flags & SLAB_STORE_USER) { 1784 printk(KERN_ERR "Last user: [<%p>]", 1785 *dbg_userword(cachep, objp)); 1786 print_symbol("(%s)", 1787 (unsigned long)*dbg_userword(cachep, objp)); 1788 printk("\n"); 1789 } 1790 realobj = (char *)objp + obj_offset(cachep); 1791 size = obj_size(cachep); 1792 for (i = 0; i < size && lines; i += 16, lines--) { 1793 int limit; 1794 limit = 16; 1795 if (i + limit > size) 1796 limit = size - i; 1797 dump_line(realobj, i, limit); 1798 } 1799 } 1800 1801 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1802 { 1803 char *realobj; 1804 int size, i; 1805 int lines = 0; 1806 1807 realobj = (char *)objp + obj_offset(cachep); 1808 size = obj_size(cachep); 1809 1810 for (i = 0; i < size; i++) { 1811 char exp = POISON_FREE; 1812 if (i == size - 1) 1813 exp = POISON_END; 1814 if (realobj[i] != exp) { 1815 int limit; 1816 /* Mismatch ! */ 1817 /* Print header */ 1818 if (lines == 0) { 1819 printk(KERN_ERR 1820 "Slab corruption: %s start=%p, len=%d\n", 1821 cachep->name, realobj, size); 1822 print_objinfo(cachep, objp, 0); 1823 } 1824 /* Hexdump the affected line */ 1825 i = (i / 16) * 16; 1826 limit = 16; 1827 if (i + limit > size) 1828 limit = size - i; 1829 dump_line(realobj, i, limit); 1830 i += 16; 1831 lines++; 1832 /* Limit to 5 lines */ 1833 if (lines > 5) 1834 break; 1835 } 1836 } 1837 if (lines != 0) { 1838 /* Print some data about the neighboring objects, if they 1839 * exist: 1840 */ 1841 struct slab *slabp = virt_to_slab(objp); 1842 unsigned int objnr; 1843 1844 objnr = obj_to_index(cachep, slabp, objp); 1845 if (objnr) { 1846 objp = index_to_obj(cachep, slabp, objnr - 1); 1847 realobj = (char *)objp + obj_offset(cachep); 1848 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1849 realobj, size); 1850 print_objinfo(cachep, objp, 2); 1851 } 1852 if (objnr + 1 < cachep->num) { 1853 objp = index_to_obj(cachep, slabp, objnr + 1); 1854 realobj = (char *)objp + obj_offset(cachep); 1855 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1856 realobj, size); 1857 print_objinfo(cachep, objp, 2); 1858 } 1859 } 1860 } 1861 #endif 1862 1863 #if DEBUG 1864 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 1865 { 1866 int i; 1867 for (i = 0; i < cachep->num; i++) { 1868 void *objp = index_to_obj(cachep, slabp, i); 1869 1870 if (cachep->flags & SLAB_POISON) { 1871 #ifdef CONFIG_DEBUG_PAGEALLOC 1872 if (cachep->buffer_size % PAGE_SIZE == 0 && 1873 OFF_SLAB(cachep)) 1874 kernel_map_pages(virt_to_page(objp), 1875 cachep->buffer_size / PAGE_SIZE, 1); 1876 else 1877 check_poison_obj(cachep, objp); 1878 #else 1879 check_poison_obj(cachep, objp); 1880 #endif 1881 } 1882 if (cachep->flags & SLAB_RED_ZONE) { 1883 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1884 slab_error(cachep, "start of a freed object " 1885 "was overwritten"); 1886 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1887 slab_error(cachep, "end of a freed object " 1888 "was overwritten"); 1889 } 1890 } 1891 } 1892 #else 1893 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 1894 { 1895 } 1896 #endif 1897 1898 /** 1899 * slab_destroy - destroy and release all objects in a slab 1900 * @cachep: cache pointer being destroyed 1901 * @slabp: slab pointer being destroyed 1902 * 1903 * Destroy all the objs in a slab, and release the mem back to the system. 1904 * Before calling the slab must have been unlinked from the cache. The 1905 * cache-lock is not held/needed. 1906 */ 1907 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) 1908 { 1909 void *addr = slabp->s_mem - slabp->colouroff; 1910 1911 slab_destroy_debugcheck(cachep, slabp); 1912 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 1913 struct slab_rcu *slab_rcu; 1914 1915 slab_rcu = (struct slab_rcu *)slabp; 1916 slab_rcu->cachep = cachep; 1917 slab_rcu->addr = addr; 1918 call_rcu(&slab_rcu->head, kmem_rcu_free); 1919 } else { 1920 kmem_freepages(cachep, addr); 1921 if (OFF_SLAB(cachep)) 1922 kmem_cache_free(cachep->slabp_cache, slabp); 1923 } 1924 } 1925 1926 static void __kmem_cache_destroy(struct kmem_cache *cachep) 1927 { 1928 int i; 1929 struct kmem_list3 *l3; 1930 1931 for_each_online_cpu(i) 1932 kfree(cachep->array[i]); 1933 1934 /* NUMA: free the list3 structures */ 1935 for_each_online_node(i) { 1936 l3 = cachep->nodelists[i]; 1937 if (l3) { 1938 kfree(l3->shared); 1939 free_alien_cache(l3->alien); 1940 kfree(l3); 1941 } 1942 } 1943 kmem_cache_free(&cache_cache, cachep); 1944 } 1945 1946 1947 /** 1948 * calculate_slab_order - calculate size (page order) of slabs 1949 * @cachep: pointer to the cache that is being created 1950 * @size: size of objects to be created in this cache. 1951 * @align: required alignment for the objects. 1952 * @flags: slab allocation flags 1953 * 1954 * Also calculates the number of objects per slab. 1955 * 1956 * This could be made much more intelligent. For now, try to avoid using 1957 * high order pages for slabs. When the gfp() functions are more friendly 1958 * towards high-order requests, this should be changed. 1959 */ 1960 static size_t calculate_slab_order(struct kmem_cache *cachep, 1961 size_t size, size_t align, unsigned long flags) 1962 { 1963 unsigned long offslab_limit; 1964 size_t left_over = 0; 1965 int gfporder; 1966 1967 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1968 unsigned int num; 1969 size_t remainder; 1970 1971 cache_estimate(gfporder, size, align, flags, &remainder, &num); 1972 if (!num) 1973 continue; 1974 1975 if (flags & CFLGS_OFF_SLAB) { 1976 /* 1977 * Max number of objs-per-slab for caches which 1978 * use off-slab slabs. Needed to avoid a possible 1979 * looping condition in cache_grow(). 1980 */ 1981 offslab_limit = size - sizeof(struct slab); 1982 offslab_limit /= sizeof(kmem_bufctl_t); 1983 1984 if (num > offslab_limit) 1985 break; 1986 } 1987 1988 /* Found something acceptable - save it away */ 1989 cachep->num = num; 1990 cachep->gfporder = gfporder; 1991 left_over = remainder; 1992 1993 /* 1994 * A VFS-reclaimable slab tends to have most allocations 1995 * as GFP_NOFS and we really don't want to have to be allocating 1996 * higher-order pages when we are unable to shrink dcache. 1997 */ 1998 if (flags & SLAB_RECLAIM_ACCOUNT) 1999 break; 2000 2001 /* 2002 * Large number of objects is good, but very large slabs are 2003 * currently bad for the gfp()s. 2004 */ 2005 if (gfporder >= slab_break_gfp_order) 2006 break; 2007 2008 /* 2009 * Acceptable internal fragmentation? 2010 */ 2011 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 2012 break; 2013 } 2014 return left_over; 2015 } 2016 2017 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 2018 { 2019 if (g_cpucache_up == FULL) 2020 return enable_cpucache(cachep, gfp); 2021 2022 if (g_cpucache_up == NONE) { 2023 /* 2024 * Note: the first kmem_cache_create must create the cache 2025 * that's used by kmalloc(24), otherwise the creation of 2026 * further caches will BUG(). 2027 */ 2028 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2029 2030 /* 2031 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is 2032 * the first cache, then we need to set up all its list3s, 2033 * otherwise the creation of further caches will BUG(). 2034 */ 2035 set_up_list3s(cachep, SIZE_AC); 2036 if (INDEX_AC == INDEX_L3) 2037 g_cpucache_up = PARTIAL_L3; 2038 else 2039 g_cpucache_up = PARTIAL_AC; 2040 } else { 2041 cachep->array[smp_processor_id()] = 2042 kmalloc(sizeof(struct arraycache_init), gfp); 2043 2044 if (g_cpucache_up == PARTIAL_AC) { 2045 set_up_list3s(cachep, SIZE_L3); 2046 g_cpucache_up = PARTIAL_L3; 2047 } else { 2048 int node; 2049 for_each_online_node(node) { 2050 cachep->nodelists[node] = 2051 kmalloc_node(sizeof(struct kmem_list3), 2052 gfp, node); 2053 BUG_ON(!cachep->nodelists[node]); 2054 kmem_list3_init(cachep->nodelists[node]); 2055 } 2056 } 2057 } 2058 cachep->nodelists[numa_node_id()]->next_reap = 2059 jiffies + REAPTIMEOUT_LIST3 + 2060 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 2061 2062 cpu_cache_get(cachep)->avail = 0; 2063 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2064 cpu_cache_get(cachep)->batchcount = 1; 2065 cpu_cache_get(cachep)->touched = 0; 2066 cachep->batchcount = 1; 2067 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2068 return 0; 2069 } 2070 2071 /** 2072 * kmem_cache_create - Create a cache. 2073 * @name: A string which is used in /proc/slabinfo to identify this cache. 2074 * @size: The size of objects to be created in this cache. 2075 * @align: The required alignment for the objects. 2076 * @flags: SLAB flags 2077 * @ctor: A constructor for the objects. 2078 * 2079 * Returns a ptr to the cache on success, NULL on failure. 2080 * Cannot be called within a int, but can be interrupted. 2081 * The @ctor is run when new pages are allocated by the cache. 2082 * 2083 * @name must be valid until the cache is destroyed. This implies that 2084 * the module calling this has to destroy the cache before getting unloaded. 2085 * Note that kmem_cache_name() is not guaranteed to return the same pointer, 2086 * therefore applications must manage it themselves. 2087 * 2088 * The flags are 2089 * 2090 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2091 * to catch references to uninitialised memory. 2092 * 2093 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2094 * for buffer overruns. 2095 * 2096 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2097 * cacheline. This can be beneficial if you're counting cycles as closely 2098 * as davem. 