1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/cpu.h> 104 #include <linux/sysctl.h> 105 #include <linux/module.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 #ifdef CONFIG_DEBUG_SLAB_LEAK 366 367 static inline bool is_store_user_clean(struct kmem_cache *cachep) 368 { 369 return atomic_read(&cachep->store_user_clean) == 1; 370 } 371 372 static inline void set_store_user_clean(struct kmem_cache *cachep) 373 { 374 atomic_set(&cachep->store_user_clean, 1); 375 } 376 377 static inline void set_store_user_dirty(struct kmem_cache *cachep) 378 { 379 if (is_store_user_clean(cachep)) 380 atomic_set(&cachep->store_user_clean, 0); 381 } 382 383 #else 384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 385 386 #endif 387 388 /* 389 * Do not go above this order unless 0 objects fit into the slab or 390 * overridden on the command line. 391 */ 392 #define SLAB_MAX_ORDER_HI 1 393 #define SLAB_MAX_ORDER_LO 0 394 static int slab_max_order = SLAB_MAX_ORDER_LO; 395 static bool slab_max_order_set __initdata; 396 397 static inline struct kmem_cache *virt_to_cache(const void *obj) 398 { 399 struct page *page = virt_to_head_page(obj); 400 return page->slab_cache; 401 } 402 403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 404 unsigned int idx) 405 { 406 return page->s_mem + cache->size * idx; 407 } 408 409 /* 410 * We want to avoid an expensive divide : (offset / cache->size) 411 * Using the fact that size is a constant for a particular cache, 412 * we can replace (offset / cache->size) by 413 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 414 */ 415 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 416 const struct page *page, void *obj) 417 { 418 u32 offset = (obj - page->s_mem); 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 420 } 421 422 #define BOOT_CPUCACHE_ENTRIES 1 423 /* internal cache of cache description objs */ 424 static struct kmem_cache kmem_cache_boot = { 425 .batchcount = 1, 426 .limit = BOOT_CPUCACHE_ENTRIES, 427 .shared = 1, 428 .size = sizeof(struct kmem_cache), 429 .name = "kmem_cache", 430 }; 431 432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 433 434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 435 { 436 return this_cpu_ptr(cachep->cpu_cache); 437 } 438 439 /* 440 * Calculate the number of objects and left-over bytes for a given buffer size. 441 */ 442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 443 slab_flags_t flags, size_t *left_over) 444 { 445 unsigned int num; 446 size_t slab_size = PAGE_SIZE << gfporder; 447 448 /* 449 * The slab management structure can be either off the slab or 450 * on it. For the latter case, the memory allocated for a 451 * slab is used for: 452 * 453 * - @buffer_size bytes for each object 454 * - One freelist_idx_t for each object 455 * 456 * We don't need to consider alignment of freelist because 457 * freelist will be at the end of slab page. The objects will be 458 * at the correct alignment. 459 * 460 * If the slab management structure is off the slab, then the 461 * alignment will already be calculated into the size. Because 462 * the slabs are all pages aligned, the objects will be at the 463 * correct alignment when allocated. 464 */ 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 466 num = slab_size / buffer_size; 467 *left_over = slab_size % buffer_size; 468 } else { 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 470 *left_over = slab_size % 471 (buffer_size + sizeof(freelist_idx_t)); 472 } 473 474 return num; 475 } 476 477 #if DEBUG 478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 479 480 static void __slab_error(const char *function, struct kmem_cache *cachep, 481 char *msg) 482 { 483 pr_err("slab error in %s(): cache `%s': %s\n", 484 function, cachep->name, msg); 485 dump_stack(); 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 487 } 488 #endif 489 490 /* 491 * By default on NUMA we use alien caches to stage the freeing of 492 * objects allocated from other nodes. This causes massive memory 493 * inefficiencies when using fake NUMA setup to split memory into a 494 * large number of small nodes, so it can be disabled on the command 495 * line 496 */ 497 498 static int use_alien_caches __read_mostly = 1; 499 static int __init noaliencache_setup(char *s) 500 { 501 use_alien_caches = 0; 502 return 1; 503 } 504 __setup("noaliencache", noaliencache_setup); 505 506 static int __init slab_max_order_setup(char *str) 507 { 508 get_option(&str, &slab_max_order); 509 slab_max_order = slab_max_order < 0 ? 0 : 510 min(slab_max_order, MAX_ORDER - 1); 511 slab_max_order_set = true; 512 513 return 1; 514 } 515 __setup("slab_max_order=", slab_max_order_setup); 516 517 #ifdef CONFIG_NUMA 518 /* 519 * Special reaping functions for NUMA systems called from cache_reap(). 520 * These take care of doing round robin flushing of alien caches (containing 521 * objects freed on different nodes from which they were allocated) and the 522 * flushing of remote pcps by calling drain_node_pages. 523 */ 524 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 525 526 static void init_reap_node(int cpu) 527 { 528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 529 node_online_map); 530 } 531 532 static void next_reap_node(void) 533 { 534 int node = __this_cpu_read(slab_reap_node); 535 536 node = next_node_in(node, node_online_map); 537 __this_cpu_write(slab_reap_node, node); 538 } 539 540 #else 541 #define init_reap_node(cpu) do { } while (0) 542 #define next_reap_node(void) do { } while (0) 543 #endif 544 545 /* 546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 547 * via the workqueue/eventd. 548 * Add the CPU number into the expiration time to minimize the possibility of 549 * the CPUs getting into lockstep and contending for the global cache chain 550 * lock. 551 */ 552 static void start_cpu_timer(int cpu) 553 { 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 555 556 if (reap_work->work.func == NULL) { 557 init_reap_node(cpu); 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 559 schedule_delayed_work_on(cpu, reap_work, 560 __round_jiffies_relative(HZ, cpu)); 561 } 562 } 563 564 static void init_arraycache(struct array_cache *ac, int limit, int batch) 565 { 566 /* 567 * The array_cache structures contain pointers to free object. 568 * However, when such objects are allocated or transferred to another 569 * cache the pointers are not cleared and they could be counted as 570 * valid references during a kmemleak scan. Therefore, kmemleak must 571 * not scan such objects. 572 */ 573 kmemleak_no_scan(ac); 574 if (ac) { 575 ac->avail = 0; 576 ac->limit = limit; 577 ac->batchcount = batch; 578 ac->touched = 0; 579 } 580 } 581 582 static struct array_cache *alloc_arraycache(int node, int entries, 583 int batchcount, gfp_t gfp) 584 { 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 586 struct array_cache *ac = NULL; 587 588 ac = kmalloc_node(memsize, gfp, node); 589 init_arraycache(ac, entries, batchcount); 590 return ac; 591 } 592 593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 594 struct page *page, void *objp) 595 { 596 struct kmem_cache_node *n; 597 int page_node; 598 LIST_HEAD(list); 599 600 page_node = page_to_nid(page); 601 n = get_node(cachep, page_node); 602 603 spin_lock(&n->list_lock); 604 free_block(cachep, &objp, 1, page_node, &list); 605 spin_unlock(&n->list_lock); 606 607 slabs_destroy(cachep, &list); 608 } 609 610 /* 611 * Transfer objects in one arraycache to another. 612 * Locking must be handled by the caller. 613 * 614 * Return the number of entries transferred. 615 */ 616 static int transfer_objects(struct array_cache *to, 617 struct array_cache *from, unsigned int max) 618 { 619 /* Figure out how many entries to transfer */ 620 int nr = min3(from->avail, max, to->limit - to->avail); 621 622 if (!nr) 623 return 0; 624 625 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 626 sizeof(void *) *nr); 627 628 from->avail -= nr; 629 to->avail += nr; 630 return nr; 631 } 632 633 #ifndef CONFIG_NUMA 634 635 #define drain_alien_cache(cachep, alien) do { } while (0) 636 #define reap_alien(cachep, n) do { } while (0) 637 638 static inline struct alien_cache **alloc_alien_cache(int node, 639 int limit, gfp_t gfp) 640 { 641 return NULL; 642 } 643 644 static inline void free_alien_cache(struct alien_cache **ac_ptr) 645 { 646 } 647 648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 649 { 650 return 0; 651 } 652 653 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 654 gfp_t flags) 655 { 656 return NULL; 657 } 658 659 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 660 gfp_t flags, int nodeid) 661 { 662 return NULL; 663 } 664 665 static inline gfp_t gfp_exact_node(gfp_t flags) 666 { 667 return flags & ~__GFP_NOFAIL; 668 } 669 670 #else /* CONFIG_NUMA */ 671 672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 674 675 static struct alien_cache *__alloc_alien_cache(int node, int entries, 676 int batch, gfp_t gfp) 677 { 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 679 struct alien_cache *alc = NULL; 680 681 alc = kmalloc_node(memsize, gfp, node); 682 init_arraycache(&alc->ac, entries, batch); 683 spin_lock_init(&alc->lock); 684 return alc; 685 } 686 687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 688 { 689 struct alien_cache **alc_ptr; 690 size_t memsize = sizeof(void *) * nr_node_ids; 691 int i; 692 693 if (limit > 1) 694 limit = 12; 695 alc_ptr = kzalloc_node(memsize, gfp, node); 696 if (!alc_ptr) 697 return NULL; 698 699 for_each_node(i) { 700 if (i == node || !node_online(i)) 701 continue; 702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 703 if (!alc_ptr[i]) { 704 for (i--; i >= 0; i--) 705 kfree(alc_ptr[i]); 706 kfree(alc_ptr); 707 return NULL; 708 } 709 } 710 return alc_ptr; 711 } 712 713 static void free_alien_cache(struct alien_cache **alc_ptr) 714 { 715 int i; 716 717 if (!alc_ptr) 718 return; 719 for_each_node(i) 720 kfree(alc_ptr[i]); 721 kfree(alc_ptr); 722 } 723 724 static void __drain_alien_cache(struct kmem_cache *cachep, 725 struct array_cache *ac, int node, 726 struct list_head *list) 727 { 728 struct kmem_cache_node *n = get_node(cachep, node); 729 730 if (ac->avail) { 731 spin_lock(&n->list_lock); 732 /* 733 * Stuff objects into the remote nodes shared array first. 734 * That way we could avoid the overhead of putting the objects 735 * into the free lists and getting them back later. 736 */ 737 if (n->shared) 738 transfer_objects(n->shared, ac, ac->limit); 739 740 free_block(cachep, ac->entry, ac->avail, node, list); 741 ac->avail = 0; 742 spin_unlock(&n->list_lock); 743 } 744 } 745 746 /* 747 * Called from cache_reap() to regularly drain alien caches round robin. 748 */ 749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 750 { 751 int node = __this_cpu_read(slab_reap_node); 752 753 if (n->alien) { 754 struct alien_cache *alc = n->alien[node]; 755 struct array_cache *ac; 756 757 if (alc) { 758 ac = &alc->ac; 759 if (ac->avail && spin_trylock_irq(&alc->lock)) { 760 LIST_HEAD(list); 761 762 __drain_alien_cache(cachep, ac, node, &list); 763 spin_unlock_irq(&alc->lock); 764 slabs_destroy(cachep, &list); 765 } 766 } 767 } 768 } 769 770 static void drain_alien_cache(struct kmem_cache *cachep, 771 struct alien_cache **alien) 772 { 773 int i = 0; 774 struct alien_cache *alc; 775 struct array_cache *ac; 776 unsigned long flags; 777 778 for_each_online_node(i) { 779 alc = alien[i]; 780 if (alc) { 781 LIST_HEAD(list); 782 783 ac = &alc->ac; 784 spin_lock_irqsave(&alc->lock, flags); 785 __drain_alien_cache(cachep, ac, i, &list); 786 spin_unlock_irqrestore(&alc->lock, flags); 787 slabs_destroy(cachep, &list); 788 } 789 } 790 } 791 792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 793 int node, int page_node) 794 { 795 struct kmem_cache_node *n; 796 struct alien_cache *alien = NULL; 797 struct array_cache *ac; 798 LIST_HEAD(list); 799 800 n = get_node(cachep, node); 801 STATS_INC_NODEFREES(cachep); 802 if (n->alien && n->alien[page_node]) { 803 alien = n->alien[page_node]; 804 ac = &alien->ac; 805 spin_lock(&alien->lock); 806 if (unlikely(ac->avail == ac->limit)) { 807 STATS_INC_ACOVERFLOW(cachep); 808 __drain_alien_cache(cachep, ac, page_node, &list); 809 } 810 ac->entry[ac->avail++] = objp; 811 spin_unlock(&alien->lock); 812 slabs_destroy(cachep, &list); 813 } else { 814 n = get_node(cachep, page_node); 815 spin_lock(&n->list_lock); 816 free_block(cachep, &objp, 1, page_node, &list); 817 spin_unlock(&n->list_lock); 818 slabs_destroy(cachep, &list); 819 } 820 return 1; 821 } 822 823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 824 { 825 int page_node = page_to_nid(virt_to_page(objp)); 826 int node = numa_mem_id(); 827 /* 828 * Make sure we are not freeing a object from another node to the array 829 * cache on this cpu. 830 */ 831 if (likely(node == page_node)) 832 return 0; 833 834 return __cache_free_alien(cachep, objp, node, page_node); 835 } 836 837 /* 838 * Construct gfp mask to allocate from a specific node but do not reclaim or 839 * warn about failures. 840 */ 841 static inline gfp_t gfp_exact_node(gfp_t flags) 842 { 843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 844 } 845 #endif 846 847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 848 { 849 struct kmem_cache_node *n; 850 851 /* 852 * Set up the kmem_cache_node for cpu before we can 853 * begin anything. Make sure some other cpu on this 854 * node has not already allocated this 855 */ 856 n = get_node(cachep, node); 857 if (n) { 858 spin_lock_irq(&n->list_lock); 859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 860 cachep->num; 861 spin_unlock_irq(&n->list_lock); 862 863 return 0; 864 } 865 866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 867 if (!n) 868 return -ENOMEM; 869 870 kmem_cache_node_init(n); 871 n->next_reap = jiffies + REAPTIMEOUT_NODE + 872 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 873 874 n->free_limit = 875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 876 877 /* 878 * The kmem_cache_nodes don't come and go as CPUs 879 * come and go. slab_mutex is sufficient 880 * protection here. 881 */ 882 cachep->node[node] = n; 883 884 return 0; 885 } 886 887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 888 /* 889 * Allocates and initializes node for a node on each slab cache, used for 890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 891 * will be allocated off-node since memory is not yet online for the new node. 892 * When hotplugging memory or a cpu, existing node are not replaced if 893 * already in use. 894 * 895 * Must hold slab_mutex. 