xref: /openbmc/linux/mm/slab.c (revision 9b9c2cd4)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * true if a page was allocated from pfmemalloc reserves for network-based
173  * swap
174  */
175 static bool pfmemalloc_active __read_mostly;
176 
177 /*
178  * struct array_cache
179  *
180  * Purpose:
181  * - LIFO ordering, to hand out cache-warm objects from _alloc
182  * - reduce the number of linked list operations
183  * - reduce spinlock operations
184  *
185  * The limit is stored in the per-cpu structure to reduce the data cache
186  * footprint.
187  *
188  */
189 struct array_cache {
190 	unsigned int avail;
191 	unsigned int limit;
192 	unsigned int batchcount;
193 	unsigned int touched;
194 	void *entry[];	/*
195 			 * Must have this definition in here for the proper
196 			 * alignment of array_cache. Also simplifies accessing
197 			 * the entries.
198 			 *
199 			 * Entries should not be directly dereferenced as
200 			 * entries belonging to slabs marked pfmemalloc will
201 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 			 */
203 };
204 
205 struct alien_cache {
206 	spinlock_t lock;
207 	struct array_cache ac;
208 };
209 
210 #define SLAB_OBJ_PFMEMALLOC	1
211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215 
216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 	return;
220 }
221 
222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226 
227 /*
228  * bootstrap: The caches do not work without cpuarrays anymore, but the
229  * cpuarrays are allocated from the generic caches...
230  */
231 #define BOOT_CPUCACHE_ENTRIES	1
232 struct arraycache_init {
233 	struct array_cache cache;
234 	void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236 
237 /*
238  * Need this for bootstrapping a per node allocator.
239  */
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define	CACHE_CACHE 0
243 #define	SIZE_NODE (MAX_NUMNODES)
244 
245 static int drain_freelist(struct kmem_cache *cache,
246 			struct kmem_cache_node *n, int tofree);
247 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 			int node, struct list_head *list);
249 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251 static void cache_reap(struct work_struct *unused);
252 
253 static int slab_early_init = 1;
254 
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256 
257 static void kmem_cache_node_init(struct kmem_cache_node *parent)
258 {
259 	INIT_LIST_HEAD(&parent->slabs_full);
260 	INIT_LIST_HEAD(&parent->slabs_partial);
261 	INIT_LIST_HEAD(&parent->slabs_free);
262 	parent->shared = NULL;
263 	parent->alien = NULL;
264 	parent->colour_next = 0;
265 	spin_lock_init(&parent->list_lock);
266 	parent->free_objects = 0;
267 	parent->free_touched = 0;
268 }
269 
270 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
271 	do {								\
272 		INIT_LIST_HEAD(listp);					\
273 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
274 	} while (0)
275 
276 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
277 	do {								\
278 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
279 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
281 	} while (0)
282 
283 #define CFLGS_OFF_SLAB		(0x80000000UL)
284 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
285 #define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
286 
287 #define BATCHREFILL_LIMIT	16
288 /*
289  * Optimization question: fewer reaps means less probability for unnessary
290  * cpucache drain/refill cycles.
291  *
292  * OTOH the cpuarrays can contain lots of objects,
293  * which could lock up otherwise freeable slabs.
294  */
295 #define REAPTIMEOUT_AC		(2*HZ)
296 #define REAPTIMEOUT_NODE	(4*HZ)
297 
298 #if STATS
299 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
300 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
301 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
302 #define	STATS_INC_GROWN(x)	((x)->grown++)
303 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
304 #define	STATS_SET_HIGH(x)						\
305 	do {								\
306 		if ((x)->num_active > (x)->high_mark)			\
307 			(x)->high_mark = (x)->num_active;		\
308 	} while (0)
309 #define	STATS_INC_ERR(x)	((x)->errors++)
310 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
311 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
312 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
313 #define	STATS_SET_FREEABLE(x, i)					\
314 	do {								\
315 		if ((x)->max_freeable < i)				\
316 			(x)->max_freeable = i;				\
317 	} while (0)
318 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
319 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
320 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
321 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
322 #else
323 #define	STATS_INC_ACTIVE(x)	do { } while (0)
324 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
325 #define	STATS_INC_ALLOCED(x)	do { } while (0)
326 #define	STATS_INC_GROWN(x)	do { } while (0)
327 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
328 #define	STATS_SET_HIGH(x)	do { } while (0)
329 #define	STATS_INC_ERR(x)	do { } while (0)
330 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
331 #define	STATS_INC_NODEFREES(x)	do { } while (0)
332 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
333 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
334 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
335 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
336 #define STATS_INC_FREEHIT(x)	do { } while (0)
337 #define STATS_INC_FREEMISS(x)	do { } while (0)
338 #endif
339 
340 #if DEBUG
341 
342 /*
343  * memory layout of objects:
344  * 0		: objp
345  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
346  * 		the end of an object is aligned with the end of the real
347  * 		allocation. Catches writes behind the end of the allocation.
348  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
349  * 		redzone word.
350  * cachep->obj_offset: The real object.
351  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
352  * cachep->size - 1* BYTES_PER_WORD: last caller address
353  *					[BYTES_PER_WORD long]
354  */
355 static int obj_offset(struct kmem_cache *cachep)
356 {
357 	return cachep->obj_offset;
358 }
359 
360 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
361 {
362 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
363 	return (unsigned long long*) (objp + obj_offset(cachep) -
364 				      sizeof(unsigned long long));
365 }
366 
367 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
368 {
369 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
370 	if (cachep->flags & SLAB_STORE_USER)
371 		return (unsigned long long *)(objp + cachep->size -
372 					      sizeof(unsigned long long) -
373 					      REDZONE_ALIGN);
374 	return (unsigned long long *) (objp + cachep->size -
375 				       sizeof(unsigned long long));
376 }
377 
378 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
379 {
380 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
381 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
382 }
383 
384 #else
385 
386 #define obj_offset(x)			0
387 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
388 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
389 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
390 
391 #endif
392 
393 #define OBJECT_FREE (0)
394 #define OBJECT_ACTIVE (1)
395 
396 #ifdef CONFIG_DEBUG_SLAB_LEAK
397 
398 static void set_obj_status(struct page *page, int idx, int val)
399 {
400 	int freelist_size;
401 	char *status;
402 	struct kmem_cache *cachep = page->slab_cache;
403 
404 	freelist_size = cachep->num * sizeof(freelist_idx_t);
405 	status = (char *)page->freelist + freelist_size;
406 	status[idx] = val;
407 }
408 
409 static inline unsigned int get_obj_status(struct page *page, int idx)
410 {
411 	int freelist_size;
412 	char *status;
413 	struct kmem_cache *cachep = page->slab_cache;
414 
415 	freelist_size = cachep->num * sizeof(freelist_idx_t);
416 	status = (char *)page->freelist + freelist_size;
417 
418 	return status[idx];
419 }
420 
421 #else
422 static inline void set_obj_status(struct page *page, int idx, int val) {}
423 
424 #endif
425 
426 /*
427  * Do not go above this order unless 0 objects fit into the slab or
428  * overridden on the command line.
429  */
430 #define	SLAB_MAX_ORDER_HI	1
431 #define	SLAB_MAX_ORDER_LO	0
432 static int slab_max_order = SLAB_MAX_ORDER_LO;
433 static bool slab_max_order_set __initdata;
434 
435 static inline struct kmem_cache *virt_to_cache(const void *obj)
436 {
437 	struct page *page = virt_to_head_page(obj);
438 	return page->slab_cache;
439 }
440 
441 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
442 				 unsigned int idx)
443 {
444 	return page->s_mem + cache->size * idx;
445 }
446 
447 /*
448  * We want to avoid an expensive divide : (offset / cache->size)
449  *   Using the fact that size is a constant for a particular cache,
450  *   we can replace (offset / cache->size) by
451  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
452  */
453 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
454 					const struct page *page, void *obj)
455 {
456 	u32 offset = (obj - page->s_mem);
457 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
458 }
459 
460 /* internal cache of cache description objs */
461 static struct kmem_cache kmem_cache_boot = {
462 	.batchcount = 1,
463 	.limit = BOOT_CPUCACHE_ENTRIES,
464 	.shared = 1,
465 	.size = sizeof(struct kmem_cache),
466 	.name = "kmem_cache",
467 };
468 
469 #define BAD_ALIEN_MAGIC 0x01020304ul
470 
471 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
472 
473 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
474 {
475 	return this_cpu_ptr(cachep->cpu_cache);
476 }
477 
478 static size_t calculate_freelist_size(int nr_objs, size_t align)
479 {
480 	size_t freelist_size;
481 
482 	freelist_size = nr_objs * sizeof(freelist_idx_t);
483 	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
484 		freelist_size += nr_objs * sizeof(char);
485 
486 	if (align)
487 		freelist_size = ALIGN(freelist_size, align);
488 
489 	return freelist_size;
490 }
491 
492 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
493 				size_t idx_size, size_t align)
494 {
495 	int nr_objs;
496 	size_t remained_size;
497 	size_t freelist_size;
498 	int extra_space = 0;
499 
500 	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
501 		extra_space = sizeof(char);
502 	/*
503 	 * Ignore padding for the initial guess. The padding
504 	 * is at most @align-1 bytes, and @buffer_size is at
505 	 * least @align. In the worst case, this result will
506 	 * be one greater than the number of objects that fit
507 	 * into the memory allocation when taking the padding
508 	 * into account.
509 	 */
510 	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
511 
512 	/*
513 	 * This calculated number will be either the right
514 	 * amount, or one greater than what we want.
515 	 */
516 	remained_size = slab_size - nr_objs * buffer_size;
517 	freelist_size = calculate_freelist_size(nr_objs, align);
518 	if (remained_size < freelist_size)
519 		nr_objs--;
520 
521 	return nr_objs;
522 }
523 
524 /*
525  * Calculate the number of objects and left-over bytes for a given buffer size.
526  */
527 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
528 			   size_t align, int flags, size_t *left_over,
529 			   unsigned int *num)
530 {
531 	int nr_objs;
532 	size_t mgmt_size;
533 	size_t slab_size = PAGE_SIZE << gfporder;
534 
535 	/*
536 	 * The slab management structure can be either off the slab or
537 	 * on it. For the latter case, the memory allocated for a
538 	 * slab is used for:
539 	 *
540 	 * - One unsigned int for each object
541 	 * - Padding to respect alignment of @align
542 	 * - @buffer_size bytes for each object
543 	 *
544 	 * If the slab management structure is off the slab, then the
545 	 * alignment will already be calculated into the size. Because
546 	 * the slabs are all pages aligned, the objects will be at the
547 	 * correct alignment when allocated.
548 	 */
549 	if (flags & CFLGS_OFF_SLAB) {
550 		mgmt_size = 0;
551 		nr_objs = slab_size / buffer_size;
552 
553 	} else {
554 		nr_objs = calculate_nr_objs(slab_size, buffer_size,
555 					sizeof(freelist_idx_t), align);
556 		mgmt_size = calculate_freelist_size(nr_objs, align);
557 	}
558 	*num = nr_objs;
559 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
560 }
561 
562 #if DEBUG
563 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
564 
565 static void __slab_error(const char *function, struct kmem_cache *cachep,
566 			char *msg)
567 {
568 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
569 	       function, cachep->name, msg);
570 	dump_stack();
571 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
572 }
573 #endif
574 
575 /*
576  * By default on NUMA we use alien caches to stage the freeing of
577  * objects allocated from other nodes. This causes massive memory
578  * inefficiencies when using fake NUMA setup to split memory into a
579  * large number of small nodes, so it can be disabled on the command
580  * line
581   */
582 
583 static int use_alien_caches __read_mostly = 1;
584 static int __init noaliencache_setup(char *s)
585 {
586 	use_alien_caches = 0;
587 	return 1;
588 }
589 __setup("noaliencache", noaliencache_setup);
590 
591 static int __init slab_max_order_setup(char *str)
592 {
593 	get_option(&str, &slab_max_order);
594 	slab_max_order = slab_max_order < 0 ? 0 :
595 				min(slab_max_order, MAX_ORDER - 1);
596 	slab_max_order_set = true;
597 
598 	return 1;
599 }
600 __setup("slab_max_order=", slab_max_order_setup);
601 
602 #ifdef CONFIG_NUMA
603 /*
604  * Special reaping functions for NUMA systems called from cache_reap().
605  * These take care of doing round robin flushing of alien caches (containing
606  * objects freed on different nodes from which they were allocated) and the
607  * flushing of remote pcps by calling drain_node_pages.
608  */
609 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
610 
611 static void init_reap_node(int cpu)
612 {
613 	int node;
614 
615 	node = next_node(cpu_to_mem(cpu), node_online_map);
616 	if (node == MAX_NUMNODES)
617 		node = first_node(node_online_map);
618 
619 	per_cpu(slab_reap_node, cpu) = node;
620 }
621 
622 static void next_reap_node(void)
623 {
624 	int node = __this_cpu_read(slab_reap_node);
625 
626 	node = next_node(node, node_online_map);
627 	if (unlikely(node >= MAX_NUMNODES))
628 		node = first_node(node_online_map);
629 	__this_cpu_write(slab_reap_node, node);
630 }
631 
632 #else
633 #define init_reap_node(cpu) do { } while (0)
634 #define next_reap_node(void) do { } while (0)
635 #endif
636 
637 /*
638  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
639  * via the workqueue/eventd.
640  * Add the CPU number into the expiration time to minimize the possibility of
641  * the CPUs getting into lockstep and contending for the global cache chain
642  * lock.
643  */
644 static void start_cpu_timer(int cpu)
645 {
646 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
647 
648 	/*
649 	 * When this gets called from do_initcalls via cpucache_init(),
650 	 * init_workqueues() has already run, so keventd will be setup
651 	 * at that time.
652 	 */
653 	if (keventd_up() && reap_work->work.func == NULL) {
654 		init_reap_node(cpu);
655 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
656 		schedule_delayed_work_on(cpu, reap_work,
657 					__round_jiffies_relative(HZ, cpu));
658 	}
659 }
660 
661 static void init_arraycache(struct array_cache *ac, int limit, int batch)
662 {
663 	/*
664 	 * The array_cache structures contain pointers to free object.
665 	 * However, when such objects are allocated or transferred to another
666 	 * cache the pointers are not cleared and they could be counted as
667 	 * valid references during a kmemleak scan. Therefore, kmemleak must
668 	 * not scan such objects.
669 	 */
670 	kmemleak_no_scan(ac);
671 	if (ac) {
672 		ac->avail = 0;
673 		ac->limit = limit;
674 		ac->batchcount = batch;
675 		ac->touched = 0;
676 	}
677 }
678 
679 static struct array_cache *alloc_arraycache(int node, int entries,
680 					    int batchcount, gfp_t gfp)
681 {
682 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
683 	struct array_cache *ac = NULL;
684 
685 	ac = kmalloc_node(memsize, gfp, node);
686 	init_arraycache(ac, entries, batchcount);
687 	return ac;
688 }
689 
690 static inline bool is_slab_pfmemalloc(struct page *page)
691 {
692 	return PageSlabPfmemalloc(page);
693 }
694 
695 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
696 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
697 						struct array_cache *ac)
698 {
699 	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
700 	struct page *page;
701 	unsigned long flags;
702 
703 	if (!pfmemalloc_active)
704 		return;
705 
706 	spin_lock_irqsave(&n->list_lock, flags);
707 	list_for_each_entry(page, &n->slabs_full, lru)
708 		if (is_slab_pfmemalloc(page))
709 			goto out;
710 
711 	list_for_each_entry(page, &n->slabs_partial, lru)
712 		if (is_slab_pfmemalloc(page))
713 			goto out;
714 
715 	list_for_each_entry(page, &n->slabs_free, lru)
716 		if (is_slab_pfmemalloc(page))
717 			goto out;
718 
719 	pfmemalloc_active = false;
720 out:
721 	spin_unlock_irqrestore(&n->list_lock, flags);
722 }
723 
724 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
725 						gfp_t flags, bool force_refill)
726 {
727 	int i;
728 	void *objp = ac->entry[--ac->avail];
729 
730 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
731 	if (unlikely(is_obj_pfmemalloc(objp))) {
732 		struct kmem_cache_node *n;
733 
734 		if (gfp_pfmemalloc_allowed(flags)) {
735 			clear_obj_pfmemalloc(&objp);
736 			return objp;
737 		}
738 
739 		/* The caller cannot use PFMEMALLOC objects, find another one */
740 		for (i = 0; i < ac->avail; i++) {
741 			/* If a !PFMEMALLOC object is found, swap them */
742 			if (!is_obj_pfmemalloc(ac->entry[i])) {
743 				objp = ac->entry[i];
744 				ac->entry[i] = ac->entry[ac->avail];
745 				ac->entry[ac->avail] = objp;
746 				return objp;
747 			}
748 		}
749 
750 		/*
751 		 * If there are empty slabs on the slabs_free list and we are
752 		 * being forced to refill the cache, mark this one !pfmemalloc.
