1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 120 #include <asm/cacheflush.h> 121 #include <asm/tlbflush.h> 122 #include <asm/page.h> 123 124 /* 125 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 126 * 0 for faster, smaller code (especially in the critical paths). 127 * 128 * STATS - 1 to collect stats for /proc/slabinfo. 129 * 0 for faster, smaller code (especially in the critical paths). 130 * 131 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 132 */ 133 134 #ifdef CONFIG_DEBUG_SLAB 135 #define DEBUG 1 136 #define STATS 1 137 #define FORCED_DEBUG 1 138 #else 139 #define DEBUG 0 140 #define STATS 0 141 #define FORCED_DEBUG 0 142 #endif 143 144 /* Shouldn't this be in a header file somewhere? */ 145 #define BYTES_PER_WORD sizeof(void *) 146 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 147 148 #ifndef ARCH_KMALLOC_FLAGS 149 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 150 #endif 151 152 /* Legal flag mask for kmem_cache_create(). */ 153 #if DEBUG 154 # define CREATE_MASK (SLAB_RED_ZONE | \ 155 SLAB_POISON | SLAB_HWCACHE_ALIGN | \ 156 SLAB_CACHE_DMA | \ 157 SLAB_STORE_USER | \ 158 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 159 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ 160 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) 161 #else 162 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ 163 SLAB_CACHE_DMA | \ 164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 165 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ 166 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) 167 #endif 168 169 /* 170 * kmem_bufctl_t: 171 * 172 * Bufctl's are used for linking objs within a slab 173 * linked offsets. 174 * 175 * This implementation relies on "struct page" for locating the cache & 176 * slab an object belongs to. 177 * This allows the bufctl structure to be small (one int), but limits 178 * the number of objects a slab (not a cache) can contain when off-slab 179 * bufctls are used. The limit is the size of the largest general cache 180 * that does not use off-slab slabs. 181 * For 32bit archs with 4 kB pages, is this 56. 182 * This is not serious, as it is only for large objects, when it is unwise 183 * to have too many per slab. 184 * Note: This limit can be raised by introducing a general cache whose size 185 * is less than 512 (PAGE_SIZE<<3), but greater than 256. 186 */ 187 188 typedef unsigned int kmem_bufctl_t; 189 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) 190 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) 191 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) 192 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) 193 194 /* 195 * struct slab_rcu 196 * 197 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to 198 * arrange for kmem_freepages to be called via RCU. This is useful if 199 * we need to approach a kernel structure obliquely, from its address 200 * obtained without the usual locking. We can lock the structure to 201 * stabilize it and check it's still at the given address, only if we 202 * can be sure that the memory has not been meanwhile reused for some 203 * other kind of object (which our subsystem's lock might corrupt). 204 * 205 * rcu_read_lock before reading the address, then rcu_read_unlock after 206 * taking the spinlock within the structure expected at that address. 207 */ 208 struct slab_rcu { 209 struct rcu_head head; 210 struct kmem_cache *cachep; 211 void *addr; 212 }; 213 214 /* 215 * struct slab 216 * 217 * Manages the objs in a slab. Placed either at the beginning of mem allocated 218 * for a slab, or allocated from an general cache. 219 * Slabs are chained into three list: fully used, partial, fully free slabs. 220 */ 221 struct slab { 222 union { 223 struct { 224 struct list_head list; 225 unsigned long colouroff; 226 void *s_mem; /* including colour offset */ 227 unsigned int inuse; /* num of objs active in slab */ 228 kmem_bufctl_t free; 229 unsigned short nodeid; 230 }; 231 struct slab_rcu __slab_cover_slab_rcu; 232 }; 233 }; 234 235 /* 236 * struct array_cache 237 * 238 * Purpose: 239 * - LIFO ordering, to hand out cache-warm objects from _alloc 240 * - reduce the number of linked list operations 241 * - reduce spinlock operations 242 * 243 * The limit is stored in the per-cpu structure to reduce the data cache 244 * footprint. 245 * 246 */ 247 struct array_cache { 248 unsigned int avail; 249 unsigned int limit; 250 unsigned int batchcount; 251 unsigned int touched; 252 spinlock_t lock; 253 void *entry[]; /* 254 * Must have this definition in here for the proper 255 * alignment of array_cache. Also simplifies accessing 256 * the entries. 257 */ 258 }; 259 260 /* 261 * bootstrap: The caches do not work without cpuarrays anymore, but the 262 * cpuarrays are allocated from the generic caches... 263 */ 264 #define BOOT_CPUCACHE_ENTRIES 1 265 struct arraycache_init { 266 struct array_cache cache; 267 void *entries[BOOT_CPUCACHE_ENTRIES]; 268 }; 269 270 /* 271 * The slab lists for all objects. 272 */ 273 struct kmem_list3 { 274 struct list_head slabs_partial; /* partial list first, better asm code */ 275 struct list_head slabs_full; 276 struct list_head slabs_free; 277 unsigned long free_objects; 278 unsigned int free_limit; 279 unsigned int colour_next; /* Per-node cache coloring */ 280 spinlock_t list_lock; 281 struct array_cache *shared; /* shared per node */ 282 struct array_cache **alien; /* on other nodes */ 283 unsigned long next_reap; /* updated without locking */ 284 int free_touched; /* updated without locking */ 285 }; 286 287 /* 288 * Need this for bootstrapping a per node allocator. 289 */ 290 #define NUM_INIT_LISTS (3 * MAX_NUMNODES) 291 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; 292 #define CACHE_CACHE 0 293 #define SIZE_AC MAX_NUMNODES 294 #define SIZE_L3 (2 * MAX_NUMNODES) 295 296 static int drain_freelist(struct kmem_cache *cache, 297 struct kmem_list3 *l3, int tofree); 298 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 299 int node); 300 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 301 static void cache_reap(struct work_struct *unused); 302 303 /* 304 * This function must be completely optimized away if a constant is passed to 305 * it. Mostly the same as what is in linux/slab.h except it returns an index. 306 */ 307 static __always_inline int index_of(const size_t size) 308 { 309 extern void __bad_size(void); 310 311 if (__builtin_constant_p(size)) { 312 int i = 0; 313 314 #define CACHE(x) \ 315 if (size <=x) \ 316 return i; \ 317 else \ 318 i++; 319 #include <linux/kmalloc_sizes.h> 320 #undef CACHE 321 __bad_size(); 322 } else 323 __bad_size(); 324 return 0; 325 } 326 327 static int slab_early_init = 1; 328 329 #define INDEX_AC index_of(sizeof(struct arraycache_init)) 330 #define INDEX_L3 index_of(sizeof(struct kmem_list3)) 331 332 static void kmem_list3_init(struct kmem_list3 *parent) 333 { 334 INIT_LIST_HEAD(&parent->slabs_full); 335 INIT_LIST_HEAD(&parent->slabs_partial); 336 INIT_LIST_HEAD(&parent->slabs_free); 337 parent->shared = NULL; 338 parent->alien = NULL; 339 parent->colour_next = 0; 340 spin_lock_init(&parent->list_lock); 341 parent->free_objects = 0; 342 parent->free_touched = 0; 343 } 344 345 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 346 do { \ 347 INIT_LIST_HEAD(listp); \ 348 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ 349 } while (0) 350 351 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 352 do { \ 353 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 354 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 355 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 356 } while (0) 357 358 #define CFLGS_OFF_SLAB (0x80000000UL) 359 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 360 361 #define BATCHREFILL_LIMIT 16 362 /* 363 * Optimization question: fewer reaps means less probability for unnessary 364 * cpucache drain/refill cycles. 365 * 366 * OTOH the cpuarrays can contain lots of objects, 367 * which could lock up otherwise freeable slabs. 368 */ 369 #define REAPTIMEOUT_CPUC (2*HZ) 370 #define REAPTIMEOUT_LIST3 (4*HZ) 371 372 #if STATS 373 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 374 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 375 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 376 #define STATS_INC_GROWN(x) ((x)->grown++) 377 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 378 #define STATS_SET_HIGH(x) \ 379 do { \ 380 if ((x)->num_active > (x)->high_mark) \ 381 (x)->high_mark = (x)->num_active; \ 382 } while (0) 383 #define STATS_INC_ERR(x) ((x)->errors++) 384 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 385 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 386 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 387 #define STATS_SET_FREEABLE(x, i) \ 388 do { \ 389 if ((x)->max_freeable < i) \ 390 (x)->max_freeable = i; \ 391 } while (0) 392 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 393 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 394 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 395 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 396 #else 397 #define STATS_INC_ACTIVE(x) do { } while (0) 398 #define STATS_DEC_ACTIVE(x) do { } while (0) 399 #define STATS_INC_ALLOCED(x) do { } while (0) 400 #define STATS_INC_GROWN(x) do { } while (0) 401 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 402 #define STATS_SET_HIGH(x) do { } while (0) 403 #define STATS_INC_ERR(x) do { } while (0) 404 #define STATS_INC_NODEALLOCS(x) do { } while (0) 405 #define STATS_INC_NODEFREES(x) do { } while (0) 406 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 407 #define STATS_SET_FREEABLE(x, i) do { } while (0) 408 #define STATS_INC_ALLOCHIT(x) do { } while (0) 409 #define STATS_INC_ALLOCMISS(x) do { } while (0) 410 #define STATS_INC_FREEHIT(x) do { } while (0) 411 #define STATS_INC_FREEMISS(x) do { } while (0) 412 #endif 413 414 #if DEBUG 415 416 /* 417 * memory layout of objects: 418 * 0 : objp 419 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 420 * the end of an object is aligned with the end of the real 421 * allocation. Catches writes behind the end of the allocation. 422 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 423 * redzone word. 424 * cachep->obj_offset: The real object. 425 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 426 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address 427 * [BYTES_PER_WORD long] 428 */ 429 static int obj_offset(struct kmem_cache *cachep) 430 { 431 return cachep->obj_offset; 432 } 433 434 static int obj_size(struct kmem_cache *cachep) 435 { 436 return cachep->obj_size; 437 } 438 439 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 440 { 441 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 442 return (unsigned long long*) (objp + obj_offset(cachep) - 443 sizeof(unsigned long long)); 444 } 445 446 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 447 { 448 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 449 if (cachep->flags & SLAB_STORE_USER) 450 return (unsigned long long *)(objp + cachep->buffer_size - 451 sizeof(unsigned long long) - 452 REDZONE_ALIGN); 453 return (unsigned long long *) (objp + cachep->buffer_size - 454 sizeof(unsigned long long)); 455 } 456 457 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 458 { 459 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 460 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); 461 } 462 463 #else 464 465 #define obj_offset(x) 0 466 #define obj_size(cachep) (cachep->buffer_size) 467 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 468 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 469 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 470 471 #endif 472 473 #ifdef CONFIG_TRACING 474 size_t slab_buffer_size(struct kmem_cache *cachep) 475 { 476 return cachep->buffer_size; 477 } 478 EXPORT_SYMBOL(slab_buffer_size); 479 #endif 480 481 /* 482 * Do not go above this order unless 0 objects fit into the slab. 483 */ 484 #define BREAK_GFP_ORDER_HI 1 485 #define BREAK_GFP_ORDER_LO 0 486 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; 487 488 /* 489 * Functions for storing/retrieving the cachep and or slab from the page 490 * allocator. These are used to find the slab an obj belongs to. With kfree(), 491 * these are used to find the cache which an obj belongs to. 492 */ 493 static inline void page_set_cache(struct page *page, struct kmem_cache *cache) 494 { 495 page->lru.next = (struct list_head *)cache; 496 } 497 498 static inline struct kmem_cache *page_get_cache(struct page *page) 499 { 500 page = compound_head(page); 501 BUG_ON(!PageSlab(page)); 502 return (struct kmem_cache *)page->lru.next; 503 } 504 505 static inline void page_set_slab(struct page *page, struct slab *slab) 506 { 507 page->lru.prev = (struct list_head *)slab; 508 } 509 510 static inline struct slab *page_get_slab(struct page *page) 511 { 512 BUG_ON(!PageSlab(page)); 513 return (struct slab *)page->lru.prev; 514 } 515 516 static inline struct kmem_cache *virt_to_cache(const void *obj) 517 { 518 struct page *page = virt_to_head_page(obj); 519 return page_get_cache(page); 520 } 521 522 static inline struct slab *virt_to_slab(const void *obj) 523 { 524 struct page *page = virt_to_head_page(obj); 525 return page_get_slab(page); 526 } 527 528 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, 529 unsigned int idx) 530 { 531 return slab->s_mem + cache->buffer_size * idx; 532 } 533 534 /* 535 * We want to avoid an expensive divide : (offset / cache->buffer_size) 536 * Using the fact that buffer_size is a constant for a particular cache, 537 * we can replace (offset / cache->buffer_size) by 538 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 539 */ 540 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 541 const struct slab *slab, void *obj) 542 { 543 u32 offset = (obj - slab->s_mem); 544 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 545 } 546 547 /* 548 * These are the default caches for kmalloc. Custom caches can have other sizes. 549 */ 550 struct cache_sizes malloc_sizes[] = { 551 #define CACHE(x) { .cs_size = (x) }, 552 #include <linux/kmalloc_sizes.h> 553 CACHE(ULONG_MAX) 554 #undef CACHE 555 }; 556 EXPORT_SYMBOL(malloc_sizes); 557 558 /* Must match cache_sizes above. Out of line to keep cache footprint low. */ 559 struct cache_names { 560 char *name; 561 char *name_dma; 562 }; 563 564 static struct cache_names __initdata cache_names[] = { 565 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, 566 #include <linux/kmalloc_sizes.h> 567 {NULL,} 568 #undef CACHE 569 }; 570 571 static struct arraycache_init initarray_cache __initdata = 572 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 573 static struct arraycache_init initarray_generic = 574 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 575 576 /* internal cache of cache description objs */ 577 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES]; 578 static struct kmem_cache cache_cache = { 579 .nodelists = cache_cache_nodelists, 580 .batchcount = 1, 581 .limit = BOOT_CPUCACHE_ENTRIES, 582 .shared = 1, 583 .buffer_size = sizeof(struct kmem_cache), 584 .name = "kmem_cache", 585 }; 586 587 #define BAD_ALIEN_MAGIC 0x01020304ul 588 589 /* 590 * chicken and egg problem: delay the per-cpu array allocation 591 * until the general caches are up. 592 */ 593 static enum { 594 NONE, 595 PARTIAL_AC, 596 PARTIAL_L3, 597 EARLY, 598 FULL 599 } g_cpucache_up; 600 601 /* 602 * used by boot code to determine if it can use slab based allocator 603 */ 604 int slab_is_available(void) 605 { 606 return g_cpucache_up >= EARLY; 607 } 608 609 #ifdef CONFIG_LOCKDEP 610 611 /* 612 * Slab sometimes uses the kmalloc slabs to store the slab headers 613 * for other slabs "off slab". 614 * The locking for this is tricky in that it nests within the locks 615 * of all other slabs in a few places; to deal with this special 616 * locking we put on-slab caches into a separate lock-class. 