896 */ 897 static int init_cache_node_node(int node) 898 { 899 int ret; 900 struct kmem_cache *cachep; 901 902 list_for_each_entry(cachep, &slab_caches, list) { 903 ret = init_cache_node(cachep, node, GFP_KERNEL); 904 if (ret) 905 return ret; 906 } 907 908 return 0; 909 } 910 #endif 911 912 static int setup_kmem_cache_node(struct kmem_cache *cachep, 913 int node, gfp_t gfp, bool force_change) 914 { 915 int ret = -ENOMEM; 916 struct kmem_cache_node *n; 917 struct array_cache *old_shared = NULL; 918 struct array_cache *new_shared = NULL; 919 struct alien_cache **new_alien = NULL; 920 LIST_HEAD(list); 921 922 if (use_alien_caches) { 923 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 924 if (!new_alien) 925 goto fail; 926 } 927 928 if (cachep->shared) { 929 new_shared = alloc_arraycache(node, 930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 931 if (!new_shared) 932 goto fail; 933 } 934 935 ret = init_cache_node(cachep, node, gfp); 936 if (ret) 937 goto fail; 938 939 n = get_node(cachep, node); 940 spin_lock_irq(&n->list_lock); 941 if (n->shared && force_change) { 942 free_block(cachep, n->shared->entry, 943 n->shared->avail, node, &list); 944 n->shared->avail = 0; 945 } 946 947 if (!n->shared || force_change) { 948 old_shared = n->shared; 949 n->shared = new_shared; 950 new_shared = NULL; 951 } 952 953 if (!n->alien) { 954 n->alien = new_alien; 955 new_alien = NULL; 956 } 957 958 spin_unlock_irq(&n->list_lock); 959 slabs_destroy(cachep, &list); 960 961 /* 962 * To protect lockless access to n->shared during irq disabled context. 963 * If n->shared isn't NULL in irq disabled context, accessing to it is 964 * guaranteed to be valid until irq is re-enabled, because it will be 965 * freed after synchronize_sched(). 966 */ 967 if (old_shared && force_change) 968 synchronize_sched(); 969 970 fail: 971 kfree(old_shared); 972 kfree(new_shared); 973 free_alien_cache(new_alien); 974 975 return ret; 976 } 977 978 #ifdef CONFIG_SMP 979 980 static void cpuup_canceled(long cpu) 981 { 982 struct kmem_cache *cachep; 983 struct kmem_cache_node *n = NULL; 984 int node = cpu_to_mem(cpu); 985 const struct cpumask *mask = cpumask_of_node(node); 986 987 list_for_each_entry(cachep, &slab_caches, list) { 988 struct array_cache *nc; 989 struct array_cache *shared; 990 struct alien_cache **alien; 991 LIST_HEAD(list); 992 993 n = get_node(cachep, node); 994 if (!n) 995 continue; 996 997 spin_lock_irq(&n->list_lock); 998 999 /* Free limit for this kmem_cache_node */ 1000 n->free_limit -= cachep->batchcount; 1001 1002 /* cpu is dead; no one can alloc from it. */ 1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 1004 if (nc) { 1005 free_block(cachep, nc->entry, nc->avail, node, &list); 1006 nc->avail = 0; 1007 } 1008 1009 if (!cpumask_empty(mask)) { 1010 spin_unlock_irq(&n->list_lock); 1011 goto free_slab; 1012 } 1013 1014 shared = n->shared; 1015 if (shared) { 1016 free_block(cachep, shared->entry, 1017 shared->avail, node, &list); 1018 n->shared = NULL; 1019 } 1020 1021 alien = n->alien; 1022 n->alien = NULL; 1023 1024 spin_unlock_irq(&n->list_lock); 1025 1026 kfree(shared); 1027 if (alien) { 1028 drain_alien_cache(cachep, alien); 1029 free_alien_cache(alien); 1030 } 1031 1032 free_slab: 1033 slabs_destroy(cachep, &list); 1034 } 1035 /* 1036 * In the previous loop, all the objects were freed to 1037 * the respective cache's slabs, now we can go ahead and 1038 * shrink each nodelist to its limit. 1039 */ 1040 list_for_each_entry(cachep, &slab_caches, list) { 1041 n = get_node(cachep, node); 1042 if (!n) 1043 continue; 1044 drain_freelist(cachep, n, INT_MAX); 1045 } 1046 } 1047 1048 static int cpuup_prepare(long cpu) 1049 { 1050 struct kmem_cache *cachep; 1051 int node = cpu_to_mem(cpu); 1052 int err; 1053 1054 /* 1055 * We need to do this right in the beginning since 1056 * alloc_arraycache's are going to use this list. 1057 * kmalloc_node allows us to add the slab to the right 1058 * kmem_cache_node and not this cpu's kmem_cache_node 1059 */ 1060 err = init_cache_node_node(node); 1061 if (err < 0) 1062 goto bad; 1063 1064 /* 1065 * Now we can go ahead with allocating the shared arrays and 1066 * array caches 1067 */ 1068 list_for_each_entry(cachep, &slab_caches, list) { 1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1070 if (err) 1071 goto bad; 1072 } 1073 1074 return 0; 1075 bad: 1076 cpuup_canceled(cpu); 1077 return -ENOMEM; 1078 } 1079 1080 int slab_prepare_cpu(unsigned int cpu) 1081 { 1082 int err; 1083 1084 mutex_lock(&slab_mutex); 1085 err = cpuup_prepare(cpu); 1086 mutex_unlock(&slab_mutex); 1087 return err; 1088 } 1089 1090 /* 1091 * This is called for a failed online attempt and for a successful 1092 * offline. 1093 * 1094 * Even if all the cpus of a node are down, we don't free the 1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1096 * a kmalloc allocation from another cpu for memory from the node of 1097 * the cpu going down. The list3 structure is usually allocated from 1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1099 */ 1100 int slab_dead_cpu(unsigned int cpu) 1101 { 1102 mutex_lock(&slab_mutex); 1103 cpuup_canceled(cpu); 1104 mutex_unlock(&slab_mutex); 1105 return 0; 1106 } 1107 #endif 1108 1109 static int slab_online_cpu(unsigned int cpu) 1110 { 1111 start_cpu_timer(cpu); 1112 return 0; 1113 } 1114 1115 static int slab_offline_cpu(unsigned int cpu) 1116 { 1117 /* 1118 * Shutdown cache reaper. Note that the slab_mutex is held so 1119 * that if cache_reap() is invoked it cannot do anything 1120 * expensive but will only modify reap_work and reschedule the 1121 * timer. 1122 */ 1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1124 /* Now the cache_reaper is guaranteed to be not running. */ 1125 per_cpu(slab_reap_work, cpu).work.func = NULL; 1126 return 0; 1127 } 1128 1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1130 /* 1131 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1132 * Returns -EBUSY if all objects cannot be drained so that the node is not 1133 * removed. 1134 * 1135 * Must hold slab_mutex. 1136 */ 1137 static int __meminit drain_cache_node_node(int node) 1138 { 1139 struct kmem_cache *cachep; 1140 int ret = 0; 1141 1142 list_for_each_entry(cachep, &slab_caches, list) { 1143 struct kmem_cache_node *n; 1144 1145 n = get_node(cachep, node); 1146 if (!n) 1147 continue; 1148 1149 drain_freelist(cachep, n, INT_MAX); 1150 1151 if (!list_empty(&n->slabs_full) || 1152 !list_empty(&n->slabs_partial)) { 1153 ret = -EBUSY; 1154 break; 1155 } 1156 } 1157 return ret; 1158 } 1159 1160 static int __meminit slab_memory_callback(struct notifier_block *self, 1161 unsigned long action, void *arg) 1162 { 1163 struct memory_notify *mnb = arg; 1164 int ret = 0; 1165 int nid; 1166 1167 nid = mnb->status_change_nid; 1168 if (nid < 0) 1169 goto out; 1170 1171 switch (action) { 1172 case MEM_GOING_ONLINE: 1173 mutex_lock(&slab_mutex); 1174 ret = init_cache_node_node(nid); 1175 mutex_unlock(&slab_mutex); 1176 break; 1177 case MEM_GOING_OFFLINE: 1178 mutex_lock(&slab_mutex); 1179 ret = drain_cache_node_node(nid); 1180 mutex_unlock(&slab_mutex); 1181 break; 1182 case MEM_ONLINE: 1183 case MEM_OFFLINE: 1184 case MEM_CANCEL_ONLINE: 1185 case MEM_CANCEL_OFFLINE: 1186 break; 1187 } 1188 out: 1189 return notifier_from_errno(ret); 1190 } 1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1192 1193 /* 1194 * swap the static kmem_cache_node with kmalloced memory 1195 */ 1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1197 int nodeid) 1198 { 1199 struct kmem_cache_node *ptr; 1200 1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1202 BUG_ON(!ptr); 1203 1204 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1205 /* 1206 * Do not assume that spinlocks can be initialized via memcpy: 1207 */ 1208 spin_lock_init(&ptr->list_lock); 1209 1210 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1211 cachep->node[nodeid] = ptr; 1212 } 1213 1214 /* 1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1216 * size of kmem_cache_node. 1217 */ 1218 static void __init set_up_node(struct kmem_cache *cachep, int index) 1219 { 1220 int node; 1221 1222 for_each_online_node(node) { 1223 cachep->node[node] = &init_kmem_cache_node[index + node]; 1224 cachep->node[node]->next_reap = jiffies + 1225 REAPTIMEOUT_NODE + 1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1227 } 1228 } 1229 1230 /* 1231 * Initialisation. Called after the page allocator have been initialised and 1232 * before smp_init(). 1233 */ 1234 void __init kmem_cache_init(void) 1235 { 1236 int i; 1237 1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1239 sizeof(struct rcu_head)); 1240 kmem_cache = &kmem_cache_boot; 1241 1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1243 use_alien_caches = 0; 1244 1245 for (i = 0; i < NUM_INIT_LISTS; i++) 1246 kmem_cache_node_init(&init_kmem_cache_node[i]); 1247 1248 /* 1249 * Fragmentation resistance on low memory - only use bigger 1250 * page orders on machines with more than 32MB of memory if 1251 * not overridden on the command line. 1252 */ 1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1254 slab_max_order = SLAB_MAX_ORDER_HI; 1255 1256 /* Bootstrap is tricky, because several objects are allocated 1257 * from caches that do not exist yet: 1258 * 1) initialize the kmem_cache cache: it contains the struct 1259 * kmem_cache structures of all caches, except kmem_cache itself: 1260 * kmem_cache is statically allocated. 1261 * Initially an __init data area is used for the head array and the 1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1263 * array at the end of the bootstrap. 1264 * 2) Create the first kmalloc cache. 1265 * The struct kmem_cache for the new cache is allocated normally. 1266 * An __init data area is used for the head array. 1267 * 3) Create the remaining kmalloc caches, with minimally sized 1268 * head arrays. 1269 * 4) Replace the __init data head arrays for kmem_cache and the first 1270 * kmalloc cache with kmalloc allocated arrays. 1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1272 * the other cache's with kmalloc allocated memory. 1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1274 */ 1275 1276 /* 1) create the kmem_cache */ 1277 1278 /* 1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1280 */ 1281 create_boot_cache(kmem_cache, "kmem_cache", 1282 offsetof(struct kmem_cache, node) + 1283 nr_node_ids * sizeof(struct kmem_cache_node *), 1284 SLAB_HWCACHE_ALIGN, 0, 0); 1285 list_add(&kmem_cache->list, &slab_caches); 1286 slab_state = PARTIAL; 1287 1288 /* 1289 * Initialize the caches that provide memory for the kmem_cache_node 1290 * structures first. Without this, further allocations will bug. 1291 */ 1292 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache( 1293 kmalloc_info[INDEX_NODE].name, 1294 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS, 1295 0, kmalloc_size(INDEX_NODE)); 1296 slab_state = PARTIAL_NODE; 1297 setup_kmalloc_cache_index_table(); 1298 1299 slab_early_init = 0; 1300 1301 /* 5) Replace the bootstrap kmem_cache_node */ 1302 { 1303 int nid; 1304 1305 for_each_online_node(nid) { 1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1307 1308 init_list(kmalloc_caches[INDEX_NODE], 1309 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1310 } 1311 } 1312 1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1314 } 1315 1316 void __init kmem_cache_init_late(void) 1317 { 1318 struct kmem_cache *cachep; 1319 1320 /* 6) resize the head arrays to their final sizes */ 1321 mutex_lock(&slab_mutex); 1322 list_for_each_entry(cachep, &slab_caches, list) 1323 if (enable_cpucache(cachep, GFP_NOWAIT)) 1324 BUG(); 1325 mutex_unlock(&slab_mutex); 1326 1327 /* Done! */ 1328 slab_state = FULL; 1329 1330 #ifdef CONFIG_NUMA 1331 /* 1332 * Register a memory hotplug callback that initializes and frees 1333 * node. 1334 */ 1335 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1336 #endif 1337 1338 /* 1339 * The reap timers are started later, with a module init call: That part 1340 * of the kernel is not yet operational. 1341 */ 1342 } 1343 1344 static int __init cpucache_init(void) 1345 { 1346 int ret; 1347 1348 /* 1349 * Register the timers that return unneeded pages to the page allocator 1350 */ 1351 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1352 slab_online_cpu, slab_offline_cpu); 1353 WARN_ON(ret < 0); 1354 1355 return 0; 1356 } 1357 __initcall(cpucache_init); 1358 1359 static noinline void 1360 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1361 { 1362 #if DEBUG 1363 struct kmem_cache_node *n; 1364 unsigned long flags; 1365 int node; 1366 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1367 DEFAULT_RATELIMIT_BURST); 1368 1369 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1370 return; 1371 1372 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1373 nodeid, gfpflags, &gfpflags); 1374 pr_warn(" cache: %s, object size: %d, order: %d\n", 1375 cachep->name, cachep->size, cachep->gfporder); 1376 1377 for_each_kmem_cache_node(cachep, node, n) { 1378 unsigned long total_slabs, free_slabs, free_objs; 1379 1380 spin_lock_irqsave(&n->list_lock, flags); 1381 total_slabs = n->total_slabs; 1382 free_slabs = n->free_slabs; 1383 free_objs = n->free_objects; 1384 spin_unlock_irqrestore(&n->list_lock, flags); 1385 1386 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1387 node, total_slabs - free_slabs, total_slabs, 1388 (total_slabs * cachep->num) - free_objs, 1389 total_slabs * cachep->num); 1390 } 1391 #endif 1392 } 1393 1394 /* 1395 * Interface to system's page allocator. No need to hold the 1396 * kmem_cache_node ->list_lock. 1397 * 1398 * If we requested dmaable memory, we will get it. Even if we 1399 * did not request dmaable memory, we might get it, but that 1400 * would be relatively rare and ignorable. 