753 		 */
754 		n = get_node(cachep, numa_mem_id());
755 		if (!list_empty(&n->slabs_free) && force_refill) {
756 			struct page *page = virt_to_head_page(objp);
757 			ClearPageSlabPfmemalloc(page);
758 			clear_obj_pfmemalloc(&objp);
759 			recheck_pfmemalloc_active(cachep, ac);
760 			return objp;
761 		}
762 
763 		/* No !PFMEMALLOC objects available */
764 		ac->avail++;
765 		objp = NULL;
766 	}
767 
768 	return objp;
769 }
770 
771 static inline void *ac_get_obj(struct kmem_cache *cachep,
772 			struct array_cache *ac, gfp_t flags, bool force_refill)
773 {
774 	void *objp;
775 
776 	if (unlikely(sk_memalloc_socks()))
777 		objp = __ac_get_obj(cachep, ac, flags, force_refill);
778 	else
779 		objp = ac->entry[--ac->avail];
780 
781 	return objp;
782 }
783 
784 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
785 			struct array_cache *ac, void *objp)
786 {
787 	if (unlikely(pfmemalloc_active)) {
788 		/* Some pfmemalloc slabs exist, check if this is one */
789 		struct page *page = virt_to_head_page(objp);
790 		if (PageSlabPfmemalloc(page))
791 			set_obj_pfmemalloc(&objp);
792 	}
793 
794 	return objp;
795 }
796 
797 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
798 								void *objp)
799 {
800 	if (unlikely(sk_memalloc_socks()))
801 		objp = __ac_put_obj(cachep, ac, objp);
802 
803 	ac->entry[ac->avail++] = objp;
804 }
805 
806 /*
807  * Transfer objects in one arraycache to another.
808  * Locking must be handled by the caller.
809  *
810  * Return the number of entries transferred.
811  */
812 static int transfer_objects(struct array_cache *to,
813 		struct array_cache *from, unsigned int max)
814 {
815 	/* Figure out how many entries to transfer */
816 	int nr = min3(from->avail, max, to->limit - to->avail);
817 
818 	if (!nr)
819 		return 0;
820 
821 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
822 			sizeof(void *) *nr);
823 
824 	from->avail -= nr;
825 	to->avail += nr;
826 	return nr;
827 }
828 
829 #ifndef CONFIG_NUMA
830 
831 #define drain_alien_cache(cachep, alien) do { } while (0)
832 #define reap_alien(cachep, n) do { } while (0)
833 
834 static inline struct alien_cache **alloc_alien_cache(int node,
835 						int limit, gfp_t gfp)
836 {
837 	return (struct alien_cache **)BAD_ALIEN_MAGIC;
838 }
839 
840 static inline void free_alien_cache(struct alien_cache **ac_ptr)
841 {
842 }
843 
844 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
845 {
846 	return 0;
847 }
848 
849 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
850 		gfp_t flags)
851 {
852 	return NULL;
853 }
854 
855 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
856 		 gfp_t flags, int nodeid)
857 {
858 	return NULL;
859 }
860 
861 static inline gfp_t gfp_exact_node(gfp_t flags)
862 {
863 	return flags;
864 }
865 
866 #else	/* CONFIG_NUMA */
867 
868 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
869 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
870 
871 static struct alien_cache *__alloc_alien_cache(int node, int entries,
872 						int batch, gfp_t gfp)
873 {
874 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
875 	struct alien_cache *alc = NULL;
876 
877 	alc = kmalloc_node(memsize, gfp, node);
878 	init_arraycache(&alc->ac, entries, batch);
879 	spin_lock_init(&alc->lock);
880 	return alc;
881 }
882 
883 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
884 {
885 	struct alien_cache **alc_ptr;
886 	size_t memsize = sizeof(void *) * nr_node_ids;
887 	int i;
888 
889 	if (limit > 1)
890 		limit = 12;
891 	alc_ptr = kzalloc_node(memsize, gfp, node);
892 	if (!alc_ptr)
893 		return NULL;
894 
895 	for_each_node(i) {
896 		if (i == node || !node_online(i))
897 			continue;
898 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
899 		if (!alc_ptr[i]) {
900 			for (i--; i >= 0; i--)
901 				kfree(alc_ptr[i]);
902 			kfree(alc_ptr);
903 			return NULL;
904 		}
905 	}
906 	return alc_ptr;
907 }
908 
909 static void free_alien_cache(struct alien_cache **alc_ptr)
910 {
911 	int i;
912 
913 	if (!alc_ptr)
914 		return;
915 	for_each_node(i)
916 	    kfree(alc_ptr[i]);
917 	kfree(alc_ptr);
918 }
919 
920 static void __drain_alien_cache(struct kmem_cache *cachep,
921 				struct array_cache *ac, int node,
922 				struct list_head *list)
923 {
924 	struct kmem_cache_node *n = get_node(cachep, node);
925 
926 	if (ac->avail) {
927 		spin_lock(&n->list_lock);
928 		/*
929 		 * Stuff objects into the remote nodes shared array first.
930 		 * That way we could avoid the overhead of putting the objects
931 		 * into the free lists and getting them back later.
932 		 */
933 		if (n->shared)
934 			transfer_objects(n->shared, ac, ac->limit);
935 
936 		free_block(cachep, ac->entry, ac->avail, node, list);
937 		ac->avail = 0;
938 		spin_unlock(&n->list_lock);
939 	}
940 }
941 
942 /*
943  * Called from cache_reap() to regularly drain alien caches round robin.
944  */
945 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
946 {
947 	int node = __this_cpu_read(slab_reap_node);
948 
949 	if (n->alien) {
950 		struct alien_cache *alc = n->alien[node];
951 		struct array_cache *ac;
952 
953 		if (alc) {
954 			ac = &alc->ac;
955 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
956 				LIST_HEAD(list);
957 
958 				__drain_alien_cache(cachep, ac, node, &list);
959 				spin_unlock_irq(&alc->lock);
960 				slabs_destroy(cachep, &list);
961 			}
962 		}
963 	}
964 }
965 
966 static void drain_alien_cache(struct kmem_cache *cachep,
967 				struct alien_cache **alien)
968 {
969 	int i = 0;
970 	struct alien_cache *alc;
971 	struct array_cache *ac;
972 	unsigned long flags;
973 
974 	for_each_online_node(i) {
975 		alc = alien[i];
976 		if (alc) {
977 			LIST_HEAD(list);
978 
979 			ac = &alc->ac;
980 			spin_lock_irqsave(&alc->lock, flags);
981 			__drain_alien_cache(cachep, ac, i, &list);
982 			spin_unlock_irqrestore(&alc->lock, flags);
983 			slabs_destroy(cachep, &list);
984 		}
985 	}
986 }
987 
988 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
989 				int node, int page_node)
990 {
991 	struct kmem_cache_node *n;
992 	struct alien_cache *alien = NULL;
993 	struct array_cache *ac;
994 	LIST_HEAD(list);
995 
996 	n = get_node(cachep, node);
997 	STATS_INC_NODEFREES(cachep);
998 	if (n->alien && n->alien[page_node]) {
999 		alien = n->alien[page_node];
1000 		ac = &alien->ac;
1001 		spin_lock(&alien->lock);
1002 		if (unlikely(ac->avail == ac->limit)) {
1003 			STATS_INC_ACOVERFLOW(cachep);
1004 			__drain_alien_cache(cachep, ac, page_node, &list);
1005 		}
1006 		ac_put_obj(cachep, ac, objp);
1007 		spin_unlock(&alien->lock);
1008 		slabs_destroy(cachep, &list);
1009 	} else {
1010 		n = get_node(cachep, page_node);
1011 		spin_lock(&n->list_lock);
1012 		free_block(cachep, &objp, 1, page_node, &list);
1013 		spin_unlock(&n->list_lock);
1014 		slabs_destroy(cachep, &list);
1015 	}
1016 	return 1;
1017 }
1018 
1019 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1020 {
1021 	int page_node = page_to_nid(virt_to_page(objp));
1022 	int node = numa_mem_id();
1023 	/*
1024 	 * Make sure we are not freeing a object from another node to the array
1025 	 * cache on this cpu.
1026 	 */
1027 	if (likely(node == page_node))
1028 		return 0;
1029 
1030 	return __cache_free_alien(cachep, objp, node, page_node);
1031 }
1032 
1033 /*
1034  * Construct gfp mask to allocate from a specific node but do not direct reclaim
1035  * or warn about failures. kswapd may still wake to reclaim in the background.
1036  */
1037 static inline gfp_t gfp_exact_node(gfp_t flags)
1038 {
1039 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
1040 }
1041 #endif
1042 
1043 /*
1044  * Allocates and initializes node for a node on each slab cache, used for
1045  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1046  * will be allocated off-node since memory is not yet online for the new node.
1047  * When hotplugging memory or a cpu, existing node are not replaced if
1048  * already in use.
1049  *
1050  * Must hold slab_mutex.
1051  */
1052 static int init_cache_node_node(int node)
1053 {
1054 	struct kmem_cache *cachep;
1055 	struct kmem_cache_node *n;
1056 	const size_t memsize = sizeof(struct kmem_cache_node);
1057 
1058 	list_for_each_entry(cachep, &slab_caches, list) {
1059 		/*
1060 		 * Set up the kmem_cache_node for cpu before we can
1061 		 * begin anything. Make sure some other cpu on this
1062 		 * node has not already allocated this
1063 		 */
1064 		n = get_node(cachep, node);
1065 		if (!n) {
1066 			n = kmalloc_node(memsize, GFP_KERNEL, node);
1067 			if (!n)
1068 				return -ENOMEM;
1069 			kmem_cache_node_init(n);
1070 			n->next_reap = jiffies + REAPTIMEOUT_NODE +
1071 			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1072 
1073 			/*
1074 			 * The kmem_cache_nodes don't come and go as CPUs
1075 			 * come and go.  slab_mutex is sufficient
1076 			 * protection here.
1077 			 */
1078 			cachep->node[node] = n;
1079 		}
1080 
1081 		spin_lock_irq(&n->list_lock);
1082 		n->free_limit =
1083 			(1 + nr_cpus_node(node)) *
1084 			cachep->batchcount + cachep->num;
1085 		spin_unlock_irq(&n->list_lock);
1086 	}
1087 	return 0;
1088 }
1089 
1090 static inline int slabs_tofree(struct kmem_cache *cachep,
1091 						struct kmem_cache_node *n)
1092 {
1093 	return (n->free_objects + cachep->num - 1) / cachep->num;
1094 }
1095 
1096 static void cpuup_canceled(long cpu)
1097 {
1098 	struct kmem_cache *cachep;
1099 	struct kmem_cache_node *n = NULL;
1100 	int node = cpu_to_mem(cpu);
1101 	const struct cpumask *mask = cpumask_of_node(node);
1102 
1103 	list_for_each_entry(cachep, &slab_caches, list) {
1104 		struct array_cache *nc;
1105 		struct array_cache *shared;
1106 		struct alien_cache **alien;
1107 		LIST_HEAD(list);
1108 
1109 		n = get_node(cachep, node);
1110 		if (!n)
1111 			continue;
1112 
1113 		spin_lock_irq(&n->list_lock);
1114 
1115 		/* Free limit for this kmem_cache_node */
1116 		n->free_limit -= cachep->batchcount;
1117 
1118 		/* cpu is dead; no one can alloc from it. */
1119 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1120 		if (nc) {
1121 			free_block(cachep, nc->entry, nc->avail, node, &list);
1122 			nc->avail = 0;
1123 		}
1124 
1125 		if (!cpumask_empty(mask)) {
1126 			spin_unlock_irq(&n->list_lock);
1127 			goto free_slab;
1128 		}
1129 
1130 		shared = n->shared;
1131 		if (shared) {
1132 			free_block(cachep, shared->entry,
1133 				   shared->avail, node, &list);
1134 			n->shared = NULL;
1135 		}
1136 
1137 		alien = n->alien;
1138 		n->alien = NULL;
1139 
1140 		spin_unlock_irq(&n->list_lock);
1141 
1142 		kfree(shared);
1143 		if (alien) {
1144 			drain_alien_cache(cachep, alien);
1145 			free_alien_cache(alien);
1146 		}
1147 
1148 free_slab:
1149 		slabs_destroy(cachep, &list);
1150 	}
1151 	/*
1152 	 * In the previous loop, all the objects were freed to
1153 	 * the respective cache's slabs,  now we can go ahead and
1154 	 * shrink each nodelist to its limit.
1155 	 */
1156 	list_for_each_entry(cachep, &slab_caches, list) {
1157 		n = get_node(cachep, node);
1158 		if (!n)
1159 			continue;
1160 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1161 	}
1162 }
1163 
1164 static int cpuup_prepare(long cpu)
1165 {
1166 	struct kmem_cache *cachep;
1167 	struct kmem_cache_node *n = NULL;
1168 	int node = cpu_to_mem(cpu);
1169 	int err;
1170 
1171 	/*
1172 	 * We need to do this right in the beginning since
1173 	 * alloc_arraycache's are going to use this list.
1174 	 * kmalloc_node allows us to add the slab to the right
1175 	 * kmem_cache_node and not this cpu's kmem_cache_node
1176 	 */
1177 	err = init_cache_node_node(node);
1178 	if (err < 0)
1179 		goto bad;
1180 
1181 	/*
1182 	 * Now we can go ahead with allocating the shared arrays and
1183 	 * array caches
1184 	 */
1185 	list_for_each_entry(cachep, &slab_caches, list) {
1186 		struct array_cache *shared = NULL;
1187 		struct alien_cache **alien = NULL;
1188 
1189 		if (cachep->shared) {
1190 			shared = alloc_arraycache(node,
1191 				cachep->shared * cachep->batchcount,
1192 				0xbaadf00d, GFP_KERNEL);
1193 			if (!shared)
1194 				goto bad;
1195 		}
1196 		if (use_alien_caches) {
1197 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1198 			if (!alien) {
1199 				kfree(shared);
1200 				goto bad;
1201 			}
1202 		}
1203 		n = get_node(cachep, node);
1204 		BUG_ON(!n);
1205 
1206 		spin_lock_irq(&n->list_lock);
1207 		if (!n->shared) {
1208 			/*
1209 			 * We are serialised from CPU_DEAD or
1210 			 * CPU_UP_CANCELLED by the cpucontrol lock
1211 			 */
1212 			n->shared = shared;
1213 			shared = NULL;
1214 		}
1215 #ifdef CONFIG_NUMA
1216 		if (!n->alien) {
1217 			n->alien = alien;
1218 			alien = NULL;
1219 		}
1220 #endif
1221 		spin_unlock_irq(&n->list_lock);
1222 		kfree(shared);
1223 		free_alien_cache(alien);
1224 	}
1225 
1226 	return 0;
1227 bad:
1228 	cpuup_canceled(cpu);
1229 	return -ENOMEM;
1230 }
1231 
1232 static int cpuup_callback(struct notifier_block *nfb,
1233 				    unsigned long action, void *hcpu)
1234 {
1235 	long cpu = (long)hcpu;
1236 	int err = 0;
1237 
1238 	switch (action) {
1239 	case CPU_UP_PREPARE:
1240 	case CPU_UP_PREPARE_FROZEN:
1241 		mutex_lock(&slab_mutex);
1242 		err = cpuup_prepare(cpu);
1243 		mutex_unlock(&slab_mutex);
1244 		break;
1245 	case CPU_ONLINE:
1246 	case CPU_ONLINE_FROZEN:
1247 		start_cpu_timer(cpu);
1248 		break;
1249 #ifdef CONFIG_HOTPLUG_CPU
1250   	case CPU_DOWN_PREPARE:
1251   	case CPU_DOWN_PREPARE_FROZEN:
1252 		/*
1253 		 * Shutdown cache reaper. Note that the slab_mutex is
1254 		 * held so that if cache_reap() is invoked it cannot do
1255 		 * anything expensive but will only modify reap_work
1256 		 * and reschedule the timer.
