xref: /openbmc/linux/mm/slab.c (revision 8db70d3d)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<trace/kmemtrace.h>
106 #include	<linux/rcupdate.h>
107 #include	<linux/string.h>
108 #include	<linux/uaccess.h>
109 #include	<linux/nodemask.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 
117 #include	<asm/cacheflush.h>
118 #include	<asm/tlbflush.h>
119 #include	<asm/page.h>
120 
121 /*
122  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
123  *		  0 for faster, smaller code (especially in the critical paths).
124  *
125  * STATS	- 1 to collect stats for /proc/slabinfo.
126  *		  0 for faster, smaller code (especially in the critical paths).
127  *
128  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
129  */
130 
131 #ifdef CONFIG_DEBUG_SLAB
132 #define	DEBUG		1
133 #define	STATS		1
134 #define	FORCED_DEBUG	1
135 #else
136 #define	DEBUG		0
137 #define	STATS		0
138 #define	FORCED_DEBUG	0
139 #endif
140 
141 /* Shouldn't this be in a header file somewhere? */
142 #define	BYTES_PER_WORD		sizeof(void *)
143 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
144 
145 #ifndef ARCH_KMALLOC_MINALIGN
146 /*
147  * Enforce a minimum alignment for the kmalloc caches.
148  * Usually, the kmalloc caches are cache_line_size() aligned, except when
149  * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151  * alignment larger than the alignment of a 64-bit integer.
152  * ARCH_KMALLOC_MINALIGN allows that.
153  * Note that increasing this value may disable some debug features.
154  */
155 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
156 #endif
157 
158 #ifndef ARCH_SLAB_MINALIGN
159 /*
160  * Enforce a minimum alignment for all caches.
161  * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162  * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163  * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164  * some debug features.
165  */
166 #define ARCH_SLAB_MINALIGN 0
167 #endif
168 
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171 #endif
172 
173 /* Legal flag mask for kmem_cache_create(). */
174 #if DEBUG
175 # define CREATE_MASK	(SLAB_RED_ZONE | \
176 			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 			 SLAB_CACHE_DMA | \
178 			 SLAB_STORE_USER | \
179 			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
181 			 SLAB_DEBUG_OBJECTS)
182 #else
183 # define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
184 			 SLAB_CACHE_DMA | \
185 			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
187 			 SLAB_DEBUG_OBJECTS)
188 #endif
189 
190 /*
191  * kmem_bufctl_t:
192  *
193  * Bufctl's are used for linking objs within a slab
194  * linked offsets.
195  *
196  * This implementation relies on "struct page" for locating the cache &
197  * slab an object belongs to.
198  * This allows the bufctl structure to be small (one int), but limits
199  * the number of objects a slab (not a cache) can contain when off-slab
200  * bufctls are used. The limit is the size of the largest general cache
201  * that does not use off-slab slabs.
202  * For 32bit archs with 4 kB pages, is this 56.
203  * This is not serious, as it is only for large objects, when it is unwise
204  * to have too many per slab.
205  * Note: This limit can be raised by introducing a general cache whose size
206  * is less than 512 (PAGE_SIZE<<3), but greater than 256.
207  */
208 
209 typedef unsigned int kmem_bufctl_t;
210 #define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
211 #define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
212 #define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
213 #define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
214 
215 /*
216  * struct slab
217  *
218  * Manages the objs in a slab. Placed either at the beginning of mem allocated
219  * for a slab, or allocated from an general cache.
220  * Slabs are chained into three list: fully used, partial, fully free slabs.
221  */
222 struct slab {
223 	struct list_head list;
224 	unsigned long colouroff;
225 	void *s_mem;		/* including colour offset */
226 	unsigned int inuse;	/* num of objs active in slab */
227 	kmem_bufctl_t free;
228 	unsigned short nodeid;
229 };
230 
231 /*
232  * struct slab_rcu
233  *
234  * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235  * arrange for kmem_freepages to be called via RCU.  This is useful if
236  * we need to approach a kernel structure obliquely, from its address
237  * obtained without the usual locking.  We can lock the structure to
238  * stabilize it and check it's still at the given address, only if we
239  * can be sure that the memory has not been meanwhile reused for some
240  * other kind of object (which our subsystem's lock might corrupt).
241  *
242  * rcu_read_lock before reading the address, then rcu_read_unlock after
243  * taking the spinlock within the structure expected at that address.
244  *
245  * We assume struct slab_rcu can overlay struct slab when destroying.
246  */
247 struct slab_rcu {
248 	struct rcu_head head;
249 	struct kmem_cache *cachep;
250 	void *addr;
251 };
252 
253 /*
254  * struct array_cache
255  *
256  * Purpose:
257  * - LIFO ordering, to hand out cache-warm objects from _alloc
258  * - reduce the number of linked list operations
259  * - reduce spinlock operations
260  *
261  * The limit is stored in the per-cpu structure to reduce the data cache
262  * footprint.
263  *
264  */
265 struct array_cache {
266 	unsigned int avail;
267 	unsigned int limit;
268 	unsigned int batchcount;
269 	unsigned int touched;
270 	spinlock_t lock;
271 	void *entry[];	/*
272 			 * Must have this definition in here for the proper
273 			 * alignment of array_cache. Also simplifies accessing
274 			 * the entries.
275 			 */
276 };
277 
278 /*
279  * bootstrap: The caches do not work without cpuarrays anymore, but the
280  * cpuarrays are allocated from the generic caches...
281  */
282 #define BOOT_CPUCACHE_ENTRIES	1
283 struct arraycache_init {
284 	struct array_cache cache;
285 	void *entries[BOOT_CPUCACHE_ENTRIES];
286 };
287 
288 /*
289  * The slab lists for all objects.
290  */
291 struct kmem_list3 {
292 	struct list_head slabs_partial;	/* partial list first, better asm code */
293 	struct list_head slabs_full;
294 	struct list_head slabs_free;
295 	unsigned long free_objects;
296 	unsigned int free_limit;
297 	unsigned int colour_next;	/* Per-node cache coloring */
298 	spinlock_t list_lock;
299 	struct array_cache *shared;	/* shared per node */
300 	struct array_cache **alien;	/* on other nodes */
301 	unsigned long next_reap;	/* updated without locking */
302 	int free_touched;		/* updated without locking */
303 };
304 
305 /*
306  * Need this for bootstrapping a per node allocator.
307  */
308 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
309 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310 #define	CACHE_CACHE 0
311 #define	SIZE_AC MAX_NUMNODES
312 #define	SIZE_L3 (2 * MAX_NUMNODES)
313 
314 static int drain_freelist(struct kmem_cache *cache,
315 			struct kmem_list3 *l3, int tofree);
316 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 			int node);
318 static int enable_cpucache(struct kmem_cache *cachep);
319 static void cache_reap(struct work_struct *unused);
320 
321 /*
322  * This function must be completely optimized away if a constant is passed to
323  * it.  Mostly the same as what is in linux/slab.h except it returns an index.
324  */
325 static __always_inline int index_of(const size_t size)
326 {
327 	extern void __bad_size(void);
328 
329 	if (__builtin_constant_p(size)) {
330 		int i = 0;
331 
332 #define CACHE(x) \
333 	if (size <=x) \
334 		return i; \
335 	else \
336 		i++;
337 #include <linux/kmalloc_sizes.h>
338 #undef CACHE
339 		__bad_size();
340 	} else
341 		__bad_size();
342 	return 0;
343 }
344 
345 static int slab_early_init = 1;
346 
347 #define INDEX_AC index_of(sizeof(struct arraycache_init))
348 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 
350 static void kmem_list3_init(struct kmem_list3 *parent)
351 {
352 	INIT_LIST_HEAD(&parent->slabs_full);
353 	INIT_LIST_HEAD(&parent->slabs_partial);
354 	INIT_LIST_HEAD(&parent->slabs_free);
355 	parent->shared = NULL;
356 	parent->alien = NULL;
357 	parent->colour_next = 0;
358 	spin_lock_init(&parent->list_lock);
359 	parent->free_objects = 0;
360 	parent->free_touched = 0;
361 }
362 
363 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
364 	do {								\
365 		INIT_LIST_HEAD(listp);					\
366 		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
367 	} while (0)
368 
369 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
370 	do {								\
371 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
372 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
374 	} while (0)
375 
376 /*
377  * struct kmem_cache
378  *
379  * manages a cache.
380  */
381 
382 struct kmem_cache {
383 /* 1) per-cpu data, touched during every alloc/free */
384 	struct array_cache *array[NR_CPUS];
385 /* 2) Cache tunables. Protected by cache_chain_mutex */
386 	unsigned int batchcount;
387 	unsigned int limit;
388 	unsigned int shared;
389 
390 	unsigned int buffer_size;
391 	u32 reciprocal_buffer_size;
392 /* 3) touched by every alloc & free from the backend */
393 
394 	unsigned int flags;		/* constant flags */
395 	unsigned int num;		/* # of objs per slab */
396 
397 /* 4) cache_grow/shrink */
398 	/* order of pgs per slab (2^n) */
399 	unsigned int gfporder;
400 
401 	/* force GFP flags, e.g. GFP_DMA */
402 	gfp_t gfpflags;
403 
404 	size_t colour;			/* cache colouring range */
405 	unsigned int colour_off;	/* colour offset */
406 	struct kmem_cache *slabp_cache;
407 	unsigned int slab_size;
408 	unsigned int dflags;		/* dynamic flags */
409 
410 	/* constructor func */
411 	void (*ctor)(void *obj);
412 
413 /* 5) cache creation/removal */
414 	const char *name;
415 	struct list_head next;
416 
417 /* 6) statistics */
418 #if STATS
419 	unsigned long num_active;
420 	unsigned long num_allocations;
421 	unsigned long high_mark;
422 	unsigned long grown;
423 	unsigned long reaped;
424 	unsigned long errors;
425 	unsigned long max_freeable;
426 	unsigned long node_allocs;
427 	unsigned long node_frees;
428 	unsigned long node_overflow;
429 	atomic_t allochit;
430 	atomic_t allocmiss;
431 	atomic_t freehit;
432 	atomic_t freemiss;
433 #endif
434 #if DEBUG
435 	/*
436 	 * If debugging is enabled, then the allocator can add additional
437 	 * fields and/or padding to every object. buffer_size contains the total
438 	 * object size including these internal fields, the following two
439 	 * variables contain the offset to the user object and its size.
440 	 */
441 	int obj_offset;
442 	int obj_size;
443 #endif
444 	/*
445 	 * We put nodelists[] at the end of kmem_cache, because we want to size
446 	 * this array to nr_node_ids slots instead of MAX_NUMNODES
447 	 * (see kmem_cache_init())
448 	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449 	 * is statically defined, so we reserve the max number of nodes.
450 	 */
451 	struct kmem_list3 *nodelists[MAX_NUMNODES];
452 	/*
453 	 * Do not add fields after nodelists[]
454 	 */
455 };
456 
457 #define CFLGS_OFF_SLAB		(0x80000000UL)
458 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
459 
460 #define BATCHREFILL_LIMIT	16
461 /*
462  * Optimization question: fewer reaps means less probability for unnessary
463  * cpucache drain/refill cycles.
464  *
465  * OTOH the cpuarrays can contain lots of objects,
466  * which could lock up otherwise freeable slabs.
467  */
468 #define REAPTIMEOUT_CPUC	(2*HZ)
469 #define REAPTIMEOUT_LIST3	(4*HZ)
470 
471 #if STATS
472 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
473 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
474 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
475 #define	STATS_INC_GROWN(x)	((x)->grown++)
476 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
477 #define	STATS_SET_HIGH(x)						\
478 	do {								\
479 		if ((x)->num_active > (x)->high_mark)			\
480 			(x)->high_mark = (x)->num_active;		\
481 	} while (0)
482 #define	STATS_INC_ERR(x)	((x)->errors++)
483 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
484 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
485 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
486 #define	STATS_SET_FREEABLE(x, i)					\
487 	do {								\
488 		if ((x)->max_freeable < i)				\
489 			(x)->max_freeable = i;				\
490 	} while (0)
491 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
492 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
493 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
494 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
495 #else
496 #define	STATS_INC_ACTIVE(x)	do { } while (0)
497 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
498 #define	STATS_INC_ALLOCED(x)	do { } while (0)
499 #define	STATS_INC_GROWN(x)	do { } while (0)
500 #define	STATS_ADD_REAPED(x,y)	do { } while (0)
501 #define	STATS_SET_HIGH(x)	do { } while (0)
502 #define	STATS_INC_ERR(x)	do { } while (0)
503 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
504 #define	STATS_INC_NODEFREES(x)	do { } while (0)
505 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
506 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
507 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
508 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
509 #define STATS_INC_FREEHIT(x)	do { } while (0)
510 #define STATS_INC_FREEMISS(x)	do { } while (0)
511 #endif
512 
513 #if DEBUG
514 
515 /*
516  * memory layout of objects:
517  * 0		: objp
518  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
519  * 		the end of an object is aligned with the end of the real
520  * 		allocation. Catches writes behind the end of the allocation.
521  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
522  * 		redzone word.
523  * cachep->obj_offset: The real object.
524  * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
525  * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526  *					[BYTES_PER_WORD long]
527  */
528 static int obj_offset(struct kmem_cache *cachep)
529 {
530 	return cachep->obj_offset;
531 }
532 
533 static int obj_size(struct kmem_cache *cachep)
534 {
535 	return cachep->obj_size;
536 }
537 
538 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
539 {
540 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
541 	return (unsigned long long*) (objp + obj_offset(cachep) -
542 				      sizeof(unsigned long long));
543 }
544 
545 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
546 {
547 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548 	if (cachep->flags & SLAB_STORE_USER)
549 		return (unsigned long long *)(objp + cachep->buffer_size -
550 					      sizeof(unsigned long long) -
551 					      REDZONE_ALIGN);
552 	return (unsigned long long *) (objp + cachep->buffer_size -
553 				       sizeof(unsigned long long));
554 }
555 
556 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
557 {
558 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
559 	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
560 }
561 
562 #else
563 
564 #define obj_offset(x)			0
565 #define obj_size(cachep)		(cachep->buffer_size)
566 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
567 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
568 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
569 
570 #endif
571 
572 #ifdef CONFIG_KMEMTRACE
573 size_t slab_buffer_size(struct kmem_cache *cachep)
574 {
575 	return cachep->buffer_size;
576 }
577 EXPORT_SYMBOL(slab_buffer_size);
578 #endif
579 
580 /*
581  * Do not go above this order unless 0 objects fit into the slab.
582  */
583 #define	BREAK_GFP_ORDER_HI	1
584 #define	BREAK_GFP_ORDER_LO	0
585 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
586 
587 /*
588  * Functions for storing/retrieving the cachep and or slab from the page
589  * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
590  * these are used to find the cache which an obj belongs to.
591  */
592 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
593 {
594 	page->lru.next = (struct list_head *)cache;
595 }
596 
597 static inline struct kmem_cache *page_get_cache(struct page *page)
598 {
599 	page = compound_head(page);
600 	BUG_ON(!PageSlab(page));
601 	return (struct kmem_cache *)page->lru.next;
602 }
603 
604 static inline void page_set_slab(struct page *page, struct slab *slab)
605 {
606 	page->lru.prev = (struct list_head *)slab;
607 }
608 
609 static inline struct slab *page_get_slab(struct page *page)
610 {
611 	BUG_ON(!PageSlab(page));
612 	return (struct slab *)page->lru.prev;
613 }
614 
615 static inline struct kmem_cache *virt_to_cache(const void *obj)
616 {
617 	struct page *page = virt_to_head_page(obj);
618 	return page_get_cache(page);
619 }
620 
621 static inline struct slab *virt_to_slab(const void *obj)
622 {
623 	struct page *page = virt_to_head_page(obj);
624 	return page_get_slab(page);
625 }
626 
627 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
628 				 unsigned int idx)
629 {
630 	return slab->s_mem + cache->buffer_size * idx;
631 }
632 
633 /*
634  * We want to avoid an expensive divide : (offset / cache->buffer_size)
635  *   Using the fact that buffer_size is a constant for a particular cache,
636  *   we can replace (offset / cache->buffer_size) by
637  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
638  */
639 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
640 					const struct slab *slab, void *obj)
641 {
642 	u32 offset = (obj - slab->s_mem);
643 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
644 }
645 
646 /*
647  * These are the default caches for kmalloc. Custom caches can have other sizes.
648  */
649 struct cache_sizes malloc_sizes[] = {
650 #define CACHE(x) { .cs_size = (x) },
651 #include <linux/kmalloc_sizes.h>
652 	CACHE(ULONG_MAX)
653 #undef CACHE
654 };
655 EXPORT_SYMBOL(malloc_sizes);
656 
657 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
658 struct cache_names {
659 	char *name;
660 	char *name_dma;
661 };
662 
663 static struct cache_names __initdata cache_names[] = {
664 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
665 #include <linux/kmalloc_sizes.h>
666 	{NULL,}
667 #undef CACHE
668 };
669 
670 static struct arraycache_init initarray_cache __initdata =
671     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
672 static struct arraycache_init initarray_generic =
673     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
674 
675 /* internal cache of cache description objs */
676 static struct kmem_cache cache_cache = {
677 	.batchcount = 1,
678 	.limit = BOOT_CPUCACHE_ENTRIES,
679 	.shared = 1,
680 	.buffer_size = sizeof(struct kmem_cache),
681 	.name = "kmem_cache",
682 };
683 
684 #define BAD_ALIEN_MAGIC 0x01020304ul
685 
686 #ifdef CONFIG_LOCKDEP
687 
688 /*
689  * Slab sometimes uses the kmalloc slabs to store the slab headers
690  * for other slabs "off slab".