1401 */ 1402 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1403 int nodeid) 1404 { 1405 struct page *page; 1406 int nr_pages; 1407 1408 flags |= cachep->allocflags; 1409 1410 page = __alloc_pages_node(nodeid, flags, cachep->gfporder); 1411 if (!page) { 1412 slab_out_of_memory(cachep, flags, nodeid); 1413 return NULL; 1414 } 1415 1416 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1417 __free_pages(page, cachep->gfporder); 1418 return NULL; 1419 } 1420 1421 nr_pages = (1 << cachep->gfporder); 1422 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1423 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages); 1424 else 1425 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages); 1426 1427 __SetPageSlab(page); 1428 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1429 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1430 SetPageSlabPfmemalloc(page); 1431 1432 return page; 1433 } 1434 1435 /* 1436 * Interface to system's page release. 1437 */ 1438 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1439 { 1440 int order = cachep->gfporder; 1441 unsigned long nr_freed = (1 << order); 1442 1443 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1444 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed); 1445 else 1446 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed); 1447 1448 BUG_ON(!PageSlab(page)); 1449 __ClearPageSlabPfmemalloc(page); 1450 __ClearPageSlab(page); 1451 page_mapcount_reset(page); 1452 page->mapping = NULL; 1453 1454 if (current->reclaim_state) 1455 current->reclaim_state->reclaimed_slab += nr_freed; 1456 memcg_uncharge_slab(page, order, cachep); 1457 __free_pages(page, order); 1458 } 1459 1460 static void kmem_rcu_free(struct rcu_head *head) 1461 { 1462 struct kmem_cache *cachep; 1463 struct page *page; 1464 1465 page = container_of(head, struct page, rcu_head); 1466 cachep = page->slab_cache; 1467 1468 kmem_freepages(cachep, page); 1469 } 1470 1471 #if DEBUG 1472 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1473 { 1474 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1475 (cachep->size % PAGE_SIZE) == 0) 1476 return true; 1477 1478 return false; 1479 } 1480 1481 #ifdef CONFIG_DEBUG_PAGEALLOC 1482 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1483 unsigned long caller) 1484 { 1485 int size = cachep->object_size; 1486 1487 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1488 1489 if (size < 5 * sizeof(unsigned long)) 1490 return; 1491 1492 *addr++ = 0x12345678; 1493 *addr++ = caller; 1494 *addr++ = smp_processor_id(); 1495 size -= 3 * sizeof(unsigned long); 1496 { 1497 unsigned long *sptr = &caller; 1498 unsigned long svalue; 1499 1500 while (!kstack_end(sptr)) { 1501 svalue = *sptr++; 1502 if (kernel_text_address(svalue)) { 1503 *addr++ = svalue; 1504 size -= sizeof(unsigned long); 1505 if (size <= sizeof(unsigned long)) 1506 break; 1507 } 1508 } 1509 1510 } 1511 *addr++ = 0x87654321; 1512 } 1513 1514 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1515 int map, unsigned long caller) 1516 { 1517 if (!is_debug_pagealloc_cache(cachep)) 1518 return; 1519 1520 if (caller) 1521 store_stackinfo(cachep, objp, caller); 1522 1523 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1524 } 1525 1526 #else 1527 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1528 int map, unsigned long caller) {} 1529 1530 #endif 1531 1532 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1533 { 1534 int size = cachep->object_size; 1535 addr = &((char *)addr)[obj_offset(cachep)]; 1536 1537 memset(addr, val, size); 1538 *(unsigned char *)(addr + size - 1) = POISON_END; 1539 } 1540 1541 static void dump_line(char *data, int offset, int limit) 1542 { 1543 int i; 1544 unsigned char error = 0; 1545 int bad_count = 0; 1546 1547 pr_err("%03x: ", offset); 1548 for (i = 0; i < limit; i++) { 1549 if (data[offset + i] != POISON_FREE) { 1550 error = data[offset + i]; 1551 bad_count++; 1552 } 1553 } 1554 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1555 &data[offset], limit, 1); 1556 1557 if (bad_count == 1) { 1558 error ^= POISON_FREE; 1559 if (!(error & (error - 1))) { 1560 pr_err("Single bit error detected. Probably bad RAM.\n"); 1561 #ifdef CONFIG_X86 1562 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1563 #else 1564 pr_err("Run a memory test tool.\n"); 1565 #endif 1566 } 1567 } 1568 } 1569 #endif 1570 1571 #if DEBUG 1572 1573 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1574 { 1575 int i, size; 1576 char *realobj; 1577 1578 if (cachep->flags & SLAB_RED_ZONE) { 1579 pr_err("Redzone: 0x%llx/0x%llx\n", 1580 *dbg_redzone1(cachep, objp), 1581 *dbg_redzone2(cachep, objp)); 1582 } 1583 1584 if (cachep->flags & SLAB_STORE_USER) 1585 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1586 realobj = (char *)objp + obj_offset(cachep); 1587 size = cachep->object_size; 1588 for (i = 0; i < size && lines; i += 16, lines--) { 1589 int limit; 1590 limit = 16; 1591 if (i + limit > size) 1592 limit = size - i; 1593 dump_line(realobj, i, limit); 1594 } 1595 } 1596 1597 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1598 { 1599 char *realobj; 1600 int size, i; 1601 int lines = 0; 1602 1603 if (is_debug_pagealloc_cache(cachep)) 1604 return; 1605 1606 realobj = (char *)objp + obj_offset(cachep); 1607 size = cachep->object_size; 1608 1609 for (i = 0; i < size; i++) { 1610 char exp = POISON_FREE; 1611 if (i == size - 1) 1612 exp = POISON_END; 1613 if (realobj[i] != exp) { 1614 int limit; 1615 /* Mismatch ! */ 1616 /* Print header */ 1617 if (lines == 0) { 1618 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1619 print_tainted(), cachep->name, 1620 realobj, size); 1621 print_objinfo(cachep, objp, 0); 1622 } 1623 /* Hexdump the affected line */ 1624 i = (i / 16) * 16; 1625 limit = 16; 1626 if (i + limit > size) 1627 limit = size - i; 1628 dump_line(realobj, i, limit); 1629 i += 16; 1630 lines++; 1631 /* Limit to 5 lines */ 1632 if (lines > 5) 1633 break; 1634 } 1635 } 1636 if (lines != 0) { 1637 /* Print some data about the neighboring objects, if they 1638 * exist: 1639 */ 1640 struct page *page = virt_to_head_page(objp); 1641 unsigned int objnr; 1642 1643 objnr = obj_to_index(cachep, page, objp); 1644 if (objnr) { 1645 objp = index_to_obj(cachep, page, objnr - 1); 1646 realobj = (char *)objp + obj_offset(cachep); 1647 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1648 print_objinfo(cachep, objp, 2); 1649 } 1650 if (objnr + 1 < cachep->num) { 1651 objp = index_to_obj(cachep, page, objnr + 1); 1652 realobj = (char *)objp + obj_offset(cachep); 1653 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1654 print_objinfo(cachep, objp, 2); 1655 } 1656 } 1657 } 1658 #endif 1659 1660 #if DEBUG 1661 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1662 struct page *page) 1663 { 1664 int i; 1665 1666 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1667 poison_obj(cachep, page->freelist - obj_offset(cachep), 1668 POISON_FREE); 1669 } 1670 1671 for (i = 0; i < cachep->num; i++) { 1672 void *objp = index_to_obj(cachep, page, i); 1673 1674 if (cachep->flags & SLAB_POISON) { 1675 check_poison_obj(cachep, objp); 1676 slab_kernel_map(cachep, objp, 1, 0); 1677 } 1678 if (cachep->flags & SLAB_RED_ZONE) { 1679 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1680 slab_error(cachep, "start of a freed object was overwritten"); 1681 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1682 slab_error(cachep, "end of a freed object was overwritten"); 1683 } 1684 } 1685 } 1686 #else 1687 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1688 struct page *page) 1689 { 1690 } 1691 #endif 1692 1693 /** 1694 * slab_destroy - destroy and release all objects in a slab 1695 * @cachep: cache pointer being destroyed 1696 * @page: page pointer being destroyed 1697 * 1698 * Destroy all the objs in a slab page, and release the mem back to the system. 1699 * Before calling the slab page must have been unlinked from the cache. The 1700 * kmem_cache_node ->list_lock is not held/needed. 1701 */ 1702 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1703 { 1704 void *freelist; 1705 1706 freelist = page->freelist; 1707 slab_destroy_debugcheck(cachep, page); 1708 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1709 call_rcu(&page->rcu_head, kmem_rcu_free); 1710 else 1711 kmem_freepages(cachep, page); 1712 1713 /* 1714 * From now on, we don't use freelist 1715 * although actual page can be freed in rcu context 1716 */ 1717 if (OFF_SLAB(cachep)) 1718 kmem_cache_free(cachep->freelist_cache, freelist); 1719 } 1720 1721 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1722 { 1723 struct page *page, *n; 1724 1725 list_for_each_entry_safe(page, n, list, lru) { 1726 list_del(&page->lru); 1727 slab_destroy(cachep, page); 1728 } 1729 } 1730 1731 /** 1732 * calculate_slab_order - calculate size (page order) of slabs 1733 * @cachep: pointer to the cache that is being created 1734 * @size: size of objects to be created in this cache. 1735 * @flags: slab allocation flags 1736 * 1737 * Also calculates the number of objects per slab. 1738 * 1739 * This could be made much more intelligent. For now, try to avoid using 1740 * high order pages for slabs. When the gfp() functions are more friendly 1741 * towards high-order requests, this should be changed. 1742 */ 1743 static size_t calculate_slab_order(struct kmem_cache *cachep, 1744 size_t size, slab_flags_t flags) 1745 { 1746 size_t left_over = 0; 1747 int gfporder; 1748 1749 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1750 unsigned int num; 1751 size_t remainder; 1752 1753 num = cache_estimate(gfporder, size, flags, &remainder); 1754 if (!num) 1755 continue; 1756 1757 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1758 if (num > SLAB_OBJ_MAX_NUM) 1759 break; 1760 1761 if (flags & CFLGS_OFF_SLAB) { 1762 struct kmem_cache *freelist_cache; 1763 size_t freelist_size; 1764 1765 freelist_size = num * sizeof(freelist_idx_t); 1766 freelist_cache = kmalloc_slab(freelist_size, 0u); 1767 if (!freelist_cache) 1768 continue; 1769 1770 /* 1771 * Needed to avoid possible looping condition 1772 * in cache_grow_begin() 1773 */ 1774 if (OFF_SLAB(freelist_cache)) 1775 continue; 1776 1777 /* check if off slab has enough benefit */ 1778 if (freelist_cache->size > cachep->size / 2) 1779 continue; 1780 } 1781 1782 /* Found something acceptable - save it away */ 1783 cachep->num = num; 1784 cachep->gfporder = gfporder; 1785 left_over = remainder; 1786 1787 /* 1788 * A VFS-reclaimable slab tends to have most allocations 1789 * as GFP_NOFS and we really don't want to have to be allocating 1790 * higher-order pages when we are unable to shrink dcache. 1791 */ 1792 if (flags & SLAB_RECLAIM_ACCOUNT) 1793 break; 1794 1795 /* 1796 * Large number of objects is good, but very large slabs are 1797 * currently bad for the gfp()s. 1798 */ 1799 if (gfporder >= slab_max_order) 1800 break; 1801 1802 /* 1803 * Acceptable internal fragmentation? 1804 */ 1805 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1806 break; 1807 } 1808 return left_over; 1809 } 1810 1811 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1812 struct kmem_cache *cachep, int entries, int batchcount) 1813 { 1814 int cpu; 1815 size_t size; 1816 struct array_cache __percpu *cpu_cache; 1817 1818 size = sizeof(void *) * entries + sizeof(struct array_cache); 1819 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1820 1821 if (!cpu_cache) 1822 return NULL; 1823 1824 for_each_possible_cpu(cpu) { 1825 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1826 entries, batchcount); 1827 } 1828 1829 return cpu_cache; 1830 } 1831 1832 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1833 { 1834 if (slab_state >= FULL) 1835 return enable_cpucache(cachep, gfp); 1836 1837 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1838 if (!cachep->cpu_cache) 1839 return 1; 1840 1841 if (slab_state == DOWN) { 1842 /* Creation of first cache (kmem_cache). */ 1843 set_up_node(kmem_cache, CACHE_CACHE); 1844 } else if (slab_state == PARTIAL) { 1845 /* For kmem_cache_node */ 1846 set_up_node(cachep, SIZE_NODE); 1847 } else { 1848 int node; 1849 1850 for_each_online_node(node) { 1851 cachep->node[node] = kmalloc_node( 1852 sizeof(struct kmem_cache_node), gfp, node); 1853 BUG_ON(!cachep->node[node]); 1854 kmem_cache_node_init(cachep->node[node]); 1855 } 1856 } 1857 1858 cachep->node[numa_mem_id()]->next_reap = 1859 jiffies + REAPTIMEOUT_NODE + 1860 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1861 1862 cpu_cache_get(cachep)->avail = 0; 1863 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1864 cpu_cache_get(cachep)->batchcount = 1; 1865 cpu_cache_get(cachep)->touched = 0; 1866 cachep->batchcount = 1; 1867 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1868 return 0; 1869 } 1870 1871 slab_flags_t kmem_cache_flags(unsigned long object_size, 1872 slab_flags_t flags, const char *name, 1873 void (*ctor)(void *)) 1874 { 1875 return flags; 1876 } 1877 1878 struct kmem_cache * 1879 __kmem_cache_alias(const char *name, size_t size, size_t align, 1880 slab_flags_t flags, void (*ctor)(void *)) 1881 { 1882 struct kmem_cache *cachep; 1883 1884 cachep = find_mergeable(size, align, flags, name, ctor); 1885 if (cachep) { 1886 cachep->refcount++; 1887 1888 /* 1889 * Adjust the object sizes so that we clear 1890 * the complete object on kzalloc. 1891 */ 1892 cachep->object_size = max_t(int, cachep->object_size, size); 1893 } 1894 return cachep; 1895 } 1896 1897 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1898 size_t size, slab_flags_t flags) 1899 { 1900 size_t left; 1901 1902 cachep->num = 0; 1903 1904 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1905 return false; 1906 1907 left = calculate_slab_order(cachep, size, 1908 flags | CFLGS_OBJFREELIST_SLAB); 1909 if (!cachep->num) 1910 return false; 1911 1912 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1913 return false; 1914 1915 cachep->colour = left / cachep->colour_off; 1916 1917 return true; 1918 } 1919 1920 static bool set_off_slab_cache(struct kmem_cache *cachep, 1921 size_t size, slab_flags_t flags) 1922 { 1923 size_t left; 1924 1925 cachep->num = 0; 1926 1927 /* 1928 * Always use on-slab management when SLAB_NOLEAKTRACE 1929 * to avoid recursive calls into kmemleak. 