xref: /openbmc/linux/mm/slab.c (revision 94c7b6fc)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * true if a page was allocated from pfmemalloc reserves for network-based
173  * swap
174  */
175 static bool pfmemalloc_active __read_mostly;
176 
177 /*
178  * struct array_cache
179  *
180  * Purpose:
181  * - LIFO ordering, to hand out cache-warm objects from _alloc
182  * - reduce the number of linked list operations
183  * - reduce spinlock operations
184  *
185  * The limit is stored in the per-cpu structure to reduce the data cache
186  * footprint.
187  *
188  */
189 struct array_cache {
190 	unsigned int avail;
191 	unsigned int limit;
192 	unsigned int batchcount;
193 	unsigned int touched;
194 	spinlock_t lock;
195 	void *entry[];	/*
196 			 * Must have this definition in here for the proper
197 			 * alignment of array_cache. Also simplifies accessing
198 			 * the entries.
199 			 *
200 			 * Entries should not be directly dereferenced as
201 			 * entries belonging to slabs marked pfmemalloc will
202 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
203 			 */
204 };
205 
206 #define SLAB_OBJ_PFMEMALLOC	1
207 static inline bool is_obj_pfmemalloc(void *objp)
208 {
209 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
210 }
211 
212 static inline void set_obj_pfmemalloc(void **objp)
213 {
214 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
215 	return;
216 }
217 
218 static inline void clear_obj_pfmemalloc(void **objp)
219 {
220 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
221 }
222 
223 /*
224  * bootstrap: The caches do not work without cpuarrays anymore, but the
225  * cpuarrays are allocated from the generic caches...
226  */
227 #define BOOT_CPUCACHE_ENTRIES	1
228 struct arraycache_init {
229 	struct array_cache cache;
230 	void *entries[BOOT_CPUCACHE_ENTRIES];
231 };
232 
233 /*
234  * Need this for bootstrapping a per node allocator.
235  */
236 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
237 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
238 #define	CACHE_CACHE 0
239 #define	SIZE_AC MAX_NUMNODES
240 #define	SIZE_NODE (2 * MAX_NUMNODES)
241 
242 static int drain_freelist(struct kmem_cache *cache,
243 			struct kmem_cache_node *n, int tofree);
244 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
245 			int node);
246 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
247 static void cache_reap(struct work_struct *unused);
248 
249 static int slab_early_init = 1;
250 
251 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
252 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
253 
254 static void kmem_cache_node_init(struct kmem_cache_node *parent)
255 {
256 	INIT_LIST_HEAD(&parent->slabs_full);
257 	INIT_LIST_HEAD(&parent->slabs_partial);
258 	INIT_LIST_HEAD(&parent->slabs_free);
259 	parent->shared = NULL;
260 	parent->alien = NULL;
261 	parent->colour_next = 0;
262 	spin_lock_init(&parent->list_lock);
263 	parent->free_objects = 0;
264 	parent->free_touched = 0;
265 }
266 
267 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
268 	do {								\
269 		INIT_LIST_HEAD(listp);					\
270 		list_splice(&(cachep->node[nodeid]->slab), listp);	\
271 	} while (0)
272 
273 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
274 	do {								\
275 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
276 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
277 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
278 	} while (0)
279 
280 #define CFLGS_OFF_SLAB		(0x80000000UL)
281 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
282 
283 #define BATCHREFILL_LIMIT	16
284 /*
285  * Optimization question: fewer reaps means less probability for unnessary
286  * cpucache drain/refill cycles.
287  *
288  * OTOH the cpuarrays can contain lots of objects,
289  * which could lock up otherwise freeable slabs.
290  */
291 #define REAPTIMEOUT_AC		(2*HZ)
292 #define REAPTIMEOUT_NODE	(4*HZ)
293 
294 #if STATS
295 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
296 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
297 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
298 #define	STATS_INC_GROWN(x)	((x)->grown++)
299 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
300 #define	STATS_SET_HIGH(x)						\
301 	do {								\
302 		if ((x)->num_active > (x)->high_mark)			\
303 			(x)->high_mark = (x)->num_active;		\
304 	} while (0)
305 #define	STATS_INC_ERR(x)	((x)->errors++)
306 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
307 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
308 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
309 #define	STATS_SET_FREEABLE(x, i)					\
310 	do {								\
311 		if ((x)->max_freeable < i)				\
312 			(x)->max_freeable = i;				\
313 	} while (0)
314 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
315 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
316 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
317 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
318 #else
319 #define	STATS_INC_ACTIVE(x)	do { } while (0)
320 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
321 #define	STATS_INC_ALLOCED(x)	do { } while (0)
322 #define	STATS_INC_GROWN(x)	do { } while (0)
323 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
324 #define	STATS_SET_HIGH(x)	do { } while (0)
325 #define	STATS_INC_ERR(x)	do { } while (0)
326 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
327 #define	STATS_INC_NODEFREES(x)	do { } while (0)
328 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
329 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
330 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
331 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
332 #define STATS_INC_FREEHIT(x)	do { } while (0)
333 #define STATS_INC_FREEMISS(x)	do { } while (0)
334 #endif
335 
336 #if DEBUG
337 
338 /*
339  * memory layout of objects:
340  * 0		: objp
341  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
342  * 		the end of an object is aligned with the end of the real
343  * 		allocation. Catches writes behind the end of the allocation.
344  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
345  * 		redzone word.
346  * cachep->obj_offset: The real object.
347  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
348  * cachep->size - 1* BYTES_PER_WORD: last caller address
349  *					[BYTES_PER_WORD long]
350  */
351 static int obj_offset(struct kmem_cache *cachep)
352 {
353 	return cachep->obj_offset;
354 }
355 
356 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
357 {
358 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
359 	return (unsigned long long*) (objp + obj_offset(cachep) -
360 				      sizeof(unsigned long long));
361 }
362 
363 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
364 {
365 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
366 	if (cachep->flags & SLAB_STORE_USER)
367 		return (unsigned long long *)(objp + cachep->size -
368 					      sizeof(unsigned long long) -
369 					      REDZONE_ALIGN);
370 	return (unsigned long long *) (objp + cachep->size -
371 				       sizeof(unsigned long long));
372 }
373 
374 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
375 {
376 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
377 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
378 }
379 
380 #else
381 
382 #define obj_offset(x)			0
383 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
384 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
385 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
386 
387 #endif
388 
389 #define OBJECT_FREE (0)
390 #define OBJECT_ACTIVE (1)
391 
392 #ifdef CONFIG_DEBUG_SLAB_LEAK
393 
394 static void set_obj_status(struct page *page, int idx, int val)
395 {
396 	int freelist_size;
397 	char *status;
398 	struct kmem_cache *cachep = page->slab_cache;
399 
400 	freelist_size = cachep->num * sizeof(freelist_idx_t);
401 	status = (char *)page->freelist + freelist_size;
402 	status[idx] = val;
403 }
404 
405 static inline unsigned int get_obj_status(struct page *page, int idx)
406 {
407 	int freelist_size;
408 	char *status;
409 	struct kmem_cache *cachep = page->slab_cache;
410 
411 	freelist_size = cachep->num * sizeof(freelist_idx_t);
412 	status = (char *)page->freelist + freelist_size;
413 
414 	return status[idx];
415 }
416 
417 #else
418 static inline void set_obj_status(struct page *page, int idx, int val) {}
419 
420 #endif
421 
422 /*
423  * Do not go above this order unless 0 objects fit into the slab or
424  * overridden on the command line.
425  */
426 #define	SLAB_MAX_ORDER_HI	1
427 #define	SLAB_MAX_ORDER_LO	0
428 static int slab_max_order = SLAB_MAX_ORDER_LO;
429 static bool slab_max_order_set __initdata;
430 
431 static inline struct kmem_cache *virt_to_cache(const void *obj)
432 {
433 	struct page *page = virt_to_head_page(obj);
434 	return page->slab_cache;
435 }
436 
437 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
438 				 unsigned int idx)
439 {
440 	return page->s_mem + cache->size * idx;
441 }
442 
443 /*
444  * We want to avoid an expensive divide : (offset / cache->size)
445  *   Using the fact that size is a constant for a particular cache,
446  *   we can replace (offset / cache->size) by
447  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
448  */
449 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
450 					const struct page *page, void *obj)
451 {
452 	u32 offset = (obj - page->s_mem);
453 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
454 }
455 
456 static struct arraycache_init initarray_generic =
457     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
458 
459 /* internal cache of cache description objs */
460 static struct kmem_cache kmem_cache_boot = {
461 	.batchcount = 1,
462 	.limit = BOOT_CPUCACHE_ENTRIES,
463 	.shared = 1,
464 	.size = sizeof(struct kmem_cache),
465 	.name = "kmem_cache",
466 };
467 
468 #define BAD_ALIEN_MAGIC 0x01020304ul
469 
470 #ifdef CONFIG_LOCKDEP
471 
472 /*
473  * Slab sometimes uses the kmalloc slabs to store the slab headers
474  * for other slabs "off slab".
475  * The locking for this is tricky in that it nests within the locks
476  * of all other slabs in a few places; to deal with this special
477  * locking we put on-slab caches into a separate lock-class.
478  *
479  * We set lock class for alien array caches which are up during init.
480  * The lock annotation will be lost if all cpus of a node goes down and
481  * then comes back up during hotplug
482  */
483 static struct lock_class_key on_slab_l3_key;
484 static struct lock_class_key on_slab_alc_key;
485 
486 static struct lock_class_key debugobj_l3_key;
487 static struct lock_class_key debugobj_alc_key;
488 
489 static void slab_set_lock_classes(struct kmem_cache *cachep,
490 		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
491 		int q)
492 {
493 	struct array_cache **alc;
494 	struct kmem_cache_node *n;
495 	int r;
496 
497 	n = cachep->node[q];
498 	if (!n)
499 		return;
500 
501 	lockdep_set_class(&n->list_lock, l3_key);
502 	alc = n->alien;
503 	/*
504 	 * FIXME: This check for BAD_ALIEN_MAGIC
505 	 * should go away when common slab code is taught to
506 	 * work even without alien caches.
507 	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
508 	 * for alloc_alien_cache,
509 	 */
510 	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
511 		return;
512 	for_each_node(r) {
513 		if (alc[r])
514 			lockdep_set_class(&alc[r]->lock, alc_key);
515 	}
516 }
517 
518 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
519 {
520 	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
521 }
522 
523 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
524 {
525 	int node;
526 
527 	for_each_online_node(node)
528 		slab_set_debugobj_lock_classes_node(cachep, node);
529 }
530 
531 static void init_node_lock_keys(int q)
532 {
533 	int i;
534 
535 	if (slab_state < UP)
536 		return;
537 
538 	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
539 		struct kmem_cache_node *n;
540 		struct kmem_cache *cache = kmalloc_caches[i];
541 
542 		if (!cache)
543 			continue;
544 
545 		n = cache->node[q];
546 		if (!n || OFF_SLAB(cache))
547 			continue;
548 
549 		slab_set_lock_classes(cache, &on_slab_l3_key,
550 				&on_slab_alc_key, q);
551 	}
552 }
553 
554 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
555 {
556 	if (!cachep->node[q])
557 		return;
558 
559 	slab_set_lock_classes(cachep, &on_slab_l3_key,
560 			&on_slab_alc_key, q);
561 }
562 
563 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
564 {
565 	int node;
566 
567 	VM_BUG_ON(OFF_SLAB(cachep));
568 	for_each_node(node)
569 		on_slab_lock_classes_node(cachep, node);
570 }
571 
572 static inline void init_lock_keys(void)
573 {
574 	int node;
575 
576 	for_each_node(node)
577 		init_node_lock_keys(node);
578 }
579 #else
580 static void init_node_lock_keys(int q)
581 {
582 }
583 
584 static inline void init_lock_keys(void)
585 {
586 }
587 
588 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
589 {
590 }
591 
592 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
593 {
594 }
595 
596 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
597 {
598 }
599 
600 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
601 {
602 }
603 #endif
604 
605 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
606 
607 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
608 {
609 	return cachep->array[smp_processor_id()];
610 }
611 
612 static size_t calculate_freelist_size(int nr_objs, size_t align)
613 {
614 	size_t freelist_size;
615 
616 	freelist_size = nr_objs * sizeof(freelist_idx_t);
617 	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
618 		freelist_size += nr_objs * sizeof(char);
619 
620 	if (align)
621 		freelist_size = ALIGN(freelist_size, align);
622 
623 	return freelist_size;
624 }
625 
626 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
627 				size_t idx_size, size_t align)
628 {
629 	int nr_objs;
630 	size_t remained_size;
631 	size_t freelist_size;
632 	int extra_space = 0;
633 
634 	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
635 		extra_space = sizeof(char);
636 	/*
637 	 * Ignore padding for the initial guess. The padding
638 	 * is at most @align-1 bytes, and @buffer_size is at
639 	 * least @align. In the worst case, this result will
640 	 * be one greater than the number of objects that fit
641 	 * into the memory allocation when taking the padding
642 	 * into account.
643 	 */
644 	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
645 
646 	/*
647 	 * This calculated number will be either the right
648 	 * amount, or one greater than what we want.
649 	 */
650 	remained_size = slab_size - nr_objs * buffer_size;
651 	freelist_size = calculate_freelist_size(nr_objs, align);
652 	if (remained_size < freelist_size)
653 		nr_objs--;
654 
655 	return nr_objs;
656 }
657 
658 /*
659  * Calculate the number of objects and left-over bytes for a given buffer size.
660  */
661 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
662 			   size_t align, int flags, size_t *left_over,
663 			   unsigned int *num)
664 {
665 	int nr_objs;
666 	size_t mgmt_size;
667 	size_t slab_size = PAGE_SIZE << gfporder;
668 
669 	/*
670 	 * The slab management structure can be either off the slab or
671 	 * on it. For the latter case, the memory allocated for a
672 	 * slab is used for:
673 	 *
674 	 * - One unsigned int for each object
675 	 * - Padding to respect alignment of @align
676 	 * - @buffer_size bytes for each object
677 	 *
678 	 * If the slab management structure is off the slab, then the
679 	 * alignment will already be calculated into the size. Because
680 	 * the slabs are all pages aligned, the objects will be at the
681 	 * correct alignment when allocated.
682 	 */
683 	if (flags & CFLGS_OFF_SLAB) {
684 		mgmt_size = 0;
685 		nr_objs = slab_size / buffer_size;
686 
687 	} else {
688 		nr_objs = calculate_nr_objs(slab_size, buffer_size,
689 					sizeof(freelist_idx_t), align);
690 		mgmt_size = calculate_freelist_size(nr_objs, align);
691 	}
692 	*num = nr_objs;
693 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
694 }
695 
696 #if DEBUG
697 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
698 
699 static void __slab_error(const char *function, struct kmem_cache *cachep,
700 			char *msg)
701 {
702 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
703 	       function, cachep->name, msg);
704 	dump_stack();
705 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
706 }
707 #endif
708 
709 /*
710  * By default on NUMA we use alien caches to stage the freeing of
711  * objects allocated from other nodes. This causes massive memory
712  * inefficiencies when using fake NUMA setup to split memory into a
713  * large number of small nodes, so it can be disabled on the command
714  * line
715   */
716 
717 static int use_alien_caches __read_mostly = 1;
718 static int __init noaliencache_setup(char *s)
719 {
720 	use_alien_caches = 0;
721 	return 1;
722 }
723 __setup("noaliencache", noaliencache_setup);
724 
725 static int __init slab_max_order_setup(char *str)
726 {
727 	get_option(&str, &slab_max_order);
728 	slab_max_order = slab_max_order < 0 ? 0 :
729 				min(slab_max_order, MAX_ORDER - 1);
730 	slab_max_order_set = true;
731 
732 	return 1;
733 }
734 __setup("slab_max_order=", slab_max_order_setup);
735 
736 #ifdef CONFIG_NUMA
737 /*
738  * Special reaping functions for NUMA systems called from cache_reap().
739  * These take care of doing round robin flushing of alien caches (containing
740  * objects freed on different nodes from which they were allocated) and the
741  * flushing of remote pcps by calling drain_node_pages.