691  * The locking for this is tricky in that it nests within the locks
692  * of all other slabs in a few places; to deal with this special
693  * locking we put on-slab caches into a separate lock-class.
694  *
695  * We set lock class for alien array caches which are up during init.
696  * The lock annotation will be lost if all cpus of a node goes down and
697  * then comes back up during hotplug
698  */
699 static struct lock_class_key on_slab_l3_key;
700 static struct lock_class_key on_slab_alc_key;
701 
702 static inline void init_lock_keys(void)
703 
704 {
705 	int q;
706 	struct cache_sizes *s = malloc_sizes;
707 
708 	while (s->cs_size != ULONG_MAX) {
709 		for_each_node(q) {
710 			struct array_cache **alc;
711 			int r;
712 			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
713 			if (!l3 || OFF_SLAB(s->cs_cachep))
714 				continue;
715 			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
716 			alc = l3->alien;
717 			/*
718 			 * FIXME: This check for BAD_ALIEN_MAGIC
719 			 * should go away when common slab code is taught to
720 			 * work even without alien caches.
721 			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
722 			 * for alloc_alien_cache,
723 			 */
724 			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
725 				continue;
726 			for_each_node(r) {
727 				if (alc[r])
728 					lockdep_set_class(&alc[r]->lock,
729 					     &on_slab_alc_key);
730 			}
731 		}
732 		s++;
733 	}
734 }
735 #else
736 static inline void init_lock_keys(void)
737 {
738 }
739 #endif
740 
741 /*
742  * Guard access to the cache-chain.
743  */
744 static DEFINE_MUTEX(cache_chain_mutex);
745 static struct list_head cache_chain;
746 
747 /*
748  * chicken and egg problem: delay the per-cpu array allocation
749  * until the general caches are up.
750  */
751 static enum {
752 	NONE,
753 	PARTIAL_AC,
754 	PARTIAL_L3,
755 	FULL
756 } g_cpucache_up;
757 
758 /*
759  * used by boot code to determine if it can use slab based allocator
760  */
761 int slab_is_available(void)
762 {
763 	return g_cpucache_up == FULL;
764 }
765 
766 static DEFINE_PER_CPU(struct delayed_work, reap_work);
767 
768 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
769 {
770 	return cachep->array[smp_processor_id()];
771 }
772 
773 static inline struct kmem_cache *__find_general_cachep(size_t size,
774 							gfp_t gfpflags)
775 {
776 	struct cache_sizes *csizep = malloc_sizes;
777 
778 #if DEBUG
779 	/* This happens if someone tries to call
780 	 * kmem_cache_create(), or __kmalloc(), before
781 	 * the generic caches are initialized.
782 	 */
783 	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
784 #endif
785 	if (!size)
786 		return ZERO_SIZE_PTR;
787 
788 	while (size > csizep->cs_size)
789 		csizep++;
790 
791 	/*
792 	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
793 	 * has cs_{dma,}cachep==NULL. Thus no special case
794 	 * for large kmalloc calls required.
795 	 */
796 #ifdef CONFIG_ZONE_DMA
797 	if (unlikely(gfpflags & GFP_DMA))
798 		return csizep->cs_dmacachep;
799 #endif
800 	return csizep->cs_cachep;
801 }
802 
803 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
804 {
805 	return __find_general_cachep(size, gfpflags);
806 }
807 
808 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
809 {
810 	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
811 }
812 
813 /*
814  * Calculate the number of objects and left-over bytes for a given buffer size.
815  */
816 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
817 			   size_t align, int flags, size_t *left_over,
818 			   unsigned int *num)
819 {
820 	int nr_objs;
821 	size_t mgmt_size;
822 	size_t slab_size = PAGE_SIZE << gfporder;
823 
824 	/*
825 	 * The slab management structure can be either off the slab or
826 	 * on it. For the latter case, the memory allocated for a
827 	 * slab is used for:
828 	 *
829 	 * - The struct slab
830 	 * - One kmem_bufctl_t for each object
831 	 * - Padding to respect alignment of @align
832 	 * - @buffer_size bytes for each object
833 	 *
834 	 * If the slab management structure is off the slab, then the
835 	 * alignment will already be calculated into the size. Because
836 	 * the slabs are all pages aligned, the objects will be at the
837 	 * correct alignment when allocated.
838 	 */
839 	if (flags & CFLGS_OFF_SLAB) {
840 		mgmt_size = 0;
841 		nr_objs = slab_size / buffer_size;
842 
843 		if (nr_objs > SLAB_LIMIT)
844 			nr_objs = SLAB_LIMIT;
845 	} else {
846 		/*
847 		 * Ignore padding for the initial guess. The padding
848 		 * is at most @align-1 bytes, and @buffer_size is at
849 		 * least @align. In the worst case, this result will
850 		 * be one greater than the number of objects that fit
851 		 * into the memory allocation when taking the padding
852 		 * into account.
853 		 */
854 		nr_objs = (slab_size - sizeof(struct slab)) /
855 			  (buffer_size + sizeof(kmem_bufctl_t));
856 
857 		/*
858 		 * This calculated number will be either the right
859 		 * amount, or one greater than what we want.
860 		 */
861 		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
862 		       > slab_size)
863 			nr_objs--;
864 
865 		if (nr_objs > SLAB_LIMIT)
866 			nr_objs = SLAB_LIMIT;
867 
868 		mgmt_size = slab_mgmt_size(nr_objs, align);
869 	}
870 	*num = nr_objs;
871 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
872 }
873 
874 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
875 
876 static void __slab_error(const char *function, struct kmem_cache *cachep,
877 			char *msg)
878 {
879 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
880 	       function, cachep->name, msg);
881 	dump_stack();
882 }
883 
884 /*
885  * By default on NUMA we use alien caches to stage the freeing of
886  * objects allocated from other nodes. This causes massive memory
887  * inefficiencies when using fake NUMA setup to split memory into a
888  * large number of small nodes, so it can be disabled on the command
889  * line
890   */
891 
892 static int use_alien_caches __read_mostly = 1;
893 static int numa_platform __read_mostly = 1;
894 static int __init noaliencache_setup(char *s)
895 {
896 	use_alien_caches = 0;
897 	return 1;
898 }
899 __setup("noaliencache", noaliencache_setup);
900 
901 #ifdef CONFIG_NUMA
902 /*
903  * Special reaping functions for NUMA systems called from cache_reap().
904  * These take care of doing round robin flushing of alien caches (containing
905  * objects freed on different nodes from which they were allocated) and the
906  * flushing of remote pcps by calling drain_node_pages.
907  */
908 static DEFINE_PER_CPU(unsigned long, reap_node);
909 
910 static void init_reap_node(int cpu)
911 {
912 	int node;
913 
914 	node = next_node(cpu_to_node(cpu), node_online_map);
915 	if (node == MAX_NUMNODES)
916 		node = first_node(node_online_map);
917 
918 	per_cpu(reap_node, cpu) = node;
919 }
920 
921 static void next_reap_node(void)
922 {
923 	int node = __get_cpu_var(reap_node);
924 
925 	node = next_node(node, node_online_map);
926 	if (unlikely(node >= MAX_NUMNODES))
927 		node = first_node(node_online_map);
928 	__get_cpu_var(reap_node) = node;
929 }
930 
931 #else
932 #define init_reap_node(cpu) do { } while (0)
933 #define next_reap_node(void) do { } while (0)
934 #endif
935 
936 /*
937  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
938  * via the workqueue/eventd.
939  * Add the CPU number into the expiration time to minimize the possibility of
940  * the CPUs getting into lockstep and contending for the global cache chain
941  * lock.
942  */
943 static void __cpuinit start_cpu_timer(int cpu)
944 {
945 	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
946 
947 	/*
948 	 * When this gets called from do_initcalls via cpucache_init(),
949 	 * init_workqueues() has already run, so keventd will be setup
950 	 * at that time.
951 	 */
952 	if (keventd_up() && reap_work->work.func == NULL) {
953 		init_reap_node(cpu);
954 		INIT_DELAYED_WORK(reap_work, cache_reap);
955 		schedule_delayed_work_on(cpu, reap_work,
956 					__round_jiffies_relative(HZ, cpu));
957 	}
958 }
959 
960 static struct array_cache *alloc_arraycache(int node, int entries,
961 					    int batchcount)
962 {
963 	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
964 	struct array_cache *nc = NULL;
965 
966 	nc = kmalloc_node(memsize, GFP_KERNEL, node);
967 	if (nc) {
968 		nc->avail = 0;
969 		nc->limit = entries;
970 		nc->batchcount = batchcount;
971 		nc->touched = 0;
972 		spin_lock_init(&nc->lock);
973 	}
974 	return nc;
975 }
976 
977 /*
978  * Transfer objects in one arraycache to another.
979  * Locking must be handled by the caller.
980  *
981  * Return the number of entries transferred.
982  */
983 static int transfer_objects(struct array_cache *to,
984 		struct array_cache *from, unsigned int max)
985 {
986 	/* Figure out how many entries to transfer */
987 	int nr = min(min(from->avail, max), to->limit - to->avail);
988 
989 	if (!nr)
990 		return 0;
991 
992 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
993 			sizeof(void *) *nr);
994 
995 	from->avail -= nr;
996 	to->avail += nr;
997 	to->touched = 1;
998 	return nr;
999 }
1000 
1001 #ifndef CONFIG_NUMA
1002 
1003 #define drain_alien_cache(cachep, alien) do { } while (0)
1004 #define reap_alien(cachep, l3) do { } while (0)
1005 
1006 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1007 {
1008 	return (struct array_cache **)BAD_ALIEN_MAGIC;
1009 }
1010 
1011 static inline void free_alien_cache(struct array_cache **ac_ptr)
1012 {
1013 }
1014 
1015 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1016 {
1017 	return 0;
1018 }
1019 
1020 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1021 		gfp_t flags)
1022 {
1023 	return NULL;
1024 }
1025 
1026 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1027 		 gfp_t flags, int nodeid)
1028 {
1029 	return NULL;
1030 }
1031 
1032 #else	/* CONFIG_NUMA */
1033 
1034 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1035 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1036 
1037 static struct array_cache **alloc_alien_cache(int node, int limit)
1038 {
1039 	struct array_cache **ac_ptr;
1040 	int memsize = sizeof(void *) * nr_node_ids;
1041 	int i;
1042 
1043 	if (limit > 1)
1044 		limit = 12;
1045 	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1046 	if (ac_ptr) {
1047 		for_each_node(i) {
1048 			if (i == node || !node_online(i)) {
1049 				ac_ptr[i] = NULL;
1050 				continue;
1051 			}
1052 			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1053 			if (!ac_ptr[i]) {
1054 				for (i--; i >= 0; i--)
1055 					kfree(ac_ptr[i]);
1056 				kfree(ac_ptr);
1057 				return NULL;
1058 			}
1059 		}
1060 	}
1061 	return ac_ptr;
1062 }
1063 
1064 static void free_alien_cache(struct array_cache **ac_ptr)
1065 {
1066 	int i;
1067 
1068 	if (!ac_ptr)
1069 		return;
1070 	for_each_node(i)
1071 	    kfree(ac_ptr[i]);
1072 	kfree(ac_ptr);
1073 }
1074 
1075 static void __drain_alien_cache(struct kmem_cache *cachep,
1076 				struct array_cache *ac, int node)
1077 {
1078 	struct kmem_list3 *rl3 = cachep->nodelists[node];
1079 
1080 	if (ac->avail) {
1081 		spin_lock(&rl3->list_lock);
1082 		/*
1083 		 * Stuff objects into the remote nodes shared array first.
1084 		 * That way we could avoid the overhead of putting the objects
1085 		 * into the free lists and getting them back later.
1086 		 */
1087 		if (rl3->shared)
1088 			transfer_objects(rl3->shared, ac, ac->limit);
1089 
1090 		free_block(cachep, ac->entry, ac->avail, node);
1091 		ac->avail = 0;
1092 		spin_unlock(&rl3->list_lock);
1093 	}
1094 }
1095 
1096 /*
1097  * Called from cache_reap() to regularly drain alien caches round robin.
1098  */
1099 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1100 {
1101 	int node = __get_cpu_var(reap_node);
1102 
1103 	if (l3->alien) {
1104 		struct array_cache *ac = l3->alien[node];
1105 
1106 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1107 			__drain_alien_cache(cachep, ac, node);
1108 			spin_unlock_irq(&ac->lock);
1109 		}
1110 	}
1111 }
1112 
1113 static void drain_alien_cache(struct kmem_cache *cachep,
1114 				struct array_cache **alien)
1115 {
1116 	int i = 0;
1117 	struct array_cache *ac;
1118 	unsigned long flags;
1119 
1120 	for_each_online_node(i) {
1121 		ac = alien[i];
1122 		if (ac) {
1123 			spin_lock_irqsave(&ac->lock, flags);
1124 			__drain_alien_cache(cachep, ac, i);
1125 			spin_unlock_irqrestore(&ac->lock, flags);
1126 		}
1127 	}
1128 }
1129 
1130 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1131 {
1132 	struct slab *slabp = virt_to_slab(objp);
1133 	int nodeid = slabp->nodeid;
1134 	struct kmem_list3 *l3;
1135 	struct array_cache *alien = NULL;
1136 	int node;
1137 
1138 	node = numa_node_id();
1139 
1140 	/*
1141 	 * Make sure we are not freeing a object from another node to the array
1142 	 * cache on this cpu.
1143 	 */
1144 	if (likely(slabp->nodeid == node))
1145 		return 0;
1146 
1147 	l3 = cachep->nodelists[node];
1148 	STATS_INC_NODEFREES(cachep);
1149 	if (l3->alien && l3->alien[nodeid]) {
1150 		alien = l3->alien[nodeid];
1151 		spin_lock(&alien->lock);
1152 		if (unlikely(alien->avail == alien->limit)) {
1153 			STATS_INC_ACOVERFLOW(cachep);
1154 			__drain_alien_cache(cachep, alien, nodeid);
1155 		}
1156 		alien->entry[alien->avail++] = objp;
1157 		spin_unlock(&alien->lock);
1158 	} else {
1159 		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1160 		free_block(cachep, &objp, 1, nodeid);
1161 		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1162 	}
1163 	return 1;
1164 }
1165 #endif
1166 
1167 static void __cpuinit cpuup_canceled(long cpu)
1168 {
1169 	struct kmem_cache *cachep;
1170 	struct kmem_list3 *l3 = NULL;
1171 	int node = cpu_to_node(cpu);
1172 	const struct cpumask *mask = cpumask_of_node(node);
1173 
1174 	list_for_each_entry(cachep, &cache_chain, next) {
1175 		struct array_cache *nc;
1176 		struct array_cache *shared;
1177 		struct array_cache **alien;
1178 
1179 		/* cpu is dead; no one can alloc from it. */
1180 		nc = cachep->array[cpu];
1181 		cachep->array[cpu] = NULL;
1182 		l3 = cachep->nodelists[node];
1183 
1184 		if (!l3)
1185 			goto free_array_cache;
1186 
1187 		spin_lock_irq(&l3->list_lock);
1188 
1189 		/* Free limit for this kmem_list3 */
1190 		l3->free_limit -= cachep->batchcount;
1191 		if (nc)
1192 			free_block(cachep, nc->entry, nc->avail, node);
1193 
1194 		if (!cpus_empty(*mask)) {
1195 			spin_unlock_irq(&l3->list_lock);
1196 			goto free_array_cache;
1197 		}
1198 
1199 		shared = l3->shared;
1200 		if (shared) {
1201 			free_block(cachep, shared->entry,
1202 				   shared->avail, node);
1203 			l3->shared = NULL;
1204 		}
1205 
1206 		alien = l3->alien;
1207 		l3->alien = NULL;
1208 
1209 		spin_unlock_irq(&l3->list_lock);
1210 
1211 		kfree(shared);
1212 		if (alien) {
1213 			drain_alien_cache(cachep, alien);
1214 			free_alien_cache(alien);
1215 		}
1216 free_array_cache:
1217 		kfree(nc);
1218 	}
1219 	/*
1220 	 * In the previous loop, all the objects were freed to
1221 	 * the respective cache's slabs,  now we can go ahead and
1222 	 * shrink each nodelist to its limit.
1223 	 */
1224 	list_for_each_entry(cachep, &cache_chain, next) {
1225 		l3 = cachep->nodelists[node];
1226 		if (!l3)
1227 			continue;
1228 		drain_freelist(cachep, l3, l3->free_objects);
1229 	}
1230 }
1231 
1232 static int __cpuinit cpuup_prepare(long cpu)
1233 {
1234 	struct kmem_cache *cachep;
1235 	struct kmem_list3 *l3 = NULL;
1236 	int node = cpu_to_node(cpu);
1237 	const int memsize = sizeof(struct kmem_list3);
1238 
1239 	/*
1240 	 * We need to do this right in the beginning since
1241 	 * alloc_arraycache's are going to use this list.
1242 	 * kmalloc_node allows us to add the slab to the right
1243 	 * kmem_list3 and not this cpu's kmem_list3
1244 	 */
1245 
1246 	list_for_each_entry(cachep, &cache_chain, next) {
1247 		/*
1248 		 * Set up the size64 kmemlist for cpu before we can
1249 		 * begin anything. Make sure some other cpu on this
1250 		 * node has not already allocated this
1251 		 */
1252 		if (!cachep->nodelists[node]) {
1253 			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1254 			if (!l3)
1255 				goto bad;
1256 			kmem_list3_init(l3);
1257 			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1258 			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1259 
1260 			/*
1261 			 * The l3s don't come and go as CPUs come and
1262 			 * go.  cache_chain_mutex is sufficient
1263 			 * protection here.