1930 */ 1931 if (flags & SLAB_NOLEAKTRACE) 1932 return false; 1933 1934 /* 1935 * Size is large, assume best to place the slab management obj 1936 * off-slab (should allow better packing of objs). 1937 */ 1938 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1939 if (!cachep->num) 1940 return false; 1941 1942 /* 1943 * If the slab has been placed off-slab, and we have enough space then 1944 * move it on-slab. This is at the expense of any extra colouring. 1945 */ 1946 if (left >= cachep->num * sizeof(freelist_idx_t)) 1947 return false; 1948 1949 cachep->colour = left / cachep->colour_off; 1950 1951 return true; 1952 } 1953 1954 static bool set_on_slab_cache(struct kmem_cache *cachep, 1955 size_t size, slab_flags_t flags) 1956 { 1957 size_t left; 1958 1959 cachep->num = 0; 1960 1961 left = calculate_slab_order(cachep, size, flags); 1962 if (!cachep->num) 1963 return false; 1964 1965 cachep->colour = left / cachep->colour_off; 1966 1967 return true; 1968 } 1969 1970 /** 1971 * __kmem_cache_create - Create a cache. 1972 * @cachep: cache management descriptor 1973 * @flags: SLAB flags 1974 * 1975 * Returns a ptr to the cache on success, NULL on failure. 1976 * Cannot be called within a int, but can be interrupted. 1977 * The @ctor is run when new pages are allocated by the cache. 1978 * 1979 * The flags are 1980 * 1981 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1982 * to catch references to uninitialised memory. 1983 * 1984 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1985 * for buffer overruns. 1986 * 1987 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1988 * cacheline. This can be beneficial if you're counting cycles as closely 1989 * as davem. 1990 */ 1991 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1992 { 1993 size_t ralign = BYTES_PER_WORD; 1994 gfp_t gfp; 1995 int err; 1996 size_t size = cachep->size; 1997 1998 #if DEBUG 1999 #if FORCED_DEBUG 2000 /* 2001 * Enable redzoning and last user accounting, except for caches with 2002 * large objects, if the increased size would increase the object size 2003 * above the next power of two: caches with object sizes just above a 2004 * power of two have a significant amount of internal fragmentation. 2005 */ 2006 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2007 2 * sizeof(unsigned long long))) 2008 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2009 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 2010 flags |= SLAB_POISON; 2011 #endif 2012 #endif 2013 2014 /* 2015 * Check that size is in terms of words. This is needed to avoid 2016 * unaligned accesses for some archs when redzoning is used, and makes 2017 * sure any on-slab bufctl's are also correctly aligned. 2018 */ 2019 size = ALIGN(size, BYTES_PER_WORD); 2020 2021 if (flags & SLAB_RED_ZONE) { 2022 ralign = REDZONE_ALIGN; 2023 /* If redzoning, ensure that the second redzone is suitably 2024 * aligned, by adjusting the object size accordingly. */ 2025 size = ALIGN(size, REDZONE_ALIGN); 2026 } 2027 2028 /* 3) caller mandated alignment */ 2029 if (ralign < cachep->align) { 2030 ralign = cachep->align; 2031 } 2032 /* disable debug if necessary */ 2033 if (ralign > __alignof__(unsigned long long)) 2034 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2035 /* 2036 * 4) Store it. 2037 */ 2038 cachep->align = ralign; 2039 cachep->colour_off = cache_line_size(); 2040 /* Offset must be a multiple of the alignment. */ 2041 if (cachep->colour_off < cachep->align) 2042 cachep->colour_off = cachep->align; 2043 2044 if (slab_is_available()) 2045 gfp = GFP_KERNEL; 2046 else 2047 gfp = GFP_NOWAIT; 2048 2049 #if DEBUG 2050 2051 /* 2052 * Both debugging options require word-alignment which is calculated 2053 * into align above. 2054 */ 2055 if (flags & SLAB_RED_ZONE) { 2056 /* add space for red zone words */ 2057 cachep->obj_offset += sizeof(unsigned long long); 2058 size += 2 * sizeof(unsigned long long); 2059 } 2060 if (flags & SLAB_STORE_USER) { 2061 /* user store requires one word storage behind the end of 2062 * the real object. But if the second red zone needs to be 2063 * aligned to 64 bits, we must allow that much space. 2064 */ 2065 if (flags & SLAB_RED_ZONE) 2066 size += REDZONE_ALIGN; 2067 else 2068 size += BYTES_PER_WORD; 2069 } 2070 #endif 2071 2072 kasan_cache_create(cachep, &size, &flags); 2073 2074 size = ALIGN(size, cachep->align); 2075 /* 2076 * We should restrict the number of objects in a slab to implement 2077 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2078 */ 2079 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2080 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2081 2082 #if DEBUG 2083 /* 2084 * To activate debug pagealloc, off-slab management is necessary 2085 * requirement. In early phase of initialization, small sized slab 2086 * doesn't get initialized so it would not be possible. So, we need 2087 * to check size >= 256. It guarantees that all necessary small 2088 * sized slab is initialized in current slab initialization sequence. 2089 */ 2090 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2091 size >= 256 && cachep->object_size > cache_line_size()) { 2092 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2093 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2094 2095 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2096 flags |= CFLGS_OFF_SLAB; 2097 cachep->obj_offset += tmp_size - size; 2098 size = tmp_size; 2099 goto done; 2100 } 2101 } 2102 } 2103 #endif 2104 2105 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2106 flags |= CFLGS_OBJFREELIST_SLAB; 2107 goto done; 2108 } 2109 2110 if (set_off_slab_cache(cachep, size, flags)) { 2111 flags |= CFLGS_OFF_SLAB; 2112 goto done; 2113 } 2114 2115 if (set_on_slab_cache(cachep, size, flags)) 2116 goto done; 2117 2118 return -E2BIG; 2119 2120 done: 2121 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2122 cachep->flags = flags; 2123 cachep->allocflags = __GFP_COMP; 2124 if (flags & SLAB_CACHE_DMA) 2125 cachep->allocflags |= GFP_DMA; 2126 if (flags & SLAB_RECLAIM_ACCOUNT) 2127 cachep->allocflags |= __GFP_RECLAIMABLE; 2128 cachep->size = size; 2129 cachep->reciprocal_buffer_size = reciprocal_value(size); 2130 2131 #if DEBUG 2132 /* 2133 * If we're going to use the generic kernel_map_pages() 2134 * poisoning, then it's going to smash the contents of 2135 * the redzone and userword anyhow, so switch them off. 2136 */ 2137 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2138 (cachep->flags & SLAB_POISON) && 2139 is_debug_pagealloc_cache(cachep)) 2140 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2141 #endif 2142 2143 if (OFF_SLAB(cachep)) { 2144 cachep->freelist_cache = 2145 kmalloc_slab(cachep->freelist_size, 0u); 2146 } 2147 2148 err = setup_cpu_cache(cachep, gfp); 2149 if (err) { 2150 __kmem_cache_release(cachep); 2151 return err; 2152 } 2153 2154 return 0; 2155 } 2156 2157 #if DEBUG 2158 static void check_irq_off(void) 2159 { 2160 BUG_ON(!irqs_disabled()); 2161 } 2162 2163 static void check_irq_on(void) 2164 { 2165 BUG_ON(irqs_disabled()); 2166 } 2167 2168 static void check_mutex_acquired(void) 2169 { 2170 BUG_ON(!mutex_is_locked(&slab_mutex)); 2171 } 2172 2173 static void check_spinlock_acquired(struct kmem_cache *cachep) 2174 { 2175 #ifdef CONFIG_SMP 2176 check_irq_off(); 2177 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2178 #endif 2179 } 2180 2181 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2182 { 2183 #ifdef CONFIG_SMP 2184 check_irq_off(); 2185 assert_spin_locked(&get_node(cachep, node)->list_lock); 2186 #endif 2187 } 2188 2189 #else 2190 #define check_irq_off() do { } while(0) 2191 #define check_irq_on() do { } while(0) 2192 #define check_mutex_acquired() do { } while(0) 2193 #define check_spinlock_acquired(x) do { } while(0) 2194 #define check_spinlock_acquired_node(x, y) do { } while(0) 2195 #endif 2196 2197 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2198 int node, bool free_all, struct list_head *list) 2199 { 2200 int tofree; 2201 2202 if (!ac || !ac->avail) 2203 return; 2204 2205 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2206 if (tofree > ac->avail) 2207 tofree = (ac->avail + 1) / 2; 2208 2209 free_block(cachep, ac->entry, tofree, node, list); 2210 ac->avail -= tofree; 2211 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2212 } 2213 2214 static void do_drain(void *arg) 2215 { 2216 struct kmem_cache *cachep = arg; 2217 struct array_cache *ac; 2218 int node = numa_mem_id(); 2219 struct kmem_cache_node *n; 2220 LIST_HEAD(list); 2221 2222 check_irq_off(); 2223 ac = cpu_cache_get(cachep); 2224 n = get_node(cachep, node); 2225 spin_lock(&n->list_lock); 2226 free_block(cachep, ac->entry, ac->avail, node, &list); 2227 spin_unlock(&n->list_lock); 2228 slabs_destroy(cachep, &list); 2229 ac->avail = 0; 2230 } 2231 2232 static void drain_cpu_caches(struct kmem_cache *cachep) 2233 { 2234 struct kmem_cache_node *n; 2235 int node; 2236 LIST_HEAD(list); 2237 2238 on_each_cpu(do_drain, cachep, 1); 2239 check_irq_on(); 2240 for_each_kmem_cache_node(cachep, node, n) 2241 if (n->alien) 2242 drain_alien_cache(cachep, n->alien); 2243 2244 for_each_kmem_cache_node(cachep, node, n) { 2245 spin_lock_irq(&n->list_lock); 2246 drain_array_locked(cachep, n->shared, node, true, &list); 2247 spin_unlock_irq(&n->list_lock); 2248 2249 slabs_destroy(cachep, &list); 2250 } 2251 } 2252 2253 /* 2254 * Remove slabs from the list of free slabs. 2255 * Specify the number of slabs to drain in tofree. 2256 * 2257 * Returns the actual number of slabs released. 2258 */ 2259 static int drain_freelist(struct kmem_cache *cache, 2260 struct kmem_cache_node *n, int tofree) 2261 { 2262 struct list_head *p; 2263 int nr_freed; 2264 struct page *page; 2265 2266 nr_freed = 0; 2267 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2268 2269 spin_lock_irq(&n->list_lock); 2270 p = n->slabs_free.prev; 2271 if (p == &n->slabs_free) { 2272 spin_unlock_irq(&n->list_lock); 2273 goto out; 2274 } 2275 2276 page = list_entry(p, struct page, lru); 2277 list_del(&page->lru); 2278 n->free_slabs--; 2279 n->total_slabs--; 2280 /* 2281 * Safe to drop the lock. The slab is no longer linked 2282 * to the cache. 2283 */ 2284 n->free_objects -= cache->num; 2285 spin_unlock_irq(&n->list_lock); 2286 slab_destroy(cache, page); 2287 nr_freed++; 2288 } 2289 out: 2290 return nr_freed; 2291 } 2292 2293 int __kmem_cache_shrink(struct kmem_cache *cachep) 2294 { 2295 int ret = 0; 2296 int node; 2297 struct kmem_cache_node *n; 2298 2299 drain_cpu_caches(cachep); 2300 2301 check_irq_on(); 2302 for_each_kmem_cache_node(cachep, node, n) { 2303 drain_freelist(cachep, n, INT_MAX); 2304 2305 ret += !list_empty(&n->slabs_full) || 2306 !list_empty(&n->slabs_partial); 2307 } 2308 return (ret ? 1 : 0); 2309 } 2310 2311 #ifdef CONFIG_MEMCG 2312 void __kmemcg_cache_deactivate(struct kmem_cache *cachep) 2313 { 2314 __kmem_cache_shrink(cachep); 2315 } 2316 #endif 2317 2318 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2319 { 2320 return __kmem_cache_shrink(cachep); 2321 } 2322 2323 void __kmem_cache_release(struct kmem_cache *cachep) 2324 { 2325 int i; 2326 struct kmem_cache_node *n; 2327 2328 cache_random_seq_destroy(cachep); 2329 2330 free_percpu(cachep->cpu_cache); 2331 2332 /* NUMA: free the node structures */ 2333 for_each_kmem_cache_node(cachep, i, n) { 2334 kfree(n->shared); 2335 free_alien_cache(n->alien); 2336 kfree(n); 2337 cachep->node[i] = NULL; 2338 } 2339 } 2340 2341 /* 2342 * Get the memory for a slab management obj. 2343 * 2344 * For a slab cache when the slab descriptor is off-slab, the 2345 * slab descriptor can't come from the same cache which is being created, 2346 * Because if it is the case, that means we defer the creation of 2347 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2348 * And we eventually call down to __kmem_cache_create(), which 2349 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2350 * This is a "chicken-and-egg" problem. 2351 * 2352 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2353 * which are all initialized during kmem_cache_init(). 2354 */ 2355 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2356 struct page *page, int colour_off, 2357 gfp_t local_flags, int nodeid) 2358 { 2359 void *freelist; 2360 void *addr = page_address(page); 2361 2362 page->s_mem = addr + colour_off; 2363 page->active = 0; 2364 2365 if (OBJFREELIST_SLAB(cachep)) 2366 freelist = NULL; 2367 else if (OFF_SLAB(cachep)) { 2368 /* Slab management obj is off-slab. */ 2369 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2370 local_flags, nodeid); 2371 if (!freelist) 2372 return NULL; 2373 } else { 2374 /* We will use last bytes at the slab for freelist */ 2375 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2376 cachep->freelist_size; 2377 } 2378 2379 return freelist; 2380 } 2381 2382 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2383 { 2384 return ((freelist_idx_t *)page->freelist)[idx]; 2385 } 2386 2387 static inline void set_free_obj(struct page *page, 2388 unsigned int idx, freelist_idx_t val) 2389 { 2390 ((freelist_idx_t *)(page->freelist))[idx] = val; 2391 } 2392 2393 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2394 { 2395 #if DEBUG 2396 int i; 2397 2398 for (i = 0; i < cachep->num; i++) { 2399 void *objp = index_to_obj(cachep, page, i); 2400 2401 if (cachep->flags & SLAB_STORE_USER) 2402 *dbg_userword(cachep, objp) = NULL; 2403 2404 if (cachep->flags & SLAB_RED_ZONE) { 2405 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2406 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2407 } 2408 /* 2409 * Constructors are not allowed to allocate memory from the same 2410 * cache which they are a constructor for. Otherwise, deadlock. 2411 * They must also be threaded. 