2099 */ 2100 struct kmem_cache * 2101 kmem_cache_create (const char *name, size_t size, size_t align, 2102 unsigned long flags, void (*ctor)(void *)) 2103 { 2104 size_t left_over, slab_size, ralign; 2105 struct kmem_cache *cachep = NULL, *pc; 2106 gfp_t gfp; 2107 2108 /* 2109 * Sanity checks... these are all serious usage bugs. 2110 */ 2111 if (!name || in_interrupt() || (size < BYTES_PER_WORD) || 2112 size > KMALLOC_MAX_SIZE) { 2113 printk(KERN_ERR "%s: Early error in slab %s\n", __func__, 2114 name); 2115 BUG(); 2116 } 2117 2118 /* 2119 * We use cache_chain_mutex to ensure a consistent view of 2120 * cpu_online_mask as well. Please see cpuup_callback 2121 */ 2122 if (slab_is_available()) { 2123 get_online_cpus(); 2124 mutex_lock(&cache_chain_mutex); 2125 } 2126 2127 list_for_each_entry(pc, &cache_chain, next) { 2128 char tmp; 2129 int res; 2130 2131 /* 2132 * This happens when the module gets unloaded and doesn't 2133 * destroy its slab cache and no-one else reuses the vmalloc 2134 * area of the module. Print a warning. 2135 */ 2136 res = probe_kernel_address(pc->name, tmp); 2137 if (res) { 2138 printk(KERN_ERR 2139 "SLAB: cache with size %d has lost its name\n", 2140 pc->buffer_size); 2141 continue; 2142 } 2143 2144 if (!strcmp(pc->name, name)) { 2145 printk(KERN_ERR 2146 "kmem_cache_create: duplicate cache %s\n", name); 2147 dump_stack(); 2148 goto oops; 2149 } 2150 } 2151 2152 #if DEBUG 2153 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 2154 #if FORCED_DEBUG 2155 /* 2156 * Enable redzoning and last user accounting, except for caches with 2157 * large objects, if the increased size would increase the object size 2158 * above the next power of two: caches with object sizes just above a 2159 * power of two have a significant amount of internal fragmentation. 2160 */ 2161 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2162 2 * sizeof(unsigned long long))) 2163 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2164 if (!(flags & SLAB_DESTROY_BY_RCU)) 2165 flags |= SLAB_POISON; 2166 #endif 2167 if (flags & SLAB_DESTROY_BY_RCU) 2168 BUG_ON(flags & SLAB_POISON); 2169 #endif 2170 /* 2171 * Always checks flags, a caller might be expecting debug support which 2172 * isn't available. 2173 */ 2174 BUG_ON(flags & ~CREATE_MASK); 2175 2176 /* 2177 * Check that size is in terms of words. This is needed to avoid 2178 * unaligned accesses for some archs when redzoning is used, and makes 2179 * sure any on-slab bufctl's are also correctly aligned. 2180 */ 2181 if (size & (BYTES_PER_WORD - 1)) { 2182 size += (BYTES_PER_WORD - 1); 2183 size &= ~(BYTES_PER_WORD - 1); 2184 } 2185 2186 /* calculate the final buffer alignment: */ 2187 2188 /* 1) arch recommendation: can be overridden for debug */ 2189 if (flags & SLAB_HWCACHE_ALIGN) { 2190 /* 2191 * Default alignment: as specified by the arch code. Except if 2192 * an object is really small, then squeeze multiple objects into 2193 * one cacheline. 2194 */ 2195 ralign = cache_line_size(); 2196 while (size <= ralign / 2) 2197 ralign /= 2; 2198 } else { 2199 ralign = BYTES_PER_WORD; 2200 } 2201 2202 /* 2203 * Redzoning and user store require word alignment or possibly larger. 2204 * Note this will be overridden by architecture or caller mandated 2205 * alignment if either is greater than BYTES_PER_WORD. 2206 */ 2207 if (flags & SLAB_STORE_USER) 2208 ralign = BYTES_PER_WORD; 2209 2210 if (flags & SLAB_RED_ZONE) { 2211 ralign = REDZONE_ALIGN; 2212 /* If redzoning, ensure that the second redzone is suitably 2213 * aligned, by adjusting the object size accordingly. */ 2214 size += REDZONE_ALIGN - 1; 2215 size &= ~(REDZONE_ALIGN - 1); 2216 } 2217 2218 /* 2) arch mandated alignment */ 2219 if (ralign < ARCH_SLAB_MINALIGN) { 2220 ralign = ARCH_SLAB_MINALIGN; 2221 } 2222 /* 3) caller mandated alignment */ 2223 if (ralign < align) { 2224 ralign = align; 2225 } 2226 /* disable debug if necessary */ 2227 if (ralign > __alignof__(unsigned long long)) 2228 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2229 /* 2230 * 4) Store it. 2231 */ 2232 align = ralign; 2233 2234 if (slab_is_available()) 2235 gfp = GFP_KERNEL; 2236 else 2237 gfp = GFP_NOWAIT; 2238 2239 /* Get cache's description obj. */ 2240 cachep = kmem_cache_zalloc(&cache_cache, gfp); 2241 if (!cachep) 2242 goto oops; 2243 2244 #if DEBUG 2245 cachep->obj_size = size; 2246 2247 /* 2248 * Both debugging options require word-alignment which is calculated 2249 * into align above. 2250 */ 2251 if (flags & SLAB_RED_ZONE) { 2252 /* add space for red zone words */ 2253 cachep->obj_offset += sizeof(unsigned long long); 2254 size += 2 * sizeof(unsigned long long); 2255 } 2256 if (flags & SLAB_STORE_USER) { 2257 /* user store requires one word storage behind the end of 2258 * the real object. But if the second red zone needs to be 2259 * aligned to 64 bits, we must allow that much space. 2260 */ 2261 if (flags & SLAB_RED_ZONE) 2262 size += REDZONE_ALIGN; 2263 else 2264 size += BYTES_PER_WORD; 2265 } 2266 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2267 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size 2268 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { 2269 cachep->obj_offset += PAGE_SIZE - size; 2270 size = PAGE_SIZE; 2271 } 2272 #endif 2273 #endif 2274 2275 /* 2276 * Determine if the slab management is 'on' or 'off' slab. 2277 * (bootstrapping cannot cope with offslab caches so don't do 2278 * it too early on. Always use on-slab management when 2279 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) 2280 */ 2281 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init && 2282 !(flags & SLAB_NOLEAKTRACE)) 2283 /* 2284 * Size is large, assume best to place the slab management obj 2285 * off-slab (should allow better packing of objs). 2286 */ 2287 flags |= CFLGS_OFF_SLAB; 2288 2289 size = ALIGN(size, align); 2290 2291 left_over = calculate_slab_order(cachep, size, align, flags); 2292 2293 if (!cachep->num) { 2294 printk(KERN_ERR 2295 "kmem_cache_create: couldn't create cache %s.\n", name); 2296 kmem_cache_free(&cache_cache, cachep); 2297 cachep = NULL; 2298 goto oops; 2299 } 2300 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) 2301 + sizeof(struct slab), align); 2302 2303 /* 2304 * If the slab has been placed off-slab, and we have enough space then 2305 * move it on-slab. This is at the expense of any extra colouring. 2306 */ 2307 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { 2308 flags &= ~CFLGS_OFF_SLAB; 2309 left_over -= slab_size; 2310 } 2311 2312 if (flags & CFLGS_OFF_SLAB) { 2313 /* really off slab. No need for manual alignment */ 2314 slab_size = 2315 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); 2316 2317 #ifdef CONFIG_PAGE_POISONING 2318 /* If we're going to use the generic kernel_map_pages() 2319 * poisoning, then it's going to smash the contents of 2320 * the redzone and userword anyhow, so switch them off. 2321 */ 2322 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) 2323 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2324 #endif 2325 } 2326 2327 cachep->colour_off = cache_line_size(); 2328 /* Offset must be a multiple of the alignment. */ 2329 if (cachep->colour_off < align) 2330 cachep->colour_off = align; 2331 cachep->colour = left_over / cachep->colour_off; 2332 cachep->slab_size = slab_size; 2333 cachep->flags = flags; 2334 cachep->gfpflags = 0; 2335 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2336 cachep->gfpflags |= GFP_DMA; 2337 cachep->buffer_size = size; 2338 cachep->reciprocal_buffer_size = reciprocal_value(size); 2339 2340 if (flags & CFLGS_OFF_SLAB) { 2341 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); 2342 /* 2343 * This is a possibility for one of the malloc_sizes caches. 2344 * But since we go off slab only for object size greater than 2345 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, 2346 * this should not happen at all. 2347 * But leave a BUG_ON for some lucky dude. 2348 */ 2349 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); 2350 } 2351 cachep->ctor = ctor; 2352 cachep->name = name; 2353 2354 if (setup_cpu_cache(cachep, gfp)) { 2355 __kmem_cache_destroy(cachep); 2356 cachep = NULL; 2357 goto oops; 2358 } 2359 2360 /* cache setup completed, link it into the list */ 2361 list_add(&cachep->next, &cache_chain); 2362 oops: 2363 if (!cachep && (flags & SLAB_PANIC)) 2364 panic("kmem_cache_create(): failed to create slab `%s'\n", 2365 name); 2366 if (slab_is_available()) { 2367 mutex_unlock(&cache_chain_mutex); 2368 put_online_cpus(); 2369 } 2370 return cachep; 2371 } 2372 EXPORT_SYMBOL(kmem_cache_create); 2373 2374 #if DEBUG 2375 static void check_irq_off(void) 2376 { 2377 BUG_ON(!irqs_disabled()); 2378 } 2379 2380 static void check_irq_on(void) 2381 { 2382 BUG_ON(irqs_disabled()); 2383 } 2384 2385 static void check_spinlock_acquired(struct kmem_cache *cachep) 2386 { 2387 #ifdef CONFIG_SMP 2388 check_irq_off(); 2389 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); 2390 #endif 2391 } 2392 2393 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2394 { 2395 #ifdef CONFIG_SMP 2396 check_irq_off(); 2397 assert_spin_locked(&cachep->nodelists[node]->list_lock); 2398 #endif 2399 } 2400 2401 #else 2402 #define check_irq_off() do { } while(0) 2403 #define check_irq_on() do { } while(0) 2404 #define check_spinlock_acquired(x) do { } while(0) 2405 #define check_spinlock_acquired_node(x, y) do { } while(0) 2406 #endif 2407 2408 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 2409 struct array_cache *ac, 2410 int force, int node); 2411 2412 static void do_drain(void *arg) 2413 { 2414 struct kmem_cache *cachep = arg; 2415 struct array_cache *ac; 2416 int node = numa_node_id(); 2417 2418 check_irq_off(); 2419 ac = cpu_cache_get(cachep); 2420 spin_lock(&cachep->nodelists[node]->list_lock); 2421 free_block(cachep, ac->entry, ac->avail, node); 2422 spin_unlock(&cachep->nodelists[node]->list_lock); 2423 ac->avail = 0; 2424 } 2425 2426 static void drain_cpu_caches(struct kmem_cache *cachep) 2427 { 2428 struct kmem_list3 *l3; 2429 int node; 2430 2431 on_each_cpu(do_drain, cachep, 1); 2432 check_irq_on(); 2433 for_each_online_node(node) { 2434 l3 = cachep->nodelists[node]; 2435 if (l3 && l3->alien) 2436 drain_alien_cache(cachep, l3->alien); 2437 } 2438 2439 for_each_online_node(node) { 2440 l3 = cachep->nodelists[node]; 2441 if (l3) 2442 drain_array(cachep, l3, l3->shared, 1, node); 2443 } 2444 } 2445 2446 /* 2447 * Remove slabs from the list of free slabs. 