1264 			 */
1265 			cachep->nodelists[node] = l3;
1266 		}
1267 
1268 		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1269 		cachep->nodelists[node]->free_limit =
1270 			(1 + nr_cpus_node(node)) *
1271 			cachep->batchcount + cachep->num;
1272 		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1273 	}
1274 
1275 	/*
1276 	 * Now we can go ahead with allocating the shared arrays and
1277 	 * array caches
1278 	 */
1279 	list_for_each_entry(cachep, &cache_chain, next) {
1280 		struct array_cache *nc;
1281 		struct array_cache *shared = NULL;
1282 		struct array_cache **alien = NULL;
1283 
1284 		nc = alloc_arraycache(node, cachep->limit,
1285 					cachep->batchcount);
1286 		if (!nc)
1287 			goto bad;
1288 		if (cachep->shared) {
1289 			shared = alloc_arraycache(node,
1290 				cachep->shared * cachep->batchcount,
1291 				0xbaadf00d);
1292 			if (!shared) {
1293 				kfree(nc);
1294 				goto bad;
1295 			}
1296 		}
1297 		if (use_alien_caches) {
1298 			alien = alloc_alien_cache(node, cachep->limit);
1299 			if (!alien) {
1300 				kfree(shared);
1301 				kfree(nc);
1302 				goto bad;
1303 			}
1304 		}
1305 		cachep->array[cpu] = nc;
1306 		l3 = cachep->nodelists[node];
1307 		BUG_ON(!l3);
1308 
1309 		spin_lock_irq(&l3->list_lock);
1310 		if (!l3->shared) {
1311 			/*
1312 			 * We are serialised from CPU_DEAD or
1313 			 * CPU_UP_CANCELLED by the cpucontrol lock
1314 			 */
1315 			l3->shared = shared;
1316 			shared = NULL;
1317 		}
1318 #ifdef CONFIG_NUMA
1319 		if (!l3->alien) {
1320 			l3->alien = alien;
1321 			alien = NULL;
1322 		}
1323 #endif
1324 		spin_unlock_irq(&l3->list_lock);
1325 		kfree(shared);
1326 		free_alien_cache(alien);
1327 	}
1328 	return 0;
1329 bad:
1330 	cpuup_canceled(cpu);
1331 	return -ENOMEM;
1332 }
1333 
1334 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1335 				    unsigned long action, void *hcpu)
1336 {
1337 	long cpu = (long)hcpu;
1338 	int err = 0;
1339 
1340 	switch (action) {
1341 	case CPU_UP_PREPARE:
1342 	case CPU_UP_PREPARE_FROZEN:
1343 		mutex_lock(&cache_chain_mutex);
1344 		err = cpuup_prepare(cpu);
1345 		mutex_unlock(&cache_chain_mutex);
1346 		break;
1347 	case CPU_ONLINE:
1348 	case CPU_ONLINE_FROZEN:
1349 		start_cpu_timer(cpu);
1350 		break;
1351 #ifdef CONFIG_HOTPLUG_CPU
1352   	case CPU_DOWN_PREPARE:
1353   	case CPU_DOWN_PREPARE_FROZEN:
1354 		/*
1355 		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1356 		 * held so that if cache_reap() is invoked it cannot do
1357 		 * anything expensive but will only modify reap_work
1358 		 * and reschedule the timer.
1359 		*/
1360 		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1361 		/* Now the cache_reaper is guaranteed to be not running. */
1362 		per_cpu(reap_work, cpu).work.func = NULL;
1363   		break;
1364   	case CPU_DOWN_FAILED:
1365   	case CPU_DOWN_FAILED_FROZEN:
1366 		start_cpu_timer(cpu);
1367   		break;
1368 	case CPU_DEAD:
1369 	case CPU_DEAD_FROZEN:
1370 		/*
1371 		 * Even if all the cpus of a node are down, we don't free the
1372 		 * kmem_list3 of any cache. This to avoid a race between
1373 		 * cpu_down, and a kmalloc allocation from another cpu for
1374 		 * memory from the node of the cpu going down.  The list3
1375 		 * structure is usually allocated from kmem_cache_create() and
1376 		 * gets destroyed at kmem_cache_destroy().
1377 		 */
1378 		/* fall through */
1379 #endif
1380 	case CPU_UP_CANCELED:
1381 	case CPU_UP_CANCELED_FROZEN:
1382 		mutex_lock(&cache_chain_mutex);
1383 		cpuup_canceled(cpu);
1384 		mutex_unlock(&cache_chain_mutex);
1385 		break;
1386 	}
1387 	return err ? NOTIFY_BAD : NOTIFY_OK;
1388 }
1389 
1390 static struct notifier_block __cpuinitdata cpucache_notifier = {
1391 	&cpuup_callback, NULL, 0
1392 };
1393 
1394 /*
1395  * swap the static kmem_list3 with kmalloced memory
1396  */
1397 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1398 			int nodeid)
1399 {
1400 	struct kmem_list3 *ptr;
1401 
1402 	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1403 	BUG_ON(!ptr);
1404 
1405 	local_irq_disable();
1406 	memcpy(ptr, list, sizeof(struct kmem_list3));
1407 	/*
1408 	 * Do not assume that spinlocks can be initialized via memcpy:
1409 	 */
1410 	spin_lock_init(&ptr->list_lock);
1411 
1412 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1413 	cachep->nodelists[nodeid] = ptr;
1414 	local_irq_enable();
1415 }
1416 
1417 /*
1418  * For setting up all the kmem_list3s for cache whose buffer_size is same as
1419  * size of kmem_list3.
1420  */
1421 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1422 {
1423 	int node;
1424 
1425 	for_each_online_node(node) {
1426 		cachep->nodelists[node] = &initkmem_list3[index + node];
1427 		cachep->nodelists[node]->next_reap = jiffies +
1428 		    REAPTIMEOUT_LIST3 +
1429 		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1430 	}
1431 }
1432 
1433 /*
1434  * Initialisation.  Called after the page allocator have been initialised and
1435  * before smp_init().
1436  */
1437 void __init kmem_cache_init(void)
1438 {
1439 	size_t left_over;
1440 	struct cache_sizes *sizes;
1441 	struct cache_names *names;
1442 	int i;
1443 	int order;
1444 	int node;
1445 
1446 	if (num_possible_nodes() == 1) {
1447 		use_alien_caches = 0;
1448 		numa_platform = 0;
1449 	}
1450 
1451 	for (i = 0; i < NUM_INIT_LISTS; i++) {
1452 		kmem_list3_init(&initkmem_list3[i]);
1453 		if (i < MAX_NUMNODES)
1454 			cache_cache.nodelists[i] = NULL;
1455 	}
1456 	set_up_list3s(&cache_cache, CACHE_CACHE);
1457 
1458 	/*
1459 	 * Fragmentation resistance on low memory - only use bigger
1460 	 * page orders on machines with more than 32MB of memory.
1461 	 */
1462 	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1463 		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1464 
1465 	/* Bootstrap is tricky, because several objects are allocated
1466 	 * from caches that do not exist yet:
1467 	 * 1) initialize the cache_cache cache: it contains the struct
1468 	 *    kmem_cache structures of all caches, except cache_cache itself:
1469 	 *    cache_cache is statically allocated.
1470 	 *    Initially an __init data area is used for the head array and the
1471 	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1472 	 *    array at the end of the bootstrap.
1473 	 * 2) Create the first kmalloc cache.
1474 	 *    The struct kmem_cache for the new cache is allocated normally.
1475 	 *    An __init data area is used for the head array.
1476 	 * 3) Create the remaining kmalloc caches, with minimally sized
1477 	 *    head arrays.
1478 	 * 4) Replace the __init data head arrays for cache_cache and the first
1479 	 *    kmalloc cache with kmalloc allocated arrays.
1480 	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1481 	 *    the other cache's with kmalloc allocated memory.
1482 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1483 	 */
1484 
1485 	node = numa_node_id();
1486 
1487 	/* 1) create the cache_cache */
1488 	INIT_LIST_HEAD(&cache_chain);
1489 	list_add(&cache_cache.next, &cache_chain);
1490 	cache_cache.colour_off = cache_line_size();
1491 	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1492 	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1493 
1494 	/*
1495 	 * struct kmem_cache size depends on nr_node_ids, which
1496 	 * can be less than MAX_NUMNODES.
1497 	 */
1498 	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1499 				 nr_node_ids * sizeof(struct kmem_list3 *);
1500 #if DEBUG
1501 	cache_cache.obj_size = cache_cache.buffer_size;
1502 #endif
1503 	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1504 					cache_line_size());
1505 	cache_cache.reciprocal_buffer_size =
1506 		reciprocal_value(cache_cache.buffer_size);
1507 
1508 	for (order = 0; order < MAX_ORDER; order++) {
1509 		cache_estimate(order, cache_cache.buffer_size,
1510 			cache_line_size(), 0, &left_over, &cache_cache.num);
1511 		if (cache_cache.num)
1512 			break;
1513 	}
1514 	BUG_ON(!cache_cache.num);
1515 	cache_cache.gfporder = order;
1516 	cache_cache.colour = left_over / cache_cache.colour_off;
1517 	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1518 				      sizeof(struct slab), cache_line_size());
1519 
1520 	/* 2+3) create the kmalloc caches */
1521 	sizes = malloc_sizes;
1522 	names = cache_names;
1523 
1524 	/*
1525 	 * Initialize the caches that provide memory for the array cache and the
1526 	 * kmem_list3 structures first.  Without this, further allocations will
1527 	 * bug.
1528 	 */
1529 
1530 	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1531 					sizes[INDEX_AC].cs_size,
1532 					ARCH_KMALLOC_MINALIGN,
1533 					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1534 					NULL);
1535 
1536 	if (INDEX_AC != INDEX_L3) {
1537 		sizes[INDEX_L3].cs_cachep =
1538 			kmem_cache_create(names[INDEX_L3].name,
1539 				sizes[INDEX_L3].cs_size,
1540 				ARCH_KMALLOC_MINALIGN,
1541 				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1542 				NULL);
1543 	}
1544 
1545 	slab_early_init = 0;
1546 
1547 	while (sizes->cs_size != ULONG_MAX) {
1548 		/*
1549 		 * For performance, all the general caches are L1 aligned.
1550 		 * This should be particularly beneficial on SMP boxes, as it
1551 		 * eliminates "false sharing".
1552 		 * Note for systems short on memory removing the alignment will
1553 		 * allow tighter packing of the smaller caches.
1554 		 */
1555 		if (!sizes->cs_cachep) {
1556 			sizes->cs_cachep = kmem_cache_create(names->name,
1557 					sizes->cs_size,
1558 					ARCH_KMALLOC_MINALIGN,
1559 					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1560 					NULL);
1561 		}
1562 #ifdef CONFIG_ZONE_DMA
1563 		sizes->cs_dmacachep = kmem_cache_create(
1564 					names->name_dma,
1565 					sizes->cs_size,
1566 					ARCH_KMALLOC_MINALIGN,
1567 					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1568 						SLAB_PANIC,
1569 					NULL);
1570 #endif
1571 		sizes++;
1572 		names++;
1573 	}
1574 	/* 4) Replace the bootstrap head arrays */
1575 	{
1576 		struct array_cache *ptr;
1577 
1578 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1579 
1580 		local_irq_disable();
1581 		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1582 		memcpy(ptr, cpu_cache_get(&cache_cache),
1583 		       sizeof(struct arraycache_init));
1584 		/*
1585 		 * Do not assume that spinlocks can be initialized via memcpy:
1586 		 */
1587 		spin_lock_init(&ptr->lock);
1588 
1589 		cache_cache.array[smp_processor_id()] = ptr;
1590 		local_irq_enable();
1591 
1592 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1593 
1594 		local_irq_disable();
1595 		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1596 		       != &initarray_generic.cache);
1597 		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1598 		       sizeof(struct arraycache_init));
1599 		/*
1600 		 * Do not assume that spinlocks can be initialized via memcpy:
1601 		 */
1602 		spin_lock_init(&ptr->lock);
1603 
1604 		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1605 		    ptr;
1606 		local_irq_enable();
1607 	}
1608 	/* 5) Replace the bootstrap kmem_list3's */
1609 	{
1610 		int nid;
1611 
1612 		for_each_online_node(nid) {
1613 			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1614 
1615 			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1616 				  &initkmem_list3[SIZE_AC + nid], nid);
1617 
1618 			if (INDEX_AC != INDEX_L3) {
1619 				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1620 					  &initkmem_list3[SIZE_L3 + nid], nid);
1621 			}
1622 		}
1623 	}
1624 
1625 	/* 6) resize the head arrays to their final sizes */
1626 	{
1627 		struct kmem_cache *cachep;
1628 		mutex_lock(&cache_chain_mutex);
1629 		list_for_each_entry(cachep, &cache_chain, next)
1630 			if (enable_cpucache(cachep))
1631 				BUG();
1632 		mutex_unlock(&cache_chain_mutex);
1633 	}
1634 
1635 	/* Annotate slab for lockdep -- annotate the malloc caches */
1636 	init_lock_keys();
1637 
1638 
1639 	/* Done! */
1640 	g_cpucache_up = FULL;
1641 
1642 	/*
1643 	 * Register a cpu startup notifier callback that initializes
1644 	 * cpu_cache_get for all new cpus
1645 	 */
1646 	register_cpu_notifier(&cpucache_notifier);
1647 
1648 	/*
1649 	 * The reap timers are started later, with a module init call: That part
1650 	 * of the kernel is not yet operational.
1651 	 */
1652 }
1653 
1654 static int __init cpucache_init(void)
1655 {
1656 	int cpu;
1657 
1658 	/*
1659 	 * Register the timers that return unneeded pages to the page allocator
1660 	 */
1661 	for_each_online_cpu(cpu)
1662 		start_cpu_timer(cpu);
1663 	return 0;
1664 }
1665 __initcall(cpucache_init);
1666 
1667 /*
1668  * Interface to system's page allocator. No need to hold the cache-lock.
1669  *
1670  * If we requested dmaable memory, we will get it. Even if we
1671  * did not request dmaable memory, we might get it, but that
1672  * would be relatively rare and ignorable.
1673  */
1674 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1675 {
1676 	struct page *page;
1677 	int nr_pages;
1678 	int i;
1679 
1680 #ifndef CONFIG_MMU
1681 	/*
1682 	 * Nommu uses slab's for process anonymous memory allocations, and thus
1683 	 * requires __GFP_COMP to properly refcount higher order allocations
1684 	 */
1685 	flags |= __GFP_COMP;
1686 #endif
1687 
1688 	flags |= cachep->gfpflags;
1689 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1690 		flags |= __GFP_RECLAIMABLE;
1691 
1692 	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1693 	if (!page)
1694 		return NULL;
1695 
1696 	nr_pages = (1 << cachep->gfporder);
1697 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1698 		add_zone_page_state(page_zone(page),
1699 			NR_SLAB_RECLAIMABLE, nr_pages);
1700 	else
1701 		add_zone_page_state(page_zone(page),
1702 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1703 	for (i = 0; i < nr_pages; i++)
1704 		__SetPageSlab(page + i);
1705 	return page_address(page);
1706 }
1707 
1708 /*
1709  * Interface to system's page release.