742  */
743 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
744 
745 static void init_reap_node(int cpu)
746 {
747 	int node;
748 
749 	node = next_node(cpu_to_mem(cpu), node_online_map);
750 	if (node == MAX_NUMNODES)
751 		node = first_node(node_online_map);
752 
753 	per_cpu(slab_reap_node, cpu) = node;
754 }
755 
756 static void next_reap_node(void)
757 {
758 	int node = __this_cpu_read(slab_reap_node);
759 
760 	node = next_node(node, node_online_map);
761 	if (unlikely(node >= MAX_NUMNODES))
762 		node = first_node(node_online_map);
763 	__this_cpu_write(slab_reap_node, node);
764 }
765 
766 #else
767 #define init_reap_node(cpu) do { } while (0)
768 #define next_reap_node(void) do { } while (0)
769 #endif
770 
771 /*
772  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
773  * via the workqueue/eventd.
774  * Add the CPU number into the expiration time to minimize the possibility of
775  * the CPUs getting into lockstep and contending for the global cache chain
776  * lock.
777  */
778 static void start_cpu_timer(int cpu)
779 {
780 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
781 
782 	/*
783 	 * When this gets called from do_initcalls via cpucache_init(),
784 	 * init_workqueues() has already run, so keventd will be setup
785 	 * at that time.
786 	 */
787 	if (keventd_up() && reap_work->work.func == NULL) {
788 		init_reap_node(cpu);
789 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
790 		schedule_delayed_work_on(cpu, reap_work,
791 					__round_jiffies_relative(HZ, cpu));
792 	}
793 }
794 
795 static struct array_cache *alloc_arraycache(int node, int entries,
796 					    int batchcount, gfp_t gfp)
797 {
798 	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
799 	struct array_cache *nc = NULL;
800 
801 	nc = kmalloc_node(memsize, gfp, node);
802 	/*
803 	 * The array_cache structures contain pointers to free object.
804 	 * However, when such objects are allocated or transferred to another
805 	 * cache the pointers are not cleared and they could be counted as
806 	 * valid references during a kmemleak scan. Therefore, kmemleak must
807 	 * not scan such objects.
808 	 */
809 	kmemleak_no_scan(nc);
810 	if (nc) {
811 		nc->avail = 0;
812 		nc->limit = entries;
813 		nc->batchcount = batchcount;
814 		nc->touched = 0;
815 		spin_lock_init(&nc->lock);
816 	}
817 	return nc;
818 }
819 
820 static inline bool is_slab_pfmemalloc(struct page *page)
821 {
822 	return PageSlabPfmemalloc(page);
823 }
824 
825 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
826 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
827 						struct array_cache *ac)
828 {
829 	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
830 	struct page *page;
831 	unsigned long flags;
832 
833 	if (!pfmemalloc_active)
834 		return;
835 
836 	spin_lock_irqsave(&n->list_lock, flags);
837 	list_for_each_entry(page, &n->slabs_full, lru)
838 		if (is_slab_pfmemalloc(page))
839 			goto out;
840 
841 	list_for_each_entry(page, &n->slabs_partial, lru)
842 		if (is_slab_pfmemalloc(page))
843 			goto out;
844 
845 	list_for_each_entry(page, &n->slabs_free, lru)
846 		if (is_slab_pfmemalloc(page))
847 			goto out;
848 
849 	pfmemalloc_active = false;
850 out:
851 	spin_unlock_irqrestore(&n->list_lock, flags);
852 }
853 
854 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
855 						gfp_t flags, bool force_refill)
856 {
857 	int i;
858 	void *objp = ac->entry[--ac->avail];
859 
860 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
861 	if (unlikely(is_obj_pfmemalloc(objp))) {
862 		struct kmem_cache_node *n;
863 
864 		if (gfp_pfmemalloc_allowed(flags)) {
865 			clear_obj_pfmemalloc(&objp);
866 			return objp;
867 		}
868 
869 		/* The caller cannot use PFMEMALLOC objects, find another one */
870 		for (i = 0; i < ac->avail; i++) {
871 			/* If a !PFMEMALLOC object is found, swap them */
872 			if (!is_obj_pfmemalloc(ac->entry[i])) {
873 				objp = ac->entry[i];
874 				ac->entry[i] = ac->entry[ac->avail];
875 				ac->entry[ac->avail] = objp;
876 				return objp;
877 			}
878 		}
879 
880 		/*
881 		 * If there are empty slabs on the slabs_free list and we are
882 		 * being forced to refill the cache, mark this one !pfmemalloc.
883 		 */
884 		n = cachep->node[numa_mem_id()];
885 		if (!list_empty(&n->slabs_free) && force_refill) {
886 			struct page *page = virt_to_head_page(objp);
887 			ClearPageSlabPfmemalloc(page);
888 			clear_obj_pfmemalloc(&objp);
889 			recheck_pfmemalloc_active(cachep, ac);
890 			return objp;
891 		}
892 
893 		/* No !PFMEMALLOC objects available */
894 		ac->avail++;
895 		objp = NULL;
896 	}
897 
898 	return objp;
899 }
900 
901 static inline void *ac_get_obj(struct kmem_cache *cachep,
902 			struct array_cache *ac, gfp_t flags, bool force_refill)
903 {
904 	void *objp;
905 
906 	if (unlikely(sk_memalloc_socks()))
907 		objp = __ac_get_obj(cachep, ac, flags, force_refill);
908 	else
909 		objp = ac->entry[--ac->avail];
910 
911 	return objp;
912 }
913 
914 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
915 								void *objp)
916 {
917 	if (unlikely(pfmemalloc_active)) {
918 		/* Some pfmemalloc slabs exist, check if this is one */
919 		struct page *page = virt_to_head_page(objp);
920 		if (PageSlabPfmemalloc(page))
921 			set_obj_pfmemalloc(&objp);
922 	}
923 
924 	return objp;
925 }
926 
927 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
928 								void *objp)
929 {
930 	if (unlikely(sk_memalloc_socks()))
931 		objp = __ac_put_obj(cachep, ac, objp);
932 
933 	ac->entry[ac->avail++] = objp;
934 }
935 
936 /*
937  * Transfer objects in one arraycache to another.
938  * Locking must be handled by the caller.
939  *
940  * Return the number of entries transferred.
941  */
942 static int transfer_objects(struct array_cache *to,
943 		struct array_cache *from, unsigned int max)
944 {
945 	/* Figure out how many entries to transfer */
946 	int nr = min3(from->avail, max, to->limit - to->avail);
947 
948 	if (!nr)
949 		return 0;
950 
951 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
952 			sizeof(void *) *nr);
953 
954 	from->avail -= nr;
955 	to->avail += nr;
956 	return nr;
957 }
958 
959 #ifndef CONFIG_NUMA
960 
961 #define drain_alien_cache(cachep, alien) do { } while (0)
962 #define reap_alien(cachep, n) do { } while (0)
963 
964 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
965 {
966 	return (struct array_cache **)BAD_ALIEN_MAGIC;
967 }
968 
969 static inline void free_alien_cache(struct array_cache **ac_ptr)
970 {
971 }
972 
973 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
974 {
975 	return 0;
976 }
977 
978 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
979 		gfp_t flags)
980 {
981 	return NULL;
982 }
983 
984 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
985 		 gfp_t flags, int nodeid)
986 {
987 	return NULL;
988 }
989 
990 #else	/* CONFIG_NUMA */
991 
992 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
993 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
994 
995 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
996 {
997 	struct array_cache **ac_ptr;
998 	int memsize = sizeof(void *) * nr_node_ids;
999 	int i;
1000 
1001 	if (limit > 1)
1002 		limit = 12;
1003 	ac_ptr = kzalloc_node(memsize, gfp, node);
1004 	if (ac_ptr) {
1005 		for_each_node(i) {
1006 			if (i == node || !node_online(i))
1007 				continue;
1008 			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1009 			if (!ac_ptr[i]) {
1010 				for (i--; i >= 0; i--)
1011 					kfree(ac_ptr[i]);
1012 				kfree(ac_ptr);
1013 				return NULL;
1014 			}
1015 		}
1016 	}
1017 	return ac_ptr;
1018 }
1019 
1020 static void free_alien_cache(struct array_cache **ac_ptr)
1021 {
1022 	int i;
1023 
1024 	if (!ac_ptr)
1025 		return;
1026 	for_each_node(i)
1027 	    kfree(ac_ptr[i]);
1028 	kfree(ac_ptr);
1029 }
1030 
1031 static void __drain_alien_cache(struct kmem_cache *cachep,
1032 				struct array_cache *ac, int node)
1033 {
1034 	struct kmem_cache_node *n = cachep->node[node];
1035 
1036 	if (ac->avail) {
1037 		spin_lock(&n->list_lock);
1038 		/*
1039 		 * Stuff objects into the remote nodes shared array first.
1040 		 * That way we could avoid the overhead of putting the objects
1041 		 * into the free lists and getting them back later.
1042 		 */
1043 		if (n->shared)
1044 			transfer_objects(n->shared, ac, ac->limit);
1045 
1046 		free_block(cachep, ac->entry, ac->avail, node);
1047 		ac->avail = 0;
1048 		spin_unlock(&n->list_lock);
1049 	}
1050 }
1051 
1052 /*
1053  * Called from cache_reap() to regularly drain alien caches round robin.
1054  */
1055 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1056 {
1057 	int node = __this_cpu_read(slab_reap_node);
1058 
1059 	if (n->alien) {
1060 		struct array_cache *ac = n->alien[node];
1061 
1062 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1063 			__drain_alien_cache(cachep, ac, node);
1064 			spin_unlock_irq(&ac->lock);
1065 		}
1066 	}
1067 }
1068 
1069 static void drain_alien_cache(struct kmem_cache *cachep,
1070 				struct array_cache **alien)
1071 {
1072 	int i = 0;
1073 	struct array_cache *ac;
1074 	unsigned long flags;
1075 
1076 	for_each_online_node(i) {
1077 		ac = alien[i];
1078 		if (ac) {
1079 			spin_lock_irqsave(&ac->lock, flags);
1080 			__drain_alien_cache(cachep, ac, i);
1081 			spin_unlock_irqrestore(&ac->lock, flags);
1082 		}
1083 	}
1084 }
1085 
1086 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1087 {
1088 	int nodeid = page_to_nid(virt_to_page(objp));
1089 	struct kmem_cache_node *n;
1090 	struct array_cache *alien = NULL;
1091 	int node;
1092 
1093 	node = numa_mem_id();
1094 
1095 	/*
1096 	 * Make sure we are not freeing a object from another node to the array
1097 	 * cache on this cpu.
1098 	 */
1099 	if (likely(nodeid == node))
1100 		return 0;
1101 
1102 	n = cachep->node[node];
1103 	STATS_INC_NODEFREES(cachep);
1104 	if (n->alien && n->alien[nodeid]) {
1105 		alien = n->alien[nodeid];
1106 		spin_lock(&alien->lock);
1107 		if (unlikely(alien->avail == alien->limit)) {
1108 			STATS_INC_ACOVERFLOW(cachep);
1109 			__drain_alien_cache(cachep, alien, nodeid);
1110 		}
1111 		ac_put_obj(cachep, alien, objp);
1112 		spin_unlock(&alien->lock);
1113 	} else {
1114 		spin_lock(&(cachep->node[nodeid])->list_lock);
1115 		free_block(cachep, &objp, 1, nodeid);
1116 		spin_unlock(&(cachep->node[nodeid])->list_lock);
1117 	}
1118 	return 1;
1119 }
1120 #endif
1121 
1122 /*
1123  * Allocates and initializes node for a node on each slab cache, used for
1124  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1125  * will be allocated off-node since memory is not yet online for the new node.
1126  * When hotplugging memory or a cpu, existing node are not replaced if
1127  * already in use.
1128  *
1129  * Must hold slab_mutex.
1130  */
1131 static int init_cache_node_node(int node)
1132 {
1133 	struct kmem_cache *cachep;
1134 	struct kmem_cache_node *n;
1135 	const int memsize = sizeof(struct kmem_cache_node);
1136 
1137 	list_for_each_entry(cachep, &slab_caches, list) {
1138 		/*
1139 		 * Set up the kmem_cache_node for cpu before we can
1140 		 * begin anything. Make sure some other cpu on this
1141 		 * node has not already allocated this
1142 		 */
1143 		if (!cachep->node[node]) {
1144 			n = kmalloc_node(memsize, GFP_KERNEL, node);
1145 			if (!n)
1146 				return -ENOMEM;
1147 			kmem_cache_node_init(n);
1148 			n->next_reap = jiffies + REAPTIMEOUT_NODE +
1149 			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1150 
1151 			/*
1152 			 * The kmem_cache_nodes don't come and go as CPUs
1153 			 * come and go.  slab_mutex is sufficient
1154 			 * protection here.
1155 			 */
1156 			cachep->node[node] = n;
1157 		}
1158 
1159 		spin_lock_irq(&cachep->node[node]->list_lock);
1160 		cachep->node[node]->free_limit =
1161 			(1 + nr_cpus_node(node)) *
1162 			cachep->batchcount + cachep->num;
1163 		spin_unlock_irq(&cachep->node[node]->list_lock);
1164 	}
1165 	return 0;
1166 }
1167 
1168 static inline int slabs_tofree(struct kmem_cache *cachep,
1169 						struct kmem_cache_node *n)
1170 {
1171 	return (n->free_objects + cachep->num - 1) / cachep->num;
1172 }
1173 
1174 static void cpuup_canceled(long cpu)
1175 {
1176 	struct kmem_cache *cachep;
1177 	struct kmem_cache_node *n = NULL;
1178 	int node = cpu_to_mem(cpu);
1179 	const struct cpumask *mask = cpumask_of_node(node);
1180 
1181 	list_for_each_entry(cachep, &slab_caches, list) {
1182 		struct array_cache *nc;
1183 		struct array_cache *shared;
1184 		struct array_cache **alien;
1185 
1186 		/* cpu is dead; no one can alloc from it. */
1187 		nc = cachep->array[cpu];
1188 		cachep->array[cpu] = NULL;
1189 		n = cachep->node[node];
1190 
1191 		if (!n)
1192 			goto free_array_cache;
1193 
1194 		spin_lock_irq(&n->list_lock);
1195 
1196 		/* Free limit for this kmem_cache_node */
1197 		n->free_limit -= cachep->batchcount;
1198 		if (nc)
1199 			free_block(cachep, nc->entry, nc->avail, node);
1200 
1201 		if (!cpumask_empty(mask)) {
1202 			spin_unlock_irq(&n->list_lock);
1203 			goto free_array_cache;
1204 		}
1205 
1206 		shared = n->shared;
1207 		if (shared) {
1208 			free_block(cachep, shared->entry,
1209 				   shared->avail, node);
1210 			n->shared = NULL;
1211 		}
1212 
1213 		alien = n->alien;
1214 		n->alien = NULL;
1215 
1216 		spin_unlock_irq(&n->list_lock);
1217 
1218 		kfree(shared);
1219 		if (alien) {
1220 			drain_alien_cache(cachep, alien);
1221 			free_alien_cache(alien);
1222 		}
1223 free_array_cache:
1224 		kfree(nc);
1225 	}
1226 	/*
1227 	 * In the previous loop, all the objects were freed to
1228 	 * the respective cache's slabs,  now we can go ahead and
1229 	 * shrink each nodelist to its limit.
1230 	 */
1231 	list_for_each_entry(cachep, &slab_caches, list) {
1232 		n = cachep->node[node];
1233 		if (!n)
1234 			continue;
1235 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1236 	}
1237 }
1238 
1239 static int cpuup_prepare(long cpu)
1240 {
1241 	struct kmem_cache *cachep;
1242 	struct kmem_cache_node *n = NULL;
1243 	int node = cpu_to_mem(cpu);
1244 	int err;
1245 
1246 	/*
1247 	 * We need to do this right in the beginning since
1248 	 * alloc_arraycache's are going to use this list.