1257 		*/
1258 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1259 		/* Now the cache_reaper is guaranteed to be not running. */
1260 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1261   		break;
1262   	case CPU_DOWN_FAILED:
1263   	case CPU_DOWN_FAILED_FROZEN:
1264 		start_cpu_timer(cpu);
1265   		break;
1266 	case CPU_DEAD:
1267 	case CPU_DEAD_FROZEN:
1268 		/*
1269 		 * Even if all the cpus of a node are down, we don't free the
1270 		 * kmem_cache_node of any cache. This to avoid a race between
1271 		 * cpu_down, and a kmalloc allocation from another cpu for
1272 		 * memory from the node of the cpu going down.  The node
1273 		 * structure is usually allocated from kmem_cache_create() and
1274 		 * gets destroyed at kmem_cache_destroy().
1275 		 */
1276 		/* fall through */
1277 #endif
1278 	case CPU_UP_CANCELED:
1279 	case CPU_UP_CANCELED_FROZEN:
1280 		mutex_lock(&slab_mutex);
1281 		cpuup_canceled(cpu);
1282 		mutex_unlock(&slab_mutex);
1283 		break;
1284 	}
1285 	return notifier_from_errno(err);
1286 }
1287 
1288 static struct notifier_block cpucache_notifier = {
1289 	&cpuup_callback, NULL, 0
1290 };
1291 
1292 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1293 /*
1294  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1295  * Returns -EBUSY if all objects cannot be drained so that the node is not
1296  * removed.
1297  *
1298  * Must hold slab_mutex.
1299  */
1300 static int __meminit drain_cache_node_node(int node)
1301 {
1302 	struct kmem_cache *cachep;
1303 	int ret = 0;
1304 
1305 	list_for_each_entry(cachep, &slab_caches, list) {
1306 		struct kmem_cache_node *n;
1307 
1308 		n = get_node(cachep, node);
1309 		if (!n)
1310 			continue;
1311 
1312 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1313 
1314 		if (!list_empty(&n->slabs_full) ||
1315 		    !list_empty(&n->slabs_partial)) {
1316 			ret = -EBUSY;
1317 			break;
1318 		}
1319 	}
1320 	return ret;
1321 }
1322 
1323 static int __meminit slab_memory_callback(struct notifier_block *self,
1324 					unsigned long action, void *arg)
1325 {
1326 	struct memory_notify *mnb = arg;
1327 	int ret = 0;
1328 	int nid;
1329 
1330 	nid = mnb->status_change_nid;
1331 	if (nid < 0)
1332 		goto out;
1333 
1334 	switch (action) {
1335 	case MEM_GOING_ONLINE:
1336 		mutex_lock(&slab_mutex);
1337 		ret = init_cache_node_node(nid);
1338 		mutex_unlock(&slab_mutex);
1339 		break;
1340 	case MEM_GOING_OFFLINE:
1341 		mutex_lock(&slab_mutex);
1342 		ret = drain_cache_node_node(nid);
1343 		mutex_unlock(&slab_mutex);
1344 		break;
1345 	case MEM_ONLINE:
1346 	case MEM_OFFLINE:
1347 	case MEM_CANCEL_ONLINE:
1348 	case MEM_CANCEL_OFFLINE:
1349 		break;
1350 	}
1351 out:
1352 	return notifier_from_errno(ret);
1353 }
1354 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1355 
1356 /*
1357  * swap the static kmem_cache_node with kmalloced memory
1358  */
1359 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1360 				int nodeid)
1361 {
1362 	struct kmem_cache_node *ptr;
1363 
1364 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1365 	BUG_ON(!ptr);
1366 
1367 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1368 	/*
1369 	 * Do not assume that spinlocks can be initialized via memcpy:
1370 	 */
1371 	spin_lock_init(&ptr->list_lock);
1372 
1373 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1374 	cachep->node[nodeid] = ptr;
1375 }
1376 
1377 /*
1378  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1379  * size of kmem_cache_node.
1380  */
1381 static void __init set_up_node(struct kmem_cache *cachep, int index)
1382 {
1383 	int node;
1384 
1385 	for_each_online_node(node) {
1386 		cachep->node[node] = &init_kmem_cache_node[index + node];
1387 		cachep->node[node]->next_reap = jiffies +
1388 		    REAPTIMEOUT_NODE +
1389 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1390 	}
1391 }
1392 
1393 /*
1394  * Initialisation.  Called after the page allocator have been initialised and
1395  * before smp_init().
1396  */
1397 void __init kmem_cache_init(void)
1398 {
1399 	int i;
1400 
1401 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1402 					sizeof(struct rcu_head));
1403 	kmem_cache = &kmem_cache_boot;
1404 
1405 	if (num_possible_nodes() == 1)
1406 		use_alien_caches = 0;
1407 
1408 	for (i = 0; i < NUM_INIT_LISTS; i++)
1409 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1410 
1411 	/*
1412 	 * Fragmentation resistance on low memory - only use bigger
1413 	 * page orders on machines with more than 32MB of memory if
1414 	 * not overridden on the command line.
1415 	 */
1416 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1417 		slab_max_order = SLAB_MAX_ORDER_HI;
1418 
1419 	/* Bootstrap is tricky, because several objects are allocated
1420 	 * from caches that do not exist yet:
1421 	 * 1) initialize the kmem_cache cache: it contains the struct
1422 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1423 	 *    kmem_cache is statically allocated.
1424 	 *    Initially an __init data area is used for the head array and the
1425 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1426 	 *    array at the end of the bootstrap.
1427 	 * 2) Create the first kmalloc cache.
1428 	 *    The struct kmem_cache for the new cache is allocated normally.
1429 	 *    An __init data area is used for the head array.
1430 	 * 3) Create the remaining kmalloc caches, with minimally sized
1431 	 *    head arrays.
1432 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1433 	 *    kmalloc cache with kmalloc allocated arrays.
1434 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1435 	 *    the other cache's with kmalloc allocated memory.
1436 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1437 	 */
1438 
1439 	/* 1) create the kmem_cache */
1440 
1441 	/*
1442 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1443 	 */
1444 	create_boot_cache(kmem_cache, "kmem_cache",
1445 		offsetof(struct kmem_cache, node) +
1446 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1447 				  SLAB_HWCACHE_ALIGN);
1448 	list_add(&kmem_cache->list, &slab_caches);
1449 	slab_state = PARTIAL;
1450 
1451 	/*
1452 	 * Initialize the caches that provide memory for the  kmem_cache_node
1453 	 * structures first.  Without this, further allocations will bug.
1454 	 */
1455 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1456 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1457 	slab_state = PARTIAL_NODE;
1458 	setup_kmalloc_cache_index_table();
1459 
1460 	slab_early_init = 0;
1461 
1462 	/* 5) Replace the bootstrap kmem_cache_node */
1463 	{
1464 		int nid;
1465 
1466 		for_each_online_node(nid) {
1467 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1468 
1469 			init_list(kmalloc_caches[INDEX_NODE],
1470 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1471 		}
1472 	}
1473 
1474 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1475 }
1476 
1477 void __init kmem_cache_init_late(void)
1478 {
1479 	struct kmem_cache *cachep;
1480 
1481 	slab_state = UP;
1482 
1483 	/* 6) resize the head arrays to their final sizes */
1484 	mutex_lock(&slab_mutex);
1485 	list_for_each_entry(cachep, &slab_caches, list)
1486 		if (enable_cpucache(cachep, GFP_NOWAIT))
1487 			BUG();
1488 	mutex_unlock(&slab_mutex);
1489 
1490 	/* Done! */
1491 	slab_state = FULL;
1492 
1493 	/*
1494 	 * Register a cpu startup notifier callback that initializes
1495 	 * cpu_cache_get for all new cpus
1496 	 */
1497 	register_cpu_notifier(&cpucache_notifier);
1498 
1499 #ifdef CONFIG_NUMA
1500 	/*
1501 	 * Register a memory hotplug callback that initializes and frees
1502 	 * node.
1503 	 */
1504 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1505 #endif
1506 
1507 	/*
1508 	 * The reap timers are started later, with a module init call: That part
1509 	 * of the kernel is not yet operational.
1510 	 */
1511 }
1512 
1513 static int __init cpucache_init(void)
1514 {
1515 	int cpu;
1516 
1517 	/*
1518 	 * Register the timers that return unneeded pages to the page allocator
1519 	 */
1520 	for_each_online_cpu(cpu)
1521 		start_cpu_timer(cpu);
1522 
1523 	/* Done! */
1524 	slab_state = FULL;
1525 	return 0;
1526 }
1527 __initcall(cpucache_init);
1528 
1529 static noinline void
1530 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1531 {
1532 #if DEBUG
1533 	struct kmem_cache_node *n;
1534 	struct page *page;
1535 	unsigned long flags;
1536 	int node;
1537 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1538 				      DEFAULT_RATELIMIT_BURST);
1539 
1540 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1541 		return;
1542 
1543 	printk(KERN_WARNING
1544 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1545 		nodeid, gfpflags);
1546 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1547 		cachep->name, cachep->size, cachep->gfporder);
1548 
1549 	for_each_kmem_cache_node(cachep, node, n) {
1550 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1551 		unsigned long active_slabs = 0, num_slabs = 0;
1552 
1553 		spin_lock_irqsave(&n->list_lock, flags);
1554 		list_for_each_entry(page, &n->slabs_full, lru) {
1555 			active_objs += cachep->num;
1556 			active_slabs++;
1557 		}
1558 		list_for_each_entry(page, &n->slabs_partial, lru) {
1559 			active_objs += page->active;
1560 			active_slabs++;
1561 		}
1562 		list_for_each_entry(page, &n->slabs_free, lru)
1563 			num_slabs++;
1564 
1565 		free_objects += n->free_objects;
1566 		spin_unlock_irqrestore(&n->list_lock, flags);
1567 
1568 		num_slabs += active_slabs;
1569 		num_objs = num_slabs * cachep->num;
1570 		printk(KERN_WARNING
1571 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1572 			node, active_slabs, num_slabs, active_objs, num_objs,
1573 			free_objects);
1574 	}
1575 #endif
1576 }
1577 
1578 /*
1579  * Interface to system's page allocator. No need to hold the
1580  * kmem_cache_node ->list_lock.
1581  *
1582  * If we requested dmaable memory, we will get it. Even if we
1583  * did not request dmaable memory, we might get it, but that
1584  * would be relatively rare and ignorable.
1585  */
1586 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1587 								int nodeid)
1588 {
1589 	struct page *page;
1590 	int nr_pages;
1591 
1592 	flags |= cachep->allocflags;
1593 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1594 		flags |= __GFP_RECLAIMABLE;
1595 
1596 	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1597 	if (!page) {
1598 		slab_out_of_memory(cachep, flags, nodeid);
1599 		return NULL;
1600 	}
1601 
1602 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1603 		__free_pages(page, cachep->gfporder);
1604 		return NULL;
1605 	}
1606 
1607 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1608 	if (page_is_pfmemalloc(page))
1609 		pfmemalloc_active = true;
1610 
1611 	nr_pages = (1 << cachep->gfporder);
1612 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1613 		add_zone_page_state(page_zone(page),
1614 			NR_SLAB_RECLAIMABLE, nr_pages);
1615 	else
1616 		add_zone_page_state(page_zone(page),
1617 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1618 	__SetPageSlab(page);
1619 	if (page_is_pfmemalloc(page))
1620 		SetPageSlabPfmemalloc(page);
1621 
1622 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1623 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1624 
1625 		if (cachep->ctor)
1626 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1627 		else
1628 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1629 	}
1630 
1631 	return page;
1632 }
1633 
1634 /*
1635  * Interface to system's page release.