1710  */
1711 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1712 {
1713 	unsigned long i = (1 << cachep->gfporder);
1714 	struct page *page = virt_to_page(addr);
1715 	const unsigned long nr_freed = i;
1716 
1717 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1718 		sub_zone_page_state(page_zone(page),
1719 				NR_SLAB_RECLAIMABLE, nr_freed);
1720 	else
1721 		sub_zone_page_state(page_zone(page),
1722 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1723 	while (i--) {
1724 		BUG_ON(!PageSlab(page));
1725 		__ClearPageSlab(page);
1726 		page++;
1727 	}
1728 	if (current->reclaim_state)
1729 		current->reclaim_state->reclaimed_slab += nr_freed;
1730 	free_pages((unsigned long)addr, cachep->gfporder);
1731 }
1732 
1733 static void kmem_rcu_free(struct rcu_head *head)
1734 {
1735 	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1736 	struct kmem_cache *cachep = slab_rcu->cachep;
1737 
1738 	kmem_freepages(cachep, slab_rcu->addr);
1739 	if (OFF_SLAB(cachep))
1740 		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1741 }
1742 
1743 #if DEBUG
1744 
1745 #ifdef CONFIG_DEBUG_PAGEALLOC
1746 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1747 			    unsigned long caller)
1748 {
1749 	int size = obj_size(cachep);
1750 
1751 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1752 
1753 	if (size < 5 * sizeof(unsigned long))
1754 		return;
1755 
1756 	*addr++ = 0x12345678;
1757 	*addr++ = caller;
1758 	*addr++ = smp_processor_id();
1759 	size -= 3 * sizeof(unsigned long);
1760 	{
1761 		unsigned long *sptr = &caller;
1762 		unsigned long svalue;
1763 
1764 		while (!kstack_end(sptr)) {
1765 			svalue = *sptr++;
1766 			if (kernel_text_address(svalue)) {
1767 				*addr++ = svalue;
1768 				size -= sizeof(unsigned long);
1769 				if (size <= sizeof(unsigned long))
1770 					break;
1771 			}
1772 		}
1773 
1774 	}
1775 	*addr++ = 0x87654321;
1776 }
1777 #endif
1778 
1779 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1780 {
1781 	int size = obj_size(cachep);
1782 	addr = &((char *)addr)[obj_offset(cachep)];
1783 
1784 	memset(addr, val, size);
1785 	*(unsigned char *)(addr + size - 1) = POISON_END;
1786 }
1787 
1788 static void dump_line(char *data, int offset, int limit)
1789 {
1790 	int i;
1791 	unsigned char error = 0;
1792 	int bad_count = 0;
1793 
1794 	printk(KERN_ERR "%03x:", offset);
1795 	for (i = 0; i < limit; i++) {
1796 		if (data[offset + i] != POISON_FREE) {
1797 			error = data[offset + i];
1798 			bad_count++;
1799 		}
1800 		printk(" %02x", (unsigned char)data[offset + i]);
1801 	}
1802 	printk("\n");
1803 
1804 	if (bad_count == 1) {
1805 		error ^= POISON_FREE;
1806 		if (!(error & (error - 1))) {
1807 			printk(KERN_ERR "Single bit error detected. Probably "
1808 					"bad RAM.\n");
1809 #ifdef CONFIG_X86
1810 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1811 					"test tool.\n");
1812 #else
1813 			printk(KERN_ERR "Run a memory test tool.\n");
1814 #endif
1815 		}
1816 	}
1817 }
1818 #endif
1819 
1820 #if DEBUG
1821 
1822 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1823 {
1824 	int i, size;
1825 	char *realobj;
1826 
1827 	if (cachep->flags & SLAB_RED_ZONE) {
1828 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1829 			*dbg_redzone1(cachep, objp),
1830 			*dbg_redzone2(cachep, objp));
1831 	}
1832 
1833 	if (cachep->flags & SLAB_STORE_USER) {
1834 		printk(KERN_ERR "Last user: [<%p>]",
1835 			*dbg_userword(cachep, objp));
1836 		print_symbol("(%s)",
1837 				(unsigned long)*dbg_userword(cachep, objp));
1838 		printk("\n");
1839 	}
1840 	realobj = (char *)objp + obj_offset(cachep);
1841 	size = obj_size(cachep);
1842 	for (i = 0; i < size && lines; i += 16, lines--) {
1843 		int limit;
1844 		limit = 16;
1845 		if (i + limit > size)
1846 			limit = size - i;
1847 		dump_line(realobj, i, limit);
1848 	}
1849 }
1850 
1851 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1852 {
1853 	char *realobj;
1854 	int size, i;
1855 	int lines = 0;
1856 
1857 	realobj = (char *)objp + obj_offset(cachep);
1858 	size = obj_size(cachep);
1859 
1860 	for (i = 0; i < size; i++) {
1861 		char exp = POISON_FREE;
1862 		if (i == size - 1)
1863 			exp = POISON_END;
1864 		if (realobj[i] != exp) {
1865 			int limit;
1866 			/* Mismatch ! */
1867 			/* Print header */
1868 			if (lines == 0) {
1869 				printk(KERN_ERR
1870 					"Slab corruption: %s start=%p, len=%d\n",
1871 					cachep->name, realobj, size);
1872 				print_objinfo(cachep, objp, 0);
1873 			}
1874 			/* Hexdump the affected line */
1875 			i = (i / 16) * 16;
1876 			limit = 16;
1877 			if (i + limit > size)
1878 				limit = size - i;
1879 			dump_line(realobj, i, limit);
1880 			i += 16;
1881 			lines++;
1882 			/* Limit to 5 lines */
1883 			if (lines > 5)
1884 				break;
1885 		}
1886 	}
1887 	if (lines != 0) {
1888 		/* Print some data about the neighboring objects, if they
1889 		 * exist:
1890 		 */
1891 		struct slab *slabp = virt_to_slab(objp);
1892 		unsigned int objnr;
1893 
1894 		objnr = obj_to_index(cachep, slabp, objp);
1895 		if (objnr) {
1896 			objp = index_to_obj(cachep, slabp, objnr - 1);
1897 			realobj = (char *)objp + obj_offset(cachep);
1898 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1899 			       realobj, size);
1900 			print_objinfo(cachep, objp, 2);
1901 		}
1902 		if (objnr + 1 < cachep->num) {
1903 			objp = index_to_obj(cachep, slabp, objnr + 1);
1904 			realobj = (char *)objp + obj_offset(cachep);
1905 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1906 			       realobj, size);
1907 			print_objinfo(cachep, objp, 2);
1908 		}
1909 	}
1910 }
1911 #endif
1912 
1913 #if DEBUG
1914 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1915 {
1916 	int i;
1917 	for (i = 0; i < cachep->num; i++) {
1918 		void *objp = index_to_obj(cachep, slabp, i);
1919 
1920 		if (cachep->flags & SLAB_POISON) {
1921 #ifdef CONFIG_DEBUG_PAGEALLOC
1922 			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1923 					OFF_SLAB(cachep))
1924 				kernel_map_pages(virt_to_page(objp),
1925 					cachep->buffer_size / PAGE_SIZE, 1);
1926 			else
1927 				check_poison_obj(cachep, objp);
1928 #else
1929 			check_poison_obj(cachep, objp);
1930 #endif
1931 		}
1932 		if (cachep->flags & SLAB_RED_ZONE) {
1933 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1934 				slab_error(cachep, "start of a freed object "
1935 					   "was overwritten");
1936 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1937 				slab_error(cachep, "end of a freed object "
1938 					   "was overwritten");
1939 		}
1940 	}
1941 }
1942 #else
1943 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1944 {
1945 }
1946 #endif
1947 
1948 /**
1949  * slab_destroy - destroy and release all objects in a slab
1950  * @cachep: cache pointer being destroyed
1951  * @slabp: slab pointer being destroyed
1952  *
1953  * Destroy all the objs in a slab, and release the mem back to the system.
1954  * Before calling the slab must have been unlinked from the cache.  The
1955  * cache-lock is not held/needed.
1956  */
1957 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1958 {
1959 	void *addr = slabp->s_mem - slabp->colouroff;
1960 
1961 	slab_destroy_debugcheck(cachep, slabp);
1962 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1963 		struct slab_rcu *slab_rcu;
1964 
1965 		slab_rcu = (struct slab_rcu *)slabp;
1966 		slab_rcu->cachep = cachep;
1967 		slab_rcu->addr = addr;
1968 		call_rcu(&slab_rcu->head, kmem_rcu_free);
1969 	} else {
1970 		kmem_freepages(cachep, addr);
1971 		if (OFF_SLAB(cachep))
1972 			kmem_cache_free(cachep->slabp_cache, slabp);
1973 	}
1974 }
1975 
1976 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1977 {
1978 	int i;
1979 	struct kmem_list3 *l3;
1980 
1981 	for_each_online_cpu(i)
1982 	    kfree(cachep->array[i]);
1983 
1984 	/* NUMA: free the list3 structures */
1985 	for_each_online_node(i) {
1986 		l3 = cachep->nodelists[i];
1987 		if (l3) {
1988 			kfree(l3->shared);
1989 			free_alien_cache(l3->alien);
1990 			kfree(l3);
1991 		}
1992 	}
1993 	kmem_cache_free(&cache_cache, cachep);
1994 }
1995 
1996 
1997 /**
1998  * calculate_slab_order - calculate size (page order) of slabs
1999  * @cachep: pointer to the cache that is being created
2000  * @size: size of objects to be created in this cache.
2001  * @align: required alignment for the objects.
2002  * @flags: slab allocation flags
2003  *
2004  * Also calculates the number of objects per slab.
2005  *
2006  * This could be made much more intelligent.  For now, try to avoid using
2007  * high order pages for slabs.  When the gfp() functions are more friendly
2008  * towards high-order requests, this should be changed.
2009  */
2010 static size_t calculate_slab_order(struct kmem_cache *cachep,
2011 			size_t size, size_t align, unsigned long flags)
2012 {
2013 	unsigned long offslab_limit;
2014 	size_t left_over = 0;
2015 	int gfporder;
2016 
2017 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2018 		unsigned int num;
2019 		size_t remainder;
2020 
2021 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2022 		if (!num)
2023 			continue;
2024 
2025 		if (flags & CFLGS_OFF_SLAB) {
2026 			/*
2027 			 * Max number of objs-per-slab for caches which
2028 			 * use off-slab slabs. Needed to avoid a possible
2029 			 * looping condition in cache_grow().
2030 			 */
2031 			offslab_limit = size - sizeof(struct slab);
2032 			offslab_limit /= sizeof(kmem_bufctl_t);
2033 
2034  			if (num > offslab_limit)
2035 				break;
2036 		}
2037 
2038 		/* Found something acceptable - save it away */
2039 		cachep->num = num;
2040 		cachep->gfporder = gfporder;
2041 		left_over = remainder;
2042 
2043 		/*
2044 		 * A VFS-reclaimable slab tends to have most allocations
2045 		 * as GFP_NOFS and we really don't want to have to be allocating
2046 		 * higher-order pages when we are unable to shrink dcache.
2047 		 */
2048 		if (flags & SLAB_RECLAIM_ACCOUNT)
2049 			break;
2050 
2051 		/*
2052 		 * Large number of objects is good, but very large slabs are
2053 		 * currently bad for the gfp()s.
2054 		 */
2055 		if (gfporder >= slab_break_gfp_order)
2056 			break;
2057 
2058 		/*
2059 		 * Acceptable internal fragmentation?
2060 		 */
2061 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2062 			break;
2063 	}
2064 	return left_over;
2065 }
2066 
2067 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2068 {
2069 	if (g_cpucache_up == FULL)
2070 		return enable_cpucache(cachep);
2071 
2072 	if (g_cpucache_up == NONE) {
2073 		/*
2074 		 * Note: the first kmem_cache_create must create the cache
2075 		 * that's used by kmalloc(24), otherwise the creation of
2076 		 * further caches will BUG().
2077 		 */
2078 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2079 
2080 		/*
2081 		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2082 		 * the first cache, then we need to set up all its list3s,
2083 		 * otherwise the creation of further caches will BUG().
2084 		 */
2085 		set_up_list3s(cachep, SIZE_AC);
2086 		if (INDEX_AC == INDEX_L3)
2087 			g_cpucache_up = PARTIAL_L3;
2088 		else
2089 			g_cpucache_up = PARTIAL_AC;
2090 	} else {
2091 		cachep->array[smp_processor_id()] =
2092 			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2093 
2094 		if (g_cpucache_up == PARTIAL_AC) {
2095 			set_up_list3s(cachep, SIZE_L3);
2096 			g_cpucache_up = PARTIAL_L3;
2097 		} else {
2098 			int node;
2099 			for_each_online_node(node) {
2100 				cachep->nodelists[node] =
2101 				    kmalloc_node(sizeof(struct kmem_list3),
2102 						GFP_KERNEL, node);
2103 				BUG_ON(!cachep->nodelists[node]);
2104 				kmem_list3_init(cachep->nodelists[node]);
2105 			}
2106 		}
2107 	}
2108 	cachep->nodelists[numa_node_id()]->next_reap =
2109 			jiffies + REAPTIMEOUT_LIST3 +
2110 			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2111 
2112 	cpu_cache_get(cachep)->avail = 0;
2113 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2114 	cpu_cache_get(cachep)->batchcount = 1;
2115 	cpu_cache_get(cachep)->touched = 0;
2116 	cachep->batchcount = 1;
2117 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2118 	return 0;
2119 }
2120 
2121 /**
2122  * kmem_cache_create - Create a cache.
2123  * @name: A string which is used in /proc/slabinfo to identify this cache.
2124  * @size: The size of objects to be created in this cache.
2125  * @align: The required alignment for the objects.
2126  * @flags: SLAB flags
2127  * @ctor: A constructor for the objects.
2128  *
2129  * Returns a ptr to the cache on success, NULL on failure.
2130  * Cannot be called within a int, but can be interrupted.
2131  * The @ctor is run when new pages are allocated by the cache.
2132  *
2133  * @name must be valid until the cache is destroyed. This implies that
2134  * the module calling this has to destroy the cache before getting unloaded.
2135  * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2136  * therefore applications must manage it themselves.
2137  *
2138  * The flags are
2139  *
2140  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2141  * to catch references to uninitialised memory.
2142  *
2143  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2144  * for buffer overruns.
2145  *
2146  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2147  * cacheline.  This can be beneficial if you're counting cycles as closely
2148  * as davem.
2149  */
2150 struct kmem_cache *
2151 kmem_cache_create (const char *name, size_t size, size_t align,
2152 	unsigned long flags, void (*ctor)(void *))
2153 {
2154 	size_t left_over, slab_size, ralign;
2155 	struct kmem_cache *cachep = NULL, *pc;
2156 
2157 	/*
2158 	 * Sanity checks... these are all serious usage bugs.
2159 	 */
2160 	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2161 	    size > KMALLOC_MAX_SIZE) {
2162 		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2163 				name);
2164 		BUG();
2165 	}
2166 
2167 	/*
2168 	 * We use cache_chain_mutex to ensure a consistent view of
2169 	 * cpu_online_mask as well.  Please see cpuup_callback
2170 	 */
2171 	get_online_cpus();
2172 	mutex_lock(&cache_chain_mutex);
2173 
2174 	list_for_each_entry(pc, &cache_chain, next) {
2175 		char tmp;
2176 		int res;
2177 
2178 		/*
2179 		 * This happens when the module gets unloaded and doesn't
2180 		 * destroy its slab cache and no-one else reuses the vmalloc
2181 		 * area of the module.  Print a warning.
2182 		 */
2183 		res = probe_kernel_address(pc->name, tmp);
2184 		if (res) {
2185 			printk(KERN_ERR
2186 			       "SLAB: cache with size %d has lost its name\n",
2187 			       pc->buffer_size);
2188 			continue;
2189 		}
2190 
2191 		if (!strcmp(pc->name, name)) {
2192 			printk(KERN_ERR
2193 			       "kmem_cache_create: duplicate cache %s\n", name);
2194 			dump_stack();
2195 			goto oops;
2196 		}
2197 	}
2198 
2199 #if DEBUG
2200 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2201 #if FORCED_DEBUG
2202 	/*
2203 	 * Enable redzoning and last user accounting, except for caches with
2204 	 * large objects, if the increased size would increase the object size
2205 	 * above the next power of two: caches with object sizes just above a
2206 	 * power of two have a significant amount of internal fragmentation.
2207 	 */
2208 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2209 						2 * sizeof(unsigned long long)))
2210 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2211 	if (!(flags & SLAB_DESTROY_BY_RCU))
2212 		flags |= SLAB_POISON;
2213 #endif
2214 	if (flags & SLAB_DESTROY_BY_RCU)
2215 		BUG_ON(flags & SLAB_POISON);
2216 #endif
2217 	/*
2218 	 * Always checks flags, a caller might be expecting debug support which
2219 	 * isn't available.
2220 	 */
2221 	BUG_ON(flags & ~CREATE_MASK);
2222 
2223 	/*
2224 	 * Check that size is in terms of words.  This is needed to avoid
2225 	 * unaligned accesses for some archs when redzoning is used, and makes
2226 	 * sure any on-slab bufctl's are also correctly aligned.
2227 	 */
2228 	if (size & (BYTES_PER_WORD - 1)) {
2229 		size += (BYTES_PER_WORD - 1);
2230 		size &= ~(BYTES_PER_WORD - 1);
2231 	}
2232 
2233 	/* calculate the final buffer alignment: */
2234 
2235 	/* 1) arch recommendation: can be overridden for debug */
2236 	if (flags & SLAB_HWCACHE_ALIGN) {
2237 		/*
2238 		 * Default alignment: as specified by the arch code.  Except if
2239 		 * an object is really small, then squeeze multiple objects into
2240 		 * one cacheline.
2241 		 */
2242 		ralign = cache_line_size();
2243 		while (size <= ralign / 2)
2244 			ralign /= 2;
2245 	} else {
2246 		ralign = BYTES_PER_WORD;
2247 	}
2248 
2249 	/*
2250 	 * Redzoning and user store require word alignment or possibly larger.
2251 	 * Note this will be overridden by architecture or caller mandated
2252 	 * alignment if either is greater than BYTES_PER_WORD.
2253 	 */
2254 	if (flags & SLAB_STORE_USER)
2255 		ralign = BYTES_PER_WORD;
2256 
2257 	if (flags & SLAB_RED_ZONE) {
2258 		ralign = REDZONE_ALIGN;
2259 		/* If redzoning, ensure that the second redzone is suitably
2260 		 * aligned, by adjusting the object size accordingly. */
2261 		size += REDZONE_ALIGN - 1;
2262 		size &= ~(REDZONE_ALIGN - 1);
2263 	}
2264 
2265 	/* 2) arch mandated alignment */
2266 	if (ralign < ARCH_SLAB_MINALIGN) {
2267 		ralign = ARCH_SLAB_MINALIGN;
2268 	}
2269 	/* 3) caller mandated alignment */
2270 	if (ralign < align) {
2271 		ralign = align;
2272 	}
2273 	/* disable debug if necessary */
2274 	if (ralign > __alignof__(unsigned long long))
2275 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2276 	/*
2277 	 * 4) Store it.
2278 	 */
2279 	align = ralign;
2280 
2281 	/* Get cache's description obj. */
2282 	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2283 	if (!cachep)
2284 		goto oops;
2285 
2286 #if DEBUG
2287 	cachep->obj_size = size;
2288 
2289 	/*
2290 	 * Both debugging options require word-alignment which is calculated
2291 	 * into align above.
2292 	 */
2293 	if (flags & SLAB_RED_ZONE) {
2294 		/* add space for red zone words */
2295 		cachep->obj_offset += sizeof(unsigned long long);
2296 		size += 2 * sizeof(unsigned long long);
2297 	}
2298 	if (flags & SLAB_STORE_USER) {
2299 		/* user store requires one word storage behind the end of
2300 		 * the real object. But if the second red zone needs to be
2301 		 * aligned to 64 bits, we must allow that much space.
