1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/kfence.h> 104 #include <linux/cpu.h> 105 #include <linux/sysctl.h> 106 #include <linux/module.h> 107 #include <linux/rcupdate.h> 108 #include <linux/string.h> 109 #include <linux/uaccess.h> 110 #include <linux/nodemask.h> 111 #include <linux/kmemleak.h> 112 #include <linux/mempolicy.h> 113 #include <linux/mutex.h> 114 #include <linux/fault-inject.h> 115 #include <linux/rtmutex.h> 116 #include <linux/reciprocal_div.h> 117 #include <linux/debugobjects.h> 118 #include <linux/memory.h> 119 #include <linux/prefetch.h> 120 #include <linux/sched/task_stack.h> 121 122 #include <net/sock.h> 123 124 #include <asm/cacheflush.h> 125 #include <asm/tlbflush.h> 126 #include <asm/page.h> 127 128 #include <trace/events/kmem.h> 129 130 #include "internal.h" 131 132 #include "slab.h" 133 134 /* 135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 136 * 0 for faster, smaller code (especially in the critical paths). 137 * 138 * STATS - 1 to collect stats for /proc/slabinfo. 139 * 0 for faster, smaller code (especially in the critical paths). 140 * 141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 142 */ 143 144 #ifdef CONFIG_DEBUG_SLAB 145 #define DEBUG 1 146 #define STATS 1 147 #define FORCED_DEBUG 1 148 #else 149 #define DEBUG 0 150 #define STATS 0 151 #define FORCED_DEBUG 0 152 #endif 153 154 /* Shouldn't this be in a header file somewhere? */ 155 #define BYTES_PER_WORD sizeof(void *) 156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 157 158 #ifndef ARCH_KMALLOC_FLAGS 159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 160 #endif 161 162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 164 165 #if FREELIST_BYTE_INDEX 166 typedef unsigned char freelist_idx_t; 167 #else 168 typedef unsigned short freelist_idx_t; 169 #endif 170 171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 172 173 /* 174 * struct array_cache 175 * 176 * Purpose: 177 * - LIFO ordering, to hand out cache-warm objects from _alloc 178 * - reduce the number of linked list operations 179 * - reduce spinlock operations 180 * 181 * The limit is stored in the per-cpu structure to reduce the data cache 182 * footprint. 183 * 184 */ 185 struct array_cache { 186 unsigned int avail; 187 unsigned int limit; 188 unsigned int batchcount; 189 unsigned int touched; 190 void *entry[]; /* 191 * Must have this definition in here for the proper 192 * alignment of array_cache. Also simplifies accessing 193 * the entries. 194 */ 195 }; 196 197 struct alien_cache { 198 spinlock_t lock; 199 struct array_cache ac; 200 }; 201 202 /* 203 * Need this for bootstrapping a per node allocator. 204 */ 205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 207 #define CACHE_CACHE 0 208 #define SIZE_NODE (MAX_NUMNODES) 209 210 static int drain_freelist(struct kmem_cache *cache, 211 struct kmem_cache_node *n, int tofree); 212 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 213 int node, struct list_head *list); 214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 216 static void cache_reap(struct work_struct *unused); 217 218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 219 void **list); 220 static inline void fixup_slab_list(struct kmem_cache *cachep, 221 struct kmem_cache_node *n, struct slab *slab, 222 void **list); 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 raw_spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnecessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long *) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 /* 366 * Do not go above this order unless 0 objects fit into the slab or 367 * overridden on the command line. 368 */ 369 #define SLAB_MAX_ORDER_HI 1 370 #define SLAB_MAX_ORDER_LO 0 371 static int slab_max_order = SLAB_MAX_ORDER_LO; 372 static bool slab_max_order_set __initdata; 373 374 static inline void *index_to_obj(struct kmem_cache *cache, 375 const struct slab *slab, unsigned int idx) 376 { 377 return slab->s_mem + cache->size * idx; 378 } 379 380 #define BOOT_CPUCACHE_ENTRIES 1 381 /* internal cache of cache description objs */ 382 static struct kmem_cache kmem_cache_boot = { 383 .batchcount = 1, 384 .limit = BOOT_CPUCACHE_ENTRIES, 385 .shared = 1, 386 .size = sizeof(struct kmem_cache), 387 .name = "kmem_cache", 388 }; 389 390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 391 392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 393 { 394 return this_cpu_ptr(cachep->cpu_cache); 395 } 396 397 /* 398 * Calculate the number of objects and left-over bytes for a given buffer size. 399 */ 400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 401 slab_flags_t flags, size_t *left_over) 402 { 403 unsigned int num; 404 size_t slab_size = PAGE_SIZE << gfporder; 405 406 /* 407 * The slab management structure can be either off the slab or 408 * on it. For the latter case, the memory allocated for a 409 * slab is used for: 410 * 411 * - @buffer_size bytes for each object 412 * - One freelist_idx_t for each object 413 * 414 * We don't need to consider alignment of freelist because 415 * freelist will be at the end of slab page. The objects will be 416 * at the correct alignment. 417 * 418 * If the slab management structure is off the slab, then the 419 * alignment will already be calculated into the size. Because 420 * the slabs are all pages aligned, the objects will be at the 421 * correct alignment when allocated. 422 */ 423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 424 num = slab_size / buffer_size; 425 *left_over = slab_size % buffer_size; 426 } else { 427 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 428 *left_over = slab_size % 429 (buffer_size + sizeof(freelist_idx_t)); 430 } 431 432 return num; 433 } 434 435 #if DEBUG 436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 437 438 static void __slab_error(const char *function, struct kmem_cache *cachep, 439 char *msg) 440 { 441 pr_err("slab error in %s(): cache `%s': %s\n", 442 function, cachep->name, msg); 443 dump_stack(); 444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 445 } 446 #endif 447 448 /* 449 * By default on NUMA we use alien caches to stage the freeing of 450 * objects allocated from other nodes. This causes massive memory 451 * inefficiencies when using fake NUMA setup to split memory into a 452 * large number of small nodes, so it can be disabled on the command 453 * line 454 */ 455 456 static int use_alien_caches __read_mostly = 1; 457 static int __init noaliencache_setup(char *s) 458 { 459 use_alien_caches = 0; 460 return 1; 461 } 462 __setup("noaliencache", noaliencache_setup); 463 464 static int __init slab_max_order_setup(char *str) 465 { 466 get_option(&str, &slab_max_order); 467 slab_max_order = slab_max_order < 0 ? 0 : 468 min(slab_max_order, MAX_ORDER); 469 slab_max_order_set = true; 470 471 return 1; 472 } 473 __setup("slab_max_order=", slab_max_order_setup); 474 475 #ifdef CONFIG_NUMA 476 /* 477 * Special reaping functions for NUMA systems called from cache_reap(). 478 * These take care of doing round robin flushing of alien caches (containing 479 * objects freed on different nodes from which they were allocated) and the 480 * flushing of remote pcps by calling drain_node_pages. 481 */ 482 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 483 484 static void init_reap_node(int cpu) 485 { 486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 487 node_online_map); 488 } 489 490 static void next_reap_node(void) 491 { 492 int node = __this_cpu_read(slab_reap_node); 493 494 node = next_node_in(node, node_online_map); 495 __this_cpu_write(slab_reap_node, node); 496 } 497 498 #else 499 #define init_reap_node(cpu) do { } while (0) 500 #define next_reap_node(void) do { } while (0) 501 #endif 502 503 /* 504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 505 * via the workqueue/eventd. 506 * Add the CPU number into the expiration time to minimize the possibility of 507 * the CPUs getting into lockstep and contending for the global cache chain 508 * lock. 509 */ 510 static void start_cpu_timer(int cpu) 511 { 512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 513 514 if (reap_work->work.func == NULL) { 515 init_reap_node(cpu); 516 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 517 schedule_delayed_work_on(cpu, reap_work, 518 __round_jiffies_relative(HZ, cpu)); 519 } 520 } 521 522 static void init_arraycache(struct array_cache *ac, int limit, int batch) 523 { 524 if (ac) { 525 ac->avail = 0; 526 ac->limit = limit; 527 ac->batchcount = batch; 528 ac->touched = 0; 529 } 530 } 531 532 static struct array_cache *alloc_arraycache(int node, int entries, 533 int batchcount, gfp_t gfp) 534 { 535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 536 struct array_cache *ac = NULL; 537 538 ac = kmalloc_node(memsize, gfp, node); 539 /* 540 * The array_cache structures contain pointers to free object. 541 * However, when such objects are allocated or transferred to another 542 * cache the pointers are not cleared and they could be counted as 543 * valid references during a kmemleak scan. Therefore, kmemleak must 544 * not scan such objects. 545 */ 546 kmemleak_no_scan(ac); 547 init_arraycache(ac, entries, batchcount); 548 return ac; 549 } 550 551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 552 struct slab *slab, void *objp) 553 { 554 struct kmem_cache_node *n; 555 int slab_node; 556 LIST_HEAD(list); 557 558 slab_node = slab_nid(slab); 559 n = get_node(cachep, slab_node); 560 561 raw_spin_lock(&n->list_lock); 562 free_block(cachep, &objp, 1, slab_node, &list); 563 raw_spin_unlock(&n->list_lock); 564 565 slabs_destroy(cachep, &list); 566 } 567 568 /* 569 * Transfer objects in one arraycache to another. 570 * Locking must be handled by the caller. 571 * 572 * Return the number of entries transferred. 573 */ 574 static int transfer_objects(struct array_cache *to, 575 struct array_cache *from, unsigned int max) 576 { 577 /* Figure out how many entries to transfer */ 578 int nr = min3(from->avail, max, to->limit - to->avail); 579 580 if (!nr) 581 return 0; 582 583 memcpy(to->entry + to->avail, from->entry + from->avail - nr, 584 sizeof(void *) *nr); 585 586 from->avail -= nr; 587 to->avail += nr; 588 return nr; 589 } 590 591 /* &alien->lock must be held by alien callers. */ 592 static __always_inline void __free_one(struct array_cache *ac, void *objp) 593 { 594 /* Avoid trivial double-free. */ 595 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 596 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) 597 return; 598 ac->entry[ac->avail++] = objp; 599 } 600 601 #ifndef CONFIG_NUMA 602 603 #define drain_alien_cache(cachep, alien) do { } while (0) 604 #define reap_alien(cachep, n) do { } while (0) 605 606 static inline struct alien_cache **alloc_alien_cache(int node, 607 int limit, gfp_t gfp) 608 { 609 return NULL; 610 } 611 612 static inline void free_alien_cache(struct alien_cache **ac_ptr) 613 { 614 } 615 616 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 617 { 618 return 0; 619 } 620 621 static inline gfp_t gfp_exact_node(gfp_t flags) 622 { 623 return flags & ~__GFP_NOFAIL; 624 } 625 626 #else /* CONFIG_NUMA */ 627 628 static struct alien_cache *__alloc_alien_cache(int node, int entries, 629 int batch, gfp_t gfp) 630 { 631 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 632 struct alien_cache *alc = NULL; 633 634 alc = kmalloc_node(memsize, gfp, node); 635 if (alc) { 636 kmemleak_no_scan(alc); 637 init_arraycache(&alc->ac, entries, batch); 638 spin_lock_init(&alc->lock); 639 } 640 return alc; 641 } 642 643 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 644 { 645 struct alien_cache **alc_ptr; 646 int i; 647 648 if (limit > 1) 649 limit = 12; 650 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 651 if (!alc_ptr) 652 return NULL; 653 654 for_each_node(i) { 655 if (i == node || !node_online(i)) 656 continue; 657 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 658 if (!alc_ptr[i]) { 659 for (i--; i >= 0; i--) 660 kfree(alc_ptr[i]); 661 kfree(alc_ptr); 662 return NULL; 663 } 664 } 665 return alc_ptr; 666 } 667 668 static void free_alien_cache(struct alien_cache **alc_ptr) 669 { 670 int i; 671 672 if (!alc_ptr) 673 return; 674 for_each_node(i) 675 kfree(alc_ptr[i]); 676 kfree(alc_ptr); 677 } 678 679 static void __drain_alien_cache(struct kmem_cache *cachep, 680 struct array_cache *ac, int node, 681 struct list_head *list) 682 { 683 struct kmem_cache_node *n = get_node(cachep, node); 684 685 if (ac->avail) { 686 raw_spin_lock(&n->list_lock); 687 /* 688 * Stuff objects into the remote nodes shared array first. 689 * That way we could avoid the overhead of putting the objects 690 * into the free lists and getting them back later. 691 */ 692 if (n->shared) 693 transfer_objects(n->shared, ac, ac->limit); 694 695 free_block(cachep, ac->entry, ac->avail, node, list); 696 ac->avail = 0; 697 raw_spin_unlock(&n->list_lock); 698 } 699 } 700 701 /* 702 * Called from cache_reap() to regularly drain alien caches round robin. 