1636  */
1637 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1638 {
1639 	const unsigned long nr_freed = (1 << cachep->gfporder);
1640 
1641 	kmemcheck_free_shadow(page, cachep->gfporder);
1642 
1643 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1644 		sub_zone_page_state(page_zone(page),
1645 				NR_SLAB_RECLAIMABLE, nr_freed);
1646 	else
1647 		sub_zone_page_state(page_zone(page),
1648 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1649 
1650 	BUG_ON(!PageSlab(page));
1651 	__ClearPageSlabPfmemalloc(page);
1652 	__ClearPageSlab(page);
1653 	page_mapcount_reset(page);
1654 	page->mapping = NULL;
1655 
1656 	if (current->reclaim_state)
1657 		current->reclaim_state->reclaimed_slab += nr_freed;
1658 	__free_kmem_pages(page, cachep->gfporder);
1659 }
1660 
1661 static void kmem_rcu_free(struct rcu_head *head)
1662 {
1663 	struct kmem_cache *cachep;
1664 	struct page *page;
1665 
1666 	page = container_of(head, struct page, rcu_head);
1667 	cachep = page->slab_cache;
1668 
1669 	kmem_freepages(cachep, page);
1670 }
1671 
1672 #if DEBUG
1673 
1674 #ifdef CONFIG_DEBUG_PAGEALLOC
1675 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1676 			    unsigned long caller)
1677 {
1678 	int size = cachep->object_size;
1679 
1680 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1681 
1682 	if (size < 5 * sizeof(unsigned long))
1683 		return;
1684 
1685 	*addr++ = 0x12345678;
1686 	*addr++ = caller;
1687 	*addr++ = smp_processor_id();
1688 	size -= 3 * sizeof(unsigned long);
1689 	{
1690 		unsigned long *sptr = &caller;
1691 		unsigned long svalue;
1692 
1693 		while (!kstack_end(sptr)) {
1694 			svalue = *sptr++;
1695 			if (kernel_text_address(svalue)) {
1696 				*addr++ = svalue;
1697 				size -= sizeof(unsigned long);
1698 				if (size <= sizeof(unsigned long))
1699 					break;
1700 			}
1701 		}
1702 
1703 	}
1704 	*addr++ = 0x87654321;
1705 }
1706 #endif
1707 
1708 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1709 {
1710 	int size = cachep->object_size;
1711 	addr = &((char *)addr)[obj_offset(cachep)];
1712 
1713 	memset(addr, val, size);
1714 	*(unsigned char *)(addr + size - 1) = POISON_END;
1715 }
1716 
1717 static void dump_line(char *data, int offset, int limit)
1718 {
1719 	int i;
1720 	unsigned char error = 0;
1721 	int bad_count = 0;
1722 
1723 	printk(KERN_ERR "%03x: ", offset);
1724 	for (i = 0; i < limit; i++) {
1725 		if (data[offset + i] != POISON_FREE) {
1726 			error = data[offset + i];
1727 			bad_count++;
1728 		}
1729 	}
1730 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1731 			&data[offset], limit, 1);
1732 
1733 	if (bad_count == 1) {
1734 		error ^= POISON_FREE;
1735 		if (!(error & (error - 1))) {
1736 			printk(KERN_ERR "Single bit error detected. Probably "
1737 					"bad RAM.\n");
1738 #ifdef CONFIG_X86
1739 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1740 					"test tool.\n");
1741 #else
1742 			printk(KERN_ERR "Run a memory test tool.\n");
1743 #endif
1744 		}
1745 	}
1746 }
1747 #endif
1748 
1749 #if DEBUG
1750 
1751 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1752 {
1753 	int i, size;
1754 	char *realobj;
1755 
1756 	if (cachep->flags & SLAB_RED_ZONE) {
1757 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1758 			*dbg_redzone1(cachep, objp),
1759 			*dbg_redzone2(cachep, objp));
1760 	}
1761 
1762 	if (cachep->flags & SLAB_STORE_USER) {
1763 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1764 		       *dbg_userword(cachep, objp),
1765 		       *dbg_userword(cachep, objp));
1766 	}
1767 	realobj = (char *)objp + obj_offset(cachep);
1768 	size = cachep->object_size;
1769 	for (i = 0; i < size && lines; i += 16, lines--) {
1770 		int limit;
1771 		limit = 16;
1772 		if (i + limit > size)
1773 			limit = size - i;
1774 		dump_line(realobj, i, limit);
1775 	}
1776 }
1777 
1778 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1779 {
1780 	char *realobj;
1781 	int size, i;
1782 	int lines = 0;
1783 
1784 	realobj = (char *)objp + obj_offset(cachep);
1785 	size = cachep->object_size;
1786 
1787 	for (i = 0; i < size; i++) {
1788 		char exp = POISON_FREE;
1789 		if (i == size - 1)
1790 			exp = POISON_END;
1791 		if (realobj[i] != exp) {
1792 			int limit;
1793 			/* Mismatch ! */
1794 			/* Print header */
1795 			if (lines == 0) {
1796 				printk(KERN_ERR
1797 					"Slab corruption (%s): %s start=%p, len=%d\n",
1798 					print_tainted(), cachep->name, realobj, size);
1799 				print_objinfo(cachep, objp, 0);
1800 			}
1801 			/* Hexdump the affected line */
1802 			i = (i / 16) * 16;
1803 			limit = 16;
1804 			if (i + limit > size)
1805 				limit = size - i;
1806 			dump_line(realobj, i, limit);
1807 			i += 16;
1808 			lines++;
1809 			/* Limit to 5 lines */
1810 			if (lines > 5)
1811 				break;
1812 		}
1813 	}
1814 	if (lines != 0) {
1815 		/* Print some data about the neighboring objects, if they
1816 		 * exist:
1817 		 */
1818 		struct page *page = virt_to_head_page(objp);
1819 		unsigned int objnr;
1820 
1821 		objnr = obj_to_index(cachep, page, objp);
1822 		if (objnr) {
1823 			objp = index_to_obj(cachep, page, objnr - 1);
1824 			realobj = (char *)objp + obj_offset(cachep);
1825 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1826 			       realobj, size);
1827 			print_objinfo(cachep, objp, 2);
1828 		}
1829 		if (objnr + 1 < cachep->num) {
1830 			objp = index_to_obj(cachep, page, objnr + 1);
1831 			realobj = (char *)objp + obj_offset(cachep);
1832 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1833 			       realobj, size);
1834 			print_objinfo(cachep, objp, 2);
1835 		}
1836 	}
1837 }
1838 #endif
1839 
1840 #if DEBUG
1841 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1842 						struct page *page)
1843 {
1844 	int i;
1845 	for (i = 0; i < cachep->num; i++) {
1846 		void *objp = index_to_obj(cachep, page, i);
1847 
1848 		if (cachep->flags & SLAB_POISON) {
1849 #ifdef CONFIG_DEBUG_PAGEALLOC
1850 			if (cachep->size % PAGE_SIZE == 0 &&
1851 					OFF_SLAB(cachep))
1852 				kernel_map_pages(virt_to_page(objp),
1853 					cachep->size / PAGE_SIZE, 1);
1854 			else
1855 				check_poison_obj(cachep, objp);
1856 #else
1857 			check_poison_obj(cachep, objp);
1858 #endif
1859 		}
1860 		if (cachep->flags & SLAB_RED_ZONE) {
1861 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1862 				slab_error(cachep, "start of a freed object "
1863 					   "was overwritten");
1864 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1865 				slab_error(cachep, "end of a freed object "
1866 					   "was overwritten");
1867 		}
1868 	}
1869 }
1870 #else
1871 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1872 						struct page *page)
1873 {
1874 }
1875 #endif
1876 
1877 /**
1878  * slab_destroy - destroy and release all objects in a slab
1879  * @cachep: cache pointer being destroyed
1880  * @page: page pointer being destroyed
1881  *
1882  * Destroy all the objs in a slab page, and release the mem back to the system.
1883  * Before calling the slab page must have been unlinked from the cache. The
1884  * kmem_cache_node ->list_lock is not held/needed.
1885  */
1886 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1887 {
1888 	void *freelist;
1889 
1890 	freelist = page->freelist;
1891 	slab_destroy_debugcheck(cachep, page);
1892 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1893 		call_rcu(&page->rcu_head, kmem_rcu_free);
1894 	else
1895 		kmem_freepages(cachep, page);
1896 
1897 	/*
1898 	 * From now on, we don't use freelist
1899 	 * although actual page can be freed in rcu context
1900 	 */
1901 	if (OFF_SLAB(cachep))
1902 		kmem_cache_free(cachep->freelist_cache, freelist);
1903 }
1904 
1905 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1906 {
1907 	struct page *page, *n;
1908 
1909 	list_for_each_entry_safe(page, n, list, lru) {
1910 		list_del(&page->lru);
1911 		slab_destroy(cachep, page);
1912 	}
1913 }
1914 
1915 /**
1916  * calculate_slab_order - calculate size (page order) of slabs
1917  * @cachep: pointer to the cache that is being created
1918  * @size: size of objects to be created in this cache.
1919  * @align: required alignment for the objects.
1920  * @flags: slab allocation flags
1921  *
1922  * Also calculates the number of objects per slab.
1923  *
1924  * This could be made much more intelligent.  For now, try to avoid using
1925  * high order pages for slabs.  When the gfp() functions are more friendly
1926  * towards high-order requests, this should be changed.
1927  */
1928 static size_t calculate_slab_order(struct kmem_cache *cachep,
1929 			size_t size, size_t align, unsigned long flags)
1930 {
1931 	unsigned long offslab_limit;
1932 	size_t left_over = 0;
1933 	int gfporder;
1934 
1935 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1936 		unsigned int num;
1937 		size_t remainder;
1938 
1939 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1940 		if (!num)
1941 			continue;
1942 
1943 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1944 		if (num > SLAB_OBJ_MAX_NUM)
1945 			break;
1946 
1947 		if (flags & CFLGS_OFF_SLAB) {
1948 			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1949 			/*
1950 			 * Max number of objs-per-slab for caches which
1951 			 * use off-slab slabs. Needed to avoid a possible
1952 			 * looping condition in cache_grow().
1953 			 */
1954 			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1955 				freelist_size_per_obj += sizeof(char);
1956 			offslab_limit = size;
1957 			offslab_limit /= freelist_size_per_obj;
1958 
1959  			if (num > offslab_limit)
1960 				break;
1961 		}
1962 
1963 		/* Found something acceptable - save it away */
1964 		cachep->num = num;
1965 		cachep->gfporder = gfporder;
1966 		left_over = remainder;
1967 
1968 		/*
1969 		 * A VFS-reclaimable slab tends to have most allocations
1970 		 * as GFP_NOFS and we really don't want to have to be allocating
1971 		 * higher-order pages when we are unable to shrink dcache.
1972 		 */
1973 		if (flags & SLAB_RECLAIM_ACCOUNT)
1974 			break;
1975 
1976 		/*
1977 		 * Large number of objects is good, but very large slabs are
1978 		 * currently bad for the gfp()s.
1979 		 */
1980 		if (gfporder >= slab_max_order)
1981 			break;
1982 
1983 		/*
1984 		 * Acceptable internal fragmentation?
1985 		 */
1986 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1987 			break;
1988 	}
1989 	return left_over;
1990 }
1991 
1992 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1993 		struct kmem_cache *cachep, int entries, int batchcount)
1994 {
1995 	int cpu;
1996 	size_t size;
1997 	struct array_cache __percpu *cpu_cache;
1998 
1999 	size = sizeof(void *) * entries + sizeof(struct array_cache);
2000 	cpu_cache = __alloc_percpu(size, sizeof(void *));
2001 
2002 	if (!cpu_cache)
2003 		return NULL;
2004 
2005 	for_each_possible_cpu(cpu) {
2006 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2007 				entries, batchcount);
2008 	}
2009 
2010 	return cpu_cache;
2011 }
2012 
2013 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2014 {
2015 	if (slab_state >= FULL)
2016 		return enable_cpucache(cachep, gfp);
2017 
2018 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2019 	if (!cachep->cpu_cache)
2020 		return 1;
2021 
2022 	if (slab_state == DOWN) {
2023 		/* Creation of first cache (kmem_cache). */
2024 		set_up_node(kmem_cache, CACHE_CACHE);
2025 	} else if (slab_state == PARTIAL) {
2026 		/* For kmem_cache_node */
2027 		set_up_node(cachep, SIZE_NODE);
2028 	} else {
2029 		int node;
2030 
2031 		for_each_online_node(node) {
2032 			cachep->node[node] = kmalloc_node(
2033 				sizeof(struct kmem_cache_node), gfp, node);
2034 			BUG_ON(!cachep->node[node]);
2035 			kmem_cache_node_init(cachep->node[node]);
2036 		}
2037 	}
2038 
2039 	cachep->node[numa_mem_id()]->next_reap =
2040 			jiffies + REAPTIMEOUT_NODE +
2041 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2042 
2043 	cpu_cache_get(cachep)->avail = 0;
2044 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2045 	cpu_cache_get(cachep)->batchcount = 1;
2046 	cpu_cache_get(cachep)->touched = 0;
2047 	cachep->batchcount = 1;
2048 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2049 	return 0;
2050 }
2051 
2052 unsigned long kmem_cache_flags(unsigned long object_size,
2053 	unsigned long flags, const char *name,
2054 	void (*ctor)(void *))
2055 {
2056 	return flags;
2057 }
2058 
2059 struct kmem_cache *
2060 __kmem_cache_alias(const char *name, size_t size, size_t align,
2061 		   unsigned long flags, void (*ctor)(void *))
2062 {
2063 	struct kmem_cache *cachep;
2064 
2065 	cachep = find_mergeable(size, align, flags, name, ctor);
2066 	if (cachep) {
2067 		cachep->refcount++;
2068 
2069 		/*
2070 		 * Adjust the object sizes so that we clear
2071 		 * the complete object on kzalloc.
2072 		 */
2073 		cachep->object_size = max_t(int, cachep->object_size, size);
2074 	}
2075 	return cachep;
2076 }
2077 
2078 /**
2079  * __kmem_cache_create - Create a cache.
2080  * @cachep: cache management descriptor
2081  * @flags: SLAB flags
2082  *
2083  * Returns a ptr to the cache on success, NULL on failure.
2084  * Cannot be called within a int, but can be interrupted.
2085  * The @ctor is run when new pages are allocated by the cache.
2086  *
2087  * The flags are
2088  *
2089  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2090  * to catch references to uninitialised memory.
2091  *
2092  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2093  * for buffer overruns.
2094  *
2095  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2096  * cacheline.  This can be beneficial if you're counting cycles as closely
2097  * as davem.
2098  */
2099 int
2100 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2101 {
2102 	size_t left_over, freelist_size;
2103 	size_t ralign = BYTES_PER_WORD;
2104 	gfp_t gfp;
2105 	int err;
2106 	size_t size = cachep->size;
2107 
2108 #if DEBUG
2109 #if FORCED_DEBUG
2110 	/*
2111 	 * Enable redzoning and last user accounting, except for caches with
2112 	 * large objects, if the increased size would increase the object size
2113 	 * above the next power of two: caches with object sizes just above a
2114 	 * power of two have a significant amount of internal fragmentation.
2115 	 */
2116 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2117 						2 * sizeof(unsigned long long)))
2118 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2119 	if (!(flags & SLAB_DESTROY_BY_RCU))
2120 		flags |= SLAB_POISON;
2121 #endif
2122 	if (flags & SLAB_DESTROY_BY_RCU)
2123 		BUG_ON(flags & SLAB_POISON);
2124 #endif
2125 
2126 	/*
2127 	 * Check that size is in terms of words.  This is needed to avoid
2128 	 * unaligned accesses for some archs when redzoning is used, and makes
2129 	 * sure any on-slab bufctl's are also correctly aligned.
2130 	 */
2131 	if (size & (BYTES_PER_WORD - 1)) {
2132 		size += (BYTES_PER_WORD - 1);
2133 		size &= ~(BYTES_PER_WORD - 1);
2134 	}
2135 
2136 	if (flags & SLAB_RED_ZONE) {
2137 		ralign = REDZONE_ALIGN;
2138 		/* If redzoning, ensure that the second redzone is suitably
2139 		 * aligned, by adjusting the object size accordingly. */
2140 		size += REDZONE_ALIGN - 1;
2141 		size &= ~(REDZONE_ALIGN - 1);
2142 	}
2143 
2144 	/* 3) caller mandated alignment */
2145 	if (ralign < cachep->align) {
2146 		ralign = cachep->align;
2147 	}
2148 	/* disable debug if necessary */
2149 	if (ralign > __alignof__(unsigned long long))
2150 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2151 	/*
2152 	 * 4) Store it.
2153 	 */
2154 	cachep->align = ralign;
2155 
2156 	if (slab_is_available())
2157 		gfp = GFP_KERNEL;
2158 	else
2159 		gfp = GFP_NOWAIT;
2160 
2161 #if DEBUG
2162 
2163 	/*
2164 	 * Both debugging options require word-alignment which is calculated
2165 	 * into align above.
2166 	 */
2167 	if (flags & SLAB_RED_ZONE) {
2168 		/* add space for red zone words */
2169 		cachep->obj_offset += sizeof(unsigned long long);
2170 		size += 2 * sizeof(unsigned long long);
2171 	}
2172 	if (flags & SLAB_STORE_USER) {
2173 		/* user store requires one word storage behind the end of
2174 		 * the real object. But if the second red zone needs to be
2175 		 * aligned to 64 bits, we must allow that much space.
2176 		 */
2177 		if (flags & SLAB_RED_ZONE)
2178 			size += REDZONE_ALIGN;
2179 		else
2180 			size += BYTES_PER_WORD;
2181 	}
2182 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2183 	/*
2184 	 * To activate debug pagealloc, off-slab management is necessary
2185 	 * requirement. In early phase of initialization, small sized slab
2186 	 * doesn't get initialized so it would not be possible. So, we need
2187 	 * to check size >= 256. It guarantees that all necessary small
2188 	 * sized slab is initialized in current slab initialization sequence.
2189 	 */
2190 	if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2191 		size >= 256 && cachep->object_size > cache_line_size() &&
2192 		ALIGN(size, cachep->align) < PAGE_SIZE) {
2193 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2194 		size = PAGE_SIZE;
2195 	}
2196 #endif
2197 #endif
2198 
2199 	/*
2200 	 * Determine if the slab management is 'on' or 'off' slab.
2201 	 * (bootstrapping cannot cope with offslab caches so don't do
2202 	 * it too early on. Always use on-slab management when
2203 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2204 	 */
2205 	if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
2206 	    !(flags & SLAB_NOLEAKTRACE))
2207 		/*
2208 		 * Size is large, assume best to place the slab management obj
2209 		 * off-slab (should allow better packing of objs).