2302 		 */
2303 		if (flags & SLAB_RED_ZONE)
2304 			size += REDZONE_ALIGN;
2305 		else
2306 			size += BYTES_PER_WORD;
2307 	}
2308 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2309 	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2310 	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2311 		cachep->obj_offset += PAGE_SIZE - size;
2312 		size = PAGE_SIZE;
2313 	}
2314 #endif
2315 #endif
2316 
2317 	/*
2318 	 * Determine if the slab management is 'on' or 'off' slab.
2319 	 * (bootstrapping cannot cope with offslab caches so don't do
2320 	 * it too early on.)
2321 	 */
2322 	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2323 		/*
2324 		 * Size is large, assume best to place the slab management obj
2325 		 * off-slab (should allow better packing of objs).
2326 		 */
2327 		flags |= CFLGS_OFF_SLAB;
2328 
2329 	size = ALIGN(size, align);
2330 
2331 	left_over = calculate_slab_order(cachep, size, align, flags);
2332 
2333 	if (!cachep->num) {
2334 		printk(KERN_ERR
2335 		       "kmem_cache_create: couldn't create cache %s.\n", name);
2336 		kmem_cache_free(&cache_cache, cachep);
2337 		cachep = NULL;
2338 		goto oops;
2339 	}
2340 	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2341 			  + sizeof(struct slab), align);
2342 
2343 	/*
2344 	 * If the slab has been placed off-slab, and we have enough space then
2345 	 * move it on-slab. This is at the expense of any extra colouring.
2346 	 */
2347 	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2348 		flags &= ~CFLGS_OFF_SLAB;
2349 		left_over -= slab_size;
2350 	}
2351 
2352 	if (flags & CFLGS_OFF_SLAB) {
2353 		/* really off slab. No need for manual alignment */
2354 		slab_size =
2355 		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2356 	}
2357 
2358 	cachep->colour_off = cache_line_size();
2359 	/* Offset must be a multiple of the alignment. */
2360 	if (cachep->colour_off < align)
2361 		cachep->colour_off = align;
2362 	cachep->colour = left_over / cachep->colour_off;
2363 	cachep->slab_size = slab_size;
2364 	cachep->flags = flags;
2365 	cachep->gfpflags = 0;
2366 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2367 		cachep->gfpflags |= GFP_DMA;
2368 	cachep->buffer_size = size;
2369 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2370 
2371 	if (flags & CFLGS_OFF_SLAB) {
2372 		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2373 		/*
2374 		 * This is a possibility for one of the malloc_sizes caches.
2375 		 * But since we go off slab only for object size greater than
2376 		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2377 		 * this should not happen at all.
2378 		 * But leave a BUG_ON for some lucky dude.
2379 		 */
2380 		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2381 	}
2382 	cachep->ctor = ctor;
2383 	cachep->name = name;
2384 
2385 	if (setup_cpu_cache(cachep)) {
2386 		__kmem_cache_destroy(cachep);
2387 		cachep = NULL;
2388 		goto oops;
2389 	}
2390 
2391 	/* cache setup completed, link it into the list */
2392 	list_add(&cachep->next, &cache_chain);
2393 oops:
2394 	if (!cachep && (flags & SLAB_PANIC))
2395 		panic("kmem_cache_create(): failed to create slab `%s'\n",
2396 		      name);
2397 	mutex_unlock(&cache_chain_mutex);
2398 	put_online_cpus();
2399 	return cachep;
2400 }
2401 EXPORT_SYMBOL(kmem_cache_create);
2402 
2403 #if DEBUG
2404 static void check_irq_off(void)
2405 {
2406 	BUG_ON(!irqs_disabled());
2407 }
2408 
2409 static void check_irq_on(void)
2410 {
2411 	BUG_ON(irqs_disabled());
2412 }
2413 
2414 static void check_spinlock_acquired(struct kmem_cache *cachep)
2415 {
2416 #ifdef CONFIG_SMP
2417 	check_irq_off();
2418 	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2419 #endif
2420 }
2421 
2422 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2423 {
2424 #ifdef CONFIG_SMP
2425 	check_irq_off();
2426 	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2427 #endif
2428 }
2429 
2430 #else
2431 #define check_irq_off()	do { } while(0)
2432 #define check_irq_on()	do { } while(0)
2433 #define check_spinlock_acquired(x) do { } while(0)
2434 #define check_spinlock_acquired_node(x, y) do { } while(0)
2435 #endif
2436 
2437 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2438 			struct array_cache *ac,
2439 			int force, int node);
2440 
2441 static void do_drain(void *arg)
2442 {
2443 	struct kmem_cache *cachep = arg;
2444 	struct array_cache *ac;
2445 	int node = numa_node_id();
2446 
2447 	check_irq_off();
2448 	ac = cpu_cache_get(cachep);
2449 	spin_lock(&cachep->nodelists[node]->list_lock);
2450 	free_block(cachep, ac->entry, ac->avail, node);
2451 	spin_unlock(&cachep->nodelists[node]->list_lock);
2452 	ac->avail = 0;
2453 }
2454 
2455 static void drain_cpu_caches(struct kmem_cache *cachep)
2456 {
2457 	struct kmem_list3 *l3;
2458 	int node;
2459 
2460 	on_each_cpu(do_drain, cachep, 1);
2461 	check_irq_on();
2462 	for_each_online_node(node) {
2463 		l3 = cachep->nodelists[node];
2464 		if (l3 && l3->alien)
2465 			drain_alien_cache(cachep, l3->alien);
2466 	}
2467 
2468 	for_each_online_node(node) {
2469 		l3 = cachep->nodelists[node];
2470 		if (l3)
2471 			drain_array(cachep, l3, l3->shared, 1, node);
2472 	}
2473 }
2474 
2475 /*
2476  * Remove slabs from the list of free slabs.
2477  * Specify the number of slabs to drain in tofree.
2478  *
2479  * Returns the actual number of slabs released.
2480  */
2481 static int drain_freelist(struct kmem_cache *cache,
2482 			struct kmem_list3 *l3, int tofree)
2483 {
2484 	struct list_head *p;
2485 	int nr_freed;
2486 	struct slab *slabp;
2487 
2488 	nr_freed = 0;
2489 	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2490 
2491 		spin_lock_irq(&l3->list_lock);
2492 		p = l3->slabs_free.prev;
2493 		if (p == &l3->slabs_free) {
2494 			spin_unlock_irq(&l3->list_lock);
2495 			goto out;
2496 		}
2497 
2498 		slabp = list_entry(p, struct slab, list);
2499 #if DEBUG
2500 		BUG_ON(slabp->inuse);
2501 #endif
2502 		list_del(&slabp->list);
2503 		/*
2504 		 * Safe to drop the lock. The slab is no longer linked
2505 		 * to the cache.
2506 		 */
2507 		l3->free_objects -= cache->num;
2508 		spin_unlock_irq(&l3->list_lock);
2509 		slab_destroy(cache, slabp);
2510 		nr_freed++;
2511 	}
2512 out:
2513 	return nr_freed;
2514 }
2515 
2516 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2517 static int __cache_shrink(struct kmem_cache *cachep)
2518 {
2519 	int ret = 0, i = 0;
2520 	struct kmem_list3 *l3;
2521 
2522 	drain_cpu_caches(cachep);
2523 
2524 	check_irq_on();
2525 	for_each_online_node(i) {
2526 		l3 = cachep->nodelists[i];
2527 		if (!l3)
2528 			continue;
2529 
2530 		drain_freelist(cachep, l3, l3->free_objects);
2531 
2532 		ret += !list_empty(&l3->slabs_full) ||
2533 			!list_empty(&l3->slabs_partial);
2534 	}
2535 	return (ret ? 1 : 0);
2536 }
2537 
2538 /**
2539  * kmem_cache_shrink - Shrink a cache.
2540  * @cachep: The cache to shrink.
2541  *
2542  * Releases as many slabs as possible for a cache.
2543  * To help debugging, a zero exit status indicates all slabs were released.
2544  */
2545 int kmem_cache_shrink(struct kmem_cache *cachep)
2546 {
2547 	int ret;
2548 	BUG_ON(!cachep || in_interrupt());
2549 
2550 	get_online_cpus();
2551 	mutex_lock(&cache_chain_mutex);
2552 	ret = __cache_shrink(cachep);
2553 	mutex_unlock(&cache_chain_mutex);
2554 	put_online_cpus();
2555 	return ret;
2556 }
2557 EXPORT_SYMBOL(kmem_cache_shrink);
2558 
2559 /**
2560  * kmem_cache_destroy - delete a cache
2561  * @cachep: the cache to destroy
2562  *
2563  * Remove a &struct kmem_cache object from the slab cache.
2564  *
2565  * It is expected this function will be called by a module when it is
2566  * unloaded.  This will remove the cache completely, and avoid a duplicate
2567  * cache being allocated each time a module is loaded and unloaded, if the
2568  * module doesn't have persistent in-kernel storage across loads and unloads.
2569  *
2570  * The cache must be empty before calling this function.
2571  *
2572  * The caller must guarantee that noone will allocate memory from the cache
2573  * during the kmem_cache_destroy().
2574  */
2575 void kmem_cache_destroy(struct kmem_cache *cachep)
2576 {
2577 	BUG_ON(!cachep || in_interrupt());
2578 
2579 	/* Find the cache in the chain of caches. */
2580 	get_online_cpus();
2581 	mutex_lock(&cache_chain_mutex);
2582 	/*
2583 	 * the chain is never empty, cache_cache is never destroyed
2584 	 */
2585 	list_del(&cachep->next);
2586 	if (__cache_shrink(cachep)) {
2587 		slab_error(cachep, "Can't free all objects");
2588 		list_add(&cachep->next, &cache_chain);
2589 		mutex_unlock(&cache_chain_mutex);
2590 		put_online_cpus();
2591 		return;
2592 	}
2593 
2594 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2595 		synchronize_rcu();
2596 
2597 	__kmem_cache_destroy(cachep);
2598 	mutex_unlock(&cache_chain_mutex);
2599 	put_online_cpus();
2600 }
2601 EXPORT_SYMBOL(kmem_cache_destroy);
2602 
2603 /*
2604  * Get the memory for a slab management obj.
2605  * For a slab cache when the slab descriptor is off-slab, slab descriptors
2606  * always come from malloc_sizes caches.  The slab descriptor cannot
2607  * come from the same cache which is getting created because,
2608  * when we are searching for an appropriate cache for these
2609  * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2610  * If we are creating a malloc_sizes cache here it would not be visible to
2611  * kmem_find_general_cachep till the initialization is complete.
2612  * Hence we cannot have slabp_cache same as the original cache.
2613  */
2614 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2615 				   int colour_off, gfp_t local_flags,
2616 				   int nodeid)
2617 {
2618 	struct slab *slabp;
2619 
2620 	if (OFF_SLAB(cachep)) {
2621 		/* Slab management obj is off-slab. */
2622 		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2623 					      local_flags, nodeid);
2624 		if (!slabp)
2625 			return NULL;
2626 	} else {
2627 		slabp = objp + colour_off;
2628 		colour_off += cachep->slab_size;
2629 	}
2630 	slabp->inuse = 0;
2631 	slabp->colouroff = colour_off;
2632 	slabp->s_mem = objp + colour_off;
2633 	slabp->nodeid = nodeid;
2634 	slabp->free = 0;
2635 	return slabp;
2636 }
2637 
2638 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2639 {
2640 	return (kmem_bufctl_t *) (slabp + 1);
2641 }
2642 
2643 static void cache_init_objs(struct kmem_cache *cachep,
2644 			    struct slab *slabp)
2645 {
2646 	int i;
2647 
2648 	for (i = 0; i < cachep->num; i++) {
2649 		void *objp = index_to_obj(cachep, slabp, i);
2650 #if DEBUG
2651 		/* need to poison the objs? */
2652 		if (cachep->flags & SLAB_POISON)
2653 			poison_obj(cachep, objp, POISON_FREE);
2654 		if (cachep->flags & SLAB_STORE_USER)
2655 			*dbg_userword(cachep, objp) = NULL;
2656 
2657 		if (cachep->flags & SLAB_RED_ZONE) {
2658 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2659 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2660 		}
2661 		/*
2662 		 * Constructors are not allowed to allocate memory from the same
2663 		 * cache which they are a constructor for.  Otherwise, deadlock.
2664 		 * They must also be threaded.
2665 		 */
2666 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2667 			cachep->ctor(objp + obj_offset(cachep));
2668 
2669 		if (cachep->flags & SLAB_RED_ZONE) {
2670 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2671 				slab_error(cachep, "constructor overwrote the"
2672 					   " end of an object");
2673 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2674 				slab_error(cachep, "constructor overwrote the"
2675 					   " start of an object");
2676 		}
2677 		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2678 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2679 			kernel_map_pages(virt_to_page(objp),
2680 					 cachep->buffer_size / PAGE_SIZE, 0);
2681 #else
2682 		if (cachep->ctor)
2683 			cachep->ctor(objp);
2684 #endif
2685 		slab_bufctl(slabp)[i] = i + 1;
2686 	}
2687 	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2688 }
2689 
2690 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2691 {
2692 	if (CONFIG_ZONE_DMA_FLAG) {
2693 		if (flags & GFP_DMA)
2694 			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2695 		else
2696 			BUG_ON(cachep->gfpflags & GFP_DMA);
2697 	}
2698 }
2699 
2700 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2701 				int nodeid)
2702 {
2703 	void *objp = index_to_obj(cachep, slabp, slabp->free);
2704 	kmem_bufctl_t next;
2705 
2706 	slabp->inuse++;
2707 	next = slab_bufctl(slabp)[slabp->free];
2708 #if DEBUG
2709 	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2710 	WARN_ON(slabp->nodeid != nodeid);
2711 #endif
2712 	slabp->free = next;
2713 
2714 	return objp;
2715 }
2716 
2717 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2718 				void *objp, int nodeid)
2719 {
2720 	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2721 
2722 #if DEBUG
2723 	/* Verify that the slab belongs to the intended node */
2724 	WARN_ON(slabp->nodeid != nodeid);
2725 
2726 	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2727 		printk(KERN_ERR "slab: double free detected in cache "
2728 				"'%s', objp %p\n", cachep->name, objp);
2729 		BUG();
2730 	}
2731 #endif
2732 	slab_bufctl(slabp)[objnr] = slabp->free;
2733 	slabp->free = objnr;
2734 	slabp->inuse--;
2735 }
2736 
2737 /*
2738  * Map pages beginning at addr to the given cache and slab. This is required
2739  * for the slab allocator to be able to lookup the cache and slab of a
2740  * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2741  */
2742 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2743 			   void *addr)
2744 {
2745 	int nr_pages;
2746 	struct page *page;
2747 
2748 	page = virt_to_page(addr);
2749 
2750 	nr_pages = 1;
2751 	if (likely(!PageCompound(page)))
2752 		nr_pages <<= cache->gfporder;
2753 
2754 	do {
2755 		page_set_cache(page, cache);
2756 		page_set_slab(page, slab);
2757 		page++;
2758 	} while (--nr_pages);
2759 }
2760 
2761 /*
2762  * Grow (by 1) the number of slabs within a cache.  This is called by
2763  * kmem_cache_alloc() when there are no active objs left in a cache.
2764  */
2765 static int cache_grow(struct kmem_cache *cachep,
2766 		gfp_t flags, int nodeid, void *objp)
2767 {
2768 	struct slab *slabp;
2769 	size_t offset;
2770 	gfp_t local_flags;
2771 	struct kmem_list3 *l3;
2772 
2773 	/*
2774 	 * Be lazy and only check for valid flags here,  keeping it out of the
2775 	 * critical path in kmem_cache_alloc().
2776 	 */
2777 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2778 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2779 
2780 	/* Take the l3 list lock to change the colour_next on this node */
2781 	check_irq_off();
2782 	l3 = cachep->nodelists[nodeid];
2783 	spin_lock(&l3->list_lock);
2784 
2785 	/* Get colour for the slab, and cal the next value. */
2786 	offset = l3->colour_next;
2787 	l3->colour_next++;
2788 	if (l3->colour_next >= cachep->colour)
2789 		l3->colour_next = 0;
2790 	spin_unlock(&l3->list_lock);
2791 
2792 	offset *= cachep->colour_off;
2793 
2794 	if (local_flags & __GFP_WAIT)
2795 		local_irq_enable();
2796 
2797 	/*
2798 	 * The test for missing atomic flag is performed here, rather than
2799 	 * the more obvious place, simply to reduce the critical path length
2800 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2801 	 * will eventually be caught here (where it matters).
2802 	 */
2803 	kmem_flagcheck(cachep, flags);
2804 
2805 	/*
2806 	 * Get mem for the objs.  Attempt to allocate a physical page from
2807 	 * 'nodeid'.
2808 	 */
2809 	if (!objp)
2810 		objp = kmem_getpages(cachep, local_flags, nodeid);
2811 	if (!objp)
2812 		goto failed;
2813 
2814 	/* Get slab management. */
2815 	slabp = alloc_slabmgmt(cachep, objp, offset,
2816 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2817 	if (!slabp)
2818 		goto opps1;
2819 
2820 	slab_map_pages(cachep, slabp, objp);
2821 
2822 	cache_init_objs(cachep, slabp);
2823 
2824 	if (local_flags & __GFP_WAIT)
2825 		local_irq_disable();
2826 	check_irq_off();
2827 	spin_lock(&l3->list_lock);
2828 
2829 	/* Make slab active. */
2830 	list_add_tail(&slabp->list, &(l3->slabs_free));
2831 	STATS_INC_GROWN(cachep);
2832 	l3->free_objects += cachep->num;
2833 	spin_unlock(&l3->list_lock);
2834 	return 1;
2835 opps1:
2836 	kmem_freepages(cachep, objp);
2837 failed:
2838 	if (local_flags & __GFP_WAIT)
2839 		local_irq_disable();
2840 	return 0;
2841 }
2842 
2843 #if DEBUG
2844 
2845 /*
2846  * Perform extra freeing checks:
2847  * - detect bad pointers.