2448 * Specify the number of slabs to drain in tofree. 2449 * 2450 * Returns the actual number of slabs released. 2451 */ 2452 static int drain_freelist(struct kmem_cache *cache, 2453 struct kmem_list3 *l3, int tofree) 2454 { 2455 struct list_head *p; 2456 int nr_freed; 2457 struct slab *slabp; 2458 2459 nr_freed = 0; 2460 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { 2461 2462 spin_lock_irq(&l3->list_lock); 2463 p = l3->slabs_free.prev; 2464 if (p == &l3->slabs_free) { 2465 spin_unlock_irq(&l3->list_lock); 2466 goto out; 2467 } 2468 2469 slabp = list_entry(p, struct slab, list); 2470 #if DEBUG 2471 BUG_ON(slabp->inuse); 2472 #endif 2473 list_del(&slabp->list); 2474 /* 2475 * Safe to drop the lock. The slab is no longer linked 2476 * to the cache. 2477 */ 2478 l3->free_objects -= cache->num; 2479 spin_unlock_irq(&l3->list_lock); 2480 slab_destroy(cache, slabp); 2481 nr_freed++; 2482 } 2483 out: 2484 return nr_freed; 2485 } 2486 2487 /* Called with cache_chain_mutex held to protect against cpu hotplug */ 2488 static int __cache_shrink(struct kmem_cache *cachep) 2489 { 2490 int ret = 0, i = 0; 2491 struct kmem_list3 *l3; 2492 2493 drain_cpu_caches(cachep); 2494 2495 check_irq_on(); 2496 for_each_online_node(i) { 2497 l3 = cachep->nodelists[i]; 2498 if (!l3) 2499 continue; 2500 2501 drain_freelist(cachep, l3, l3->free_objects); 2502 2503 ret += !list_empty(&l3->slabs_full) || 2504 !list_empty(&l3->slabs_partial); 2505 } 2506 return (ret ? 1 : 0); 2507 } 2508 2509 /** 2510 * kmem_cache_shrink - Shrink a cache. 2511 * @cachep: The cache to shrink. 2512 * 2513 * Releases as many slabs as possible for a cache. 2514 * To help debugging, a zero exit status indicates all slabs were released. 2515 */ 2516 int kmem_cache_shrink(struct kmem_cache *cachep) 2517 { 2518 int ret; 2519 BUG_ON(!cachep || in_interrupt()); 2520 2521 get_online_cpus(); 2522 mutex_lock(&cache_chain_mutex); 2523 ret = __cache_shrink(cachep); 2524 mutex_unlock(&cache_chain_mutex); 2525 put_online_cpus(); 2526 return ret; 2527 } 2528 EXPORT_SYMBOL(kmem_cache_shrink); 2529 2530 /** 2531 * kmem_cache_destroy - delete a cache 2532 * @cachep: the cache to destroy 2533 * 2534 * Remove a &struct kmem_cache object from the slab cache. 2535 * 2536 * It is expected this function will be called by a module when it is 2537 * unloaded. This will remove the cache completely, and avoid a duplicate 2538 * cache being allocated each time a module is loaded and unloaded, if the 2539 * module doesn't have persistent in-kernel storage across loads and unloads. 2540 * 2541 * The cache must be empty before calling this function. 2542 * 2543 * The caller must guarantee that noone will allocate memory from the cache 2544 * during the kmem_cache_destroy(). 2545 */ 2546 void kmem_cache_destroy(struct kmem_cache *cachep) 2547 { 2548 BUG_ON(!cachep || in_interrupt()); 2549 2550 /* Find the cache in the chain of caches. */ 2551 get_online_cpus(); 2552 mutex_lock(&cache_chain_mutex); 2553 /* 2554 * the chain is never empty, cache_cache is never destroyed 2555 */ 2556 list_del(&cachep->next); 2557 if (__cache_shrink(cachep)) { 2558 slab_error(cachep, "Can't free all objects"); 2559 list_add(&cachep->next, &cache_chain); 2560 mutex_unlock(&cache_chain_mutex); 2561 put_online_cpus(); 2562 return; 2563 } 2564 2565 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 2566 rcu_barrier(); 2567 2568 __kmem_cache_destroy(cachep); 2569 mutex_unlock(&cache_chain_mutex); 2570 put_online_cpus(); 2571 } 2572 EXPORT_SYMBOL(kmem_cache_destroy); 2573 2574 /* 2575 * Get the memory for a slab management obj. 2576 * For a slab cache when the slab descriptor is off-slab, slab descriptors 2577 * always come from malloc_sizes caches. The slab descriptor cannot 2578 * come from the same cache which is getting created because, 2579 * when we are searching for an appropriate cache for these 2580 * descriptors in kmem_cache_create, we search through the malloc_sizes array. 2581 * If we are creating a malloc_sizes cache here it would not be visible to 2582 * kmem_find_general_cachep till the initialization is complete. 2583 * Hence we cannot have slabp_cache same as the original cache. 2584 */ 2585 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, 2586 int colour_off, gfp_t local_flags, 2587 int nodeid) 2588 { 2589 struct slab *slabp; 2590 2591 if (OFF_SLAB(cachep)) { 2592 /* Slab management obj is off-slab. */ 2593 slabp = kmem_cache_alloc_node(cachep->slabp_cache, 2594 local_flags, nodeid); 2595 /* 2596 * If the first object in the slab is leaked (it's allocated 2597 * but no one has a reference to it), we want to make sure 2598 * kmemleak does not treat the ->s_mem pointer as a reference 2599 * to the object. Otherwise we will not report the leak. 2600 */ 2601 kmemleak_scan_area(&slabp->list, sizeof(struct list_head), 2602 local_flags); 2603 if (!slabp) 2604 return NULL; 2605 } else { 2606 slabp = objp + colour_off; 2607 colour_off += cachep->slab_size; 2608 } 2609 slabp->inuse = 0; 2610 slabp->colouroff = colour_off; 2611 slabp->s_mem = objp + colour_off; 2612 slabp->nodeid = nodeid; 2613 slabp->free = 0; 2614 return slabp; 2615 } 2616 2617 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) 2618 { 2619 return (kmem_bufctl_t *) (slabp + 1); 2620 } 2621 2622 static void cache_init_objs(struct kmem_cache *cachep, 2623 struct slab *slabp) 2624 { 2625 int i; 2626 2627 for (i = 0; i < cachep->num; i++) { 2628 void *objp = index_to_obj(cachep, slabp, i); 2629 #if DEBUG 2630 /* need to poison the objs? */ 2631 if (cachep->flags & SLAB_POISON) 2632 poison_obj(cachep, objp, POISON_FREE); 2633 if (cachep->flags & SLAB_STORE_USER) 2634 *dbg_userword(cachep, objp) = NULL; 2635 2636 if (cachep->flags & SLAB_RED_ZONE) { 2637 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2638 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2639 } 2640 /* 2641 * Constructors are not allowed to allocate memory from the same 2642 * cache which they are a constructor for. Otherwise, deadlock. 2643 * They must also be threaded. 2644 */ 2645 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2646 cachep->ctor(objp + obj_offset(cachep)); 2647 2648 if (cachep->flags & SLAB_RED_ZONE) { 2649 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2650 slab_error(cachep, "constructor overwrote the" 2651 " end of an object"); 2652 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2653 slab_error(cachep, "constructor overwrote the" 2654 " start of an object"); 2655 } 2656 if ((cachep->buffer_size % PAGE_SIZE) == 0 && 2657 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2658 kernel_map_pages(virt_to_page(objp), 2659 cachep->buffer_size / PAGE_SIZE, 0); 2660 #else 2661 if (cachep->ctor) 2662 cachep->ctor(objp); 2663 #endif 2664 slab_bufctl(slabp)[i] = i + 1; 2665 } 2666 slab_bufctl(slabp)[i - 1] = BUFCTL_END; 2667 } 2668 2669 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2670 { 2671 if (CONFIG_ZONE_DMA_FLAG) { 2672 if (flags & GFP_DMA) 2673 BUG_ON(!(cachep->gfpflags & GFP_DMA)); 2674 else 2675 BUG_ON(cachep->gfpflags & GFP_DMA); 2676 } 2677 } 2678 2679 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, 2680 int nodeid) 2681 { 2682 void *objp = index_to_obj(cachep, slabp, slabp->free); 2683 kmem_bufctl_t next; 2684 2685 slabp->inuse++; 2686 next = slab_bufctl(slabp)[slabp->free]; 2687 #if DEBUG 2688 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; 2689 WARN_ON(slabp->nodeid != nodeid); 2690 #endif 2691 slabp->free = next; 2692 2693 return objp; 2694 } 2695 2696 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, 2697 void *objp, int nodeid) 2698 { 2699 unsigned int objnr = obj_to_index(cachep, slabp, objp); 2700 2701 #if DEBUG 2702 /* Verify that the slab belongs to the intended node */ 2703 WARN_ON(slabp->nodeid != nodeid); 2704 2705 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { 2706 printk(KERN_ERR "slab: double free detected in cache " 2707 "'%s', objp %p\n", cachep->name, objp); 2708 BUG(); 2709 } 2710 #endif 2711 slab_bufctl(slabp)[objnr] = slabp->free; 2712 slabp->free = objnr; 2713 slabp->inuse--; 2714 } 2715 2716 /* 2717 * Map pages beginning at addr to the given cache and slab. This is required 2718 * for the slab allocator to be able to lookup the cache and slab of a 2719 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging. 2720 */ 2721 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, 2722 void *addr) 2723 { 2724 int nr_pages; 2725 struct page *page; 2726 2727 page = virt_to_page(addr); 2728 2729 nr_pages = 1; 2730 if (likely(!PageCompound(page))) 2731 nr_pages <<= cache->gfporder; 2732 2733 do { 2734 page_set_cache(page, cache); 2735 page_set_slab(page, slab); 2736 page++; 2737 } while (--nr_pages); 2738 } 2739 2740 /* 2741 * Grow (by 1) the number of slabs within a cache. This is called by 2742 * kmem_cache_alloc() when there are no active objs left in a cache. 2743 */ 2744 static int cache_grow(struct kmem_cache *cachep, 2745 gfp_t flags, int nodeid, void *objp) 2746 { 2747 struct slab *slabp; 2748 size_t offset; 2749 gfp_t local_flags; 2750 struct kmem_list3 *l3; 2751 2752 /* 2753 * Be lazy and only check for valid flags here, keeping it out of the 2754 * critical path in kmem_cache_alloc(). 2755 */ 2756 BUG_ON(flags & GFP_SLAB_BUG_MASK); 2757 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2758 2759 /* Take the l3 list lock to change the colour_next on this node */ 2760 check_irq_off(); 2761 l3 = cachep->nodelists[nodeid]; 2762 spin_lock(&l3->list_lock); 2763 2764 /* Get colour for the slab, and cal the next value. */ 2765 offset = l3->colour_next; 2766 l3->colour_next++; 2767 if (l3->colour_next >= cachep->colour) 2768 l3->colour_next = 0; 2769 spin_unlock(&l3->list_lock); 2770 2771 offset *= cachep->colour_off; 2772 2773 if (local_flags & __GFP_WAIT) 2774 local_irq_enable(); 2775 2776 /* 2777 * The test for missing atomic flag is performed here, rather than 2778 * the more obvious place, simply to reduce the critical path length 2779 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2780 * will eventually be caught here (where it matters). 