2210 		 */
2211 		flags |= CFLGS_OFF_SLAB;
2212 
2213 	size = ALIGN(size, cachep->align);
2214 	/*
2215 	 * We should restrict the number of objects in a slab to implement
2216 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2217 	 */
2218 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2219 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2220 
2221 	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2222 
2223 	if (!cachep->num)
2224 		return -E2BIG;
2225 
2226 	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2227 
2228 	/*
2229 	 * If the slab has been placed off-slab, and we have enough space then
2230 	 * move it on-slab. This is at the expense of any extra colouring.
2231 	 */
2232 	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2233 		flags &= ~CFLGS_OFF_SLAB;
2234 		left_over -= freelist_size;
2235 	}
2236 
2237 	if (flags & CFLGS_OFF_SLAB) {
2238 		/* really off slab. No need for manual alignment */
2239 		freelist_size = calculate_freelist_size(cachep->num, 0);
2240 
2241 #ifdef CONFIG_PAGE_POISONING
2242 		/* If we're going to use the generic kernel_map_pages()
2243 		 * poisoning, then it's going to smash the contents of
2244 		 * the redzone and userword anyhow, so switch them off.
2245 		 */
2246 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2247 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2248 #endif
2249 	}
2250 
2251 	cachep->colour_off = cache_line_size();
2252 	/* Offset must be a multiple of the alignment. */
2253 	if (cachep->colour_off < cachep->align)
2254 		cachep->colour_off = cachep->align;
2255 	cachep->colour = left_over / cachep->colour_off;
2256 	cachep->freelist_size = freelist_size;
2257 	cachep->flags = flags;
2258 	cachep->allocflags = __GFP_COMP;
2259 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2260 		cachep->allocflags |= GFP_DMA;
2261 	cachep->size = size;
2262 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2263 
2264 	if (flags & CFLGS_OFF_SLAB) {
2265 		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2266 		/*
2267 		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2268 		 * But since we go off slab only for object size greater than
2269 		 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
2270 		 * in ascending order,this should not happen at all.
2271 		 * But leave a BUG_ON for some lucky dude.
2272 		 */
2273 		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2274 	}
2275 
2276 	err = setup_cpu_cache(cachep, gfp);
2277 	if (err) {
2278 		__kmem_cache_shutdown(cachep);
2279 		return err;
2280 	}
2281 
2282 	return 0;
2283 }
2284 
2285 #if DEBUG
2286 static void check_irq_off(void)
2287 {
2288 	BUG_ON(!irqs_disabled());
2289 }
2290 
2291 static void check_irq_on(void)
2292 {
2293 	BUG_ON(irqs_disabled());
2294 }
2295 
2296 static void check_spinlock_acquired(struct kmem_cache *cachep)
2297 {
2298 #ifdef CONFIG_SMP
2299 	check_irq_off();
2300 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2301 #endif
2302 }
2303 
2304 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2305 {
2306 #ifdef CONFIG_SMP
2307 	check_irq_off();
2308 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2309 #endif
2310 }
2311 
2312 #else
2313 #define check_irq_off()	do { } while(0)
2314 #define check_irq_on()	do { } while(0)
2315 #define check_spinlock_acquired(x) do { } while(0)
2316 #define check_spinlock_acquired_node(x, y) do { } while(0)
2317 #endif
2318 
2319 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2320 			struct array_cache *ac,
2321 			int force, int node);
2322 
2323 static void do_drain(void *arg)
2324 {
2325 	struct kmem_cache *cachep = arg;
2326 	struct array_cache *ac;
2327 	int node = numa_mem_id();
2328 	struct kmem_cache_node *n;
2329 	LIST_HEAD(list);
2330 
2331 	check_irq_off();
2332 	ac = cpu_cache_get(cachep);
2333 	n = get_node(cachep, node);
2334 	spin_lock(&n->list_lock);
2335 	free_block(cachep, ac->entry, ac->avail, node, &list);
2336 	spin_unlock(&n->list_lock);
2337 	slabs_destroy(cachep, &list);
2338 	ac->avail = 0;
2339 }
2340 
2341 static void drain_cpu_caches(struct kmem_cache *cachep)
2342 {
2343 	struct kmem_cache_node *n;
2344 	int node;
2345 
2346 	on_each_cpu(do_drain, cachep, 1);
2347 	check_irq_on();
2348 	for_each_kmem_cache_node(cachep, node, n)
2349 		if (n->alien)
2350 			drain_alien_cache(cachep, n->alien);
2351 
2352 	for_each_kmem_cache_node(cachep, node, n)
2353 		drain_array(cachep, n, n->shared, 1, node);
2354 }
2355 
2356 /*
2357  * Remove slabs from the list of free slabs.
2358  * Specify the number of slabs to drain in tofree.
2359  *
2360  * Returns the actual number of slabs released.
2361  */
2362 static int drain_freelist(struct kmem_cache *cache,
2363 			struct kmem_cache_node *n, int tofree)
2364 {
2365 	struct list_head *p;
2366 	int nr_freed;
2367 	struct page *page;
2368 
2369 	nr_freed = 0;
2370 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2371 
2372 		spin_lock_irq(&n->list_lock);
2373 		p = n->slabs_free.prev;
2374 		if (p == &n->slabs_free) {
2375 			spin_unlock_irq(&n->list_lock);
2376 			goto out;
2377 		}
2378 
2379 		page = list_entry(p, struct page, lru);
2380 #if DEBUG
2381 		BUG_ON(page->active);
2382 #endif
2383 		list_del(&page->lru);
2384 		/*
2385 		 * Safe to drop the lock. The slab is no longer linked
2386 		 * to the cache.
2387 		 */
2388 		n->free_objects -= cache->num;
2389 		spin_unlock_irq(&n->list_lock);
2390 		slab_destroy(cache, page);
2391 		nr_freed++;
2392 	}
2393 out:
2394 	return nr_freed;
2395 }
2396 
2397 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2398 {
2399 	int ret = 0;
2400 	int node;
2401 	struct kmem_cache_node *n;
2402 
2403 	drain_cpu_caches(cachep);
2404 
2405 	check_irq_on();
2406 	for_each_kmem_cache_node(cachep, node, n) {
2407 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2408 
2409 		ret += !list_empty(&n->slabs_full) ||
2410 			!list_empty(&n->slabs_partial);
2411 	}
2412 	return (ret ? 1 : 0);
2413 }
2414 
2415 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2416 {
2417 	int i;
2418 	struct kmem_cache_node *n;
2419 	int rc = __kmem_cache_shrink(cachep, false);
2420 
2421 	if (rc)
2422 		return rc;
2423 
2424 	free_percpu(cachep->cpu_cache);
2425 
2426 	/* NUMA: free the node structures */
2427 	for_each_kmem_cache_node(cachep, i, n) {
2428 		kfree(n->shared);
2429 		free_alien_cache(n->alien);
2430 		kfree(n);
2431 		cachep->node[i] = NULL;
2432 	}
2433 	return 0;
2434 }
2435 
2436 /*
2437  * Get the memory for a slab management obj.
2438  *
2439  * For a slab cache when the slab descriptor is off-slab, the
2440  * slab descriptor can't come from the same cache which is being created,
2441  * Because if it is the case, that means we defer the creation of
2442  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2443  * And we eventually call down to __kmem_cache_create(), which
2444  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2445  * This is a "chicken-and-egg" problem.
2446  *
2447  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2448  * which are all initialized during kmem_cache_init().
2449  */
2450 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2451 				   struct page *page, int colour_off,
2452 				   gfp_t local_flags, int nodeid)
2453 {
2454 	void *freelist;
2455 	void *addr = page_address(page);
2456 
2457 	if (OFF_SLAB(cachep)) {
2458 		/* Slab management obj is off-slab. */
2459 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2460 					      local_flags, nodeid);
2461 		if (!freelist)
2462 			return NULL;
2463 	} else {
2464 		freelist = addr + colour_off;
2465 		colour_off += cachep->freelist_size;
2466 	}
2467 	page->active = 0;
2468 	page->s_mem = addr + colour_off;
2469 	return freelist;
2470 }
2471 
2472 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2473 {
2474 	return ((freelist_idx_t *)page->freelist)[idx];
2475 }
2476 
2477 static inline void set_free_obj(struct page *page,
2478 					unsigned int idx, freelist_idx_t val)
2479 {
2480 	((freelist_idx_t *)(page->freelist))[idx] = val;
2481 }
2482 
2483 static void cache_init_objs(struct kmem_cache *cachep,
2484 			    struct page *page)
2485 {
2486 	int i;
2487 
2488 	for (i = 0; i < cachep->num; i++) {
2489 		void *objp = index_to_obj(cachep, page, i);
2490 #if DEBUG
2491 		/* need to poison the objs? */
2492 		if (cachep->flags & SLAB_POISON)
2493 			poison_obj(cachep, objp, POISON_FREE);
2494 		if (cachep->flags & SLAB_STORE_USER)
2495 			*dbg_userword(cachep, objp) = NULL;
2496 
2497 		if (cachep->flags & SLAB_RED_ZONE) {
2498 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2499 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2500 		}
2501 		/*
2502 		 * Constructors are not allowed to allocate memory from the same
2503 		 * cache which they are a constructor for.  Otherwise, deadlock.
2504 		 * They must also be threaded.
2505 		 */
2506 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2507 			cachep->ctor(objp + obj_offset(cachep));
2508 
2509 		if (cachep->flags & SLAB_RED_ZONE) {
2510 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2511 				slab_error(cachep, "constructor overwrote the"
2512 					   " end of an object");
2513 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2514 				slab_error(cachep, "constructor overwrote the"
2515 					   " start of an object");
2516 		}
2517 		if ((cachep->size % PAGE_SIZE) == 0 &&
2518 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2519 			kernel_map_pages(virt_to_page(objp),
2520 					 cachep->size / PAGE_SIZE, 0);
2521 #else
2522 		if (cachep->ctor)
2523 			cachep->ctor(objp);
2524 #endif
2525 		set_obj_status(page, i, OBJECT_FREE);
2526 		set_free_obj(page, i, i);
2527 	}
2528 }
2529 
2530 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2531 {
2532 	if (CONFIG_ZONE_DMA_FLAG) {
2533 		if (flags & GFP_DMA)
2534 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2535 		else
2536 			BUG_ON(cachep->allocflags & GFP_DMA);
2537 	}
2538 }
2539 
2540 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2541 				int nodeid)
2542 {
2543 	void *objp;
2544 
2545 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2546 	page->active++;
2547 #if DEBUG
2548 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2549 #endif
2550 
2551 	return objp;
2552 }
2553 
2554 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2555 				void *objp, int nodeid)
2556 {
2557 	unsigned int objnr = obj_to_index(cachep, page, objp);
2558 #if DEBUG
2559 	unsigned int i;
2560 
2561 	/* Verify that the slab belongs to the intended node */
2562 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2563 
2564 	/* Verify double free bug */
2565 	for (i = page->active; i < cachep->num; i++) {
2566 		if (get_free_obj(page, i) == objnr) {
2567 			printk(KERN_ERR "slab: double free detected in cache "
2568 					"'%s', objp %p\n", cachep->name, objp);
2569 			BUG();
2570 		}
2571 	}
2572 #endif
2573 	page->active--;
2574 	set_free_obj(page, page->active, objnr);
2575 }
2576 
2577 /*
2578  * Map pages beginning at addr to the given cache and slab. This is required
2579  * for the slab allocator to be able to lookup the cache and slab of a
2580  * virtual address for kfree, ksize, and slab debugging.
2581  */
2582 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2583 			   void *freelist)
2584 {
2585 	page->slab_cache = cache;
2586 	page->freelist = freelist;
2587 }
2588 
2589 /*
2590  * Grow (by 1) the number of slabs within a cache.  This is called by
2591  * kmem_cache_alloc() when there are no active objs left in a cache.
2592  */
2593 static int cache_grow(struct kmem_cache *cachep,
2594 		gfp_t flags, int nodeid, struct page *page)
2595 {
2596 	void *freelist;
2597 	size_t offset;
2598 	gfp_t local_flags;
2599 	struct kmem_cache_node *n;
2600 
2601 	/*
2602 	 * Be lazy and only check for valid flags here,  keeping it out of the
2603 	 * critical path in kmem_cache_alloc().
2604 	 */
2605 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2606 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2607 		BUG();
2608 	}
2609 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2610 
2611 	/* Take the node list lock to change the colour_next on this node */
2612 	check_irq_off();
2613 	n = get_node(cachep, nodeid);
2614 	spin_lock(&n->list_lock);
2615 
2616 	/* Get colour for the slab, and cal the next value. */
2617 	offset = n->colour_next;
2618 	n->colour_next++;
2619 	if (n->colour_next >= cachep->colour)
2620 		n->colour_next = 0;
2621 	spin_unlock(&n->list_lock);
2622 
2623 	offset *= cachep->colour_off;
2624 
2625 	if (gfpflags_allow_blocking(local_flags))
2626 		local_irq_enable();
2627 
2628 	/*
2629 	 * The test for missing atomic flag is performed here, rather than
2630 	 * the more obvious place, simply to reduce the critical path length
2631 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2632 	 * will eventually be caught here (where it matters).
2633 	 */
2634 	kmem_flagcheck(cachep, flags);
2635 
2636 	/*
2637 	 * Get mem for the objs.  Attempt to allocate a physical page from
2638 	 * 'nodeid'.
2639 	 */
2640 	if (!page)
2641 		page = kmem_getpages(cachep, local_flags, nodeid);
2642 	if (!page)
2643 		goto failed;
2644 
2645 	/* Get slab management. */
2646 	freelist = alloc_slabmgmt(cachep, page, offset,
2647 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2648 	if (!freelist)
2649 		goto opps1;
2650 
2651 	slab_map_pages(cachep, page, freelist);
2652 
2653 	cache_init_objs(cachep, page);
2654 
2655 	if (gfpflags_allow_blocking(local_flags))
2656 		local_irq_disable();
2657 	check_irq_off();
2658 	spin_lock(&n->list_lock);
2659 
2660 	/* Make slab active. */
2661 	list_add_tail(&page->lru, &(n->slabs_free));
2662 	STATS_INC_GROWN(cachep);
2663 	n->free_objects += cachep->num;
2664 	spin_unlock(&n->list_lock);
2665 	return 1;
2666 opps1:
2667 	kmem_freepages(cachep, page);
2668 failed:
2669 	if (gfpflags_allow_blocking(local_flags))
2670 		local_irq_disable();
2671 	return 0;
2672 }
2673 
2674 #if DEBUG
2675 
2676 /*
2677  * Perform extra freeing checks:
2678  * - detect bad pointers.
2679  * - POISON/RED_ZONE checking
2680  */
2681 static void kfree_debugcheck(const void *objp)
2682 {
2683 	if (!virt_addr_valid(objp)) {
2684 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2685 		       (unsigned long)objp);
2686 		BUG();
2687 	}
2688 }
2689 
2690 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2691 {
2692 	unsigned long long redzone1, redzone2;
2693 
2694 	redzone1 = *dbg_redzone1(cache, obj);
2695 	redzone2 = *dbg_redzone2(cache, obj);
2696 
2697 	/*
2698 	 * Redzone is ok.