2848  * - POISON/RED_ZONE checking
2849  */
2850 static void kfree_debugcheck(const void *objp)
2851 {
2852 	if (!virt_addr_valid(objp)) {
2853 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2854 		       (unsigned long)objp);
2855 		BUG();
2856 	}
2857 }
2858 
2859 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2860 {
2861 	unsigned long long redzone1, redzone2;
2862 
2863 	redzone1 = *dbg_redzone1(cache, obj);
2864 	redzone2 = *dbg_redzone2(cache, obj);
2865 
2866 	/*
2867 	 * Redzone is ok.
2868 	 */
2869 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2870 		return;
2871 
2872 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2873 		slab_error(cache, "double free detected");
2874 	else
2875 		slab_error(cache, "memory outside object was overwritten");
2876 
2877 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2878 			obj, redzone1, redzone2);
2879 }
2880 
2881 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2882 				   void *caller)
2883 {
2884 	struct page *page;
2885 	unsigned int objnr;
2886 	struct slab *slabp;
2887 
2888 	BUG_ON(virt_to_cache(objp) != cachep);
2889 
2890 	objp -= obj_offset(cachep);
2891 	kfree_debugcheck(objp);
2892 	page = virt_to_head_page(objp);
2893 
2894 	slabp = page_get_slab(page);
2895 
2896 	if (cachep->flags & SLAB_RED_ZONE) {
2897 		verify_redzone_free(cachep, objp);
2898 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2899 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2900 	}
2901 	if (cachep->flags & SLAB_STORE_USER)
2902 		*dbg_userword(cachep, objp) = caller;
2903 
2904 	objnr = obj_to_index(cachep, slabp, objp);
2905 
2906 	BUG_ON(objnr >= cachep->num);
2907 	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2908 
2909 #ifdef CONFIG_DEBUG_SLAB_LEAK
2910 	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2911 #endif
2912 	if (cachep->flags & SLAB_POISON) {
2913 #ifdef CONFIG_DEBUG_PAGEALLOC
2914 		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2915 			store_stackinfo(cachep, objp, (unsigned long)caller);
2916 			kernel_map_pages(virt_to_page(objp),
2917 					 cachep->buffer_size / PAGE_SIZE, 0);
2918 		} else {
2919 			poison_obj(cachep, objp, POISON_FREE);
2920 		}
2921 #else
2922 		poison_obj(cachep, objp, POISON_FREE);
2923 #endif
2924 	}
2925 	return objp;
2926 }
2927 
2928 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2929 {
2930 	kmem_bufctl_t i;
2931 	int entries = 0;
2932 
2933 	/* Check slab's freelist to see if this obj is there. */
2934 	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2935 		entries++;
2936 		if (entries > cachep->num || i >= cachep->num)
2937 			goto bad;
2938 	}
2939 	if (entries != cachep->num - slabp->inuse) {
2940 bad:
2941 		printk(KERN_ERR "slab: Internal list corruption detected in "
2942 				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2943 			cachep->name, cachep->num, slabp, slabp->inuse);
2944 		for (i = 0;
2945 		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2946 		     i++) {
2947 			if (i % 16 == 0)
2948 				printk("\n%03x:", i);
2949 			printk(" %02x", ((unsigned char *)slabp)[i]);
2950 		}
2951 		printk("\n");
2952 		BUG();
2953 	}
2954 }
2955 #else
2956 #define kfree_debugcheck(x) do { } while(0)
2957 #define cache_free_debugcheck(x,objp,z) (objp)
2958 #define check_slabp(x,y) do { } while(0)
2959 #endif
2960 
2961 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2962 {
2963 	int batchcount;
2964 	struct kmem_list3 *l3;
2965 	struct array_cache *ac;
2966 	int node;
2967 
2968 retry:
2969 	check_irq_off();
2970 	node = numa_node_id();
2971 	ac = cpu_cache_get(cachep);
2972 	batchcount = ac->batchcount;
2973 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2974 		/*
2975 		 * If there was little recent activity on this cache, then
2976 		 * perform only a partial refill.  Otherwise we could generate
2977 		 * refill bouncing.
2978 		 */
2979 		batchcount = BATCHREFILL_LIMIT;
2980 	}
2981 	l3 = cachep->nodelists[node];
2982 
2983 	BUG_ON(ac->avail > 0 || !l3);
2984 	spin_lock(&l3->list_lock);
2985 
2986 	/* See if we can refill from the shared array */
2987 	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2988 		goto alloc_done;
2989 
2990 	while (batchcount > 0) {
2991 		struct list_head *entry;
2992 		struct slab *slabp;
2993 		/* Get slab alloc is to come from. */
2994 		entry = l3->slabs_partial.next;
2995 		if (entry == &l3->slabs_partial) {
2996 			l3->free_touched = 1;
2997 			entry = l3->slabs_free.next;
2998 			if (entry == &l3->slabs_free)
2999 				goto must_grow;
3000 		}
3001 
3002 		slabp = list_entry(entry, struct slab, list);
3003 		check_slabp(cachep, slabp);
3004 		check_spinlock_acquired(cachep);
3005 
3006 		/*
3007 		 * The slab was either on partial or free list so
3008 		 * there must be at least one object available for
3009 		 * allocation.
3010 		 */
3011 		BUG_ON(slabp->inuse >= cachep->num);
3012 
3013 		while (slabp->inuse < cachep->num && batchcount--) {
3014 			STATS_INC_ALLOCED(cachep);
3015 			STATS_INC_ACTIVE(cachep);
3016 			STATS_SET_HIGH(cachep);
3017 
3018 			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3019 							    node);
3020 		}
3021 		check_slabp(cachep, slabp);
3022 
3023 		/* move slabp to correct slabp list: */
3024 		list_del(&slabp->list);
3025 		if (slabp->free == BUFCTL_END)
3026 			list_add(&slabp->list, &l3->slabs_full);
3027 		else
3028 			list_add(&slabp->list, &l3->slabs_partial);
3029 	}
3030 
3031 must_grow:
3032 	l3->free_objects -= ac->avail;
3033 alloc_done:
3034 	spin_unlock(&l3->list_lock);
3035 
3036 	if (unlikely(!ac->avail)) {
3037 		int x;
3038 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3039 
3040 		/* cache_grow can reenable interrupts, then ac could change. */
3041 		ac = cpu_cache_get(cachep);
3042 		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3043 			return NULL;
3044 
3045 		if (!ac->avail)		/* objects refilled by interrupt? */
3046 			goto retry;
3047 	}
3048 	ac->touched = 1;
3049 	return ac->entry[--ac->avail];
3050 }
3051 
3052 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3053 						gfp_t flags)
3054 {
3055 	might_sleep_if(flags & __GFP_WAIT);
3056 #if DEBUG
3057 	kmem_flagcheck(cachep, flags);
3058 #endif
3059 }
3060 
3061 #if DEBUG
3062 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3063 				gfp_t flags, void *objp, void *caller)
3064 {
3065 	if (!objp)
3066 		return objp;
3067 	if (cachep->flags & SLAB_POISON) {
3068 #ifdef CONFIG_DEBUG_PAGEALLOC
3069 		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3070 			kernel_map_pages(virt_to_page(objp),
3071 					 cachep->buffer_size / PAGE_SIZE, 1);
3072 		else
3073 			check_poison_obj(cachep, objp);
3074 #else
3075 		check_poison_obj(cachep, objp);
3076 #endif
3077 		poison_obj(cachep, objp, POISON_INUSE);
3078 	}
3079 	if (cachep->flags & SLAB_STORE_USER)
3080 		*dbg_userword(cachep, objp) = caller;
3081 
3082 	if (cachep->flags & SLAB_RED_ZONE) {
3083 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3084 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3085 			slab_error(cachep, "double free, or memory outside"
3086 						" object was overwritten");
3087 			printk(KERN_ERR
3088 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3089 				objp, *dbg_redzone1(cachep, objp),
3090 				*dbg_redzone2(cachep, objp));
3091 		}
3092 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3093 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3094 	}
3095 #ifdef CONFIG_DEBUG_SLAB_LEAK
3096 	{
3097 		struct slab *slabp;
3098 		unsigned objnr;
3099 
3100 		slabp = page_get_slab(virt_to_head_page(objp));
3101 		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3102 		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3103 	}
3104 #endif
3105 	objp += obj_offset(cachep);
3106 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3107 		cachep->ctor(objp);
3108 #if ARCH_SLAB_MINALIGN
3109 	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3110 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3111 		       objp, ARCH_SLAB_MINALIGN);
3112 	}
3113 #endif
3114 	return objp;
3115 }
3116 #else
3117 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3118 #endif
3119 
3120 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3121 {
3122 	if (cachep == &cache_cache)
3123 		return false;
3124 
3125 	return should_failslab(obj_size(cachep), flags);
3126 }
3127 
3128 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3129 {
3130 	void *objp;
3131 	struct array_cache *ac;
3132 
3133 	check_irq_off();
3134 
3135 	ac = cpu_cache_get(cachep);
3136 	if (likely(ac->avail)) {
3137 		STATS_INC_ALLOCHIT(cachep);
3138 		ac->touched = 1;
3139 		objp = ac->entry[--ac->avail];
3140 	} else {
3141 		STATS_INC_ALLOCMISS(cachep);
3142 		objp = cache_alloc_refill(cachep, flags);
3143 	}
3144 	return objp;
3145 }
3146 
3147 #ifdef CONFIG_NUMA
3148 /*
3149  * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3150  *
3151  * If we are in_interrupt, then process context, including cpusets and
3152  * mempolicy, may not apply and should not be used for allocation policy.
3153  */
3154 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3155 {
3156 	int nid_alloc, nid_here;
3157 
3158 	if (in_interrupt() || (flags & __GFP_THISNODE))
3159 		return NULL;
3160 	nid_alloc = nid_here = numa_node_id();
3161 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3162 		nid_alloc = cpuset_mem_spread_node();
3163 	else if (current->mempolicy)
3164 		nid_alloc = slab_node(current->mempolicy);
3165 	if (nid_alloc != nid_here)
3166 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3167 	return NULL;
3168 }
3169 
3170 /*
3171  * Fallback function if there was no memory available and no objects on a
3172  * certain node and fall back is permitted. First we scan all the
3173  * available nodelists for available objects. If that fails then we
3174  * perform an allocation without specifying a node. This allows the page
3175  * allocator to do its reclaim / fallback magic. We then insert the
3176  * slab into the proper nodelist and then allocate from it.
3177  */
3178 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3179 {
3180 	struct zonelist *zonelist;
3181 	gfp_t local_flags;
3182 	struct zoneref *z;
3183 	struct zone *zone;
3184 	enum zone_type high_zoneidx = gfp_zone(flags);
3185 	void *obj = NULL;
3186 	int nid;
3187 
3188 	if (flags & __GFP_THISNODE)
3189 		return NULL;
3190 
3191 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3192 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3193 
3194 retry:
3195 	/*
3196 	 * Look through allowed nodes for objects available
3197 	 * from existing per node queues.
3198 	 */
3199 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3200 		nid = zone_to_nid(zone);
3201 
3202 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3203 			cache->nodelists[nid] &&
3204 			cache->nodelists[nid]->free_objects) {
3205 				obj = ____cache_alloc_node(cache,
3206 					flags | GFP_THISNODE, nid);
3207 				if (obj)
3208 					break;
3209 		}
3210 	}
3211 
3212 	if (!obj) {
3213 		/*
3214 		 * This allocation will be performed within the constraints
3215 		 * of the current cpuset / memory policy requirements.
3216 		 * We may trigger various forms of reclaim on the allowed
3217 		 * set and go into memory reserves if necessary.
3218 		 */
3219 		if (local_flags & __GFP_WAIT)
3220 			local_irq_enable();
3221 		kmem_flagcheck(cache, flags);
3222 		obj = kmem_getpages(cache, local_flags, -1);
3223 		if (local_flags & __GFP_WAIT)
3224 			local_irq_disable();
3225 		if (obj) {
3226 			/*
3227 			 * Insert into the appropriate per node queues
3228 			 */
3229 			nid = page_to_nid(virt_to_page(obj));
3230 			if (cache_grow(cache, flags, nid, obj)) {
3231 				obj = ____cache_alloc_node(cache,
3232 					flags | GFP_THISNODE, nid);
3233 				if (!obj)
3234 					/*
3235 					 * Another processor may allocate the
3236 					 * objects in the slab since we are
3237 					 * not holding any locks.
3238 					 */
3239 					goto retry;
3240 			} else {
3241 				/* cache_grow already freed obj */
3242 				obj = NULL;
3243 			}
3244 		}
3245 	}
3246 	return obj;
3247 }
3248 
3249 /*
3250  * A interface to enable slab creation on nodeid
3251  */
3252 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3253 				int nodeid)
3254 {
3255 	struct list_head *entry;
3256 	struct slab *slabp;
3257 	struct kmem_list3 *l3;
3258 	void *obj;
3259 	int x;
3260 
3261 	l3 = cachep->nodelists[nodeid];
3262 	BUG_ON(!l3);
3263 
3264 retry:
3265 	check_irq_off();
3266 	spin_lock(&l3->list_lock);
3267 	entry = l3->slabs_partial.next;
3268 	if (entry == &l3->slabs_partial) {
3269 		l3->free_touched = 1;
3270 		entry = l3->slabs_free.next;
3271 		if (entry == &l3->slabs_free)
3272 			goto must_grow;
3273 	}
3274 
3275 	slabp = list_entry(entry, struct slab, list);
3276 	check_spinlock_acquired_node(cachep, nodeid);
3277 	check_slabp(cachep, slabp);
3278 
3279 	STATS_INC_NODEALLOCS(cachep);
3280 	STATS_INC_ACTIVE(cachep);
3281 	STATS_SET_HIGH(cachep);
3282 
3283 	BUG_ON(slabp->inuse == cachep->num);
3284 
3285 	obj = slab_get_obj(cachep, slabp, nodeid);
3286 	check_slabp(cachep, slabp);
3287 	l3->free_objects--;
3288 	/* move slabp to correct slabp list: */
3289 	list_del(&slabp->list);
3290 
3291 	if (slabp->free == BUFCTL_END)
3292 		list_add(&slabp->list, &l3->slabs_full);
3293 	else
3294 		list_add(&slabp->list, &l3->slabs_partial);
3295 
3296 	spin_unlock(&l3->list_lock);
3297 	goto done;
3298 
3299 must_grow:
3300 	spin_unlock(&l3->list_lock);
3301 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3302 	if (x)
3303 		goto retry;
3304 
3305 	return fallback_alloc(cachep, flags);
3306 
3307 done:
3308 	return obj;
3309 }
3310 
3311 /**
3312  * kmem_cache_alloc_node - Allocate an object on the specified node
3313  * @cachep: The cache to allocate from.
3314  * @flags: See kmalloc().
3315  * @nodeid: node number of the target node.
3316  * @caller: return address of caller, used for debug information
3317  *
3318  * Identical to kmem_cache_alloc but it will allocate memory on the given
3319  * node, which can improve the performance for cpu bound structures.
3320  *
3321  * Fallback to other node is possible if __GFP_THISNODE is not set.
3322  */
3323 static __always_inline void *
3324 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3325 		   void *caller)
3326 {
3327 	unsigned long save_flags;
3328 	void *ptr;
3329 
3330 	lockdep_trace_alloc(flags);
3331 
3332 	if (slab_should_failslab(cachep, flags))
3333 		return NULL;
3334 
3335 	cache_alloc_debugcheck_before(cachep, flags);
3336 	local_irq_save(save_flags);
3337 
3338 	if (unlikely(nodeid == -1))
3339 		nodeid = numa_node_id();
3340 
3341 	if (unlikely(!cachep->nodelists[nodeid])) {
3342 		/* Node not bootstrapped yet */
3343 		ptr = fallback_alloc(cachep, flags);
3344 		goto out;
3345 	}
3346 
3347 	if (nodeid == numa_node_id()) {
3348 		/*
3349 		 * Use the locally cached objects if possible.
3350 		 * However ____cache_alloc does not allow fallback
3351 		 * to other nodes. It may fail while we still have
3352 		 * objects on other nodes available.
3353 		 */
3354 		ptr = ____cache_alloc(cachep, flags);
3355 		if (ptr)
3356 			goto out;
3357 	}
3358 	/* ___cache_alloc_node can fall back to other nodes */
3359 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3360   out:
3361 	local_irq_restore(save_flags);
3362 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3363 
3364 	if (unlikely((flags & __GFP_ZERO) && ptr))
3365 		memset(ptr, 0, obj_size(cachep));
3366 
3367 	return ptr;
3368 }
3369 
3370 static __always_inline void *
3371 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3372 {
3373 	void *objp;
3374 
3375 	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3376 		objp = alternate_node_alloc(cache, flags);
3377 		if (objp)
3378 			goto out;
3379 	}
3380 	objp = ____cache_alloc(cache, flags);
3381 
3382 	/*
3383 	 * We may just have run out of memory on the local node.