2781 */ 2782 kmem_flagcheck(cachep, flags); 2783 2784 /* 2785 * Get mem for the objs. Attempt to allocate a physical page from 2786 * 'nodeid'. 2787 */ 2788 if (!objp) 2789 objp = kmem_getpages(cachep, local_flags, nodeid); 2790 if (!objp) 2791 goto failed; 2792 2793 /* Get slab management. */ 2794 slabp = alloc_slabmgmt(cachep, objp, offset, 2795 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2796 if (!slabp) 2797 goto opps1; 2798 2799 slab_map_pages(cachep, slabp, objp); 2800 2801 cache_init_objs(cachep, slabp); 2802 2803 if (local_flags & __GFP_WAIT) 2804 local_irq_disable(); 2805 check_irq_off(); 2806 spin_lock(&l3->list_lock); 2807 2808 /* Make slab active. */ 2809 list_add_tail(&slabp->list, &(l3->slabs_free)); 2810 STATS_INC_GROWN(cachep); 2811 l3->free_objects += cachep->num; 2812 spin_unlock(&l3->list_lock); 2813 return 1; 2814 opps1: 2815 kmem_freepages(cachep, objp); 2816 failed: 2817 if (local_flags & __GFP_WAIT) 2818 local_irq_disable(); 2819 return 0; 2820 } 2821 2822 #if DEBUG 2823 2824 /* 2825 * Perform extra freeing checks: 2826 * - detect bad pointers. 2827 * - POISON/RED_ZONE checking 2828 */ 2829 static void kfree_debugcheck(const void *objp) 2830 { 2831 if (!virt_addr_valid(objp)) { 2832 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2833 (unsigned long)objp); 2834 BUG(); 2835 } 2836 } 2837 2838 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2839 { 2840 unsigned long long redzone1, redzone2; 2841 2842 redzone1 = *dbg_redzone1(cache, obj); 2843 redzone2 = *dbg_redzone2(cache, obj); 2844 2845 /* 2846 * Redzone is ok. 2847 */ 2848 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2849 return; 2850 2851 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2852 slab_error(cache, "double free detected"); 2853 else 2854 slab_error(cache, "memory outside object was overwritten"); 2855 2856 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 2857 obj, redzone1, redzone2); 2858 } 2859 2860 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2861 void *caller) 2862 { 2863 struct page *page; 2864 unsigned int objnr; 2865 struct slab *slabp; 2866 2867 BUG_ON(virt_to_cache(objp) != cachep); 2868 2869 objp -= obj_offset(cachep); 2870 kfree_debugcheck(objp); 2871 page = virt_to_head_page(objp); 2872 2873 slabp = page_get_slab(page); 2874 2875 if (cachep->flags & SLAB_RED_ZONE) { 2876 verify_redzone_free(cachep, objp); 2877 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2878 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2879 } 2880 if (cachep->flags & SLAB_STORE_USER) 2881 *dbg_userword(cachep, objp) = caller; 2882 2883 objnr = obj_to_index(cachep, slabp, objp); 2884 2885 BUG_ON(objnr >= cachep->num); 2886 BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); 2887 2888 #ifdef CONFIG_DEBUG_SLAB_LEAK 2889 slab_bufctl(slabp)[objnr] = BUFCTL_FREE; 2890 #endif 2891 if (cachep->flags & SLAB_POISON) { 2892 #ifdef CONFIG_DEBUG_PAGEALLOC 2893 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 2894 store_stackinfo(cachep, objp, (unsigned long)caller); 2895 kernel_map_pages(virt_to_page(objp), 2896 cachep->buffer_size / PAGE_SIZE, 0); 2897 } else { 2898 poison_obj(cachep, objp, POISON_FREE); 2899 } 2900 #else 2901 poison_obj(cachep, objp, POISON_FREE); 2902 #endif 2903 } 2904 return objp; 2905 } 2906 2907 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) 2908 { 2909 kmem_bufctl_t i; 2910 int entries = 0; 2911 2912 /* Check slab's freelist to see if this obj is there. */ 2913 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { 2914 entries++; 2915 if (entries > cachep->num || i >= cachep->num) 2916 goto bad; 2917 } 2918 if (entries != cachep->num - slabp->inuse) { 2919 bad: 2920 printk(KERN_ERR "slab: Internal list corruption detected in " 2921 "cache '%s'(%d), slabp %p(%d). Hexdump:\n", 2922 cachep->name, cachep->num, slabp, slabp->inuse); 2923 for (i = 0; 2924 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); 2925 i++) { 2926 if (i % 16 == 0) 2927 printk("\n%03x:", i); 2928 printk(" %02x", ((unsigned char *)slabp)[i]); 2929 } 2930 printk("\n"); 2931 BUG(); 2932 } 2933 } 2934 #else 2935 #define kfree_debugcheck(x) do { } while(0) 2936 #define cache_free_debugcheck(x,objp,z) (objp) 2937 #define check_slabp(x,y) do { } while(0) 2938 #endif 2939 2940 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2941 { 2942 int batchcount; 2943 struct kmem_list3 *l3; 2944 struct array_cache *ac; 2945 int node; 2946 2947 retry: 2948 check_irq_off(); 2949 node = numa_node_id(); 2950 ac = cpu_cache_get(cachep); 2951 batchcount = ac->batchcount; 2952 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2953 /* 2954 * If there was little recent activity on this cache, then 2955 * perform only a partial refill. Otherwise we could generate 2956 * refill bouncing. 2957 */ 2958 batchcount = BATCHREFILL_LIMIT; 2959 } 2960 l3 = cachep->nodelists[node]; 2961 2962 BUG_ON(ac->avail > 0 || !l3); 2963 spin_lock(&l3->list_lock); 2964 2965 /* See if we can refill from the shared array */ 2966 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) 2967 goto alloc_done; 2968 2969 while (batchcount > 0) { 2970 struct list_head *entry; 2971 struct slab *slabp; 2972 /* Get slab alloc is to come from. */ 2973 entry = l3->slabs_partial.next; 2974 if (entry == &l3->slabs_partial) { 2975 l3->free_touched = 1; 2976 entry = l3->slabs_free.next; 2977 if (entry == &l3->slabs_free) 2978 goto must_grow; 2979 } 2980 2981 slabp = list_entry(entry, struct slab, list); 2982 check_slabp(cachep, slabp); 2983 check_spinlock_acquired(cachep); 2984 2985 /* 2986 * The slab was either on partial or free list so 2987 * there must be at least one object available for 2988 * allocation. 2989 */ 2990 BUG_ON(slabp->inuse >= cachep->num); 2991 2992 while (slabp->inuse < cachep->num && batchcount--) { 2993 STATS_INC_ALLOCED(cachep); 2994 STATS_INC_ACTIVE(cachep); 2995 STATS_SET_HIGH(cachep); 2996 2997 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, 2998 node); 2999 } 3000 check_slabp(cachep, slabp); 3001 3002 /* move slabp to correct slabp list: */ 3003 list_del(&slabp->list); 3004 if (slabp->free == BUFCTL_END) 3005 list_add(&slabp->list, &l3->slabs_full); 3006 else 3007 list_add(&slabp->list, &l3->slabs_partial); 3008 } 3009 3010 must_grow: 3011 l3->free_objects -= ac->avail; 3012 alloc_done: 3013 spin_unlock(&l3->list_lock); 3014 3015 if (unlikely(!ac->avail)) { 3016 int x; 3017 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 3018 3019 /* cache_grow can reenable interrupts, then ac could change. */ 3020 ac = cpu_cache_get(cachep); 3021 if (!x && ac->avail == 0) /* no objects in sight? abort */ 3022 return NULL; 3023 3024 if (!ac->avail) /* objects refilled by interrupt? */ 3025 goto retry; 3026 } 3027 ac->touched = 1; 3028 return ac->entry[--ac->avail]; 3029 } 3030 3031 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3032 gfp_t flags) 3033 { 3034 might_sleep_if(flags & __GFP_WAIT); 3035 #if DEBUG 3036 kmem_flagcheck(cachep, flags); 3037 #endif 3038 } 3039 3040 #if DEBUG 3041 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3042 gfp_t flags, void *objp, void *caller) 3043 { 3044 if (!objp) 3045 return objp; 3046 if (cachep->flags & SLAB_POISON) { 3047 #ifdef CONFIG_DEBUG_PAGEALLOC 3048 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 3049 kernel_map_pages(virt_to_page(objp), 3050 cachep->buffer_size / PAGE_SIZE, 1); 3051 else 3052 check_poison_obj(cachep, objp); 3053 #else 3054 check_poison_obj(cachep, objp); 3055 #endif 3056 poison_obj(cachep, objp, POISON_INUSE); 3057 } 3058 if (cachep->flags & SLAB_STORE_USER) 3059 *dbg_userword(cachep, objp) = caller; 3060 3061 if (cachep->flags & SLAB_RED_ZONE) { 3062 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3063 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3064 slab_error(cachep, "double free, or memory outside" 3065 " object was overwritten"); 3066 printk(KERN_ERR 3067 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3068 objp, *dbg_redzone1(cachep, objp), 3069 *dbg_redzone2(cachep, objp)); 3070 } 3071 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3072 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3073 } 3074 #ifdef CONFIG_DEBUG_SLAB_LEAK 3075 { 3076 struct slab *slabp; 3077 unsigned objnr; 3078 3079 slabp = page_get_slab(virt_to_head_page(objp)); 3080 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; 3081 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; 3082 } 3083 #endif 3084 objp += obj_offset(cachep); 3085 if (cachep->ctor && cachep->flags & SLAB_POISON) 3086 cachep->ctor(objp); 3087 #if ARCH_SLAB_MINALIGN 3088 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { 3089 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3090 objp, ARCH_SLAB_MINALIGN); 3091 } 3092 #endif 3093 return objp; 3094 } 3095 #else 3096 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3097 #endif 3098 3099 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) 3100 { 3101 if (cachep == &cache_cache) 3102 return false; 3103 3104 return should_failslab(obj_size(cachep), flags); 3105 } 3106 3107 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3108 { 3109 void *objp; 3110 struct array_cache *ac; 3111 3112 check_irq_off(); 3113 3114 ac = cpu_cache_get(cachep); 3115 if (likely(ac->avail)) { 3116 STATS_INC_ALLOCHIT(cachep); 3117 ac->touched = 1; 3118 objp = ac->entry[--ac->avail]; 3119 } else { 3120 STATS_INC_ALLOCMISS(cachep); 3121 objp = cache_alloc_refill(cachep, flags); 3122 /* 3123 * the 'ac' may be updated by cache_alloc_refill(), 3124 * and kmemleak_erase() requires its correct value. 