703 */ 704 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 705 { 706 int node = __this_cpu_read(slab_reap_node); 707 708 if (n->alien) { 709 struct alien_cache *alc = n->alien[node]; 710 struct array_cache *ac; 711 712 if (alc) { 713 ac = &alc->ac; 714 if (ac->avail && spin_trylock_irq(&alc->lock)) { 715 LIST_HEAD(list); 716 717 __drain_alien_cache(cachep, ac, node, &list); 718 spin_unlock_irq(&alc->lock); 719 slabs_destroy(cachep, &list); 720 } 721 } 722 } 723 } 724 725 static void drain_alien_cache(struct kmem_cache *cachep, 726 struct alien_cache **alien) 727 { 728 int i = 0; 729 struct alien_cache *alc; 730 struct array_cache *ac; 731 unsigned long flags; 732 733 for_each_online_node(i) { 734 alc = alien[i]; 735 if (alc) { 736 LIST_HEAD(list); 737 738 ac = &alc->ac; 739 spin_lock_irqsave(&alc->lock, flags); 740 __drain_alien_cache(cachep, ac, i, &list); 741 spin_unlock_irqrestore(&alc->lock, flags); 742 slabs_destroy(cachep, &list); 743 } 744 } 745 } 746 747 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 748 int node, int slab_node) 749 { 750 struct kmem_cache_node *n; 751 struct alien_cache *alien = NULL; 752 struct array_cache *ac; 753 LIST_HEAD(list); 754 755 n = get_node(cachep, node); 756 STATS_INC_NODEFREES(cachep); 757 if (n->alien && n->alien[slab_node]) { 758 alien = n->alien[slab_node]; 759 ac = &alien->ac; 760 spin_lock(&alien->lock); 761 if (unlikely(ac->avail == ac->limit)) { 762 STATS_INC_ACOVERFLOW(cachep); 763 __drain_alien_cache(cachep, ac, slab_node, &list); 764 } 765 __free_one(ac, objp); 766 spin_unlock(&alien->lock); 767 slabs_destroy(cachep, &list); 768 } else { 769 n = get_node(cachep, slab_node); 770 raw_spin_lock(&n->list_lock); 771 free_block(cachep, &objp, 1, slab_node, &list); 772 raw_spin_unlock(&n->list_lock); 773 slabs_destroy(cachep, &list); 774 } 775 return 1; 776 } 777 778 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 779 { 780 int slab_node = slab_nid(virt_to_slab(objp)); 781 int node = numa_mem_id(); 782 /* 783 * Make sure we are not freeing an object from another node to the array 784 * cache on this cpu. 785 */ 786 if (likely(node == slab_node)) 787 return 0; 788 789 return __cache_free_alien(cachep, objp, node, slab_node); 790 } 791 792 /* 793 * Construct gfp mask to allocate from a specific node but do not reclaim or 794 * warn about failures. 795 */ 796 static inline gfp_t gfp_exact_node(gfp_t flags) 797 { 798 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 799 } 800 #endif 801 802 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 803 { 804 struct kmem_cache_node *n; 805 806 /* 807 * Set up the kmem_cache_node for cpu before we can 808 * begin anything. Make sure some other cpu on this 809 * node has not already allocated this 810 */ 811 n = get_node(cachep, node); 812 if (n) { 813 raw_spin_lock_irq(&n->list_lock); 814 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 815 cachep->num; 816 raw_spin_unlock_irq(&n->list_lock); 817 818 return 0; 819 } 820 821 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 822 if (!n) 823 return -ENOMEM; 824 825 kmem_cache_node_init(n); 826 n->next_reap = jiffies + REAPTIMEOUT_NODE + 827 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 828 829 n->free_limit = 830 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 831 832 /* 833 * The kmem_cache_nodes don't come and go as CPUs 834 * come and go. slab_mutex provides sufficient 835 * protection here. 836 */ 837 cachep->node[node] = n; 838 839 return 0; 840 } 841 842 #if defined(CONFIG_NUMA) || defined(CONFIG_SMP) 843 /* 844 * Allocates and initializes node for a node on each slab cache, used for 845 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 846 * will be allocated off-node since memory is not yet online for the new node. 847 * When hotplugging memory or a cpu, existing nodes are not replaced if 848 * already in use. 849 * 850 * Must hold slab_mutex. 851 */ 852 static int init_cache_node_node(int node) 853 { 854 int ret; 855 struct kmem_cache *cachep; 856 857 list_for_each_entry(cachep, &slab_caches, list) { 858 ret = init_cache_node(cachep, node, GFP_KERNEL); 859 if (ret) 860 return ret; 861 } 862 863 return 0; 864 } 865 #endif 866 867 static int setup_kmem_cache_node(struct kmem_cache *cachep, 868 int node, gfp_t gfp, bool force_change) 869 { 870 int ret = -ENOMEM; 871 struct kmem_cache_node *n; 872 struct array_cache *old_shared = NULL; 873 struct array_cache *new_shared = NULL; 874 struct alien_cache **new_alien = NULL; 875 LIST_HEAD(list); 876 877 if (use_alien_caches) { 878 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 879 if (!new_alien) 880 goto fail; 881 } 882 883 if (cachep->shared) { 884 new_shared = alloc_arraycache(node, 885 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 886 if (!new_shared) 887 goto fail; 888 } 889 890 ret = init_cache_node(cachep, node, gfp); 891 if (ret) 892 goto fail; 893 894 n = get_node(cachep, node); 895 raw_spin_lock_irq(&n->list_lock); 896 if (n->shared && force_change) { 897 free_block(cachep, n->shared->entry, 898 n->shared->avail, node, &list); 899 n->shared->avail = 0; 900 } 901 902 if (!n->shared || force_change) { 903 old_shared = n->shared; 904 n->shared = new_shared; 905 new_shared = NULL; 906 } 907 908 if (!n->alien) { 909 n->alien = new_alien; 910 new_alien = NULL; 911 } 912 913 raw_spin_unlock_irq(&n->list_lock); 914 slabs_destroy(cachep, &list); 915 916 /* 917 * To protect lockless access to n->shared during irq disabled context. 918 * If n->shared isn't NULL in irq disabled context, accessing to it is 919 * guaranteed to be valid until irq is re-enabled, because it will be 920 * freed after synchronize_rcu(). 921 */ 922 if (old_shared && force_change) 923 synchronize_rcu(); 924 925 fail: 926 kfree(old_shared); 927 kfree(new_shared); 928 free_alien_cache(new_alien); 929 930 return ret; 931 } 932 933 #ifdef CONFIG_SMP 934 935 static void cpuup_canceled(long cpu) 936 { 937 struct kmem_cache *cachep; 938 struct kmem_cache_node *n = NULL; 939 int node = cpu_to_mem(cpu); 940 const struct cpumask *mask = cpumask_of_node(node); 941 942 list_for_each_entry(cachep, &slab_caches, list) { 943 struct array_cache *nc; 944 struct array_cache *shared; 945 struct alien_cache **alien; 946 LIST_HEAD(list); 947 948 n = get_node(cachep, node); 949 if (!n) 950 continue; 951 952 raw_spin_lock_irq(&n->list_lock); 953 954 /* Free limit for this kmem_cache_node */ 955 n->free_limit -= cachep->batchcount; 956 957 /* cpu is dead; no one can alloc from it. */ 958 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 959 free_block(cachep, nc->entry, nc->avail, node, &list); 960 nc->avail = 0; 961 962 if (!cpumask_empty(mask)) { 963 raw_spin_unlock_irq(&n->list_lock); 964 goto free_slab; 965 } 966 967 shared = n->shared; 968 if (shared) { 969 free_block(cachep, shared->entry, 970 shared->avail, node, &list); 971 n->shared = NULL; 972 } 973 974 alien = n->alien; 975 n->alien = NULL; 976 977 raw_spin_unlock_irq(&n->list_lock); 978 979 kfree(shared); 980 if (alien) { 981 drain_alien_cache(cachep, alien); 982 free_alien_cache(alien); 983 } 984 985 free_slab: 986 slabs_destroy(cachep, &list); 987 } 988 /* 989 * In the previous loop, all the objects were freed to 990 * the respective cache's slabs, now we can go ahead and 991 * shrink each nodelist to its limit. 992 */ 993 list_for_each_entry(cachep, &slab_caches, list) { 994 n = get_node(cachep, node); 995 if (!n) 996 continue; 997 drain_freelist(cachep, n, INT_MAX); 998 } 999 } 1000 1001 static int cpuup_prepare(long cpu) 1002 { 1003 struct kmem_cache *cachep; 1004 int node = cpu_to_mem(cpu); 1005 int err; 1006 1007 /* 1008 * We need to do this right in the beginning since 1009 * alloc_arraycache's are going to use this list. 1010 * kmalloc_node allows us to add the slab to the right 1011 * kmem_cache_node and not this cpu's kmem_cache_node 1012 */ 1013 err = init_cache_node_node(node); 1014 if (err < 0) 1015 goto bad; 1016 1017 /* 1018 * Now we can go ahead with allocating the shared arrays and 1019 * array caches 1020 */ 1021 list_for_each_entry(cachep, &slab_caches, list) { 1022 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1023 if (err) 1024 goto bad; 1025 } 1026 1027 return 0; 1028 bad: 1029 cpuup_canceled(cpu); 1030 return -ENOMEM; 1031 } 1032 1033 int slab_prepare_cpu(unsigned int cpu) 1034 { 1035 int err; 1036 1037 mutex_lock(&slab_mutex); 1038 err = cpuup_prepare(cpu); 1039 mutex_unlock(&slab_mutex); 1040 return err; 1041 } 1042 1043 /* 1044 * This is called for a failed online attempt and for a successful 1045 * offline. 1046 * 1047 * Even if all the cpus of a node are down, we don't free the 1048 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and 1049 * a kmalloc allocation from another cpu for memory from the node of 1050 * the cpu going down. The kmem_cache_node structure is usually allocated from 1051 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1052 */ 1053 int slab_dead_cpu(unsigned int cpu) 1054 { 1055 mutex_lock(&slab_mutex); 1056 cpuup_canceled(cpu); 1057 mutex_unlock(&slab_mutex); 1058 return 0; 1059 } 1060 #endif 1061 1062 static int slab_online_cpu(unsigned int cpu) 1063 { 1064 start_cpu_timer(cpu); 1065 return 0; 1066 } 1067 1068 static int slab_offline_cpu(unsigned int cpu) 1069 { 1070 /* 1071 * Shutdown cache reaper. Note that the slab_mutex is held so 1072 * that if cache_reap() is invoked it cannot do anything 1073 * expensive but will only modify reap_work and reschedule the 1074 * timer. 1075 */ 1076 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1077 /* Now the cache_reaper is guaranteed to be not running. */ 1078 per_cpu(slab_reap_work, cpu).work.func = NULL; 1079 return 0; 1080 } 1081 1082 #if defined(CONFIG_NUMA) 1083 /* 1084 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1085 * Returns -EBUSY if all objects cannot be drained so that the node is not 1086 * removed. 1087 * 1088 * Must hold slab_mutex. 1089 */ 1090 static int __meminit drain_cache_node_node(int node) 1091 { 1092 struct kmem_cache *cachep; 1093 int ret = 0; 1094 1095 list_for_each_entry(cachep, &slab_caches, list) { 1096 struct kmem_cache_node *n; 1097 1098 n = get_node(cachep, node); 1099 if (!n) 1100 continue; 1101 1102 drain_freelist(cachep, n, INT_MAX); 1103 1104 if (!list_empty(&n->slabs_full) || 1105 !list_empty(&n->slabs_partial)) { 1106 ret = -EBUSY; 1107 break; 1108 } 1109 } 1110 return ret; 1111 } 1112 1113 static int __meminit slab_memory_callback(struct notifier_block *self, 1114 unsigned long action, void *arg) 1115 { 1116 struct memory_notify *mnb = arg; 1117 int ret = 0; 1118 int nid; 1119 1120 nid = mnb->status_change_nid; 1121 if (nid < 0) 1122 goto out; 1123 1124 switch (action) { 1125 case MEM_GOING_ONLINE: 1126 mutex_lock(&slab_mutex); 1127 ret = init_cache_node_node(nid); 1128 mutex_unlock(&slab_mutex); 1129 break; 1130 case MEM_GOING_OFFLINE: 1131 mutex_lock(&slab_mutex); 1132 ret = drain_cache_node_node(nid); 1133 mutex_unlock(&slab_mutex); 1134 break; 1135 case MEM_ONLINE: 1136 case MEM_OFFLINE: 1137 case MEM_CANCEL_ONLINE: 1138 case MEM_CANCEL_OFFLINE: 1139 break; 1140 } 1141 out: 1142 return notifier_from_errno(ret); 1143 } 1144 #endif /* CONFIG_NUMA */ 1145 1146 /* 1147 * swap the static kmem_cache_node with kmalloced memory 1148 */ 1149 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1150 int nodeid) 1151 { 1152 struct kmem_cache_node *ptr; 1153 1154 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1155 BUG_ON(!ptr); 1156 1157 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1158 /* 1159 * Do not assume that spinlocks can be initialized via memcpy: 1160 */ 1161 raw_spin_lock_init(&ptr->list_lock); 1162 1163 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1164 cachep->node[nodeid] = ptr; 1165 } 1166 1167 /* 1168 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1169 * size of kmem_cache_node. 1170 */ 1171 static void __init set_up_node(struct kmem_cache *cachep, int index) 1172 { 1173 int node; 1174 1175 for_each_online_node(node) { 1176 cachep->node[node] = &init_kmem_cache_node[index + node]; 1177 cachep->node[node]->next_reap = jiffies + 1178 REAPTIMEOUT_NODE + 1179 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1180 } 1181 } 1182 1183 /* 1184 * Initialisation. Called after the page allocator have been initialised and 1185 * before smp_init(). 1186 */ 1187 void __init kmem_cache_init(void) 1188 { 1189 int i; 1190 1191 kmem_cache = &kmem_cache_boot; 1192 1193 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1194 use_alien_caches = 0; 1195 1196 for (i = 0; i < NUM_INIT_LISTS; i++) 1197 kmem_cache_node_init(&init_kmem_cache_node[i]); 1198 1199 /* 1200 * Fragmentation resistance on low memory - only use bigger 1201 * page orders on machines with more than 32MB of memory if 1202 * not overridden on the command line. 1203 */ 1204 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1205 slab_max_order = SLAB_MAX_ORDER_HI; 1206 1207 /* Bootstrap is tricky, because several objects are allocated 1208 * from caches that do not exist yet: 1209 * 1) initialize the kmem_cache cache: it contains the struct 1210 * kmem_cache structures of all caches, except kmem_cache itself: 1211 * kmem_cache is statically allocated. 1212 * Initially an __init data area is used for the head array and the 1213 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1214 * array at the end of the bootstrap. 1215 * 2) Create the first kmalloc cache. 