617 * 618 * We set lock class for alien array caches which are up during init. 619 * The lock annotation will be lost if all cpus of a node goes down and 620 * then comes back up during hotplug 621 */ 622 static struct lock_class_key on_slab_l3_key; 623 static struct lock_class_key on_slab_alc_key; 624 625 static void init_node_lock_keys(int q) 626 { 627 struct cache_sizes *s = malloc_sizes; 628 629 if (g_cpucache_up != FULL) 630 return; 631 632 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) { 633 struct array_cache **alc; 634 struct kmem_list3 *l3; 635 int r; 636 637 l3 = s->cs_cachep->nodelists[q]; 638 if (!l3 || OFF_SLAB(s->cs_cachep)) 639 continue; 640 lockdep_set_class(&l3->list_lock, &on_slab_l3_key); 641 alc = l3->alien; 642 /* 643 * FIXME: This check for BAD_ALIEN_MAGIC 644 * should go away when common slab code is taught to 645 * work even without alien caches. 646 * Currently, non NUMA code returns BAD_ALIEN_MAGIC 647 * for alloc_alien_cache, 648 */ 649 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) 650 continue; 651 for_each_node(r) { 652 if (alc[r]) 653 lockdep_set_class(&alc[r]->lock, 654 &on_slab_alc_key); 655 } 656 } 657 } 658 659 static inline void init_lock_keys(void) 660 { 661 int node; 662 663 for_each_node(node) 664 init_node_lock_keys(node); 665 } 666 #else 667 static void init_node_lock_keys(int q) 668 { 669 } 670 671 static inline void init_lock_keys(void) 672 { 673 } 674 #endif 675 676 /* 677 * Guard access to the cache-chain. 678 */ 679 static DEFINE_MUTEX(cache_chain_mutex); 680 static struct list_head cache_chain; 681 682 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 683 684 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 685 { 686 return cachep->array[smp_processor_id()]; 687 } 688 689 static inline struct kmem_cache *__find_general_cachep(size_t size, 690 gfp_t gfpflags) 691 { 692 struct cache_sizes *csizep = malloc_sizes; 693 694 #if DEBUG 695 /* This happens if someone tries to call 696 * kmem_cache_create(), or __kmalloc(), before 697 * the generic caches are initialized. 698 */ 699 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); 700 #endif 701 if (!size) 702 return ZERO_SIZE_PTR; 703 704 while (size > csizep->cs_size) 705 csizep++; 706 707 /* 708 * Really subtle: The last entry with cs->cs_size==ULONG_MAX 709 * has cs_{dma,}cachep==NULL. Thus no special case 710 * for large kmalloc calls required. 711 */ 712 #ifdef CONFIG_ZONE_DMA 713 if (unlikely(gfpflags & GFP_DMA)) 714 return csizep->cs_dmacachep; 715 #endif 716 return csizep->cs_cachep; 717 } 718 719 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) 720 { 721 return __find_general_cachep(size, gfpflags); 722 } 723 724 static size_t slab_mgmt_size(size_t nr_objs, size_t align) 725 { 726 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); 727 } 728 729 /* 730 * Calculate the number of objects and left-over bytes for a given buffer size. 731 */ 732 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 733 size_t align, int flags, size_t *left_over, 734 unsigned int *num) 735 { 736 int nr_objs; 737 size_t mgmt_size; 738 size_t slab_size = PAGE_SIZE << gfporder; 739 740 /* 741 * The slab management structure can be either off the slab or 742 * on it. For the latter case, the memory allocated for a 743 * slab is used for: 744 * 745 * - The struct slab 746 * - One kmem_bufctl_t for each object 747 * - Padding to respect alignment of @align 748 * - @buffer_size bytes for each object 749 * 750 * If the slab management structure is off the slab, then the 751 * alignment will already be calculated into the size. Because 752 * the slabs are all pages aligned, the objects will be at the 753 * correct alignment when allocated. 754 */ 755 if (flags & CFLGS_OFF_SLAB) { 756 mgmt_size = 0; 757 nr_objs = slab_size / buffer_size; 758 759 if (nr_objs > SLAB_LIMIT) 760 nr_objs = SLAB_LIMIT; 761 } else { 762 /* 763 * Ignore padding for the initial guess. The padding 764 * is at most @align-1 bytes, and @buffer_size is at 765 * least @align. In the worst case, this result will 766 * be one greater than the number of objects that fit 767 * into the memory allocation when taking the padding 768 * into account. 769 */ 770 nr_objs = (slab_size - sizeof(struct slab)) / 771 (buffer_size + sizeof(kmem_bufctl_t)); 772 773 /* 774 * This calculated number will be either the right 775 * amount, or one greater than what we want. 776 */ 777 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size 778 > slab_size) 779 nr_objs--; 780 781 if (nr_objs > SLAB_LIMIT) 782 nr_objs = SLAB_LIMIT; 783 784 mgmt_size = slab_mgmt_size(nr_objs, align); 785 } 786 *num = nr_objs; 787 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 788 } 789 790 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 791 792 static void __slab_error(const char *function, struct kmem_cache *cachep, 793 char *msg) 794 { 795 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 796 function, cachep->name, msg); 797 dump_stack(); 798 } 799 800 /* 801 * By default on NUMA we use alien caches to stage the freeing of 802 * objects allocated from other nodes. This causes massive memory 803 * inefficiencies when using fake NUMA setup to split memory into a 804 * large number of small nodes, so it can be disabled on the command 805 * line 806 */ 807 808 static int use_alien_caches __read_mostly = 1; 809 static int __init noaliencache_setup(char *s) 810 { 811 use_alien_caches = 0; 812 return 1; 813 } 814 __setup("noaliencache", noaliencache_setup); 815 816 #ifdef CONFIG_NUMA 817 /* 818 * Special reaping functions for NUMA systems called from cache_reap(). 819 * These take care of doing round robin flushing of alien caches (containing 820 * objects freed on different nodes from which they were allocated) and the 821 * flushing of remote pcps by calling drain_node_pages. 822 */ 823 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 824 825 static void init_reap_node(int cpu) 826 { 827 int node; 828 829 node = next_node(cpu_to_mem(cpu), node_online_map); 830 if (node == MAX_NUMNODES) 831 node = first_node(node_online_map); 832 833 per_cpu(slab_reap_node, cpu) = node; 834 } 835 836 static void next_reap_node(void) 837 { 838 int node = __this_cpu_read(slab_reap_node); 839 840 node = next_node(node, node_online_map); 841 if (unlikely(node >= MAX_NUMNODES)) 842 node = first_node(node_online_map); 843 __this_cpu_write(slab_reap_node, node); 844 } 845 846 #else 847 #define init_reap_node(cpu) do { } while (0) 848 #define next_reap_node(void) do { } while (0) 849 #endif 850 851 /* 852 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 853 * via the workqueue/eventd. 854 * Add the CPU number into the expiration time to minimize the possibility of 855 * the CPUs getting into lockstep and contending for the global cache chain 856 * lock. 857 */ 858 static void __cpuinit start_cpu_timer(int cpu) 859 { 860 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 861 862 /* 863 * When this gets called from do_initcalls via cpucache_init(), 864 * init_workqueues() has already run, so keventd will be setup 865 * at that time. 866 */ 867 if (keventd_up() && reap_work->work.func == NULL) { 868 init_reap_node(cpu); 869 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap); 870 schedule_delayed_work_on(cpu, reap_work, 871 __round_jiffies_relative(HZ, cpu)); 872 } 873 } 874 875 static struct array_cache *alloc_arraycache(int node, int entries, 876 int batchcount, gfp_t gfp) 877 { 878 int memsize = sizeof(void *) * entries + sizeof(struct array_cache); 879 struct array_cache *nc = NULL; 880 881 nc = kmalloc_node(memsize, gfp, node); 882 /* 883 * The array_cache structures contain pointers to free object. 884 * However, when such objects are allocated or transferred to another 885 * cache the pointers are not cleared and they could be counted as 886 * valid references during a kmemleak scan. Therefore, kmemleak must 887 * not scan such objects. 888 */ 889 kmemleak_no_scan(nc); 890 if (nc) { 891 nc->avail = 0; 892 nc->limit = entries; 893 nc->batchcount = batchcount; 894 nc->touched = 0; 895 spin_lock_init(&nc->lock); 896 } 897 return nc; 898 } 899 900 /* 901 * Transfer objects in one arraycache to another. 902 * Locking must be handled by the caller. 903 * 904 * Return the number of entries transferred. 905 */ 906 static int transfer_objects(struct array_cache *to, 907 struct array_cache *from, unsigned int max) 908 { 909 /* Figure out how many entries to transfer */ 910 int nr = min3(from->avail, max, to->limit - to->avail); 911 912 if (!nr) 913 return 0; 914 915 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 916 sizeof(void *) *nr); 917 918 from->avail -= nr; 919 to->avail += nr; 920 return nr; 921 } 922 923 #ifndef CONFIG_NUMA 924 925 #define drain_alien_cache(cachep, alien) do { } while (0) 926 #define reap_alien(cachep, l3) do { } while (0) 927 928 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 929 { 930 return (struct array_cache **)BAD_ALIEN_MAGIC; 931 } 932 933 static inline void free_alien_cache(struct array_cache **ac_ptr) 934 { 935 } 936 937 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 938 { 939 return 0; 940 } 941 942 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 943 gfp_t flags) 944 { 945 return NULL; 946 } 947 948 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 949 gfp_t flags, int nodeid) 950 { 951 return NULL; 952 } 953 954 #else /* CONFIG_NUMA */ 955 956 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 957 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 958 959 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 960 { 961 struct array_cache **ac_ptr; 962 int memsize = sizeof(void *) * nr_node_ids; 963 int i; 964 965 if (limit > 1) 966 limit = 12; 967 ac_ptr = kzalloc_node(memsize, gfp, node); 968 if (ac_ptr) { 969 for_each_node(i) { 970 if (i == node || !node_online(i)) 971 continue; 972 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); 973 if (!ac_ptr[i]) { 974 for (i--; i >= 0; i--) 975 kfree(ac_ptr[i]); 976 kfree(ac_ptr); 977 return NULL; 978 } 979 } 980 } 981 return ac_ptr; 982 } 983 984 static void free_alien_cache(struct array_cache **ac_ptr) 985 { 986 int i; 987 988 if (!ac_ptr) 989 return; 990 for_each_node(i) 991 kfree(ac_ptr[i]); 992 kfree(ac_ptr); 993 } 994 995 static void __drain_alien_cache(struct kmem_cache *cachep, 996 struct array_cache *ac, int node) 997 { 998 struct kmem_list3 *rl3 = cachep->nodelists[node]; 999 1000 if (ac->avail) { 1001 spin_lock(&rl3->list_lock); 1002 /* 1003 * Stuff objects into the remote nodes shared array first. 1004 * That way we could avoid the overhead of putting the objects 1005 * into the free lists and getting them back later. 1006 */ 1007 if (rl3->shared) 1008 transfer_objects(rl3->shared, ac, ac->limit); 1009 1010 free_block(cachep, ac->entry, ac->avail, node); 1011 ac->avail = 0; 1012 spin_unlock(&rl3->list_lock); 1013 } 1014 } 1015 1016 /* 1017 * Called from cache_reap() to regularly drain alien caches round robin. 1018 */ 1019 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) 1020 { 1021 int node = __this_cpu_read(slab_reap_node); 1022 1023 if (l3->alien) { 1024 struct array_cache *ac = l3->alien[node]; 1025 1026 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { 1027 __drain_alien_cache(cachep, ac, node); 1028 spin_unlock_irq(&ac->lock); 1029 } 1030 } 1031 } 1032 1033 static void drain_alien_cache(struct kmem_cache *cachep, 1034 struct array_cache **alien) 1035 { 1036 int i = 0; 1037 struct array_cache *ac; 1038 unsigned long flags; 1039 1040 for_each_online_node(i) { 1041 ac = alien[i]; 1042 if (ac) { 1043 spin_lock_irqsave(&ac->lock, flags); 1044 __drain_alien_cache(cachep, ac, i); 1045 spin_unlock_irqrestore(&ac->lock, flags); 1046 } 1047 } 1048 } 1049 1050 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1051 { 1052 struct slab *slabp = virt_to_slab(objp); 1053 int nodeid = slabp->nodeid; 1054 struct kmem_list3 *l3; 1055 struct array_cache *alien = NULL; 1056 int node; 1057 1058 node = numa_mem_id(); 1059 1060 /* 1061 * Make sure we are not freeing a object from another node to the array 1062 * cache on this cpu. 1063 */ 1064 if (likely(slabp->nodeid == node)) 1065 return 0; 1066 1067 l3 = cachep->nodelists[node]; 1068 STATS_INC_NODEFREES(cachep); 1069 if (l3->alien && l3->alien[nodeid]) { 1070 alien = l3->alien[nodeid]; 1071 spin_lock(&alien->lock); 1072 if (unlikely(alien->avail == alien->limit)) { 1073 STATS_INC_ACOVERFLOW(cachep); 1074 __drain_alien_cache(cachep, alien, nodeid); 1075 } 1076 alien->entry[alien->avail++] = objp; 1077 spin_unlock(&alien->lock); 1078 } else { 1079 spin_lock(&(cachep->nodelists[nodeid])->list_lock); 1080 free_block(cachep, &objp, 1, nodeid); 1081 spin_unlock(&(cachep->nodelists[nodeid])->list_lock); 1082 } 1083 return 1; 1084 } 1085 #endif 1086 1087 /* 1088 * Allocates and initializes nodelists for a node on each slab cache, used for 1089 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 1090 * will be allocated off-node since memory is not yet online for the new node. 1091 * When hotplugging memory or a cpu, existing nodelists are not replaced if 1092 * already in use. 1093 * 1094 * Must hold cache_chain_mutex. 1095 */ 1096 static int init_cache_nodelists_node(int node) 1097 { 1098 struct kmem_cache *cachep; 1099 struct kmem_list3 *l3; 1100 const int memsize = sizeof(struct kmem_list3); 1101 1102 list_for_each_entry(cachep, &cache_chain, next) { 1103 /* 1104 * Set up the size64 kmemlist for cpu before we can 1105 * begin anything. Make sure some other cpu on this 1106 * node has not already allocated this 1107 */ 1108 if (!cachep->nodelists[node]) { 1109 l3 = kmalloc_node(memsize, GFP_KERNEL, node); 1110 if (!l3) 1111 return -ENOMEM; 1112 kmem_list3_init(l3); 1113 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 1114 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1115 1116 /* 1117 * The l3s don't come and go as CPUs come and 1118 * go. cache_chain_mutex is sufficient 1119 * protection here. 1120 */ 1121 cachep->nodelists[node] = l3; 1122 } 1123 1124 spin_lock_irq(&cachep->nodelists[node]->list_lock); 1125 cachep->nodelists[node]->free_limit = 1126 (1 + nr_cpus_node(node)) * 1127 cachep->batchcount + cachep->num; 1128 spin_unlock_irq(&cachep->nodelists[node]->list_lock); 1129 } 1130 return 0; 1131 } 1132 1133 static void __cpuinit cpuup_canceled(long cpu) 1134 { 1135 struct kmem_cache *cachep; 1136 struct kmem_list3 *l3 = NULL; 1137 int node = cpu_to_mem(cpu); 1138 const struct cpumask *mask = cpumask_of_node(node); 1139 1140 list_for_each_entry(cachep, &cache_chain, next) { 1141 struct array_cache *nc; 1142 struct array_cache *shared; 1143 struct array_cache **alien; 1144 1145 /* cpu is dead; no one can alloc from it. */ 1146 nc = cachep->array[cpu]; 1147 cachep->array[cpu] = NULL; 1148 l3 = cachep->nodelists[node]; 1149 1150 if (!l3) 1151 goto free_array_cache; 1152 1153 spin_lock_irq(&l3->list_lock); 1154 1155 /* Free limit for this kmem_list3 */ 1156 l3->free_limit -= cachep->batchcount; 1157 if (nc) 1158 free_block(cachep, nc->entry, nc->avail, node); 1159 1160 if (!cpumask_empty(mask)) { 1161 spin_unlock_irq(&l3->list_lock); 1162 goto free_array_cache; 1163 } 1164 1165 shared = l3->shared; 1166 if (shared) { 1167 free_block(cachep, shared->entry, 1168 shared->avail, node); 1169 l3->shared = NULL; 1170 } 1171 1172 alien = l3->alien; 1173 l3->alien = NULL; 1174 1175 spin_unlock_irq(&l3->list_lock); 1176 1177 kfree(shared); 1178 if (alien) { 1179 drain_alien_cache(cachep, alien); 1180 free_alien_cache(alien); 1181 } 1182 free_array_cache: 1183 kfree(nc); 1184 } 1185 /* 1186 * In the previous loop, all the objects were freed to 1187 * the respective cache's slabs, now we can go ahead and 1188 * shrink each nodelist to its limit. 