3125 */ 3126 ac = cpu_cache_get(cachep); 3127 } 3128 /* 3129 * To avoid a false negative, if an object that is in one of the 3130 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3131 * treat the array pointers as a reference to the object. 3132 */ 3133 if (objp) 3134 kmemleak_erase(&ac->entry[ac->avail]); 3135 return objp; 3136 } 3137 3138 #ifdef CONFIG_NUMA 3139 /* 3140 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. 3141 * 3142 * If we are in_interrupt, then process context, including cpusets and 3143 * mempolicy, may not apply and should not be used for allocation policy. 3144 */ 3145 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3146 { 3147 int nid_alloc, nid_here; 3148 3149 if (in_interrupt() || (flags & __GFP_THISNODE)) 3150 return NULL; 3151 nid_alloc = nid_here = numa_node_id(); 3152 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3153 nid_alloc = cpuset_mem_spread_node(); 3154 else if (current->mempolicy) 3155 nid_alloc = slab_node(current->mempolicy); 3156 if (nid_alloc != nid_here) 3157 return ____cache_alloc_node(cachep, flags, nid_alloc); 3158 return NULL; 3159 } 3160 3161 /* 3162 * Fallback function if there was no memory available and no objects on a 3163 * certain node and fall back is permitted. First we scan all the 3164 * available nodelists for available objects. If that fails then we 3165 * perform an allocation without specifying a node. This allows the page 3166 * allocator to do its reclaim / fallback magic. We then insert the 3167 * slab into the proper nodelist and then allocate from it. 3168 */ 3169 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3170 { 3171 struct zonelist *zonelist; 3172 gfp_t local_flags; 3173 struct zoneref *z; 3174 struct zone *zone; 3175 enum zone_type high_zoneidx = gfp_zone(flags); 3176 void *obj = NULL; 3177 int nid; 3178 3179 if (flags & __GFP_THISNODE) 3180 return NULL; 3181 3182 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 3183 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3184 3185 retry: 3186 /* 3187 * Look through allowed nodes for objects available 3188 * from existing per node queues. 3189 */ 3190 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3191 nid = zone_to_nid(zone); 3192 3193 if (cpuset_zone_allowed_hardwall(zone, flags) && 3194 cache->nodelists[nid] && 3195 cache->nodelists[nid]->free_objects) { 3196 obj = ____cache_alloc_node(cache, 3197 flags | GFP_THISNODE, nid); 3198 if (obj) 3199 break; 3200 } 3201 } 3202 3203 if (!obj) { 3204 /* 3205 * This allocation will be performed within the constraints 3206 * of the current cpuset / memory policy requirements. 3207 * We may trigger various forms of reclaim on the allowed 3208 * set and go into memory reserves if necessary. 3209 */ 3210 if (local_flags & __GFP_WAIT) 3211 local_irq_enable(); 3212 kmem_flagcheck(cache, flags); 3213 obj = kmem_getpages(cache, local_flags, numa_node_id()); 3214 if (local_flags & __GFP_WAIT) 3215 local_irq_disable(); 3216 if (obj) { 3217 /* 3218 * Insert into the appropriate per node queues 3219 */ 3220 nid = page_to_nid(virt_to_page(obj)); 3221 if (cache_grow(cache, flags, nid, obj)) { 3222 obj = ____cache_alloc_node(cache, 3223 flags | GFP_THISNODE, nid); 3224 if (!obj) 3225 /* 3226 * Another processor may allocate the 3227 * objects in the slab since we are 3228 * not holding any locks. 3229 */ 3230 goto retry; 3231 } else { 3232 /* cache_grow already freed obj */ 3233 obj = NULL; 3234 } 3235 } 3236 } 3237 return obj; 3238 } 3239 3240 /* 3241 * A interface to enable slab creation on nodeid 3242 */ 3243 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3244 int nodeid) 3245 { 3246 struct list_head *entry; 3247 struct slab *slabp; 3248 struct kmem_list3 *l3; 3249 void *obj; 3250 int x; 3251 3252 l3 = cachep->nodelists[nodeid]; 3253 BUG_ON(!l3); 3254 3255 retry: 3256 check_irq_off(); 3257 spin_lock(&l3->list_lock); 3258 entry = l3->slabs_partial.next; 3259 if (entry == &l3->slabs_partial) { 3260 l3->free_touched = 1; 3261 entry = l3->slabs_free.next; 3262 if (entry == &l3->slabs_free) 3263 goto must_grow; 3264 } 3265 3266 slabp = list_entry(entry, struct slab, list); 3267 check_spinlock_acquired_node(cachep, nodeid); 3268 check_slabp(cachep, slabp); 3269 3270 STATS_INC_NODEALLOCS(cachep); 3271 STATS_INC_ACTIVE(cachep); 3272 STATS_SET_HIGH(cachep); 3273 3274 BUG_ON(slabp->inuse == cachep->num); 3275 3276 obj = slab_get_obj(cachep, slabp, nodeid); 3277 check_slabp(cachep, slabp); 3278 l3->free_objects--; 3279 /* move slabp to correct slabp list: */ 3280 list_del(&slabp->list); 3281 3282 if (slabp->free == BUFCTL_END) 3283 list_add(&slabp->list, &l3->slabs_full); 3284 else 3285 list_add(&slabp->list, &l3->slabs_partial); 3286 3287 spin_unlock(&l3->list_lock); 3288 goto done; 3289 3290 must_grow: 3291 spin_unlock(&l3->list_lock); 3292 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3293 if (x) 3294 goto retry; 3295 3296 return fallback_alloc(cachep, flags); 3297 3298 done: 3299 return obj; 3300 } 3301 3302 /** 3303 * kmem_cache_alloc_node - Allocate an object on the specified node 3304 * @cachep: The cache to allocate from. 3305 * @flags: See kmalloc(). 3306 * @nodeid: node number of the target node. 3307 * @caller: return address of caller, used for debug information 3308 * 3309 * Identical to kmem_cache_alloc but it will allocate memory on the given 3310 * node, which can improve the performance for cpu bound structures. 3311 * 3312 * Fallback to other node is possible if __GFP_THISNODE is not set. 3313 */ 3314 static __always_inline void * 3315 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3316 void *caller) 3317 { 3318 unsigned long save_flags; 3319 void *ptr; 3320 3321 flags &= gfp_allowed_mask; 3322 3323 lockdep_trace_alloc(flags); 3324 3325 if (slab_should_failslab(cachep, flags)) 3326 return NULL; 3327 3328 cache_alloc_debugcheck_before(cachep, flags); 3329 local_irq_save(save_flags); 3330 3331 if (nodeid == -1) 3332 nodeid = numa_node_id(); 3333 3334 if (unlikely(!cachep->nodelists[nodeid])) { 3335 /* Node not bootstrapped yet */ 3336 ptr = fallback_alloc(cachep, flags); 3337 goto out; 3338 } 3339 3340 if (nodeid == numa_node_id()) { 3341 /* 3342 * Use the locally cached objects if possible. 3343 * However ____cache_alloc does not allow fallback 3344 * to other nodes. It may fail while we still have 3345 * objects on other nodes available. 3346 */ 3347 ptr = ____cache_alloc(cachep, flags); 3348 if (ptr) 3349 goto out; 3350 } 3351 /* ___cache_alloc_node can fall back to other nodes */ 3352 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3353 out: 3354 local_irq_restore(save_flags); 3355 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3356 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags, 3357 flags); 3358 3359 if (likely(ptr)) 3360 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep)); 3361 3362 if (unlikely((flags & __GFP_ZERO) && ptr)) 3363 memset(ptr, 0, obj_size(cachep)); 3364 3365 return ptr; 3366 } 3367 3368 static __always_inline void * 3369 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3370 { 3371 void *objp; 3372 3373 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { 3374 objp = alternate_node_alloc(cache, flags); 3375 if (objp) 3376 goto out; 3377 } 3378 objp = ____cache_alloc(cache, flags); 3379 3380 /* 3381 * We may just have run out of memory on the local node. 3382 * ____cache_alloc_node() knows how to locate memory on other nodes 3383 */ 3384 if (!objp) 3385 objp = ____cache_alloc_node(cache, flags, numa_node_id()); 3386 3387 out: 3388 return objp; 3389 } 3390 #else 3391 3392 static __always_inline void * 3393 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3394 { 3395 return ____cache_alloc(cachep, flags); 3396 } 3397 3398 #endif /* CONFIG_NUMA */ 3399 3400 static __always_inline void * 3401 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) 3402 { 3403 unsigned long save_flags; 3404 void *objp; 3405 3406 flags &= gfp_allowed_mask; 3407 3408 lockdep_trace_alloc(flags); 3409 3410 if (slab_should_failslab(cachep, flags)) 3411 return NULL; 3412 3413 cache_alloc_debugcheck_before(cachep, flags); 3414 local_irq_save(save_flags); 3415 objp = __do_cache_alloc(cachep, flags); 3416 local_irq_restore(save_flags); 3417 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3418 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags, 3419 flags); 3420 prefetchw(objp); 3421 3422 if (likely(objp)) 3423 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep)); 3424 3425 if (unlikely((flags & __GFP_ZERO) && objp)) 3426 memset(objp, 0, obj_size(cachep)); 3427 3428 return objp; 3429 } 3430 3431 /* 3432 * Caller needs to acquire correct kmem_list's list_lock 3433 */ 3434 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, 3435 int node) 3436 { 3437 int i; 3438 struct kmem_list3 *l3; 3439 3440 for (i = 0; i < nr_objects; i++) { 3441 void *objp = objpp[i]; 3442 struct slab *slabp; 3443 3444 slabp = virt_to_slab(objp); 3445 l3 = cachep->nodelists[node]; 3446 list_del(&slabp->list); 3447 check_spinlock_acquired_node(cachep, node); 3448 check_slabp(cachep, slabp); 3449 slab_put_obj(cachep, slabp, objp, node); 3450 STATS_DEC_ACTIVE(cachep); 3451 l3->free_objects++; 3452 check_slabp(cachep, slabp); 3453 3454 /* fixup slab chains */ 3455 if (slabp->inuse == 0) { 3456 if (l3->free_objects > l3->free_limit) { 3457 l3->free_objects -= cachep->num; 3458 /* No need to drop any previously held 3459 * lock here, even if we have a off-slab slab 3460 * descriptor it is guaranteed to come from 3461 * a different cache, refer to comments before 3462 * alloc_slabmgmt. 