1216 * The struct kmem_cache for the new cache is allocated normally. 1217 * An __init data area is used for the head array. 1218 * 3) Create the remaining kmalloc caches, with minimally sized 1219 * head arrays. 1220 * 4) Replace the __init data head arrays for kmem_cache and the first 1221 * kmalloc cache with kmalloc allocated arrays. 1222 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1223 * the other cache's with kmalloc allocated memory. 1224 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1225 */ 1226 1227 /* 1) create the kmem_cache */ 1228 1229 /* 1230 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1231 */ 1232 create_boot_cache(kmem_cache, "kmem_cache", 1233 offsetof(struct kmem_cache, node) + 1234 nr_node_ids * sizeof(struct kmem_cache_node *), 1235 SLAB_HWCACHE_ALIGN, 0, 0); 1236 list_add(&kmem_cache->list, &slab_caches); 1237 slab_state = PARTIAL; 1238 1239 /* 1240 * Initialize the caches that provide memory for the kmem_cache_node 1241 * structures first. Without this, further allocations will bug. 1242 */ 1243 new_kmalloc_cache(INDEX_NODE, KMALLOC_NORMAL, ARCH_KMALLOC_FLAGS); 1244 slab_state = PARTIAL_NODE; 1245 setup_kmalloc_cache_index_table(); 1246 1247 /* 5) Replace the bootstrap kmem_cache_node */ 1248 { 1249 int nid; 1250 1251 for_each_online_node(nid) { 1252 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1253 1254 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1255 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1256 } 1257 } 1258 1259 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1260 } 1261 1262 void __init kmem_cache_init_late(void) 1263 { 1264 struct kmem_cache *cachep; 1265 1266 /* 6) resize the head arrays to their final sizes */ 1267 mutex_lock(&slab_mutex); 1268 list_for_each_entry(cachep, &slab_caches, list) 1269 if (enable_cpucache(cachep, GFP_NOWAIT)) 1270 BUG(); 1271 mutex_unlock(&slab_mutex); 1272 1273 /* Done! */ 1274 slab_state = FULL; 1275 1276 #ifdef CONFIG_NUMA 1277 /* 1278 * Register a memory hotplug callback that initializes and frees 1279 * node. 1280 */ 1281 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1282 #endif 1283 1284 /* 1285 * The reap timers are started later, with a module init call: That part 1286 * of the kernel is not yet operational. 1287 */ 1288 } 1289 1290 static int __init cpucache_init(void) 1291 { 1292 int ret; 1293 1294 /* 1295 * Register the timers that return unneeded pages to the page allocator 1296 */ 1297 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1298 slab_online_cpu, slab_offline_cpu); 1299 WARN_ON(ret < 0); 1300 1301 return 0; 1302 } 1303 __initcall(cpucache_init); 1304 1305 static noinline void 1306 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1307 { 1308 #if DEBUG 1309 struct kmem_cache_node *n; 1310 unsigned long flags; 1311 int node; 1312 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1313 DEFAULT_RATELIMIT_BURST); 1314 1315 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1316 return; 1317 1318 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1319 nodeid, gfpflags, &gfpflags); 1320 pr_warn(" cache: %s, object size: %d, order: %d\n", 1321 cachep->name, cachep->size, cachep->gfporder); 1322 1323 for_each_kmem_cache_node(cachep, node, n) { 1324 unsigned long total_slabs, free_slabs, free_objs; 1325 1326 raw_spin_lock_irqsave(&n->list_lock, flags); 1327 total_slabs = n->total_slabs; 1328 free_slabs = n->free_slabs; 1329 free_objs = n->free_objects; 1330 raw_spin_unlock_irqrestore(&n->list_lock, flags); 1331 1332 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1333 node, total_slabs - free_slabs, total_slabs, 1334 (total_slabs * cachep->num) - free_objs, 1335 total_slabs * cachep->num); 1336 } 1337 #endif 1338 } 1339 1340 /* 1341 * Interface to system's page allocator. No need to hold the 1342 * kmem_cache_node ->list_lock. 1343 * 1344 * If we requested dmaable memory, we will get it. Even if we 1345 * did not request dmaable memory, we might get it, but that 1346 * would be relatively rare and ignorable. 1347 */ 1348 static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1349 int nodeid) 1350 { 1351 struct folio *folio; 1352 struct slab *slab; 1353 1354 flags |= cachep->allocflags; 1355 1356 folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder); 1357 if (!folio) { 1358 slab_out_of_memory(cachep, flags, nodeid); 1359 return NULL; 1360 } 1361 1362 slab = folio_slab(folio); 1363 1364 account_slab(slab, cachep->gfporder, cachep, flags); 1365 __folio_set_slab(folio); 1366 /* Make the flag visible before any changes to folio->mapping */ 1367 smp_wmb(); 1368 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1369 if (sk_memalloc_socks() && folio_is_pfmemalloc(folio)) 1370 slab_set_pfmemalloc(slab); 1371 1372 return slab; 1373 } 1374 1375 /* 1376 * Interface to system's page release. 1377 */ 1378 static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab) 1379 { 1380 int order = cachep->gfporder; 1381 struct folio *folio = slab_folio(slab); 1382 1383 BUG_ON(!folio_test_slab(folio)); 1384 __slab_clear_pfmemalloc(slab); 1385 page_mapcount_reset(&folio->page); 1386 folio->mapping = NULL; 1387 /* Make the mapping reset visible before clearing the flag */ 1388 smp_wmb(); 1389 __folio_clear_slab(folio); 1390 1391 mm_account_reclaimed_pages(1 << order); 1392 unaccount_slab(slab, order, cachep); 1393 __free_pages(&folio->page, order); 1394 } 1395 1396 static void kmem_rcu_free(struct rcu_head *head) 1397 { 1398 struct kmem_cache *cachep; 1399 struct slab *slab; 1400 1401 slab = container_of(head, struct slab, rcu_head); 1402 cachep = slab->slab_cache; 1403 1404 kmem_freepages(cachep, slab); 1405 } 1406 1407 #if DEBUG 1408 static inline bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1409 { 1410 return debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && 1411 ((cachep->size % PAGE_SIZE) == 0); 1412 } 1413 1414 #ifdef CONFIG_DEBUG_PAGEALLOC 1415 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1416 { 1417 if (!is_debug_pagealloc_cache(cachep)) 1418 return; 1419 1420 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1421 } 1422 1423 #else 1424 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1425 int map) {} 1426 1427 #endif 1428 1429 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1430 { 1431 int size = cachep->object_size; 1432 addr = &((char *)addr)[obj_offset(cachep)]; 1433 1434 memset(addr, val, size); 1435 *(unsigned char *)(addr + size - 1) = POISON_END; 1436 } 1437 1438 static void dump_line(char *data, int offset, int limit) 1439 { 1440 int i; 1441 unsigned char error = 0; 1442 int bad_count = 0; 1443 1444 pr_err("%03x: ", offset); 1445 for (i = 0; i < limit; i++) { 1446 if (data[offset + i] != POISON_FREE) { 1447 error = data[offset + i]; 1448 bad_count++; 1449 } 1450 } 1451 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1452 &data[offset], limit, 1); 1453 1454 if (bad_count == 1) { 1455 error ^= POISON_FREE; 1456 if (!(error & (error - 1))) { 1457 pr_err("Single bit error detected. Probably bad RAM.\n"); 1458 #ifdef CONFIG_X86 1459 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1460 #else 1461 pr_err("Run a memory test tool.\n"); 1462 #endif 1463 } 1464 } 1465 } 1466 #endif 1467 1468 #if DEBUG 1469 1470 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1471 { 1472 int i, size; 1473 char *realobj; 1474 1475 if (cachep->flags & SLAB_RED_ZONE) { 1476 pr_err("Redzone: 0x%llx/0x%llx\n", 1477 *dbg_redzone1(cachep, objp), 1478 *dbg_redzone2(cachep, objp)); 1479 } 1480 1481 if (cachep->flags & SLAB_STORE_USER) 1482 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1483 realobj = (char *)objp + obj_offset(cachep); 1484 size = cachep->object_size; 1485 for (i = 0; i < size && lines; i += 16, lines--) { 1486 int limit; 1487 limit = 16; 1488 if (i + limit > size) 1489 limit = size - i; 1490 dump_line(realobj, i, limit); 1491 } 1492 } 1493 1494 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1495 { 1496 char *realobj; 1497 int size, i; 1498 int lines = 0; 1499 1500 if (is_debug_pagealloc_cache(cachep)) 1501 return; 1502 1503 realobj = (char *)objp + obj_offset(cachep); 1504 size = cachep->object_size; 1505 1506 for (i = 0; i < size; i++) { 1507 char exp = POISON_FREE; 1508 if (i == size - 1) 1509 exp = POISON_END; 1510 if (realobj[i] != exp) { 1511 int limit; 1512 /* Mismatch ! */ 1513 /* Print header */ 1514 if (lines == 0) { 1515 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1516 print_tainted(), cachep->name, 1517 realobj, size); 1518 print_objinfo(cachep, objp, 0); 1519 } 1520 /* Hexdump the affected line */ 1521 i = (i / 16) * 16; 1522 limit = 16; 1523 if (i + limit > size) 1524 limit = size - i; 1525 dump_line(realobj, i, limit); 1526 i += 16; 1527 lines++; 1528 /* Limit to 5 lines */ 1529 if (lines > 5) 1530 break; 1531 } 1532 } 1533 if (lines != 0) { 1534 /* Print some data about the neighboring objects, if they 1535 * exist: 1536 */ 1537 struct slab *slab = virt_to_slab(objp); 1538 unsigned int objnr; 1539 1540 objnr = obj_to_index(cachep, slab, objp); 1541 if (objnr) { 1542 objp = index_to_obj(cachep, slab, objnr - 1); 1543 realobj = (char *)objp + obj_offset(cachep); 1544 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1545 print_objinfo(cachep, objp, 2); 1546 } 1547 if (objnr + 1 < cachep->num) { 1548 objp = index_to_obj(cachep, slab, objnr + 1); 1549 realobj = (char *)objp + obj_offset(cachep); 1550 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1551 print_objinfo(cachep, objp, 2); 1552 } 1553 } 1554 } 1555 #endif 1556 1557 #if DEBUG 1558 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1559 struct slab *slab) 1560 { 1561 int i; 1562 1563 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1564 poison_obj(cachep, slab->freelist - obj_offset(cachep), 1565 POISON_FREE); 1566 } 1567 1568 for (i = 0; i < cachep->num; i++) { 1569 void *objp = index_to_obj(cachep, slab, i); 1570 1571 if (cachep->flags & SLAB_POISON) { 1572 check_poison_obj(cachep, objp); 1573 slab_kernel_map(cachep, objp, 1); 1574 } 1575 if (cachep->flags & SLAB_RED_ZONE) { 1576 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1577 slab_error(cachep, "start of a freed object was overwritten"); 1578 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1579 slab_error(cachep, "end of a freed object was overwritten"); 1580 } 1581 } 1582 } 1583 #else 1584 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1585 struct slab *slab) 1586 { 1587 } 1588 #endif 1589 1590 /** 1591 * slab_destroy - destroy and release all objects in a slab 1592 * @cachep: cache pointer being destroyed 1593 * @slab: slab being destroyed 1594 * 1595 * Destroy all the objs in a slab, and release the mem back to the system. 1596 * Before calling the slab must have been unlinked from the cache. The 1597 * kmem_cache_node ->list_lock is not held/needed. 1598 */ 1599 static void slab_destroy(struct kmem_cache *cachep, struct slab *slab) 1600 { 1601 void *freelist; 1602 1603 freelist = slab->freelist; 1604 slab_destroy_debugcheck(cachep, slab); 1605 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1606 call_rcu(&slab->rcu_head, kmem_rcu_free); 1607 else 1608 kmem_freepages(cachep, slab); 1609 1610 /* 1611 * From now on, we don't use freelist 1612 * although actual page can be freed in rcu context 1613 */ 1614 if (OFF_SLAB(cachep)) 1615 kfree(freelist); 1616 } 1617 1618 /* 1619 * Update the size of the caches before calling slabs_destroy as it may 1620 * recursively call kfree. 1621 */ 1622 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1623 { 1624 struct slab *slab, *n; 1625 1626 list_for_each_entry_safe(slab, n, list, slab_list) { 1627 list_del(&slab->slab_list); 1628 slab_destroy(cachep, slab); 1629 } 1630 } 1631 1632 /** 1633 * calculate_slab_order - calculate size (page order) of slabs 1634 * @cachep: pointer to the cache that is being created 1635 * @size: size of objects to be created in this cache. 1636 * @flags: slab allocation flags 1637 * 1638 * Also calculates the number of objects per slab. 1639 * 1640 * This could be made much more intelligent. For now, try to avoid using 1641 * high order pages for slabs. When the gfp() functions are more friendly 1642 * towards high-order requests, this should be changed. 1643 * 1644 * Return: number of left-over bytes in a slab 1645 */ 1646 static size_t calculate_slab_order(struct kmem_cache *cachep, 1647 size_t size, slab_flags_t flags) 1648 { 1649 size_t left_over = 0; 1650 int gfporder; 1651 1652 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1653 unsigned int num; 1654 size_t remainder; 1655 1656 num = cache_estimate(gfporder, size, flags, &remainder); 1657 if (!num) 1658 continue; 1659 1660 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1661 if (num > SLAB_OBJ_MAX_NUM) 1662 break; 1663 1664 if (flags & CFLGS_OFF_SLAB) { 1665 struct kmem_cache *freelist_cache; 1666 size_t freelist_size; 1667 size_t freelist_cache_size; 1668 1669 freelist_size = num * sizeof(freelist_idx_t); 1670 if (freelist_size > KMALLOC_MAX_CACHE_SIZE) { 1671 freelist_cache_size = PAGE_SIZE << get_order(freelist_size); 1672 } else { 1673 freelist_cache = kmalloc_slab(freelist_size, 0u); 1674 if (!freelist_cache) 1675 continue; 1676 freelist_cache_size = freelist_cache->size; 1677 1678 /* 1679 * Needed to avoid possible looping condition 1680 * in cache_grow_begin() 1681 */ 1682 if (OFF_SLAB(freelist_cache)) 1683 continue; 1684 } 1685 1686 /* check if off slab has enough benefit */ 1687 if (freelist_cache_size > cachep->size / 2) 1688 continue; 1689 } 1690 1691 /* Found something acceptable - save it away */ 1692 cachep->num = num; 1693 cachep->gfporder = gfporder; 1694 left_over = remainder; 1695 1696 /* 1697 * A VFS-reclaimable slab tends to have most allocations 1698 * as GFP_NOFS and we really don't want to have to be allocating 1699 * higher-order pages when we are unable to shrink dcache. 