1189 */ 1190 list_for_each_entry(cachep, &cache_chain, next) { 1191 l3 = cachep->nodelists[node]; 1192 if (!l3) 1193 continue; 1194 drain_freelist(cachep, l3, l3->free_objects); 1195 } 1196 } 1197 1198 static int __cpuinit cpuup_prepare(long cpu) 1199 { 1200 struct kmem_cache *cachep; 1201 struct kmem_list3 *l3 = NULL; 1202 int node = cpu_to_mem(cpu); 1203 int err; 1204 1205 /* 1206 * We need to do this right in the beginning since 1207 * alloc_arraycache's are going to use this list. 1208 * kmalloc_node allows us to add the slab to the right 1209 * kmem_list3 and not this cpu's kmem_list3 1210 */ 1211 err = init_cache_nodelists_node(node); 1212 if (err < 0) 1213 goto bad; 1214 1215 /* 1216 * Now we can go ahead with allocating the shared arrays and 1217 * array caches 1218 */ 1219 list_for_each_entry(cachep, &cache_chain, next) { 1220 struct array_cache *nc; 1221 struct array_cache *shared = NULL; 1222 struct array_cache **alien = NULL; 1223 1224 nc = alloc_arraycache(node, cachep->limit, 1225 cachep->batchcount, GFP_KERNEL); 1226 if (!nc) 1227 goto bad; 1228 if (cachep->shared) { 1229 shared = alloc_arraycache(node, 1230 cachep->shared * cachep->batchcount, 1231 0xbaadf00d, GFP_KERNEL); 1232 if (!shared) { 1233 kfree(nc); 1234 goto bad; 1235 } 1236 } 1237 if (use_alien_caches) { 1238 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); 1239 if (!alien) { 1240 kfree(shared); 1241 kfree(nc); 1242 goto bad; 1243 } 1244 } 1245 cachep->array[cpu] = nc; 1246 l3 = cachep->nodelists[node]; 1247 BUG_ON(!l3); 1248 1249 spin_lock_irq(&l3->list_lock); 1250 if (!l3->shared) { 1251 /* 1252 * We are serialised from CPU_DEAD or 1253 * CPU_UP_CANCELLED by the cpucontrol lock 1254 */ 1255 l3->shared = shared; 1256 shared = NULL; 1257 } 1258 #ifdef CONFIG_NUMA 1259 if (!l3->alien) { 1260 l3->alien = alien; 1261 alien = NULL; 1262 } 1263 #endif 1264 spin_unlock_irq(&l3->list_lock); 1265 kfree(shared); 1266 free_alien_cache(alien); 1267 } 1268 init_node_lock_keys(node); 1269 1270 return 0; 1271 bad: 1272 cpuup_canceled(cpu); 1273 return -ENOMEM; 1274 } 1275 1276 static int __cpuinit cpuup_callback(struct notifier_block *nfb, 1277 unsigned long action, void *hcpu) 1278 { 1279 long cpu = (long)hcpu; 1280 int err = 0; 1281 1282 switch (action) { 1283 case CPU_UP_PREPARE: 1284 case CPU_UP_PREPARE_FROZEN: 1285 mutex_lock(&cache_chain_mutex); 1286 err = cpuup_prepare(cpu); 1287 mutex_unlock(&cache_chain_mutex); 1288 break; 1289 case CPU_ONLINE: 1290 case CPU_ONLINE_FROZEN: 1291 start_cpu_timer(cpu); 1292 break; 1293 #ifdef CONFIG_HOTPLUG_CPU 1294 case CPU_DOWN_PREPARE: 1295 case CPU_DOWN_PREPARE_FROZEN: 1296 /* 1297 * Shutdown cache reaper. Note that the cache_chain_mutex is 1298 * held so that if cache_reap() is invoked it cannot do 1299 * anything expensive but will only modify reap_work 1300 * and reschedule the timer. 1301 */ 1302 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1303 /* Now the cache_reaper is guaranteed to be not running. */ 1304 per_cpu(slab_reap_work, cpu).work.func = NULL; 1305 break; 1306 case CPU_DOWN_FAILED: 1307 case CPU_DOWN_FAILED_FROZEN: 1308 start_cpu_timer(cpu); 1309 break; 1310 case CPU_DEAD: 1311 case CPU_DEAD_FROZEN: 1312 /* 1313 * Even if all the cpus of a node are down, we don't free the 1314 * kmem_list3 of any cache. This to avoid a race between 1315 * cpu_down, and a kmalloc allocation from another cpu for 1316 * memory from the node of the cpu going down. The list3 1317 * structure is usually allocated from kmem_cache_create() and 1318 * gets destroyed at kmem_cache_destroy(). 1319 */ 1320 /* fall through */ 1321 #endif 1322 case CPU_UP_CANCELED: 1323 case CPU_UP_CANCELED_FROZEN: 1324 mutex_lock(&cache_chain_mutex); 1325 cpuup_canceled(cpu); 1326 mutex_unlock(&cache_chain_mutex); 1327 break; 1328 } 1329 return notifier_from_errno(err); 1330 } 1331 1332 static struct notifier_block __cpuinitdata cpucache_notifier = { 1333 &cpuup_callback, NULL, 0 1334 }; 1335 1336 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1337 /* 1338 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1339 * Returns -EBUSY if all objects cannot be drained so that the node is not 1340 * removed. 1341 * 1342 * Must hold cache_chain_mutex. 1343 */ 1344 static int __meminit drain_cache_nodelists_node(int node) 1345 { 1346 struct kmem_cache *cachep; 1347 int ret = 0; 1348 1349 list_for_each_entry(cachep, &cache_chain, next) { 1350 struct kmem_list3 *l3; 1351 1352 l3 = cachep->nodelists[node]; 1353 if (!l3) 1354 continue; 1355 1356 drain_freelist(cachep, l3, l3->free_objects); 1357 1358 if (!list_empty(&l3->slabs_full) || 1359 !list_empty(&l3->slabs_partial)) { 1360 ret = -EBUSY; 1361 break; 1362 } 1363 } 1364 return ret; 1365 } 1366 1367 static int __meminit slab_memory_callback(struct notifier_block *self, 1368 unsigned long action, void *arg) 1369 { 1370 struct memory_notify *mnb = arg; 1371 int ret = 0; 1372 int nid; 1373 1374 nid = mnb->status_change_nid; 1375 if (nid < 0) 1376 goto out; 1377 1378 switch (action) { 1379 case MEM_GOING_ONLINE: 1380 mutex_lock(&cache_chain_mutex); 1381 ret = init_cache_nodelists_node(nid); 1382 mutex_unlock(&cache_chain_mutex); 1383 break; 1384 case MEM_GOING_OFFLINE: 1385 mutex_lock(&cache_chain_mutex); 1386 ret = drain_cache_nodelists_node(nid); 1387 mutex_unlock(&cache_chain_mutex); 1388 break; 1389 case MEM_ONLINE: 1390 case MEM_OFFLINE: 1391 case MEM_CANCEL_ONLINE: 1392 case MEM_CANCEL_OFFLINE: 1393 break; 1394 } 1395 out: 1396 return notifier_from_errno(ret); 1397 } 1398 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1399 1400 /* 1401 * swap the static kmem_list3 with kmalloced memory 1402 */ 1403 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, 1404 int nodeid) 1405 { 1406 struct kmem_list3 *ptr; 1407 1408 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); 1409 BUG_ON(!ptr); 1410 1411 memcpy(ptr, list, sizeof(struct kmem_list3)); 1412 /* 1413 * Do not assume that spinlocks can be initialized via memcpy: 1414 */ 1415 spin_lock_init(&ptr->list_lock); 1416 1417 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1418 cachep->nodelists[nodeid] = ptr; 1419 } 1420 1421 /* 1422 * For setting up all the kmem_list3s for cache whose buffer_size is same as 1423 * size of kmem_list3. 1424 */ 1425 static void __init set_up_list3s(struct kmem_cache *cachep, int index) 1426 { 1427 int node; 1428 1429 for_each_online_node(node) { 1430 cachep->nodelists[node] = &initkmem_list3[index + node]; 1431 cachep->nodelists[node]->next_reap = jiffies + 1432 REAPTIMEOUT_LIST3 + 1433 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1434 } 1435 } 1436 1437 /* 1438 * Initialisation. Called after the page allocator have been initialised and 1439 * before smp_init(). 1440 */ 1441 void __init kmem_cache_init(void) 1442 { 1443 size_t left_over; 1444 struct cache_sizes *sizes; 1445 struct cache_names *names; 1446 int i; 1447 int order; 1448 int node; 1449 1450 if (num_possible_nodes() == 1) 1451 use_alien_caches = 0; 1452 1453 for (i = 0; i < NUM_INIT_LISTS; i++) { 1454 kmem_list3_init(&initkmem_list3[i]); 1455 if (i < MAX_NUMNODES) 1456 cache_cache.nodelists[i] = NULL; 1457 } 1458 set_up_list3s(&cache_cache, CACHE_CACHE); 1459 1460 /* 1461 * Fragmentation resistance on low memory - only use bigger 1462 * page orders on machines with more than 32MB of memory. 1463 */ 1464 if (totalram_pages > (32 << 20) >> PAGE_SHIFT) 1465 slab_break_gfp_order = BREAK_GFP_ORDER_HI; 1466 1467 /* Bootstrap is tricky, because several objects are allocated 1468 * from caches that do not exist yet: 1469 * 1) initialize the cache_cache cache: it contains the struct 1470 * kmem_cache structures of all caches, except cache_cache itself: 1471 * cache_cache is statically allocated. 1472 * Initially an __init data area is used for the head array and the 1473 * kmem_list3 structures, it's replaced with a kmalloc allocated 1474 * array at the end of the bootstrap. 1475 * 2) Create the first kmalloc cache. 1476 * The struct kmem_cache for the new cache is allocated normally. 1477 * An __init data area is used for the head array. 1478 * 3) Create the remaining kmalloc caches, with minimally sized 1479 * head arrays. 1480 * 4) Replace the __init data head arrays for cache_cache and the first 1481 * kmalloc cache with kmalloc allocated arrays. 1482 * 5) Replace the __init data for kmem_list3 for cache_cache and 1483 * the other cache's with kmalloc allocated memory. 1484 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1485 */ 1486 1487 node = numa_mem_id(); 1488 1489 /* 1) create the cache_cache */ 1490 INIT_LIST_HEAD(&cache_chain); 1491 list_add(&cache_cache.next, &cache_chain); 1492 cache_cache.colour_off = cache_line_size(); 1493 cache_cache.array[smp_processor_id()] = &initarray_cache.cache; 1494 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; 1495 1496 /* 1497 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1498 */ 1499 cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) + 1500 nr_node_ids * sizeof(struct kmem_list3 *); 1501 #if DEBUG 1502 cache_cache.obj_size = cache_cache.buffer_size; 1503 #endif 1504 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, 1505 cache_line_size()); 1506 cache_cache.reciprocal_buffer_size = 1507 reciprocal_value(cache_cache.buffer_size); 1508 1509 for (order = 0; order < MAX_ORDER; order++) { 1510 cache_estimate(order, cache_cache.buffer_size, 1511 cache_line_size(), 0, &left_over, &cache_cache.num); 1512 if (cache_cache.num) 1513 break; 1514 } 1515 BUG_ON(!cache_cache.num); 1516 cache_cache.gfporder = order; 1517 cache_cache.colour = left_over / cache_cache.colour_off; 1518 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + 1519 sizeof(struct slab), cache_line_size()); 1520 1521 /* 2+3) create the kmalloc caches */ 1522 sizes = malloc_sizes; 1523 names = cache_names; 1524 1525 /* 1526 * Initialize the caches that provide memory for the array cache and the 1527 * kmem_list3 structures first. Without this, further allocations will 1528 * bug. 1529 */ 1530 1531 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, 1532 sizes[INDEX_AC].cs_size, 1533 ARCH_KMALLOC_MINALIGN, 1534 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1535 NULL); 1536 1537 if (INDEX_AC != INDEX_L3) { 1538 sizes[INDEX_L3].cs_cachep = 1539 kmem_cache_create(names[INDEX_L3].name, 1540 sizes[INDEX_L3].cs_size, 1541 ARCH_KMALLOC_MINALIGN, 1542 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1543 NULL); 1544 } 1545 1546 slab_early_init = 0; 1547 1548 while (sizes->cs_size != ULONG_MAX) { 1549 /* 1550 * For performance, all the general caches are L1 aligned. 1551 * This should be particularly beneficial on SMP boxes, as it 1552 * eliminates "false sharing". 1553 * Note for systems short on memory removing the alignment will 1554 * allow tighter packing of the smaller caches. 1555 */ 1556 if (!sizes->cs_cachep) { 1557 sizes->cs_cachep = kmem_cache_create(names->name, 1558 sizes->cs_size, 1559 ARCH_KMALLOC_MINALIGN, 1560 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1561 NULL); 1562 } 1563 #ifdef CONFIG_ZONE_DMA 1564 sizes->cs_dmacachep = kmem_cache_create( 1565 names->name_dma, 1566 sizes->cs_size, 1567 ARCH_KMALLOC_MINALIGN, 1568 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| 1569 SLAB_PANIC, 1570 NULL); 1571 #endif 1572 sizes++; 1573 names++; 1574 } 1575 /* 4) Replace the bootstrap head arrays */ 1576 { 1577 struct array_cache *ptr; 1578 1579 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1580 1581 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); 1582 memcpy(ptr, cpu_cache_get(&cache_cache), 1583 sizeof(struct arraycache_init)); 1584 /* 1585 * Do not assume that spinlocks can be initialized via memcpy: 1586 */ 1587 spin_lock_init(&ptr->lock); 1588 1589 cache_cache.array[smp_processor_id()] = ptr; 1590 1591 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1592 1593 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) 1594 != &initarray_generic.cache); 1595 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), 1596 sizeof(struct arraycache_init)); 1597 /* 1598 * Do not assume that spinlocks can be initialized via memcpy: 1599 */ 1600 spin_lock_init(&ptr->lock); 1601 1602 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = 1603 ptr; 1604 } 1605 /* 5) Replace the bootstrap kmem_list3's */ 1606 { 1607 int nid; 1608 1609 for_each_online_node(nid) { 1610 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); 1611 1612 init_list(malloc_sizes[INDEX_AC].cs_cachep, 1613 &initkmem_list3[SIZE_AC + nid], nid); 1614 1615 if (INDEX_AC != INDEX_L3) { 1616 init_list(malloc_sizes[INDEX_L3].cs_cachep, 1617 &initkmem_list3[SIZE_L3 + nid], nid); 1618 } 1619 } 1620 } 1621 1622 g_cpucache_up = EARLY; 1623 } 1624 1625 void __init kmem_cache_init_late(void) 1626 { 1627 struct kmem_cache *cachep; 1628 1629 /* 6) resize the head arrays to their final sizes */ 1630 mutex_lock(&cache_chain_mutex); 1631 list_for_each_entry(cachep, &cache_chain, next) 1632 if (enable_cpucache(cachep, GFP_NOWAIT)) 1633 BUG(); 1634 mutex_unlock(&cache_chain_mutex); 1635 1636 /* Done! */ 1637 g_cpucache_up = FULL; 1638 1639 /* Annotate slab for lockdep -- annotate the malloc caches */ 1640 init_lock_keys(); 1641 1642 /* 1643 * Register a cpu startup notifier callback that initializes 1644 * cpu_cache_get for all new cpus 1645 */ 1646 register_cpu_notifier(&cpucache_notifier); 1647 1648 #ifdef CONFIG_NUMA 1649 /* 1650 * Register a memory hotplug callback that initializes and frees 1651 * nodelists. 1652 */ 1653 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1654 #endif 1655 1656 /* 1657 * The reap timers are started later, with a module init call: That part 1658 * of the kernel is not yet operational. 1659 */ 1660 } 1661 1662 static int __init cpucache_init(void) 1663 { 1664 int cpu; 1665 1666 /* 1667 * Register the timers that return unneeded pages to the page allocator 1668 */ 1669 for_each_online_cpu(cpu) 1670 start_cpu_timer(cpu); 1671 return 0; 1672 } 1673 __initcall(cpucache_init); 1674 1675 /* 1676 * Interface to system's page allocator. No need to hold the cache-lock. 1677 * 1678 * If we requested dmaable memory, we will get it. Even if we 1679 * did not request dmaable memory, we might get it, but that 1680 * would be relatively rare and ignorable. 1681 */ 1682 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) 1683 { 1684 struct page *page; 1685 int nr_pages; 1686 int i; 1687 1688 #ifndef CONFIG_MMU 1689 /* 1690 * Nommu uses slab's for process anonymous memory allocations, and thus 1691 * requires __GFP_COMP to properly refcount higher order allocations 1692 */ 1693 flags |= __GFP_COMP; 1694 #endif 1695 1696 flags |= cachep->gfpflags; 1697 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1698 flags |= __GFP_RECLAIMABLE; 1699 1700 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1701 if (!page) 1702 return NULL; 1703 1704 nr_pages = (1 << cachep->gfporder); 1705 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1706 add_zone_page_state(page_zone(page), 1707 NR_SLAB_RECLAIMABLE, nr_pages); 1708 else 1709 add_zone_page_state(page_zone(page), 1710 NR_SLAB_UNRECLAIMABLE, nr_pages); 1711 for (i = 0; i < nr_pages; i++) 1712 __SetPageSlab(page + i); 1713 1714 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1715 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1716 1717 if (cachep->ctor) 1718 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1719 else 1720 kmemcheck_mark_unallocated_pages(page, nr_pages); 1721 } 1722 1723 return page_address(page); 1724 } 1725 1726 /* 1727 * Interface to system's page release. 