1249 	 * kmalloc_node allows us to add the slab to the right
1250 	 * kmem_cache_node and not this cpu's kmem_cache_node
1251 	 */
1252 	err = init_cache_node_node(node);
1253 	if (err < 0)
1254 		goto bad;
1255 
1256 	/*
1257 	 * Now we can go ahead with allocating the shared arrays and
1258 	 * array caches
1259 	 */
1260 	list_for_each_entry(cachep, &slab_caches, list) {
1261 		struct array_cache *nc;
1262 		struct array_cache *shared = NULL;
1263 		struct array_cache **alien = NULL;
1264 
1265 		nc = alloc_arraycache(node, cachep->limit,
1266 					cachep->batchcount, GFP_KERNEL);
1267 		if (!nc)
1268 			goto bad;
1269 		if (cachep->shared) {
1270 			shared = alloc_arraycache(node,
1271 				cachep->shared * cachep->batchcount,
1272 				0xbaadf00d, GFP_KERNEL);
1273 			if (!shared) {
1274 				kfree(nc);
1275 				goto bad;
1276 			}
1277 		}
1278 		if (use_alien_caches) {
1279 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1280 			if (!alien) {
1281 				kfree(shared);
1282 				kfree(nc);
1283 				goto bad;
1284 			}
1285 		}
1286 		cachep->array[cpu] = nc;
1287 		n = cachep->node[node];
1288 		BUG_ON(!n);
1289 
1290 		spin_lock_irq(&n->list_lock);
1291 		if (!n->shared) {
1292 			/*
1293 			 * We are serialised from CPU_DEAD or
1294 			 * CPU_UP_CANCELLED by the cpucontrol lock
1295 			 */
1296 			n->shared = shared;
1297 			shared = NULL;
1298 		}
1299 #ifdef CONFIG_NUMA
1300 		if (!n->alien) {
1301 			n->alien = alien;
1302 			alien = NULL;
1303 		}
1304 #endif
1305 		spin_unlock_irq(&n->list_lock);
1306 		kfree(shared);
1307 		free_alien_cache(alien);
1308 		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1309 			slab_set_debugobj_lock_classes_node(cachep, node);
1310 		else if (!OFF_SLAB(cachep) &&
1311 			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1312 			on_slab_lock_classes_node(cachep, node);
1313 	}
1314 	init_node_lock_keys(node);
1315 
1316 	return 0;
1317 bad:
1318 	cpuup_canceled(cpu);
1319 	return -ENOMEM;
1320 }
1321 
1322 static int cpuup_callback(struct notifier_block *nfb,
1323 				    unsigned long action, void *hcpu)
1324 {
1325 	long cpu = (long)hcpu;
1326 	int err = 0;
1327 
1328 	switch (action) {
1329 	case CPU_UP_PREPARE:
1330 	case CPU_UP_PREPARE_FROZEN:
1331 		mutex_lock(&slab_mutex);
1332 		err = cpuup_prepare(cpu);
1333 		mutex_unlock(&slab_mutex);
1334 		break;
1335 	case CPU_ONLINE:
1336 	case CPU_ONLINE_FROZEN:
1337 		start_cpu_timer(cpu);
1338 		break;
1339 #ifdef CONFIG_HOTPLUG_CPU
1340   	case CPU_DOWN_PREPARE:
1341   	case CPU_DOWN_PREPARE_FROZEN:
1342 		/*
1343 		 * Shutdown cache reaper. Note that the slab_mutex is
1344 		 * held so that if cache_reap() is invoked it cannot do
1345 		 * anything expensive but will only modify reap_work
1346 		 * and reschedule the timer.
1347 		*/
1348 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1349 		/* Now the cache_reaper is guaranteed to be not running. */
1350 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1351   		break;
1352   	case CPU_DOWN_FAILED:
1353   	case CPU_DOWN_FAILED_FROZEN:
1354 		start_cpu_timer(cpu);
1355   		break;
1356 	case CPU_DEAD:
1357 	case CPU_DEAD_FROZEN:
1358 		/*
1359 		 * Even if all the cpus of a node are down, we don't free the
1360 		 * kmem_cache_node of any cache. This to avoid a race between
1361 		 * cpu_down, and a kmalloc allocation from another cpu for
1362 		 * memory from the node of the cpu going down.  The node
1363 		 * structure is usually allocated from kmem_cache_create() and
1364 		 * gets destroyed at kmem_cache_destroy().
1365 		 */
1366 		/* fall through */
1367 #endif
1368 	case CPU_UP_CANCELED:
1369 	case CPU_UP_CANCELED_FROZEN:
1370 		mutex_lock(&slab_mutex);
1371 		cpuup_canceled(cpu);
1372 		mutex_unlock(&slab_mutex);
1373 		break;
1374 	}
1375 	return notifier_from_errno(err);
1376 }
1377 
1378 static struct notifier_block cpucache_notifier = {
1379 	&cpuup_callback, NULL, 0
1380 };
1381 
1382 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1383 /*
1384  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1385  * Returns -EBUSY if all objects cannot be drained so that the node is not
1386  * removed.
1387  *
1388  * Must hold slab_mutex.
1389  */
1390 static int __meminit drain_cache_node_node(int node)
1391 {
1392 	struct kmem_cache *cachep;
1393 	int ret = 0;
1394 
1395 	list_for_each_entry(cachep, &slab_caches, list) {
1396 		struct kmem_cache_node *n;
1397 
1398 		n = cachep->node[node];
1399 		if (!n)
1400 			continue;
1401 
1402 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1403 
1404 		if (!list_empty(&n->slabs_full) ||
1405 		    !list_empty(&n->slabs_partial)) {
1406 			ret = -EBUSY;
1407 			break;
1408 		}
1409 	}
1410 	return ret;
1411 }
1412 
1413 static int __meminit slab_memory_callback(struct notifier_block *self,
1414 					unsigned long action, void *arg)
1415 {
1416 	struct memory_notify *mnb = arg;
1417 	int ret = 0;
1418 	int nid;
1419 
1420 	nid = mnb->status_change_nid;
1421 	if (nid < 0)
1422 		goto out;
1423 
1424 	switch (action) {
1425 	case MEM_GOING_ONLINE:
1426 		mutex_lock(&slab_mutex);
1427 		ret = init_cache_node_node(nid);
1428 		mutex_unlock(&slab_mutex);
1429 		break;
1430 	case MEM_GOING_OFFLINE:
1431 		mutex_lock(&slab_mutex);
1432 		ret = drain_cache_node_node(nid);
1433 		mutex_unlock(&slab_mutex);
1434 		break;
1435 	case MEM_ONLINE:
1436 	case MEM_OFFLINE:
1437 	case MEM_CANCEL_ONLINE:
1438 	case MEM_CANCEL_OFFLINE:
1439 		break;
1440 	}
1441 out:
1442 	return notifier_from_errno(ret);
1443 }
1444 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1445 
1446 /*
1447  * swap the static kmem_cache_node with kmalloced memory
1448  */
1449 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1450 				int nodeid)
1451 {
1452 	struct kmem_cache_node *ptr;
1453 
1454 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1455 	BUG_ON(!ptr);
1456 
1457 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1458 	/*
1459 	 * Do not assume that spinlocks can be initialized via memcpy:
1460 	 */
1461 	spin_lock_init(&ptr->list_lock);
1462 
1463 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1464 	cachep->node[nodeid] = ptr;
1465 }
1466 
1467 /*
1468  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1469  * size of kmem_cache_node.
1470  */
1471 static void __init set_up_node(struct kmem_cache *cachep, int index)
1472 {
1473 	int node;
1474 
1475 	for_each_online_node(node) {
1476 		cachep->node[node] = &init_kmem_cache_node[index + node];
1477 		cachep->node[node]->next_reap = jiffies +
1478 		    REAPTIMEOUT_NODE +
1479 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1480 	}
1481 }
1482 
1483 /*
1484  * The memory after the last cpu cache pointer is used for the
1485  * the node pointer.
1486  */
1487 static void setup_node_pointer(struct kmem_cache *cachep)
1488 {
1489 	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1490 }
1491 
1492 /*
1493  * Initialisation.  Called after the page allocator have been initialised and
1494  * before smp_init().
1495  */
1496 void __init kmem_cache_init(void)
1497 {
1498 	int i;
1499 
1500 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1501 					sizeof(struct rcu_head));
1502 	kmem_cache = &kmem_cache_boot;
1503 	setup_node_pointer(kmem_cache);
1504 
1505 	if (num_possible_nodes() == 1)
1506 		use_alien_caches = 0;
1507 
1508 	for (i = 0; i < NUM_INIT_LISTS; i++)
1509 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1510 
1511 	set_up_node(kmem_cache, CACHE_CACHE);
1512 
1513 	/*
1514 	 * Fragmentation resistance on low memory - only use bigger
1515 	 * page orders on machines with more than 32MB of memory if
1516 	 * not overridden on the command line.
1517 	 */
1518 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1519 		slab_max_order = SLAB_MAX_ORDER_HI;
1520 
1521 	/* Bootstrap is tricky, because several objects are allocated
1522 	 * from caches that do not exist yet:
1523 	 * 1) initialize the kmem_cache cache: it contains the struct
1524 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1525 	 *    kmem_cache is statically allocated.
1526 	 *    Initially an __init data area is used for the head array and the
1527 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1528 	 *    array at the end of the bootstrap.
1529 	 * 2) Create the first kmalloc cache.
1530 	 *    The struct kmem_cache for the new cache is allocated normally.
1531 	 *    An __init data area is used for the head array.
1532 	 * 3) Create the remaining kmalloc caches, with minimally sized
1533 	 *    head arrays.
1534 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1535 	 *    kmalloc cache with kmalloc allocated arrays.
1536 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1537 	 *    the other cache's with kmalloc allocated memory.
1538 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1539 	 */
1540 
1541 	/* 1) create the kmem_cache */
1542 
1543 	/*
1544 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1545 	 */
1546 	create_boot_cache(kmem_cache, "kmem_cache",
1547 		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1548 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1549 				  SLAB_HWCACHE_ALIGN);
1550 	list_add(&kmem_cache->list, &slab_caches);
1551 
1552 	/* 2+3) create the kmalloc caches */
1553 
1554 	/*
1555 	 * Initialize the caches that provide memory for the array cache and the
1556 	 * kmem_cache_node structures first.  Without this, further allocations will
1557 	 * bug.
1558 	 */
1559 
1560 	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1561 					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1562 
1563 	if (INDEX_AC != INDEX_NODE)
1564 		kmalloc_caches[INDEX_NODE] =
1565 			create_kmalloc_cache("kmalloc-node",
1566 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1567 
1568 	slab_early_init = 0;
1569 
1570 	/* 4) Replace the bootstrap head arrays */
1571 	{
1572 		struct array_cache *ptr;
1573 
1574 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1575 
1576 		memcpy(ptr, cpu_cache_get(kmem_cache),
1577 		       sizeof(struct arraycache_init));
1578 		/*
1579 		 * Do not assume that spinlocks can be initialized via memcpy:
1580 		 */
1581 		spin_lock_init(&ptr->lock);
1582 
1583 		kmem_cache->array[smp_processor_id()] = ptr;
1584 
1585 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1586 
1587 		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1588 		       != &initarray_generic.cache);
1589 		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1590 		       sizeof(struct arraycache_init));
1591 		/*
1592 		 * Do not assume that spinlocks can be initialized via memcpy:
1593 		 */
1594 		spin_lock_init(&ptr->lock);
1595 
1596 		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1597 	}
1598 	/* 5) Replace the bootstrap kmem_cache_node */
1599 	{
1600 		int nid;
1601 
1602 		for_each_online_node(nid) {
1603 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1604 
1605 			init_list(kmalloc_caches[INDEX_AC],
1606 				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1607 
1608 			if (INDEX_AC != INDEX_NODE) {
1609 				init_list(kmalloc_caches[INDEX_NODE],
1610 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1611 			}
1612 		}
1613 	}
1614 
1615 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1616 }
1617 
1618 void __init kmem_cache_init_late(void)
1619 {
1620 	struct kmem_cache *cachep;
1621 
1622 	slab_state = UP;
1623 
1624 	/* 6) resize the head arrays to their final sizes */
1625 	mutex_lock(&slab_mutex);
1626 	list_for_each_entry(cachep, &slab_caches, list)
1627 		if (enable_cpucache(cachep, GFP_NOWAIT))
1628 			BUG();
1629 	mutex_unlock(&slab_mutex);
1630 
1631 	/* Annotate slab for lockdep -- annotate the malloc caches */
1632 	init_lock_keys();
1633 
1634 	/* Done! */
1635 	slab_state = FULL;
1636 
1637 	/*
1638 	 * Register a cpu startup notifier callback that initializes
1639 	 * cpu_cache_get for all new cpus
1640 	 */
1641 	register_cpu_notifier(&cpucache_notifier);
1642 
1643 #ifdef CONFIG_NUMA
1644 	/*
1645 	 * Register a memory hotplug callback that initializes and frees
1646 	 * node.
1647 	 */
1648 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1649 #endif
1650 
1651 	/*
1652 	 * The reap timers are started later, with a module init call: That part
1653 	 * of the kernel is not yet operational.
1654 	 */
1655 }
1656 
1657 static int __init cpucache_init(void)
1658 {
1659 	int cpu;
1660 
1661 	/*
1662 	 * Register the timers that return unneeded pages to the page allocator
1663 	 */
1664 	for_each_online_cpu(cpu)
1665 		start_cpu_timer(cpu);
1666 
1667 	/* Done! */
1668 	slab_state = FULL;
1669 	return 0;
1670 }
1671 __initcall(cpucache_init);
1672 
1673 static noinline void
1674 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1675 {
1676 #if DEBUG
1677 	struct kmem_cache_node *n;
1678 	struct page *page;
1679 	unsigned long flags;
1680 	int node;
1681 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1682 				      DEFAULT_RATELIMIT_BURST);
1683 
1684 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1685 		return;
1686 
1687 	printk(KERN_WARNING
1688 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1689 		nodeid, gfpflags);
1690 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1691 		cachep->name, cachep->size, cachep->gfporder);
1692 
1693 	for_each_online_node(node) {
1694 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1695 		unsigned long active_slabs = 0, num_slabs = 0;
1696 
1697 		n = cachep->node[node];
1698 		if (!n)
1699 			continue;
1700 
1701 		spin_lock_irqsave(&n->list_lock, flags);
1702 		list_for_each_entry(page, &n->slabs_full, lru) {
1703 			active_objs += cachep->num;
1704 			active_slabs++;
1705 		}
1706 		list_for_each_entry(page, &n->slabs_partial, lru) {
1707 			active_objs += page->active;
1708 			active_slabs++;
1709 		}
1710 		list_for_each_entry(page, &n->slabs_free, lru)
1711 			num_slabs++;
1712 
1713 		free_objects += n->free_objects;
1714 		spin_unlock_irqrestore(&n->list_lock, flags);
1715 
1716 		num_slabs += active_slabs;
1717 		num_objs = num_slabs * cachep->num;
1718 		printk(KERN_WARNING
1719 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1720 			node, active_slabs, num_slabs, active_objs, num_objs,
1721 			free_objects);
1722 	}
1723 #endif
1724 }
1725 
1726 /*
1727  * Interface to system's page allocator. No need to hold the cache-lock.
1728  *
1729  * If we requested dmaable memory, we will get it. Even if we
1730  * did not request dmaable memory, we might get it, but that
1731  * would be relatively rare and ignorable.
1732  */
1733 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1734 								int nodeid)
1735 {
1736 	struct page *page;
1737 	int nr_pages;
1738 
1739 	flags |= cachep->allocflags;
1740 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1741 		flags |= __GFP_RECLAIMABLE;
1742 
1743 	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1744 		return NULL;
1745 
1746 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1747 	if (!page) {
1748 		memcg_uncharge_slab(cachep, cachep->gfporder);
1749 		slab_out_of_memory(cachep, flags, nodeid);
1750 		return NULL;
1751 	}
1752 
1753 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1754 	if (unlikely(page->pfmemalloc))
1755 		pfmemalloc_active = true;
1756 
1757 	nr_pages = (1 << cachep->gfporder);
1758 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1759 		add_zone_page_state(page_zone(page),
1760 			NR_SLAB_RECLAIMABLE, nr_pages);
1761 	else
1762 		add_zone_page_state(page_zone(page),
1763 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1764 	__SetPageSlab(page);
1765 	if (page->pfmemalloc)
1766 		SetPageSlabPfmemalloc(page);
1767 
1768 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1769 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1770 
1771 		if (cachep->ctor)
1772 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1773 		else
1774 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1775 	}
1776 
1777 	return page;
1778 }
1779 
1780 /*
1781  * Interface to system's page release.