1700 */ 1701 if (flags & SLAB_RECLAIM_ACCOUNT) 1702 break; 1703 1704 /* 1705 * Large number of objects is good, but very large slabs are 1706 * currently bad for the gfp()s. 1707 */ 1708 if (gfporder >= slab_max_order) 1709 break; 1710 1711 /* 1712 * Acceptable internal fragmentation? 1713 */ 1714 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1715 break; 1716 } 1717 return left_over; 1718 } 1719 1720 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1721 struct kmem_cache *cachep, int entries, int batchcount) 1722 { 1723 int cpu; 1724 size_t size; 1725 struct array_cache __percpu *cpu_cache; 1726 1727 size = sizeof(void *) * entries + sizeof(struct array_cache); 1728 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1729 1730 if (!cpu_cache) 1731 return NULL; 1732 1733 for_each_possible_cpu(cpu) { 1734 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1735 entries, batchcount); 1736 } 1737 1738 return cpu_cache; 1739 } 1740 1741 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1742 { 1743 if (slab_state >= FULL) 1744 return enable_cpucache(cachep, gfp); 1745 1746 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1747 if (!cachep->cpu_cache) 1748 return 1; 1749 1750 if (slab_state == DOWN) { 1751 /* Creation of first cache (kmem_cache). */ 1752 set_up_node(kmem_cache, CACHE_CACHE); 1753 } else if (slab_state == PARTIAL) { 1754 /* For kmem_cache_node */ 1755 set_up_node(cachep, SIZE_NODE); 1756 } else { 1757 int node; 1758 1759 for_each_online_node(node) { 1760 cachep->node[node] = kmalloc_node( 1761 sizeof(struct kmem_cache_node), gfp, node); 1762 BUG_ON(!cachep->node[node]); 1763 kmem_cache_node_init(cachep->node[node]); 1764 } 1765 } 1766 1767 cachep->node[numa_mem_id()]->next_reap = 1768 jiffies + REAPTIMEOUT_NODE + 1769 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1770 1771 cpu_cache_get(cachep)->avail = 0; 1772 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1773 cpu_cache_get(cachep)->batchcount = 1; 1774 cpu_cache_get(cachep)->touched = 0; 1775 cachep->batchcount = 1; 1776 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1777 return 0; 1778 } 1779 1780 slab_flags_t kmem_cache_flags(unsigned int object_size, 1781 slab_flags_t flags, const char *name) 1782 { 1783 return flags; 1784 } 1785 1786 struct kmem_cache * 1787 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1788 slab_flags_t flags, void (*ctor)(void *)) 1789 { 1790 struct kmem_cache *cachep; 1791 1792 cachep = find_mergeable(size, align, flags, name, ctor); 1793 if (cachep) { 1794 cachep->refcount++; 1795 1796 /* 1797 * Adjust the object sizes so that we clear 1798 * the complete object on kzalloc. 1799 */ 1800 cachep->object_size = max_t(int, cachep->object_size, size); 1801 } 1802 return cachep; 1803 } 1804 1805 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1806 size_t size, slab_flags_t flags) 1807 { 1808 size_t left; 1809 1810 cachep->num = 0; 1811 1812 /* 1813 * If slab auto-initialization on free is enabled, store the freelist 1814 * off-slab, so that its contents don't end up in one of the allocated 1815 * objects. 1816 */ 1817 if (unlikely(slab_want_init_on_free(cachep))) 1818 return false; 1819 1820 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1821 return false; 1822 1823 left = calculate_slab_order(cachep, size, 1824 flags | CFLGS_OBJFREELIST_SLAB); 1825 if (!cachep->num) 1826 return false; 1827 1828 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1829 return false; 1830 1831 cachep->colour = left / cachep->colour_off; 1832 1833 return true; 1834 } 1835 1836 static bool set_off_slab_cache(struct kmem_cache *cachep, 1837 size_t size, slab_flags_t flags) 1838 { 1839 size_t left; 1840 1841 cachep->num = 0; 1842 1843 /* 1844 * Always use on-slab management when SLAB_NOLEAKTRACE 1845 * to avoid recursive calls into kmemleak. 1846 */ 1847 if (flags & SLAB_NOLEAKTRACE) 1848 return false; 1849 1850 /* 1851 * Size is large, assume best to place the slab management obj 1852 * off-slab (should allow better packing of objs). 1853 */ 1854 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1855 if (!cachep->num) 1856 return false; 1857 1858 /* 1859 * If the slab has been placed off-slab, and we have enough space then 1860 * move it on-slab. This is at the expense of any extra colouring. 1861 */ 1862 if (left >= cachep->num * sizeof(freelist_idx_t)) 1863 return false; 1864 1865 cachep->colour = left / cachep->colour_off; 1866 1867 return true; 1868 } 1869 1870 static bool set_on_slab_cache(struct kmem_cache *cachep, 1871 size_t size, slab_flags_t flags) 1872 { 1873 size_t left; 1874 1875 cachep->num = 0; 1876 1877 left = calculate_slab_order(cachep, size, flags); 1878 if (!cachep->num) 1879 return false; 1880 1881 cachep->colour = left / cachep->colour_off; 1882 1883 return true; 1884 } 1885 1886 /* 1887 * __kmem_cache_create - Create a cache. 1888 * @cachep: cache management descriptor 1889 * @flags: SLAB flags 1890 * 1891 * Returns zero on success, nonzero on failure. 1892 * 1893 * The flags are 1894 * 1895 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1896 * to catch references to uninitialised memory. 1897 * 1898 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1899 * for buffer overruns. 1900 * 1901 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1902 * cacheline. This can be beneficial if you're counting cycles as closely 1903 * as davem. 1904 */ 1905 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1906 { 1907 size_t ralign = BYTES_PER_WORD; 1908 gfp_t gfp; 1909 int err; 1910 unsigned int size = cachep->size; 1911 1912 #if DEBUG 1913 #if FORCED_DEBUG 1914 /* 1915 * Enable redzoning and last user accounting, except for caches with 1916 * large objects, if the increased size would increase the object size 1917 * above the next power of two: caches with object sizes just above a 1918 * power of two have a significant amount of internal fragmentation. 1919 */ 1920 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1921 2 * sizeof(unsigned long long))) 1922 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1923 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1924 flags |= SLAB_POISON; 1925 #endif 1926 #endif 1927 1928 /* 1929 * Check that size is in terms of words. This is needed to avoid 1930 * unaligned accesses for some archs when redzoning is used, and makes 1931 * sure any on-slab bufctl's are also correctly aligned. 1932 */ 1933 size = ALIGN(size, BYTES_PER_WORD); 1934 1935 if (flags & SLAB_RED_ZONE) { 1936 ralign = REDZONE_ALIGN; 1937 /* If redzoning, ensure that the second redzone is suitably 1938 * aligned, by adjusting the object size accordingly. */ 1939 size = ALIGN(size, REDZONE_ALIGN); 1940 } 1941 1942 /* 3) caller mandated alignment */ 1943 if (ralign < cachep->align) { 1944 ralign = cachep->align; 1945 } 1946 /* disable debug if necessary */ 1947 if (ralign > __alignof__(unsigned long long)) 1948 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1949 /* 1950 * 4) Store it. 1951 */ 1952 cachep->align = ralign; 1953 cachep->colour_off = cache_line_size(); 1954 /* Offset must be a multiple of the alignment. */ 1955 if (cachep->colour_off < cachep->align) 1956 cachep->colour_off = cachep->align; 1957 1958 if (slab_is_available()) 1959 gfp = GFP_KERNEL; 1960 else 1961 gfp = GFP_NOWAIT; 1962 1963 #if DEBUG 1964 1965 /* 1966 * Both debugging options require word-alignment which is calculated 1967 * into align above. 1968 */ 1969 if (flags & SLAB_RED_ZONE) { 1970 /* add space for red zone words */ 1971 cachep->obj_offset += sizeof(unsigned long long); 1972 size += 2 * sizeof(unsigned long long); 1973 } 1974 if (flags & SLAB_STORE_USER) { 1975 /* user store requires one word storage behind the end of 1976 * the real object. But if the second red zone needs to be 1977 * aligned to 64 bits, we must allow that much space. 1978 */ 1979 if (flags & SLAB_RED_ZONE) 1980 size += REDZONE_ALIGN; 1981 else 1982 size += BYTES_PER_WORD; 1983 } 1984 #endif 1985 1986 kasan_cache_create(cachep, &size, &flags); 1987 1988 size = ALIGN(size, cachep->align); 1989 /* 1990 * We should restrict the number of objects in a slab to implement 1991 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 1992 */ 1993 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 1994 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 1995 1996 #if DEBUG 1997 /* 1998 * To activate debug pagealloc, off-slab management is necessary 1999 * requirement. In early phase of initialization, small sized slab 2000 * doesn't get initialized so it would not be possible. So, we need 2001 * to check size >= 256. It guarantees that all necessary small 2002 * sized slab is initialized in current slab initialization sequence. 2003 */ 2004 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && 2005 size >= 256 && cachep->object_size > cache_line_size()) { 2006 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2007 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2008 2009 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2010 flags |= CFLGS_OFF_SLAB; 2011 cachep->obj_offset += tmp_size - size; 2012 size = tmp_size; 2013 goto done; 2014 } 2015 } 2016 } 2017 #endif 2018 2019 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2020 flags |= CFLGS_OBJFREELIST_SLAB; 2021 goto done; 2022 } 2023 2024 if (set_off_slab_cache(cachep, size, flags)) { 2025 flags |= CFLGS_OFF_SLAB; 2026 goto done; 2027 } 2028 2029 if (set_on_slab_cache(cachep, size, flags)) 2030 goto done; 2031 2032 return -E2BIG; 2033 2034 done: 2035 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2036 cachep->flags = flags; 2037 cachep->allocflags = __GFP_COMP; 2038 if (flags & SLAB_CACHE_DMA) 2039 cachep->allocflags |= GFP_DMA; 2040 if (flags & SLAB_CACHE_DMA32) 2041 cachep->allocflags |= GFP_DMA32; 2042 if (flags & SLAB_RECLAIM_ACCOUNT) 2043 cachep->allocflags |= __GFP_RECLAIMABLE; 2044 cachep->size = size; 2045 cachep->reciprocal_buffer_size = reciprocal_value(size); 2046 2047 #if DEBUG 2048 /* 2049 * If we're going to use the generic kernel_map_pages() 2050 * poisoning, then it's going to smash the contents of 2051 * the redzone and userword anyhow, so switch them off. 2052 */ 2053 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2054 (cachep->flags & SLAB_POISON) && 2055 is_debug_pagealloc_cache(cachep)) 2056 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2057 #endif 2058 2059 err = setup_cpu_cache(cachep, gfp); 2060 if (err) { 2061 __kmem_cache_release(cachep); 2062 return err; 2063 } 2064 2065 return 0; 2066 } 2067 2068 #if DEBUG 2069 static void check_irq_off(void) 2070 { 2071 BUG_ON(!irqs_disabled()); 2072 } 2073 2074 static void check_irq_on(void) 2075 { 2076 BUG_ON(irqs_disabled()); 2077 } 2078 2079 static void check_mutex_acquired(void) 2080 { 2081 BUG_ON(!mutex_is_locked(&slab_mutex)); 2082 } 2083 2084 static void check_spinlock_acquired(struct kmem_cache *cachep) 2085 { 2086 #ifdef CONFIG_SMP 2087 check_irq_off(); 2088 assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2089 #endif 2090 } 2091 2092 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2093 { 2094 #ifdef CONFIG_SMP 2095 check_irq_off(); 2096 assert_raw_spin_locked(&get_node(cachep, node)->list_lock); 2097 #endif 2098 } 2099 2100 #else 2101 #define check_irq_off() do { } while(0) 2102 #define check_irq_on() do { } while(0) 2103 #define check_mutex_acquired() do { } while(0) 2104 #define check_spinlock_acquired(x) do { } while(0) 2105 #define check_spinlock_acquired_node(x, y) do { } while(0) 2106 #endif 2107 2108 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2109 int node, bool free_all, struct list_head *list) 2110 { 2111 int tofree; 2112 2113 if (!ac || !ac->avail) 2114 return; 2115 2116 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2117 if (tofree > ac->avail) 2118 tofree = (ac->avail + 1) / 2; 2119 2120 free_block(cachep, ac->entry, tofree, node, list); 2121 ac->avail -= tofree; 2122 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2123 } 2124 2125 static void do_drain(void *arg) 2126 { 2127 struct kmem_cache *cachep = arg; 2128 struct array_cache *ac; 2129 int node = numa_mem_id(); 2130 struct kmem_cache_node *n; 2131 LIST_HEAD(list); 2132 2133 check_irq_off(); 2134 ac = cpu_cache_get(cachep); 2135 n = get_node(cachep, node); 2136 raw_spin_lock(&n->list_lock); 2137 free_block(cachep, ac->entry, ac->avail, node, &list); 2138 raw_spin_unlock(&n->list_lock); 2139 ac->avail = 0; 2140 slabs_destroy(cachep, &list); 2141 } 2142 2143 static void drain_cpu_caches(struct kmem_cache *cachep) 2144 { 2145 struct kmem_cache_node *n; 2146 int node; 2147 LIST_HEAD(list); 2148 2149 on_each_cpu(do_drain, cachep, 1); 2150 check_irq_on(); 2151 for_each_kmem_cache_node(cachep, node, n) 2152 if (n->alien) 2153 drain_alien_cache(cachep, n->alien); 2154 2155 for_each_kmem_cache_node(cachep, node, n) { 2156 raw_spin_lock_irq(&n->list_lock); 2157 drain_array_locked(cachep, n->shared, node, true, &list); 2158 raw_spin_unlock_irq(&n->list_lock); 2159 2160 slabs_destroy(cachep, &list); 2161 } 2162 } 2163 2164 /* 2165 * Remove slabs from the list of free slabs. 