1728 */ 1729 static void kmem_freepages(struct kmem_cache *cachep, void *addr) 1730 { 1731 unsigned long i = (1 << cachep->gfporder); 1732 struct page *page = virt_to_page(addr); 1733 const unsigned long nr_freed = i; 1734 1735 kmemcheck_free_shadow(page, cachep->gfporder); 1736 1737 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1738 sub_zone_page_state(page_zone(page), 1739 NR_SLAB_RECLAIMABLE, nr_freed); 1740 else 1741 sub_zone_page_state(page_zone(page), 1742 NR_SLAB_UNRECLAIMABLE, nr_freed); 1743 while (i--) { 1744 BUG_ON(!PageSlab(page)); 1745 __ClearPageSlab(page); 1746 page++; 1747 } 1748 if (current->reclaim_state) 1749 current->reclaim_state->reclaimed_slab += nr_freed; 1750 free_pages((unsigned long)addr, cachep->gfporder); 1751 } 1752 1753 static void kmem_rcu_free(struct rcu_head *head) 1754 { 1755 struct slab_rcu *slab_rcu = (struct slab_rcu *)head; 1756 struct kmem_cache *cachep = slab_rcu->cachep; 1757 1758 kmem_freepages(cachep, slab_rcu->addr); 1759 if (OFF_SLAB(cachep)) 1760 kmem_cache_free(cachep->slabp_cache, slab_rcu); 1761 } 1762 1763 #if DEBUG 1764 1765 #ifdef CONFIG_DEBUG_PAGEALLOC 1766 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1767 unsigned long caller) 1768 { 1769 int size = obj_size(cachep); 1770 1771 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1772 1773 if (size < 5 * sizeof(unsigned long)) 1774 return; 1775 1776 *addr++ = 0x12345678; 1777 *addr++ = caller; 1778 *addr++ = smp_processor_id(); 1779 size -= 3 * sizeof(unsigned long); 1780 { 1781 unsigned long *sptr = &caller; 1782 unsigned long svalue; 1783 1784 while (!kstack_end(sptr)) { 1785 svalue = *sptr++; 1786 if (kernel_text_address(svalue)) { 1787 *addr++ = svalue; 1788 size -= sizeof(unsigned long); 1789 if (size <= sizeof(unsigned long)) 1790 break; 1791 } 1792 } 1793 1794 } 1795 *addr++ = 0x87654321; 1796 } 1797 #endif 1798 1799 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1800 { 1801 int size = obj_size(cachep); 1802 addr = &((char *)addr)[obj_offset(cachep)]; 1803 1804 memset(addr, val, size); 1805 *(unsigned char *)(addr + size - 1) = POISON_END; 1806 } 1807 1808 static void dump_line(char *data, int offset, int limit) 1809 { 1810 int i; 1811 unsigned char error = 0; 1812 int bad_count = 0; 1813 1814 printk(KERN_ERR "%03x:", offset); 1815 for (i = 0; i < limit; i++) { 1816 if (data[offset + i] != POISON_FREE) { 1817 error = data[offset + i]; 1818 bad_count++; 1819 } 1820 printk(" %02x", (unsigned char)data[offset + i]); 1821 } 1822 printk("\n"); 1823 1824 if (bad_count == 1) { 1825 error ^= POISON_FREE; 1826 if (!(error & (error - 1))) { 1827 printk(KERN_ERR "Single bit error detected. Probably " 1828 "bad RAM.\n"); 1829 #ifdef CONFIG_X86 1830 printk(KERN_ERR "Run memtest86+ or a similar memory " 1831 "test tool.\n"); 1832 #else 1833 printk(KERN_ERR "Run a memory test tool.\n"); 1834 #endif 1835 } 1836 } 1837 } 1838 #endif 1839 1840 #if DEBUG 1841 1842 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1843 { 1844 int i, size; 1845 char *realobj; 1846 1847 if (cachep->flags & SLAB_RED_ZONE) { 1848 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 1849 *dbg_redzone1(cachep, objp), 1850 *dbg_redzone2(cachep, objp)); 1851 } 1852 1853 if (cachep->flags & SLAB_STORE_USER) { 1854 printk(KERN_ERR "Last user: [<%p>]", 1855 *dbg_userword(cachep, objp)); 1856 print_symbol("(%s)", 1857 (unsigned long)*dbg_userword(cachep, objp)); 1858 printk("\n"); 1859 } 1860 realobj = (char *)objp + obj_offset(cachep); 1861 size = obj_size(cachep); 1862 for (i = 0; i < size && lines; i += 16, lines--) { 1863 int limit; 1864 limit = 16; 1865 if (i + limit > size) 1866 limit = size - i; 1867 dump_line(realobj, i, limit); 1868 } 1869 } 1870 1871 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1872 { 1873 char *realobj; 1874 int size, i; 1875 int lines = 0; 1876 1877 realobj = (char *)objp + obj_offset(cachep); 1878 size = obj_size(cachep); 1879 1880 for (i = 0; i < size; i++) { 1881 char exp = POISON_FREE; 1882 if (i == size - 1) 1883 exp = POISON_END; 1884 if (realobj[i] != exp) { 1885 int limit; 1886 /* Mismatch ! */ 1887 /* Print header */ 1888 if (lines == 0) { 1889 printk(KERN_ERR 1890 "Slab corruption: %s start=%p, len=%d\n", 1891 cachep->name, realobj, size); 1892 print_objinfo(cachep, objp, 0); 1893 } 1894 /* Hexdump the affected line */ 1895 i = (i / 16) * 16; 1896 limit = 16; 1897 if (i + limit > size) 1898 limit = size - i; 1899 dump_line(realobj, i, limit); 1900 i += 16; 1901 lines++; 1902 /* Limit to 5 lines */ 1903 if (lines > 5) 1904 break; 1905 } 1906 } 1907 if (lines != 0) { 1908 /* Print some data about the neighboring objects, if they 1909 * exist: 1910 */ 1911 struct slab *slabp = virt_to_slab(objp); 1912 unsigned int objnr; 1913 1914 objnr = obj_to_index(cachep, slabp, objp); 1915 if (objnr) { 1916 objp = index_to_obj(cachep, slabp, objnr - 1); 1917 realobj = (char *)objp + obj_offset(cachep); 1918 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1919 realobj, size); 1920 print_objinfo(cachep, objp, 2); 1921 } 1922 if (objnr + 1 < cachep->num) { 1923 objp = index_to_obj(cachep, slabp, objnr + 1); 1924 realobj = (char *)objp + obj_offset(cachep); 1925 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1926 realobj, size); 1927 print_objinfo(cachep, objp, 2); 1928 } 1929 } 1930 } 1931 #endif 1932 1933 #if DEBUG 1934 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 1935 { 1936 int i; 1937 for (i = 0; i < cachep->num; i++) { 1938 void *objp = index_to_obj(cachep, slabp, i); 1939 1940 if (cachep->flags & SLAB_POISON) { 1941 #ifdef CONFIG_DEBUG_PAGEALLOC 1942 if (cachep->buffer_size % PAGE_SIZE == 0 && 1943 OFF_SLAB(cachep)) 1944 kernel_map_pages(virt_to_page(objp), 1945 cachep->buffer_size / PAGE_SIZE, 1); 1946 else 1947 check_poison_obj(cachep, objp); 1948 #else 1949 check_poison_obj(cachep, objp); 1950 #endif 1951 } 1952 if (cachep->flags & SLAB_RED_ZONE) { 1953 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1954 slab_error(cachep, "start of a freed object " 1955 "was overwritten"); 1956 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1957 slab_error(cachep, "end of a freed object " 1958 "was overwritten"); 1959 } 1960 } 1961 } 1962 #else 1963 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 1964 { 1965 } 1966 #endif 1967 1968 /** 1969 * slab_destroy - destroy and release all objects in a slab 1970 * @cachep: cache pointer being destroyed 1971 * @slabp: slab pointer being destroyed 1972 * 1973 * Destroy all the objs in a slab, and release the mem back to the system. 1974 * Before calling the slab must have been unlinked from the cache. The 1975 * cache-lock is not held/needed. 1976 */ 1977 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) 1978 { 1979 void *addr = slabp->s_mem - slabp->colouroff; 1980 1981 slab_destroy_debugcheck(cachep, slabp); 1982 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 1983 struct slab_rcu *slab_rcu; 1984 1985 slab_rcu = (struct slab_rcu *)slabp; 1986 slab_rcu->cachep = cachep; 1987 slab_rcu->addr = addr; 1988 call_rcu(&slab_rcu->head, kmem_rcu_free); 1989 } else { 1990 kmem_freepages(cachep, addr); 1991 if (OFF_SLAB(cachep)) 1992 kmem_cache_free(cachep->slabp_cache, slabp); 1993 } 1994 } 1995 1996 static void __kmem_cache_destroy(struct kmem_cache *cachep) 1997 { 1998 int i; 1999 struct kmem_list3 *l3; 2000 2001 for_each_online_cpu(i) 2002 kfree(cachep->array[i]); 2003 2004 /* NUMA: free the list3 structures */ 2005 for_each_online_node(i) { 2006 l3 = cachep->nodelists[i]; 2007 if (l3) { 2008 kfree(l3->shared); 2009 free_alien_cache(l3->alien); 2010 kfree(l3); 2011 } 2012 } 2013 kmem_cache_free(&cache_cache, cachep); 2014 } 2015 2016 2017 /** 2018 * calculate_slab_order - calculate size (page order) of slabs 2019 * @cachep: pointer to the cache that is being created 2020 * @size: size of objects to be created in this cache. 2021 * @align: required alignment for the objects. 2022 * @flags: slab allocation flags 2023 * 2024 * Also calculates the number of objects per slab. 2025 * 2026 * This could be made much more intelligent. For now, try to avoid using 2027 * high order pages for slabs. When the gfp() functions are more friendly 2028 * towards high-order requests, this should be changed. 2029 */ 2030 static size_t calculate_slab_order(struct kmem_cache *cachep, 2031 size_t size, size_t align, unsigned long flags) 2032 { 2033 unsigned long offslab_limit; 2034 size_t left_over = 0; 2035 int gfporder; 2036 2037 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 2038 unsigned int num; 2039 size_t remainder; 2040 2041 cache_estimate(gfporder, size, align, flags, &remainder, &num); 2042 if (!num) 2043 continue; 2044 2045 if (flags & CFLGS_OFF_SLAB) { 2046 /* 2047 * Max number of objs-per-slab for caches which 2048 * use off-slab slabs. Needed to avoid a possible 2049 * looping condition in cache_grow(). 2050 */ 2051 offslab_limit = size - sizeof(struct slab); 2052 offslab_limit /= sizeof(kmem_bufctl_t); 2053 2054 if (num > offslab_limit) 2055 break; 2056 } 2057 2058 /* Found something acceptable - save it away */ 2059 cachep->num = num; 2060 cachep->gfporder = gfporder; 2061 left_over = remainder; 2062 2063 /* 2064 * A VFS-reclaimable slab tends to have most allocations 2065 * as GFP_NOFS and we really don't want to have to be allocating 2066 * higher-order pages when we are unable to shrink dcache. 2067 */ 2068 if (flags & SLAB_RECLAIM_ACCOUNT) 2069 break; 2070 2071 /* 2072 * Large number of objects is good, but very large slabs are 2073 * currently bad for the gfp()s. 2074 */ 2075 if (gfporder >= slab_break_gfp_order) 2076 break; 2077 2078 /* 2079 * Acceptable internal fragmentation? 2080 */ 2081 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 2082 break; 2083 } 2084 return left_over; 2085 } 2086 2087 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 2088 { 2089 if (g_cpucache_up == FULL) 2090 return enable_cpucache(cachep, gfp); 2091 2092 if (g_cpucache_up == NONE) { 2093 /* 2094 * Note: the first kmem_cache_create must create the cache 2095 * that's used by kmalloc(24), otherwise the creation of 2096 * further caches will BUG(). 2097 */ 2098 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2099 2100 /* 2101 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is 2102 * the first cache, then we need to set up all its list3s, 2103 * otherwise the creation of further caches will BUG(). 2104 */ 2105 set_up_list3s(cachep, SIZE_AC); 2106 if (INDEX_AC == INDEX_L3) 2107 g_cpucache_up = PARTIAL_L3; 2108 else 2109 g_cpucache_up = PARTIAL_AC; 2110 } else { 2111 cachep->array[smp_processor_id()] = 2112 kmalloc(sizeof(struct arraycache_init), gfp); 2113 2114 if (g_cpucache_up == PARTIAL_AC) { 2115 set_up_list3s(cachep, SIZE_L3); 2116 g_cpucache_up = PARTIAL_L3; 2117 } else { 2118 int node; 2119 for_each_online_node(node) { 2120 cachep->nodelists[node] = 2121 kmalloc_node(sizeof(struct kmem_list3), 2122 gfp, node); 2123 BUG_ON(!cachep->nodelists[node]); 2124 kmem_list3_init(cachep->nodelists[node]); 2125 } 2126 } 2127 } 2128 cachep->nodelists[numa_mem_id()]->next_reap = 2129 jiffies + REAPTIMEOUT_LIST3 + 2130 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 2131 2132 cpu_cache_get(cachep)->avail = 0; 2133 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2134 cpu_cache_get(cachep)->batchcount = 1; 2135 cpu_cache_get(cachep)->touched = 0; 2136 cachep->batchcount = 1; 2137 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2138 return 0; 2139 } 2140 2141 /** 2142 * kmem_cache_create - Create a cache. 2143 * @name: A string which is used in /proc/slabinfo to identify this cache. 2144 * @size: The size of objects to be created in this cache. 2145 * @align: The required alignment for the objects. 2146 * @flags: SLAB flags 2147 * @ctor: A constructor for the objects. 2148 * 2149 * Returns a ptr to the cache on success, NULL on failure. 2150 * Cannot be called within a int, but can be interrupted. 2151 * The @ctor is run when new pages are allocated by the cache. 2152 * 2153 * @name must be valid until the cache is destroyed. This implies that 2154 * the module calling this has to destroy the cache before getting unloaded. 2155 * 2156 * The flags are 2157 * 2158 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2159 * to catch references to uninitialised memory. 2160 * 2161 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2162 * for buffer overruns. 2163 * 2164 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2165 * cacheline. This can be beneficial if you're counting cycles as closely 2166 * as davem. 2167 */ 2168 struct kmem_cache * 2169 kmem_cache_create (const char *name, size_t size, size_t align, 2170 unsigned long flags, void (*ctor)(void *)) 2171 { 2172 size_t left_over, slab_size, ralign; 2173 struct kmem_cache *cachep = NULL, *pc; 2174 gfp_t gfp; 2175 2176 /* 2177 * Sanity checks... these are all serious usage bugs. 2178 */ 2179 if (!name || in_interrupt() || (size < BYTES_PER_WORD) || 2180 size > KMALLOC_MAX_SIZE) { 2181 printk(KERN_ERR "%s: Early error in slab %s\n", __func__, 2182 name); 2183 BUG(); 2184 } 2185 2186 /* 2187 * We use cache_chain_mutex to ensure a consistent view of 2188 * cpu_online_mask as well. Please see cpuup_callback 2189 */ 2190 if (slab_is_available()) { 2191 get_online_cpus(); 2192 mutex_lock(&cache_chain_mutex); 2193 } 2194 2195 list_for_each_entry(pc, &cache_chain, next) { 2196 char tmp; 2197 int res; 2198 2199 /* 2200 * This happens when the module gets unloaded and doesn't 2201 * destroy its slab cache and no-one else reuses the vmalloc 2202 * area of the module. Print a warning. 2203 */ 2204 res = probe_kernel_address(pc->name, tmp); 2205 if (res) { 2206 printk(KERN_ERR 2207 "SLAB: cache with size %d has lost its name\n", 2208 pc->buffer_size); 2209 continue; 2210 } 2211 2212 if (!strcmp(pc->name, name)) { 2213 printk(KERN_ERR 2214 "kmem_cache_create: duplicate cache %s\n", name); 2215 dump_stack(); 2216 goto oops; 2217 } 2218 } 2219 2220 #if DEBUG 2221 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 2222 #if FORCED_DEBUG 2223 /* 2224 * Enable redzoning and last user accounting, except for caches with 2225 * large objects, if the increased size would increase the object size 2226 * above the next power of two: caches with object sizes just above a 2227 * power of two have a significant amount of internal fragmentation. 2228 */ 2229 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2230 2 * sizeof(unsigned long long))) 2231 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2232 if (!(flags & SLAB_DESTROY_BY_RCU)) 2233 flags |= SLAB_POISON; 2234 #endif 2235 if (flags & SLAB_DESTROY_BY_RCU) 2236 BUG_ON(flags & SLAB_POISON); 2237 #endif 2238 /* 2239 * Always checks flags, a caller might be expecting debug support which 2240 * isn't available. 2241 */ 2242 BUG_ON(flags & ~CREATE_MASK); 2243 2244 /* 2245 * Check that size is in terms of words. This is needed to avoid 2246 * unaligned accesses for some archs when redzoning is used, and makes 2247 * sure any on-slab bufctl's are also correctly aligned. 2248 */ 2249 if (size & (BYTES_PER_WORD - 1)) { 2250 size += (BYTES_PER_WORD - 1); 2251 size &= ~(BYTES_PER_WORD - 1); 2252 } 2253 2254 /* calculate the final buffer alignment: */ 2255 2256 /* 1) arch recommendation: can be overridden for debug */ 2257 if (flags & SLAB_HWCACHE_ALIGN) { 2258 /* 2259 * Default alignment: as specified by the arch code. Except if 2260 * an object is really small, then squeeze multiple objects into 2261 * one cacheline. 2262 */ 2263 ralign = cache_line_size(); 2264 while (size <= ralign / 2) 2265 ralign /= 2; 2266 } else { 2267 ralign = BYTES_PER_WORD; 2268 } 2269 2270 /* 2271 * Redzoning and user store require word alignment or possibly larger. 2272 * Note this will be overridden by architecture or caller mandated 2273 * alignment if either is greater than BYTES_PER_WORD. 2274 */ 2275 if (flags & SLAB_STORE_USER) 2276 ralign = BYTES_PER_WORD; 2277 2278 if (flags & SLAB_RED_ZONE) { 2279 ralign = REDZONE_ALIGN; 2280 /* If redzoning, ensure that the second redzone is suitably 2281 * aligned, by adjusting the object size accordingly. */ 2282 size += REDZONE_ALIGN - 1; 2283 size &= ~(REDZONE_ALIGN - 1); 2284 } 2285 2286 /* 2) arch mandated alignment */ 2287 if (ralign < ARCH_SLAB_MINALIGN) { 2288 ralign = ARCH_SLAB_MINALIGN; 2289 } 2290 /* 3) caller mandated alignment */ 2291 if (ralign < align) { 2292 ralign = align; 2293 } 2294 /* disable debug if necessary */ 2295 if (ralign > __alignof__(unsigned long long)) 2296 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2297 /* 2298 * 4) Store it. 2299 */ 2300 align = ralign; 2301 2302 if (slab_is_available()) 2303 gfp = GFP_KERNEL; 2304 else 2305 gfp = GFP_NOWAIT; 2306 2307 /* Get cache's description obj. */ 2308 cachep = kmem_cache_zalloc(&cache_cache, gfp); 2309 if (!cachep) 2310 goto oops; 2311 2312 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids]; 2313 #if DEBUG 2314 cachep->obj_size = size; 2315 2316 /* 2317 * Both debugging options require word-alignment which is calculated 2318 * into align above. 