1782  */
1783 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1784 {
1785 	const unsigned long nr_freed = (1 << cachep->gfporder);
1786 
1787 	kmemcheck_free_shadow(page, cachep->gfporder);
1788 
1789 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1790 		sub_zone_page_state(page_zone(page),
1791 				NR_SLAB_RECLAIMABLE, nr_freed);
1792 	else
1793 		sub_zone_page_state(page_zone(page),
1794 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1795 
1796 	BUG_ON(!PageSlab(page));
1797 	__ClearPageSlabPfmemalloc(page);
1798 	__ClearPageSlab(page);
1799 	page_mapcount_reset(page);
1800 	page->mapping = NULL;
1801 
1802 	if (current->reclaim_state)
1803 		current->reclaim_state->reclaimed_slab += nr_freed;
1804 	__free_pages(page, cachep->gfporder);
1805 	memcg_uncharge_slab(cachep, cachep->gfporder);
1806 }
1807 
1808 static void kmem_rcu_free(struct rcu_head *head)
1809 {
1810 	struct kmem_cache *cachep;
1811 	struct page *page;
1812 
1813 	page = container_of(head, struct page, rcu_head);
1814 	cachep = page->slab_cache;
1815 
1816 	kmem_freepages(cachep, page);
1817 }
1818 
1819 #if DEBUG
1820 
1821 #ifdef CONFIG_DEBUG_PAGEALLOC
1822 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1823 			    unsigned long caller)
1824 {
1825 	int size = cachep->object_size;
1826 
1827 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1828 
1829 	if (size < 5 * sizeof(unsigned long))
1830 		return;
1831 
1832 	*addr++ = 0x12345678;
1833 	*addr++ = caller;
1834 	*addr++ = smp_processor_id();
1835 	size -= 3 * sizeof(unsigned long);
1836 	{
1837 		unsigned long *sptr = &caller;
1838 		unsigned long svalue;
1839 
1840 		while (!kstack_end(sptr)) {
1841 			svalue = *sptr++;
1842 			if (kernel_text_address(svalue)) {
1843 				*addr++ = svalue;
1844 				size -= sizeof(unsigned long);
1845 				if (size <= sizeof(unsigned long))
1846 					break;
1847 			}
1848 		}
1849 
1850 	}
1851 	*addr++ = 0x87654321;
1852 }
1853 #endif
1854 
1855 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1856 {
1857 	int size = cachep->object_size;
1858 	addr = &((char *)addr)[obj_offset(cachep)];
1859 
1860 	memset(addr, val, size);
1861 	*(unsigned char *)(addr + size - 1) = POISON_END;
1862 }
1863 
1864 static void dump_line(char *data, int offset, int limit)
1865 {
1866 	int i;
1867 	unsigned char error = 0;
1868 	int bad_count = 0;
1869 
1870 	printk(KERN_ERR "%03x: ", offset);
1871 	for (i = 0; i < limit; i++) {
1872 		if (data[offset + i] != POISON_FREE) {
1873 			error = data[offset + i];
1874 			bad_count++;
1875 		}
1876 	}
1877 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1878 			&data[offset], limit, 1);
1879 
1880 	if (bad_count == 1) {
1881 		error ^= POISON_FREE;
1882 		if (!(error & (error - 1))) {
1883 			printk(KERN_ERR "Single bit error detected. Probably "
1884 					"bad RAM.\n");
1885 #ifdef CONFIG_X86
1886 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1887 					"test tool.\n");
1888 #else
1889 			printk(KERN_ERR "Run a memory test tool.\n");
1890 #endif
1891 		}
1892 	}
1893 }
1894 #endif
1895 
1896 #if DEBUG
1897 
1898 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1899 {
1900 	int i, size;
1901 	char *realobj;
1902 
1903 	if (cachep->flags & SLAB_RED_ZONE) {
1904 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1905 			*dbg_redzone1(cachep, objp),
1906 			*dbg_redzone2(cachep, objp));
1907 	}
1908 
1909 	if (cachep->flags & SLAB_STORE_USER) {
1910 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1911 		       *dbg_userword(cachep, objp),
1912 		       *dbg_userword(cachep, objp));
1913 	}
1914 	realobj = (char *)objp + obj_offset(cachep);
1915 	size = cachep->object_size;
1916 	for (i = 0; i < size && lines; i += 16, lines--) {
1917 		int limit;
1918 		limit = 16;
1919 		if (i + limit > size)
1920 			limit = size - i;
1921 		dump_line(realobj, i, limit);
1922 	}
1923 }
1924 
1925 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1926 {
1927 	char *realobj;
1928 	int size, i;
1929 	int lines = 0;
1930 
1931 	realobj = (char *)objp + obj_offset(cachep);
1932 	size = cachep->object_size;
1933 
1934 	for (i = 0; i < size; i++) {
1935 		char exp = POISON_FREE;
1936 		if (i == size - 1)
1937 			exp = POISON_END;
1938 		if (realobj[i] != exp) {
1939 			int limit;
1940 			/* Mismatch ! */
1941 			/* Print header */
1942 			if (lines == 0) {
1943 				printk(KERN_ERR
1944 					"Slab corruption (%s): %s start=%p, len=%d\n",
1945 					print_tainted(), cachep->name, realobj, size);
1946 				print_objinfo(cachep, objp, 0);
1947 			}
1948 			/* Hexdump the affected line */
1949 			i = (i / 16) * 16;
1950 			limit = 16;
1951 			if (i + limit > size)
1952 				limit = size - i;
1953 			dump_line(realobj, i, limit);
1954 			i += 16;
1955 			lines++;
1956 			/* Limit to 5 lines */
1957 			if (lines > 5)
1958 				break;
1959 		}
1960 	}
1961 	if (lines != 0) {
1962 		/* Print some data about the neighboring objects, if they
1963 		 * exist:
1964 		 */
1965 		struct page *page = virt_to_head_page(objp);
1966 		unsigned int objnr;
1967 
1968 		objnr = obj_to_index(cachep, page, objp);
1969 		if (objnr) {
1970 			objp = index_to_obj(cachep, page, objnr - 1);
1971 			realobj = (char *)objp + obj_offset(cachep);
1972 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1973 			       realobj, size);
1974 			print_objinfo(cachep, objp, 2);
1975 		}
1976 		if (objnr + 1 < cachep->num) {
1977 			objp = index_to_obj(cachep, page, objnr + 1);
1978 			realobj = (char *)objp + obj_offset(cachep);
1979 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1980 			       realobj, size);
1981 			print_objinfo(cachep, objp, 2);
1982 		}
1983 	}
1984 }
1985 #endif
1986 
1987 #if DEBUG
1988 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1989 						struct page *page)
1990 {
1991 	int i;
1992 	for (i = 0; i < cachep->num; i++) {
1993 		void *objp = index_to_obj(cachep, page, i);
1994 
1995 		if (cachep->flags & SLAB_POISON) {
1996 #ifdef CONFIG_DEBUG_PAGEALLOC
1997 			if (cachep->size % PAGE_SIZE == 0 &&
1998 					OFF_SLAB(cachep))
1999 				kernel_map_pages(virt_to_page(objp),
2000 					cachep->size / PAGE_SIZE, 1);
2001 			else
2002 				check_poison_obj(cachep, objp);
2003 #else
2004 			check_poison_obj(cachep, objp);
2005 #endif
2006 		}
2007 		if (cachep->flags & SLAB_RED_ZONE) {
2008 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2009 				slab_error(cachep, "start of a freed object "
2010 					   "was overwritten");
2011 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2012 				slab_error(cachep, "end of a freed object "
2013 					   "was overwritten");
2014 		}
2015 	}
2016 }
2017 #else
2018 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
2019 						struct page *page)
2020 {
2021 }
2022 #endif
2023 
2024 /**
2025  * slab_destroy - destroy and release all objects in a slab
2026  * @cachep: cache pointer being destroyed
2027  * @page: page pointer being destroyed
2028  *
2029  * Destroy all the objs in a slab, and release the mem back to the system.
2030  * Before calling the slab must have been unlinked from the cache.  The
2031  * cache-lock is not held/needed.
2032  */
2033 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
2034 {
2035 	void *freelist;
2036 
2037 	freelist = page->freelist;
2038 	slab_destroy_debugcheck(cachep, page);
2039 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2040 		struct rcu_head *head;
2041 
2042 		/*
2043 		 * RCU free overloads the RCU head over the LRU.
2044 		 * slab_page has been overloeaded over the LRU,
2045 		 * however it is not used from now on so that
2046 		 * we can use it safely.
2047 		 */
2048 		head = (void *)&page->rcu_head;
2049 		call_rcu(head, kmem_rcu_free);
2050 
2051 	} else {
2052 		kmem_freepages(cachep, page);
2053 	}
2054 
2055 	/*
2056 	 * From now on, we don't use freelist
2057 	 * although actual page can be freed in rcu context
2058 	 */
2059 	if (OFF_SLAB(cachep))
2060 		kmem_cache_free(cachep->freelist_cache, freelist);
2061 }
2062 
2063 /**
2064  * calculate_slab_order - calculate size (page order) of slabs
2065  * @cachep: pointer to the cache that is being created
2066  * @size: size of objects to be created in this cache.
2067  * @align: required alignment for the objects.
2068  * @flags: slab allocation flags
2069  *
2070  * Also calculates the number of objects per slab.
2071  *
2072  * This could be made much more intelligent.  For now, try to avoid using
2073  * high order pages for slabs.  When the gfp() functions are more friendly
2074  * towards high-order requests, this should be changed.
2075  */
2076 static size_t calculate_slab_order(struct kmem_cache *cachep,
2077 			size_t size, size_t align, unsigned long flags)
2078 {
2079 	unsigned long offslab_limit;
2080 	size_t left_over = 0;
2081 	int gfporder;
2082 
2083 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2084 		unsigned int num;
2085 		size_t remainder;
2086 
2087 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2088 		if (!num)
2089 			continue;
2090 
2091 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
2092 		if (num > SLAB_OBJ_MAX_NUM)
2093 			break;
2094 
2095 		if (flags & CFLGS_OFF_SLAB) {
2096 			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
2097 			/*
2098 			 * Max number of objs-per-slab for caches which
2099 			 * use off-slab slabs. Needed to avoid a possible
2100 			 * looping condition in cache_grow().
2101 			 */
2102 			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
2103 				freelist_size_per_obj += sizeof(char);
2104 			offslab_limit = size;
2105 			offslab_limit /= freelist_size_per_obj;
2106 
2107  			if (num > offslab_limit)
2108 				break;
2109 		}
2110 
2111 		/* Found something acceptable - save it away */
2112 		cachep->num = num;
2113 		cachep->gfporder = gfporder;
2114 		left_over = remainder;
2115 
2116 		/*
2117 		 * A VFS-reclaimable slab tends to have most allocations
2118 		 * as GFP_NOFS and we really don't want to have to be allocating
2119 		 * higher-order pages when we are unable to shrink dcache.
2120 		 */
2121 		if (flags & SLAB_RECLAIM_ACCOUNT)
2122 			break;
2123 
2124 		/*
2125 		 * Large number of objects is good, but very large slabs are
2126 		 * currently bad for the gfp()s.
2127 		 */
2128 		if (gfporder >= slab_max_order)
2129 			break;
2130 
2131 		/*
2132 		 * Acceptable internal fragmentation?
2133 		 */
2134 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2135 			break;
2136 	}
2137 	return left_over;
2138 }
2139 
2140 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2141 {
2142 	if (slab_state >= FULL)
2143 		return enable_cpucache(cachep, gfp);
2144 
2145 	if (slab_state == DOWN) {
2146 		/*
2147 		 * Note: Creation of first cache (kmem_cache).
2148 		 * The setup_node is taken care
2149 		 * of by the caller of __kmem_cache_create
2150 		 */
2151 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2152 		slab_state = PARTIAL;
2153 	} else if (slab_state == PARTIAL) {
2154 		/*
2155 		 * Note: the second kmem_cache_create must create the cache
2156 		 * that's used by kmalloc(24), otherwise the creation of
2157 		 * further caches will BUG().
2158 		 */
2159 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2160 
2161 		/*
2162 		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2163 		 * the second cache, then we need to set up all its node/,
2164 		 * otherwise the creation of further caches will BUG().
2165 		 */
2166 		set_up_node(cachep, SIZE_AC);
2167 		if (INDEX_AC == INDEX_NODE)
2168 			slab_state = PARTIAL_NODE;
2169 		else
2170 			slab_state = PARTIAL_ARRAYCACHE;
2171 	} else {
2172 		/* Remaining boot caches */
2173 		cachep->array[smp_processor_id()] =
2174 			kmalloc(sizeof(struct arraycache_init), gfp);
2175 
2176 		if (slab_state == PARTIAL_ARRAYCACHE) {
2177 			set_up_node(cachep, SIZE_NODE);
2178 			slab_state = PARTIAL_NODE;
2179 		} else {
2180 			int node;
2181 			for_each_online_node(node) {
2182 				cachep->node[node] =
2183 				    kmalloc_node(sizeof(struct kmem_cache_node),
2184 						gfp, node);
2185 				BUG_ON(!cachep->node[node]);
2186 				kmem_cache_node_init(cachep->node[node]);
2187 			}
2188 		}
2189 	}
2190 	cachep->node[numa_mem_id()]->next_reap =
2191 			jiffies + REAPTIMEOUT_NODE +
2192 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2193 
2194 	cpu_cache_get(cachep)->avail = 0;
2195 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2196 	cpu_cache_get(cachep)->batchcount = 1;
2197 	cpu_cache_get(cachep)->touched = 0;
2198 	cachep->batchcount = 1;
2199 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2200 	return 0;
2201 }
2202 
2203 /**
2204  * __kmem_cache_create - Create a cache.
2205  * @cachep: cache management descriptor
2206  * @flags: SLAB flags
2207  *
2208  * Returns a ptr to the cache on success, NULL on failure.
2209  * Cannot be called within a int, but can be interrupted.
2210  * The @ctor is run when new pages are allocated by the cache.
2211  *
2212  * The flags are
2213  *
2214  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2215  * to catch references to uninitialised memory.
2216  *
2217  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2218  * for buffer overruns.
2219  *
2220  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2221  * cacheline.  This can be beneficial if you're counting cycles as closely
2222  * as davem.
2223  */
2224 int
2225 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2226 {
2227 	size_t left_over, freelist_size, ralign;
2228 	gfp_t gfp;
2229 	int err;
2230 	size_t size = cachep->size;
2231 
2232 #if DEBUG
2233 #if FORCED_DEBUG
2234 	/*
2235 	 * Enable redzoning and last user accounting, except for caches with
2236 	 * large objects, if the increased size would increase the object size
2237 	 * above the next power of two: caches with object sizes just above a
2238 	 * power of two have a significant amount of internal fragmentation.
2239 	 */
2240 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2241 						2 * sizeof(unsigned long long)))
2242 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2243 	if (!(flags & SLAB_DESTROY_BY_RCU))
2244 		flags |= SLAB_POISON;
2245 #endif
2246 	if (flags & SLAB_DESTROY_BY_RCU)
2247 		BUG_ON(flags & SLAB_POISON);
2248 #endif
2249 
2250 	/*
2251 	 * Check that size is in terms of words.  This is needed to avoid
2252 	 * unaligned accesses for some archs when redzoning is used, and makes
2253 	 * sure any on-slab bufctl's are also correctly aligned.
2254 	 */
2255 	if (size & (BYTES_PER_WORD - 1)) {
2256 		size += (BYTES_PER_WORD - 1);
2257 		size &= ~(BYTES_PER_WORD - 1);
2258 	}
2259 
2260 	/*
2261 	 * Redzoning and user store require word alignment or possibly larger.
2262 	 * Note this will be overridden by architecture or caller mandated
2263 	 * alignment if either is greater than BYTES_PER_WORD.
2264 	 */
2265 	if (flags & SLAB_STORE_USER)
2266 		ralign = BYTES_PER_WORD;
2267 
2268 	if (flags & SLAB_RED_ZONE) {
2269 		ralign = REDZONE_ALIGN;
2270 		/* If redzoning, ensure that the second redzone is suitably
2271 		 * aligned, by adjusting the object size accordingly. */
2272 		size += REDZONE_ALIGN - 1;
2273 		size &= ~(REDZONE_ALIGN - 1);
2274 	}
2275 
2276 	/* 3) caller mandated alignment */
2277 	if (ralign < cachep->align) {
2278 		ralign = cachep->align;
2279 	}
2280 	/* disable debug if necessary */
2281 	if (ralign > __alignof__(unsigned long long))
2282 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2283 	/*
2284 	 * 4) Store it.
2285 	 */
2286 	cachep->align = ralign;
2287 
2288 	if (slab_is_available())
2289 		gfp = GFP_KERNEL;
2290 	else
2291 		gfp = GFP_NOWAIT;
2292 
2293 	setup_node_pointer(cachep);
2294 #if DEBUG
2295 
2296 	/*
2297 	 * Both debugging options require word-alignment which is calculated
2298 	 * into align above.