3463 */ 3464 slab_destroy(cachep, slabp); 3465 } else { 3466 list_add(&slabp->list, &l3->slabs_free); 3467 } 3468 } else { 3469 /* Unconditionally move a slab to the end of the 3470 * partial list on free - maximum time for the 3471 * other objects to be freed, too. 3472 */ 3473 list_add_tail(&slabp->list, &l3->slabs_partial); 3474 } 3475 } 3476 } 3477 3478 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3479 { 3480 int batchcount; 3481 struct kmem_list3 *l3; 3482 int node = numa_node_id(); 3483 3484 batchcount = ac->batchcount; 3485 #if DEBUG 3486 BUG_ON(!batchcount || batchcount > ac->avail); 3487 #endif 3488 check_irq_off(); 3489 l3 = cachep->nodelists[node]; 3490 spin_lock(&l3->list_lock); 3491 if (l3->shared) { 3492 struct array_cache *shared_array = l3->shared; 3493 int max = shared_array->limit - shared_array->avail; 3494 if (max) { 3495 if (batchcount > max) 3496 batchcount = max; 3497 memcpy(&(shared_array->entry[shared_array->avail]), 3498 ac->entry, sizeof(void *) * batchcount); 3499 shared_array->avail += batchcount; 3500 goto free_done; 3501 } 3502 } 3503 3504 free_block(cachep, ac->entry, batchcount, node); 3505 free_done: 3506 #if STATS 3507 { 3508 int i = 0; 3509 struct list_head *p; 3510 3511 p = l3->slabs_free.next; 3512 while (p != &(l3->slabs_free)) { 3513 struct slab *slabp; 3514 3515 slabp = list_entry(p, struct slab, list); 3516 BUG_ON(slabp->inuse); 3517 3518 i++; 3519 p = p->next; 3520 } 3521 STATS_SET_FREEABLE(cachep, i); 3522 } 3523 #endif 3524 spin_unlock(&l3->list_lock); 3525 ac->avail -= batchcount; 3526 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3527 } 3528 3529 /* 3530 * Release an obj back to its cache. If the obj has a constructed state, it must 3531 * be in this state _before_ it is released. Called with disabled ints. 3532 */ 3533 static inline void __cache_free(struct kmem_cache *cachep, void *objp) 3534 { 3535 struct array_cache *ac = cpu_cache_get(cachep); 3536 3537 check_irq_off(); 3538 kmemleak_free_recursive(objp, cachep->flags); 3539 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); 3540 3541 kmemcheck_slab_free(cachep, objp, obj_size(cachep)); 3542 3543 /* 3544 * Skip calling cache_free_alien() when the platform is not numa. 3545 * This will avoid cache misses that happen while accessing slabp (which 3546 * is per page memory reference) to get nodeid. Instead use a global 3547 * variable to skip the call, which is mostly likely to be present in 3548 * the cache. 3549 */ 3550 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3551 return; 3552 3553 if (likely(ac->avail < ac->limit)) { 3554 STATS_INC_FREEHIT(cachep); 3555 ac->entry[ac->avail++] = objp; 3556 return; 3557 } else { 3558 STATS_INC_FREEMISS(cachep); 3559 cache_flusharray(cachep, ac); 3560 ac->entry[ac->avail++] = objp; 3561 } 3562 } 3563 3564 /** 3565 * kmem_cache_alloc - Allocate an object 3566 * @cachep: The cache to allocate from. 3567 * @flags: See kmalloc(). 3568 * 3569 * Allocate an object from this cache. The flags are only relevant 3570 * if the cache has no available objects. 3571 */ 3572 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3573 { 3574 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); 3575 3576 trace_kmem_cache_alloc(_RET_IP_, ret, 3577 obj_size(cachep), cachep->buffer_size, flags); 3578 3579 return ret; 3580 } 3581 EXPORT_SYMBOL(kmem_cache_alloc); 3582 3583 #ifdef CONFIG_TRACING 3584 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags) 3585 { 3586 return __cache_alloc(cachep, flags, __builtin_return_address(0)); 3587 } 3588 EXPORT_SYMBOL(kmem_cache_alloc_notrace); 3589 #endif 3590 3591 /** 3592 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry. 3593 * @cachep: the cache we're checking against 3594 * @ptr: pointer to validate 3595 * 3596 * This verifies that the untrusted pointer looks sane; 3597 * it is _not_ a guarantee that the pointer is actually 3598 * part of the slab cache in question, but it at least 3599 * validates that the pointer can be dereferenced and 3600 * looks half-way sane. 3601 * 3602 * Currently only used for dentry validation. 3603 */ 3604 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr) 3605 { 3606 unsigned long addr = (unsigned long)ptr; 3607 unsigned long min_addr = PAGE_OFFSET; 3608 unsigned long align_mask = BYTES_PER_WORD - 1; 3609 unsigned long size = cachep->buffer_size; 3610 struct page *page; 3611 3612 if (unlikely(addr < min_addr)) 3613 goto out; 3614 if (unlikely(addr > (unsigned long)high_memory - size)) 3615 goto out; 3616 if (unlikely(addr & align_mask)) 3617 goto out; 3618 if (unlikely(!kern_addr_valid(addr))) 3619 goto out; 3620 if (unlikely(!kern_addr_valid(addr + size - 1))) 3621 goto out; 3622 page = virt_to_page(ptr); 3623 if (unlikely(!PageSlab(page))) 3624 goto out; 3625 if (unlikely(page_get_cache(page) != cachep)) 3626 goto out; 3627 return 1; 3628 out: 3629 return 0; 3630 } 3631 3632 #ifdef CONFIG_NUMA 3633 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3634 { 3635 void *ret = __cache_alloc_node(cachep, flags, nodeid, 3636 __builtin_return_address(0)); 3637 3638 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3639 obj_size(cachep), cachep->buffer_size, 3640 flags, nodeid); 3641 3642 return ret; 3643 } 3644 EXPORT_SYMBOL(kmem_cache_alloc_node); 3645 3646 #ifdef CONFIG_TRACING 3647 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep, 3648 gfp_t flags, 3649 int nodeid) 3650 { 3651 return __cache_alloc_node(cachep, flags, nodeid, 3652 __builtin_return_address(0)); 3653 } 3654 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); 3655 #endif 3656 3657 static __always_inline void * 3658 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) 3659 { 3660 struct kmem_cache *cachep; 3661 void *ret; 3662 3663 cachep = kmem_find_general_cachep(size, flags); 3664 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3665 return cachep; 3666 ret = kmem_cache_alloc_node_notrace(cachep, flags, node); 3667 3668 trace_kmalloc_node((unsigned long) caller, ret, 3669 size, cachep->buffer_size, flags, node); 3670 3671 return ret; 3672 } 3673 3674 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3675 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3676 { 3677 return __do_kmalloc_node(size, flags, node, 3678 __builtin_return_address(0)); 3679 } 3680 EXPORT_SYMBOL(__kmalloc_node); 3681 3682 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3683 int node, unsigned long caller) 3684 { 3685 return __do_kmalloc_node(size, flags, node, (void *)caller); 3686 } 3687 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3688 #else 3689 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3690 { 3691 return __do_kmalloc_node(size, flags, node, NULL); 3692 } 3693 EXPORT_SYMBOL(__kmalloc_node); 3694 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ 3695 #endif /* CONFIG_NUMA */ 3696 3697 /** 3698 * __do_kmalloc - allocate memory 3699 * @size: how many bytes of memory are required. 3700 * @flags: the type of memory to allocate (see kmalloc). 3701 * @caller: function caller for debug tracking of the caller 3702 */ 3703 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3704 void *caller) 3705 { 3706 struct kmem_cache *cachep; 3707 void *ret; 3708 3709 /* If you want to save a few bytes .text space: replace 3710 * __ with kmem_. 3711 * Then kmalloc uses the uninlined functions instead of the inline 3712 * functions. 3713 */ 3714 cachep = __find_general_cachep(size, flags); 3715 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3716 return cachep; 3717 ret = __cache_alloc(cachep, flags, caller); 3718 3719 trace_kmalloc((unsigned long) caller, ret, 3720 size, cachep->buffer_size, flags); 3721 3722 return ret; 3723 } 3724 3725 3726 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3727 void *__kmalloc(size_t size, gfp_t flags) 3728 { 3729 return __do_kmalloc(size, flags, __builtin_return_address(0)); 3730 } 3731 EXPORT_SYMBOL(__kmalloc); 3732 3733 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3734 { 3735 return __do_kmalloc(size, flags, (void *)caller); 3736 } 3737 EXPORT_SYMBOL(__kmalloc_track_caller); 3738 3739 #else 3740 void *__kmalloc(size_t size, gfp_t flags) 3741 { 3742 return __do_kmalloc(size, flags, NULL); 3743 } 3744 EXPORT_SYMBOL(__kmalloc); 3745 #endif 3746 3747 /** 3748 * kmem_cache_free - Deallocate an object 3749 * @cachep: The cache the allocation was from. 3750 * @objp: The previously allocated object. 3751 * 3752 * Free an object which was previously allocated from this 3753 * cache. 3754 */ 3755 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3756 { 3757 unsigned long flags; 3758 3759 local_irq_save(flags); 3760 debug_check_no_locks_freed(objp, obj_size(cachep)); 3761 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3762 debug_check_no_obj_freed(objp, obj_size(cachep)); 3763 __cache_free(cachep, objp); 3764 local_irq_restore(flags); 3765 3766 trace_kmem_cache_free(_RET_IP_, objp); 3767 } 3768 EXPORT_SYMBOL(kmem_cache_free); 3769 3770 /** 3771 * kfree - free previously allocated memory 3772 * @objp: pointer returned by kmalloc. 3773 * 3774 * If @objp is NULL, no operation is performed. 3775 * 3776 * Don't free memory not originally allocated by kmalloc() 3777 * or you will run into trouble. 3778 */ 3779 void kfree(const void *objp) 3780 { 3781 struct kmem_cache *c; 3782 unsigned long flags; 3783 3784 trace_kfree(_RET_IP_, objp); 3785 3786 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3787 return; 3788 local_irq_save(flags); 3789 kfree_debugcheck(objp); 3790 c = virt_to_cache(objp); 3791 debug_check_no_locks_freed(objp, obj_size(c)); 3792 debug_check_no_obj_freed(objp, obj_size(c)); 3793 __cache_free(c, (void *)objp); 3794 local_irq_restore(flags); 3795 } 3796 EXPORT_SYMBOL(kfree); 3797 3798 unsigned int kmem_cache_size(struct kmem_cache *cachep) 3799 { 3800 return obj_size(cachep); 3801 } 3802 EXPORT_SYMBOL(kmem_cache_size); 3803 3804 const char *kmem_cache_name(struct kmem_cache *cachep) 3805 { 3806 return cachep->name; 3807 } 3808 EXPORT_SYMBOL_GPL(kmem_cache_name); 3809 3810 /* 3811 * This initializes kmem_list3 or resizes various caches for all nodes. 