2412 */ 2413 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2414 kasan_unpoison_object_data(cachep, 2415 objp + obj_offset(cachep)); 2416 cachep->ctor(objp + obj_offset(cachep)); 2417 kasan_poison_object_data( 2418 cachep, objp + obj_offset(cachep)); 2419 } 2420 2421 if (cachep->flags & SLAB_RED_ZONE) { 2422 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2423 slab_error(cachep, "constructor overwrote the end of an object"); 2424 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2425 slab_error(cachep, "constructor overwrote the start of an object"); 2426 } 2427 /* need to poison the objs? */ 2428 if (cachep->flags & SLAB_POISON) { 2429 poison_obj(cachep, objp, POISON_FREE); 2430 slab_kernel_map(cachep, objp, 0, 0); 2431 } 2432 } 2433 #endif 2434 } 2435 2436 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2437 /* Hold information during a freelist initialization */ 2438 union freelist_init_state { 2439 struct { 2440 unsigned int pos; 2441 unsigned int *list; 2442 unsigned int count; 2443 }; 2444 struct rnd_state rnd_state; 2445 }; 2446 2447 /* 2448 * Initialize the state based on the randomization methode available. 2449 * return true if the pre-computed list is available, false otherwize. 2450 */ 2451 static bool freelist_state_initialize(union freelist_init_state *state, 2452 struct kmem_cache *cachep, 2453 unsigned int count) 2454 { 2455 bool ret; 2456 unsigned int rand; 2457 2458 /* Use best entropy available to define a random shift */ 2459 rand = get_random_int(); 2460 2461 /* Use a random state if the pre-computed list is not available */ 2462 if (!cachep->random_seq) { 2463 prandom_seed_state(&state->rnd_state, rand); 2464 ret = false; 2465 } else { 2466 state->list = cachep->random_seq; 2467 state->count = count; 2468 state->pos = rand % count; 2469 ret = true; 2470 } 2471 return ret; 2472 } 2473 2474 /* Get the next entry on the list and randomize it using a random shift */ 2475 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2476 { 2477 if (state->pos >= state->count) 2478 state->pos = 0; 2479 return state->list[state->pos++]; 2480 } 2481 2482 /* Swap two freelist entries */ 2483 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2484 { 2485 swap(((freelist_idx_t *)page->freelist)[a], 2486 ((freelist_idx_t *)page->freelist)[b]); 2487 } 2488 2489 /* 2490 * Shuffle the freelist initialization state based on pre-computed lists. 2491 * return true if the list was successfully shuffled, false otherwise. 2492 */ 2493 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2494 { 2495 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2496 union freelist_init_state state; 2497 bool precomputed; 2498 2499 if (count < 2) 2500 return false; 2501 2502 precomputed = freelist_state_initialize(&state, cachep, count); 2503 2504 /* Take a random entry as the objfreelist */ 2505 if (OBJFREELIST_SLAB(cachep)) { 2506 if (!precomputed) 2507 objfreelist = count - 1; 2508 else 2509 objfreelist = next_random_slot(&state); 2510 page->freelist = index_to_obj(cachep, page, objfreelist) + 2511 obj_offset(cachep); 2512 count--; 2513 } 2514 2515 /* 2516 * On early boot, generate the list dynamically. 2517 * Later use a pre-computed list for speed. 2518 */ 2519 if (!precomputed) { 2520 for (i = 0; i < count; i++) 2521 set_free_obj(page, i, i); 2522 2523 /* Fisher-Yates shuffle */ 2524 for (i = count - 1; i > 0; i--) { 2525 rand = prandom_u32_state(&state.rnd_state); 2526 rand %= (i + 1); 2527 swap_free_obj(page, i, rand); 2528 } 2529 } else { 2530 for (i = 0; i < count; i++) 2531 set_free_obj(page, i, next_random_slot(&state)); 2532 } 2533 2534 if (OBJFREELIST_SLAB(cachep)) 2535 set_free_obj(page, cachep->num - 1, objfreelist); 2536 2537 return true; 2538 } 2539 #else 2540 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2541 struct page *page) 2542 { 2543 return false; 2544 } 2545 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2546 2547 static void cache_init_objs(struct kmem_cache *cachep, 2548 struct page *page) 2549 { 2550 int i; 2551 void *objp; 2552 bool shuffled; 2553 2554 cache_init_objs_debug(cachep, page); 2555 2556 /* Try to randomize the freelist if enabled */ 2557 shuffled = shuffle_freelist(cachep, page); 2558 2559 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2560 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2561 obj_offset(cachep); 2562 } 2563 2564 for (i = 0; i < cachep->num; i++) { 2565 objp = index_to_obj(cachep, page, i); 2566 kasan_init_slab_obj(cachep, objp); 2567 2568 /* constructor could break poison info */ 2569 if (DEBUG == 0 && cachep->ctor) { 2570 kasan_unpoison_object_data(cachep, objp); 2571 cachep->ctor(objp); 2572 kasan_poison_object_data(cachep, objp); 2573 } 2574 2575 if (!shuffled) 2576 set_free_obj(page, i, i); 2577 } 2578 } 2579 2580 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2581 { 2582 void *objp; 2583 2584 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2585 page->active++; 2586 2587 #if DEBUG 2588 if (cachep->flags & SLAB_STORE_USER) 2589 set_store_user_dirty(cachep); 2590 #endif 2591 2592 return objp; 2593 } 2594 2595 static void slab_put_obj(struct kmem_cache *cachep, 2596 struct page *page, void *objp) 2597 { 2598 unsigned int objnr = obj_to_index(cachep, page, objp); 2599 #if DEBUG 2600 unsigned int i; 2601 2602 /* Verify double free bug */ 2603 for (i = page->active; i < cachep->num; i++) { 2604 if (get_free_obj(page, i) == objnr) { 2605 pr_err("slab: double free detected in cache '%s', objp %px\n", 2606 cachep->name, objp); 2607 BUG(); 2608 } 2609 } 2610 #endif 2611 page->active--; 2612 if (!page->freelist) 2613 page->freelist = objp + obj_offset(cachep); 2614 2615 set_free_obj(page, page->active, objnr); 2616 } 2617 2618 /* 2619 * Map pages beginning at addr to the given cache and slab. This is required 2620 * for the slab allocator to be able to lookup the cache and slab of a 2621 * virtual address for kfree, ksize, and slab debugging. 2622 */ 2623 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2624 void *freelist) 2625 { 2626 page->slab_cache = cache; 2627 page->freelist = freelist; 2628 } 2629 2630 /* 2631 * Grow (by 1) the number of slabs within a cache. This is called by 2632 * kmem_cache_alloc() when there are no active objs left in a cache. 2633 */ 2634 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2635 gfp_t flags, int nodeid) 2636 { 2637 void *freelist; 2638 size_t offset; 2639 gfp_t local_flags; 2640 int page_node; 2641 struct kmem_cache_node *n; 2642 struct page *page; 2643 2644 /* 2645 * Be lazy and only check for valid flags here, keeping it out of the 2646 * critical path in kmem_cache_alloc(). 2647 */ 2648 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2649 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2650 flags &= ~GFP_SLAB_BUG_MASK; 2651 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2652 invalid_mask, &invalid_mask, flags, &flags); 2653 dump_stack(); 2654 } 2655 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2656 2657 check_irq_off(); 2658 if (gfpflags_allow_blocking(local_flags)) 2659 local_irq_enable(); 2660 2661 /* 2662 * Get mem for the objs. Attempt to allocate a physical page from 2663 * 'nodeid'. 2664 */ 2665 page = kmem_getpages(cachep, local_flags, nodeid); 2666 if (!page) 2667 goto failed; 2668 2669 page_node = page_to_nid(page); 2670 n = get_node(cachep, page_node); 2671 2672 /* Get colour for the slab, and cal the next value. */ 2673 n->colour_next++; 2674 if (n->colour_next >= cachep->colour) 2675 n->colour_next = 0; 2676 2677 offset = n->colour_next; 2678 if (offset >= cachep->colour) 2679 offset = 0; 2680 2681 offset *= cachep->colour_off; 2682 2683 /* Get slab management. */ 2684 freelist = alloc_slabmgmt(cachep, page, offset, 2685 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2686 if (OFF_SLAB(cachep) && !freelist) 2687 goto opps1; 2688 2689 slab_map_pages(cachep, page, freelist); 2690 2691 kasan_poison_slab(page); 2692 cache_init_objs(cachep, page); 2693 2694 if (gfpflags_allow_blocking(local_flags)) 2695 local_irq_disable(); 2696 2697 return page; 2698 2699 opps1: 2700 kmem_freepages(cachep, page); 2701 failed: 2702 if (gfpflags_allow_blocking(local_flags)) 2703 local_irq_disable(); 2704 return NULL; 2705 } 2706 2707 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2708 { 2709 struct kmem_cache_node *n; 2710 void *list = NULL; 2711 2712 check_irq_off(); 2713 2714 if (!page) 2715 return; 2716 2717 INIT_LIST_HEAD(&page->lru); 2718 n = get_node(cachep, page_to_nid(page)); 2719 2720 spin_lock(&n->list_lock); 2721 n->total_slabs++; 2722 if (!page->active) { 2723 list_add_tail(&page->lru, &(n->slabs_free)); 2724 n->free_slabs++; 2725 } else 2726 fixup_slab_list(cachep, n, page, &list); 2727 2728 STATS_INC_GROWN(cachep); 2729 n->free_objects += cachep->num - page->active; 2730 spin_unlock(&n->list_lock); 2731 2732 fixup_objfreelist_debug(cachep, &list); 2733 } 2734 2735 #if DEBUG 2736 2737 /* 2738 * Perform extra freeing checks: 2739 * - detect bad pointers. 2740 * - POISON/RED_ZONE checking 2741 */ 2742 static void kfree_debugcheck(const void *objp) 2743 { 2744 if (!virt_addr_valid(objp)) { 2745 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2746 (unsigned long)objp); 2747 BUG(); 2748 } 2749 } 2750 2751 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2752 { 2753 unsigned long long redzone1, redzone2; 2754 2755 redzone1 = *dbg_redzone1(cache, obj); 2756 redzone2 = *dbg_redzone2(cache, obj); 2757 2758 /* 2759 * Redzone is ok. 2760 */ 2761 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2762 return; 2763 2764 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2765 slab_error(cache, "double free detected"); 2766 else 2767 slab_error(cache, "memory outside object was overwritten"); 2768 2769 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2770 obj, redzone1, redzone2); 2771 } 2772 2773 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2774 unsigned long caller) 2775 { 2776 unsigned int objnr; 2777 struct page *page; 2778 2779 BUG_ON(virt_to_cache(objp) != cachep); 2780 2781 objp -= obj_offset(cachep); 2782 kfree_debugcheck(objp); 2783 page = virt_to_head_page(objp); 2784 2785 if (cachep->flags & SLAB_RED_ZONE) { 2786 verify_redzone_free(cachep, objp); 2787 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2788 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2789 } 2790 if (cachep->flags & SLAB_STORE_USER) { 2791 set_store_user_dirty(cachep); 2792 *dbg_userword(cachep, objp) = (void *)caller; 2793 } 2794 2795 objnr = obj_to_index(cachep, page, objp); 2796 2797 BUG_ON(objnr >= cachep->num); 2798 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2799 2800 if (cachep->flags & SLAB_POISON) { 2801 poison_obj(cachep, objp, POISON_FREE); 2802 slab_kernel_map(cachep, objp, 0, caller); 2803 } 2804 return objp; 2805 } 2806 2807 #else 2808 #define kfree_debugcheck(x) do { } while(0) 2809 #define cache_free_debugcheck(x,objp,z) (objp) 2810 #endif 2811 2812 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2813 void **list) 2814 { 2815 #if DEBUG 2816 void *next = *list; 2817 void *objp; 2818 2819 while (next) { 2820 objp = next - obj_offset(cachep); 2821 next = *(void **)next; 2822 poison_obj(cachep, objp, POISON_FREE); 2823 } 2824 #endif 2825 } 2826 2827 static inline void fixup_slab_list(struct kmem_cache *cachep, 2828 struct kmem_cache_node *n, struct page *page, 2829 void **list) 2830 { 2831 /* move slabp to correct slabp list: */ 2832 list_del(&page->lru); 2833 if (page->active == cachep->num) { 2834 list_add(&page->lru, &n->slabs_full); 2835 if (OBJFREELIST_SLAB(cachep)) { 2836 #if DEBUG 2837 /* Poisoning will be done without holding the lock */ 2838 if (cachep->flags & SLAB_POISON) { 2839 void **objp = page->freelist; 2840 2841 *objp = *list; 2842 *list = objp; 2843 } 2844 #endif 2845 page->freelist = NULL; 2846 } 2847 } else 2848 list_add(&page->lru, &n->slabs_partial); 2849 } 2850 2851 /* Try to find non-pfmemalloc slab if needed */ 2852 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2853 struct page *page, bool pfmemalloc) 2854 { 2855 if (!page) 2856 return NULL; 2857 2858 if (pfmemalloc) 2859 return page; 2860 2861 if (!PageSlabPfmemalloc(page)) 2862 return page; 2863 2864 /* No need to keep pfmemalloc slab if we have enough free objects */ 2865 if (n->free_objects > n->free_limit) { 2866 ClearPageSlabPfmemalloc(page); 2867 return page; 2868 } 2869 2870 /* Move pfmemalloc slab to the end of list to speed up next search */ 2871 list_del(&page->lru); 2872 if (!page->active) { 2873 list_add_tail(&page->lru, &n->slabs_free); 2874 n->free_slabs++; 2875 } else 2876 list_add_tail(&page->lru, &n->slabs_partial); 2877 2878 list_for_each_entry(page, &n->slabs_partial, lru) { 2879 if (!PageSlabPfmemalloc(page)) 2880 return page; 2881 } 2882 2883 n->free_touched = 1; 2884 list_for_each_entry(page, &n->slabs_free, lru) { 2885 if (!PageSlabPfmemalloc(page)) { 2886 n->free_slabs--; 2887 return page; 2888 } 2889 } 2890 2891 return NULL; 2892 } 2893 2894 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2895 { 2896 struct page *page; 2897 2898 assert_spin_locked(&n->list_lock); 2899 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru); 2900 if (!page) { 2901 n->free_touched = 1; 2902 page = list_first_entry_or_null(&n->slabs_free, struct page, 2903 lru); 2904 if (page) 2905 n->free_slabs--; 2906 } 2907 2908 if (sk_memalloc_socks()) 2909 page = get_valid_first_slab(n, page, pfmemalloc); 2910 2911 return page; 2912 } 2913 2914 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2915 struct kmem_cache_node *n, gfp_t flags) 2916 { 2917 struct page *page; 2918 void *obj; 2919 void *list = NULL; 2920 2921 if (!gfp_pfmemalloc_allowed(flags)) 2922 return NULL; 2923 2924 spin_lock(&n->list_lock); 2925 page = get_first_slab(n, true); 2926 if (!page) { 2927 spin_unlock(&n->list_lock); 2928 return NULL; 2929 } 2930 2931 obj = slab_get_obj(cachep, page); 2932 n->free_objects--; 2933 2934 fixup_slab_list(cachep, n, page, &list); 2935 2936 spin_unlock(&n->list_lock); 2937 fixup_objfreelist_debug(cachep, &list); 2938 2939 return obj; 2940 } 2941 2942 /* 2943 * Slab list should be fixed up by fixup_slab_list() for existing slab 2944 * or cache_grow_end() for new slab 2945 */ 2946 static __always_inline int alloc_block(struct kmem_cache *cachep, 2947 struct array_cache *ac, struct page *page, int batchcount) 2948 { 2949 /* 2950 * There must be at least one object available for 2951 * allocation. 