2299 	 */
2300 	if (flags & SLAB_RED_ZONE) {
2301 		/* add space for red zone words */
2302 		cachep->obj_offset += sizeof(unsigned long long);
2303 		size += 2 * sizeof(unsigned long long);
2304 	}
2305 	if (flags & SLAB_STORE_USER) {
2306 		/* user store requires one word storage behind the end of
2307 		 * the real object. But if the second red zone needs to be
2308 		 * aligned to 64 bits, we must allow that much space.
2309 		 */
2310 		if (flags & SLAB_RED_ZONE)
2311 			size += REDZONE_ALIGN;
2312 		else
2313 			size += BYTES_PER_WORD;
2314 	}
2315 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2316 	if (size >= kmalloc_size(INDEX_NODE + 1)
2317 	    && cachep->object_size > cache_line_size()
2318 	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
2319 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2320 		size = PAGE_SIZE;
2321 	}
2322 #endif
2323 #endif
2324 
2325 	/*
2326 	 * Determine if the slab management is 'on' or 'off' slab.
2327 	 * (bootstrapping cannot cope with offslab caches so don't do
2328 	 * it too early on. Always use on-slab management when
2329 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2330 	 */
2331 	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2332 	    !(flags & SLAB_NOLEAKTRACE))
2333 		/*
2334 		 * Size is large, assume best to place the slab management obj
2335 		 * off-slab (should allow better packing of objs).
2336 		 */
2337 		flags |= CFLGS_OFF_SLAB;
2338 
2339 	size = ALIGN(size, cachep->align);
2340 	/*
2341 	 * We should restrict the number of objects in a slab to implement
2342 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2343 	 */
2344 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2345 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2346 
2347 	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2348 
2349 	if (!cachep->num)
2350 		return -E2BIG;
2351 
2352 	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2353 
2354 	/*
2355 	 * If the slab has been placed off-slab, and we have enough space then
2356 	 * move it on-slab. This is at the expense of any extra colouring.
2357 	 */
2358 	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2359 		flags &= ~CFLGS_OFF_SLAB;
2360 		left_over -= freelist_size;
2361 	}
2362 
2363 	if (flags & CFLGS_OFF_SLAB) {
2364 		/* really off slab. No need for manual alignment */
2365 		freelist_size = calculate_freelist_size(cachep->num, 0);
2366 
2367 #ifdef CONFIG_PAGE_POISONING
2368 		/* If we're going to use the generic kernel_map_pages()
2369 		 * poisoning, then it's going to smash the contents of
2370 		 * the redzone and userword anyhow, so switch them off.
2371 		 */
2372 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2373 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2374 #endif
2375 	}
2376 
2377 	cachep->colour_off = cache_line_size();
2378 	/* Offset must be a multiple of the alignment. */
2379 	if (cachep->colour_off < cachep->align)
2380 		cachep->colour_off = cachep->align;
2381 	cachep->colour = left_over / cachep->colour_off;
2382 	cachep->freelist_size = freelist_size;
2383 	cachep->flags = flags;
2384 	cachep->allocflags = __GFP_COMP;
2385 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2386 		cachep->allocflags |= GFP_DMA;
2387 	cachep->size = size;
2388 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2389 
2390 	if (flags & CFLGS_OFF_SLAB) {
2391 		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2392 		/*
2393 		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2394 		 * But since we go off slab only for object size greater than
2395 		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2396 		 * in ascending order,this should not happen at all.
2397 		 * But leave a BUG_ON for some lucky dude.
2398 		 */
2399 		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2400 	}
2401 
2402 	err = setup_cpu_cache(cachep, gfp);
2403 	if (err) {
2404 		__kmem_cache_shutdown(cachep);
2405 		return err;
2406 	}
2407 
2408 	if (flags & SLAB_DEBUG_OBJECTS) {
2409 		/*
2410 		 * Would deadlock through slab_destroy()->call_rcu()->
2411 		 * debug_object_activate()->kmem_cache_alloc().
2412 		 */
2413 		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2414 
2415 		slab_set_debugobj_lock_classes(cachep);
2416 	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2417 		on_slab_lock_classes(cachep);
2418 
2419 	return 0;
2420 }
2421 
2422 #if DEBUG
2423 static void check_irq_off(void)
2424 {
2425 	BUG_ON(!irqs_disabled());
2426 }
2427 
2428 static void check_irq_on(void)
2429 {
2430 	BUG_ON(irqs_disabled());
2431 }
2432 
2433 static void check_spinlock_acquired(struct kmem_cache *cachep)
2434 {
2435 #ifdef CONFIG_SMP
2436 	check_irq_off();
2437 	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2438 #endif
2439 }
2440 
2441 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2442 {
2443 #ifdef CONFIG_SMP
2444 	check_irq_off();
2445 	assert_spin_locked(&cachep->node[node]->list_lock);
2446 #endif
2447 }
2448 
2449 #else
2450 #define check_irq_off()	do { } while(0)
2451 #define check_irq_on()	do { } while(0)
2452 #define check_spinlock_acquired(x) do { } while(0)
2453 #define check_spinlock_acquired_node(x, y) do { } while(0)
2454 #endif
2455 
2456 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2457 			struct array_cache *ac,
2458 			int force, int node);
2459 
2460 static void do_drain(void *arg)
2461 {
2462 	struct kmem_cache *cachep = arg;
2463 	struct array_cache *ac;
2464 	int node = numa_mem_id();
2465 
2466 	check_irq_off();
2467 	ac = cpu_cache_get(cachep);
2468 	spin_lock(&cachep->node[node]->list_lock);
2469 	free_block(cachep, ac->entry, ac->avail, node);
2470 	spin_unlock(&cachep->node[node]->list_lock);
2471 	ac->avail = 0;
2472 }
2473 
2474 static void drain_cpu_caches(struct kmem_cache *cachep)
2475 {
2476 	struct kmem_cache_node *n;
2477 	int node;
2478 
2479 	on_each_cpu(do_drain, cachep, 1);
2480 	check_irq_on();
2481 	for_each_online_node(node) {
2482 		n = cachep->node[node];
2483 		if (n && n->alien)
2484 			drain_alien_cache(cachep, n->alien);
2485 	}
2486 
2487 	for_each_online_node(node) {
2488 		n = cachep->node[node];
2489 		if (n)
2490 			drain_array(cachep, n, n->shared, 1, node);
2491 	}
2492 }
2493 
2494 /*
2495  * Remove slabs from the list of free slabs.
2496  * Specify the number of slabs to drain in tofree.
2497  *
2498  * Returns the actual number of slabs released.
2499  */
2500 static int drain_freelist(struct kmem_cache *cache,
2501 			struct kmem_cache_node *n, int tofree)
2502 {
2503 	struct list_head *p;
2504 	int nr_freed;
2505 	struct page *page;
2506 
2507 	nr_freed = 0;
2508 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2509 
2510 		spin_lock_irq(&n->list_lock);
2511 		p = n->slabs_free.prev;
2512 		if (p == &n->slabs_free) {
2513 			spin_unlock_irq(&n->list_lock);
2514 			goto out;
2515 		}
2516 
2517 		page = list_entry(p, struct page, lru);
2518 #if DEBUG
2519 		BUG_ON(page->active);
2520 #endif
2521 		list_del(&page->lru);
2522 		/*
2523 		 * Safe to drop the lock. The slab is no longer linked
2524 		 * to the cache.
2525 		 */
2526 		n->free_objects -= cache->num;
2527 		spin_unlock_irq(&n->list_lock);
2528 		slab_destroy(cache, page);
2529 		nr_freed++;
2530 	}
2531 out:
2532 	return nr_freed;
2533 }
2534 
2535 int __kmem_cache_shrink(struct kmem_cache *cachep)
2536 {
2537 	int ret = 0, i = 0;
2538 	struct kmem_cache_node *n;
2539 
2540 	drain_cpu_caches(cachep);
2541 
2542 	check_irq_on();
2543 	for_each_online_node(i) {
2544 		n = cachep->node[i];
2545 		if (!n)
2546 			continue;
2547 
2548 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2549 
2550 		ret += !list_empty(&n->slabs_full) ||
2551 			!list_empty(&n->slabs_partial);
2552 	}
2553 	return (ret ? 1 : 0);
2554 }
2555 
2556 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2557 {
2558 	int i;
2559 	struct kmem_cache_node *n;
2560 	int rc = __kmem_cache_shrink(cachep);
2561 
2562 	if (rc)
2563 		return rc;
2564 
2565 	for_each_online_cpu(i)
2566 	    kfree(cachep->array[i]);
2567 
2568 	/* NUMA: free the node structures */
2569 	for_each_online_node(i) {
2570 		n = cachep->node[i];
2571 		if (n) {
2572 			kfree(n->shared);
2573 			free_alien_cache(n->alien);
2574 			kfree(n);
2575 		}
2576 	}
2577 	return 0;
2578 }
2579 
2580 /*
2581  * Get the memory for a slab management obj.
2582  *
2583  * For a slab cache when the slab descriptor is off-slab, the
2584  * slab descriptor can't come from the same cache which is being created,
2585  * Because if it is the case, that means we defer the creation of
2586  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2587  * And we eventually call down to __kmem_cache_create(), which
2588  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2589  * This is a "chicken-and-egg" problem.
2590  *
2591  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2592  * which are all initialized during kmem_cache_init().
2593  */
2594 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2595 				   struct page *page, int colour_off,
2596 				   gfp_t local_flags, int nodeid)
2597 {
2598 	void *freelist;
2599 	void *addr = page_address(page);
2600 
2601 	if (OFF_SLAB(cachep)) {
2602 		/* Slab management obj is off-slab. */
2603 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2604 					      local_flags, nodeid);
2605 		if (!freelist)
2606 			return NULL;
2607 	} else {
2608 		freelist = addr + colour_off;
2609 		colour_off += cachep->freelist_size;
2610 	}
2611 	page->active = 0;
2612 	page->s_mem = addr + colour_off;
2613 	return freelist;
2614 }
2615 
2616 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2617 {
2618 	return ((freelist_idx_t *)page->freelist)[idx];
2619 }
2620 
2621 static inline void set_free_obj(struct page *page,
2622 					unsigned int idx, freelist_idx_t val)
2623 {
2624 	((freelist_idx_t *)(page->freelist))[idx] = val;
2625 }
2626 
2627 static void cache_init_objs(struct kmem_cache *cachep,
2628 			    struct page *page)
2629 {
2630 	int i;
2631 
2632 	for (i = 0; i < cachep->num; i++) {
2633 		void *objp = index_to_obj(cachep, page, i);
2634 #if DEBUG
2635 		/* need to poison the objs? */
2636 		if (cachep->flags & SLAB_POISON)
2637 			poison_obj(cachep, objp, POISON_FREE);
2638 		if (cachep->flags & SLAB_STORE_USER)
2639 			*dbg_userword(cachep, objp) = NULL;
2640 
2641 		if (cachep->flags & SLAB_RED_ZONE) {
2642 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2643 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2644 		}
2645 		/*
2646 		 * Constructors are not allowed to allocate memory from the same
2647 		 * cache which they are a constructor for.  Otherwise, deadlock.
2648 		 * They must also be threaded.
2649 		 */
2650 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2651 			cachep->ctor(objp + obj_offset(cachep));
2652 
2653 		if (cachep->flags & SLAB_RED_ZONE) {
2654 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2655 				slab_error(cachep, "constructor overwrote the"
2656 					   " end of an object");
2657 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2658 				slab_error(cachep, "constructor overwrote the"
2659 					   " start of an object");
2660 		}
2661 		if ((cachep->size % PAGE_SIZE) == 0 &&
2662 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2663 			kernel_map_pages(virt_to_page(objp),
2664 					 cachep->size / PAGE_SIZE, 0);
2665 #else
2666 		if (cachep->ctor)
2667 			cachep->ctor(objp);
2668 #endif
2669 		set_obj_status(page, i, OBJECT_FREE);
2670 		set_free_obj(page, i, i);
2671 	}
2672 }
2673 
2674 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2675 {
2676 	if (CONFIG_ZONE_DMA_FLAG) {
2677 		if (flags & GFP_DMA)
2678 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2679 		else
2680 			BUG_ON(cachep->allocflags & GFP_DMA);
2681 	}
2682 }
2683 
2684 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2685 				int nodeid)
2686 {
2687 	void *objp;
2688 
2689 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2690 	page->active++;
2691 #if DEBUG
2692 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2693 #endif
2694 
2695 	return objp;
2696 }
2697 
2698 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2699 				void *objp, int nodeid)
2700 {
2701 	unsigned int objnr = obj_to_index(cachep, page, objp);
2702 #if DEBUG
2703 	unsigned int i;
2704 
2705 	/* Verify that the slab belongs to the intended node */
2706 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2707 
2708 	/* Verify double free bug */
2709 	for (i = page->active; i < cachep->num; i++) {
2710 		if (get_free_obj(page, i) == objnr) {
2711 			printk(KERN_ERR "slab: double free detected in cache "
2712 					"'%s', objp %p\n", cachep->name, objp);
2713 			BUG();
2714 		}
2715 	}
2716 #endif
2717 	page->active--;
2718 	set_free_obj(page, page->active, objnr);
2719 }
2720 
2721 /*
2722  * Map pages beginning at addr to the given cache and slab. This is required
2723  * for the slab allocator to be able to lookup the cache and slab of a
2724  * virtual address for kfree, ksize, and slab debugging.
2725  */
2726 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2727 			   void *freelist)
2728 {
2729 	page->slab_cache = cache;
2730 	page->freelist = freelist;
2731 }
2732 
2733 /*
2734  * Grow (by 1) the number of slabs within a cache.  This is called by
2735  * kmem_cache_alloc() when there are no active objs left in a cache.
2736  */
2737 static int cache_grow(struct kmem_cache *cachep,
2738 		gfp_t flags, int nodeid, struct page *page)
2739 {
2740 	void *freelist;
2741 	size_t offset;
2742 	gfp_t local_flags;
2743 	struct kmem_cache_node *n;
2744 
2745 	/*
2746 	 * Be lazy and only check for valid flags here,  keeping it out of the
2747 	 * critical path in kmem_cache_alloc().
2748 	 */
2749 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2750 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2751 
2752 	/* Take the node list lock to change the colour_next on this node */
2753 	check_irq_off();
2754 	n = cachep->node[nodeid];
2755 	spin_lock(&n->list_lock);
2756 
2757 	/* Get colour for the slab, and cal the next value. */
2758 	offset = n->colour_next;
2759 	n->colour_next++;
2760 	if (n->colour_next >= cachep->colour)
2761 		n->colour_next = 0;
2762 	spin_unlock(&n->list_lock);
2763 
2764 	offset *= cachep->colour_off;
2765 
2766 	if (local_flags & __GFP_WAIT)
2767 		local_irq_enable();
2768 
2769 	/*
2770 	 * The test for missing atomic flag is performed here, rather than
2771 	 * the more obvious place, simply to reduce the critical path length
2772 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2773 	 * will eventually be caught here (where it matters).
2774 	 */
2775 	kmem_flagcheck(cachep, flags);
2776 
2777 	/*
2778 	 * Get mem for the objs.  Attempt to allocate a physical page from
2779 	 * 'nodeid'.
2780 	 */
2781 	if (!page)
2782 		page = kmem_getpages(cachep, local_flags, nodeid);
2783 	if (!page)
2784 		goto failed;
2785 
2786 	/* Get slab management. */
2787 	freelist = alloc_slabmgmt(cachep, page, offset,
2788 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2789 	if (!freelist)
2790 		goto opps1;
2791 
2792 	slab_map_pages(cachep, page, freelist);
2793 
2794 	cache_init_objs(cachep, page);
2795 
2796 	if (local_flags & __GFP_WAIT)
2797 		local_irq_disable();
2798 	check_irq_off();
2799 	spin_lock(&n->list_lock);
2800 
2801 	/* Make slab active. */
2802 	list_add_tail(&page->lru, &(n->slabs_free));
2803 	STATS_INC_GROWN(cachep);
2804 	n->free_objects += cachep->num;
2805 	spin_unlock(&n->list_lock);
2806 	return 1;
2807 opps1:
2808 	kmem_freepages(cachep, page);
2809 failed:
2810 	if (local_flags & __GFP_WAIT)
2811 		local_irq_disable();
2812 	return 0;
2813 }
2814 
2815 #if DEBUG
2816 
2817 /*
2818  * Perform extra freeing checks:
2819  * - detect bad pointers.