3384 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3385 	 */
3386  	if (!objp)
3387  		objp = ____cache_alloc_node(cache, flags, numa_node_id());
3388 
3389   out:
3390 	return objp;
3391 }
3392 #else
3393 
3394 static __always_inline void *
3395 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3396 {
3397 	return ____cache_alloc(cachep, flags);
3398 }
3399 
3400 #endif /* CONFIG_NUMA */
3401 
3402 static __always_inline void *
3403 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3404 {
3405 	unsigned long save_flags;
3406 	void *objp;
3407 
3408 	lockdep_trace_alloc(flags);
3409 
3410 	if (slab_should_failslab(cachep, flags))
3411 		return NULL;
3412 
3413 	cache_alloc_debugcheck_before(cachep, flags);
3414 	local_irq_save(save_flags);
3415 	objp = __do_cache_alloc(cachep, flags);
3416 	local_irq_restore(save_flags);
3417 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3418 	prefetchw(objp);
3419 
3420 	if (unlikely((flags & __GFP_ZERO) && objp))
3421 		memset(objp, 0, obj_size(cachep));
3422 
3423 	return objp;
3424 }
3425 
3426 /*
3427  * Caller needs to acquire correct kmem_list's list_lock
3428  */
3429 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3430 		       int node)
3431 {
3432 	int i;
3433 	struct kmem_list3 *l3;
3434 
3435 	for (i = 0; i < nr_objects; i++) {
3436 		void *objp = objpp[i];
3437 		struct slab *slabp;
3438 
3439 		slabp = virt_to_slab(objp);
3440 		l3 = cachep->nodelists[node];
3441 		list_del(&slabp->list);
3442 		check_spinlock_acquired_node(cachep, node);
3443 		check_slabp(cachep, slabp);
3444 		slab_put_obj(cachep, slabp, objp, node);
3445 		STATS_DEC_ACTIVE(cachep);
3446 		l3->free_objects++;
3447 		check_slabp(cachep, slabp);
3448 
3449 		/* fixup slab chains */
3450 		if (slabp->inuse == 0) {
3451 			if (l3->free_objects > l3->free_limit) {
3452 				l3->free_objects -= cachep->num;
3453 				/* No need to drop any previously held
3454 				 * lock here, even if we have a off-slab slab
3455 				 * descriptor it is guaranteed to come from
3456 				 * a different cache, refer to comments before
3457 				 * alloc_slabmgmt.
3458 				 */
3459 				slab_destroy(cachep, slabp);
3460 			} else {
3461 				list_add(&slabp->list, &l3->slabs_free);
3462 			}
3463 		} else {
3464 			/* Unconditionally move a slab to the end of the
3465 			 * partial list on free - maximum time for the
3466 			 * other objects to be freed, too.
3467 			 */
3468 			list_add_tail(&slabp->list, &l3->slabs_partial);
3469 		}
3470 	}
3471 }
3472 
3473 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3474 {
3475 	int batchcount;
3476 	struct kmem_list3 *l3;
3477 	int node = numa_node_id();
3478 
3479 	batchcount = ac->batchcount;
3480 #if DEBUG
3481 	BUG_ON(!batchcount || batchcount > ac->avail);
3482 #endif
3483 	check_irq_off();
3484 	l3 = cachep->nodelists[node];
3485 	spin_lock(&l3->list_lock);
3486 	if (l3->shared) {
3487 		struct array_cache *shared_array = l3->shared;
3488 		int max = shared_array->limit - shared_array->avail;
3489 		if (max) {
3490 			if (batchcount > max)
3491 				batchcount = max;
3492 			memcpy(&(shared_array->entry[shared_array->avail]),
3493 			       ac->entry, sizeof(void *) * batchcount);
3494 			shared_array->avail += batchcount;
3495 			goto free_done;
3496 		}
3497 	}
3498 
3499 	free_block(cachep, ac->entry, batchcount, node);
3500 free_done:
3501 #if STATS
3502 	{
3503 		int i = 0;
3504 		struct list_head *p;
3505 
3506 		p = l3->slabs_free.next;
3507 		while (p != &(l3->slabs_free)) {
3508 			struct slab *slabp;
3509 
3510 			slabp = list_entry(p, struct slab, list);
3511 			BUG_ON(slabp->inuse);
3512 
3513 			i++;
3514 			p = p->next;
3515 		}
3516 		STATS_SET_FREEABLE(cachep, i);
3517 	}
3518 #endif
3519 	spin_unlock(&l3->list_lock);
3520 	ac->avail -= batchcount;
3521 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3522 }
3523 
3524 /*
3525  * Release an obj back to its cache. If the obj has a constructed state, it must
3526  * be in this state _before_ it is released.  Called with disabled ints.
3527  */
3528 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3529 {
3530 	struct array_cache *ac = cpu_cache_get(cachep);
3531 
3532 	check_irq_off();
3533 	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3534 
3535 	/*
3536 	 * Skip calling cache_free_alien() when the platform is not numa.
3537 	 * This will avoid cache misses that happen while accessing slabp (which
3538 	 * is per page memory  reference) to get nodeid. Instead use a global
3539 	 * variable to skip the call, which is mostly likely to be present in
3540 	 * the cache.
3541 	 */
3542 	if (numa_platform && cache_free_alien(cachep, objp))
3543 		return;
3544 
3545 	if (likely(ac->avail < ac->limit)) {
3546 		STATS_INC_FREEHIT(cachep);
3547 		ac->entry[ac->avail++] = objp;
3548 		return;
3549 	} else {
3550 		STATS_INC_FREEMISS(cachep);
3551 		cache_flusharray(cachep, ac);
3552 		ac->entry[ac->avail++] = objp;
3553 	}
3554 }
3555 
3556 /**
3557  * kmem_cache_alloc - Allocate an object
3558  * @cachep: The cache to allocate from.
3559  * @flags: See kmalloc().
3560  *
3561  * Allocate an object from this cache.  The flags are only relevant
3562  * if the cache has no available objects.
3563  */
3564 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3565 {
3566 	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3567 
3568 	trace_kmem_cache_alloc(_RET_IP_, ret,
3569 			       obj_size(cachep), cachep->buffer_size, flags);
3570 
3571 	return ret;
3572 }
3573 EXPORT_SYMBOL(kmem_cache_alloc);
3574 
3575 #ifdef CONFIG_KMEMTRACE
3576 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3577 {
3578 	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3579 }
3580 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3581 #endif
3582 
3583 /**
3584  * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3585  * @cachep: the cache we're checking against
3586  * @ptr: pointer to validate
3587  *
3588  * This verifies that the untrusted pointer looks sane;
3589  * it is _not_ a guarantee that the pointer is actually
3590  * part of the slab cache in question, but it at least
3591  * validates that the pointer can be dereferenced and
3592  * looks half-way sane.
3593  *
3594  * Currently only used for dentry validation.
3595  */
3596 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3597 {
3598 	unsigned long addr = (unsigned long)ptr;
3599 	unsigned long min_addr = PAGE_OFFSET;
3600 	unsigned long align_mask = BYTES_PER_WORD - 1;
3601 	unsigned long size = cachep->buffer_size;
3602 	struct page *page;
3603 
3604 	if (unlikely(addr < min_addr))
3605 		goto out;
3606 	if (unlikely(addr > (unsigned long)high_memory - size))
3607 		goto out;
3608 	if (unlikely(addr & align_mask))
3609 		goto out;
3610 	if (unlikely(!kern_addr_valid(addr)))
3611 		goto out;
3612 	if (unlikely(!kern_addr_valid(addr + size - 1)))
3613 		goto out;
3614 	page = virt_to_page(ptr);
3615 	if (unlikely(!PageSlab(page)))
3616 		goto out;
3617 	if (unlikely(page_get_cache(page) != cachep))
3618 		goto out;
3619 	return 1;
3620 out:
3621 	return 0;
3622 }
3623 
3624 #ifdef CONFIG_NUMA
3625 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3626 {
3627 	void *ret = __cache_alloc_node(cachep, flags, nodeid,
3628 				       __builtin_return_address(0));
3629 
3630 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3631 				    obj_size(cachep), cachep->buffer_size,
3632 				    flags, nodeid);
3633 
3634 	return ret;
3635 }
3636 EXPORT_SYMBOL(kmem_cache_alloc_node);
3637 
3638 #ifdef CONFIG_KMEMTRACE
3639 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3640 				    gfp_t flags,
3641 				    int nodeid)
3642 {
3643 	return __cache_alloc_node(cachep, flags, nodeid,
3644 				  __builtin_return_address(0));
3645 }
3646 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3647 #endif
3648 
3649 static __always_inline void *
3650 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3651 {
3652 	struct kmem_cache *cachep;
3653 	void *ret;
3654 
3655 	cachep = kmem_find_general_cachep(size, flags);
3656 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3657 		return cachep;
3658 	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3659 
3660 	trace_kmalloc_node((unsigned long) caller, ret,
3661 			   size, cachep->buffer_size, flags, node);
3662 
3663 	return ret;
3664 }
3665 
3666 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3667 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3668 {
3669 	return __do_kmalloc_node(size, flags, node,
3670 			__builtin_return_address(0));
3671 }
3672 EXPORT_SYMBOL(__kmalloc_node);
3673 
3674 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3675 		int node, unsigned long caller)
3676 {
3677 	return __do_kmalloc_node(size, flags, node, (void *)caller);
3678 }
3679 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3680 #else
3681 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3682 {
3683 	return __do_kmalloc_node(size, flags, node, NULL);
3684 }
3685 EXPORT_SYMBOL(__kmalloc_node);
3686 #endif /* CONFIG_DEBUG_SLAB */
3687 #endif /* CONFIG_NUMA */
3688 
3689 /**
3690  * __do_kmalloc - allocate memory
3691  * @size: how many bytes of memory are required.
3692  * @flags: the type of memory to allocate (see kmalloc).
3693  * @caller: function caller for debug tracking of the caller
3694  */
3695 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3696 					  void *caller)
3697 {
3698 	struct kmem_cache *cachep;
3699 	void *ret;
3700 
3701 	/* If you want to save a few bytes .text space: replace
3702 	 * __ with kmem_.
3703 	 * Then kmalloc uses the uninlined functions instead of the inline
3704 	 * functions.
3705 	 */
3706 	cachep = __find_general_cachep(size, flags);
3707 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3708 		return cachep;
3709 	ret = __cache_alloc(cachep, flags, caller);
3710 
3711 	trace_kmalloc((unsigned long) caller, ret,
3712 		      size, cachep->buffer_size, flags);
3713 
3714 	return ret;
3715 }
3716 
3717 
3718 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3719 void *__kmalloc(size_t size, gfp_t flags)
3720 {
3721 	return __do_kmalloc(size, flags, __builtin_return_address(0));
3722 }
3723 EXPORT_SYMBOL(__kmalloc);
3724 
3725 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3726 {
3727 	return __do_kmalloc(size, flags, (void *)caller);
3728 }
3729 EXPORT_SYMBOL(__kmalloc_track_caller);
3730 
3731 #else
3732 void *__kmalloc(size_t size, gfp_t flags)
3733 {
3734 	return __do_kmalloc(size, flags, NULL);
3735 }
3736 EXPORT_SYMBOL(__kmalloc);
3737 #endif
3738 
3739 /**
3740  * kmem_cache_free - Deallocate an object
3741  * @cachep: The cache the allocation was from.
3742  * @objp: The previously allocated object.
3743  *
3744  * Free an object which was previously allocated from this
3745  * cache.
3746  */
3747 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3748 {
3749 	unsigned long flags;
3750 
3751 	local_irq_save(flags);
3752 	debug_check_no_locks_freed(objp, obj_size(cachep));
3753 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3754 		debug_check_no_obj_freed(objp, obj_size(cachep));
3755 	__cache_free(cachep, objp);
3756 	local_irq_restore(flags);
3757 
3758 	trace_kmem_cache_free(_RET_IP_, objp);
3759 }
3760 EXPORT_SYMBOL(kmem_cache_free);
3761 
3762 /**
3763  * kfree - free previously allocated memory
3764  * @objp: pointer returned by kmalloc.
3765  *
3766  * If @objp is NULL, no operation is performed.
3767  *
3768  * Don't free memory not originally allocated by kmalloc()
3769  * or you will run into trouble.
3770  */
3771 void kfree(const void *objp)
3772 {
3773 	struct kmem_cache *c;
3774 	unsigned long flags;
3775 
3776 	trace_kfree(_RET_IP_, objp);
3777 
3778 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3779 		return;
3780 	local_irq_save(flags);
3781 	kfree_debugcheck(objp);
3782 	c = virt_to_cache(objp);
3783 	debug_check_no_locks_freed(objp, obj_size(c));
3784 	debug_check_no_obj_freed(objp, obj_size(c));
3785 	__cache_free(c, (void *)objp);
3786 	local_irq_restore(flags);
3787 }
3788 EXPORT_SYMBOL(kfree);
3789 
3790 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3791 {
3792 	return obj_size(cachep);
3793 }
3794 EXPORT_SYMBOL(kmem_cache_size);
3795 
3796 const char *kmem_cache_name(struct kmem_cache *cachep)
3797 {
3798 	return cachep->name;
3799 }
3800 EXPORT_SYMBOL_GPL(kmem_cache_name);
3801 
3802 /*
3803  * This initializes kmem_list3 or resizes various caches for all nodes.
3804  */
3805 static int alloc_kmemlist(struct kmem_cache *cachep)
3806 {
3807 	int node;
3808 	struct kmem_list3 *l3;
3809 	struct array_cache *new_shared;
3810 	struct array_cache **new_alien = NULL;
3811 
3812 	for_each_online_node(node) {
3813 
3814                 if (use_alien_caches) {
3815                         new_alien = alloc_alien_cache(node, cachep->limit);
3816                         if (!new_alien)
3817                                 goto fail;
3818                 }
3819 
3820 		new_shared = NULL;
3821 		if (cachep->shared) {
3822 			new_shared = alloc_arraycache(node,
3823 				cachep->shared*cachep->batchcount,
3824 					0xbaadf00d);
3825 			if (!new_shared) {
3826 				free_alien_cache(new_alien);
3827 				goto fail;
3828 			}
3829 		}
3830 
3831 		l3 = cachep->nodelists[node];
3832 		if (l3) {
3833 			struct array_cache *shared = l3->shared;
3834 
3835 			spin_lock_irq(&l3->list_lock);
3836 
3837 			if (shared)
3838 				free_block(cachep, shared->entry,
3839 						shared->avail, node);
3840 
3841 			l3->shared = new_shared;
3842 			if (!l3->alien) {
3843 				l3->alien = new_alien;
3844 				new_alien = NULL;
3845 			}
3846 			l3->free_limit = (1 + nr_cpus_node(node)) *
3847 					cachep->batchcount + cachep->num;
3848 			spin_unlock_irq(&l3->list_lock);
3849 			kfree(shared);
3850 			free_alien_cache(new_alien);
3851 			continue;
3852 		}
3853 		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3854 		if (!l3) {
3855 			free_alien_cache(new_alien);
3856 			kfree(new_shared);
3857 			goto fail;
3858 		}
3859 
3860 		kmem_list3_init(l3);
3861 		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3862 				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3863 		l3->shared = new_shared;
3864 		l3->alien = new_alien;
3865 		l3->free_limit = (1 + nr_cpus_node(node)) *
3866 					cachep->batchcount + cachep->num;
3867 		cachep->nodelists[node] = l3;
3868 	}
3869 	return 0;
3870 
3871 fail:
3872 	if (!cachep->next.next) {
3873 		/* Cache is not active yet. Roll back what we did */
3874 		node--;
3875 		while (node >= 0) {
3876 			if (cachep->nodelists[node]) {
3877 				l3 = cachep->nodelists[node];
3878 
3879 				kfree(l3->shared);
3880 				free_alien_cache(l3->alien);
3881 				kfree(l3);
3882 				cachep->nodelists[node] = NULL;
3883 			}
3884 			node--;
3885 		}
3886 	}
3887 	return -ENOMEM;
3888 }
3889 
3890 struct ccupdate_struct {
3891 	struct kmem_cache *cachep;
3892 	struct array_cache *new[NR_CPUS];
3893 };
3894 
3895 static void do_ccupdate_local(void *info)
3896 {
3897 	struct ccupdate_struct *new = info;
3898 	struct array_cache *old;
3899 
3900 	check_irq_off();
3901 	old = cpu_cache_get(new->cachep);
3902 
3903 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3904 	new->new[smp_processor_id()] = old;
3905 }
3906 
3907 /* Always called with the cache_chain_mutex held */
3908 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3909 				int batchcount, int shared)
3910 {
3911 	struct ccupdate_struct *new;
3912 	int i;
3913 
3914 	new = kzalloc(sizeof(*new), GFP_KERNEL);
3915 	if (!new)
3916 		return -ENOMEM;
3917 
3918 	for_each_online_cpu(i) {
3919 		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3920 						batchcount);
3921 		if (!new->new[i]) {
3922 			for (i--; i >= 0; i--)
3923 				kfree(new->new[i]);
3924 			kfree(new);
3925 			return -ENOMEM;
3926 		}
3927 	}
3928 	new->cachep = cachep;
3929 
3930 	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3931 
3932 	check_irq_on();
3933 	cachep->batchcount = batchcount;
3934 	cachep->limit = limit;
3935 	cachep->shared = shared;
3936 
3937 	for_each_online_cpu(i) {
3938 		struct array_cache *ccold = new->new[i];
3939 		if (!ccold)
3940 			continue;
3941 		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3942 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3943 		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3944 		kfree(ccold);
3945 	}
3946 	kfree(new);
3947 	return alloc_kmemlist(cachep);
3948 }
3949 
3950 /* Called with cache_chain_mutex held always */
3951 static int enable_cpucache(struct kmem_cache *cachep)
3952 {
3953 	int err;
3954 	int limit, shared;
3955 
3956 	/*
3957 	 * The head array serves three purposes:
3958 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3959 	 * - reduce the number of spinlock operations.