2952 */ 2953 BUG_ON(page->active >= cachep->num); 2954 2955 while (page->active < cachep->num && batchcount--) { 2956 STATS_INC_ALLOCED(cachep); 2957 STATS_INC_ACTIVE(cachep); 2958 STATS_SET_HIGH(cachep); 2959 2960 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2961 } 2962 2963 return batchcount; 2964 } 2965 2966 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2967 { 2968 int batchcount; 2969 struct kmem_cache_node *n; 2970 struct array_cache *ac, *shared; 2971 int node; 2972 void *list = NULL; 2973 struct page *page; 2974 2975 check_irq_off(); 2976 node = numa_mem_id(); 2977 2978 ac = cpu_cache_get(cachep); 2979 batchcount = ac->batchcount; 2980 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2981 /* 2982 * If there was little recent activity on this cache, then 2983 * perform only a partial refill. Otherwise we could generate 2984 * refill bouncing. 2985 */ 2986 batchcount = BATCHREFILL_LIMIT; 2987 } 2988 n = get_node(cachep, node); 2989 2990 BUG_ON(ac->avail > 0 || !n); 2991 shared = READ_ONCE(n->shared); 2992 if (!n->free_objects && (!shared || !shared->avail)) 2993 goto direct_grow; 2994 2995 spin_lock(&n->list_lock); 2996 shared = READ_ONCE(n->shared); 2997 2998 /* See if we can refill from the shared array */ 2999 if (shared && transfer_objects(ac, shared, batchcount)) { 3000 shared->touched = 1; 3001 goto alloc_done; 3002 } 3003 3004 while (batchcount > 0) { 3005 /* Get slab alloc is to come from. */ 3006 page = get_first_slab(n, false); 3007 if (!page) 3008 goto must_grow; 3009 3010 check_spinlock_acquired(cachep); 3011 3012 batchcount = alloc_block(cachep, ac, page, batchcount); 3013 fixup_slab_list(cachep, n, page, &list); 3014 } 3015 3016 must_grow: 3017 n->free_objects -= ac->avail; 3018 alloc_done: 3019 spin_unlock(&n->list_lock); 3020 fixup_objfreelist_debug(cachep, &list); 3021 3022 direct_grow: 3023 if (unlikely(!ac->avail)) { 3024 /* Check if we can use obj in pfmemalloc slab */ 3025 if (sk_memalloc_socks()) { 3026 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 3027 3028 if (obj) 3029 return obj; 3030 } 3031 3032 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 3033 3034 /* 3035 * cache_grow_begin() can reenable interrupts, 3036 * then ac could change. 3037 */ 3038 ac = cpu_cache_get(cachep); 3039 if (!ac->avail && page) 3040 alloc_block(cachep, ac, page, batchcount); 3041 cache_grow_end(cachep, page); 3042 3043 if (!ac->avail) 3044 return NULL; 3045 } 3046 ac->touched = 1; 3047 3048 return ac->entry[--ac->avail]; 3049 } 3050 3051 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3052 gfp_t flags) 3053 { 3054 might_sleep_if(gfpflags_allow_blocking(flags)); 3055 } 3056 3057 #if DEBUG 3058 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3059 gfp_t flags, void *objp, unsigned long caller) 3060 { 3061 if (!objp) 3062 return objp; 3063 if (cachep->flags & SLAB_POISON) { 3064 check_poison_obj(cachep, objp); 3065 slab_kernel_map(cachep, objp, 1, 0); 3066 poison_obj(cachep, objp, POISON_INUSE); 3067 } 3068 if (cachep->flags & SLAB_STORE_USER) 3069 *dbg_userword(cachep, objp) = (void *)caller; 3070 3071 if (cachep->flags & SLAB_RED_ZONE) { 3072 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3073 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3074 slab_error(cachep, "double free, or memory outside object was overwritten"); 3075 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 3076 objp, *dbg_redzone1(cachep, objp), 3077 *dbg_redzone2(cachep, objp)); 3078 } 3079 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3080 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3081 } 3082 3083 objp += obj_offset(cachep); 3084 if (cachep->ctor && cachep->flags & SLAB_POISON) 3085 cachep->ctor(objp); 3086 if (ARCH_SLAB_MINALIGN && 3087 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3088 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3089 objp, (int)ARCH_SLAB_MINALIGN); 3090 } 3091 return objp; 3092 } 3093 #else 3094 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3095 #endif 3096 3097 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3098 { 3099 void *objp; 3100 struct array_cache *ac; 3101 3102 check_irq_off(); 3103 3104 ac = cpu_cache_get(cachep); 3105 if (likely(ac->avail)) { 3106 ac->touched = 1; 3107 objp = ac->entry[--ac->avail]; 3108 3109 STATS_INC_ALLOCHIT(cachep); 3110 goto out; 3111 } 3112 3113 STATS_INC_ALLOCMISS(cachep); 3114 objp = cache_alloc_refill(cachep, flags); 3115 /* 3116 * the 'ac' may be updated by cache_alloc_refill(), 3117 * and kmemleak_erase() requires its correct value. 3118 */ 3119 ac = cpu_cache_get(cachep); 3120 3121 out: 3122 /* 3123 * To avoid a false negative, if an object that is in one of the 3124 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3125 * treat the array pointers as a reference to the object. 3126 */ 3127 if (objp) 3128 kmemleak_erase(&ac->entry[ac->avail]); 3129 return objp; 3130 } 3131 3132 #ifdef CONFIG_NUMA 3133 /* 3134 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3135 * 3136 * If we are in_interrupt, then process context, including cpusets and 3137 * mempolicy, may not apply and should not be used for allocation policy. 3138 */ 3139 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3140 { 3141 int nid_alloc, nid_here; 3142 3143 if (in_interrupt() || (flags & __GFP_THISNODE)) 3144 return NULL; 3145 nid_alloc = nid_here = numa_mem_id(); 3146 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3147 nid_alloc = cpuset_slab_spread_node(); 3148 else if (current->mempolicy) 3149 nid_alloc = mempolicy_slab_node(); 3150 if (nid_alloc != nid_here) 3151 return ____cache_alloc_node(cachep, flags, nid_alloc); 3152 return NULL; 3153 } 3154 3155 /* 3156 * Fallback function if there was no memory available and no objects on a 3157 * certain node and fall back is permitted. First we scan all the 3158 * available node for available objects. If that fails then we 3159 * perform an allocation without specifying a node. This allows the page 3160 * allocator to do its reclaim / fallback magic. We then insert the 3161 * slab into the proper nodelist and then allocate from it. 3162 */ 3163 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3164 { 3165 struct zonelist *zonelist; 3166 struct zoneref *z; 3167 struct zone *zone; 3168 enum zone_type high_zoneidx = gfp_zone(flags); 3169 void *obj = NULL; 3170 struct page *page; 3171 int nid; 3172 unsigned int cpuset_mems_cookie; 3173 3174 if (flags & __GFP_THISNODE) 3175 return NULL; 3176 3177 retry_cpuset: 3178 cpuset_mems_cookie = read_mems_allowed_begin(); 3179 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3180 3181 retry: 3182 /* 3183 * Look through allowed nodes for objects available 3184 * from existing per node queues. 3185 */ 3186 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3187 nid = zone_to_nid(zone); 3188 3189 if (cpuset_zone_allowed(zone, flags) && 3190 get_node(cache, nid) && 3191 get_node(cache, nid)->free_objects) { 3192 obj = ____cache_alloc_node(cache, 3193 gfp_exact_node(flags), nid); 3194 if (obj) 3195 break; 3196 } 3197 } 3198 3199 if (!obj) { 3200 /* 3201 * This allocation will be performed within the constraints 3202 * of the current cpuset / memory policy requirements. 3203 * We may trigger various forms of reclaim on the allowed 3204 * set and go into memory reserves if necessary. 3205 */ 3206 page = cache_grow_begin(cache, flags, numa_mem_id()); 3207 cache_grow_end(cache, page); 3208 if (page) { 3209 nid = page_to_nid(page); 3210 obj = ____cache_alloc_node(cache, 3211 gfp_exact_node(flags), nid); 3212 3213 /* 3214 * Another processor may allocate the objects in 3215 * the slab since we are not holding any locks. 3216 */ 3217 if (!obj) 3218 goto retry; 3219 } 3220 } 3221 3222 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3223 goto retry_cpuset; 3224 return obj; 3225 } 3226 3227 /* 3228 * A interface to enable slab creation on nodeid 3229 */ 3230 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3231 int nodeid) 3232 { 3233 struct page *page; 3234 struct kmem_cache_node *n; 3235 void *obj = NULL; 3236 void *list = NULL; 3237 3238 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3239 n = get_node(cachep, nodeid); 3240 BUG_ON(!n); 3241 3242 check_irq_off(); 3243 spin_lock(&n->list_lock); 3244 page = get_first_slab(n, false); 3245 if (!page) 3246 goto must_grow; 3247 3248 check_spinlock_acquired_node(cachep, nodeid); 3249 3250 STATS_INC_NODEALLOCS(cachep); 3251 STATS_INC_ACTIVE(cachep); 3252 STATS_SET_HIGH(cachep); 3253 3254 BUG_ON(page->active == cachep->num); 3255 3256 obj = slab_get_obj(cachep, page); 3257 n->free_objects--; 3258 3259 fixup_slab_list(cachep, n, page, &list); 3260 3261 spin_unlock(&n->list_lock); 3262 fixup_objfreelist_debug(cachep, &list); 3263 return obj; 3264 3265 must_grow: 3266 spin_unlock(&n->list_lock); 3267 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3268 if (page) { 3269 /* This slab isn't counted yet so don't update free_objects */ 3270 obj = slab_get_obj(cachep, page); 3271 } 3272 cache_grow_end(cachep, page); 3273 3274 return obj ? obj : fallback_alloc(cachep, flags); 3275 } 3276 3277 static __always_inline void * 3278 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3279 unsigned long caller) 3280 { 3281 unsigned long save_flags; 3282 void *ptr; 3283 int slab_node = numa_mem_id(); 3284 3285 flags &= gfp_allowed_mask; 3286 cachep = slab_pre_alloc_hook(cachep, flags); 3287 if (unlikely(!cachep)) 3288 return NULL; 3289 3290 cache_alloc_debugcheck_before(cachep, flags); 3291 local_irq_save(save_flags); 3292 3293 if (nodeid == NUMA_NO_NODE) 3294 nodeid = slab_node; 3295 3296 if (unlikely(!get_node(cachep, nodeid))) { 3297 /* Node not bootstrapped yet */ 3298 ptr = fallback_alloc(cachep, flags); 3299 goto out; 3300 } 3301 3302 if (nodeid == slab_node) { 3303 /* 3304 * Use the locally cached objects if possible. 3305 * However ____cache_alloc does not allow fallback 3306 * to other nodes. It may fail while we still have 3307 * objects on other nodes available. 3308 */ 3309 ptr = ____cache_alloc(cachep, flags); 3310 if (ptr) 3311 goto out; 3312 } 3313 /* ___cache_alloc_node can fall back to other nodes */ 3314 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3315 out: 3316 local_irq_restore(save_flags); 3317 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3318 3319 if (unlikely(flags & __GFP_ZERO) && ptr) 3320 memset(ptr, 0, cachep->object_size); 3321 3322 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3323 return ptr; 3324 } 3325 3326 static __always_inline void * 3327 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3328 { 3329 void *objp; 3330 3331 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3332 objp = alternate_node_alloc(cache, flags); 3333 if (objp) 3334 goto out; 3335 } 3336 objp = ____cache_alloc(cache, flags); 3337 3338 /* 3339 * We may just have run out of memory on the local node. 3340 * ____cache_alloc_node() knows how to locate memory on other nodes 3341 */ 3342 if (!objp) 3343 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3344 3345 out: 3346 return objp; 3347 } 3348 #else 3349 3350 static __always_inline void * 3351 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3352 { 3353 return ____cache_alloc(cachep, flags); 3354 } 3355 3356 #endif /* CONFIG_NUMA */ 3357 3358 static __always_inline void * 3359 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3360 { 3361 unsigned long save_flags; 3362 void *objp; 3363 3364 flags &= gfp_allowed_mask; 3365 cachep = slab_pre_alloc_hook(cachep, flags); 3366 if (unlikely(!cachep)) 3367 return NULL; 3368 3369 cache_alloc_debugcheck_before(cachep, flags); 3370 local_irq_save(save_flags); 3371 objp = __do_cache_alloc(cachep, flags); 3372 local_irq_restore(save_flags); 3373 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3374 prefetchw(objp); 3375 3376 if (unlikely(flags & __GFP_ZERO) && objp) 3377 memset(objp, 0, cachep->object_size); 3378 3379 slab_post_alloc_hook(cachep, flags, 1, &objp); 3380 return objp; 3381 } 3382 3383 /* 3384 * Caller needs to acquire correct kmem_cache_node's list_lock 3385 * @list: List of detached free slabs should be freed by caller 3386 */ 3387 static void free_block(struct kmem_cache *cachep, void **objpp, 3388 int nr_objects, int node, struct list_head *list) 3389 { 3390 int i; 3391 struct kmem_cache_node *n = get_node(cachep, node); 3392 struct page *page; 3393 3394 n->free_objects += nr_objects; 3395 3396 for (i = 0; i < nr_objects; i++) { 3397 void *objp; 3398 struct page *page; 3399 3400 objp = objpp[i]; 3401 3402 page = virt_to_head_page(objp); 3403 list_del(&page->lru); 3404 check_spinlock_acquired_node(cachep, node); 3405 slab_put_obj(cachep, page, objp); 3406 STATS_DEC_ACTIVE(cachep); 3407 3408 /* fixup slab chains */ 3409 if (page->active == 0) { 3410 list_add(&page->lru, &n->slabs_free); 3411 n->free_slabs++; 3412 } else { 3413 /* Unconditionally move a slab to the end of the 3414 * partial list on free - maximum time for the 3415 * other objects to be freed, too. 3416 */ 3417 list_add_tail(&page->lru, &n->slabs_partial); 3418 } 3419 } 3420 3421 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3422 n->free_objects -= cachep->num; 3423 3424 page = list_last_entry(&n->slabs_free, struct page, lru); 3425 list_move(&page->lru, list); 3426 n->free_slabs--; 3427 n->total_slabs--; 3428 } 3429 } 3430 3431 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3432 { 3433 int batchcount; 3434 struct kmem_cache_node *n; 3435 int node = numa_mem_id(); 3436 LIST_HEAD(list); 3437 3438 batchcount = ac->batchcount; 3439 3440 check_irq_off(); 3441 n = get_node(cachep, node); 3442 spin_lock(&n->list_lock); 3443 if (n->shared) { 3444 struct array_cache *shared_array = n->shared; 3445 int max = shared_array->limit - shared_array->avail; 3446 if (max) { 3447 if (batchcount > max) 3448 batchcount = max; 3449 memcpy(&(shared_array->entry[shared_array->avail]), 3450 ac->entry, sizeof(void *) * batchcount); 3451 shared_array->avail += batchcount; 3452 goto free_done; 3453 } 3454 } 3455 3456 free_block(cachep, ac->entry, batchcount, node, &list); 3457 free_done: 3458 #if STATS 3459 { 3460 int i = 0; 3461 struct page *page; 3462 3463 list_for_each_entry(page, &n->slabs_free, lru) { 3464 BUG_ON(page->active); 3465 3466 i++; 3467 } 3468 STATS_SET_FREEABLE(cachep, i); 3469 } 3470 #endif 3471 spin_unlock(&n->list_lock); 3472 slabs_destroy(cachep, &list); 3473 ac->avail -= batchcount; 3474 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3475 } 3476 3477 /* 3478 * Release an obj back to its cache. If the obj has a constructed state, it must 3479 * be in this state _before_ it is released. Called with disabled ints. 3480 */ 3481 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3482 unsigned long caller) 3483 { 3484 /* Put the object into the quarantine, don't touch it for now. */ 3485 if (kasan_slab_free(cachep, objp, _RET_IP_)) 3486 return; 3487 3488 ___cache_free(cachep, objp, caller); 3489 } 3490 3491 void ___cache_free(struct kmem_cache *cachep, void *objp, 3492 unsigned long caller) 3493 { 3494 struct array_cache *ac = cpu_cache_get(cachep); 3495 3496 check_irq_off(); 3497 kmemleak_free_recursive(objp, cachep->flags); 3498 objp = cache_free_debugcheck(cachep, objp, caller); 3499 3500 /* 3501 * Skip calling cache_free_alien() when the platform is not numa. 3502 * This will avoid cache misses that happen while accessing slabp (which 3503 * is per page memory reference) to get nodeid. Instead use a global 3504 * variable to skip the call, which is mostly likely to be present in 3505 * the cache. 