2820  * - POISON/RED_ZONE checking
2821  */
2822 static void kfree_debugcheck(const void *objp)
2823 {
2824 	if (!virt_addr_valid(objp)) {
2825 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2826 		       (unsigned long)objp);
2827 		BUG();
2828 	}
2829 }
2830 
2831 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2832 {
2833 	unsigned long long redzone1, redzone2;
2834 
2835 	redzone1 = *dbg_redzone1(cache, obj);
2836 	redzone2 = *dbg_redzone2(cache, obj);
2837 
2838 	/*
2839 	 * Redzone is ok.
2840 	 */
2841 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2842 		return;
2843 
2844 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2845 		slab_error(cache, "double free detected");
2846 	else
2847 		slab_error(cache, "memory outside object was overwritten");
2848 
2849 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2850 			obj, redzone1, redzone2);
2851 }
2852 
2853 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2854 				   unsigned long caller)
2855 {
2856 	unsigned int objnr;
2857 	struct page *page;
2858 
2859 	BUG_ON(virt_to_cache(objp) != cachep);
2860 
2861 	objp -= obj_offset(cachep);
2862 	kfree_debugcheck(objp);
2863 	page = virt_to_head_page(objp);
2864 
2865 	if (cachep->flags & SLAB_RED_ZONE) {
2866 		verify_redzone_free(cachep, objp);
2867 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2868 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2869 	}
2870 	if (cachep->flags & SLAB_STORE_USER)
2871 		*dbg_userword(cachep, objp) = (void *)caller;
2872 
2873 	objnr = obj_to_index(cachep, page, objp);
2874 
2875 	BUG_ON(objnr >= cachep->num);
2876 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2877 
2878 	set_obj_status(page, objnr, OBJECT_FREE);
2879 	if (cachep->flags & SLAB_POISON) {
2880 #ifdef CONFIG_DEBUG_PAGEALLOC
2881 		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2882 			store_stackinfo(cachep, objp, caller);
2883 			kernel_map_pages(virt_to_page(objp),
2884 					 cachep->size / PAGE_SIZE, 0);
2885 		} else {
2886 			poison_obj(cachep, objp, POISON_FREE);
2887 		}
2888 #else
2889 		poison_obj(cachep, objp, POISON_FREE);
2890 #endif
2891 	}
2892 	return objp;
2893 }
2894 
2895 #else
2896 #define kfree_debugcheck(x) do { } while(0)
2897 #define cache_free_debugcheck(x,objp,z) (objp)
2898 #endif
2899 
2900 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2901 							bool force_refill)
2902 {
2903 	int batchcount;
2904 	struct kmem_cache_node *n;
2905 	struct array_cache *ac;
2906 	int node;
2907 
2908 	check_irq_off();
2909 	node = numa_mem_id();
2910 	if (unlikely(force_refill))
2911 		goto force_grow;
2912 retry:
2913 	ac = cpu_cache_get(cachep);
2914 	batchcount = ac->batchcount;
2915 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2916 		/*
2917 		 * If there was little recent activity on this cache, then
2918 		 * perform only a partial refill.  Otherwise we could generate
2919 		 * refill bouncing.
2920 		 */
2921 		batchcount = BATCHREFILL_LIMIT;
2922 	}
2923 	n = cachep->node[node];
2924 
2925 	BUG_ON(ac->avail > 0 || !n);
2926 	spin_lock(&n->list_lock);
2927 
2928 	/* See if we can refill from the shared array */
2929 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2930 		n->shared->touched = 1;
2931 		goto alloc_done;
2932 	}
2933 
2934 	while (batchcount > 0) {
2935 		struct list_head *entry;
2936 		struct page *page;
2937 		/* Get slab alloc is to come from. */
2938 		entry = n->slabs_partial.next;
2939 		if (entry == &n->slabs_partial) {
2940 			n->free_touched = 1;
2941 			entry = n->slabs_free.next;
2942 			if (entry == &n->slabs_free)
2943 				goto must_grow;
2944 		}
2945 
2946 		page = list_entry(entry, struct page, lru);
2947 		check_spinlock_acquired(cachep);
2948 
2949 		/*
2950 		 * The slab was either on partial or free list so
2951 		 * there must be at least one object available for
2952 		 * allocation.
2953 		 */
2954 		BUG_ON(page->active >= cachep->num);
2955 
2956 		while (page->active < cachep->num && batchcount--) {
2957 			STATS_INC_ALLOCED(cachep);
2958 			STATS_INC_ACTIVE(cachep);
2959 			STATS_SET_HIGH(cachep);
2960 
2961 			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2962 									node));
2963 		}
2964 
2965 		/* move slabp to correct slabp list: */
2966 		list_del(&page->lru);
2967 		if (page->active == cachep->num)
2968 			list_add(&page->lru, &n->slabs_full);
2969 		else
2970 			list_add(&page->lru, &n->slabs_partial);
2971 	}
2972 
2973 must_grow:
2974 	n->free_objects -= ac->avail;
2975 alloc_done:
2976 	spin_unlock(&n->list_lock);
2977 
2978 	if (unlikely(!ac->avail)) {
2979 		int x;
2980 force_grow:
2981 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2982 
2983 		/* cache_grow can reenable interrupts, then ac could change. */
2984 		ac = cpu_cache_get(cachep);
2985 		node = numa_mem_id();
2986 
2987 		/* no objects in sight? abort */
2988 		if (!x && (ac->avail == 0 || force_refill))
2989 			return NULL;
2990 
2991 		if (!ac->avail)		/* objects refilled by interrupt? */
2992 			goto retry;
2993 	}
2994 	ac->touched = 1;
2995 
2996 	return ac_get_obj(cachep, ac, flags, force_refill);
2997 }
2998 
2999 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3000 						gfp_t flags)
3001 {
3002 	might_sleep_if(flags & __GFP_WAIT);
3003 #if DEBUG
3004 	kmem_flagcheck(cachep, flags);
3005 #endif
3006 }
3007 
3008 #if DEBUG
3009 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3010 				gfp_t flags, void *objp, unsigned long caller)
3011 {
3012 	struct page *page;
3013 
3014 	if (!objp)
3015 		return objp;
3016 	if (cachep->flags & SLAB_POISON) {
3017 #ifdef CONFIG_DEBUG_PAGEALLOC
3018 		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3019 			kernel_map_pages(virt_to_page(objp),
3020 					 cachep->size / PAGE_SIZE, 1);
3021 		else
3022 			check_poison_obj(cachep, objp);
3023 #else
3024 		check_poison_obj(cachep, objp);
3025 #endif
3026 		poison_obj(cachep, objp, POISON_INUSE);
3027 	}
3028 	if (cachep->flags & SLAB_STORE_USER)
3029 		*dbg_userword(cachep, objp) = (void *)caller;
3030 
3031 	if (cachep->flags & SLAB_RED_ZONE) {
3032 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3033 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3034 			slab_error(cachep, "double free, or memory outside"
3035 						" object was overwritten");
3036 			printk(KERN_ERR
3037 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3038 				objp, *dbg_redzone1(cachep, objp),
3039 				*dbg_redzone2(cachep, objp));
3040 		}
3041 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3042 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3043 	}
3044 
3045 	page = virt_to_head_page(objp);
3046 	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
3047 	objp += obj_offset(cachep);
3048 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3049 		cachep->ctor(objp);
3050 	if (ARCH_SLAB_MINALIGN &&
3051 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3052 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3053 		       objp, (int)ARCH_SLAB_MINALIGN);
3054 	}
3055 	return objp;
3056 }
3057 #else
3058 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3059 #endif
3060 
3061 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3062 {
3063 	if (cachep == kmem_cache)
3064 		return false;
3065 
3066 	return should_failslab(cachep->object_size, flags, cachep->flags);
3067 }
3068 
3069 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3070 {
3071 	void *objp;
3072 	struct array_cache *ac;
3073 	bool force_refill = false;
3074 
3075 	check_irq_off();
3076 
3077 	ac = cpu_cache_get(cachep);
3078 	if (likely(ac->avail)) {
3079 		ac->touched = 1;
3080 		objp = ac_get_obj(cachep, ac, flags, false);
3081 
3082 		/*
3083 		 * Allow for the possibility all avail objects are not allowed
3084 		 * by the current flags
3085 		 */
3086 		if (objp) {
3087 			STATS_INC_ALLOCHIT(cachep);
3088 			goto out;
3089 		}
3090 		force_refill = true;
3091 	}
3092 
3093 	STATS_INC_ALLOCMISS(cachep);
3094 	objp = cache_alloc_refill(cachep, flags, force_refill);
3095 	/*
3096 	 * the 'ac' may be updated by cache_alloc_refill(),
3097 	 * and kmemleak_erase() requires its correct value.
3098 	 */
3099 	ac = cpu_cache_get(cachep);
3100 
3101 out:
3102 	/*
3103 	 * To avoid a false negative, if an object that is in one of the
3104 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3105 	 * treat the array pointers as a reference to the object.
3106 	 */
3107 	if (objp)
3108 		kmemleak_erase(&ac->entry[ac->avail]);
3109 	return objp;
3110 }
3111 
3112 #ifdef CONFIG_NUMA
3113 /*
3114  * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3115  *
3116  * If we are in_interrupt, then process context, including cpusets and
3117  * mempolicy, may not apply and should not be used for allocation policy.
3118  */
3119 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3120 {
3121 	int nid_alloc, nid_here;
3122 
3123 	if (in_interrupt() || (flags & __GFP_THISNODE))
3124 		return NULL;
3125 	nid_alloc = nid_here = numa_mem_id();
3126 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3127 		nid_alloc = cpuset_slab_spread_node();
3128 	else if (current->mempolicy)
3129 		nid_alloc = mempolicy_slab_node();
3130 	if (nid_alloc != nid_here)
3131 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3132 	return NULL;
3133 }
3134 
3135 /*
3136  * Fallback function if there was no memory available and no objects on a
3137  * certain node and fall back is permitted. First we scan all the
3138  * available node for available objects. If that fails then we
3139  * perform an allocation without specifying a node. This allows the page
3140  * allocator to do its reclaim / fallback magic. We then insert the
3141  * slab into the proper nodelist and then allocate from it.
3142  */
3143 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3144 {
3145 	struct zonelist *zonelist;
3146 	gfp_t local_flags;
3147 	struct zoneref *z;
3148 	struct zone *zone;
3149 	enum zone_type high_zoneidx = gfp_zone(flags);
3150 	void *obj = NULL;
3151 	int nid;
3152 	unsigned int cpuset_mems_cookie;
3153 
3154 	if (flags & __GFP_THISNODE)
3155 		return NULL;
3156 
3157 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3158 
3159 retry_cpuset:
3160 	cpuset_mems_cookie = read_mems_allowed_begin();
3161 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3162 
3163 retry:
3164 	/*
3165 	 * Look through allowed nodes for objects available
3166 	 * from existing per node queues.
3167 	 */
3168 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3169 		nid = zone_to_nid(zone);
3170 
3171 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3172 			cache->node[nid] &&
3173 			cache->node[nid]->free_objects) {
3174 				obj = ____cache_alloc_node(cache,
3175 					flags | GFP_THISNODE, nid);
3176 				if (obj)
3177 					break;
3178 		}
3179 	}
3180 
3181 	if (!obj) {
3182 		/*
3183 		 * This allocation will be performed within the constraints
3184 		 * of the current cpuset / memory policy requirements.
3185 		 * We may trigger various forms of reclaim on the allowed
3186 		 * set and go into memory reserves if necessary.
3187 		 */
3188 		struct page *page;
3189 
3190 		if (local_flags & __GFP_WAIT)
3191 			local_irq_enable();
3192 		kmem_flagcheck(cache, flags);
3193 		page = kmem_getpages(cache, local_flags, numa_mem_id());
3194 		if (local_flags & __GFP_WAIT)
3195 			local_irq_disable();
3196 		if (page) {
3197 			/*
3198 			 * Insert into the appropriate per node queues
3199 			 */
3200 			nid = page_to_nid(page);
3201 			if (cache_grow(cache, flags, nid, page)) {
3202 				obj = ____cache_alloc_node(cache,
3203 					flags | GFP_THISNODE, nid);
3204 				if (!obj)
3205 					/*
3206 					 * Another processor may allocate the
3207 					 * objects in the slab since we are
3208 					 * not holding any locks.
3209 					 */
3210 					goto retry;
3211 			} else {
3212 				/* cache_grow already freed obj */
3213 				obj = NULL;
3214 			}
3215 		}
3216 	}
3217 
3218 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3219 		goto retry_cpuset;
3220 	return obj;
3221 }
3222 
3223 /*
3224  * A interface to enable slab creation on nodeid
3225  */
3226 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3227 				int nodeid)
3228 {
3229 	struct list_head *entry;
3230 	struct page *page;
3231 	struct kmem_cache_node *n;
3232 	void *obj;
3233 	int x;
3234 
3235 	VM_BUG_ON(nodeid > num_online_nodes());
3236 	n = cachep->node[nodeid];
3237 	BUG_ON(!n);
3238 
3239 retry:
3240 	check_irq_off();
3241 	spin_lock(&n->list_lock);
3242 	entry = n->slabs_partial.next;
3243 	if (entry == &n->slabs_partial) {
3244 		n->free_touched = 1;
3245 		entry = n->slabs_free.next;
3246 		if (entry == &n->slabs_free)
3247 			goto must_grow;
3248 	}
3249 
3250 	page = list_entry(entry, struct page, lru);
3251 	check_spinlock_acquired_node(cachep, nodeid);
3252 
3253 	STATS_INC_NODEALLOCS(cachep);
3254 	STATS_INC_ACTIVE(cachep);
3255 	STATS_SET_HIGH(cachep);
3256 
3257 	BUG_ON(page->active == cachep->num);
3258 
3259 	obj = slab_get_obj(cachep, page, nodeid);
3260 	n->free_objects--;
3261 	/* move slabp to correct slabp list: */
3262 	list_del(&page->lru);
3263 
3264 	if (page->active == cachep->num)
3265 		list_add(&page->lru, &n->slabs_full);
3266 	else
3267 		list_add(&page->lru, &n->slabs_partial);
3268 
3269 	spin_unlock(&n->list_lock);
3270 	goto done;
3271 
3272 must_grow:
3273 	spin_unlock(&n->list_lock);
3274 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3275 	if (x)
3276 		goto retry;
3277 
3278 	return fallback_alloc(cachep, flags);
3279 
3280 done:
3281 	return obj;
3282 }
3283 
3284 static __always_inline void *
3285 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3286 		   unsigned long caller)
3287 {
3288 	unsigned long save_flags;
3289 	void *ptr;
3290 	int slab_node = numa_mem_id();
3291 
3292 	flags &= gfp_allowed_mask;
3293 
3294 	lockdep_trace_alloc(flags);
3295 
3296 	if (slab_should_failslab(cachep, flags))
3297 		return NULL;
3298 
3299 	cachep = memcg_kmem_get_cache(cachep, flags);
3300 
3301 	cache_alloc_debugcheck_before(cachep, flags);
3302 	local_irq_save(save_flags);
3303 
3304 	if (nodeid == NUMA_NO_NODE)
3305 		nodeid = slab_node;
3306 
3307 	if (unlikely(!cachep->node[nodeid])) {
3308 		/* Node not bootstrapped yet */
3309 		ptr = fallback_alloc(cachep, flags);
3310 		goto out;
3311 	}
3312 
3313 	if (nodeid == slab_node) {
3314 		/*
3315 		 * Use the locally cached objects if possible.
3316 		 * However ____cache_alloc does not allow fallback
3317 		 * to other nodes. It may fail while we still have
3318 		 * objects on other nodes available.
3319 		 */
3320 		ptr = ____cache_alloc(cachep, flags);
3321 		if (ptr)
3322 			goto out;
3323 	}
3324 	/* ___cache_alloc_node can fall back to other nodes */
3325 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3326   out:
3327 	local_irq_restore(save_flags);
3328 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3329 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3330 				 flags);
3331 
3332 	if (likely(ptr)) {
3333 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3334 		if (unlikely(flags & __GFP_ZERO))
3335 			memset(ptr, 0, cachep->object_size);
3336 	}
3337 
3338 	return ptr;
3339 }
3340 
3341 static __always_inline void *
3342 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3343 {
3344 	void *objp;
3345 
3346 	if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3347 		objp = alternate_node_alloc(cache, flags);
3348 		if (objp)
3349 			goto out;
3350 	}
3351 	objp = ____cache_alloc(cache, flags);
3352 
3353 	/*
3354 	 * We may just have run out of memory on the local node.