2166 * Specify the number of slabs to drain in tofree. 2167 * 2168 * Returns the actual number of slabs released. 2169 */ 2170 static int drain_freelist(struct kmem_cache *cache, 2171 struct kmem_cache_node *n, int tofree) 2172 { 2173 struct list_head *p; 2174 int nr_freed; 2175 struct slab *slab; 2176 2177 nr_freed = 0; 2178 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2179 2180 raw_spin_lock_irq(&n->list_lock); 2181 p = n->slabs_free.prev; 2182 if (p == &n->slabs_free) { 2183 raw_spin_unlock_irq(&n->list_lock); 2184 goto out; 2185 } 2186 2187 slab = list_entry(p, struct slab, slab_list); 2188 list_del(&slab->slab_list); 2189 n->free_slabs--; 2190 n->total_slabs--; 2191 /* 2192 * Safe to drop the lock. The slab is no longer linked 2193 * to the cache. 2194 */ 2195 n->free_objects -= cache->num; 2196 raw_spin_unlock_irq(&n->list_lock); 2197 slab_destroy(cache, slab); 2198 nr_freed++; 2199 2200 cond_resched(); 2201 } 2202 out: 2203 return nr_freed; 2204 } 2205 2206 bool __kmem_cache_empty(struct kmem_cache *s) 2207 { 2208 int node; 2209 struct kmem_cache_node *n; 2210 2211 for_each_kmem_cache_node(s, node, n) 2212 if (!list_empty(&n->slabs_full) || 2213 !list_empty(&n->slabs_partial)) 2214 return false; 2215 return true; 2216 } 2217 2218 int __kmem_cache_shrink(struct kmem_cache *cachep) 2219 { 2220 int ret = 0; 2221 int node; 2222 struct kmem_cache_node *n; 2223 2224 drain_cpu_caches(cachep); 2225 2226 check_irq_on(); 2227 for_each_kmem_cache_node(cachep, node, n) { 2228 drain_freelist(cachep, n, INT_MAX); 2229 2230 ret += !list_empty(&n->slabs_full) || 2231 !list_empty(&n->slabs_partial); 2232 } 2233 return (ret ? 1 : 0); 2234 } 2235 2236 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2237 { 2238 return __kmem_cache_shrink(cachep); 2239 } 2240 2241 void __kmem_cache_release(struct kmem_cache *cachep) 2242 { 2243 int i; 2244 struct kmem_cache_node *n; 2245 2246 cache_random_seq_destroy(cachep); 2247 2248 free_percpu(cachep->cpu_cache); 2249 2250 /* NUMA: free the node structures */ 2251 for_each_kmem_cache_node(cachep, i, n) { 2252 kfree(n->shared); 2253 free_alien_cache(n->alien); 2254 kfree(n); 2255 cachep->node[i] = NULL; 2256 } 2257 } 2258 2259 /* 2260 * Get the memory for a slab management obj. 2261 * 2262 * For a slab cache when the slab descriptor is off-slab, the 2263 * slab descriptor can't come from the same cache which is being created, 2264 * Because if it is the case, that means we defer the creation of 2265 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2266 * And we eventually call down to __kmem_cache_create(), which 2267 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one. 2268 * This is a "chicken-and-egg" problem. 2269 * 2270 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2271 * which are all initialized during kmem_cache_init(). 2272 */ 2273 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2274 struct slab *slab, int colour_off, 2275 gfp_t local_flags, int nodeid) 2276 { 2277 void *freelist; 2278 void *addr = slab_address(slab); 2279 2280 slab->s_mem = addr + colour_off; 2281 slab->active = 0; 2282 2283 if (OBJFREELIST_SLAB(cachep)) 2284 freelist = NULL; 2285 else if (OFF_SLAB(cachep)) { 2286 /* Slab management obj is off-slab. */ 2287 freelist = kmalloc_node(cachep->freelist_size, 2288 local_flags, nodeid); 2289 } else { 2290 /* We will use last bytes at the slab for freelist */ 2291 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2292 cachep->freelist_size; 2293 } 2294 2295 return freelist; 2296 } 2297 2298 static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx) 2299 { 2300 return ((freelist_idx_t *) slab->freelist)[idx]; 2301 } 2302 2303 static inline void set_free_obj(struct slab *slab, 2304 unsigned int idx, freelist_idx_t val) 2305 { 2306 ((freelist_idx_t *)(slab->freelist))[idx] = val; 2307 } 2308 2309 static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab) 2310 { 2311 #if DEBUG 2312 int i; 2313 2314 for (i = 0; i < cachep->num; i++) { 2315 void *objp = index_to_obj(cachep, slab, i); 2316 2317 if (cachep->flags & SLAB_STORE_USER) 2318 *dbg_userword(cachep, objp) = NULL; 2319 2320 if (cachep->flags & SLAB_RED_ZONE) { 2321 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2322 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2323 } 2324 /* 2325 * Constructors are not allowed to allocate memory from the same 2326 * cache which they are a constructor for. Otherwise, deadlock. 2327 * They must also be threaded. 2328 */ 2329 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2330 kasan_unpoison_object_data(cachep, 2331 objp + obj_offset(cachep)); 2332 cachep->ctor(objp + obj_offset(cachep)); 2333 kasan_poison_object_data( 2334 cachep, objp + obj_offset(cachep)); 2335 } 2336 2337 if (cachep->flags & SLAB_RED_ZONE) { 2338 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2339 slab_error(cachep, "constructor overwrote the end of an object"); 2340 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2341 slab_error(cachep, "constructor overwrote the start of an object"); 2342 } 2343 /* need to poison the objs? */ 2344 if (cachep->flags & SLAB_POISON) { 2345 poison_obj(cachep, objp, POISON_FREE); 2346 slab_kernel_map(cachep, objp, 0); 2347 } 2348 } 2349 #endif 2350 } 2351 2352 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2353 /* Hold information during a freelist initialization */ 2354 struct freelist_init_state { 2355 unsigned int pos; 2356 unsigned int *list; 2357 unsigned int count; 2358 }; 2359 2360 /* 2361 * Initialize the state based on the randomization method available. 2362 * return true if the pre-computed list is available, false otherwise. 2363 */ 2364 static bool freelist_state_initialize(struct freelist_init_state *state, 2365 struct kmem_cache *cachep, 2366 unsigned int count) 2367 { 2368 bool ret; 2369 if (!cachep->random_seq) { 2370 ret = false; 2371 } else { 2372 state->list = cachep->random_seq; 2373 state->count = count; 2374 state->pos = get_random_u32_below(count); 2375 ret = true; 2376 } 2377 return ret; 2378 } 2379 2380 /* Get the next entry on the list and randomize it using a random shift */ 2381 static freelist_idx_t next_random_slot(struct freelist_init_state *state) 2382 { 2383 if (state->pos >= state->count) 2384 state->pos = 0; 2385 return state->list[state->pos++]; 2386 } 2387 2388 /* Swap two freelist entries */ 2389 static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b) 2390 { 2391 swap(((freelist_idx_t *) slab->freelist)[a], 2392 ((freelist_idx_t *) slab->freelist)[b]); 2393 } 2394 2395 /* 2396 * Shuffle the freelist initialization state based on pre-computed lists. 2397 * return true if the list was successfully shuffled, false otherwise. 2398 */ 2399 static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab) 2400 { 2401 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2402 struct freelist_init_state state; 2403 bool precomputed; 2404 2405 if (count < 2) 2406 return false; 2407 2408 precomputed = freelist_state_initialize(&state, cachep, count); 2409 2410 /* Take a random entry as the objfreelist */ 2411 if (OBJFREELIST_SLAB(cachep)) { 2412 if (!precomputed) 2413 objfreelist = count - 1; 2414 else 2415 objfreelist = next_random_slot(&state); 2416 slab->freelist = index_to_obj(cachep, slab, objfreelist) + 2417 obj_offset(cachep); 2418 count--; 2419 } 2420 2421 /* 2422 * On early boot, generate the list dynamically. 2423 * Later use a pre-computed list for speed. 2424 */ 2425 if (!precomputed) { 2426 for (i = 0; i < count; i++) 2427 set_free_obj(slab, i, i); 2428 2429 /* Fisher-Yates shuffle */ 2430 for (i = count - 1; i > 0; i--) { 2431 rand = get_random_u32_below(i + 1); 2432 swap_free_obj(slab, i, rand); 2433 } 2434 } else { 2435 for (i = 0; i < count; i++) 2436 set_free_obj(slab, i, next_random_slot(&state)); 2437 } 2438 2439 if (OBJFREELIST_SLAB(cachep)) 2440 set_free_obj(slab, cachep->num - 1, objfreelist); 2441 2442 return true; 2443 } 2444 #else 2445 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2446 struct slab *slab) 2447 { 2448 return false; 2449 } 2450 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2451 2452 static void cache_init_objs(struct kmem_cache *cachep, 2453 struct slab *slab) 2454 { 2455 int i; 2456 void *objp; 2457 bool shuffled; 2458 2459 cache_init_objs_debug(cachep, slab); 2460 2461 /* Try to randomize the freelist if enabled */ 2462 shuffled = shuffle_freelist(cachep, slab); 2463 2464 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2465 slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) + 2466 obj_offset(cachep); 2467 } 2468 2469 for (i = 0; i < cachep->num; i++) { 2470 objp = index_to_obj(cachep, slab, i); 2471 objp = kasan_init_slab_obj(cachep, objp); 2472 2473 /* constructor could break poison info */ 2474 if (DEBUG == 0 && cachep->ctor) { 2475 kasan_unpoison_object_data(cachep, objp); 2476 cachep->ctor(objp); 2477 kasan_poison_object_data(cachep, objp); 2478 } 2479 2480 if (!shuffled) 2481 set_free_obj(slab, i, i); 2482 } 2483 } 2484 2485 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab) 2486 { 2487 void *objp; 2488 2489 objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active)); 2490 slab->active++; 2491 2492 return objp; 2493 } 2494 2495 static void slab_put_obj(struct kmem_cache *cachep, 2496 struct slab *slab, void *objp) 2497 { 2498 unsigned int objnr = obj_to_index(cachep, slab, objp); 2499 #if DEBUG 2500 unsigned int i; 2501 2502 /* Verify double free bug */ 2503 for (i = slab->active; i < cachep->num; i++) { 2504 if (get_free_obj(slab, i) == objnr) { 2505 pr_err("slab: double free detected in cache '%s', objp %px\n", 2506 cachep->name, objp); 2507 BUG(); 2508 } 2509 } 2510 #endif 2511 slab->active--; 2512 if (!slab->freelist) 2513 slab->freelist = objp + obj_offset(cachep); 2514 2515 set_free_obj(slab, slab->active, objnr); 2516 } 2517 2518 /* 2519 * Grow (by 1) the number of slabs within a cache. This is called by 2520 * kmem_cache_alloc() when there are no active objs left in a cache. 2521 */ 2522 static struct slab *cache_grow_begin(struct kmem_cache *cachep, 2523 gfp_t flags, int nodeid) 2524 { 2525 void *freelist; 2526 size_t offset; 2527 gfp_t local_flags; 2528 int slab_node; 2529 struct kmem_cache_node *n; 2530 struct slab *slab; 2531 2532 /* 2533 * Be lazy and only check for valid flags here, keeping it out of the 2534 * critical path in kmem_cache_alloc(). 2535 */ 2536 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2537 flags = kmalloc_fix_flags(flags); 2538 2539 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2540 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2541 2542 check_irq_off(); 2543 if (gfpflags_allow_blocking(local_flags)) 2544 local_irq_enable(); 2545 2546 /* 2547 * Get mem for the objs. Attempt to allocate a physical page from 2548 * 'nodeid'. 2549 */ 2550 slab = kmem_getpages(cachep, local_flags, nodeid); 2551 if (!slab) 2552 goto failed; 2553 2554 slab_node = slab_nid(slab); 2555 n = get_node(cachep, slab_node); 2556 2557 /* Get colour for the slab, and cal the next value. */ 2558 n->colour_next++; 2559 if (n->colour_next >= cachep->colour) 2560 n->colour_next = 0; 2561 2562 offset = n->colour_next; 2563 if (offset >= cachep->colour) 2564 offset = 0; 2565 2566 offset *= cachep->colour_off; 2567 2568 /* 2569 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2570 * page_address() in the latter returns a non-tagged pointer, 2571 * as it should be for slab pages. 2572 */ 2573 kasan_poison_slab(slab); 2574 2575 /* Get slab management. */ 2576 freelist = alloc_slabmgmt(cachep, slab, offset, 2577 local_flags & ~GFP_CONSTRAINT_MASK, slab_node); 2578 if (OFF_SLAB(cachep) && !freelist) 2579 goto opps1; 2580 2581 slab->slab_cache = cachep; 2582 slab->freelist = freelist; 2583 2584 cache_init_objs(cachep, slab); 2585 2586 if (gfpflags_allow_blocking(local_flags)) 2587 local_irq_disable(); 2588 2589 return slab; 2590 2591 opps1: 2592 kmem_freepages(cachep, slab); 2593 failed: 2594 if (gfpflags_allow_blocking(local_flags)) 2595 local_irq_disable(); 2596 return NULL; 2597 } 2598 2599 static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab) 2600 { 2601 struct kmem_cache_node *n; 2602 void *list = NULL; 2603 2604 check_irq_off(); 2605 2606 if (!slab) 2607 return; 2608 2609 INIT_LIST_HEAD(&slab->slab_list); 2610 n = get_node(cachep, slab_nid(slab)); 2611 2612 raw_spin_lock(&n->list_lock); 2613 n->total_slabs++; 2614 if (!slab->active) { 2615 list_add_tail(&slab->slab_list, &n->slabs_free); 2616 n->free_slabs++; 2617 } else 2618 fixup_slab_list(cachep, n, slab, &list); 2619 2620 STATS_INC_GROWN(cachep); 2621 n->free_objects += cachep->num - slab->active; 2622 raw_spin_unlock(&n->list_lock); 2623 2624 fixup_objfreelist_debug(cachep, &list); 2625 } 2626 2627 #if DEBUG 2628 2629 /* 2630 * Perform extra freeing checks: 2631 * - detect bad pointers. 