3812 */ 3813 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) 3814 { 3815 int node; 3816 struct kmem_list3 *l3; 3817 struct array_cache *new_shared; 3818 struct array_cache **new_alien = NULL; 3819 3820 for_each_online_node(node) { 3821 3822 if (use_alien_caches) { 3823 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 3824 if (!new_alien) 3825 goto fail; 3826 } 3827 3828 new_shared = NULL; 3829 if (cachep->shared) { 3830 new_shared = alloc_arraycache(node, 3831 cachep->shared*cachep->batchcount, 3832 0xbaadf00d, gfp); 3833 if (!new_shared) { 3834 free_alien_cache(new_alien); 3835 goto fail; 3836 } 3837 } 3838 3839 l3 = cachep->nodelists[node]; 3840 if (l3) { 3841 struct array_cache *shared = l3->shared; 3842 3843 spin_lock_irq(&l3->list_lock); 3844 3845 if (shared) 3846 free_block(cachep, shared->entry, 3847 shared->avail, node); 3848 3849 l3->shared = new_shared; 3850 if (!l3->alien) { 3851 l3->alien = new_alien; 3852 new_alien = NULL; 3853 } 3854 l3->free_limit = (1 + nr_cpus_node(node)) * 3855 cachep->batchcount + cachep->num; 3856 spin_unlock_irq(&l3->list_lock); 3857 kfree(shared); 3858 free_alien_cache(new_alien); 3859 continue; 3860 } 3861 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); 3862 if (!l3) { 3863 free_alien_cache(new_alien); 3864 kfree(new_shared); 3865 goto fail; 3866 } 3867 3868 kmem_list3_init(l3); 3869 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 3870 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 3871 l3->shared = new_shared; 3872 l3->alien = new_alien; 3873 l3->free_limit = (1 + nr_cpus_node(node)) * 3874 cachep->batchcount + cachep->num; 3875 cachep->nodelists[node] = l3; 3876 } 3877 return 0; 3878 3879 fail: 3880 if (!cachep->next.next) { 3881 /* Cache is not active yet. Roll back what we did */ 3882 node--; 3883 while (node >= 0) { 3884 if (cachep->nodelists[node]) { 3885 l3 = cachep->nodelists[node]; 3886 3887 kfree(l3->shared); 3888 free_alien_cache(l3->alien); 3889 kfree(l3); 3890 cachep->nodelists[node] = NULL; 3891 } 3892 node--; 3893 } 3894 } 3895 return -ENOMEM; 3896 } 3897 3898 struct ccupdate_struct { 3899 struct kmem_cache *cachep; 3900 struct array_cache *new[NR_CPUS]; 3901 }; 3902 3903 static void do_ccupdate_local(void *info) 3904 { 3905 struct ccupdate_struct *new = info; 3906 struct array_cache *old; 3907 3908 check_irq_off(); 3909 old = cpu_cache_get(new->cachep); 3910 3911 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 3912 new->new[smp_processor_id()] = old; 3913 } 3914 3915 /* Always called with the cache_chain_mutex held */ 3916 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3917 int batchcount, int shared, gfp_t gfp) 3918 { 3919 struct ccupdate_struct *new; 3920 int i; 3921 3922 new = kzalloc(sizeof(*new), gfp); 3923 if (!new) 3924 return -ENOMEM; 3925 3926 for_each_online_cpu(i) { 3927 new->new[i] = alloc_arraycache(cpu_to_node(i), limit, 3928 batchcount, gfp); 3929 if (!new->new[i]) { 3930 for (i--; i >= 0; i--) 3931 kfree(new->new[i]); 3932 kfree(new); 3933 return -ENOMEM; 3934 } 3935 } 3936 new->cachep = cachep; 3937 3938 on_each_cpu(do_ccupdate_local, (void *)new, 1); 3939 3940 check_irq_on(); 3941 cachep->batchcount = batchcount; 3942 cachep->limit = limit; 3943 cachep->shared = shared; 3944 3945 for_each_online_cpu(i) { 3946 struct array_cache *ccold = new->new[i]; 3947 if (!ccold) 3948 continue; 3949 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); 3950 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i)); 3951 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); 3952 kfree(ccold); 3953 } 3954 kfree(new); 3955 return alloc_kmemlist(cachep, gfp); 3956 } 3957 3958 /* Called with cache_chain_mutex held always */ 3959 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3960 { 3961 int err; 3962 int limit, shared; 3963 3964 /* 3965 * The head array serves three purposes: 3966 * - create a LIFO ordering, i.e. return objects that are cache-warm 3967 * - reduce the number of spinlock operations. 3968 * - reduce the number of linked list operations on the slab and 3969 * bufctl chains: array operations are cheaper. 3970 * The numbers are guessed, we should auto-tune as described by 3971 * Bonwick. 3972 */ 3973 if (cachep->buffer_size > 131072) 3974 limit = 1; 3975 else if (cachep->buffer_size > PAGE_SIZE) 3976 limit = 8; 3977 else if (cachep->buffer_size > 1024) 3978 limit = 24; 3979 else if (cachep->buffer_size > 256) 3980 limit = 54; 3981 else 3982 limit = 120; 3983 3984 /* 3985 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3986 * allocation behaviour: Most allocs on one cpu, most free operations 3987 * on another cpu. For these cases, an efficient object passing between 3988 * cpus is necessary. This is provided by a shared array. The array 3989 * replaces Bonwick's magazine layer. 3990 * On uniprocessor, it's functionally equivalent (but less efficient) 3991 * to a larger limit. Thus disabled by default. 3992 */ 3993 shared = 0; 3994 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1) 3995 shared = 8; 3996 3997 #if DEBUG 3998 /* 3999 * With debugging enabled, large batchcount lead to excessively long 4000 * periods with disabled local interrupts. Limit the batchcount 4001 */ 4002 if (limit > 32) 4003 limit = 32; 4004 #endif 4005 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp); 4006 if (err) 4007 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 4008 cachep->name, -err); 4009 return err; 4010 } 4011 4012 /* 4013 * Drain an array if it contains any elements taking the l3 lock only if 4014 * necessary. Note that the l3 listlock also protects the array_cache 4015 * if drain_array() is used on the shared array. 4016 */ 4017 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 4018 struct array_cache *ac, int force, int node) 4019 { 4020 int tofree; 4021 4022 if (!ac || !ac->avail) 4023 return; 4024 if (ac->touched && !force) { 4025 ac->touched = 0; 4026 } else { 4027 spin_lock_irq(&l3->list_lock); 4028 if (ac->avail) { 4029 tofree = force ? ac->avail : (ac->limit + 4) / 5; 4030 if (tofree > ac->avail) 4031 tofree = (ac->avail + 1) / 2; 4032 free_block(cachep, ac->entry, tofree, node); 4033 ac->avail -= tofree; 4034 memmove(ac->entry, &(ac->entry[tofree]), 4035 sizeof(void *) * ac->avail); 4036 } 4037 spin_unlock_irq(&l3->list_lock); 4038 } 4039 } 4040 4041 /** 4042 * cache_reap - Reclaim memory from caches. 4043 * @w: work descriptor 4044 * 4045 * Called from workqueue/eventd every few seconds. 4046 * Purpose: 4047 * - clear the per-cpu caches for this CPU. 4048 * - return freeable pages to the main free memory pool. 4049 * 4050 * If we cannot acquire the cache chain mutex then just give up - we'll try 4051 * again on the next iteration. 4052 */ 4053 static void cache_reap(struct work_struct *w) 4054 { 4055 struct kmem_cache *searchp; 4056 struct kmem_list3 *l3; 4057 int node = numa_node_id(); 4058 struct delayed_work *work = to_delayed_work(w); 4059 4060 if (!mutex_trylock(&cache_chain_mutex)) 4061 /* Give up. Setup the next iteration. */ 4062 goto out; 4063 4064 list_for_each_entry(searchp, &cache_chain, next) { 4065 check_irq_on(); 4066 4067 /* 4068 * We only take the l3 lock if absolutely necessary and we 4069 * have established with reasonable certainty that 4070 * we can do some work if the lock was obtained. 4071 */ 4072 l3 = searchp->nodelists[node]; 4073 4074 reap_alien(searchp, l3); 4075 4076 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); 4077 4078 /* 4079 * These are racy checks but it does not matter 4080 * if we skip one check or scan twice. 4081 */ 4082 if (time_after(l3->next_reap, jiffies)) 4083 goto next; 4084 4085 l3->next_reap = jiffies + REAPTIMEOUT_LIST3; 4086 4087 drain_array(searchp, l3, l3->shared, 0, node); 4088 4089 if (l3->free_touched) 4090 l3->free_touched = 0; 4091 else { 4092 int freed; 4093 4094 freed = drain_freelist(searchp, l3, (l3->free_limit + 4095 5 * searchp->num - 1) / (5 * searchp->num)); 4096 STATS_ADD_REAPED(searchp, freed); 4097 } 4098 next: 4099 cond_resched(); 4100 } 4101 check_irq_on(); 4102 mutex_unlock(&cache_chain_mutex); 4103 next_reap_node(); 4104 out: 4105 /* Set up the next iteration */ 4106 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); 4107 } 4108 4109 #ifdef CONFIG_SLABINFO 4110 4111 static void print_slabinfo_header(struct seq_file *m) 4112 { 4113 /* 4114 * Output format version, so at least we can change it 4115 * without _too_ many complaints. 4116 */ 4117 #if STATS 4118 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 4119 #else 4120 seq_puts(m, "slabinfo - version: 2.1\n"); 4121 #endif 4122 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4123 "<objperslab> <pagesperslab>"); 4124 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4125 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4126 #if STATS 4127 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " 4128 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 4129 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 4130 #endif 4131 seq_putc(m, '\n'); 4132 } 4133 4134 static void *s_start(struct seq_file *m, loff_t *pos) 4135 { 4136 loff_t n = *pos; 4137 4138 mutex_lock(&cache_chain_mutex); 4139 if (!n) 4140 print_slabinfo_header(m); 4141 4142 return seq_list_start(&cache_chain, *pos); 4143 } 4144 4145 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4146 { 4147 return seq_list_next(p, &cache_chain, pos); 4148 } 4149 4150 static void s_stop(struct seq_file *m, void *p) 4151 { 4152 mutex_unlock(&cache_chain_mutex); 4153 } 4154 4155 static int s_show(struct seq_file *m, void *p) 4156 { 4157 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4158 struct slab *slabp; 4159 unsigned long active_objs; 4160 unsigned long num_objs; 4161 unsigned long active_slabs = 0; 4162 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4163 const char *name; 4164 char *error = NULL; 4165 int node; 4166 struct kmem_list3 *l3; 4167 4168 active_objs = 0; 4169 num_slabs = 0; 4170 for_each_online_node(node) { 4171 l3 = cachep->nodelists[node]; 4172 if (!l3) 4173 continue; 4174 4175 check_irq_on(); 