3355 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3356 	 */
3357 	if (!objp)
3358 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3359 
3360   out:
3361 	return objp;
3362 }
3363 #else
3364 
3365 static __always_inline void *
3366 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3367 {
3368 	return ____cache_alloc(cachep, flags);
3369 }
3370 
3371 #endif /* CONFIG_NUMA */
3372 
3373 static __always_inline void *
3374 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3375 {
3376 	unsigned long save_flags;
3377 	void *objp;
3378 
3379 	flags &= gfp_allowed_mask;
3380 
3381 	lockdep_trace_alloc(flags);
3382 
3383 	if (slab_should_failslab(cachep, flags))
3384 		return NULL;
3385 
3386 	cachep = memcg_kmem_get_cache(cachep, flags);
3387 
3388 	cache_alloc_debugcheck_before(cachep, flags);
3389 	local_irq_save(save_flags);
3390 	objp = __do_cache_alloc(cachep, flags);
3391 	local_irq_restore(save_flags);
3392 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3393 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3394 				 flags);
3395 	prefetchw(objp);
3396 
3397 	if (likely(objp)) {
3398 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3399 		if (unlikely(flags & __GFP_ZERO))
3400 			memset(objp, 0, cachep->object_size);
3401 	}
3402 
3403 	return objp;
3404 }
3405 
3406 /*
3407  * Caller needs to acquire correct kmem_cache_node's list_lock
3408  */
3409 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3410 		       int node)
3411 {
3412 	int i;
3413 	struct kmem_cache_node *n;
3414 
3415 	for (i = 0; i < nr_objects; i++) {
3416 		void *objp;
3417 		struct page *page;
3418 
3419 		clear_obj_pfmemalloc(&objpp[i]);
3420 		objp = objpp[i];
3421 
3422 		page = virt_to_head_page(objp);
3423 		n = cachep->node[node];
3424 		list_del(&page->lru);
3425 		check_spinlock_acquired_node(cachep, node);
3426 		slab_put_obj(cachep, page, objp, node);
3427 		STATS_DEC_ACTIVE(cachep);
3428 		n->free_objects++;
3429 
3430 		/* fixup slab chains */
3431 		if (page->active == 0) {
3432 			if (n->free_objects > n->free_limit) {
3433 				n->free_objects -= cachep->num;
3434 				/* No need to drop any previously held
3435 				 * lock here, even if we have a off-slab slab
3436 				 * descriptor it is guaranteed to come from
3437 				 * a different cache, refer to comments before
3438 				 * alloc_slabmgmt.
3439 				 */
3440 				slab_destroy(cachep, page);
3441 			} else {
3442 				list_add(&page->lru, &n->slabs_free);
3443 			}
3444 		} else {
3445 			/* Unconditionally move a slab to the end of the
3446 			 * partial list on free - maximum time for the
3447 			 * other objects to be freed, too.
3448 			 */
3449 			list_add_tail(&page->lru, &n->slabs_partial);
3450 		}
3451 	}
3452 }
3453 
3454 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3455 {
3456 	int batchcount;
3457 	struct kmem_cache_node *n;
3458 	int node = numa_mem_id();
3459 
3460 	batchcount = ac->batchcount;
3461 #if DEBUG
3462 	BUG_ON(!batchcount || batchcount > ac->avail);
3463 #endif
3464 	check_irq_off();
3465 	n = cachep->node[node];
3466 	spin_lock(&n->list_lock);
3467 	if (n->shared) {
3468 		struct array_cache *shared_array = n->shared;
3469 		int max = shared_array->limit - shared_array->avail;
3470 		if (max) {
3471 			if (batchcount > max)
3472 				batchcount = max;
3473 			memcpy(&(shared_array->entry[shared_array->avail]),
3474 			       ac->entry, sizeof(void *) * batchcount);
3475 			shared_array->avail += batchcount;
3476 			goto free_done;
3477 		}
3478 	}
3479 
3480 	free_block(cachep, ac->entry, batchcount, node);
3481 free_done:
3482 #if STATS
3483 	{
3484 		int i = 0;
3485 		struct list_head *p;
3486 
3487 		p = n->slabs_free.next;
3488 		while (p != &(n->slabs_free)) {
3489 			struct page *page;
3490 
3491 			page = list_entry(p, struct page, lru);
3492 			BUG_ON(page->active);
3493 
3494 			i++;
3495 			p = p->next;
3496 		}
3497 		STATS_SET_FREEABLE(cachep, i);
3498 	}
3499 #endif
3500 	spin_unlock(&n->list_lock);
3501 	ac->avail -= batchcount;
3502 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3503 }
3504 
3505 /*
3506  * Release an obj back to its cache. If the obj has a constructed state, it must
3507  * be in this state _before_ it is released.  Called with disabled ints.
3508  */
3509 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3510 				unsigned long caller)
3511 {
3512 	struct array_cache *ac = cpu_cache_get(cachep);
3513 
3514 	check_irq_off();
3515 	kmemleak_free_recursive(objp, cachep->flags);
3516 	objp = cache_free_debugcheck(cachep, objp, caller);
3517 
3518 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3519 
3520 	/*
3521 	 * Skip calling cache_free_alien() when the platform is not numa.
3522 	 * This will avoid cache misses that happen while accessing slabp (which
3523 	 * is per page memory  reference) to get nodeid. Instead use a global
3524 	 * variable to skip the call, which is mostly likely to be present in
3525 	 * the cache.
3526 	 */
3527 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3528 		return;
3529 
3530 	if (likely(ac->avail < ac->limit)) {
3531 		STATS_INC_FREEHIT(cachep);
3532 	} else {
3533 		STATS_INC_FREEMISS(cachep);
3534 		cache_flusharray(cachep, ac);
3535 	}
3536 
3537 	ac_put_obj(cachep, ac, objp);
3538 }
3539 
3540 /**
3541  * kmem_cache_alloc - Allocate an object
3542  * @cachep: The cache to allocate from.
3543  * @flags: See kmalloc().
3544  *
3545  * Allocate an object from this cache.  The flags are only relevant
3546  * if the cache has no available objects.
3547  */
3548 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3549 {
3550 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3551 
3552 	trace_kmem_cache_alloc(_RET_IP_, ret,
3553 			       cachep->object_size, cachep->size, flags);
3554 
3555 	return ret;
3556 }
3557 EXPORT_SYMBOL(kmem_cache_alloc);
3558 
3559 #ifdef CONFIG_TRACING
3560 void *
3561 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3562 {
3563 	void *ret;
3564 
3565 	ret = slab_alloc(cachep, flags, _RET_IP_);
3566 
3567 	trace_kmalloc(_RET_IP_, ret,
3568 		      size, cachep->size, flags);
3569 	return ret;
3570 }
3571 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3572 #endif
3573 
3574 #ifdef CONFIG_NUMA
3575 /**
3576  * kmem_cache_alloc_node - Allocate an object on the specified node
3577  * @cachep: The cache to allocate from.
3578  * @flags: See kmalloc().
3579  * @nodeid: node number of the target node.
3580  *
3581  * Identical to kmem_cache_alloc but it will allocate memory on the given
3582  * node, which can improve the performance for cpu bound structures.
3583  *
3584  * Fallback to other node is possible if __GFP_THISNODE is not set.
3585  */
3586 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3587 {
3588 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3589 
3590 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3591 				    cachep->object_size, cachep->size,
3592 				    flags, nodeid);
3593 
3594 	return ret;
3595 }
3596 EXPORT_SYMBOL(kmem_cache_alloc_node);
3597 
3598 #ifdef CONFIG_TRACING
3599 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3600 				  gfp_t flags,
3601 				  int nodeid,
3602 				  size_t size)
3603 {
3604 	void *ret;
3605 
3606 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3607 
3608 	trace_kmalloc_node(_RET_IP_, ret,
3609 			   size, cachep->size,
3610 			   flags, nodeid);
3611 	return ret;
3612 }
3613 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3614 #endif
3615 
3616 static __always_inline void *
3617 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3618 {
3619 	struct kmem_cache *cachep;
3620 
3621 	cachep = kmalloc_slab(size, flags);
3622 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3623 		return cachep;
3624 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3625 }
3626 
3627 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3628 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3629 {
3630 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3631 }
3632 EXPORT_SYMBOL(__kmalloc_node);
3633 
3634 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3635 		int node, unsigned long caller)
3636 {
3637 	return __do_kmalloc_node(size, flags, node, caller);
3638 }
3639 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3640 #else
3641 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3642 {
3643 	return __do_kmalloc_node(size, flags, node, 0);
3644 }
3645 EXPORT_SYMBOL(__kmalloc_node);
3646 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3647 #endif /* CONFIG_NUMA */
3648 
3649 /**
3650  * __do_kmalloc - allocate memory
3651  * @size: how many bytes of memory are required.
3652  * @flags: the type of memory to allocate (see kmalloc).
3653  * @caller: function caller for debug tracking of the caller
3654  */
3655 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3656 					  unsigned long caller)
3657 {
3658 	struct kmem_cache *cachep;
3659 	void *ret;
3660 
3661 	cachep = kmalloc_slab(size, flags);
3662 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3663 		return cachep;
3664 	ret = slab_alloc(cachep, flags, caller);
3665 
3666 	trace_kmalloc(caller, ret,
3667 		      size, cachep->size, flags);
3668 
3669 	return ret;
3670 }
3671 
3672 
3673 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3674 void *__kmalloc(size_t size, gfp_t flags)
3675 {
3676 	return __do_kmalloc(size, flags, _RET_IP_);
3677 }
3678 EXPORT_SYMBOL(__kmalloc);
3679 
3680 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3681 {
3682 	return __do_kmalloc(size, flags, caller);
3683 }
3684 EXPORT_SYMBOL(__kmalloc_track_caller);
3685 
3686 #else
3687 void *__kmalloc(size_t size, gfp_t flags)
3688 {
3689 	return __do_kmalloc(size, flags, 0);
3690 }
3691 EXPORT_SYMBOL(__kmalloc);
3692 #endif
3693 
3694 /**
3695  * kmem_cache_free - Deallocate an object
3696  * @cachep: The cache the allocation was from.
3697  * @objp: The previously allocated object.
3698  *
3699  * Free an object which was previously allocated from this
3700  * cache.
3701  */
3702 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3703 {
3704 	unsigned long flags;
3705 	cachep = cache_from_obj(cachep, objp);
3706 	if (!cachep)
3707 		return;
3708 
3709 	local_irq_save(flags);
3710 	debug_check_no_locks_freed(objp, cachep->object_size);
3711 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3712 		debug_check_no_obj_freed(objp, cachep->object_size);
3713 	__cache_free(cachep, objp, _RET_IP_);
3714 	local_irq_restore(flags);
3715 
3716 	trace_kmem_cache_free(_RET_IP_, objp);
3717 }
3718 EXPORT_SYMBOL(kmem_cache_free);
3719 
3720 /**
3721  * kfree - free previously allocated memory
3722  * @objp: pointer returned by kmalloc.
3723  *
3724  * If @objp is NULL, no operation is performed.
3725  *
3726  * Don't free memory not originally allocated by kmalloc()
3727  * or you will run into trouble.
3728  */
3729 void kfree(const void *objp)
3730 {
3731 	struct kmem_cache *c;
3732 	unsigned long flags;
3733 
3734 	trace_kfree(_RET_IP_, objp);
3735 
3736 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3737 		return;
3738 	local_irq_save(flags);
3739 	kfree_debugcheck(objp);
3740 	c = virt_to_cache(objp);
3741 	debug_check_no_locks_freed(objp, c->object_size);
3742 
3743 	debug_check_no_obj_freed(objp, c->object_size);
3744 	__cache_free(c, (void *)objp, _RET_IP_);
3745 	local_irq_restore(flags);
3746 }
3747 EXPORT_SYMBOL(kfree);
3748 
3749 /*
3750  * This initializes kmem_cache_node or resizes various caches for all nodes.
3751  */
3752 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3753 {
3754 	int node;
3755 	struct kmem_cache_node *n;
3756 	struct array_cache *new_shared;
3757 	struct array_cache **new_alien = NULL;
3758 
3759 	for_each_online_node(node) {
3760 
3761                 if (use_alien_caches) {
3762                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3763                         if (!new_alien)
3764                                 goto fail;
3765                 }
3766 
3767 		new_shared = NULL;
3768 		if (cachep->shared) {
3769 			new_shared = alloc_arraycache(node,
3770 				cachep->shared*cachep->batchcount,
3771 					0xbaadf00d, gfp);
3772 			if (!new_shared) {
3773 				free_alien_cache(new_alien);
3774 				goto fail;
3775 			}
3776 		}
3777 
3778 		n = cachep->node[node];
3779 		if (n) {
3780 			struct array_cache *shared = n->shared;
3781 
3782 			spin_lock_irq(&n->list_lock);
3783 
3784 			if (shared)
3785 				free_block(cachep, shared->entry,
3786 						shared->avail, node);
3787 
3788 			n->shared = new_shared;
3789 			if (!n->alien) {
3790 				n->alien = new_alien;
3791 				new_alien = NULL;
3792 			}
3793 			n->free_limit = (1 + nr_cpus_node(node)) *
3794 					cachep->batchcount + cachep->num;
3795 			spin_unlock_irq(&n->list_lock);
3796 			kfree(shared);
3797 			free_alien_cache(new_alien);
3798 			continue;
3799 		}
3800 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3801 		if (!n) {
3802 			free_alien_cache(new_alien);
3803 			kfree(new_shared);
3804 			goto fail;
3805 		}
3806 
3807 		kmem_cache_node_init(n);
3808 		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3809 				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3810 		n->shared = new_shared;
3811 		n->alien = new_alien;
3812 		n->free_limit = (1 + nr_cpus_node(node)) *
3813 					cachep->batchcount + cachep->num;
3814 		cachep->node[node] = n;
3815 	}
3816 	return 0;
3817 
3818 fail:
3819 	if (!cachep->list.next) {
3820 		/* Cache is not active yet. Roll back what we did */
3821 		node--;
3822 		while (node >= 0) {
3823 			if (cachep->node[node]) {
3824 				n = cachep->node[node];
3825 
3826 				kfree(n->shared);
3827 				free_alien_cache(n->alien);
3828 				kfree(n);
3829 				cachep->node[node] = NULL;
3830 			}
3831 			node--;
3832 		}
3833 	}
3834 	return -ENOMEM;
3835 }
3836 
3837 struct ccupdate_struct {
3838 	struct kmem_cache *cachep;
3839 	struct array_cache *new[0];
3840 };
3841 
3842 static void do_ccupdate_local(void *info)
3843 {
3844 	struct ccupdate_struct *new = info;
3845 	struct array_cache *old;
3846 
3847 	check_irq_off();
3848 	old = cpu_cache_get(new->cachep);
3849 
3850 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3851 	new->new[smp_processor_id()] = old;
3852 }
3853 
3854 /* Always called with the slab_mutex held */
3855 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3856 				int batchcount, int shared, gfp_t gfp)
3857 {
3858 	struct ccupdate_struct *new;
3859 	int i;
3860 
3861 	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3862 		      gfp);
3863 	if (!new)
3864 		return -ENOMEM;
3865 
3866 	for_each_online_cpu(i) {
3867 		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3868 						batchcount, gfp);
3869 		if (!new->new[i]) {
3870 			for (i--; i >= 0; i--)
3871 				kfree(new->new[i]);
3872 			kfree(new);
3873 			return -ENOMEM;
3874 		}
3875 	}
3876 	new->cachep = cachep;
3877 
3878 	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3879 
3880 	check_irq_on();
3881 	cachep->batchcount = batchcount;
3882 	cachep->limit = limit;
3883 	cachep->shared = shared;
3884 
3885 	for_each_online_cpu(i) {
3886 		struct array_cache *ccold = new->new[i];
3887 		if (!ccold)
3888 			continue;
3889 		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3890 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3891 		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3892 		kfree(ccold);
3893 	}
3894 	kfree(new);
3895 	return alloc_kmem_cache_node(cachep, gfp);
3896 }
3897 
3898 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3899 				int batchcount, int shared, gfp_t gfp)
3900 {
3901 	int ret;
3902 	struct kmem_cache *c = NULL;
3903 	int i = 0;
3904 
3905 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3906 
3907 	if (slab_state < FULL)
3908 		return ret;
3909 
3910 	if ((ret < 0) || !is_root_cache(cachep))
3911 		return ret;
3912 
3913 	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3914 	for_each_memcg_cache_index(i) {
3915 		c = cache_from_memcg_idx(cachep, i);
3916 		if (c)
3917 			/* return value determined by the parent cache only */
3918 			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3919 	}
3920 
3921 	return ret;
3922 }
3923 
3924 /* Called with slab_mutex held always */
3925 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3926 {
3927 	int err;
3928 	int limit = 0;
3929 	int shared = 0;
3930 	int batchcount = 0;
3931 
3932 	if (!is_root_cache(cachep)) {
3933 		struct kmem_cache *root = memcg_root_cache(cachep);
3934 		limit = root->limit;
3935 		shared = root->shared;
3936 		batchcount = root->batchcount;
3937 	}
3938 
3939 	if (limit && shared && batchcount)
3940 		goto skip_setup;
3941 	/*
3942 	 * The head array serves three purposes:
3943 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3944 	 * - reduce the number of spinlock operations.