2632 * - POISON/RED_ZONE checking 2633 */ 2634 static void kfree_debugcheck(const void *objp) 2635 { 2636 if (!virt_addr_valid(objp)) { 2637 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2638 (unsigned long)objp); 2639 BUG(); 2640 } 2641 } 2642 2643 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2644 { 2645 unsigned long long redzone1, redzone2; 2646 2647 redzone1 = *dbg_redzone1(cache, obj); 2648 redzone2 = *dbg_redzone2(cache, obj); 2649 2650 /* 2651 * Redzone is ok. 2652 */ 2653 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2654 return; 2655 2656 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2657 slab_error(cache, "double free detected"); 2658 else 2659 slab_error(cache, "memory outside object was overwritten"); 2660 2661 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2662 obj, redzone1, redzone2); 2663 } 2664 2665 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2666 unsigned long caller) 2667 { 2668 unsigned int objnr; 2669 struct slab *slab; 2670 2671 BUG_ON(virt_to_cache(objp) != cachep); 2672 2673 objp -= obj_offset(cachep); 2674 kfree_debugcheck(objp); 2675 slab = virt_to_slab(objp); 2676 2677 if (cachep->flags & SLAB_RED_ZONE) { 2678 verify_redzone_free(cachep, objp); 2679 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2680 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2681 } 2682 if (cachep->flags & SLAB_STORE_USER) 2683 *dbg_userword(cachep, objp) = (void *)caller; 2684 2685 objnr = obj_to_index(cachep, slab, objp); 2686 2687 BUG_ON(objnr >= cachep->num); 2688 BUG_ON(objp != index_to_obj(cachep, slab, objnr)); 2689 2690 if (cachep->flags & SLAB_POISON) { 2691 poison_obj(cachep, objp, POISON_FREE); 2692 slab_kernel_map(cachep, objp, 0); 2693 } 2694 return objp; 2695 } 2696 2697 #else 2698 #define kfree_debugcheck(x) do { } while(0) 2699 #define cache_free_debugcheck(x, objp, z) (objp) 2700 #endif 2701 2702 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2703 void **list) 2704 { 2705 #if DEBUG 2706 void *next = *list; 2707 void *objp; 2708 2709 while (next) { 2710 objp = next - obj_offset(cachep); 2711 next = *(void **)next; 2712 poison_obj(cachep, objp, POISON_FREE); 2713 } 2714 #endif 2715 } 2716 2717 static inline void fixup_slab_list(struct kmem_cache *cachep, 2718 struct kmem_cache_node *n, struct slab *slab, 2719 void **list) 2720 { 2721 /* move slabp to correct slabp list: */ 2722 list_del(&slab->slab_list); 2723 if (slab->active == cachep->num) { 2724 list_add(&slab->slab_list, &n->slabs_full); 2725 if (OBJFREELIST_SLAB(cachep)) { 2726 #if DEBUG 2727 /* Poisoning will be done without holding the lock */ 2728 if (cachep->flags & SLAB_POISON) { 2729 void **objp = slab->freelist; 2730 2731 *objp = *list; 2732 *list = objp; 2733 } 2734 #endif 2735 slab->freelist = NULL; 2736 } 2737 } else 2738 list_add(&slab->slab_list, &n->slabs_partial); 2739 } 2740 2741 /* Try to find non-pfmemalloc slab if needed */ 2742 static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n, 2743 struct slab *slab, bool pfmemalloc) 2744 { 2745 if (!slab) 2746 return NULL; 2747 2748 if (pfmemalloc) 2749 return slab; 2750 2751 if (!slab_test_pfmemalloc(slab)) 2752 return slab; 2753 2754 /* No need to keep pfmemalloc slab if we have enough free objects */ 2755 if (n->free_objects > n->free_limit) { 2756 slab_clear_pfmemalloc(slab); 2757 return slab; 2758 } 2759 2760 /* Move pfmemalloc slab to the end of list to speed up next search */ 2761 list_del(&slab->slab_list); 2762 if (!slab->active) { 2763 list_add_tail(&slab->slab_list, &n->slabs_free); 2764 n->free_slabs++; 2765 } else 2766 list_add_tail(&slab->slab_list, &n->slabs_partial); 2767 2768 list_for_each_entry(slab, &n->slabs_partial, slab_list) { 2769 if (!slab_test_pfmemalloc(slab)) 2770 return slab; 2771 } 2772 2773 n->free_touched = 1; 2774 list_for_each_entry(slab, &n->slabs_free, slab_list) { 2775 if (!slab_test_pfmemalloc(slab)) { 2776 n->free_slabs--; 2777 return slab; 2778 } 2779 } 2780 2781 return NULL; 2782 } 2783 2784 static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2785 { 2786 struct slab *slab; 2787 2788 assert_raw_spin_locked(&n->list_lock); 2789 slab = list_first_entry_or_null(&n->slabs_partial, struct slab, 2790 slab_list); 2791 if (!slab) { 2792 n->free_touched = 1; 2793 slab = list_first_entry_or_null(&n->slabs_free, struct slab, 2794 slab_list); 2795 if (slab) 2796 n->free_slabs--; 2797 } 2798 2799 if (sk_memalloc_socks()) 2800 slab = get_valid_first_slab(n, slab, pfmemalloc); 2801 2802 return slab; 2803 } 2804 2805 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2806 struct kmem_cache_node *n, gfp_t flags) 2807 { 2808 struct slab *slab; 2809 void *obj; 2810 void *list = NULL; 2811 2812 if (!gfp_pfmemalloc_allowed(flags)) 2813 return NULL; 2814 2815 raw_spin_lock(&n->list_lock); 2816 slab = get_first_slab(n, true); 2817 if (!slab) { 2818 raw_spin_unlock(&n->list_lock); 2819 return NULL; 2820 } 2821 2822 obj = slab_get_obj(cachep, slab); 2823 n->free_objects--; 2824 2825 fixup_slab_list(cachep, n, slab, &list); 2826 2827 raw_spin_unlock(&n->list_lock); 2828 fixup_objfreelist_debug(cachep, &list); 2829 2830 return obj; 2831 } 2832 2833 /* 2834 * Slab list should be fixed up by fixup_slab_list() for existing slab 2835 * or cache_grow_end() for new slab 2836 */ 2837 static __always_inline int alloc_block(struct kmem_cache *cachep, 2838 struct array_cache *ac, struct slab *slab, int batchcount) 2839 { 2840 /* 2841 * There must be at least one object available for 2842 * allocation. 2843 */ 2844 BUG_ON(slab->active >= cachep->num); 2845 2846 while (slab->active < cachep->num && batchcount--) { 2847 STATS_INC_ALLOCED(cachep); 2848 STATS_INC_ACTIVE(cachep); 2849 STATS_SET_HIGH(cachep); 2850 2851 ac->entry[ac->avail++] = slab_get_obj(cachep, slab); 2852 } 2853 2854 return batchcount; 2855 } 2856 2857 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2858 { 2859 int batchcount; 2860 struct kmem_cache_node *n; 2861 struct array_cache *ac, *shared; 2862 int node; 2863 void *list = NULL; 2864 struct slab *slab; 2865 2866 check_irq_off(); 2867 node = numa_mem_id(); 2868 2869 ac = cpu_cache_get(cachep); 2870 batchcount = ac->batchcount; 2871 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2872 /* 2873 * If there was little recent activity on this cache, then 2874 * perform only a partial refill. Otherwise we could generate 2875 * refill bouncing. 2876 */ 2877 batchcount = BATCHREFILL_LIMIT; 2878 } 2879 n = get_node(cachep, node); 2880 2881 BUG_ON(ac->avail > 0 || !n); 2882 shared = READ_ONCE(n->shared); 2883 if (!n->free_objects && (!shared || !shared->avail)) 2884 goto direct_grow; 2885 2886 raw_spin_lock(&n->list_lock); 2887 shared = READ_ONCE(n->shared); 2888 2889 /* See if we can refill from the shared array */ 2890 if (shared && transfer_objects(ac, shared, batchcount)) { 2891 shared->touched = 1; 2892 goto alloc_done; 2893 } 2894 2895 while (batchcount > 0) { 2896 /* Get slab alloc is to come from. */ 2897 slab = get_first_slab(n, false); 2898 if (!slab) 2899 goto must_grow; 2900 2901 check_spinlock_acquired(cachep); 2902 2903 batchcount = alloc_block(cachep, ac, slab, batchcount); 2904 fixup_slab_list(cachep, n, slab, &list); 2905 } 2906 2907 must_grow: 2908 n->free_objects -= ac->avail; 2909 alloc_done: 2910 raw_spin_unlock(&n->list_lock); 2911 fixup_objfreelist_debug(cachep, &list); 2912 2913 direct_grow: 2914 if (unlikely(!ac->avail)) { 2915 /* Check if we can use obj in pfmemalloc slab */ 2916 if (sk_memalloc_socks()) { 2917 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2918 2919 if (obj) 2920 return obj; 2921 } 2922 2923 slab = cache_grow_begin(cachep, gfp_exact_node(flags), node); 2924 2925 /* 2926 * cache_grow_begin() can reenable interrupts, 2927 * then ac could change. 2928 */ 2929 ac = cpu_cache_get(cachep); 2930 if (!ac->avail && slab) 2931 alloc_block(cachep, ac, slab, batchcount); 2932 cache_grow_end(cachep, slab); 2933 2934 if (!ac->avail) 2935 return NULL; 2936 } 2937 ac->touched = 1; 2938 2939 return ac->entry[--ac->avail]; 2940 } 2941 2942 #if DEBUG 2943 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2944 gfp_t flags, void *objp, unsigned long caller) 2945 { 2946 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2947 if (!objp || is_kfence_address(objp)) 2948 return objp; 2949 if (cachep->flags & SLAB_POISON) { 2950 check_poison_obj(cachep, objp); 2951 slab_kernel_map(cachep, objp, 1); 2952 poison_obj(cachep, objp, POISON_INUSE); 2953 } 2954 if (cachep->flags & SLAB_STORE_USER) 2955 *dbg_userword(cachep, objp) = (void *)caller; 2956 2957 if (cachep->flags & SLAB_RED_ZONE) { 2958 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 2959 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 2960 slab_error(cachep, "double free, or memory outside object was overwritten"); 2961 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2962 objp, *dbg_redzone1(cachep, objp), 2963 *dbg_redzone2(cachep, objp)); 2964 } 2965 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2966 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2967 } 2968 2969 objp += obj_offset(cachep); 2970 if (cachep->ctor && cachep->flags & SLAB_POISON) 2971 cachep->ctor(objp); 2972 if ((unsigned long)objp & (arch_slab_minalign() - 1)) { 2973 pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp, 2974 arch_slab_minalign()); 2975 } 2976 return objp; 2977 } 2978 #else 2979 #define cache_alloc_debugcheck_after(a, b, objp, d) (objp) 2980 #endif 2981 2982 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 2983 { 2984 void *objp; 2985 struct array_cache *ac; 2986 2987 check_irq_off(); 2988 2989 ac = cpu_cache_get(cachep); 2990 if (likely(ac->avail)) { 2991 ac->touched = 1; 2992 objp = ac->entry[--ac->avail]; 2993 2994 STATS_INC_ALLOCHIT(cachep); 2995 goto out; 2996 } 2997 2998 STATS_INC_ALLOCMISS(cachep); 2999 objp = cache_alloc_refill(cachep, flags); 3000 /* 3001 * the 'ac' may be updated by cache_alloc_refill(), 3002 * and kmemleak_erase() requires its correct value. 3003 */ 3004 ac = cpu_cache_get(cachep); 3005 3006 out: 3007 /* 3008 * To avoid a false negative, if an object that is in one of the 3009 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3010 * treat the array pointers as a reference to the object. 3011 */ 3012 if (objp) 3013 kmemleak_erase(&ac->entry[ac->avail]); 3014 return objp; 3015 } 3016 3017 #ifdef CONFIG_NUMA 3018 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 3019 3020 /* 3021 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3022 * 3023 * If we are in_interrupt, then process context, including cpusets and 3024 * mempolicy, may not apply and should not be used for allocation policy. 3025 */ 3026 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3027 { 3028 int nid_alloc, nid_here; 3029 3030 if (in_interrupt() || (flags & __GFP_THISNODE)) 3031 return NULL; 3032 nid_alloc = nid_here = numa_mem_id(); 3033 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3034 nid_alloc = cpuset_slab_spread_node(); 3035 else if (current->mempolicy) 3036 nid_alloc = mempolicy_slab_node(); 3037 if (nid_alloc != nid_here) 3038 return ____cache_alloc_node(cachep, flags, nid_alloc); 3039 return NULL; 3040 } 3041 3042 /* 3043 * Fallback function if there was no memory available and no objects on a 3044 * certain node and fall back is permitted. First we scan all the 3045 * available node for available objects. If that fails then we 3046 * perform an allocation without specifying a node. This allows the page 3047 * allocator to do its reclaim / fallback magic. We then insert the 3048 * slab into the proper nodelist and then allocate from it. 3049 */ 3050 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3051 { 3052 struct zonelist *zonelist; 3053 struct zoneref *z; 3054 struct zone *zone; 3055 enum zone_type highest_zoneidx = gfp_zone(flags); 3056 void *obj = NULL; 3057 struct slab *slab; 3058 int nid; 3059 unsigned int cpuset_mems_cookie; 3060 3061 if (flags & __GFP_THISNODE) 3062 return NULL; 3063 3064 retry_cpuset: 3065 cpuset_mems_cookie = read_mems_allowed_begin(); 3066 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3067 3068 retry: 3069 /* 3070 * Look through allowed nodes for objects available 3071 * from existing per node queues. 3072 */ 3073 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 3074 nid = zone_to_nid(zone); 3075 3076 if (cpuset_zone_allowed(zone, flags) && 3077 get_node(cache, nid) && 3078 get_node(cache, nid)->free_objects) { 3079 obj = ____cache_alloc_node(cache, 3080 gfp_exact_node(flags), nid); 3081 if (obj) 3082 break; 3083 } 3084 } 3085 3086 if (!obj) { 3087 /* 3088 * This allocation will be performed within the constraints 3089 * of the current cpuset / memory policy requirements. 3090 * We may trigger various forms of reclaim on the allowed 3091 * set and go into memory reserves if necessary. 3092 */ 3093 slab = cache_grow_begin(cache, flags, numa_mem_id()); 3094 cache_grow_end(cache, slab); 3095 if (slab) { 3096 nid = slab_nid(slab); 3097 obj = ____cache_alloc_node(cache, 3098 gfp_exact_node(flags), nid); 3099 3100 /* 3101 * Another processor may allocate the objects in 3102 * the slab since we are not holding any locks. 