2319 */ 2320 if (flags & SLAB_RED_ZONE) { 2321 /* add space for red zone words */ 2322 cachep->obj_offset += sizeof(unsigned long long); 2323 size += 2 * sizeof(unsigned long long); 2324 } 2325 if (flags & SLAB_STORE_USER) { 2326 /* user store requires one word storage behind the end of 2327 * the real object. But if the second red zone needs to be 2328 * aligned to 64 bits, we must allow that much space. 2329 */ 2330 if (flags & SLAB_RED_ZONE) 2331 size += REDZONE_ALIGN; 2332 else 2333 size += BYTES_PER_WORD; 2334 } 2335 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2336 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size 2337 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) { 2338 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align); 2339 size = PAGE_SIZE; 2340 } 2341 #endif 2342 #endif 2343 2344 /* 2345 * Determine if the slab management is 'on' or 'off' slab. 2346 * (bootstrapping cannot cope with offslab caches so don't do 2347 * it too early on. Always use on-slab management when 2348 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) 2349 */ 2350 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init && 2351 !(flags & SLAB_NOLEAKTRACE)) 2352 /* 2353 * Size is large, assume best to place the slab management obj 2354 * off-slab (should allow better packing of objs). 2355 */ 2356 flags |= CFLGS_OFF_SLAB; 2357 2358 size = ALIGN(size, align); 2359 2360 left_over = calculate_slab_order(cachep, size, align, flags); 2361 2362 if (!cachep->num) { 2363 printk(KERN_ERR 2364 "kmem_cache_create: couldn't create cache %s.\n", name); 2365 kmem_cache_free(&cache_cache, cachep); 2366 cachep = NULL; 2367 goto oops; 2368 } 2369 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) 2370 + sizeof(struct slab), align); 2371 2372 /* 2373 * If the slab has been placed off-slab, and we have enough space then 2374 * move it on-slab. This is at the expense of any extra colouring. 2375 */ 2376 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { 2377 flags &= ~CFLGS_OFF_SLAB; 2378 left_over -= slab_size; 2379 } 2380 2381 if (flags & CFLGS_OFF_SLAB) { 2382 /* really off slab. No need for manual alignment */ 2383 slab_size = 2384 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); 2385 2386 #ifdef CONFIG_PAGE_POISONING 2387 /* If we're going to use the generic kernel_map_pages() 2388 * poisoning, then it's going to smash the contents of 2389 * the redzone and userword anyhow, so switch them off. 2390 */ 2391 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) 2392 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2393 #endif 2394 } 2395 2396 cachep->colour_off = cache_line_size(); 2397 /* Offset must be a multiple of the alignment. */ 2398 if (cachep->colour_off < align) 2399 cachep->colour_off = align; 2400 cachep->colour = left_over / cachep->colour_off; 2401 cachep->slab_size = slab_size; 2402 cachep->flags = flags; 2403 cachep->gfpflags = 0; 2404 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2405 cachep->gfpflags |= GFP_DMA; 2406 cachep->buffer_size = size; 2407 cachep->reciprocal_buffer_size = reciprocal_value(size); 2408 2409 if (flags & CFLGS_OFF_SLAB) { 2410 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); 2411 /* 2412 * This is a possibility for one of the malloc_sizes caches. 2413 * But since we go off slab only for object size greater than 2414 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, 2415 * this should not happen at all. 2416 * But leave a BUG_ON for some lucky dude. 2417 */ 2418 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); 2419 } 2420 cachep->ctor = ctor; 2421 cachep->name = name; 2422 2423 if (setup_cpu_cache(cachep, gfp)) { 2424 __kmem_cache_destroy(cachep); 2425 cachep = NULL; 2426 goto oops; 2427 } 2428 2429 /* cache setup completed, link it into the list */ 2430 list_add(&cachep->next, &cache_chain); 2431 oops: 2432 if (!cachep && (flags & SLAB_PANIC)) 2433 panic("kmem_cache_create(): failed to create slab `%s'\n", 2434 name); 2435 if (slab_is_available()) { 2436 mutex_unlock(&cache_chain_mutex); 2437 put_online_cpus(); 2438 } 2439 return cachep; 2440 } 2441 EXPORT_SYMBOL(kmem_cache_create); 2442 2443 #if DEBUG 2444 static void check_irq_off(void) 2445 { 2446 BUG_ON(!irqs_disabled()); 2447 } 2448 2449 static void check_irq_on(void) 2450 { 2451 BUG_ON(irqs_disabled()); 2452 } 2453 2454 static void check_spinlock_acquired(struct kmem_cache *cachep) 2455 { 2456 #ifdef CONFIG_SMP 2457 check_irq_off(); 2458 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock); 2459 #endif 2460 } 2461 2462 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2463 { 2464 #ifdef CONFIG_SMP 2465 check_irq_off(); 2466 assert_spin_locked(&cachep->nodelists[node]->list_lock); 2467 #endif 2468 } 2469 2470 #else 2471 #define check_irq_off() do { } while(0) 2472 #define check_irq_on() do { } while(0) 2473 #define check_spinlock_acquired(x) do { } while(0) 2474 #define check_spinlock_acquired_node(x, y) do { } while(0) 2475 #endif 2476 2477 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 2478 struct array_cache *ac, 2479 int force, int node); 2480 2481 static void do_drain(void *arg) 2482 { 2483 struct kmem_cache *cachep = arg; 2484 struct array_cache *ac; 2485 int node = numa_mem_id(); 2486 2487 check_irq_off(); 2488 ac = cpu_cache_get(cachep); 2489 spin_lock(&cachep->nodelists[node]->list_lock); 2490 free_block(cachep, ac->entry, ac->avail, node); 2491 spin_unlock(&cachep->nodelists[node]->list_lock); 2492 ac->avail = 0; 2493 } 2494 2495 static void drain_cpu_caches(struct kmem_cache *cachep) 2496 { 2497 struct kmem_list3 *l3; 2498 int node; 2499 2500 on_each_cpu(do_drain, cachep, 1); 2501 check_irq_on(); 2502 for_each_online_node(node) { 2503 l3 = cachep->nodelists[node]; 2504 if (l3 && l3->alien) 2505 drain_alien_cache(cachep, l3->alien); 2506 } 2507 2508 for_each_online_node(node) { 2509 l3 = cachep->nodelists[node]; 2510 if (l3) 2511 drain_array(cachep, l3, l3->shared, 1, node); 2512 } 2513 } 2514 2515 /* 2516 * Remove slabs from the list of free slabs. 2517 * Specify the number of slabs to drain in tofree. 2518 * 2519 * Returns the actual number of slabs released. 2520 */ 2521 static int drain_freelist(struct kmem_cache *cache, 2522 struct kmem_list3 *l3, int tofree) 2523 { 2524 struct list_head *p; 2525 int nr_freed; 2526 struct slab *slabp; 2527 2528 nr_freed = 0; 2529 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { 2530 2531 spin_lock_irq(&l3->list_lock); 2532 p = l3->slabs_free.prev; 2533 if (p == &l3->slabs_free) { 2534 spin_unlock_irq(&l3->list_lock); 2535 goto out; 2536 } 2537 2538 slabp = list_entry(p, struct slab, list); 2539 #if DEBUG 2540 BUG_ON(slabp->inuse); 2541 #endif 2542 list_del(&slabp->list); 2543 /* 2544 * Safe to drop the lock. The slab is no longer linked 2545 * to the cache. 2546 */ 2547 l3->free_objects -= cache->num; 2548 spin_unlock_irq(&l3->list_lock); 2549 slab_destroy(cache, slabp); 2550 nr_freed++; 2551 } 2552 out: 2553 return nr_freed; 2554 } 2555 2556 /* Called with cache_chain_mutex held to protect against cpu hotplug */ 2557 static int __cache_shrink(struct kmem_cache *cachep) 2558 { 2559 int ret = 0, i = 0; 2560 struct kmem_list3 *l3; 2561 2562 drain_cpu_caches(cachep); 2563 2564 check_irq_on(); 2565 for_each_online_node(i) { 2566 l3 = cachep->nodelists[i]; 2567 if (!l3) 2568 continue; 2569 2570 drain_freelist(cachep, l3, l3->free_objects); 2571 2572 ret += !list_empty(&l3->slabs_full) || 2573 !list_empty(&l3->slabs_partial); 2574 } 2575 return (ret ? 1 : 0); 2576 } 2577 2578 /** 2579 * kmem_cache_shrink - Shrink a cache. 2580 * @cachep: The cache to shrink. 2581 * 2582 * Releases as many slabs as possible for a cache. 2583 * To help debugging, a zero exit status indicates all slabs were released. 2584 */ 2585 int kmem_cache_shrink(struct kmem_cache *cachep) 2586 { 2587 int ret; 2588 BUG_ON(!cachep || in_interrupt()); 2589 2590 get_online_cpus(); 2591 mutex_lock(&cache_chain_mutex); 2592 ret = __cache_shrink(cachep); 2593 mutex_unlock(&cache_chain_mutex); 2594 put_online_cpus(); 2595 return ret; 2596 } 2597 EXPORT_SYMBOL(kmem_cache_shrink); 2598 2599 /** 2600 * kmem_cache_destroy - delete a cache 2601 * @cachep: the cache to destroy 2602 * 2603 * Remove a &struct kmem_cache object from the slab cache. 2604 * 2605 * It is expected this function will be called by a module when it is 2606 * unloaded. This will remove the cache completely, and avoid a duplicate 2607 * cache being allocated each time a module is loaded and unloaded, if the 2608 * module doesn't have persistent in-kernel storage across loads and unloads. 2609 * 2610 * The cache must be empty before calling this function. 2611 * 2612 * The caller must guarantee that no one will allocate memory from the cache 2613 * during the kmem_cache_destroy(). 2614 */ 2615 void kmem_cache_destroy(struct kmem_cache *cachep) 2616 { 2617 BUG_ON(!cachep || in_interrupt()); 2618 2619 /* Find the cache in the chain of caches. */ 2620 get_online_cpus(); 2621 mutex_lock(&cache_chain_mutex); 2622 /* 2623 * the chain is never empty, cache_cache is never destroyed 2624 */ 2625 list_del(&cachep->next); 2626 if (__cache_shrink(cachep)) { 2627 slab_error(cachep, "Can't free all objects"); 2628 list_add(&cachep->next, &cache_chain); 2629 mutex_unlock(&cache_chain_mutex); 2630 put_online_cpus(); 2631 return; 2632 } 2633 2634 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 2635 rcu_barrier(); 2636 2637 __kmem_cache_destroy(cachep); 2638 mutex_unlock(&cache_chain_mutex); 2639 put_online_cpus(); 2640 } 2641 EXPORT_SYMBOL(kmem_cache_destroy); 2642 2643 /* 2644 * Get the memory for a slab management obj. 2645 * For a slab cache when the slab descriptor is off-slab, slab descriptors 2646 * always come from malloc_sizes caches. The slab descriptor cannot 2647 * come from the same cache which is getting created because, 2648 * when we are searching for an appropriate cache for these 2649 * descriptors in kmem_cache_create, we search through the malloc_sizes array. 2650 * If we are creating a malloc_sizes cache here it would not be visible to 2651 * kmem_find_general_cachep till the initialization is complete. 2652 * Hence we cannot have slabp_cache same as the original cache. 2653 */ 2654 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, 2655 int colour_off, gfp_t local_flags, 2656 int nodeid) 2657 { 2658 struct slab *slabp; 2659 2660 if (OFF_SLAB(cachep)) { 2661 /* Slab management obj is off-slab. */ 2662 slabp = kmem_cache_alloc_node(cachep->slabp_cache, 2663 local_flags, nodeid); 2664 /* 2665 * If the first object in the slab is leaked (it's allocated 2666 * but no one has a reference to it), we want to make sure 2667 * kmemleak does not treat the ->s_mem pointer as a reference 2668 * to the object. Otherwise we will not report the leak. 2669 */ 2670 kmemleak_scan_area(&slabp->list, sizeof(struct list_head), 2671 local_flags); 2672 if (!slabp) 2673 return NULL; 2674 } else { 2675 slabp = objp + colour_off; 2676 colour_off += cachep->slab_size; 2677 } 2678 slabp->inuse = 0; 2679 slabp->colouroff = colour_off; 2680 slabp->s_mem = objp + colour_off; 2681 slabp->nodeid = nodeid; 2682 slabp->free = 0; 2683 return slabp; 2684 } 2685 2686 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) 2687 { 2688 return (kmem_bufctl_t *) (slabp + 1); 2689 } 2690 2691 static void cache_init_objs(struct kmem_cache *cachep, 2692 struct slab *slabp) 2693 { 2694 int i; 2695 2696 for (i = 0; i < cachep->num; i++) { 2697 void *objp = index_to_obj(cachep, slabp, i); 2698 #if DEBUG 2699 /* need to poison the objs? */ 2700 if (cachep->flags & SLAB_POISON) 2701 poison_obj(cachep, objp, POISON_FREE); 2702 if (cachep->flags & SLAB_STORE_USER) 2703 *dbg_userword(cachep, objp) = NULL; 2704 2705 if (cachep->flags & SLAB_RED_ZONE) { 2706 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2707 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2708 } 2709 /* 2710 * Constructors are not allowed to allocate memory from the same 2711 * cache which they are a constructor for. Otherwise, deadlock. 2712 * They must also be threaded. 2713 */ 2714 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2715 cachep->ctor(objp + obj_offset(cachep)); 2716 2717 if (cachep->flags & SLAB_RED_ZONE) { 2718 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2719 slab_error(cachep, "constructor overwrote the" 2720 " end of an object"); 2721 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2722 slab_error(cachep, "constructor overwrote the" 2723 " start of an object"); 2724 } 2725 if ((cachep->buffer_size % PAGE_SIZE) == 0 && 2726 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2727 kernel_map_pages(virt_to_page(objp), 2728 cachep->buffer_size / PAGE_SIZE, 0); 2729 #else 2730 if (cachep->ctor) 2731 cachep->ctor(objp); 2732 #endif 2733 slab_bufctl(slabp)[i] = i + 1; 2734 } 2735 slab_bufctl(slabp)[i - 1] = BUFCTL_END; 2736 } 2737 2738 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2739 { 2740 if (CONFIG_ZONE_DMA_FLAG) { 2741 if (flags & GFP_DMA) 2742 BUG_ON(!(cachep->gfpflags & GFP_DMA)); 2743 else 2744 BUG_ON(cachep->gfpflags & GFP_DMA); 2745 } 2746 } 2747 2748 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, 2749 int nodeid) 2750 { 2751 void *objp = index_to_obj(cachep, slabp, slabp->free); 2752 kmem_bufctl_t next; 2753 2754 slabp->inuse++; 2755 next = slab_bufctl(slabp)[slabp->free]; 2756 #if DEBUG 2757 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; 2758 WARN_ON(slabp->nodeid != nodeid); 2759 #endif 2760 slabp->free = next; 2761 2762 return objp; 2763 } 2764 2765 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, 2766 void *objp, int nodeid) 2767 { 2768 unsigned int objnr = obj_to_index(cachep, slabp, objp); 2769 2770 #if DEBUG 2771 /* Verify that the slab belongs to the intended node */ 2772 WARN_ON(slabp->nodeid != nodeid); 2773 2774 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { 2775 printk(KERN_ERR "slab: double free detected in cache " 2776 "'%s', objp %p\n", cachep->name, objp); 2777 BUG(); 2778 } 2779 #endif 2780 slab_bufctl(slabp)[objnr] = slabp->free; 2781 slabp->free = objnr; 2782 slabp->inuse--; 2783 } 2784 2785 /* 2786 * Map pages beginning at addr to the given cache and slab. This is required 2787 * for the slab allocator to be able to lookup the cache and slab of a 2788 * virtual address for kfree, ksize, and slab debugging. 2789 */ 2790 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, 2791 void *addr) 2792 { 2793 int nr_pages; 2794 struct page *page; 2795 2796 page = virt_to_page(addr); 2797 2798 nr_pages = 1; 2799 if (likely(!PageCompound(page))) 2800 nr_pages <<= cache->gfporder; 2801 2802 do { 2803 page_set_cache(page, cache); 2804 page_set_slab(page, slab); 2805 page++; 2806 } while (--nr_pages); 2807 } 2808 2809 /* 2810 * Grow (by 1) the number of slabs within a cache. This is called by 2811 * kmem_cache_alloc() when there are no active objs left in a cache. 2812 */ 2813 static int cache_grow(struct kmem_cache *cachep, 2814 gfp_t flags, int nodeid, void *objp) 2815 { 2816 struct slab *slabp; 2817 size_t offset; 2818 gfp_t local_flags; 2819 struct kmem_list3 *l3; 2820 2821 /* 2822 * Be lazy and only check for valid flags here, keeping it out of the 2823 * critical path in kmem_cache_alloc(). 2824 */ 2825 BUG_ON(flags & GFP_SLAB_BUG_MASK); 2826 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2827 2828 /* Take the l3 list lock to change the colour_next on this node */ 2829 check_irq_off(); 2830 l3 = cachep->nodelists[nodeid]; 2831 spin_lock(&l3->list_lock); 2832 2833 /* Get colour for the slab, and cal the next value. */ 2834 offset = l3->colour_next; 2835 l3->colour_next++; 2836 if (l3->colour_next >= cachep->colour) 2837 l3->colour_next = 0; 2838 spin_unlock(&l3->list_lock); 2839 2840 offset *= cachep->colour_off; 2841 2842 if (local_flags & __GFP_WAIT) 2843 local_irq_enable(); 2844 2845 /* 2846 * The test for missing atomic flag is performed here, rather than 2847 * the more obvious place, simply to reduce the critical path length 2848 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2849 * will eventually be caught here (where it matters). 