3960 	 * - reduce the number of linked list operations on the slab and
3961 	 *   bufctl chains: array operations are cheaper.
3962 	 * The numbers are guessed, we should auto-tune as described by
3963 	 * Bonwick.
3964 	 */
3965 	if (cachep->buffer_size > 131072)
3966 		limit = 1;
3967 	else if (cachep->buffer_size > PAGE_SIZE)
3968 		limit = 8;
3969 	else if (cachep->buffer_size > 1024)
3970 		limit = 24;
3971 	else if (cachep->buffer_size > 256)
3972 		limit = 54;
3973 	else
3974 		limit = 120;
3975 
3976 	/*
3977 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3978 	 * allocation behaviour: Most allocs on one cpu, most free operations
3979 	 * on another cpu. For these cases, an efficient object passing between
3980 	 * cpus is necessary. This is provided by a shared array. The array
3981 	 * replaces Bonwick's magazine layer.
3982 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3983 	 * to a larger limit. Thus disabled by default.
3984 	 */
3985 	shared = 0;
3986 	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3987 		shared = 8;
3988 
3989 #if DEBUG
3990 	/*
3991 	 * With debugging enabled, large batchcount lead to excessively long
3992 	 * periods with disabled local interrupts. Limit the batchcount
3993 	 */
3994 	if (limit > 32)
3995 		limit = 32;
3996 #endif
3997 	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3998 	if (err)
3999 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4000 		       cachep->name, -err);
4001 	return err;
4002 }
4003 
4004 /*
4005  * Drain an array if it contains any elements taking the l3 lock only if
4006  * necessary. Note that the l3 listlock also protects the array_cache
4007  * if drain_array() is used on the shared array.
4008  */
4009 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4010 			 struct array_cache *ac, int force, int node)
4011 {
4012 	int tofree;
4013 
4014 	if (!ac || !ac->avail)
4015 		return;
4016 	if (ac->touched && !force) {
4017 		ac->touched = 0;
4018 	} else {
4019 		spin_lock_irq(&l3->list_lock);
4020 		if (ac->avail) {
4021 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4022 			if (tofree > ac->avail)
4023 				tofree = (ac->avail + 1) / 2;
4024 			free_block(cachep, ac->entry, tofree, node);
4025 			ac->avail -= tofree;
4026 			memmove(ac->entry, &(ac->entry[tofree]),
4027 				sizeof(void *) * ac->avail);
4028 		}
4029 		spin_unlock_irq(&l3->list_lock);
4030 	}
4031 }
4032 
4033 /**
4034  * cache_reap - Reclaim memory from caches.
4035  * @w: work descriptor
4036  *
4037  * Called from workqueue/eventd every few seconds.
4038  * Purpose:
4039  * - clear the per-cpu caches for this CPU.
4040  * - return freeable pages to the main free memory pool.
4041  *
4042  * If we cannot acquire the cache chain mutex then just give up - we'll try
4043  * again on the next iteration.
4044  */
4045 static void cache_reap(struct work_struct *w)
4046 {
4047 	struct kmem_cache *searchp;
4048 	struct kmem_list3 *l3;
4049 	int node = numa_node_id();
4050 	struct delayed_work *work = to_delayed_work(w);
4051 
4052 	if (!mutex_trylock(&cache_chain_mutex))
4053 		/* Give up. Setup the next iteration. */
4054 		goto out;
4055 
4056 	list_for_each_entry(searchp, &cache_chain, next) {
4057 		check_irq_on();
4058 
4059 		/*
4060 		 * We only take the l3 lock if absolutely necessary and we
4061 		 * have established with reasonable certainty that
4062 		 * we can do some work if the lock was obtained.
4063 		 */
4064 		l3 = searchp->nodelists[node];
4065 
4066 		reap_alien(searchp, l3);
4067 
4068 		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4069 
4070 		/*
4071 		 * These are racy checks but it does not matter
4072 		 * if we skip one check or scan twice.
4073 		 */
4074 		if (time_after(l3->next_reap, jiffies))
4075 			goto next;
4076 
4077 		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4078 
4079 		drain_array(searchp, l3, l3->shared, 0, node);
4080 
4081 		if (l3->free_touched)
4082 			l3->free_touched = 0;
4083 		else {
4084 			int freed;
4085 
4086 			freed = drain_freelist(searchp, l3, (l3->free_limit +
4087 				5 * searchp->num - 1) / (5 * searchp->num));
4088 			STATS_ADD_REAPED(searchp, freed);
4089 		}
4090 next:
4091 		cond_resched();
4092 	}
4093 	check_irq_on();
4094 	mutex_unlock(&cache_chain_mutex);
4095 	next_reap_node();
4096 out:
4097 	/* Set up the next iteration */
4098 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4099 }
4100 
4101 #ifdef CONFIG_SLABINFO
4102 
4103 static void print_slabinfo_header(struct seq_file *m)
4104 {
4105 	/*
4106 	 * Output format version, so at least we can change it
4107 	 * without _too_ many complaints.
4108 	 */
4109 #if STATS
4110 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4111 #else
4112 	seq_puts(m, "slabinfo - version: 2.1\n");
4113 #endif
4114 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4115 		 "<objperslab> <pagesperslab>");
4116 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4117 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4118 #if STATS
4119 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4120 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4121 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4122 #endif
4123 	seq_putc(m, '\n');
4124 }
4125 
4126 static void *s_start(struct seq_file *m, loff_t *pos)
4127 {
4128 	loff_t n = *pos;
4129 
4130 	mutex_lock(&cache_chain_mutex);
4131 	if (!n)
4132 		print_slabinfo_header(m);
4133 
4134 	return seq_list_start(&cache_chain, *pos);
4135 }
4136 
4137 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4138 {
4139 	return seq_list_next(p, &cache_chain, pos);
4140 }
4141 
4142 static void s_stop(struct seq_file *m, void *p)
4143 {
4144 	mutex_unlock(&cache_chain_mutex);
4145 }
4146 
4147 static int s_show(struct seq_file *m, void *p)
4148 {
4149 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4150 	struct slab *slabp;
4151 	unsigned long active_objs;
4152 	unsigned long num_objs;
4153 	unsigned long active_slabs = 0;
4154 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4155 	const char *name;
4156 	char *error = NULL;
4157 	int node;
4158 	struct kmem_list3 *l3;
4159 
4160 	active_objs = 0;
4161 	num_slabs = 0;
4162 	for_each_online_node(node) {
4163 		l3 = cachep->nodelists[node];
4164 		if (!l3)
4165 			continue;
4166 
4167 		check_irq_on();
4168 		spin_lock_irq(&l3->list_lock);
4169 
4170 		list_for_each_entry(slabp, &l3->slabs_full, list) {
4171 			if (slabp->inuse != cachep->num && !error)
4172 				error = "slabs_full accounting error";
4173 			active_objs += cachep->num;
4174 			active_slabs++;
4175 		}
4176 		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4177 			if (slabp->inuse == cachep->num && !error)
4178 				error = "slabs_partial inuse accounting error";
4179 			if (!slabp->inuse && !error)
4180 				error = "slabs_partial/inuse accounting error";
4181 			active_objs += slabp->inuse;
4182 			active_slabs++;
4183 		}
4184 		list_for_each_entry(slabp, &l3->slabs_free, list) {
4185 			if (slabp->inuse && !error)
4186 				error = "slabs_free/inuse accounting error";
4187 			num_slabs++;
4188 		}
4189 		free_objects += l3->free_objects;
4190 		if (l3->shared)
4191 			shared_avail += l3->shared->avail;
4192 
4193 		spin_unlock_irq(&l3->list_lock);
4194 	}
4195 	num_slabs += active_slabs;
4196 	num_objs = num_slabs * cachep->num;
4197 	if (num_objs - active_objs != free_objects && !error)
4198 		error = "free_objects accounting error";
4199 
4200 	name = cachep->name;
4201 	if (error)
4202 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4203 
4204 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4205 		   name, active_objs, num_objs, cachep->buffer_size,
4206 		   cachep->num, (1 << cachep->gfporder));
4207 	seq_printf(m, " : tunables %4u %4u %4u",
4208 		   cachep->limit, cachep->batchcount, cachep->shared);
4209 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4210 		   active_slabs, num_slabs, shared_avail);
4211 #if STATS
4212 	{			/* list3 stats */
4213 		unsigned long high = cachep->high_mark;
4214 		unsigned long allocs = cachep->num_allocations;
4215 		unsigned long grown = cachep->grown;
4216 		unsigned long reaped = cachep->reaped;
4217 		unsigned long errors = cachep->errors;
4218 		unsigned long max_freeable = cachep->max_freeable;
4219 		unsigned long node_allocs = cachep->node_allocs;
4220 		unsigned long node_frees = cachep->node_frees;
4221 		unsigned long overflows = cachep->node_overflow;
4222 
4223 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4224 				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4225 				reaped, errors, max_freeable, node_allocs,
4226 				node_frees, overflows);
4227 	}
4228 	/* cpu stats */
4229 	{
4230 		unsigned long allochit = atomic_read(&cachep->allochit);
4231 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4232 		unsigned long freehit = atomic_read(&cachep->freehit);
4233 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4234 
4235 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4236 			   allochit, allocmiss, freehit, freemiss);
4237 	}
4238 #endif
4239 	seq_putc(m, '\n');
4240 	return 0;
4241 }
4242 
4243 /*
4244  * slabinfo_op - iterator that generates /proc/slabinfo
4245  *
4246  * Output layout:
4247  * cache-name
4248  * num-active-objs
4249  * total-objs
4250  * object size
4251  * num-active-slabs
4252  * total-slabs
4253  * num-pages-per-slab
4254  * + further values on SMP and with statistics enabled
4255  */
4256 
4257 static const struct seq_operations slabinfo_op = {
4258 	.start = s_start,
4259 	.next = s_next,
4260 	.stop = s_stop,
4261 	.show = s_show,
4262 };
4263 
4264 #define MAX_SLABINFO_WRITE 128
4265 /**
4266  * slabinfo_write - Tuning for the slab allocator
4267  * @file: unused
4268  * @buffer: user buffer
4269  * @count: data length
4270  * @ppos: unused
4271  */
4272 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4273 		       size_t count, loff_t *ppos)
4274 {
4275 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4276 	int limit, batchcount, shared, res;
4277 	struct kmem_cache *cachep;
4278 
4279 	if (count > MAX_SLABINFO_WRITE)
4280 		return -EINVAL;
4281 	if (copy_from_user(&kbuf, buffer, count))
4282 		return -EFAULT;
4283 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4284 
4285 	tmp = strchr(kbuf, ' ');
4286 	if (!tmp)
4287 		return -EINVAL;
4288 	*tmp = '\0';
4289 	tmp++;
4290 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4291 		return -EINVAL;
4292 
4293 	/* Find the cache in the chain of caches. */
4294 	mutex_lock(&cache_chain_mutex);
4295 	res = -EINVAL;
4296 	list_for_each_entry(cachep, &cache_chain, next) {
4297 		if (!strcmp(cachep->name, kbuf)) {
4298 			if (limit < 1 || batchcount < 1 ||
4299 					batchcount > limit || shared < 0) {
4300 				res = 0;
4301 			} else {
4302 				res = do_tune_cpucache(cachep, limit,
4303 						       batchcount, shared);
4304 			}
4305 			break;
4306 		}
4307 	}
4308 	mutex_unlock(&cache_chain_mutex);
4309 	if (res >= 0)
4310 		res = count;
4311 	return res;
4312 }
4313 
4314 static int slabinfo_open(struct inode *inode, struct file *file)
4315 {
4316 	return seq_open(file, &slabinfo_op);
4317 }
4318 
4319 static const struct file_operations proc_slabinfo_operations = {
4320 	.open		= slabinfo_open,
4321 	.read		= seq_read,
4322 	.write		= slabinfo_write,
4323 	.llseek		= seq_lseek,
4324 	.release	= seq_release,
4325 };
4326 
4327 #ifdef CONFIG_DEBUG_SLAB_LEAK
4328 
4329 static void *leaks_start(struct seq_file *m, loff_t *pos)
4330 {
4331 	mutex_lock(&cache_chain_mutex);
4332 	return seq_list_start(&cache_chain, *pos);
4333 }
4334 
4335 static inline int add_caller(unsigned long *n, unsigned long v)
4336 {
4337 	unsigned long *p;
4338 	int l;
4339 	if (!v)
4340 		return 1;
4341 	l = n[1];
4342 	p = n + 2;
4343 	while (l) {
4344 		int i = l/2;
4345 		unsigned long *q = p + 2 * i;
4346 		if (*q == v) {
4347 			q[1]++;
4348 			return 1;
4349 		}
4350 		if (*q > v) {
4351 			l = i;
4352 		} else {
4353 			p = q + 2;
4354 			l -= i + 1;
4355 		}
4356 	}
4357 	if (++n[1] == n[0])
4358 		return 0;
4359 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4360 	p[0] = v;
4361 	p[1] = 1;
4362 	return 1;
4363 }
4364 
4365 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4366 {
4367 	void *p;
4368 	int i;
4369 	if (n[0] == n[1])
4370 		return;
4371 	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4372 		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4373 			continue;
4374 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4375 			return;
4376 	}
4377 }
4378 
4379 static void show_symbol(struct seq_file *m, unsigned long address)
4380 {
4381 #ifdef CONFIG_KALLSYMS
4382 	unsigned long offset, size;
4383 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4384 
4385 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4386 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4387 		if (modname[0])
4388 			seq_printf(m, " [%s]", modname);
4389 		return;
4390 	}
4391 #endif
4392 	seq_printf(m, "%p", (void *)address);
4393 }
4394 
4395 static int leaks_show(struct seq_file *m, void *p)
4396 {
4397 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4398 	struct slab *slabp;
4399 	struct kmem_list3 *l3;
4400 	const char *name;
4401 	unsigned long *n = m->private;
4402 	int node;
4403 	int i;
4404 
4405 	if (!(cachep->flags & SLAB_STORE_USER))
4406 		return 0;
4407 	if (!(cachep->flags & SLAB_RED_ZONE))
4408 		return 0;
4409 
4410 	/* OK, we can do it */
4411 
4412 	n[1] = 0;
4413 
4414 	for_each_online_node(node) {
4415 		l3 = cachep->nodelists[node];
4416 		if (!l3)
4417 			continue;
4418 
4419 		check_irq_on();
4420 		spin_lock_irq(&l3->list_lock);
4421 
4422 		list_for_each_entry(slabp, &l3->slabs_full, list)
4423 			handle_slab(n, cachep, slabp);
4424 		list_for_each_entry(slabp, &l3->slabs_partial, list)
4425 			handle_slab(n, cachep, slabp);
4426 		spin_unlock_irq(&l3->list_lock);
4427 	}
4428 	name = cachep->name;
4429 	if (n[0] == n[1]) {
4430 		/* Increase the buffer size */
4431 		mutex_unlock(&cache_chain_mutex);
4432 		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4433 		if (!m->private) {
4434 			/* Too bad, we are really out */
4435 			m->private = n;
4436 			mutex_lock(&cache_chain_mutex);
4437 			return -ENOMEM;
4438 		}
4439 		*(unsigned long *)m->private = n[0] * 2;
4440 		kfree(n);
4441 		mutex_lock(&cache_chain_mutex);
4442 		/* Now make sure this entry will be retried */
4443 		m->count = m->size;
4444 		return 0;
4445 	}
4446 	for (i = 0; i < n[1]; i++) {
4447 		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4448 		show_symbol(m, n[2*i+2]);
4449 		seq_putc(m, '\n');
4450 	}
4451 
4452 	return 0;
4453 }
4454 
4455 static const struct seq_operations slabstats_op = {
4456 	.start = leaks_start,
4457 	.next = s_next,
4458 	.stop = s_stop,
4459 	.show = leaks_show,
4460 };
4461 
4462 static int slabstats_open(struct inode *inode, struct file *file)
4463 {
4464 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4465 	int ret = -ENOMEM;
4466 	if (n) {
4467 		ret = seq_open(file, &slabstats_op);
4468 		if (!ret) {
4469 			struct seq_file *m = file->private_data;
4470 			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4471 			m->private = n;
4472 			n = NULL;
4473 		}
4474 		kfree(n);
4475 	}
4476 	return ret;
4477 }
4478 
4479 static const struct file_operations proc_slabstats_operations = {
4480 	.open		= slabstats_open,
4481 	.read		= seq_read,
4482 	.llseek		= seq_lseek,
4483 	.release	= seq_release_private,
4484 };
4485 #endif
4486 
4487 static int __init slab_proc_init(void)
4488 {
4489 	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4490 #ifdef CONFIG_DEBUG_SLAB_LEAK
4491 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4492 #endif
4493 	return 0;
4494 }
4495 module_init(slab_proc_init);
4496 #endif
4497 
4498 /**
4499  * ksize - get the actual amount of memory allocated for a given object
4500  * @objp: Pointer to the object
4501  *
4502  * kmalloc may internally round up allocations and return more memory
4503  * than requested. ksize() can be used to determine the actual amount of
4504  * memory allocated. The caller may use this additional memory, even though
4505  * a smaller amount of memory was initially specified with the kmalloc call.
4506  * The caller must guarantee that objp points to a valid object previously
4507  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4508  * must not be freed during the duration of the call.
4509  */
4510 size_t ksize(const void *objp)
4511 {
4512 	BUG_ON(!objp);
4513 	if (unlikely(objp == ZERO_SIZE_PTR))
4514 		return 0;
4515 
4516 	return obj_size(virt_to_cache(objp));
4517 }
4518 EXPORT_SYMBOL(ksize);
4519