2699 	 */
2700 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2701 		return;
2702 
2703 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2704 		slab_error(cache, "double free detected");
2705 	else
2706 		slab_error(cache, "memory outside object was overwritten");
2707 
2708 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2709 			obj, redzone1, redzone2);
2710 }
2711 
2712 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2713 				   unsigned long caller)
2714 {
2715 	unsigned int objnr;
2716 	struct page *page;
2717 
2718 	BUG_ON(virt_to_cache(objp) != cachep);
2719 
2720 	objp -= obj_offset(cachep);
2721 	kfree_debugcheck(objp);
2722 	page = virt_to_head_page(objp);
2723 
2724 	if (cachep->flags & SLAB_RED_ZONE) {
2725 		verify_redzone_free(cachep, objp);
2726 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2727 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2728 	}
2729 	if (cachep->flags & SLAB_STORE_USER)
2730 		*dbg_userword(cachep, objp) = (void *)caller;
2731 
2732 	objnr = obj_to_index(cachep, page, objp);
2733 
2734 	BUG_ON(objnr >= cachep->num);
2735 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2736 
2737 	set_obj_status(page, objnr, OBJECT_FREE);
2738 	if (cachep->flags & SLAB_POISON) {
2739 #ifdef CONFIG_DEBUG_PAGEALLOC
2740 		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2741 			store_stackinfo(cachep, objp, caller);
2742 			kernel_map_pages(virt_to_page(objp),
2743 					 cachep->size / PAGE_SIZE, 0);
2744 		} else {
2745 			poison_obj(cachep, objp, POISON_FREE);
2746 		}
2747 #else
2748 		poison_obj(cachep, objp, POISON_FREE);
2749 #endif
2750 	}
2751 	return objp;
2752 }
2753 
2754 #else
2755 #define kfree_debugcheck(x) do { } while(0)
2756 #define cache_free_debugcheck(x,objp,z) (objp)
2757 #endif
2758 
2759 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2760 							bool force_refill)
2761 {
2762 	int batchcount;
2763 	struct kmem_cache_node *n;
2764 	struct array_cache *ac;
2765 	int node;
2766 
2767 	check_irq_off();
2768 	node = numa_mem_id();
2769 	if (unlikely(force_refill))
2770 		goto force_grow;
2771 retry:
2772 	ac = cpu_cache_get(cachep);
2773 	batchcount = ac->batchcount;
2774 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2775 		/*
2776 		 * If there was little recent activity on this cache, then
2777 		 * perform only a partial refill.  Otherwise we could generate
2778 		 * refill bouncing.
2779 		 */
2780 		batchcount = BATCHREFILL_LIMIT;
2781 	}
2782 	n = get_node(cachep, node);
2783 
2784 	BUG_ON(ac->avail > 0 || !n);
2785 	spin_lock(&n->list_lock);
2786 
2787 	/* See if we can refill from the shared array */
2788 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2789 		n->shared->touched = 1;
2790 		goto alloc_done;
2791 	}
2792 
2793 	while (batchcount > 0) {
2794 		struct list_head *entry;
2795 		struct page *page;
2796 		/* Get slab alloc is to come from. */
2797 		entry = n->slabs_partial.next;
2798 		if (entry == &n->slabs_partial) {
2799 			n->free_touched = 1;
2800 			entry = n->slabs_free.next;
2801 			if (entry == &n->slabs_free)
2802 				goto must_grow;
2803 		}
2804 
2805 		page = list_entry(entry, struct page, lru);
2806 		check_spinlock_acquired(cachep);
2807 
2808 		/*
2809 		 * The slab was either on partial or free list so
2810 		 * there must be at least one object available for
2811 		 * allocation.
2812 		 */
2813 		BUG_ON(page->active >= cachep->num);
2814 
2815 		while (page->active < cachep->num && batchcount--) {
2816 			STATS_INC_ALLOCED(cachep);
2817 			STATS_INC_ACTIVE(cachep);
2818 			STATS_SET_HIGH(cachep);
2819 
2820 			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2821 									node));
2822 		}
2823 
2824 		/* move slabp to correct slabp list: */
2825 		list_del(&page->lru);
2826 		if (page->active == cachep->num)
2827 			list_add(&page->lru, &n->slabs_full);
2828 		else
2829 			list_add(&page->lru, &n->slabs_partial);
2830 	}
2831 
2832 must_grow:
2833 	n->free_objects -= ac->avail;
2834 alloc_done:
2835 	spin_unlock(&n->list_lock);
2836 
2837 	if (unlikely(!ac->avail)) {
2838 		int x;
2839 force_grow:
2840 		x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2841 
2842 		/* cache_grow can reenable interrupts, then ac could change. */
2843 		ac = cpu_cache_get(cachep);
2844 		node = numa_mem_id();
2845 
2846 		/* no objects in sight? abort */
2847 		if (!x && (ac->avail == 0 || force_refill))
2848 			return NULL;
2849 
2850 		if (!ac->avail)		/* objects refilled by interrupt? */
2851 			goto retry;
2852 	}
2853 	ac->touched = 1;
2854 
2855 	return ac_get_obj(cachep, ac, flags, force_refill);
2856 }
2857 
2858 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2859 						gfp_t flags)
2860 {
2861 	might_sleep_if(gfpflags_allow_blocking(flags));
2862 #if DEBUG
2863 	kmem_flagcheck(cachep, flags);
2864 #endif
2865 }
2866 
2867 #if DEBUG
2868 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2869 				gfp_t flags, void *objp, unsigned long caller)
2870 {
2871 	struct page *page;
2872 
2873 	if (!objp)
2874 		return objp;
2875 	if (cachep->flags & SLAB_POISON) {
2876 #ifdef CONFIG_DEBUG_PAGEALLOC
2877 		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2878 			kernel_map_pages(virt_to_page(objp),
2879 					 cachep->size / PAGE_SIZE, 1);
2880 		else
2881 			check_poison_obj(cachep, objp);
2882 #else
2883 		check_poison_obj(cachep, objp);
2884 #endif
2885 		poison_obj(cachep, objp, POISON_INUSE);
2886 	}
2887 	if (cachep->flags & SLAB_STORE_USER)
2888 		*dbg_userword(cachep, objp) = (void *)caller;
2889 
2890 	if (cachep->flags & SLAB_RED_ZONE) {
2891 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2892 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2893 			slab_error(cachep, "double free, or memory outside"
2894 						" object was overwritten");
2895 			printk(KERN_ERR
2896 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2897 				objp, *dbg_redzone1(cachep, objp),
2898 				*dbg_redzone2(cachep, objp));
2899 		}
2900 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2901 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2902 	}
2903 
2904 	page = virt_to_head_page(objp);
2905 	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2906 	objp += obj_offset(cachep);
2907 	if (cachep->ctor && cachep->flags & SLAB_POISON)
2908 		cachep->ctor(objp);
2909 	if (ARCH_SLAB_MINALIGN &&
2910 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2911 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2912 		       objp, (int)ARCH_SLAB_MINALIGN);
2913 	}
2914 	return objp;
2915 }
2916 #else
2917 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2918 #endif
2919 
2920 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2921 {
2922 	if (unlikely(cachep == kmem_cache))
2923 		return false;
2924 
2925 	return should_failslab(cachep->object_size, flags, cachep->flags);
2926 }
2927 
2928 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2929 {
2930 	void *objp;
2931 	struct array_cache *ac;
2932 	bool force_refill = false;
2933 
2934 	check_irq_off();
2935 
2936 	ac = cpu_cache_get(cachep);
2937 	if (likely(ac->avail)) {
2938 		ac->touched = 1;
2939 		objp = ac_get_obj(cachep, ac, flags, false);
2940 
2941 		/*
2942 		 * Allow for the possibility all avail objects are not allowed
2943 		 * by the current flags
2944 		 */
2945 		if (objp) {
2946 			STATS_INC_ALLOCHIT(cachep);
2947 			goto out;
2948 		}
2949 		force_refill = true;
2950 	}
2951 
2952 	STATS_INC_ALLOCMISS(cachep);
2953 	objp = cache_alloc_refill(cachep, flags, force_refill);
2954 	/*
2955 	 * the 'ac' may be updated by cache_alloc_refill(),
2956 	 * and kmemleak_erase() requires its correct value.
2957 	 */
2958 	ac = cpu_cache_get(cachep);
2959 
2960 out:
2961 	/*
2962 	 * To avoid a false negative, if an object that is in one of the
2963 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2964 	 * treat the array pointers as a reference to the object.
2965 	 */
2966 	if (objp)
2967 		kmemleak_erase(&ac->entry[ac->avail]);
2968 	return objp;
2969 }
2970 
2971 #ifdef CONFIG_NUMA
2972 /*
2973  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2974  *
2975  * If we are in_interrupt, then process context, including cpusets and
2976  * mempolicy, may not apply and should not be used for allocation policy.
2977  */
2978 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2979 {
2980 	int nid_alloc, nid_here;
2981 
2982 	if (in_interrupt() || (flags & __GFP_THISNODE))
2983 		return NULL;
2984 	nid_alloc = nid_here = numa_mem_id();
2985 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2986 		nid_alloc = cpuset_slab_spread_node();
2987 	else if (current->mempolicy)
2988 		nid_alloc = mempolicy_slab_node();
2989 	if (nid_alloc != nid_here)
2990 		return ____cache_alloc_node(cachep, flags, nid_alloc);
2991 	return NULL;
2992 }
2993 
2994 /*
2995  * Fallback function if there was no memory available and no objects on a
2996  * certain node and fall back is permitted. First we scan all the
2997  * available node for available objects. If that fails then we
2998  * perform an allocation without specifying a node. This allows the page
2999  * allocator to do its reclaim / fallback magic. We then insert the
3000  * slab into the proper nodelist and then allocate from it.
3001  */
3002 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3003 {
3004 	struct zonelist *zonelist;
3005 	gfp_t local_flags;
3006 	struct zoneref *z;
3007 	struct zone *zone;
3008 	enum zone_type high_zoneidx = gfp_zone(flags);
3009 	void *obj = NULL;
3010 	int nid;
3011 	unsigned int cpuset_mems_cookie;
3012 
3013 	if (flags & __GFP_THISNODE)
3014 		return NULL;
3015 
3016 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3017 
3018 retry_cpuset:
3019 	cpuset_mems_cookie = read_mems_allowed_begin();
3020 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3021 
3022 retry:
3023 	/*
3024 	 * Look through allowed nodes for objects available
3025 	 * from existing per node queues.
3026 	 */
3027 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3028 		nid = zone_to_nid(zone);
3029 
3030 		if (cpuset_zone_allowed(zone, flags) &&
3031 			get_node(cache, nid) &&
3032 			get_node(cache, nid)->free_objects) {
3033 				obj = ____cache_alloc_node(cache,
3034 					gfp_exact_node(flags), nid);
3035 				if (obj)
3036 					break;
3037 		}
3038 	}
3039 
3040 	if (!obj) {
3041 		/*
3042 		 * This allocation will be performed within the constraints
3043 		 * of the current cpuset / memory policy requirements.
3044 		 * We may trigger various forms of reclaim on the allowed
3045 		 * set and go into memory reserves if necessary.
3046 		 */
3047 		struct page *page;
3048 
3049 		if (gfpflags_allow_blocking(local_flags))
3050 			local_irq_enable();
3051 		kmem_flagcheck(cache, flags);
3052 		page = kmem_getpages(cache, local_flags, numa_mem_id());
3053 		if (gfpflags_allow_blocking(local_flags))
3054 			local_irq_disable();
3055 		if (page) {
3056 			/*
3057 			 * Insert into the appropriate per node queues
3058 			 */
3059 			nid = page_to_nid(page);
3060 			if (cache_grow(cache, flags, nid, page)) {
3061 				obj = ____cache_alloc_node(cache,
3062 					gfp_exact_node(flags), nid);
3063 				if (!obj)
3064 					/*
3065 					 * Another processor may allocate the
3066 					 * objects in the slab since we are
3067 					 * not holding any locks.
3068 					 */
3069 					goto retry;
3070 			} else {
3071 				/* cache_grow already freed obj */
3072 				obj = NULL;
3073 			}
3074 		}
3075 	}
3076 
3077 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3078 		goto retry_cpuset;
3079 	return obj;
3080 }
3081 
3082 /*
3083  * A interface to enable slab creation on nodeid
3084  */
3085 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3086 				int nodeid)
3087 {
3088 	struct list_head *entry;
3089 	struct page *page;
3090 	struct kmem_cache_node *n;
3091 	void *obj;
3092 	int x;
3093 
3094 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3095 	n = get_node(cachep, nodeid);
3096 	BUG_ON(!n);
3097 
3098 retry:
3099 	check_irq_off();
3100 	spin_lock(&n->list_lock);
3101 	entry = n->slabs_partial.next;
3102 	if (entry == &n->slabs_partial) {
3103 		n->free_touched = 1;
3104 		entry = n->slabs_free.next;
3105 		if (entry == &n->slabs_free)
3106 			goto must_grow;
3107 	}
3108 
3109 	page = list_entry(entry, struct page, lru);
3110 	check_spinlock_acquired_node(cachep, nodeid);
3111 
3112 	STATS_INC_NODEALLOCS(cachep);
3113 	STATS_INC_ACTIVE(cachep);
3114 	STATS_SET_HIGH(cachep);
3115 
3116 	BUG_ON(page->active == cachep->num);
3117 
3118 	obj = slab_get_obj(cachep, page, nodeid);
3119 	n->free_objects--;
3120 	/* move slabp to correct slabp list: */
3121 	list_del(&page->lru);
3122 
3123 	if (page->active == cachep->num)
3124 		list_add(&page->lru, &n->slabs_full);
3125 	else
3126 		list_add(&page->lru, &n->slabs_partial);
3127 
3128 	spin_unlock(&n->list_lock);
3129 	goto done;
3130 
3131 must_grow:
3132 	spin_unlock(&n->list_lock);
3133 	x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3134 	if (x)
3135 		goto retry;
3136 
3137 	return fallback_alloc(cachep, flags);
3138 
3139 done:
3140 	return obj;
3141 }
3142 
3143 static __always_inline void *
3144 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3145 		   unsigned long caller)
3146 {
3147 	unsigned long save_flags;
3148 	void *ptr;
3149 	int slab_node = numa_mem_id();
3150 
3151 	flags &= gfp_allowed_mask;
3152 
3153 	lockdep_trace_alloc(flags);
3154 
3155 	if (slab_should_failslab(cachep, flags))
3156 		return NULL;
3157 
3158 	cachep = memcg_kmem_get_cache(cachep, flags);
3159 
3160 	cache_alloc_debugcheck_before(cachep, flags);
3161 	local_irq_save(save_flags);
3162 
3163 	if (nodeid == NUMA_NO_NODE)
3164 		nodeid = slab_node;
3165 
3166 	if (unlikely(!get_node(cachep, nodeid))) {
3167 		/* Node not bootstrapped yet */
3168 		ptr = fallback_alloc(cachep, flags);
3169 		goto out;
3170 	}
3171 
3172 	if (nodeid == slab_node) {
3173 		/*
3174 		 * Use the locally cached objects if possible.
3175 		 * However ____cache_alloc does not allow fallback
3176 		 * to other nodes. It may fail while we still have
3177 		 * objects on other nodes available.
3178 		 */
3179 		ptr = ____cache_alloc(cachep, flags);
3180 		if (ptr)
3181 			goto out;
3182 	}
3183 	/* ___cache_alloc_node can fall back to other nodes */
3184 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3185   out:
3186 	local_irq_restore(save_flags);
3187 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3188 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3189 				 flags);
3190 
3191 	if (likely(ptr)) {
3192 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3193 		if (unlikely(flags & __GFP_ZERO))
3194 			memset(ptr, 0, cachep->object_size);
3195 	}
3196 
3197 	memcg_kmem_put_cache(cachep);
3198 	return ptr;
3199 }
3200 
3201 static __always_inline void *
3202 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3203 {
3204 	void *objp;
3205 
3206 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3207 		objp = alternate_node_alloc(cache, flags);
3208 		if (objp)
3209 			goto out;
3210 	}
3211 	objp = ____cache_alloc(cache, flags);
3212 
3213 	/*
3214 	 * We may just have run out of memory on the local node.