2850 */ 2851 kmem_flagcheck(cachep, flags); 2852 2853 /* 2854 * Get mem for the objs. Attempt to allocate a physical page from 2855 * 'nodeid'. 2856 */ 2857 if (!objp) 2858 objp = kmem_getpages(cachep, local_flags, nodeid); 2859 if (!objp) 2860 goto failed; 2861 2862 /* Get slab management. */ 2863 slabp = alloc_slabmgmt(cachep, objp, offset, 2864 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2865 if (!slabp) 2866 goto opps1; 2867 2868 slab_map_pages(cachep, slabp, objp); 2869 2870 cache_init_objs(cachep, slabp); 2871 2872 if (local_flags & __GFP_WAIT) 2873 local_irq_disable(); 2874 check_irq_off(); 2875 spin_lock(&l3->list_lock); 2876 2877 /* Make slab active. */ 2878 list_add_tail(&slabp->list, &(l3->slabs_free)); 2879 STATS_INC_GROWN(cachep); 2880 l3->free_objects += cachep->num; 2881 spin_unlock(&l3->list_lock); 2882 return 1; 2883 opps1: 2884 kmem_freepages(cachep, objp); 2885 failed: 2886 if (local_flags & __GFP_WAIT) 2887 local_irq_disable(); 2888 return 0; 2889 } 2890 2891 #if DEBUG 2892 2893 /* 2894 * Perform extra freeing checks: 2895 * - detect bad pointers. 2896 * - POISON/RED_ZONE checking 2897 */ 2898 static void kfree_debugcheck(const void *objp) 2899 { 2900 if (!virt_addr_valid(objp)) { 2901 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2902 (unsigned long)objp); 2903 BUG(); 2904 } 2905 } 2906 2907 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2908 { 2909 unsigned long long redzone1, redzone2; 2910 2911 redzone1 = *dbg_redzone1(cache, obj); 2912 redzone2 = *dbg_redzone2(cache, obj); 2913 2914 /* 2915 * Redzone is ok. 2916 */ 2917 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2918 return; 2919 2920 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2921 slab_error(cache, "double free detected"); 2922 else 2923 slab_error(cache, "memory outside object was overwritten"); 2924 2925 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 2926 obj, redzone1, redzone2); 2927 } 2928 2929 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2930 void *caller) 2931 { 2932 struct page *page; 2933 unsigned int objnr; 2934 struct slab *slabp; 2935 2936 BUG_ON(virt_to_cache(objp) != cachep); 2937 2938 objp -= obj_offset(cachep); 2939 kfree_debugcheck(objp); 2940 page = virt_to_head_page(objp); 2941 2942 slabp = page_get_slab(page); 2943 2944 if (cachep->flags & SLAB_RED_ZONE) { 2945 verify_redzone_free(cachep, objp); 2946 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2947 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2948 } 2949 if (cachep->flags & SLAB_STORE_USER) 2950 *dbg_userword(cachep, objp) = caller; 2951 2952 objnr = obj_to_index(cachep, slabp, objp); 2953 2954 BUG_ON(objnr >= cachep->num); 2955 BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); 2956 2957 #ifdef CONFIG_DEBUG_SLAB_LEAK 2958 slab_bufctl(slabp)[objnr] = BUFCTL_FREE; 2959 #endif 2960 if (cachep->flags & SLAB_POISON) { 2961 #ifdef CONFIG_DEBUG_PAGEALLOC 2962 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 2963 store_stackinfo(cachep, objp, (unsigned long)caller); 2964 kernel_map_pages(virt_to_page(objp), 2965 cachep->buffer_size / PAGE_SIZE, 0); 2966 } else { 2967 poison_obj(cachep, objp, POISON_FREE); 2968 } 2969 #else 2970 poison_obj(cachep, objp, POISON_FREE); 2971 #endif 2972 } 2973 return objp; 2974 } 2975 2976 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) 2977 { 2978 kmem_bufctl_t i; 2979 int entries = 0; 2980 2981 /* Check slab's freelist to see if this obj is there. */ 2982 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { 2983 entries++; 2984 if (entries > cachep->num || i >= cachep->num) 2985 goto bad; 2986 } 2987 if (entries != cachep->num - slabp->inuse) { 2988 bad: 2989 printk(KERN_ERR "slab: Internal list corruption detected in " 2990 "cache '%s'(%d), slabp %p(%d). Hexdump:\n", 2991 cachep->name, cachep->num, slabp, slabp->inuse); 2992 for (i = 0; 2993 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); 2994 i++) { 2995 if (i % 16 == 0) 2996 printk("\n%03x:", i); 2997 printk(" %02x", ((unsigned char *)slabp)[i]); 2998 } 2999 printk("\n"); 3000 BUG(); 3001 } 3002 } 3003 #else 3004 #define kfree_debugcheck(x) do { } while(0) 3005 #define cache_free_debugcheck(x,objp,z) (objp) 3006 #define check_slabp(x,y) do { } while(0) 3007 #endif 3008 3009 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 3010 { 3011 int batchcount; 3012 struct kmem_list3 *l3; 3013 struct array_cache *ac; 3014 int node; 3015 3016 retry: 3017 check_irq_off(); 3018 node = numa_mem_id(); 3019 ac = cpu_cache_get(cachep); 3020 batchcount = ac->batchcount; 3021 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 3022 /* 3023 * If there was little recent activity on this cache, then 3024 * perform only a partial refill. Otherwise we could generate 3025 * refill bouncing. 3026 */ 3027 batchcount = BATCHREFILL_LIMIT; 3028 } 3029 l3 = cachep->nodelists[node]; 3030 3031 BUG_ON(ac->avail > 0 || !l3); 3032 spin_lock(&l3->list_lock); 3033 3034 /* See if we can refill from the shared array */ 3035 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) { 3036 l3->shared->touched = 1; 3037 goto alloc_done; 3038 } 3039 3040 while (batchcount > 0) { 3041 struct list_head *entry; 3042 struct slab *slabp; 3043 /* Get slab alloc is to come from. */ 3044 entry = l3->slabs_partial.next; 3045 if (entry == &l3->slabs_partial) { 3046 l3->free_touched = 1; 3047 entry = l3->slabs_free.next; 3048 if (entry == &l3->slabs_free) 3049 goto must_grow; 3050 } 3051 3052 slabp = list_entry(entry, struct slab, list); 3053 check_slabp(cachep, slabp); 3054 check_spinlock_acquired(cachep); 3055 3056 /* 3057 * The slab was either on partial or free list so 3058 * there must be at least one object available for 3059 * allocation. 3060 */ 3061 BUG_ON(slabp->inuse >= cachep->num); 3062 3063 while (slabp->inuse < cachep->num && batchcount--) { 3064 STATS_INC_ALLOCED(cachep); 3065 STATS_INC_ACTIVE(cachep); 3066 STATS_SET_HIGH(cachep); 3067 3068 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, 3069 node); 3070 } 3071 check_slabp(cachep, slabp); 3072 3073 /* move slabp to correct slabp list: */ 3074 list_del(&slabp->list); 3075 if (slabp->free == BUFCTL_END) 3076 list_add(&slabp->list, &l3->slabs_full); 3077 else 3078 list_add(&slabp->list, &l3->slabs_partial); 3079 } 3080 3081 must_grow: 3082 l3->free_objects -= ac->avail; 3083 alloc_done: 3084 spin_unlock(&l3->list_lock); 3085 3086 if (unlikely(!ac->avail)) { 3087 int x; 3088 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 3089 3090 /* cache_grow can reenable interrupts, then ac could change. */ 3091 ac = cpu_cache_get(cachep); 3092 if (!x && ac->avail == 0) /* no objects in sight? abort */ 3093 return NULL; 3094 3095 if (!ac->avail) /* objects refilled by interrupt? */ 3096 goto retry; 3097 } 3098 ac->touched = 1; 3099 return ac->entry[--ac->avail]; 3100 } 3101 3102 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3103 gfp_t flags) 3104 { 3105 might_sleep_if(flags & __GFP_WAIT); 3106 #if DEBUG 3107 kmem_flagcheck(cachep, flags); 3108 #endif 3109 } 3110 3111 #if DEBUG 3112 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3113 gfp_t flags, void *objp, void *caller) 3114 { 3115 if (!objp) 3116 return objp; 3117 if (cachep->flags & SLAB_POISON) { 3118 #ifdef CONFIG_DEBUG_PAGEALLOC 3119 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 3120 kernel_map_pages(virt_to_page(objp), 3121 cachep->buffer_size / PAGE_SIZE, 1); 3122 else 3123 check_poison_obj(cachep, objp); 3124 #else 3125 check_poison_obj(cachep, objp); 3126 #endif 3127 poison_obj(cachep, objp, POISON_INUSE); 3128 } 3129 if (cachep->flags & SLAB_STORE_USER) 3130 *dbg_userword(cachep, objp) = caller; 3131 3132 if (cachep->flags & SLAB_RED_ZONE) { 3133 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3134 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3135 slab_error(cachep, "double free, or memory outside" 3136 " object was overwritten"); 3137 printk(KERN_ERR 3138 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3139 objp, *dbg_redzone1(cachep, objp), 3140 *dbg_redzone2(cachep, objp)); 3141 } 3142 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3143 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3144 } 3145 #ifdef CONFIG_DEBUG_SLAB_LEAK 3146 { 3147 struct slab *slabp; 3148 unsigned objnr; 3149 3150 slabp = page_get_slab(virt_to_head_page(objp)); 3151 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; 3152 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; 3153 } 3154 #endif 3155 objp += obj_offset(cachep); 3156 if (cachep->ctor && cachep->flags & SLAB_POISON) 3157 cachep->ctor(objp); 3158 if (ARCH_SLAB_MINALIGN && 3159 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3160 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3161 objp, (int)ARCH_SLAB_MINALIGN); 3162 } 3163 return objp; 3164 } 3165 #else 3166 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3167 #endif 3168 3169 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) 3170 { 3171 if (cachep == &cache_cache) 3172 return false; 3173 3174 return should_failslab(obj_size(cachep), flags, cachep->flags); 3175 } 3176 3177 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3178 { 3179 void *objp; 3180 struct array_cache *ac; 3181 3182 check_irq_off(); 3183 3184 ac = cpu_cache_get(cachep); 3185 if (likely(ac->avail)) { 3186 STATS_INC_ALLOCHIT(cachep); 3187 ac->touched = 1; 3188 objp = ac->entry[--ac->avail]; 3189 } else { 3190 STATS_INC_ALLOCMISS(cachep); 3191 objp = cache_alloc_refill(cachep, flags); 3192 /* 3193 * the 'ac' may be updated by cache_alloc_refill(), 3194 * and kmemleak_erase() requires its correct value. 3195 */ 3196 ac = cpu_cache_get(cachep); 3197 } 3198 /* 3199 * To avoid a false negative, if an object that is in one of the 3200 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3201 * treat the array pointers as a reference to the object. 3202 */ 3203 if (objp) 3204 kmemleak_erase(&ac->entry[ac->avail]); 3205 return objp; 3206 } 3207 3208 #ifdef CONFIG_NUMA 3209 /* 3210 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. 3211 * 3212 * If we are in_interrupt, then process context, including cpusets and 3213 * mempolicy, may not apply and should not be used for allocation policy. 3214 */ 3215 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3216 { 3217 int nid_alloc, nid_here; 3218 3219 if (in_interrupt() || (flags & __GFP_THISNODE)) 3220 return NULL; 3221 nid_alloc = nid_here = numa_mem_id(); 3222 get_mems_allowed(); 3223 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3224 nid_alloc = cpuset_slab_spread_node(); 3225 else if (current->mempolicy) 3226 nid_alloc = slab_node(current->mempolicy); 3227 put_mems_allowed(); 3228 if (nid_alloc != nid_here) 3229 return ____cache_alloc_node(cachep, flags, nid_alloc); 3230 return NULL; 3231 } 3232 3233 /* 3234 * Fallback function if there was no memory available and no objects on a 3235 * certain node and fall back is permitted. First we scan all the 3236 * available nodelists for available objects. If that fails then we 3237 * perform an allocation without specifying a node. This allows the page 3238 * allocator to do its reclaim / fallback magic. We then insert the 3239 * slab into the proper nodelist and then allocate from it. 3240 */ 3241 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3242 { 3243 struct zonelist *zonelist; 3244 gfp_t local_flags; 3245 struct zoneref *z; 3246 struct zone *zone; 3247 enum zone_type high_zoneidx = gfp_zone(flags); 3248 void *obj = NULL; 3249 int nid; 3250 3251 if (flags & __GFP_THISNODE) 3252 return NULL; 3253 3254 get_mems_allowed(); 3255 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 3256 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3257 3258 retry: 3259 /* 3260 * Look through allowed nodes for objects available 3261 * from existing per node queues. 3262 */ 3263 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3264 nid = zone_to_nid(zone); 3265 3266 if (cpuset_zone_allowed_hardwall(zone, flags) && 3267 cache->nodelists[nid] && 3268 cache->nodelists[nid]->free_objects) { 3269 obj = ____cache_alloc_node(cache, 3270 flags | GFP_THISNODE, nid); 3271 if (obj) 3272 break; 3273 } 3274 } 3275 3276 if (!obj) { 3277 /* 3278 * This allocation will be performed within the constraints 3279 * of the current cpuset / memory policy requirements. 3280 * We may trigger various forms of reclaim on the allowed 3281 * set and go into memory reserves if necessary. 3282 */ 3283 if (local_flags & __GFP_WAIT) 3284 local_irq_enable(); 3285 kmem_flagcheck(cache, flags); 3286 obj = kmem_getpages(cache, local_flags, numa_mem_id()); 3287 if (local_flags & __GFP_WAIT) 3288 local_irq_disable(); 3289 if (obj) { 3290 /* 3291 * Insert into the appropriate per node queues 3292 */ 3293 nid = page_to_nid(virt_to_page(obj)); 3294 if (cache_grow(cache, flags, nid, obj)) { 3295 obj = ____cache_alloc_node(cache, 3296 flags | GFP_THISNODE, nid); 3297 if (!obj) 3298 /* 3299 * Another processor may allocate the 3300 * objects in the slab since we are 3301 * not holding any locks. 3302 */ 3303 goto retry; 3304 } else { 3305 /* cache_grow already freed obj */ 3306 obj = NULL; 3307 } 3308 } 3309 } 3310 put_mems_allowed(); 3311 return obj; 3312 } 3313 3314 /* 3315 * A interface to enable slab creation on nodeid 3316 */ 3317 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3318 int nodeid) 3319 { 3320 struct list_head *entry; 3321 struct slab *slabp; 3322 struct kmem_list3 *l3; 3323 void *obj; 3324 int x; 3325 3326 l3 = cachep->nodelists[nodeid]; 3327 BUG_ON(!l3); 3328 3329 retry: 3330 check_irq_off(); 3331 spin_lock(&l3->list_lock); 3332 entry = l3->slabs_partial.next; 3333 if (entry == &l3->slabs_partial) { 3334 l3->free_touched = 1; 3335 entry = l3->slabs_free.next; 3336 if (entry == &l3->slabs_free) 3337 goto must_grow; 3338 } 3339 3340 slabp = list_entry(entry, struct slab, list); 3341 check_spinlock_acquired_node(cachep, nodeid); 3342 check_slabp(cachep, slabp); 3343 3344 STATS_INC_NODEALLOCS(cachep); 3345 STATS_INC_ACTIVE(cachep); 3346 STATS_SET_HIGH(cachep); 3347 3348 BUG_ON(slabp->inuse == cachep->num); 3349 3350 obj = slab_get_obj(cachep, slabp, nodeid); 3351 check_slabp(cachep, slabp); 3352 l3->free_objects--; 3353 /* move slabp to correct slabp list: */ 3354 list_del(&slabp->list); 3355 3356 if (slabp->free == BUFCTL_END) 3357 list_add(&slabp->list, &l3->slabs_full); 3358 else 3359 list_add(&slabp->list, &l3->slabs_partial); 3360 3361 spin_unlock(&l3->list_lock); 3362 goto done; 3363 3364 must_grow: 3365 spin_unlock(&l3->list_lock); 3366 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3367 if (x) 3368 goto retry; 3369 3370 return fallback_alloc(cachep, flags); 3371 3372 done: 3373 return obj; 3374 } 3375 3376 /** 3377 * kmem_cache_alloc_node - Allocate an object on the specified node 3378 * @cachep: The cache to allocate from. 3379 * @flags: See kmalloc(). 3380 * @nodeid: node number of the target node. 3381 * @caller: return address of caller, used for debug information 3382 * 3383 * Identical to kmem_cache_alloc but it will allocate memory on the given 3384 * node, which can improve the performance for cpu bound structures. 3385 * 3386 * Fallback to other node is possible if __GFP_THISNODE is not set. 3387 */ 3388 static __always_inline void * 3389 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3390 void *caller) 3391 { 3392 unsigned long save_flags; 3393 void *ptr; 3394 int slab_node = numa_mem_id(); 3395 3396 flags &= gfp_allowed_mask; 3397 3398 lockdep_trace_alloc(flags); 3399 3400 if (slab_should_failslab(cachep, flags)) 3401 return NULL; 3402 3403 cache_alloc_debugcheck_before(cachep, flags); 3404 local_irq_save(save_flags); 3405 3406 if (nodeid == -1) 3407 nodeid = slab_node; 3408 3409 if (unlikely(!cachep->nodelists[nodeid])) { 3410 /* Node not bootstrapped yet */ 3411 ptr = fallback_alloc(cachep, flags); 3412 goto out; 3413 } 3414 3415 if (nodeid == slab_node) { 3416 /* 3417 * Use the locally cached objects if possible. 