3103 */ 3104 if (!obj) 3105 goto retry; 3106 } 3107 } 3108 3109 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3110 goto retry_cpuset; 3111 return obj; 3112 } 3113 3114 /* 3115 * An interface to enable slab creation on nodeid 3116 */ 3117 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3118 int nodeid) 3119 { 3120 struct slab *slab; 3121 struct kmem_cache_node *n; 3122 void *obj = NULL; 3123 void *list = NULL; 3124 3125 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3126 n = get_node(cachep, nodeid); 3127 BUG_ON(!n); 3128 3129 check_irq_off(); 3130 raw_spin_lock(&n->list_lock); 3131 slab = get_first_slab(n, false); 3132 if (!slab) 3133 goto must_grow; 3134 3135 check_spinlock_acquired_node(cachep, nodeid); 3136 3137 STATS_INC_NODEALLOCS(cachep); 3138 STATS_INC_ACTIVE(cachep); 3139 STATS_SET_HIGH(cachep); 3140 3141 BUG_ON(slab->active == cachep->num); 3142 3143 obj = slab_get_obj(cachep, slab); 3144 n->free_objects--; 3145 3146 fixup_slab_list(cachep, n, slab, &list); 3147 3148 raw_spin_unlock(&n->list_lock); 3149 fixup_objfreelist_debug(cachep, &list); 3150 return obj; 3151 3152 must_grow: 3153 raw_spin_unlock(&n->list_lock); 3154 slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3155 if (slab) { 3156 /* This slab isn't counted yet so don't update free_objects */ 3157 obj = slab_get_obj(cachep, slab); 3158 } 3159 cache_grow_end(cachep, slab); 3160 3161 return obj ? obj : fallback_alloc(cachep, flags); 3162 } 3163 3164 static __always_inline void * 3165 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3166 { 3167 void *objp = NULL; 3168 int slab_node = numa_mem_id(); 3169 3170 if (nodeid == NUMA_NO_NODE) { 3171 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3172 objp = alternate_node_alloc(cachep, flags); 3173 if (objp) 3174 goto out; 3175 } 3176 /* 3177 * Use the locally cached objects if possible. 3178 * However ____cache_alloc does not allow fallback 3179 * to other nodes. It may fail while we still have 3180 * objects on other nodes available. 3181 */ 3182 objp = ____cache_alloc(cachep, flags); 3183 nodeid = slab_node; 3184 } else if (nodeid == slab_node) { 3185 objp = ____cache_alloc(cachep, flags); 3186 } else if (!get_node(cachep, nodeid)) { 3187 /* Node not bootstrapped yet */ 3188 objp = fallback_alloc(cachep, flags); 3189 goto out; 3190 } 3191 3192 /* 3193 * We may just have run out of memory on the local node. 3194 * ____cache_alloc_node() knows how to locate memory on other nodes 3195 */ 3196 if (!objp) 3197 objp = ____cache_alloc_node(cachep, flags, nodeid); 3198 out: 3199 return objp; 3200 } 3201 #else 3202 3203 static __always_inline void * 3204 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused) 3205 { 3206 return ____cache_alloc(cachep, flags); 3207 } 3208 3209 #endif /* CONFIG_NUMA */ 3210 3211 static __always_inline void * 3212 slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, 3213 int nodeid, size_t orig_size, unsigned long caller) 3214 { 3215 unsigned long save_flags; 3216 void *objp; 3217 struct obj_cgroup *objcg = NULL; 3218 bool init = false; 3219 3220 flags &= gfp_allowed_mask; 3221 cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags); 3222 if (unlikely(!cachep)) 3223 return NULL; 3224 3225 objp = kfence_alloc(cachep, orig_size, flags); 3226 if (unlikely(objp)) 3227 goto out; 3228 3229 local_irq_save(save_flags); 3230 objp = __do_cache_alloc(cachep, flags, nodeid); 3231 local_irq_restore(save_flags); 3232 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3233 prefetchw(objp); 3234 init = slab_want_init_on_alloc(flags, cachep); 3235 3236 out: 3237 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init, 3238 cachep->object_size); 3239 return objp; 3240 } 3241 3242 static __always_inline void * 3243 slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, 3244 size_t orig_size, unsigned long caller) 3245 { 3246 return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size, 3247 caller); 3248 } 3249 3250 /* 3251 * Caller needs to acquire correct kmem_cache_node's list_lock 3252 * @list: List of detached free slabs should be freed by caller 3253 */ 3254 static void free_block(struct kmem_cache *cachep, void **objpp, 3255 int nr_objects, int node, struct list_head *list) 3256 { 3257 int i; 3258 struct kmem_cache_node *n = get_node(cachep, node); 3259 struct slab *slab; 3260 3261 n->free_objects += nr_objects; 3262 3263 for (i = 0; i < nr_objects; i++) { 3264 void *objp; 3265 struct slab *slab; 3266 3267 objp = objpp[i]; 3268 3269 slab = virt_to_slab(objp); 3270 list_del(&slab->slab_list); 3271 check_spinlock_acquired_node(cachep, node); 3272 slab_put_obj(cachep, slab, objp); 3273 STATS_DEC_ACTIVE(cachep); 3274 3275 /* fixup slab chains */ 3276 if (slab->active == 0) { 3277 list_add(&slab->slab_list, &n->slabs_free); 3278 n->free_slabs++; 3279 } else { 3280 /* Unconditionally move a slab to the end of the 3281 * partial list on free - maximum time for the 3282 * other objects to be freed, too. 3283 */ 3284 list_add_tail(&slab->slab_list, &n->slabs_partial); 3285 } 3286 } 3287 3288 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3289 n->free_objects -= cachep->num; 3290 3291 slab = list_last_entry(&n->slabs_free, struct slab, slab_list); 3292 list_move(&slab->slab_list, list); 3293 n->free_slabs--; 3294 n->total_slabs--; 3295 } 3296 } 3297 3298 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3299 { 3300 int batchcount; 3301 struct kmem_cache_node *n; 3302 int node = numa_mem_id(); 3303 LIST_HEAD(list); 3304 3305 batchcount = ac->batchcount; 3306 3307 check_irq_off(); 3308 n = get_node(cachep, node); 3309 raw_spin_lock(&n->list_lock); 3310 if (n->shared) { 3311 struct array_cache *shared_array = n->shared; 3312 int max = shared_array->limit - shared_array->avail; 3313 if (max) { 3314 if (batchcount > max) 3315 batchcount = max; 3316 memcpy(&(shared_array->entry[shared_array->avail]), 3317 ac->entry, sizeof(void *) * batchcount); 3318 shared_array->avail += batchcount; 3319 goto free_done; 3320 } 3321 } 3322 3323 free_block(cachep, ac->entry, batchcount, node, &list); 3324 free_done: 3325 #if STATS 3326 { 3327 int i = 0; 3328 struct slab *slab; 3329 3330 list_for_each_entry(slab, &n->slabs_free, slab_list) { 3331 BUG_ON(slab->active); 3332 3333 i++; 3334 } 3335 STATS_SET_FREEABLE(cachep, i); 3336 } 3337 #endif 3338 raw_spin_unlock(&n->list_lock); 3339 ac->avail -= batchcount; 3340 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3341 slabs_destroy(cachep, &list); 3342 } 3343 3344 /* 3345 * Release an obj back to its cache. If the obj has a constructed state, it must 3346 * be in this state _before_ it is released. Called with disabled ints. 3347 */ 3348 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3349 unsigned long caller) 3350 { 3351 bool init; 3352 3353 memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1); 3354 3355 if (is_kfence_address(objp)) { 3356 kmemleak_free_recursive(objp, cachep->flags); 3357 __kfence_free(objp); 3358 return; 3359 } 3360 3361 /* 3362 * As memory initialization might be integrated into KASAN, 3363 * kasan_slab_free and initialization memset must be 3364 * kept together to avoid discrepancies in behavior. 3365 */ 3366 init = slab_want_init_on_free(cachep); 3367 if (init && !kasan_has_integrated_init()) 3368 memset(objp, 0, cachep->object_size); 3369 /* KASAN might put objp into memory quarantine, delaying its reuse. */ 3370 if (kasan_slab_free(cachep, objp, init)) 3371 return; 3372 3373 /* Use KCSAN to help debug racy use-after-free. */ 3374 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 3375 __kcsan_check_access(objp, cachep->object_size, 3376 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 3377 3378 ___cache_free(cachep, objp, caller); 3379 } 3380 3381 void ___cache_free(struct kmem_cache *cachep, void *objp, 3382 unsigned long caller) 3383 { 3384 struct array_cache *ac = cpu_cache_get(cachep); 3385 3386 check_irq_off(); 3387 kmemleak_free_recursive(objp, cachep->flags); 3388 objp = cache_free_debugcheck(cachep, objp, caller); 3389 3390 /* 3391 * Skip calling cache_free_alien() when the platform is not numa. 3392 * This will avoid cache misses that happen while accessing slabp (which 3393 * is per page memory reference) to get nodeid. Instead use a global 3394 * variable to skip the call, which is mostly likely to be present in 3395 * the cache. 3396 */ 3397 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3398 return; 3399 3400 if (ac->avail < ac->limit) { 3401 STATS_INC_FREEHIT(cachep); 3402 } else { 3403 STATS_INC_FREEMISS(cachep); 3404 cache_flusharray(cachep, ac); 3405 } 3406 3407 if (sk_memalloc_socks()) { 3408 struct slab *slab = virt_to_slab(objp); 3409 3410 if (unlikely(slab_test_pfmemalloc(slab))) { 3411 cache_free_pfmemalloc(cachep, slab, objp); 3412 return; 3413 } 3414 } 3415 3416 __free_one(ac, objp); 3417 } 3418 3419 static __always_inline 3420 void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3421 gfp_t flags) 3422 { 3423 void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_); 3424 3425 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE); 3426 3427 return ret; 3428 } 3429 3430 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3431 { 3432 return __kmem_cache_alloc_lru(cachep, NULL, flags); 3433 } 3434 EXPORT_SYMBOL(kmem_cache_alloc); 3435 3436 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3437 gfp_t flags) 3438 { 3439 return __kmem_cache_alloc_lru(cachep, lru, flags); 3440 } 3441 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3442 3443 static __always_inline void 3444 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3445 size_t size, void **p, unsigned long caller) 3446 { 3447 size_t i; 3448 3449 for (i = 0; i < size; i++) 3450 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3451 } 3452 3453 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3454 void **p) 3455 { 3456 struct obj_cgroup *objcg = NULL; 3457 unsigned long irqflags; 3458 size_t i; 3459 3460 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3461 if (!s) 3462 return 0; 3463 3464 local_irq_save(irqflags); 3465 for (i = 0; i < size; i++) { 3466 void *objp = kfence_alloc(s, s->object_size, flags) ?: 3467 __do_cache_alloc(s, flags, NUMA_NO_NODE); 3468 3469 if (unlikely(!objp)) 3470 goto error; 3471 p[i] = objp; 3472 } 3473 local_irq_restore(irqflags); 3474 3475 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3476 3477 /* 3478 * memcg and kmem_cache debug support and memory initialization. 3479 * Done outside of the IRQ disabled section. 3480 */ 3481 slab_post_alloc_hook(s, objcg, flags, size, p, 3482 slab_want_init_on_alloc(flags, s), s->object_size); 3483 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3484 return size; 3485 error: 3486 local_irq_restore(irqflags); 3487 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3488 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 3489 kmem_cache_free_bulk(s, i, p); 3490 return 0; 3491 } 3492 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3493 3494 /** 3495 * kmem_cache_alloc_node - Allocate an object on the specified node 3496 * @cachep: The cache to allocate from. 3497 * @flags: See kmalloc(). 3498 * @nodeid: node number of the target node. 3499 * 3500 * Identical to kmem_cache_alloc but it will allocate memory on the given 3501 * node, which can improve the performance for cpu bound structures. 3502 * 3503 * Fallback to other node is possible if __GFP_THISNODE is not set. 3504 * 3505 * Return: pointer to the new object or %NULL in case of error 3506 */ 3507 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3508 { 3509 void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_); 3510 3511 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid); 3512 3513 return ret; 3514 } 3515 EXPORT_SYMBOL(kmem_cache_alloc_node); 3516 3517 void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3518 int nodeid, size_t orig_size, 3519 unsigned long caller) 3520 { 3521 return slab_alloc_node(cachep, NULL, flags, nodeid, 3522 orig_size, caller); 3523 } 3524 3525 #ifdef CONFIG_PRINTK 3526 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 3527 { 3528 struct kmem_cache *cachep; 3529 unsigned int objnr; 3530 void *objp; 3531 3532 kpp->kp_ptr = object; 3533 kpp->kp_slab = slab; 3534 cachep = slab->slab_cache; 3535 kpp->kp_slab_cache = cachep; 3536 objp = object - obj_offset(cachep); 3537 kpp->kp_data_offset = obj_offset(cachep); 3538 slab = virt_to_slab(objp); 3539 objnr = obj_to_index(cachep, slab, objp); 3540 objp = index_to_obj(cachep, slab, objnr); 3541 kpp->kp_objp = objp; 3542 if (DEBUG && cachep->flags & SLAB_STORE_USER) 3543 kpp->kp_ret = *dbg_userword(cachep, objp); 3544 } 3545 #endif 3546 3547 static __always_inline 3548 void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp, 3549 unsigned long caller) 3550 { 3551 unsigned long flags; 3552 3553 local_irq_save(flags); 3554 debug_check_no_locks_freed(objp, cachep->object_size); 3555 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3556 debug_check_no_obj_freed(objp, cachep->object_size); 3557 __cache_free(cachep, objp, caller); 3558 local_irq_restore(flags); 3559 } 3560 3561 void __kmem_cache_free(struct kmem_cache *cachep, void *objp, 3562 unsigned long caller) 3563 { 3564 __do_kmem_cache_free(cachep, objp, caller); 3565 } 3566 3567 /** 3568 * kmem_cache_free - Deallocate an object 3569 * @cachep: The cache the allocation was from. 3570 * @objp: The previously allocated object. 