3215 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3216 	 */
3217 	if (!objp)
3218 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3219 
3220   out:
3221 	return objp;
3222 }
3223 #else
3224 
3225 static __always_inline void *
3226 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3227 {
3228 	return ____cache_alloc(cachep, flags);
3229 }
3230 
3231 #endif /* CONFIG_NUMA */
3232 
3233 static __always_inline void *
3234 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3235 {
3236 	unsigned long save_flags;
3237 	void *objp;
3238 
3239 	flags &= gfp_allowed_mask;
3240 
3241 	lockdep_trace_alloc(flags);
3242 
3243 	if (slab_should_failslab(cachep, flags))
3244 		return NULL;
3245 
3246 	cachep = memcg_kmem_get_cache(cachep, flags);
3247 
3248 	cache_alloc_debugcheck_before(cachep, flags);
3249 	local_irq_save(save_flags);
3250 	objp = __do_cache_alloc(cachep, flags);
3251 	local_irq_restore(save_flags);
3252 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3253 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3254 				 flags);
3255 	prefetchw(objp);
3256 
3257 	if (likely(objp)) {
3258 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3259 		if (unlikely(flags & __GFP_ZERO))
3260 			memset(objp, 0, cachep->object_size);
3261 	}
3262 
3263 	memcg_kmem_put_cache(cachep);
3264 	return objp;
3265 }
3266 
3267 /*
3268  * Caller needs to acquire correct kmem_cache_node's list_lock
3269  * @list: List of detached free slabs should be freed by caller
3270  */
3271 static void free_block(struct kmem_cache *cachep, void **objpp,
3272 			int nr_objects, int node, struct list_head *list)
3273 {
3274 	int i;
3275 	struct kmem_cache_node *n = get_node(cachep, node);
3276 
3277 	for (i = 0; i < nr_objects; i++) {
3278 		void *objp;
3279 		struct page *page;
3280 
3281 		clear_obj_pfmemalloc(&objpp[i]);
3282 		objp = objpp[i];
3283 
3284 		page = virt_to_head_page(objp);
3285 		list_del(&page->lru);
3286 		check_spinlock_acquired_node(cachep, node);
3287 		slab_put_obj(cachep, page, objp, node);
3288 		STATS_DEC_ACTIVE(cachep);
3289 		n->free_objects++;
3290 
3291 		/* fixup slab chains */
3292 		if (page->active == 0) {
3293 			if (n->free_objects > n->free_limit) {
3294 				n->free_objects -= cachep->num;
3295 				list_add_tail(&page->lru, list);
3296 			} else {
3297 				list_add(&page->lru, &n->slabs_free);
3298 			}
3299 		} else {
3300 			/* Unconditionally move a slab to the end of the
3301 			 * partial list on free - maximum time for the
3302 			 * other objects to be freed, too.
3303 			 */
3304 			list_add_tail(&page->lru, &n->slabs_partial);
3305 		}
3306 	}
3307 }
3308 
3309 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3310 {
3311 	int batchcount;
3312 	struct kmem_cache_node *n;
3313 	int node = numa_mem_id();
3314 	LIST_HEAD(list);
3315 
3316 	batchcount = ac->batchcount;
3317 #if DEBUG
3318 	BUG_ON(!batchcount || batchcount > ac->avail);
3319 #endif
3320 	check_irq_off();
3321 	n = get_node(cachep, node);
3322 	spin_lock(&n->list_lock);
3323 	if (n->shared) {
3324 		struct array_cache *shared_array = n->shared;
3325 		int max = shared_array->limit - shared_array->avail;
3326 		if (max) {
3327 			if (batchcount > max)
3328 				batchcount = max;
3329 			memcpy(&(shared_array->entry[shared_array->avail]),
3330 			       ac->entry, sizeof(void *) * batchcount);
3331 			shared_array->avail += batchcount;
3332 			goto free_done;
3333 		}
3334 	}
3335 
3336 	free_block(cachep, ac->entry, batchcount, node, &list);
3337 free_done:
3338 #if STATS
3339 	{
3340 		int i = 0;
3341 		struct list_head *p;
3342 
3343 		p = n->slabs_free.next;
3344 		while (p != &(n->slabs_free)) {
3345 			struct page *page;
3346 
3347 			page = list_entry(p, struct page, lru);
3348 			BUG_ON(page->active);
3349 
3350 			i++;
3351 			p = p->next;
3352 		}
3353 		STATS_SET_FREEABLE(cachep, i);
3354 	}
3355 #endif
3356 	spin_unlock(&n->list_lock);
3357 	slabs_destroy(cachep, &list);
3358 	ac->avail -= batchcount;
3359 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3360 }
3361 
3362 /*
3363  * Release an obj back to its cache. If the obj has a constructed state, it must
3364  * be in this state _before_ it is released.  Called with disabled ints.
3365  */
3366 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3367 				unsigned long caller)
3368 {
3369 	struct array_cache *ac = cpu_cache_get(cachep);
3370 
3371 	check_irq_off();
3372 	kmemleak_free_recursive(objp, cachep->flags);
3373 	objp = cache_free_debugcheck(cachep, objp, caller);
3374 
3375 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3376 
3377 	/*
3378 	 * Skip calling cache_free_alien() when the platform is not numa.
3379 	 * This will avoid cache misses that happen while accessing slabp (which
3380 	 * is per page memory  reference) to get nodeid. Instead use a global
3381 	 * variable to skip the call, which is mostly likely to be present in
3382 	 * the cache.
3383 	 */
3384 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3385 		return;
3386 
3387 	if (ac->avail < ac->limit) {
3388 		STATS_INC_FREEHIT(cachep);
3389 	} else {
3390 		STATS_INC_FREEMISS(cachep);
3391 		cache_flusharray(cachep, ac);
3392 	}
3393 
3394 	ac_put_obj(cachep, ac, objp);
3395 }
3396 
3397 /**
3398  * kmem_cache_alloc - Allocate an object
3399  * @cachep: The cache to allocate from.
3400  * @flags: See kmalloc().
3401  *
3402  * Allocate an object from this cache.  The flags are only relevant
3403  * if the cache has no available objects.
3404  */
3405 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3406 {
3407 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3408 
3409 	trace_kmem_cache_alloc(_RET_IP_, ret,
3410 			       cachep->object_size, cachep->size, flags);
3411 
3412 	return ret;
3413 }
3414 EXPORT_SYMBOL(kmem_cache_alloc);
3415 
3416 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3417 {
3418 	__kmem_cache_free_bulk(s, size, p);
3419 }
3420 EXPORT_SYMBOL(kmem_cache_free_bulk);
3421 
3422 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3423 								void **p)
3424 {
3425 	return __kmem_cache_alloc_bulk(s, flags, size, p);
3426 }
3427 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3428 
3429 #ifdef CONFIG_TRACING
3430 void *
3431 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3432 {
3433 	void *ret;
3434 
3435 	ret = slab_alloc(cachep, flags, _RET_IP_);
3436 
3437 	trace_kmalloc(_RET_IP_, ret,
3438 		      size, cachep->size, flags);
3439 	return ret;
3440 }
3441 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3442 #endif
3443 
3444 #ifdef CONFIG_NUMA
3445 /**
3446  * kmem_cache_alloc_node - Allocate an object on the specified node
3447  * @cachep: The cache to allocate from.
3448  * @flags: See kmalloc().
3449  * @nodeid: node number of the target node.
3450  *
3451  * Identical to kmem_cache_alloc but it will allocate memory on the given
3452  * node, which can improve the performance for cpu bound structures.
3453  *
3454  * Fallback to other node is possible if __GFP_THISNODE is not set.
3455  */
3456 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3457 {
3458 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3459 
3460 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3461 				    cachep->object_size, cachep->size,
3462 				    flags, nodeid);
3463 
3464 	return ret;
3465 }
3466 EXPORT_SYMBOL(kmem_cache_alloc_node);
3467 
3468 #ifdef CONFIG_TRACING
3469 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3470 				  gfp_t flags,
3471 				  int nodeid,
3472 				  size_t size)
3473 {
3474 	void *ret;
3475 
3476 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3477 
3478 	trace_kmalloc_node(_RET_IP_, ret,
3479 			   size, cachep->size,
3480 			   flags, nodeid);
3481 	return ret;
3482 }
3483 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3484 #endif
3485 
3486 static __always_inline void *
3487 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3488 {
3489 	struct kmem_cache *cachep;
3490 
3491 	cachep = kmalloc_slab(size, flags);
3492 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3493 		return cachep;
3494 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3495 }
3496 
3497 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3498 {
3499 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3500 }
3501 EXPORT_SYMBOL(__kmalloc_node);
3502 
3503 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3504 		int node, unsigned long caller)
3505 {
3506 	return __do_kmalloc_node(size, flags, node, caller);
3507 }
3508 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3509 #endif /* CONFIG_NUMA */
3510 
3511 /**
3512  * __do_kmalloc - allocate memory
3513  * @size: how many bytes of memory are required.
3514  * @flags: the type of memory to allocate (see kmalloc).
3515  * @caller: function caller for debug tracking of the caller
3516  */
3517 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3518 					  unsigned long caller)
3519 {
3520 	struct kmem_cache *cachep;
3521 	void *ret;
3522 
3523 	cachep = kmalloc_slab(size, flags);
3524 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3525 		return cachep;
3526 	ret = slab_alloc(cachep, flags, caller);
3527 
3528 	trace_kmalloc(caller, ret,
3529 		      size, cachep->size, flags);
3530 
3531 	return ret;
3532 }
3533 
3534 void *__kmalloc(size_t size, gfp_t flags)
3535 {
3536 	return __do_kmalloc(size, flags, _RET_IP_);
3537 }
3538 EXPORT_SYMBOL(__kmalloc);
3539 
3540 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3541 {
3542 	return __do_kmalloc(size, flags, caller);
3543 }
3544 EXPORT_SYMBOL(__kmalloc_track_caller);
3545 
3546 /**
3547  * kmem_cache_free - Deallocate an object
3548  * @cachep: The cache the allocation was from.
3549  * @objp: The previously allocated object.
3550  *
3551  * Free an object which was previously allocated from this
3552  * cache.
3553  */
3554 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3555 {
3556 	unsigned long flags;
3557 	cachep = cache_from_obj(cachep, objp);
3558 	if (!cachep)
3559 		return;
3560 
3561 	local_irq_save(flags);
3562 	debug_check_no_locks_freed(objp, cachep->object_size);
3563 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3564 		debug_check_no_obj_freed(objp, cachep->object_size);
3565 	__cache_free(cachep, objp, _RET_IP_);
3566 	local_irq_restore(flags);
3567 
3568 	trace_kmem_cache_free(_RET_IP_, objp);
3569 }
3570 EXPORT_SYMBOL(kmem_cache_free);
3571 
3572 /**
3573  * kfree - free previously allocated memory
3574  * @objp: pointer returned by kmalloc.
3575  *
3576  * If @objp is NULL, no operation is performed.
3577  *
3578  * Don't free memory not originally allocated by kmalloc()
3579  * or you will run into trouble.
3580  */
3581 void kfree(const void *objp)
3582 {
3583 	struct kmem_cache *c;
3584 	unsigned long flags;
3585 
3586 	trace_kfree(_RET_IP_, objp);
3587 
3588 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3589 		return;
3590 	local_irq_save(flags);
3591 	kfree_debugcheck(objp);
3592 	c = virt_to_cache(objp);
3593 	debug_check_no_locks_freed(objp, c->object_size);
3594 
3595 	debug_check_no_obj_freed(objp, c->object_size);
3596 	__cache_free(c, (void *)objp, _RET_IP_);
3597 	local_irq_restore(flags);
3598 }
3599 EXPORT_SYMBOL(kfree);
3600 
3601 /*
3602  * This initializes kmem_cache_node or resizes various caches for all nodes.
3603  */
3604 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3605 {
3606 	int node;
3607 	struct kmem_cache_node *n;
3608 	struct array_cache *new_shared;
3609 	struct alien_cache **new_alien = NULL;
3610 
3611 	for_each_online_node(node) {
3612 
3613 		if (use_alien_caches) {
3614 			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3615 			if (!new_alien)
3616 				goto fail;
3617 		}
3618 
3619 		new_shared = NULL;
3620 		if (cachep->shared) {
3621 			new_shared = alloc_arraycache(node,
3622 				cachep->shared*cachep->batchcount,
3623 					0xbaadf00d, gfp);
3624 			if (!new_shared) {
3625 				free_alien_cache(new_alien);
3626 				goto fail;
3627 			}
3628 		}
3629 
3630 		n = get_node(cachep, node);
3631 		if (n) {
3632 			struct array_cache *shared = n->shared;
3633 			LIST_HEAD(list);
3634 
3635 			spin_lock_irq(&n->list_lock);
3636 
3637 			if (shared)
3638 				free_block(cachep, shared->entry,
3639 						shared->avail, node, &list);
3640 
3641 			n->shared = new_shared;
3642 			if (!n->alien) {
3643 				n->alien = new_alien;
3644 				new_alien = NULL;
3645 			}
3646 			n->free_limit = (1 + nr_cpus_node(node)) *
3647 					cachep->batchcount + cachep->num;
3648 			spin_unlock_irq(&n->list_lock);
3649 			slabs_destroy(cachep, &list);
3650 			kfree(shared);
3651 			free_alien_cache(new_alien);
3652 			continue;
3653 		}
3654 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3655 		if (!n) {
3656 			free_alien_cache(new_alien);
3657 			kfree(new_shared);
3658 			goto fail;
3659 		}
3660 
3661 		kmem_cache_node_init(n);
3662 		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3663 				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3664 		n->shared = new_shared;
3665 		n->alien = new_alien;
3666 		n->free_limit = (1 + nr_cpus_node(node)) *
3667 					cachep->batchcount + cachep->num;
3668 		cachep->node[node] = n;
3669 	}
3670 	return 0;
3671 
3672 fail:
3673 	if (!cachep->list.next) {
3674 		/* Cache is not active yet. Roll back what we did */
3675 		node--;
3676 		while (node >= 0) {
3677 			n = get_node(cachep, node);
3678 			if (n) {
3679 				kfree(n->shared);
3680 				free_alien_cache(n->alien);
3681 				kfree(n);
3682 				cachep->node[node] = NULL;
3683 			}
3684 			node--;
3685 		}
3686 	}
3687 	return -ENOMEM;
3688 }
3689 
3690 /* Always called with the slab_mutex held */
3691 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3692 				int batchcount, int shared, gfp_t gfp)
3693 {
3694 	struct array_cache __percpu *cpu_cache, *prev;
3695 	int cpu;
3696 
3697 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3698 	if (!cpu_cache)
3699 		return -ENOMEM;
3700 
3701 	prev = cachep->cpu_cache;
3702 	cachep->cpu_cache = cpu_cache;
3703 	kick_all_cpus_sync();
3704 
3705 	check_irq_on();
3706 	cachep->batchcount = batchcount;
3707 	cachep->limit = limit;
3708 	cachep->shared = shared;
3709 
3710 	if (!prev)
3711 		goto alloc_node;
3712 
3713 	for_each_online_cpu(cpu) {
3714 		LIST_HEAD(list);
3715 		int node;
3716 		struct kmem_cache_node *n;
3717 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3718 
3719 		node = cpu_to_mem(cpu);
3720 		n = get_node(cachep, node);
3721 		spin_lock_irq(&n->list_lock);
3722 		free_block(cachep, ac->entry, ac->avail, node, &list);
3723 		spin_unlock_irq(&n->list_lock);
3724 		slabs_destroy(cachep, &list);
3725 	}
3726 	free_percpu(prev);
3727 
3728 alloc_node:
3729 	return alloc_kmem_cache_node(cachep, gfp);
3730 }
3731 
3732 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3733 				int batchcount, int shared, gfp_t gfp)
3734 {
3735 	int ret;
3736 	struct kmem_cache *c;
3737 
3738 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3739 
3740 	if (slab_state < FULL)
3741 		return ret;
3742 
3743 	if ((ret < 0) || !is_root_cache(cachep))
3744 		return ret;
3745 
3746 	lockdep_assert_held(&slab_mutex);
3747 	for_each_memcg_cache(c, cachep) {
3748 		/* return value determined by the root cache only */
3749 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3750 	}
3751 
3752 	return ret;
3753 }
3754 
3755 /* Called with slab_mutex held always */
3756 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3757 {
3758 	int err;
3759 	int limit = 0;
3760 	int shared = 0;
3761 	int batchcount = 0;
3762 
3763 	if (!is_root_cache(cachep)) {
3764 		struct kmem_cache *root = memcg_root_cache(cachep);
3765 		limit = root->limit;
3766 		shared = root->shared;
3767 		batchcount = root->batchcount;
3768 	}
3769 
3770 	if (limit && shared && batchcount)
3771 		goto skip_setup;
3772 	/*
3773 	 * The head array serves three purposes:
3774 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3775 	 * - reduce the number of spinlock operations.