3418 * However ____cache_alloc does not allow fallback 3419 * to other nodes. It may fail while we still have 3420 * objects on other nodes available. 3421 */ 3422 ptr = ____cache_alloc(cachep, flags); 3423 if (ptr) 3424 goto out; 3425 } 3426 /* ___cache_alloc_node can fall back to other nodes */ 3427 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3428 out: 3429 local_irq_restore(save_flags); 3430 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3431 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags, 3432 flags); 3433 3434 if (likely(ptr)) 3435 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep)); 3436 3437 if (unlikely((flags & __GFP_ZERO) && ptr)) 3438 memset(ptr, 0, obj_size(cachep)); 3439 3440 return ptr; 3441 } 3442 3443 static __always_inline void * 3444 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3445 { 3446 void *objp; 3447 3448 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { 3449 objp = alternate_node_alloc(cache, flags); 3450 if (objp) 3451 goto out; 3452 } 3453 objp = ____cache_alloc(cache, flags); 3454 3455 /* 3456 * We may just have run out of memory on the local node. 3457 * ____cache_alloc_node() knows how to locate memory on other nodes 3458 */ 3459 if (!objp) 3460 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3461 3462 out: 3463 return objp; 3464 } 3465 #else 3466 3467 static __always_inline void * 3468 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3469 { 3470 return ____cache_alloc(cachep, flags); 3471 } 3472 3473 #endif /* CONFIG_NUMA */ 3474 3475 static __always_inline void * 3476 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) 3477 { 3478 unsigned long save_flags; 3479 void *objp; 3480 3481 flags &= gfp_allowed_mask; 3482 3483 lockdep_trace_alloc(flags); 3484 3485 if (slab_should_failslab(cachep, flags)) 3486 return NULL; 3487 3488 cache_alloc_debugcheck_before(cachep, flags); 3489 local_irq_save(save_flags); 3490 objp = __do_cache_alloc(cachep, flags); 3491 local_irq_restore(save_flags); 3492 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3493 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags, 3494 flags); 3495 prefetchw(objp); 3496 3497 if (likely(objp)) 3498 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep)); 3499 3500 if (unlikely((flags & __GFP_ZERO) && objp)) 3501 memset(objp, 0, obj_size(cachep)); 3502 3503 return objp; 3504 } 3505 3506 /* 3507 * Caller needs to acquire correct kmem_list's list_lock 3508 */ 3509 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, 3510 int node) 3511 { 3512 int i; 3513 struct kmem_list3 *l3; 3514 3515 for (i = 0; i < nr_objects; i++) { 3516 void *objp = objpp[i]; 3517 struct slab *slabp; 3518 3519 slabp = virt_to_slab(objp); 3520 l3 = cachep->nodelists[node]; 3521 list_del(&slabp->list); 3522 check_spinlock_acquired_node(cachep, node); 3523 check_slabp(cachep, slabp); 3524 slab_put_obj(cachep, slabp, objp, node); 3525 STATS_DEC_ACTIVE(cachep); 3526 l3->free_objects++; 3527 check_slabp(cachep, slabp); 3528 3529 /* fixup slab chains */ 3530 if (slabp->inuse == 0) { 3531 if (l3->free_objects > l3->free_limit) { 3532 l3->free_objects -= cachep->num; 3533 /* No need to drop any previously held 3534 * lock here, even if we have a off-slab slab 3535 * descriptor it is guaranteed to come from 3536 * a different cache, refer to comments before 3537 * alloc_slabmgmt. 3538 */ 3539 slab_destroy(cachep, slabp); 3540 } else { 3541 list_add(&slabp->list, &l3->slabs_free); 3542 } 3543 } else { 3544 /* Unconditionally move a slab to the end of the 3545 * partial list on free - maximum time for the 3546 * other objects to be freed, too. 3547 */ 3548 list_add_tail(&slabp->list, &l3->slabs_partial); 3549 } 3550 } 3551 } 3552 3553 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3554 { 3555 int batchcount; 3556 struct kmem_list3 *l3; 3557 int node = numa_mem_id(); 3558 3559 batchcount = ac->batchcount; 3560 #if DEBUG 3561 BUG_ON(!batchcount || batchcount > ac->avail); 3562 #endif 3563 check_irq_off(); 3564 l3 = cachep->nodelists[node]; 3565 spin_lock(&l3->list_lock); 3566 if (l3->shared) { 3567 struct array_cache *shared_array = l3->shared; 3568 int max = shared_array->limit - shared_array->avail; 3569 if (max) { 3570 if (batchcount > max) 3571 batchcount = max; 3572 memcpy(&(shared_array->entry[shared_array->avail]), 3573 ac->entry, sizeof(void *) * batchcount); 3574 shared_array->avail += batchcount; 3575 goto free_done; 3576 } 3577 } 3578 3579 free_block(cachep, ac->entry, batchcount, node); 3580 free_done: 3581 #if STATS 3582 { 3583 int i = 0; 3584 struct list_head *p; 3585 3586 p = l3->slabs_free.next; 3587 while (p != &(l3->slabs_free)) { 3588 struct slab *slabp; 3589 3590 slabp = list_entry(p, struct slab, list); 3591 BUG_ON(slabp->inuse); 3592 3593 i++; 3594 p = p->next; 3595 } 3596 STATS_SET_FREEABLE(cachep, i); 3597 } 3598 #endif 3599 spin_unlock(&l3->list_lock); 3600 ac->avail -= batchcount; 3601 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3602 } 3603 3604 /* 3605 * Release an obj back to its cache. If the obj has a constructed state, it must 3606 * be in this state _before_ it is released. Called with disabled ints. 3607 */ 3608 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3609 void *caller) 3610 { 3611 struct array_cache *ac = cpu_cache_get(cachep); 3612 3613 check_irq_off(); 3614 kmemleak_free_recursive(objp, cachep->flags); 3615 objp = cache_free_debugcheck(cachep, objp, caller); 3616 3617 kmemcheck_slab_free(cachep, objp, obj_size(cachep)); 3618 3619 /* 3620 * Skip calling cache_free_alien() when the platform is not numa. 3621 * This will avoid cache misses that happen while accessing slabp (which 3622 * is per page memory reference) to get nodeid. Instead use a global 3623 * variable to skip the call, which is mostly likely to be present in 3624 * the cache. 3625 */ 3626 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3627 return; 3628 3629 if (likely(ac->avail < ac->limit)) { 3630 STATS_INC_FREEHIT(cachep); 3631 ac->entry[ac->avail++] = objp; 3632 return; 3633 } else { 3634 STATS_INC_FREEMISS(cachep); 3635 cache_flusharray(cachep, ac); 3636 ac->entry[ac->avail++] = objp; 3637 } 3638 } 3639 3640 /** 3641 * kmem_cache_alloc - Allocate an object 3642 * @cachep: The cache to allocate from. 3643 * @flags: See kmalloc(). 3644 * 3645 * Allocate an object from this cache. The flags are only relevant 3646 * if the cache has no available objects. 3647 */ 3648 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3649 { 3650 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); 3651 3652 trace_kmem_cache_alloc(_RET_IP_, ret, 3653 obj_size(cachep), cachep->buffer_size, flags); 3654 3655 return ret; 3656 } 3657 EXPORT_SYMBOL(kmem_cache_alloc); 3658 3659 #ifdef CONFIG_TRACING 3660 void * 3661 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags) 3662 { 3663 void *ret; 3664 3665 ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); 3666 3667 trace_kmalloc(_RET_IP_, ret, 3668 size, slab_buffer_size(cachep), flags); 3669 return ret; 3670 } 3671 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3672 #endif 3673 3674 #ifdef CONFIG_NUMA 3675 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3676 { 3677 void *ret = __cache_alloc_node(cachep, flags, nodeid, 3678 __builtin_return_address(0)); 3679 3680 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3681 obj_size(cachep), cachep->buffer_size, 3682 flags, nodeid); 3683 3684 return ret; 3685 } 3686 EXPORT_SYMBOL(kmem_cache_alloc_node); 3687 3688 #ifdef CONFIG_TRACING 3689 void *kmem_cache_alloc_node_trace(size_t size, 3690 struct kmem_cache *cachep, 3691 gfp_t flags, 3692 int nodeid) 3693 { 3694 void *ret; 3695 3696 ret = __cache_alloc_node(cachep, flags, nodeid, 3697 __builtin_return_address(0)); 3698 trace_kmalloc_node(_RET_IP_, ret, 3699 size, slab_buffer_size(cachep), 3700 flags, nodeid); 3701 return ret; 3702 } 3703 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3704 #endif 3705 3706 static __always_inline void * 3707 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) 3708 { 3709 struct kmem_cache *cachep; 3710 3711 cachep = kmem_find_general_cachep(size, flags); 3712 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3713 return cachep; 3714 return kmem_cache_alloc_node_trace(size, cachep, flags, node); 3715 } 3716 3717 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3718 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3719 { 3720 return __do_kmalloc_node(size, flags, node, 3721 __builtin_return_address(0)); 3722 } 3723 EXPORT_SYMBOL(__kmalloc_node); 3724 3725 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3726 int node, unsigned long caller) 3727 { 3728 return __do_kmalloc_node(size, flags, node, (void *)caller); 3729 } 3730 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3731 #else 3732 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3733 { 3734 return __do_kmalloc_node(size, flags, node, NULL); 3735 } 3736 EXPORT_SYMBOL(__kmalloc_node); 3737 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ 3738 #endif /* CONFIG_NUMA */ 3739 3740 /** 3741 * __do_kmalloc - allocate memory 3742 * @size: how many bytes of memory are required. 3743 * @flags: the type of memory to allocate (see kmalloc). 3744 * @caller: function caller for debug tracking of the caller 3745 */ 3746 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3747 void *caller) 3748 { 3749 struct kmem_cache *cachep; 3750 void *ret; 3751 3752 /* If you want to save a few bytes .text space: replace 3753 * __ with kmem_. 3754 * Then kmalloc uses the uninlined functions instead of the inline 3755 * functions. 3756 */ 3757 cachep = __find_general_cachep(size, flags); 3758 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3759 return cachep; 3760 ret = __cache_alloc(cachep, flags, caller); 3761 3762 trace_kmalloc((unsigned long) caller, ret, 3763 size, cachep->buffer_size, flags); 3764 3765 return ret; 3766 } 3767 3768 3769 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3770 void *__kmalloc(size_t size, gfp_t flags) 3771 { 3772 return __do_kmalloc(size, flags, __builtin_return_address(0)); 3773 } 3774 EXPORT_SYMBOL(__kmalloc); 3775 3776 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3777 { 3778 return __do_kmalloc(size, flags, (void *)caller); 3779 } 3780 EXPORT_SYMBOL(__kmalloc_track_caller); 3781 3782 #else 3783 void *__kmalloc(size_t size, gfp_t flags) 3784 { 3785 return __do_kmalloc(size, flags, NULL); 3786 } 3787 EXPORT_SYMBOL(__kmalloc); 3788 #endif 3789 3790 /** 3791 * kmem_cache_free - Deallocate an object 3792 * @cachep: The cache the allocation was from. 3793 * @objp: The previously allocated object. 3794 * 3795 * Free an object which was previously allocated from this 3796 * cache. 3797 */ 3798 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3799 { 3800 unsigned long flags; 3801 3802 local_irq_save(flags); 3803 debug_check_no_locks_freed(objp, obj_size(cachep)); 3804 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3805 debug_check_no_obj_freed(objp, obj_size(cachep)); 3806 __cache_free(cachep, objp, __builtin_return_address(0)); 3807 local_irq_restore(flags); 3808 3809 trace_kmem_cache_free(_RET_IP_, objp); 3810 } 3811 EXPORT_SYMBOL(kmem_cache_free); 3812 3813 /** 3814 * kfree - free previously allocated memory 3815 * @objp: pointer returned by kmalloc. 3816 * 3817 * If @objp is NULL, no operation is performed. 3818 * 3819 * Don't free memory not originally allocated by kmalloc() 3820 * or you will run into trouble. 3821 */ 3822 void kfree(const void *objp) 3823 { 3824 struct kmem_cache *c; 3825 unsigned long flags; 3826 3827 trace_kfree(_RET_IP_, objp); 3828 3829 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3830 return; 3831 local_irq_save(flags); 3832 kfree_debugcheck(objp); 3833 c = virt_to_cache(objp); 3834 debug_check_no_locks_freed(objp, obj_size(c)); 3835 debug_check_no_obj_freed(objp, obj_size(c)); 3836 __cache_free(c, (void *)objp, __builtin_return_address(0)); 3837 local_irq_restore(flags); 3838 } 3839 EXPORT_SYMBOL(kfree); 3840 3841 unsigned int kmem_cache_size(struct kmem_cache *cachep) 3842 { 3843 return obj_size(cachep); 3844 } 3845 EXPORT_SYMBOL(kmem_cache_size); 3846 3847 /* 3848 * This initializes kmem_list3 or resizes various caches for all nodes. 3849 */ 3850 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) 3851 { 3852 int node; 3853 struct kmem_list3 *l3; 3854 struct array_cache *new_shared; 3855 struct array_cache **new_alien = NULL; 3856 3857 for_each_online_node(node) { 3858 3859 if (use_alien_caches) { 3860 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 3861 if (!new_alien) 3862 goto fail; 3863 } 3864 3865 new_shared = NULL; 3866 if (cachep->shared) { 3867 new_shared = alloc_arraycache(node, 3868 cachep->shared*cachep->batchcount, 3869 0xbaadf00d, gfp); 3870 if (!new_shared) { 3871 free_alien_cache(new_alien); 3872 goto fail; 3873 } 3874 } 3875 3876 l3 = cachep->nodelists[node]; 3877 if (l3) { 3878 struct array_cache *shared = l3->shared; 3879 3880 spin_lock_irq(&l3->list_lock); 3881 3882 if (shared) 3883 free_block(cachep, shared->entry, 3884 shared->avail, node); 3885 3886 l3->shared = new_shared; 3887 if (!l3->alien) { 3888 l3->alien = new_alien; 3889 new_alien = NULL; 3890 } 3891 l3->free_limit = (1 + nr_cpus_node(node)) * 3892 cachep->batchcount + cachep->num; 3893 spin_unlock_irq(&l3->list_lock); 3894 kfree(shared); 3895 free_alien_cache(new_alien); 3896 continue; 3897 } 3898 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); 3899 if (!l3) { 3900 free_alien_cache(new_alien); 3901 kfree(new_shared); 3902 goto fail; 3903 } 3904 3905 kmem_list3_init(l3); 3906 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 3907 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 3908 l3->shared = new_shared; 3909 l3->alien = new_alien; 3910 l3->free_limit = (1 + nr_cpus_node(node)) * 3911 cachep->batchcount + cachep->num; 3912 cachep->nodelists[node] = l3; 3913 } 3914 return 0; 3915 3916 fail: 3917 if (!cachep->next.next) { 3918 /* Cache is not active yet. Roll back what we did */ 3919 node--; 3920 while (node >= 0) { 3921 if (cachep->nodelists[node]) { 3922 l3 = cachep->nodelists[node]; 3923 3924 kfree(l3->shared); 3925 free_alien_cache(l3->alien); 3926 kfree(l3); 3927 cachep->nodelists[node] = NULL; 3928 } 3929 node--; 3930 } 3931 } 3932 return -ENOMEM; 3933 } 3934 3935 struct ccupdate_struct { 3936 struct kmem_cache *cachep; 3937 struct array_cache *new[NR_CPUS]; 3938 }; 3939 3940 static void do_ccupdate_local(void *info) 3941 { 3942 struct ccupdate_struct *new = info; 3943 struct array_cache *old; 3944 3945 check_irq_off(); 3946 old = cpu_cache_get(new->cachep); 3947 3948 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 3949 new->new[smp_processor_id()] = old; 3950 } 3951 3952 /* Always called with the cache_chain_mutex held */ 3953 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3954 int batchcount, int shared, gfp_t gfp) 3955 { 3956 struct ccupdate_struct *new; 3957 int i; 3958 3959 new = kzalloc(sizeof(*new), gfp); 3960 if (!new) 3961 return -ENOMEM; 3962 3963 for_each_online_cpu(i) { 3964 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, 3965 batchcount, gfp); 3966 if (!new->new[i]) { 3967 for (i--; i >= 0; i--) 3968 kfree(new->new[i]); 3969 kfree(new); 3970 return -ENOMEM; 3971 } 3972 } 3973 new->cachep = cachep; 3974 3975 on_each_cpu(do_ccupdate_local, (void *)new, 1); 3976 3977 check_irq_on(); 3978 cachep->batchcount = batchcount; 3979 cachep->limit = limit; 3980 cachep->shared = shared; 3981 3982 for_each_online_cpu(i) { 3983 struct array_cache *ccold = new->new[i]; 3984 if (!ccold) 3985 continue; 3986 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); 3987 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); 3988 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); 3989 kfree(ccold); 3990 } 3991 kfree(new); 3992 return alloc_kmemlist(cachep, gfp); 3993 } 3994 3995 /* Called with cache_chain_mutex held always */ 3996 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3997 { 3998 int err; 3999 int limit, shared; 4000 4001 /* 4002 * The head array serves three purposes: 4003 * - create a LIFO ordering, i.e. return objects that are cache-warm 4004 * - reduce the number of spinlock operations. 