3571 * 3572 * Free an object which was previously allocated from this 3573 * cache. 3574 */ 3575 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3576 { 3577 cachep = cache_from_obj(cachep, objp); 3578 if (!cachep) 3579 return; 3580 3581 trace_kmem_cache_free(_RET_IP_, objp, cachep); 3582 __do_kmem_cache_free(cachep, objp, _RET_IP_); 3583 } 3584 EXPORT_SYMBOL(kmem_cache_free); 3585 3586 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3587 { 3588 unsigned long flags; 3589 3590 local_irq_save(flags); 3591 for (int i = 0; i < size; i++) { 3592 void *objp = p[i]; 3593 struct kmem_cache *s; 3594 3595 if (!orig_s) { 3596 struct folio *folio = virt_to_folio(objp); 3597 3598 /* called via kfree_bulk */ 3599 if (!folio_test_slab(folio)) { 3600 local_irq_restore(flags); 3601 free_large_kmalloc(folio, objp); 3602 local_irq_save(flags); 3603 continue; 3604 } 3605 s = folio_slab(folio)->slab_cache; 3606 } else { 3607 s = cache_from_obj(orig_s, objp); 3608 } 3609 3610 if (!s) 3611 continue; 3612 3613 debug_check_no_locks_freed(objp, s->object_size); 3614 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3615 debug_check_no_obj_freed(objp, s->object_size); 3616 3617 __cache_free(s, objp, _RET_IP_); 3618 } 3619 local_irq_restore(flags); 3620 3621 /* FIXME: add tracing */ 3622 } 3623 EXPORT_SYMBOL(kmem_cache_free_bulk); 3624 3625 /* 3626 * This initializes kmem_cache_node or resizes various caches for all nodes. 3627 */ 3628 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3629 { 3630 int ret; 3631 int node; 3632 struct kmem_cache_node *n; 3633 3634 for_each_online_node(node) { 3635 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3636 if (ret) 3637 goto fail; 3638 3639 } 3640 3641 return 0; 3642 3643 fail: 3644 if (!cachep->list.next) { 3645 /* Cache is not active yet. Roll back what we did */ 3646 node--; 3647 while (node >= 0) { 3648 n = get_node(cachep, node); 3649 if (n) { 3650 kfree(n->shared); 3651 free_alien_cache(n->alien); 3652 kfree(n); 3653 cachep->node[node] = NULL; 3654 } 3655 node--; 3656 } 3657 } 3658 return -ENOMEM; 3659 } 3660 3661 /* Always called with the slab_mutex held */ 3662 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3663 int batchcount, int shared, gfp_t gfp) 3664 { 3665 struct array_cache __percpu *cpu_cache, *prev; 3666 int cpu; 3667 3668 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3669 if (!cpu_cache) 3670 return -ENOMEM; 3671 3672 prev = cachep->cpu_cache; 3673 cachep->cpu_cache = cpu_cache; 3674 /* 3675 * Without a previous cpu_cache there's no need to synchronize remote 3676 * cpus, so skip the IPIs. 3677 */ 3678 if (prev) 3679 kick_all_cpus_sync(); 3680 3681 check_irq_on(); 3682 cachep->batchcount = batchcount; 3683 cachep->limit = limit; 3684 cachep->shared = shared; 3685 3686 if (!prev) 3687 goto setup_node; 3688 3689 for_each_online_cpu(cpu) { 3690 LIST_HEAD(list); 3691 int node; 3692 struct kmem_cache_node *n; 3693 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3694 3695 node = cpu_to_mem(cpu); 3696 n = get_node(cachep, node); 3697 raw_spin_lock_irq(&n->list_lock); 3698 free_block(cachep, ac->entry, ac->avail, node, &list); 3699 raw_spin_unlock_irq(&n->list_lock); 3700 slabs_destroy(cachep, &list); 3701 } 3702 free_percpu(prev); 3703 3704 setup_node: 3705 return setup_kmem_cache_nodes(cachep, gfp); 3706 } 3707 3708 /* Called with slab_mutex held always */ 3709 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3710 { 3711 int err; 3712 int limit = 0; 3713 int shared = 0; 3714 int batchcount = 0; 3715 3716 err = cache_random_seq_create(cachep, cachep->num, gfp); 3717 if (err) 3718 goto end; 3719 3720 /* 3721 * The head array serves three purposes: 3722 * - create a LIFO ordering, i.e. return objects that are cache-warm 3723 * - reduce the number of spinlock operations. 3724 * - reduce the number of linked list operations on the slab and 3725 * bufctl chains: array operations are cheaper. 3726 * The numbers are guessed, we should auto-tune as described by 3727 * Bonwick. 3728 */ 3729 if (cachep->size > 131072) 3730 limit = 1; 3731 else if (cachep->size > PAGE_SIZE) 3732 limit = 8; 3733 else if (cachep->size > 1024) 3734 limit = 24; 3735 else if (cachep->size > 256) 3736 limit = 54; 3737 else 3738 limit = 120; 3739 3740 /* 3741 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3742 * allocation behaviour: Most allocs on one cpu, most free operations 3743 * on another cpu. For these cases, an efficient object passing between 3744 * cpus is necessary. This is provided by a shared array. The array 3745 * replaces Bonwick's magazine layer. 3746 * On uniprocessor, it's functionally equivalent (but less efficient) 3747 * to a larger limit. Thus disabled by default. 3748 */ 3749 shared = 0; 3750 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3751 shared = 8; 3752 3753 #if DEBUG 3754 /* 3755 * With debugging enabled, large batchcount lead to excessively long 3756 * periods with disabled local interrupts. Limit the batchcount 3757 */ 3758 if (limit > 32) 3759 limit = 32; 3760 #endif 3761 batchcount = (limit + 1) / 2; 3762 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3763 end: 3764 if (err) 3765 pr_err("enable_cpucache failed for %s, error %d\n", 3766 cachep->name, -err); 3767 return err; 3768 } 3769 3770 /* 3771 * Drain an array if it contains any elements taking the node lock only if 3772 * necessary. Note that the node listlock also protects the array_cache 3773 * if drain_array() is used on the shared array. 3774 */ 3775 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3776 struct array_cache *ac, int node) 3777 { 3778 LIST_HEAD(list); 3779 3780 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3781 check_mutex_acquired(); 3782 3783 if (!ac || !ac->avail) 3784 return; 3785 3786 if (ac->touched) { 3787 ac->touched = 0; 3788 return; 3789 } 3790 3791 raw_spin_lock_irq(&n->list_lock); 3792 drain_array_locked(cachep, ac, node, false, &list); 3793 raw_spin_unlock_irq(&n->list_lock); 3794 3795 slabs_destroy(cachep, &list); 3796 } 3797 3798 /** 3799 * cache_reap - Reclaim memory from caches. 3800 * @w: work descriptor 3801 * 3802 * Called from workqueue/eventd every few seconds. 3803 * Purpose: 3804 * - clear the per-cpu caches for this CPU. 3805 * - return freeable pages to the main free memory pool. 3806 * 3807 * If we cannot acquire the cache chain mutex then just give up - we'll try 3808 * again on the next iteration. 3809 */ 3810 static void cache_reap(struct work_struct *w) 3811 { 3812 struct kmem_cache *searchp; 3813 struct kmem_cache_node *n; 3814 int node = numa_mem_id(); 3815 struct delayed_work *work = to_delayed_work(w); 3816 3817 if (!mutex_trylock(&slab_mutex)) 3818 /* Give up. Setup the next iteration. */ 3819 goto out; 3820 3821 list_for_each_entry(searchp, &slab_caches, list) { 3822 check_irq_on(); 3823 3824 /* 3825 * We only take the node lock if absolutely necessary and we 3826 * have established with reasonable certainty that 3827 * we can do some work if the lock was obtained. 3828 */ 3829 n = get_node(searchp, node); 3830 3831 reap_alien(searchp, n); 3832 3833 drain_array(searchp, n, cpu_cache_get(searchp), node); 3834 3835 /* 3836 * These are racy checks but it does not matter 3837 * if we skip one check or scan twice. 3838 */ 3839 if (time_after(n->next_reap, jiffies)) 3840 goto next; 3841 3842 n->next_reap = jiffies + REAPTIMEOUT_NODE; 3843 3844 drain_array(searchp, n, n->shared, node); 3845 3846 if (n->free_touched) 3847 n->free_touched = 0; 3848 else { 3849 int freed; 3850 3851 freed = drain_freelist(searchp, n, (n->free_limit + 3852 5 * searchp->num - 1) / (5 * searchp->num)); 3853 STATS_ADD_REAPED(searchp, freed); 3854 } 3855 next: 3856 cond_resched(); 3857 } 3858 check_irq_on(); 3859 mutex_unlock(&slab_mutex); 3860 next_reap_node(); 3861 out: 3862 /* Set up the next iteration */ 3863 schedule_delayed_work_on(smp_processor_id(), work, 3864 round_jiffies_relative(REAPTIMEOUT_AC)); 3865 } 3866 3867 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 3868 { 3869 unsigned long active_objs, num_objs, active_slabs; 3870 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 3871 unsigned long free_slabs = 0; 3872 int node; 3873 struct kmem_cache_node *n; 3874 3875 for_each_kmem_cache_node(cachep, node, n) { 3876 check_irq_on(); 3877 raw_spin_lock_irq(&n->list_lock); 3878 3879 total_slabs += n->total_slabs; 3880 free_slabs += n->free_slabs; 3881 free_objs += n->free_objects; 3882 3883 if (n->shared) 3884 shared_avail += n->shared->avail; 3885 3886 raw_spin_unlock_irq(&n->list_lock); 3887 } 3888 num_objs = total_slabs * cachep->num; 3889 active_slabs = total_slabs - free_slabs; 3890 active_objs = num_objs - free_objs; 3891 3892 sinfo->active_objs = active_objs; 3893 sinfo->num_objs = num_objs; 3894 sinfo->active_slabs = active_slabs; 3895 sinfo->num_slabs = total_slabs; 3896 sinfo->shared_avail = shared_avail; 3897 sinfo->limit = cachep->limit; 3898 sinfo->batchcount = cachep->batchcount; 3899 sinfo->shared = cachep->shared; 3900 sinfo->objects_per_slab = cachep->num; 3901 sinfo->cache_order = cachep->gfporder; 3902 } 3903 3904 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 3905 { 3906 #if STATS 3907 { /* node stats */ 3908 unsigned long high = cachep->high_mark; 3909 unsigned long allocs = cachep->num_allocations; 3910 unsigned long grown = cachep->grown; 3911 unsigned long reaped = cachep->reaped; 3912 unsigned long errors = cachep->errors; 3913 unsigned long max_freeable = cachep->max_freeable; 3914 unsigned long node_allocs = cachep->node_allocs; 3915 unsigned long node_frees = cachep->node_frees; 3916 unsigned long overflows = cachep->node_overflow; 3917 3918 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 3919 allocs, high, grown, 3920 reaped, errors, max_freeable, node_allocs, 3921 node_frees, overflows); 3922 } 3923 /* cpu stats */ 3924 { 3925 unsigned long allochit = atomic_read(&cachep->allochit); 3926 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 3927 unsigned long freehit = atomic_read(&cachep->freehit); 3928 unsigned long freemiss = atomic_read(&cachep->freemiss); 3929 3930 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 3931 allochit, allocmiss, freehit, freemiss); 3932 } 3933 #endif 3934 } 3935 3936 #define MAX_SLABINFO_WRITE 128 3937 /** 3938 * slabinfo_write - Tuning for the slab allocator 3939 * @file: unused 3940 * @buffer: user buffer 3941 * @count: data length 3942 * @ppos: unused 3943 * 3944 * Return: %0 on success, negative error code otherwise. 3945 */ 3946 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 3947 size_t count, loff_t *ppos) 3948 { 3949 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 3950 int limit, batchcount, shared, res; 3951 struct kmem_cache *cachep; 3952 3953 if (count > MAX_SLABINFO_WRITE) 3954 return -EINVAL; 3955 if (copy_from_user(&kbuf, buffer, count)) 3956 return -EFAULT; 3957 kbuf[MAX_SLABINFO_WRITE] = '\0'; 3958 3959 tmp = strchr(kbuf, ' '); 3960 if (!tmp) 3961 return -EINVAL; 3962 *tmp = '\0'; 3963 tmp++; 3964 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 3965 return -EINVAL; 3966 3967 /* Find the cache in the chain of caches. */ 3968 mutex_lock(&slab_mutex); 3969 res = -EINVAL; 3970 list_for_each_entry(cachep, &slab_caches, list) { 3971 if (!strcmp(cachep->name, kbuf)) { 3972 if (limit < 1 || batchcount < 1 || 3973 batchcount > limit || shared < 0) { 3974 res = 0; 3975 } else { 3976 res = do_tune_cpucache(cachep, limit, 3977 batchcount, shared, 3978 GFP_KERNEL); 3979 } 3980 break; 3981 } 3982 } 3983 mutex_unlock(&slab_mutex); 3984 if (res >= 0) 3985 res = count; 3986 return res; 3987 } 3988 3989 #ifdef CONFIG_HARDENED_USERCOPY 3990 /* 3991 * Rejects incorrectly sized objects and objects that are to be copied 3992 * to/from userspace but do not fall entirely within the containing slab 3993 * cache's usercopy region. 3994 * 3995 * Returns NULL if check passes, otherwise const char * to name of cache 3996 * to indicate an error. 3997 */ 3998 void __check_heap_object(const void *ptr, unsigned long n, 3999 const struct slab *slab, bool to_user) 4000 { 4001 struct kmem_cache *cachep; 4002 unsigned int objnr; 4003 unsigned long offset; 4004 4005 ptr = kasan_reset_tag(ptr); 4006 4007 /* Find and validate object. */ 4008 cachep = slab->slab_cache; 4009 objnr = obj_to_index(cachep, slab, (void *)ptr); 4010 BUG_ON(objnr >= cachep->num); 4011 4012 /* Find offset within object. */ 4013 if (is_kfence_address(ptr)) 4014 offset = ptr - kfence_object_start(ptr); 4015 else 4016 offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep); 4017 4018 /* Allow address range falling entirely within usercopy region. */ 4019 if (offset >= cachep->useroffset && 4020 offset - cachep->useroffset <= cachep->usersize && 4021 n <= cachep->useroffset - offset + cachep->usersize) 4022 return; 4023 4024 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4025 } 4026 #endif /* CONFIG_HARDENED_USERCOPY */ 4027