3506 */ 3507 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3508 return; 3509 3510 if (ac->avail < ac->limit) { 3511 STATS_INC_FREEHIT(cachep); 3512 } else { 3513 STATS_INC_FREEMISS(cachep); 3514 cache_flusharray(cachep, ac); 3515 } 3516 3517 if (sk_memalloc_socks()) { 3518 struct page *page = virt_to_head_page(objp); 3519 3520 if (unlikely(PageSlabPfmemalloc(page))) { 3521 cache_free_pfmemalloc(cachep, page, objp); 3522 return; 3523 } 3524 } 3525 3526 ac->entry[ac->avail++] = objp; 3527 } 3528 3529 /** 3530 * kmem_cache_alloc - Allocate an object 3531 * @cachep: The cache to allocate from. 3532 * @flags: See kmalloc(). 3533 * 3534 * Allocate an object from this cache. The flags are only relevant 3535 * if the cache has no available objects. 3536 */ 3537 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3538 { 3539 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3540 3541 kasan_slab_alloc(cachep, ret, flags); 3542 trace_kmem_cache_alloc(_RET_IP_, ret, 3543 cachep->object_size, cachep->size, flags); 3544 3545 return ret; 3546 } 3547 EXPORT_SYMBOL(kmem_cache_alloc); 3548 3549 static __always_inline void 3550 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3551 size_t size, void **p, unsigned long caller) 3552 { 3553 size_t i; 3554 3555 for (i = 0; i < size; i++) 3556 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3557 } 3558 3559 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3560 void **p) 3561 { 3562 size_t i; 3563 3564 s = slab_pre_alloc_hook(s, flags); 3565 if (!s) 3566 return 0; 3567 3568 cache_alloc_debugcheck_before(s, flags); 3569 3570 local_irq_disable(); 3571 for (i = 0; i < size; i++) { 3572 void *objp = __do_cache_alloc(s, flags); 3573 3574 if (unlikely(!objp)) 3575 goto error; 3576 p[i] = objp; 3577 } 3578 local_irq_enable(); 3579 3580 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3581 3582 /* Clear memory outside IRQ disabled section */ 3583 if (unlikely(flags & __GFP_ZERO)) 3584 for (i = 0; i < size; i++) 3585 memset(p[i], 0, s->object_size); 3586 3587 slab_post_alloc_hook(s, flags, size, p); 3588 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3589 return size; 3590 error: 3591 local_irq_enable(); 3592 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3593 slab_post_alloc_hook(s, flags, i, p); 3594 __kmem_cache_free_bulk(s, i, p); 3595 return 0; 3596 } 3597 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3598 3599 #ifdef CONFIG_TRACING 3600 void * 3601 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3602 { 3603 void *ret; 3604 3605 ret = slab_alloc(cachep, flags, _RET_IP_); 3606 3607 kasan_kmalloc(cachep, ret, size, flags); 3608 trace_kmalloc(_RET_IP_, ret, 3609 size, cachep->size, flags); 3610 return ret; 3611 } 3612 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3613 #endif 3614 3615 #ifdef CONFIG_NUMA 3616 /** 3617 * kmem_cache_alloc_node - Allocate an object on the specified node 3618 * @cachep: The cache to allocate from. 3619 * @flags: See kmalloc(). 3620 * @nodeid: node number of the target node. 3621 * 3622 * Identical to kmem_cache_alloc but it will allocate memory on the given 3623 * node, which can improve the performance for cpu bound structures. 3624 * 3625 * Fallback to other node is possible if __GFP_THISNODE is not set. 3626 */ 3627 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3628 { 3629 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3630 3631 kasan_slab_alloc(cachep, ret, flags); 3632 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3633 cachep->object_size, cachep->size, 3634 flags, nodeid); 3635 3636 return ret; 3637 } 3638 EXPORT_SYMBOL(kmem_cache_alloc_node); 3639 3640 #ifdef CONFIG_TRACING 3641 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3642 gfp_t flags, 3643 int nodeid, 3644 size_t size) 3645 { 3646 void *ret; 3647 3648 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3649 3650 kasan_kmalloc(cachep, ret, size, flags); 3651 trace_kmalloc_node(_RET_IP_, ret, 3652 size, cachep->size, 3653 flags, nodeid); 3654 return ret; 3655 } 3656 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3657 #endif 3658 3659 static __always_inline void * 3660 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3661 { 3662 struct kmem_cache *cachep; 3663 void *ret; 3664 3665 cachep = kmalloc_slab(size, flags); 3666 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3667 return cachep; 3668 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3669 kasan_kmalloc(cachep, ret, size, flags); 3670 3671 return ret; 3672 } 3673 3674 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3675 { 3676 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3677 } 3678 EXPORT_SYMBOL(__kmalloc_node); 3679 3680 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3681 int node, unsigned long caller) 3682 { 3683 return __do_kmalloc_node(size, flags, node, caller); 3684 } 3685 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3686 #endif /* CONFIG_NUMA */ 3687 3688 /** 3689 * __do_kmalloc - allocate memory 3690 * @size: how many bytes of memory are required. 3691 * @flags: the type of memory to allocate (see kmalloc). 3692 * @caller: function caller for debug tracking of the caller 3693 */ 3694 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3695 unsigned long caller) 3696 { 3697 struct kmem_cache *cachep; 3698 void *ret; 3699 3700 cachep = kmalloc_slab(size, flags); 3701 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3702 return cachep; 3703 ret = slab_alloc(cachep, flags, caller); 3704 3705 kasan_kmalloc(cachep, ret, size, flags); 3706 trace_kmalloc(caller, ret, 3707 size, cachep->size, flags); 3708 3709 return ret; 3710 } 3711 3712 void *__kmalloc(size_t size, gfp_t flags) 3713 { 3714 return __do_kmalloc(size, flags, _RET_IP_); 3715 } 3716 EXPORT_SYMBOL(__kmalloc); 3717 3718 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3719 { 3720 return __do_kmalloc(size, flags, caller); 3721 } 3722 EXPORT_SYMBOL(__kmalloc_track_caller); 3723 3724 /** 3725 * kmem_cache_free - Deallocate an object 3726 * @cachep: The cache the allocation was from. 3727 * @objp: The previously allocated object. 3728 * 3729 * Free an object which was previously allocated from this 3730 * cache. 3731 */ 3732 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3733 { 3734 unsigned long flags; 3735 cachep = cache_from_obj(cachep, objp); 3736 if (!cachep) 3737 return; 3738 3739 local_irq_save(flags); 3740 debug_check_no_locks_freed(objp, cachep->object_size); 3741 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3742 debug_check_no_obj_freed(objp, cachep->object_size); 3743 __cache_free(cachep, objp, _RET_IP_); 3744 local_irq_restore(flags); 3745 3746 trace_kmem_cache_free(_RET_IP_, objp); 3747 } 3748 EXPORT_SYMBOL(kmem_cache_free); 3749 3750 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3751 { 3752 struct kmem_cache *s; 3753 size_t i; 3754 3755 local_irq_disable(); 3756 for (i = 0; i < size; i++) { 3757 void *objp = p[i]; 3758 3759 if (!orig_s) /* called via kfree_bulk */ 3760 s = virt_to_cache(objp); 3761 else 3762 s = cache_from_obj(orig_s, objp); 3763 3764 debug_check_no_locks_freed(objp, s->object_size); 3765 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3766 debug_check_no_obj_freed(objp, s->object_size); 3767 3768 __cache_free(s, objp, _RET_IP_); 3769 } 3770 local_irq_enable(); 3771 3772 /* FIXME: add tracing */ 3773 } 3774 EXPORT_SYMBOL(kmem_cache_free_bulk); 3775 3776 /** 3777 * kfree - free previously allocated memory 3778 * @objp: pointer returned by kmalloc. 3779 * 3780 * If @objp is NULL, no operation is performed. 3781 * 3782 * Don't free memory not originally allocated by kmalloc() 3783 * or you will run into trouble. 3784 */ 3785 void kfree(const void *objp) 3786 { 3787 struct kmem_cache *c; 3788 unsigned long flags; 3789 3790 trace_kfree(_RET_IP_, objp); 3791 3792 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3793 return; 3794 local_irq_save(flags); 3795 kfree_debugcheck(objp); 3796 c = virt_to_cache(objp); 3797 debug_check_no_locks_freed(objp, c->object_size); 3798 3799 debug_check_no_obj_freed(objp, c->object_size); 3800 __cache_free(c, (void *)objp, _RET_IP_); 3801 local_irq_restore(flags); 3802 } 3803 EXPORT_SYMBOL(kfree); 3804 3805 /* 3806 * This initializes kmem_cache_node or resizes various caches for all nodes. 3807 */ 3808 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3809 { 3810 int ret; 3811 int node; 3812 struct kmem_cache_node *n; 3813 3814 for_each_online_node(node) { 3815 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3816 if (ret) 3817 goto fail; 3818 3819 } 3820 3821 return 0; 3822 3823 fail: 3824 if (!cachep->list.next) { 3825 /* Cache is not active yet. Roll back what we did */ 3826 node--; 3827 while (node >= 0) { 3828 n = get_node(cachep, node); 3829 if (n) { 3830 kfree(n->shared); 3831 free_alien_cache(n->alien); 3832 kfree(n); 3833 cachep->node[node] = NULL; 3834 } 3835 node--; 3836 } 3837 } 3838 return -ENOMEM; 3839 } 3840 3841 /* Always called with the slab_mutex held */ 3842 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3843 int batchcount, int shared, gfp_t gfp) 3844 { 3845 struct array_cache __percpu *cpu_cache, *prev; 3846 int cpu; 3847 3848 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3849 if (!cpu_cache) 3850 return -ENOMEM; 3851 3852 prev = cachep->cpu_cache; 3853 cachep->cpu_cache = cpu_cache; 3854 /* 3855 * Without a previous cpu_cache there's no need to synchronize remote 3856 * cpus, so skip the IPIs. 3857 */ 3858 if (prev) 3859 kick_all_cpus_sync(); 3860 3861 check_irq_on(); 3862 cachep->batchcount = batchcount; 3863 cachep->limit = limit; 3864 cachep->shared = shared; 3865 3866 if (!prev) 3867 goto setup_node; 3868 3869 for_each_online_cpu(cpu) { 3870 LIST_HEAD(list); 3871 int node; 3872 struct kmem_cache_node *n; 3873 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3874 3875 node = cpu_to_mem(cpu); 3876 n = get_node(cachep, node); 3877 spin_lock_irq(&n->list_lock); 3878 free_block(cachep, ac->entry, ac->avail, node, &list); 3879 spin_unlock_irq(&n->list_lock); 3880 slabs_destroy(cachep, &list); 3881 } 3882 free_percpu(prev); 3883 3884 setup_node: 3885 return setup_kmem_cache_nodes(cachep, gfp); 3886 } 3887 3888 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3889 int batchcount, int shared, gfp_t gfp) 3890 { 3891 int ret; 3892 struct kmem_cache *c; 3893 3894 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3895 3896 if (slab_state < FULL) 3897 return ret; 3898 3899 if ((ret < 0) || !is_root_cache(cachep)) 3900 return ret; 3901 3902 lockdep_assert_held(&slab_mutex); 3903 for_each_memcg_cache(c, cachep) { 3904 /* return value determined by the root cache only */ 3905 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3906 } 3907 3908 return ret; 3909 } 3910 3911 /* Called with slab_mutex held always */ 3912 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3913 { 3914 int err; 3915 int limit = 0; 3916 int shared = 0; 3917 int batchcount = 0; 3918 3919 err = cache_random_seq_create(cachep, cachep->num, gfp); 3920 if (err) 3921 goto end; 3922 3923 if (!is_root_cache(cachep)) { 3924 struct kmem_cache *root = memcg_root_cache(cachep); 3925 limit = root->limit; 3926 shared = root->shared; 3927 batchcount = root->batchcount; 3928 } 3929 3930 if (limit && shared && batchcount) 3931 goto skip_setup; 3932 /* 3933 * The head array serves three purposes: 3934 * - create a LIFO ordering, i.e. return objects that are cache-warm 3935 * - reduce the number of spinlock operations. 3936 * - reduce the number of linked list operations on the slab and 3937 * bufctl chains: array operations are cheaper. 3938 * The numbers are guessed, we should auto-tune as described by 3939 * Bonwick. 3940 */ 3941 if (cachep->size > 131072) 3942 limit = 1; 3943 else if (cachep->size > PAGE_SIZE) 3944 limit = 8; 3945 else if (cachep->size > 1024) 3946 limit = 24; 3947 else if (cachep->size > 256) 3948 limit = 54; 3949 else 3950 limit = 120; 3951 3952 /* 3953 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3954 * allocation behaviour: Most allocs on one cpu, most free operations 3955 * on another cpu. For these cases, an efficient object passing between 3956 * cpus is necessary. This is provided by a shared array. The array 3957 * replaces Bonwick's magazine layer. 