4176 spin_lock_irq(&l3->list_lock); 4177 4178 list_for_each_entry(slabp, &l3->slabs_full, list) { 4179 if (slabp->inuse != cachep->num && !error) 4180 error = "slabs_full accounting error"; 4181 active_objs += cachep->num; 4182 active_slabs++; 4183 } 4184 list_for_each_entry(slabp, &l3->slabs_partial, list) { 4185 if (slabp->inuse == cachep->num && !error) 4186 error = "slabs_partial inuse accounting error"; 4187 if (!slabp->inuse && !error) 4188 error = "slabs_partial/inuse accounting error"; 4189 active_objs += slabp->inuse; 4190 active_slabs++; 4191 } 4192 list_for_each_entry(slabp, &l3->slabs_free, list) { 4193 if (slabp->inuse && !error) 4194 error = "slabs_free/inuse accounting error"; 4195 num_slabs++; 4196 } 4197 free_objects += l3->free_objects; 4198 if (l3->shared) 4199 shared_avail += l3->shared->avail; 4200 4201 spin_unlock_irq(&l3->list_lock); 4202 } 4203 num_slabs += active_slabs; 4204 num_objs = num_slabs * cachep->num; 4205 if (num_objs - active_objs != free_objects && !error) 4206 error = "free_objects accounting error"; 4207 4208 name = cachep->name; 4209 if (error) 4210 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 4211 4212 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 4213 name, active_objs, num_objs, cachep->buffer_size, 4214 cachep->num, (1 << cachep->gfporder)); 4215 seq_printf(m, " : tunables %4u %4u %4u", 4216 cachep->limit, cachep->batchcount, cachep->shared); 4217 seq_printf(m, " : slabdata %6lu %6lu %6lu", 4218 active_slabs, num_slabs, shared_avail); 4219 #if STATS 4220 { /* list3 stats */ 4221 unsigned long high = cachep->high_mark; 4222 unsigned long allocs = cachep->num_allocations; 4223 unsigned long grown = cachep->grown; 4224 unsigned long reaped = cachep->reaped; 4225 unsigned long errors = cachep->errors; 4226 unsigned long max_freeable = cachep->max_freeable; 4227 unsigned long node_allocs = cachep->node_allocs; 4228 unsigned long node_frees = cachep->node_frees; 4229 unsigned long overflows = cachep->node_overflow; 4230 4231 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ 4232 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown, 4233 reaped, errors, max_freeable, node_allocs, 4234 node_frees, overflows); 4235 } 4236 /* cpu stats */ 4237 { 4238 unsigned long allochit = atomic_read(&cachep->allochit); 4239 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4240 unsigned long freehit = atomic_read(&cachep->freehit); 4241 unsigned long freemiss = atomic_read(&cachep->freemiss); 4242 4243 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4244 allochit, allocmiss, freehit, freemiss); 4245 } 4246 #endif 4247 seq_putc(m, '\n'); 4248 return 0; 4249 } 4250 4251 /* 4252 * slabinfo_op - iterator that generates /proc/slabinfo 4253 * 4254 * Output layout: 4255 * cache-name 4256 * num-active-objs 4257 * total-objs 4258 * object size 4259 * num-active-slabs 4260 * total-slabs 4261 * num-pages-per-slab 4262 * + further values on SMP and with statistics enabled 4263 */ 4264 4265 static const struct seq_operations slabinfo_op = { 4266 .start = s_start, 4267 .next = s_next, 4268 .stop = s_stop, 4269 .show = s_show, 4270 }; 4271 4272 #define MAX_SLABINFO_WRITE 128 4273 /** 4274 * slabinfo_write - Tuning for the slab allocator 4275 * @file: unused 4276 * @buffer: user buffer 4277 * @count: data length 4278 * @ppos: unused 4279 */ 4280 ssize_t slabinfo_write(struct file *file, const char __user * buffer, 4281 size_t count, loff_t *ppos) 4282 { 4283 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4284 int limit, batchcount, shared, res; 4285 struct kmem_cache *cachep; 4286 4287 if (count > MAX_SLABINFO_WRITE) 4288 return -EINVAL; 4289 if (copy_from_user(&kbuf, buffer, count)) 4290 return -EFAULT; 4291 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4292 4293 tmp = strchr(kbuf, ' '); 4294 if (!tmp) 4295 return -EINVAL; 4296 *tmp = '\0'; 4297 tmp++; 4298 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4299 return -EINVAL; 4300 4301 /* Find the cache in the chain of caches. */ 4302 mutex_lock(&cache_chain_mutex); 4303 res = -EINVAL; 4304 list_for_each_entry(cachep, &cache_chain, next) { 4305 if (!strcmp(cachep->name, kbuf)) { 4306 if (limit < 1 || batchcount < 1 || 4307 batchcount > limit || shared < 0) { 4308 res = 0; 4309 } else { 4310 res = do_tune_cpucache(cachep, limit, 4311 batchcount, shared, 4312 GFP_KERNEL); 4313 } 4314 break; 4315 } 4316 } 4317 mutex_unlock(&cache_chain_mutex); 4318 if (res >= 0) 4319 res = count; 4320 return res; 4321 } 4322 4323 static int slabinfo_open(struct inode *inode, struct file *file) 4324 { 4325 return seq_open(file, &slabinfo_op); 4326 } 4327 4328 static const struct file_operations proc_slabinfo_operations = { 4329 .open = slabinfo_open, 4330 .read = seq_read, 4331 .write = slabinfo_write, 4332 .llseek = seq_lseek, 4333 .release = seq_release, 4334 }; 4335 4336 #ifdef CONFIG_DEBUG_SLAB_LEAK 4337 4338 static void *leaks_start(struct seq_file *m, loff_t *pos) 4339 { 4340 mutex_lock(&cache_chain_mutex); 4341 return seq_list_start(&cache_chain, *pos); 4342 } 4343 4344 static inline int add_caller(unsigned long *n, unsigned long v) 4345 { 4346 unsigned long *p; 4347 int l; 4348 if (!v) 4349 return 1; 4350 l = n[1]; 4351 p = n + 2; 4352 while (l) { 4353 int i = l/2; 4354 unsigned long *q = p + 2 * i; 4355 if (*q == v) { 4356 q[1]++; 4357 return 1; 4358 } 4359 if (*q > v) { 4360 l = i; 4361 } else { 4362 p = q + 2; 4363 l -= i + 1; 4364 } 4365 } 4366 if (++n[1] == n[0]) 4367 return 0; 4368 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4369 p[0] = v; 4370 p[1] = 1; 4371 return 1; 4372 } 4373 4374 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) 4375 { 4376 void *p; 4377 int i; 4378 if (n[0] == n[1]) 4379 return; 4380 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { 4381 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) 4382 continue; 4383 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4384 return; 4385 } 4386 } 4387 4388 static void show_symbol(struct seq_file *m, unsigned long address) 4389 { 4390 #ifdef CONFIG_KALLSYMS 4391 unsigned long offset, size; 4392 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4393 4394 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4395 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4396 if (modname[0]) 4397 seq_printf(m, " [%s]", modname); 4398 return; 4399 } 4400 #endif 4401 seq_printf(m, "%p", (void *)address); 4402 } 4403 4404 static int leaks_show(struct seq_file *m, void *p) 4405 { 4406 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4407 struct slab *slabp; 4408 struct kmem_list3 *l3; 4409 const char *name; 4410 unsigned long *n = m->private; 4411 int node; 4412 int i; 4413 4414 if (!(cachep->flags & SLAB_STORE_USER)) 4415 return 0; 4416 if (!(cachep->flags & SLAB_RED_ZONE)) 4417 return 0; 4418 4419 /* OK, we can do it */ 4420 4421 n[1] = 0; 4422 4423 for_each_online_node(node) { 4424 l3 = cachep->nodelists[node]; 4425 if (!l3) 4426 continue; 4427 4428 check_irq_on(); 4429 spin_lock_irq(&l3->list_lock); 4430 4431 list_for_each_entry(slabp, &l3->slabs_full, list) 4432 handle_slab(n, cachep, slabp); 4433 list_for_each_entry(slabp, &l3->slabs_partial, list) 4434 handle_slab(n, cachep, slabp); 4435 spin_unlock_irq(&l3->list_lock); 4436 } 4437 name = cachep->name; 4438 if (n[0] == n[1]) { 4439 /* Increase the buffer size */ 4440 mutex_unlock(&cache_chain_mutex); 4441 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4442 if (!m->private) { 4443 /* Too bad, we are really out */ 4444 m->private = n; 4445 mutex_lock(&cache_chain_mutex); 4446 return -ENOMEM; 4447 } 4448 *(unsigned long *)m->private = n[0] * 2; 4449 kfree(n); 4450 mutex_lock(&cache_chain_mutex); 4451 /* Now make sure this entry will be retried */ 4452 m->count = m->size; 4453 return 0; 4454 } 4455 for (i = 0; i < n[1]; i++) { 4456 seq_printf(m, "%s: %lu ", name, n[2*i+3]); 4457 show_symbol(m, n[2*i+2]); 4458 seq_putc(m, '\n'); 4459 } 4460 4461 return 0; 4462 } 4463 4464 static const struct seq_operations slabstats_op = { 4465 .start = leaks_start, 4466 .next = s_next, 4467 .stop = s_stop, 4468 .show = leaks_show, 4469 }; 4470 4471 static int slabstats_open(struct inode *inode, struct file *file) 4472 { 4473 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); 4474 int ret = -ENOMEM; 4475 if (n) { 4476 ret = seq_open(file, &slabstats_op); 4477 if (!ret) { 4478 struct seq_file *m = file->private_data; 4479 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4480 m->private = n; 4481 n = NULL; 4482 } 4483 kfree(n); 4484 } 4485 return ret; 4486 } 4487 4488 static const struct file_operations proc_slabstats_operations = { 4489 .open = slabstats_open, 4490 .read = seq_read, 4491 .llseek = seq_lseek, 4492 .release = seq_release_private, 4493 }; 4494 #endif 4495 4496 static int __init slab_proc_init(void) 4497 { 4498 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); 4499 #ifdef CONFIG_DEBUG_SLAB_LEAK 4500 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4501 #endif 4502 return 0; 4503 } 4504 module_init(slab_proc_init); 4505 #endif 4506 4507 /** 4508 * ksize - get the actual amount of memory allocated for a given object 4509 * @objp: Pointer to the object 4510 * 4511 * kmalloc may internally round up allocations and return more memory 4512 * than requested. ksize() can be used to determine the actual amount of 4513 * memory allocated. The caller may use this additional memory, even though 4514 * a smaller amount of memory was initially specified with the kmalloc call. 4515 * The caller must guarantee that objp points to a valid object previously 4516 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4517 * must not be freed during the duration of the call. 4518 */ 4519 size_t ksize(const void *objp) 4520 { 4521 BUG_ON(!objp); 4522 if (unlikely(objp == ZERO_SIZE_PTR)) 4523 return 0; 4524 4525 return obj_size(virt_to_cache(objp)); 4526 } 4527 EXPORT_SYMBOL(ksize); 4528