3945 	 * - reduce the number of linked list operations on the slab and
3946 	 *   bufctl chains: array operations are cheaper.
3947 	 * The numbers are guessed, we should auto-tune as described by
3948 	 * Bonwick.
3949 	 */
3950 	if (cachep->size > 131072)
3951 		limit = 1;
3952 	else if (cachep->size > PAGE_SIZE)
3953 		limit = 8;
3954 	else if (cachep->size > 1024)
3955 		limit = 24;
3956 	else if (cachep->size > 256)
3957 		limit = 54;
3958 	else
3959 		limit = 120;
3960 
3961 	/*
3962 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3963 	 * allocation behaviour: Most allocs on one cpu, most free operations
3964 	 * on another cpu. For these cases, an efficient object passing between
3965 	 * cpus is necessary. This is provided by a shared array. The array
3966 	 * replaces Bonwick's magazine layer.
3967 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3968 	 * to a larger limit. Thus disabled by default.
3969 	 */
3970 	shared = 0;
3971 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3972 		shared = 8;
3973 
3974 #if DEBUG
3975 	/*
3976 	 * With debugging enabled, large batchcount lead to excessively long
3977 	 * periods with disabled local interrupts. Limit the batchcount
3978 	 */
3979 	if (limit > 32)
3980 		limit = 32;
3981 #endif
3982 	batchcount = (limit + 1) / 2;
3983 skip_setup:
3984 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3985 	if (err)
3986 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3987 		       cachep->name, -err);
3988 	return err;
3989 }
3990 
3991 /*
3992  * Drain an array if it contains any elements taking the node lock only if
3993  * necessary. Note that the node listlock also protects the array_cache
3994  * if drain_array() is used on the shared array.
3995  */
3996 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3997 			 struct array_cache *ac, int force, int node)
3998 {
3999 	int tofree;
4000 
4001 	if (!ac || !ac->avail)
4002 		return;
4003 	if (ac->touched && !force) {
4004 		ac->touched = 0;
4005 	} else {
4006 		spin_lock_irq(&n->list_lock);
4007 		if (ac->avail) {
4008 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4009 			if (tofree > ac->avail)
4010 				tofree = (ac->avail + 1) / 2;
4011 			free_block(cachep, ac->entry, tofree, node);
4012 			ac->avail -= tofree;
4013 			memmove(ac->entry, &(ac->entry[tofree]),
4014 				sizeof(void *) * ac->avail);
4015 		}
4016 		spin_unlock_irq(&n->list_lock);
4017 	}
4018 }
4019 
4020 /**
4021  * cache_reap - Reclaim memory from caches.
4022  * @w: work descriptor
4023  *
4024  * Called from workqueue/eventd every few seconds.
4025  * Purpose:
4026  * - clear the per-cpu caches for this CPU.
4027  * - return freeable pages to the main free memory pool.
4028  *
4029  * If we cannot acquire the cache chain mutex then just give up - we'll try
4030  * again on the next iteration.
4031  */
4032 static void cache_reap(struct work_struct *w)
4033 {
4034 	struct kmem_cache *searchp;
4035 	struct kmem_cache_node *n;
4036 	int node = numa_mem_id();
4037 	struct delayed_work *work = to_delayed_work(w);
4038 
4039 	if (!mutex_trylock(&slab_mutex))
4040 		/* Give up. Setup the next iteration. */
4041 		goto out;
4042 
4043 	list_for_each_entry(searchp, &slab_caches, list) {
4044 		check_irq_on();
4045 
4046 		/*
4047 		 * We only take the node lock if absolutely necessary and we
4048 		 * have established with reasonable certainty that
4049 		 * we can do some work if the lock was obtained.
4050 		 */
4051 		n = searchp->node[node];
4052 
4053 		reap_alien(searchp, n);
4054 
4055 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4056 
4057 		/*
4058 		 * These are racy checks but it does not matter
4059 		 * if we skip one check or scan twice.
4060 		 */
4061 		if (time_after(n->next_reap, jiffies))
4062 			goto next;
4063 
4064 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4065 
4066 		drain_array(searchp, n, n->shared, 0, node);
4067 
4068 		if (n->free_touched)
4069 			n->free_touched = 0;
4070 		else {
4071 			int freed;
4072 
4073 			freed = drain_freelist(searchp, n, (n->free_limit +
4074 				5 * searchp->num - 1) / (5 * searchp->num));
4075 			STATS_ADD_REAPED(searchp, freed);
4076 		}
4077 next:
4078 		cond_resched();
4079 	}
4080 	check_irq_on();
4081 	mutex_unlock(&slab_mutex);
4082 	next_reap_node();
4083 out:
4084 	/* Set up the next iteration */
4085 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4086 }
4087 
4088 #ifdef CONFIG_SLABINFO
4089 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4090 {
4091 	struct page *page;
4092 	unsigned long active_objs;
4093 	unsigned long num_objs;
4094 	unsigned long active_slabs = 0;
4095 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4096 	const char *name;
4097 	char *error = NULL;
4098 	int node;
4099 	struct kmem_cache_node *n;
4100 
4101 	active_objs = 0;
4102 	num_slabs = 0;
4103 	for_each_online_node(node) {
4104 		n = cachep->node[node];
4105 		if (!n)
4106 			continue;
4107 
4108 		check_irq_on();
4109 		spin_lock_irq(&n->list_lock);
4110 
4111 		list_for_each_entry(page, &n->slabs_full, lru) {
4112 			if (page->active != cachep->num && !error)
4113 				error = "slabs_full accounting error";
4114 			active_objs += cachep->num;
4115 			active_slabs++;
4116 		}
4117 		list_for_each_entry(page, &n->slabs_partial, lru) {
4118 			if (page->active == cachep->num && !error)
4119 				error = "slabs_partial accounting error";
4120 			if (!page->active && !error)
4121 				error = "slabs_partial accounting error";
4122 			active_objs += page->active;
4123 			active_slabs++;
4124 		}
4125 		list_for_each_entry(page, &n->slabs_free, lru) {
4126 			if (page->active && !error)
4127 				error = "slabs_free accounting error";
4128 			num_slabs++;
4129 		}
4130 		free_objects += n->free_objects;
4131 		if (n->shared)
4132 			shared_avail += n->shared->avail;
4133 
4134 		spin_unlock_irq(&n->list_lock);
4135 	}
4136 	num_slabs += active_slabs;
4137 	num_objs = num_slabs * cachep->num;
4138 	if (num_objs - active_objs != free_objects && !error)
4139 		error = "free_objects accounting error";
4140 
4141 	name = cachep->name;
4142 	if (error)
4143 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4144 
4145 	sinfo->active_objs = active_objs;
4146 	sinfo->num_objs = num_objs;
4147 	sinfo->active_slabs = active_slabs;
4148 	sinfo->num_slabs = num_slabs;
4149 	sinfo->shared_avail = shared_avail;
4150 	sinfo->limit = cachep->limit;
4151 	sinfo->batchcount = cachep->batchcount;
4152 	sinfo->shared = cachep->shared;
4153 	sinfo->objects_per_slab = cachep->num;
4154 	sinfo->cache_order = cachep->gfporder;
4155 }
4156 
4157 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4158 {
4159 #if STATS
4160 	{			/* node stats */
4161 		unsigned long high = cachep->high_mark;
4162 		unsigned long allocs = cachep->num_allocations;
4163 		unsigned long grown = cachep->grown;
4164 		unsigned long reaped = cachep->reaped;
4165 		unsigned long errors = cachep->errors;
4166 		unsigned long max_freeable = cachep->max_freeable;
4167 		unsigned long node_allocs = cachep->node_allocs;
4168 		unsigned long node_frees = cachep->node_frees;
4169 		unsigned long overflows = cachep->node_overflow;
4170 
4171 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4172 			   "%4lu %4lu %4lu %4lu %4lu",
4173 			   allocs, high, grown,
4174 			   reaped, errors, max_freeable, node_allocs,
4175 			   node_frees, overflows);
4176 	}
4177 	/* cpu stats */
4178 	{
4179 		unsigned long allochit = atomic_read(&cachep->allochit);
4180 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4181 		unsigned long freehit = atomic_read(&cachep->freehit);
4182 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4183 
4184 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4185 			   allochit, allocmiss, freehit, freemiss);
4186 	}
4187 #endif
4188 }
4189 
4190 #define MAX_SLABINFO_WRITE 128
4191 /**
4192  * slabinfo_write - Tuning for the slab allocator
4193  * @file: unused
4194  * @buffer: user buffer
4195  * @count: data length
4196  * @ppos: unused
4197  */
4198 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4199 		       size_t count, loff_t *ppos)
4200 {
4201 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4202 	int limit, batchcount, shared, res;
4203 	struct kmem_cache *cachep;
4204 
4205 	if (count > MAX_SLABINFO_WRITE)
4206 		return -EINVAL;
4207 	if (copy_from_user(&kbuf, buffer, count))
4208 		return -EFAULT;
4209 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4210 
4211 	tmp = strchr(kbuf, ' ');
4212 	if (!tmp)
4213 		return -EINVAL;
4214 	*tmp = '\0';
4215 	tmp++;
4216 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4217 		return -EINVAL;
4218 
4219 	/* Find the cache in the chain of caches. */
4220 	mutex_lock(&slab_mutex);
4221 	res = -EINVAL;
4222 	list_for_each_entry(cachep, &slab_caches, list) {
4223 		if (!strcmp(cachep->name, kbuf)) {
4224 			if (limit < 1 || batchcount < 1 ||
4225 					batchcount > limit || shared < 0) {
4226 				res = 0;
4227 			} else {
4228 				res = do_tune_cpucache(cachep, limit,
4229 						       batchcount, shared,
4230 						       GFP_KERNEL);
4231 			}
4232 			break;
4233 		}
4234 	}
4235 	mutex_unlock(&slab_mutex);
4236 	if (res >= 0)
4237 		res = count;
4238 	return res;
4239 }
4240 
4241 #ifdef CONFIG_DEBUG_SLAB_LEAK
4242 
4243 static void *leaks_start(struct seq_file *m, loff_t *pos)
4244 {
4245 	mutex_lock(&slab_mutex);
4246 	return seq_list_start(&slab_caches, *pos);
4247 }
4248 
4249 static inline int add_caller(unsigned long *n, unsigned long v)
4250 {
4251 	unsigned long *p;
4252 	int l;
4253 	if (!v)
4254 		return 1;
4255 	l = n[1];
4256 	p = n + 2;
4257 	while (l) {
4258 		int i = l/2;
4259 		unsigned long *q = p + 2 * i;
4260 		if (*q == v) {
4261 			q[1]++;
4262 			return 1;
4263 		}
4264 		if (*q > v) {
4265 			l = i;
4266 		} else {
4267 			p = q + 2;
4268 			l -= i + 1;
4269 		}
4270 	}
4271 	if (++n[1] == n[0])
4272 		return 0;
4273 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4274 	p[0] = v;
4275 	p[1] = 1;
4276 	return 1;
4277 }
4278 
4279 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4280 						struct page *page)
4281 {
4282 	void *p;
4283 	int i;
4284 
4285 	if (n[0] == n[1])
4286 		return;
4287 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4288 		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4289 			continue;
4290 
4291 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4292 			return;
4293 	}
4294 }
4295 
4296 static void show_symbol(struct seq_file *m, unsigned long address)
4297 {
4298 #ifdef CONFIG_KALLSYMS
4299 	unsigned long offset, size;
4300 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4301 
4302 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4303 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4304 		if (modname[0])
4305 			seq_printf(m, " [%s]", modname);
4306 		return;
4307 	}
4308 #endif
4309 	seq_printf(m, "%p", (void *)address);
4310 }
4311 
4312 static int leaks_show(struct seq_file *m, void *p)
4313 {
4314 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4315 	struct page *page;
4316 	struct kmem_cache_node *n;
4317 	const char *name;
4318 	unsigned long *x = m->private;
4319 	int node;
4320 	int i;
4321 
4322 	if (!(cachep->flags & SLAB_STORE_USER))
4323 		return 0;
4324 	if (!(cachep->flags & SLAB_RED_ZONE))
4325 		return 0;
4326 
4327 	/* OK, we can do it */
4328 
4329 	x[1] = 0;
4330 
4331 	for_each_online_node(node) {
4332 		n = cachep->node[node];
4333 		if (!n)
4334 			continue;
4335 
4336 		check_irq_on();
4337 		spin_lock_irq(&n->list_lock);
4338 
4339 		list_for_each_entry(page, &n->slabs_full, lru)
4340 			handle_slab(x, cachep, page);
4341 		list_for_each_entry(page, &n->slabs_partial, lru)
4342 			handle_slab(x, cachep, page);
4343 		spin_unlock_irq(&n->list_lock);
4344 	}
4345 	name = cachep->name;
4346 	if (x[0] == x[1]) {
4347 		/* Increase the buffer size */
4348 		mutex_unlock(&slab_mutex);
4349 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4350 		if (!m->private) {
4351 			/* Too bad, we are really out */
4352 			m->private = x;
4353 			mutex_lock(&slab_mutex);
4354 			return -ENOMEM;
4355 		}
4356 		*(unsigned long *)m->private = x[0] * 2;
4357 		kfree(x);
4358 		mutex_lock(&slab_mutex);
4359 		/* Now make sure this entry will be retried */
4360 		m->count = m->size;
4361 		return 0;
4362 	}
4363 	for (i = 0; i < x[1]; i++) {
4364 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4365 		show_symbol(m, x[2*i+2]);
4366 		seq_putc(m, '\n');
4367 	}
4368 
4369 	return 0;
4370 }
4371 
4372 static const struct seq_operations slabstats_op = {
4373 	.start = leaks_start,
4374 	.next = slab_next,
4375 	.stop = slab_stop,
4376 	.show = leaks_show,
4377 };
4378 
4379 static int slabstats_open(struct inode *inode, struct file *file)
4380 {
4381 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4382 	int ret = -ENOMEM;
4383 	if (n) {
4384 		ret = seq_open(file, &slabstats_op);
4385 		if (!ret) {
4386 			struct seq_file *m = file->private_data;
4387 			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4388 			m->private = n;
4389 			n = NULL;
4390 		}
4391 		kfree(n);
4392 	}
4393 	return ret;
4394 }
4395 
4396 static const struct file_operations proc_slabstats_operations = {
4397 	.open		= slabstats_open,
4398 	.read		= seq_read,
4399 	.llseek		= seq_lseek,
4400 	.release	= seq_release_private,
4401 };
4402 #endif
4403 
4404 static int __init slab_proc_init(void)
4405 {
4406 #ifdef CONFIG_DEBUG_SLAB_LEAK
4407 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4408 #endif
4409 	return 0;
4410 }
4411 module_init(slab_proc_init);
4412 #endif
4413 
4414 /**
4415  * ksize - get the actual amount of memory allocated for a given object
4416  * @objp: Pointer to the object
4417  *
4418  * kmalloc may internally round up allocations and return more memory
4419  * than requested. ksize() can be used to determine the actual amount of
4420  * memory allocated. The caller may use this additional memory, even though
4421  * a smaller amount of memory was initially specified with the kmalloc call.
4422  * The caller must guarantee that objp points to a valid object previously
4423  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4424  * must not be freed during the duration of the call.
4425  */
4426 size_t ksize(const void *objp)
4427 {
4428 	BUG_ON(!objp);
4429 	if (unlikely(objp == ZERO_SIZE_PTR))
4430 		return 0;
4431 
4432 	return virt_to_cache(objp)->object_size;
4433 }
4434 EXPORT_SYMBOL(ksize);
4435