3958 * On uniprocessor, it's functionally equivalent (but less efficient) 3959 * to a larger limit. Thus disabled by default. 3960 */ 3961 shared = 0; 3962 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3963 shared = 8; 3964 3965 #if DEBUG 3966 /* 3967 * With debugging enabled, large batchcount lead to excessively long 3968 * periods with disabled local interrupts. Limit the batchcount 3969 */ 3970 if (limit > 32) 3971 limit = 32; 3972 #endif 3973 batchcount = (limit + 1) / 2; 3974 skip_setup: 3975 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3976 end: 3977 if (err) 3978 pr_err("enable_cpucache failed for %s, error %d\n", 3979 cachep->name, -err); 3980 return err; 3981 } 3982 3983 /* 3984 * Drain an array if it contains any elements taking the node lock only if 3985 * necessary. Note that the node listlock also protects the array_cache 3986 * if drain_array() is used on the shared array. 3987 */ 3988 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3989 struct array_cache *ac, int node) 3990 { 3991 LIST_HEAD(list); 3992 3993 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3994 check_mutex_acquired(); 3995 3996 if (!ac || !ac->avail) 3997 return; 3998 3999 if (ac->touched) { 4000 ac->touched = 0; 4001 return; 4002 } 4003 4004 spin_lock_irq(&n->list_lock); 4005 drain_array_locked(cachep, ac, node, false, &list); 4006 spin_unlock_irq(&n->list_lock); 4007 4008 slabs_destroy(cachep, &list); 4009 } 4010 4011 /** 4012 * cache_reap - Reclaim memory from caches. 4013 * @w: work descriptor 4014 * 4015 * Called from workqueue/eventd every few seconds. 4016 * Purpose: 4017 * - clear the per-cpu caches for this CPU. 4018 * - return freeable pages to the main free memory pool. 4019 * 4020 * If we cannot acquire the cache chain mutex then just give up - we'll try 4021 * again on the next iteration. 4022 */ 4023 static void cache_reap(struct work_struct *w) 4024 { 4025 struct kmem_cache *searchp; 4026 struct kmem_cache_node *n; 4027 int node = numa_mem_id(); 4028 struct delayed_work *work = to_delayed_work(w); 4029 4030 if (!mutex_trylock(&slab_mutex)) 4031 /* Give up. Setup the next iteration. */ 4032 goto out; 4033 4034 list_for_each_entry(searchp, &slab_caches, list) { 4035 check_irq_on(); 4036 4037 /* 4038 * We only take the node lock if absolutely necessary and we 4039 * have established with reasonable certainty that 4040 * we can do some work if the lock was obtained. 4041 */ 4042 n = get_node(searchp, node); 4043 4044 reap_alien(searchp, n); 4045 4046 drain_array(searchp, n, cpu_cache_get(searchp), node); 4047 4048 /* 4049 * These are racy checks but it does not matter 4050 * if we skip one check or scan twice. 4051 */ 4052 if (time_after(n->next_reap, jiffies)) 4053 goto next; 4054 4055 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4056 4057 drain_array(searchp, n, n->shared, node); 4058 4059 if (n->free_touched) 4060 n->free_touched = 0; 4061 else { 4062 int freed; 4063 4064 freed = drain_freelist(searchp, n, (n->free_limit + 4065 5 * searchp->num - 1) / (5 * searchp->num)); 4066 STATS_ADD_REAPED(searchp, freed); 4067 } 4068 next: 4069 cond_resched(); 4070 } 4071 check_irq_on(); 4072 mutex_unlock(&slab_mutex); 4073 next_reap_node(); 4074 out: 4075 /* Set up the next iteration */ 4076 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 4077 } 4078 4079 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4080 { 4081 unsigned long active_objs, num_objs, active_slabs; 4082 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4083 unsigned long free_slabs = 0; 4084 int node; 4085 struct kmem_cache_node *n; 4086 4087 for_each_kmem_cache_node(cachep, node, n) { 4088 check_irq_on(); 4089 spin_lock_irq(&n->list_lock); 4090 4091 total_slabs += n->total_slabs; 4092 free_slabs += n->free_slabs; 4093 free_objs += n->free_objects; 4094 4095 if (n->shared) 4096 shared_avail += n->shared->avail; 4097 4098 spin_unlock_irq(&n->list_lock); 4099 } 4100 num_objs = total_slabs * cachep->num; 4101 active_slabs = total_slabs - free_slabs; 4102 active_objs = num_objs - free_objs; 4103 4104 sinfo->active_objs = active_objs; 4105 sinfo->num_objs = num_objs; 4106 sinfo->active_slabs = active_slabs; 4107 sinfo->num_slabs = total_slabs; 4108 sinfo->shared_avail = shared_avail; 4109 sinfo->limit = cachep->limit; 4110 sinfo->batchcount = cachep->batchcount; 4111 sinfo->shared = cachep->shared; 4112 sinfo->objects_per_slab = cachep->num; 4113 sinfo->cache_order = cachep->gfporder; 4114 } 4115 4116 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4117 { 4118 #if STATS 4119 { /* node stats */ 4120 unsigned long high = cachep->high_mark; 4121 unsigned long allocs = cachep->num_allocations; 4122 unsigned long grown = cachep->grown; 4123 unsigned long reaped = cachep->reaped; 4124 unsigned long errors = cachep->errors; 4125 unsigned long max_freeable = cachep->max_freeable; 4126 unsigned long node_allocs = cachep->node_allocs; 4127 unsigned long node_frees = cachep->node_frees; 4128 unsigned long overflows = cachep->node_overflow; 4129 4130 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4131 allocs, high, grown, 4132 reaped, errors, max_freeable, node_allocs, 4133 node_frees, overflows); 4134 } 4135 /* cpu stats */ 4136 { 4137 unsigned long allochit = atomic_read(&cachep->allochit); 4138 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4139 unsigned long freehit = atomic_read(&cachep->freehit); 4140 unsigned long freemiss = atomic_read(&cachep->freemiss); 4141 4142 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4143 allochit, allocmiss, freehit, freemiss); 4144 } 4145 #endif 4146 } 4147 4148 #define MAX_SLABINFO_WRITE 128 4149 /** 4150 * slabinfo_write - Tuning for the slab allocator 4151 * @file: unused 4152 * @buffer: user buffer 4153 * @count: data length 4154 * @ppos: unused 4155 */ 4156 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4157 size_t count, loff_t *ppos) 4158 { 4159 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4160 int limit, batchcount, shared, res; 4161 struct kmem_cache *cachep; 4162 4163 if (count > MAX_SLABINFO_WRITE) 4164 return -EINVAL; 4165 if (copy_from_user(&kbuf, buffer, count)) 4166 return -EFAULT; 4167 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4168 4169 tmp = strchr(kbuf, ' '); 4170 if (!tmp) 4171 return -EINVAL; 4172 *tmp = '\0'; 4173 tmp++; 4174 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4175 return -EINVAL; 4176 4177 /* Find the cache in the chain of caches. */ 4178 mutex_lock(&slab_mutex); 4179 res = -EINVAL; 4180 list_for_each_entry(cachep, &slab_caches, list) { 4181 if (!strcmp(cachep->name, kbuf)) { 4182 if (limit < 1 || batchcount < 1 || 4183 batchcount > limit || shared < 0) { 4184 res = 0; 4185 } else { 4186 res = do_tune_cpucache(cachep, limit, 4187 batchcount, shared, 4188 GFP_KERNEL); 4189 } 4190 break; 4191 } 4192 } 4193 mutex_unlock(&slab_mutex); 4194 if (res >= 0) 4195 res = count; 4196 return res; 4197 } 4198 4199 #ifdef CONFIG_DEBUG_SLAB_LEAK 4200 4201 static inline int add_caller(unsigned long *n, unsigned long v) 4202 { 4203 unsigned long *p; 4204 int l; 4205 if (!v) 4206 return 1; 4207 l = n[1]; 4208 p = n + 2; 4209 while (l) { 4210 int i = l/2; 4211 unsigned long *q = p + 2 * i; 4212 if (*q == v) { 4213 q[1]++; 4214 return 1; 4215 } 4216 if (*q > v) { 4217 l = i; 4218 } else { 4219 p = q + 2; 4220 l -= i + 1; 4221 } 4222 } 4223 if (++n[1] == n[0]) 4224 return 0; 4225 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4226 p[0] = v; 4227 p[1] = 1; 4228 return 1; 4229 } 4230 4231 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4232 struct page *page) 4233 { 4234 void *p; 4235 int i, j; 4236 unsigned long v; 4237 4238 if (n[0] == n[1]) 4239 return; 4240 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4241 bool active = true; 4242 4243 for (j = page->active; j < c->num; j++) { 4244 if (get_free_obj(page, j) == i) { 4245 active = false; 4246 break; 4247 } 4248 } 4249 4250 if (!active) 4251 continue; 4252 4253 /* 4254 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4255 * mapping is established when actual object allocation and 4256 * we could mistakenly access the unmapped object in the cpu 4257 * cache. 4258 */ 4259 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4260 continue; 4261 4262 if (!add_caller(n, v)) 4263 return; 4264 } 4265 } 4266 4267 static void show_symbol(struct seq_file *m, unsigned long address) 4268 { 4269 #ifdef CONFIG_KALLSYMS 4270 unsigned long offset, size; 4271 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4272 4273 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4274 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4275 if (modname[0]) 4276 seq_printf(m, " [%s]", modname); 4277 return; 4278 } 4279 #endif 4280 seq_printf(m, "%px", (void *)address); 4281 } 4282 4283 static int leaks_show(struct seq_file *m, void *p) 4284 { 4285 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4286 struct page *page; 4287 struct kmem_cache_node *n; 4288 const char *name; 4289 unsigned long *x = m->private; 4290 int node; 4291 int i; 4292 4293 if (!(cachep->flags & SLAB_STORE_USER)) 4294 return 0; 4295 if (!(cachep->flags & SLAB_RED_ZONE)) 4296 return 0; 4297 4298 /* 4299 * Set store_user_clean and start to grab stored user information 4300 * for all objects on this cache. If some alloc/free requests comes 4301 * during the processing, information would be wrong so restart 4302 * whole processing. 4303 */ 4304 do { 4305 set_store_user_clean(cachep); 4306 drain_cpu_caches(cachep); 4307 4308 x[1] = 0; 4309 4310 for_each_kmem_cache_node(cachep, node, n) { 4311 4312 check_irq_on(); 4313 spin_lock_irq(&n->list_lock); 4314 4315 list_for_each_entry(page, &n->slabs_full, lru) 4316 handle_slab(x, cachep, page); 4317 list_for_each_entry(page, &n->slabs_partial, lru) 4318 handle_slab(x, cachep, page); 4319 spin_unlock_irq(&n->list_lock); 4320 } 4321 } while (!is_store_user_clean(cachep)); 4322 4323 name = cachep->name; 4324 if (x[0] == x[1]) { 4325 /* Increase the buffer size */ 4326 mutex_unlock(&slab_mutex); 4327 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4328 if (!m->private) { 4329 /* Too bad, we are really out */ 4330 m->private = x; 4331 mutex_lock(&slab_mutex); 4332 return -ENOMEM; 4333 } 4334 *(unsigned long *)m->private = x[0] * 2; 4335 kfree(x); 4336 mutex_lock(&slab_mutex); 4337 /* Now make sure this entry will be retried */ 4338 m->count = m->size; 4339 return 0; 4340 } 4341 for (i = 0; i < x[1]; i++) { 4342 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4343 show_symbol(m, x[2*i+2]); 4344 seq_putc(m, '\n'); 4345 } 4346 4347 return 0; 4348 } 4349 4350 static const struct seq_operations slabstats_op = { 4351 .start = slab_start, 4352 .next = slab_next, 4353 .stop = slab_stop, 4354 .show = leaks_show, 4355 }; 4356 4357 static int slabstats_open(struct inode *inode, struct file *file) 4358 { 4359 unsigned long *n; 4360 4361 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4362 if (!n) 4363 return -ENOMEM; 4364 4365 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4366 4367 return 0; 4368 } 4369 4370 static const struct file_operations proc_slabstats_operations = { 4371 .open = slabstats_open, 4372 .read = seq_read, 4373 .llseek = seq_lseek, 4374 .release = seq_release_private, 4375 }; 4376 #endif 4377 4378 static int __init slab_proc_init(void) 4379 { 4380 #ifdef CONFIG_DEBUG_SLAB_LEAK 4381 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4382 #endif 4383 return 0; 4384 } 4385 module_init(slab_proc_init); 4386 4387 #ifdef CONFIG_HARDENED_USERCOPY 4388 /* 4389 * Rejects incorrectly sized objects and objects that are to be copied 4390 * to/from userspace but do not fall entirely within the containing slab 4391 * cache's usercopy region. 4392 * 4393 * Returns NULL if check passes, otherwise const char * to name of cache 4394 * to indicate an error. 4395 */ 4396 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4397 bool to_user) 4398 { 4399 struct kmem_cache *cachep; 4400 unsigned int objnr; 4401 unsigned long offset; 4402 4403 /* Find and validate object. */ 4404 cachep = page->slab_cache; 4405 objnr = obj_to_index(cachep, page, (void *)ptr); 4406 BUG_ON(objnr >= cachep->num); 4407 4408 /* Find offset within object. */ 4409 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4410 4411 /* Allow address range falling entirely within usercopy region. */ 4412 if (offset >= cachep->useroffset && 4413 offset - cachep->useroffset <= cachep->usersize && 4414 n <= cachep->useroffset - offset + cachep->usersize) 4415 return; 4416 4417 /* 4418 * If the copy is still within the allocated object, produce 4419 * a warning instead of rejecting the copy. This is intended 4420 * to be a temporary method to find any missing usercopy 4421 * whitelists. 4422 */ 4423 if (usercopy_fallback && 4424 offset <= cachep->object_size && 4425 n <= cachep->object_size - offset) { 4426 usercopy_warn("SLAB object", cachep->name, to_user, offset, n); 4427 return; 4428 } 4429 4430 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4431 } 4432 #endif /* CONFIG_HARDENED_USERCOPY */ 4433 4434 /** 4435 * ksize - get the actual amount of memory allocated for a given object 4436 * @objp: Pointer to the object 4437 * 4438 * kmalloc may internally round up allocations and return more memory 4439 * than requested. ksize() can be used to determine the actual amount of 4440 * memory allocated. The caller may use this additional memory, even though 4441 * a smaller amount of memory was initially specified with the kmalloc call. 4442 * The caller must guarantee that objp points to a valid object previously 4443 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4444 * must not be freed during the duration of the call. 4445 */ 4446 size_t ksize(const void *objp) 4447 { 4448 size_t size; 4449 4450 BUG_ON(!objp); 4451 if (unlikely(objp == ZERO_SIZE_PTR)) 4452 return 0; 4453 4454 size = virt_to_cache(objp)->object_size; 4455 /* We assume that ksize callers could use the whole allocated area, 4456 * so we need to unpoison this area. 4457 */ 4458 kasan_unpoison_shadow(objp, size); 4459 4460 return size; 4461 } 4462 EXPORT_SYMBOL(ksize); 4463