3776 	 * - reduce the number of linked list operations on the slab and
3777 	 *   bufctl chains: array operations are cheaper.
3778 	 * The numbers are guessed, we should auto-tune as described by
3779 	 * Bonwick.
3780 	 */
3781 	if (cachep->size > 131072)
3782 		limit = 1;
3783 	else if (cachep->size > PAGE_SIZE)
3784 		limit = 8;
3785 	else if (cachep->size > 1024)
3786 		limit = 24;
3787 	else if (cachep->size > 256)
3788 		limit = 54;
3789 	else
3790 		limit = 120;
3791 
3792 	/*
3793 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3794 	 * allocation behaviour: Most allocs on one cpu, most free operations
3795 	 * on another cpu. For these cases, an efficient object passing between
3796 	 * cpus is necessary. This is provided by a shared array. The array
3797 	 * replaces Bonwick's magazine layer.
3798 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3799 	 * to a larger limit. Thus disabled by default.
3800 	 */
3801 	shared = 0;
3802 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3803 		shared = 8;
3804 
3805 #if DEBUG
3806 	/*
3807 	 * With debugging enabled, large batchcount lead to excessively long
3808 	 * periods with disabled local interrupts. Limit the batchcount
3809 	 */
3810 	if (limit > 32)
3811 		limit = 32;
3812 #endif
3813 	batchcount = (limit + 1) / 2;
3814 skip_setup:
3815 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3816 	if (err)
3817 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3818 		       cachep->name, -err);
3819 	return err;
3820 }
3821 
3822 /*
3823  * Drain an array if it contains any elements taking the node lock only if
3824  * necessary. Note that the node listlock also protects the array_cache
3825  * if drain_array() is used on the shared array.
3826  */
3827 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3828 			 struct array_cache *ac, int force, int node)
3829 {
3830 	LIST_HEAD(list);
3831 	int tofree;
3832 
3833 	if (!ac || !ac->avail)
3834 		return;
3835 	if (ac->touched && !force) {
3836 		ac->touched = 0;
3837 	} else {
3838 		spin_lock_irq(&n->list_lock);
3839 		if (ac->avail) {
3840 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3841 			if (tofree > ac->avail)
3842 				tofree = (ac->avail + 1) / 2;
3843 			free_block(cachep, ac->entry, tofree, node, &list);
3844 			ac->avail -= tofree;
3845 			memmove(ac->entry, &(ac->entry[tofree]),
3846 				sizeof(void *) * ac->avail);
3847 		}
3848 		spin_unlock_irq(&n->list_lock);
3849 		slabs_destroy(cachep, &list);
3850 	}
3851 }
3852 
3853 /**
3854  * cache_reap - Reclaim memory from caches.
3855  * @w: work descriptor
3856  *
3857  * Called from workqueue/eventd every few seconds.
3858  * Purpose:
3859  * - clear the per-cpu caches for this CPU.
3860  * - return freeable pages to the main free memory pool.
3861  *
3862  * If we cannot acquire the cache chain mutex then just give up - we'll try
3863  * again on the next iteration.
3864  */
3865 static void cache_reap(struct work_struct *w)
3866 {
3867 	struct kmem_cache *searchp;
3868 	struct kmem_cache_node *n;
3869 	int node = numa_mem_id();
3870 	struct delayed_work *work = to_delayed_work(w);
3871 
3872 	if (!mutex_trylock(&slab_mutex))
3873 		/* Give up. Setup the next iteration. */
3874 		goto out;
3875 
3876 	list_for_each_entry(searchp, &slab_caches, list) {
3877 		check_irq_on();
3878 
3879 		/*
3880 		 * We only take the node lock if absolutely necessary and we
3881 		 * have established with reasonable certainty that
3882 		 * we can do some work if the lock was obtained.
3883 		 */
3884 		n = get_node(searchp, node);
3885 
3886 		reap_alien(searchp, n);
3887 
3888 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3889 
3890 		/*
3891 		 * These are racy checks but it does not matter
3892 		 * if we skip one check or scan twice.
3893 		 */
3894 		if (time_after(n->next_reap, jiffies))
3895 			goto next;
3896 
3897 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3898 
3899 		drain_array(searchp, n, n->shared, 0, node);
3900 
3901 		if (n->free_touched)
3902 			n->free_touched = 0;
3903 		else {
3904 			int freed;
3905 
3906 			freed = drain_freelist(searchp, n, (n->free_limit +
3907 				5 * searchp->num - 1) / (5 * searchp->num));
3908 			STATS_ADD_REAPED(searchp, freed);
3909 		}
3910 next:
3911 		cond_resched();
3912 	}
3913 	check_irq_on();
3914 	mutex_unlock(&slab_mutex);
3915 	next_reap_node();
3916 out:
3917 	/* Set up the next iteration */
3918 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3919 }
3920 
3921 #ifdef CONFIG_SLABINFO
3922 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3923 {
3924 	struct page *page;
3925 	unsigned long active_objs;
3926 	unsigned long num_objs;
3927 	unsigned long active_slabs = 0;
3928 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3929 	const char *name;
3930 	char *error = NULL;
3931 	int node;
3932 	struct kmem_cache_node *n;
3933 
3934 	active_objs = 0;
3935 	num_slabs = 0;
3936 	for_each_kmem_cache_node(cachep, node, n) {
3937 
3938 		check_irq_on();
3939 		spin_lock_irq(&n->list_lock);
3940 
3941 		list_for_each_entry(page, &n->slabs_full, lru) {
3942 			if (page->active != cachep->num && !error)
3943 				error = "slabs_full accounting error";
3944 			active_objs += cachep->num;
3945 			active_slabs++;
3946 		}
3947 		list_for_each_entry(page, &n->slabs_partial, lru) {
3948 			if (page->active == cachep->num && !error)
3949 				error = "slabs_partial accounting error";
3950 			if (!page->active && !error)
3951 				error = "slabs_partial accounting error";
3952 			active_objs += page->active;
3953 			active_slabs++;
3954 		}
3955 		list_for_each_entry(page, &n->slabs_free, lru) {
3956 			if (page->active && !error)
3957 				error = "slabs_free accounting error";
3958 			num_slabs++;
3959 		}
3960 		free_objects += n->free_objects;
3961 		if (n->shared)
3962 			shared_avail += n->shared->avail;
3963 
3964 		spin_unlock_irq(&n->list_lock);
3965 	}
3966 	num_slabs += active_slabs;
3967 	num_objs = num_slabs * cachep->num;
3968 	if (num_objs - active_objs != free_objects && !error)
3969 		error = "free_objects accounting error";
3970 
3971 	name = cachep->name;
3972 	if (error)
3973 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3974 
3975 	sinfo->active_objs = active_objs;
3976 	sinfo->num_objs = num_objs;
3977 	sinfo->active_slabs = active_slabs;
3978 	sinfo->num_slabs = num_slabs;
3979 	sinfo->shared_avail = shared_avail;
3980 	sinfo->limit = cachep->limit;
3981 	sinfo->batchcount = cachep->batchcount;
3982 	sinfo->shared = cachep->shared;
3983 	sinfo->objects_per_slab = cachep->num;
3984 	sinfo->cache_order = cachep->gfporder;
3985 }
3986 
3987 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3988 {
3989 #if STATS
3990 	{			/* node stats */
3991 		unsigned long high = cachep->high_mark;
3992 		unsigned long allocs = cachep->num_allocations;
3993 		unsigned long grown = cachep->grown;
3994 		unsigned long reaped = cachep->reaped;
3995 		unsigned long errors = cachep->errors;
3996 		unsigned long max_freeable = cachep->max_freeable;
3997 		unsigned long node_allocs = cachep->node_allocs;
3998 		unsigned long node_frees = cachep->node_frees;
3999 		unsigned long overflows = cachep->node_overflow;
4000 
4001 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4002 			   "%4lu %4lu %4lu %4lu %4lu",
4003 			   allocs, high, grown,
4004 			   reaped, errors, max_freeable, node_allocs,
4005 			   node_frees, overflows);
4006 	}
4007 	/* cpu stats */
4008 	{
4009 		unsigned long allochit = atomic_read(&cachep->allochit);
4010 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4011 		unsigned long freehit = atomic_read(&cachep->freehit);
4012 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4013 
4014 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4015 			   allochit, allocmiss, freehit, freemiss);
4016 	}
4017 #endif
4018 }
4019 
4020 #define MAX_SLABINFO_WRITE 128
4021 /**
4022  * slabinfo_write - Tuning for the slab allocator
4023  * @file: unused
4024  * @buffer: user buffer
4025  * @count: data length
4026  * @ppos: unused
4027  */
4028 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4029 		       size_t count, loff_t *ppos)
4030 {
4031 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4032 	int limit, batchcount, shared, res;
4033 	struct kmem_cache *cachep;
4034 
4035 	if (count > MAX_SLABINFO_WRITE)
4036 		return -EINVAL;
4037 	if (copy_from_user(&kbuf, buffer, count))
4038 		return -EFAULT;
4039 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4040 
4041 	tmp = strchr(kbuf, ' ');
4042 	if (!tmp)
4043 		return -EINVAL;
4044 	*tmp = '\0';
4045 	tmp++;
4046 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4047 		return -EINVAL;
4048 
4049 	/* Find the cache in the chain of caches. */
4050 	mutex_lock(&slab_mutex);
4051 	res = -EINVAL;
4052 	list_for_each_entry(cachep, &slab_caches, list) {
4053 		if (!strcmp(cachep->name, kbuf)) {
4054 			if (limit < 1 || batchcount < 1 ||
4055 					batchcount > limit || shared < 0) {
4056 				res = 0;
4057 			} else {
4058 				res = do_tune_cpucache(cachep, limit,
4059 						       batchcount, shared,
4060 						       GFP_KERNEL);
4061 			}
4062 			break;
4063 		}
4064 	}
4065 	mutex_unlock(&slab_mutex);
4066 	if (res >= 0)
4067 		res = count;
4068 	return res;
4069 }
4070 
4071 #ifdef CONFIG_DEBUG_SLAB_LEAK
4072 
4073 static inline int add_caller(unsigned long *n, unsigned long v)
4074 {
4075 	unsigned long *p;
4076 	int l;
4077 	if (!v)
4078 		return 1;
4079 	l = n[1];
4080 	p = n + 2;
4081 	while (l) {
4082 		int i = l/2;
4083 		unsigned long *q = p + 2 * i;
4084 		if (*q == v) {
4085 			q[1]++;
4086 			return 1;
4087 		}
4088 		if (*q > v) {
4089 			l = i;
4090 		} else {
4091 			p = q + 2;
4092 			l -= i + 1;
4093 		}
4094 	}
4095 	if (++n[1] == n[0])
4096 		return 0;
4097 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4098 	p[0] = v;
4099 	p[1] = 1;
4100 	return 1;
4101 }
4102 
4103 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4104 						struct page *page)
4105 {
4106 	void *p;
4107 	int i;
4108 
4109 	if (n[0] == n[1])
4110 		return;
4111 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4112 		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4113 			continue;
4114 
4115 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4116 			return;
4117 	}
4118 }
4119 
4120 static void show_symbol(struct seq_file *m, unsigned long address)
4121 {
4122 #ifdef CONFIG_KALLSYMS
4123 	unsigned long offset, size;
4124 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4125 
4126 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4127 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4128 		if (modname[0])
4129 			seq_printf(m, " [%s]", modname);
4130 		return;
4131 	}
4132 #endif
4133 	seq_printf(m, "%p", (void *)address);
4134 }
4135 
4136 static int leaks_show(struct seq_file *m, void *p)
4137 {
4138 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4139 	struct page *page;
4140 	struct kmem_cache_node *n;
4141 	const char *name;
4142 	unsigned long *x = m->private;
4143 	int node;
4144 	int i;
4145 
4146 	if (!(cachep->flags & SLAB_STORE_USER))
4147 		return 0;
4148 	if (!(cachep->flags & SLAB_RED_ZONE))
4149 		return 0;
4150 
4151 	/* OK, we can do it */
4152 
4153 	x[1] = 0;
4154 
4155 	for_each_kmem_cache_node(cachep, node, n) {
4156 
4157 		check_irq_on();
4158 		spin_lock_irq(&n->list_lock);
4159 
4160 		list_for_each_entry(page, &n->slabs_full, lru)
4161 			handle_slab(x, cachep, page);
4162 		list_for_each_entry(page, &n->slabs_partial, lru)
4163 			handle_slab(x, cachep, page);
4164 		spin_unlock_irq(&n->list_lock);
4165 	}
4166 	name = cachep->name;
4167 	if (x[0] == x[1]) {
4168 		/* Increase the buffer size */
4169 		mutex_unlock(&slab_mutex);
4170 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4171 		if (!m->private) {
4172 			/* Too bad, we are really out */
4173 			m->private = x;
4174 			mutex_lock(&slab_mutex);
4175 			return -ENOMEM;
4176 		}
4177 		*(unsigned long *)m->private = x[0] * 2;
4178 		kfree(x);
4179 		mutex_lock(&slab_mutex);
4180 		/* Now make sure this entry will be retried */
4181 		m->count = m->size;
4182 		return 0;
4183 	}
4184 	for (i = 0; i < x[1]; i++) {
4185 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4186 		show_symbol(m, x[2*i+2]);
4187 		seq_putc(m, '\n');
4188 	}
4189 
4190 	return 0;
4191 }
4192 
4193 static const struct seq_operations slabstats_op = {
4194 	.start = slab_start,
4195 	.next = slab_next,
4196 	.stop = slab_stop,
4197 	.show = leaks_show,
4198 };
4199 
4200 static int slabstats_open(struct inode *inode, struct file *file)
4201 {
4202 	unsigned long *n;
4203 
4204 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4205 	if (!n)
4206 		return -ENOMEM;
4207 
4208 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4209 
4210 	return 0;
4211 }
4212 
4213 static const struct file_operations proc_slabstats_operations = {
4214 	.open		= slabstats_open,
4215 	.read		= seq_read,
4216 	.llseek		= seq_lseek,
4217 	.release	= seq_release_private,
4218 };
4219 #endif
4220 
4221 static int __init slab_proc_init(void)
4222 {
4223 #ifdef CONFIG_DEBUG_SLAB_LEAK
4224 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4225 #endif
4226 	return 0;
4227 }
4228 module_init(slab_proc_init);
4229 #endif
4230 
4231 /**
4232  * ksize - get the actual amount of memory allocated for a given object
4233  * @objp: Pointer to the object
4234  *
4235  * kmalloc may internally round up allocations and return more memory
4236  * than requested. ksize() can be used to determine the actual amount of
4237  * memory allocated. The caller may use this additional memory, even though
4238  * a smaller amount of memory was initially specified with the kmalloc call.
4239  * The caller must guarantee that objp points to a valid object previously
4240  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4241  * must not be freed during the duration of the call.
4242  */
4243 size_t ksize(const void *objp)
4244 {
4245 	BUG_ON(!objp);
4246 	if (unlikely(objp == ZERO_SIZE_PTR))
4247 		return 0;
4248 
4249 	return virt_to_cache(objp)->object_size;
4250 }
4251 EXPORT_SYMBOL(ksize);
4252