4005 * - reduce the number of linked list operations on the slab and 4006 * bufctl chains: array operations are cheaper. 4007 * The numbers are guessed, we should auto-tune as described by 4008 * Bonwick. 4009 */ 4010 if (cachep->buffer_size > 131072) 4011 limit = 1; 4012 else if (cachep->buffer_size > PAGE_SIZE) 4013 limit = 8; 4014 else if (cachep->buffer_size > 1024) 4015 limit = 24; 4016 else if (cachep->buffer_size > 256) 4017 limit = 54; 4018 else 4019 limit = 120; 4020 4021 /* 4022 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 4023 * allocation behaviour: Most allocs on one cpu, most free operations 4024 * on another cpu. For these cases, an efficient object passing between 4025 * cpus is necessary. This is provided by a shared array. The array 4026 * replaces Bonwick's magazine layer. 4027 * On uniprocessor, it's functionally equivalent (but less efficient) 4028 * to a larger limit. Thus disabled by default. 4029 */ 4030 shared = 0; 4031 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1) 4032 shared = 8; 4033 4034 #if DEBUG 4035 /* 4036 * With debugging enabled, large batchcount lead to excessively long 4037 * periods with disabled local interrupts. Limit the batchcount 4038 */ 4039 if (limit > 32) 4040 limit = 32; 4041 #endif 4042 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp); 4043 if (err) 4044 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 4045 cachep->name, -err); 4046 return err; 4047 } 4048 4049 /* 4050 * Drain an array if it contains any elements taking the l3 lock only if 4051 * necessary. Note that the l3 listlock also protects the array_cache 4052 * if drain_array() is used on the shared array. 4053 */ 4054 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 4055 struct array_cache *ac, int force, int node) 4056 { 4057 int tofree; 4058 4059 if (!ac || !ac->avail) 4060 return; 4061 if (ac->touched && !force) { 4062 ac->touched = 0; 4063 } else { 4064 spin_lock_irq(&l3->list_lock); 4065 if (ac->avail) { 4066 tofree = force ? ac->avail : (ac->limit + 4) / 5; 4067 if (tofree > ac->avail) 4068 tofree = (ac->avail + 1) / 2; 4069 free_block(cachep, ac->entry, tofree, node); 4070 ac->avail -= tofree; 4071 memmove(ac->entry, &(ac->entry[tofree]), 4072 sizeof(void *) * ac->avail); 4073 } 4074 spin_unlock_irq(&l3->list_lock); 4075 } 4076 } 4077 4078 /** 4079 * cache_reap - Reclaim memory from caches. 4080 * @w: work descriptor 4081 * 4082 * Called from workqueue/eventd every few seconds. 4083 * Purpose: 4084 * - clear the per-cpu caches for this CPU. 4085 * - return freeable pages to the main free memory pool. 4086 * 4087 * If we cannot acquire the cache chain mutex then just give up - we'll try 4088 * again on the next iteration. 4089 */ 4090 static void cache_reap(struct work_struct *w) 4091 { 4092 struct kmem_cache *searchp; 4093 struct kmem_list3 *l3; 4094 int node = numa_mem_id(); 4095 struct delayed_work *work = to_delayed_work(w); 4096 4097 if (!mutex_trylock(&cache_chain_mutex)) 4098 /* Give up. Setup the next iteration. */ 4099 goto out; 4100 4101 list_for_each_entry(searchp, &cache_chain, next) { 4102 check_irq_on(); 4103 4104 /* 4105 * We only take the l3 lock if absolutely necessary and we 4106 * have established with reasonable certainty that 4107 * we can do some work if the lock was obtained. 4108 */ 4109 l3 = searchp->nodelists[node]; 4110 4111 reap_alien(searchp, l3); 4112 4113 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); 4114 4115 /* 4116 * These are racy checks but it does not matter 4117 * if we skip one check or scan twice. 4118 */ 4119 if (time_after(l3->next_reap, jiffies)) 4120 goto next; 4121 4122 l3->next_reap = jiffies + REAPTIMEOUT_LIST3; 4123 4124 drain_array(searchp, l3, l3->shared, 0, node); 4125 4126 if (l3->free_touched) 4127 l3->free_touched = 0; 4128 else { 4129 int freed; 4130 4131 freed = drain_freelist(searchp, l3, (l3->free_limit + 4132 5 * searchp->num - 1) / (5 * searchp->num)); 4133 STATS_ADD_REAPED(searchp, freed); 4134 } 4135 next: 4136 cond_resched(); 4137 } 4138 check_irq_on(); 4139 mutex_unlock(&cache_chain_mutex); 4140 next_reap_node(); 4141 out: 4142 /* Set up the next iteration */ 4143 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); 4144 } 4145 4146 #ifdef CONFIG_SLABINFO 4147 4148 static void print_slabinfo_header(struct seq_file *m) 4149 { 4150 /* 4151 * Output format version, so at least we can change it 4152 * without _too_ many complaints. 4153 */ 4154 #if STATS 4155 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 4156 #else 4157 seq_puts(m, "slabinfo - version: 2.1\n"); 4158 #endif 4159 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4160 "<objperslab> <pagesperslab>"); 4161 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4162 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4163 #if STATS 4164 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " 4165 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 4166 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 4167 #endif 4168 seq_putc(m, '\n'); 4169 } 4170 4171 static void *s_start(struct seq_file *m, loff_t *pos) 4172 { 4173 loff_t n = *pos; 4174 4175 mutex_lock(&cache_chain_mutex); 4176 if (!n) 4177 print_slabinfo_header(m); 4178 4179 return seq_list_start(&cache_chain, *pos); 4180 } 4181 4182 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4183 { 4184 return seq_list_next(p, &cache_chain, pos); 4185 } 4186 4187 static void s_stop(struct seq_file *m, void *p) 4188 { 4189 mutex_unlock(&cache_chain_mutex); 4190 } 4191 4192 static int s_show(struct seq_file *m, void *p) 4193 { 4194 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4195 struct slab *slabp; 4196 unsigned long active_objs; 4197 unsigned long num_objs; 4198 unsigned long active_slabs = 0; 4199 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4200 const char *name; 4201 char *error = NULL; 4202 int node; 4203 struct kmem_list3 *l3; 4204 4205 active_objs = 0; 4206 num_slabs = 0; 4207 for_each_online_node(node) { 4208 l3 = cachep->nodelists[node]; 4209 if (!l3) 4210 continue; 4211 4212 check_irq_on(); 4213 spin_lock_irq(&l3->list_lock); 4214 4215 list_for_each_entry(slabp, &l3->slabs_full, list) { 4216 if (slabp->inuse != cachep->num && !error) 4217 error = "slabs_full accounting error"; 4218 active_objs += cachep->num; 4219 active_slabs++; 4220 } 4221 list_for_each_entry(slabp, &l3->slabs_partial, list) { 4222 if (slabp->inuse == cachep->num && !error) 4223 error = "slabs_partial inuse accounting error"; 4224 if (!slabp->inuse && !error) 4225 error = "slabs_partial/inuse accounting error"; 4226 active_objs += slabp->inuse; 4227 active_slabs++; 4228 } 4229 list_for_each_entry(slabp, &l3->slabs_free, list) { 4230 if (slabp->inuse && !error) 4231 error = "slabs_free/inuse accounting error"; 4232 num_slabs++; 4233 } 4234 free_objects += l3->free_objects; 4235 if (l3->shared) 4236 shared_avail += l3->shared->avail; 4237 4238 spin_unlock_irq(&l3->list_lock); 4239 } 4240 num_slabs += active_slabs; 4241 num_objs = num_slabs * cachep->num; 4242 if (num_objs - active_objs != free_objects && !error) 4243 error = "free_objects accounting error"; 4244 4245 name = cachep->name; 4246 if (error) 4247 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 4248 4249 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 4250 name, active_objs, num_objs, cachep->buffer_size, 4251 cachep->num, (1 << cachep->gfporder)); 4252 seq_printf(m, " : tunables %4u %4u %4u", 4253 cachep->limit, cachep->batchcount, cachep->shared); 4254 seq_printf(m, " : slabdata %6lu %6lu %6lu", 4255 active_slabs, num_slabs, shared_avail); 4256 #if STATS 4257 { /* list3 stats */ 4258 unsigned long high = cachep->high_mark; 4259 unsigned long allocs = cachep->num_allocations; 4260 unsigned long grown = cachep->grown; 4261 unsigned long reaped = cachep->reaped; 4262 unsigned long errors = cachep->errors; 4263 unsigned long max_freeable = cachep->max_freeable; 4264 unsigned long node_allocs = cachep->node_allocs; 4265 unsigned long node_frees = cachep->node_frees; 4266 unsigned long overflows = cachep->node_overflow; 4267 4268 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " 4269 "%4lu %4lu %4lu %4lu %4lu", 4270 allocs, high, grown, 4271 reaped, errors, max_freeable, node_allocs, 4272 node_frees, overflows); 4273 } 4274 /* cpu stats */ 4275 { 4276 unsigned long allochit = atomic_read(&cachep->allochit); 4277 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4278 unsigned long freehit = atomic_read(&cachep->freehit); 4279 unsigned long freemiss = atomic_read(&cachep->freemiss); 4280 4281 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4282 allochit, allocmiss, freehit, freemiss); 4283 } 4284 #endif 4285 seq_putc(m, '\n'); 4286 return 0; 4287 } 4288 4289 /* 4290 * slabinfo_op - iterator that generates /proc/slabinfo 4291 * 4292 * Output layout: 4293 * cache-name 4294 * num-active-objs 4295 * total-objs 4296 * object size 4297 * num-active-slabs 4298 * total-slabs 4299 * num-pages-per-slab 4300 * + further values on SMP and with statistics enabled 4301 */ 4302 4303 static const struct seq_operations slabinfo_op = { 4304 .start = s_start, 4305 .next = s_next, 4306 .stop = s_stop, 4307 .show = s_show, 4308 }; 4309 4310 #define MAX_SLABINFO_WRITE 128 4311 /** 4312 * slabinfo_write - Tuning for the slab allocator 4313 * @file: unused 4314 * @buffer: user buffer 4315 * @count: data length 4316 * @ppos: unused 4317 */ 4318 static ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4319 size_t count, loff_t *ppos) 4320 { 4321 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4322 int limit, batchcount, shared, res; 4323 struct kmem_cache *cachep; 4324 4325 if (count > MAX_SLABINFO_WRITE) 4326 return -EINVAL; 4327 if (copy_from_user(&kbuf, buffer, count)) 4328 return -EFAULT; 4329 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4330 4331 tmp = strchr(kbuf, ' '); 4332 if (!tmp) 4333 return -EINVAL; 4334 *tmp = '\0'; 4335 tmp++; 4336 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4337 return -EINVAL; 4338 4339 /* Find the cache in the chain of caches. */ 4340 mutex_lock(&cache_chain_mutex); 4341 res = -EINVAL; 4342 list_for_each_entry(cachep, &cache_chain, next) { 4343 if (!strcmp(cachep->name, kbuf)) { 4344 if (limit < 1 || batchcount < 1 || 4345 batchcount > limit || shared < 0) { 4346 res = 0; 4347 } else { 4348 res = do_tune_cpucache(cachep, limit, 4349 batchcount, shared, 4350 GFP_KERNEL); 4351 } 4352 break; 4353 } 4354 } 4355 mutex_unlock(&cache_chain_mutex); 4356 if (res >= 0) 4357 res = count; 4358 return res; 4359 } 4360 4361 static int slabinfo_open(struct inode *inode, struct file *file) 4362 { 4363 return seq_open(file, &slabinfo_op); 4364 } 4365 4366 static const struct file_operations proc_slabinfo_operations = { 4367 .open = slabinfo_open, 4368 .read = seq_read, 4369 .write = slabinfo_write, 4370 .llseek = seq_lseek, 4371 .release = seq_release, 4372 }; 4373 4374 #ifdef CONFIG_DEBUG_SLAB_LEAK 4375 4376 static void *leaks_start(struct seq_file *m, loff_t *pos) 4377 { 4378 mutex_lock(&cache_chain_mutex); 4379 return seq_list_start(&cache_chain, *pos); 4380 } 4381 4382 static inline int add_caller(unsigned long *n, unsigned long v) 4383 { 4384 unsigned long *p; 4385 int l; 4386 if (!v) 4387 return 1; 4388 l = n[1]; 4389 p = n + 2; 4390 while (l) { 4391 int i = l/2; 4392 unsigned long *q = p + 2 * i; 4393 if (*q == v) { 4394 q[1]++; 4395 return 1; 4396 } 4397 if (*q > v) { 4398 l = i; 4399 } else { 4400 p = q + 2; 4401 l -= i + 1; 4402 } 4403 } 4404 if (++n[1] == n[0]) 4405 return 0; 4406 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4407 p[0] = v; 4408 p[1] = 1; 4409 return 1; 4410 } 4411 4412 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) 4413 { 4414 void *p; 4415 int i; 4416 if (n[0] == n[1]) 4417 return; 4418 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { 4419 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) 4420 continue; 4421 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4422 return; 4423 } 4424 } 4425 4426 static void show_symbol(struct seq_file *m, unsigned long address) 4427 { 4428 #ifdef CONFIG_KALLSYMS 4429 unsigned long offset, size; 4430 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4431 4432 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4433 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4434 if (modname[0]) 4435 seq_printf(m, " [%s]", modname); 4436 return; 4437 } 4438 #endif 4439 seq_printf(m, "%p", (void *)address); 4440 } 4441 4442 static int leaks_show(struct seq_file *m, void *p) 4443 { 4444 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4445 struct slab *slabp; 4446 struct kmem_list3 *l3; 4447 const char *name; 4448 unsigned long *n = m->private; 4449 int node; 4450 int i; 4451 4452 if (!(cachep->flags & SLAB_STORE_USER)) 4453 return 0; 4454 if (!(cachep->flags & SLAB_RED_ZONE)) 4455 return 0; 4456 4457 /* OK, we can do it */ 4458 4459 n[1] = 0; 4460 4461 for_each_online_node(node) { 4462 l3 = cachep->nodelists[node]; 4463 if (!l3) 4464 continue; 4465 4466 check_irq_on(); 4467 spin_lock_irq(&l3->list_lock); 4468 4469 list_for_each_entry(slabp, &l3->slabs_full, list) 4470 handle_slab(n, cachep, slabp); 4471 list_for_each_entry(slabp, &l3->slabs_partial, list) 4472 handle_slab(n, cachep, slabp); 4473 spin_unlock_irq(&l3->list_lock); 4474 } 4475 name = cachep->name; 4476 if (n[0] == n[1]) { 4477 /* Increase the buffer size */ 4478 mutex_unlock(&cache_chain_mutex); 4479 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4480 if (!m->private) { 4481 /* Too bad, we are really out */ 4482 m->private = n; 4483 mutex_lock(&cache_chain_mutex); 4484 return -ENOMEM; 4485 } 4486 *(unsigned long *)m->private = n[0] * 2; 4487 kfree(n); 4488 mutex_lock(&cache_chain_mutex); 4489 /* Now make sure this entry will be retried */ 4490 m->count = m->size; 4491 return 0; 4492 } 4493 for (i = 0; i < n[1]; i++) { 4494 seq_printf(m, "%s: %lu ", name, n[2*i+3]); 4495 show_symbol(m, n[2*i+2]); 4496 seq_putc(m, '\n'); 4497 } 4498 4499 return 0; 4500 } 4501 4502 static const struct seq_operations slabstats_op = { 4503 .start = leaks_start, 4504 .next = s_next, 4505 .stop = s_stop, 4506 .show = leaks_show, 4507 }; 4508 4509 static int slabstats_open(struct inode *inode, struct file *file) 4510 { 4511 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); 4512 int ret = -ENOMEM; 4513 if (n) { 4514 ret = seq_open(file, &slabstats_op); 4515 if (!ret) { 4516 struct seq_file *m = file->private_data; 4517 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4518 m->private = n; 4519 n = NULL; 4520 } 4521 kfree(n); 4522 } 4523 return ret; 4524 } 4525 4526 static const struct file_operations proc_slabstats_operations = { 4527 .open = slabstats_open, 4528 .read = seq_read, 4529 .llseek = seq_lseek, 4530 .release = seq_release_private, 4531 }; 4532 #endif 4533 4534 static int __init slab_proc_init(void) 4535 { 4536 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); 4537 #ifdef CONFIG_DEBUG_SLAB_LEAK 4538 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4539 #endif 4540 return 0; 4541 } 4542 module_init(slab_proc_init); 4543 #endif 4544 4545 /** 4546 * ksize - get the actual amount of memory allocated for a given object 4547 * @objp: Pointer to the object 4548 * 4549 * kmalloc may internally round up allocations and return more memory 4550 * than requested. ksize() can be used to determine the actual amount of 4551 * memory allocated. The caller may use this additional memory, even though 4552 * a smaller amount of memory was initially specified with the kmalloc call. 4553 * The caller must guarantee that objp points to a valid object previously 4554 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4555 * must not be freed during the duration of the call. 4556 */ 4557 size_t ksize(const void *objp) 4558 { 4559 BUG_ON(!objp); 4560 if (unlikely(objp == ZERO_SIZE_PTR)) 4561 return 0; 4562 4563 return obj_size(virt_to_cache(objp)); 4564 } 4565 EXPORT_SYMBOL(ksize); 4566