1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'slab_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 120 #include <net/sock.h> 121 122 #include <asm/cacheflush.h> 123 #include <asm/tlbflush.h> 124 #include <asm/page.h> 125 126 #include <trace/events/kmem.h> 127 128 #include "internal.h" 129 130 #include "slab.h" 131 132 /* 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 134 * 0 for faster, smaller code (especially in the critical paths). 135 * 136 * STATS - 1 to collect stats for /proc/slabinfo. 137 * 0 for faster, smaller code (especially in the critical paths). 138 * 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 140 */ 141 142 #ifdef CONFIG_DEBUG_SLAB 143 #define DEBUG 1 144 #define STATS 1 145 #define FORCED_DEBUG 1 146 #else 147 #define DEBUG 0 148 #define STATS 0 149 #define FORCED_DEBUG 0 150 #endif 151 152 /* Shouldn't this be in a header file somewhere? */ 153 #define BYTES_PER_WORD sizeof(void *) 154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 155 156 #ifndef ARCH_KMALLOC_FLAGS 157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 158 #endif 159 160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 162 163 #if FREELIST_BYTE_INDEX 164 typedef unsigned char freelist_idx_t; 165 #else 166 typedef unsigned short freelist_idx_t; 167 #endif 168 169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 170 171 /* 172 * struct array_cache 173 * 174 * Purpose: 175 * - LIFO ordering, to hand out cache-warm objects from _alloc 176 * - reduce the number of linked list operations 177 * - reduce spinlock operations 178 * 179 * The limit is stored in the per-cpu structure to reduce the data cache 180 * footprint. 181 * 182 */ 183 struct array_cache { 184 unsigned int avail; 185 unsigned int limit; 186 unsigned int batchcount; 187 unsigned int touched; 188 void *entry[]; /* 189 * Must have this definition in here for the proper 190 * alignment of array_cache. Also simplifies accessing 191 * the entries. 192 */ 193 }; 194 195 struct alien_cache { 196 spinlock_t lock; 197 struct array_cache ac; 198 }; 199 200 /* 201 * Need this for bootstrapping a per node allocator. 202 */ 203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 205 #define CACHE_CACHE 0 206 #define SIZE_NODE (MAX_NUMNODES) 207 208 static int drain_freelist(struct kmem_cache *cache, 209 struct kmem_cache_node *n, int tofree); 210 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 211 int node, struct list_head *list); 212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 214 static void cache_reap(struct work_struct *unused); 215 216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 217 void **list); 218 static inline void fixup_slab_list(struct kmem_cache *cachep, 219 struct kmem_cache_node *n, struct page *page, 220 void **list); 221 static int slab_early_init = 1; 222 223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 224 225 static void kmem_cache_node_init(struct kmem_cache_node *parent) 226 { 227 INIT_LIST_HEAD(&parent->slabs_full); 228 INIT_LIST_HEAD(&parent->slabs_partial); 229 INIT_LIST_HEAD(&parent->slabs_free); 230 parent->shared = NULL; 231 parent->alien = NULL; 232 parent->colour_next = 0; 233 spin_lock_init(&parent->list_lock); 234 parent->free_objects = 0; 235 parent->free_touched = 0; 236 } 237 238 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 239 do { \ 240 INIT_LIST_HEAD(listp); \ 241 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 242 } while (0) 243 244 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 245 do { \ 246 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 247 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 248 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 249 } while (0) 250 251 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL) 252 #define CFLGS_OFF_SLAB (0x80000000UL) 253 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 254 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 255 256 #define BATCHREFILL_LIMIT 16 257 /* 258 * Optimization question: fewer reaps means less probability for unnessary 259 * cpucache drain/refill cycles. 260 * 261 * OTOH the cpuarrays can contain lots of objects, 262 * which could lock up otherwise freeable slabs. 263 */ 264 #define REAPTIMEOUT_AC (2*HZ) 265 #define REAPTIMEOUT_NODE (4*HZ) 266 267 #if STATS 268 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 269 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 270 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 271 #define STATS_INC_GROWN(x) ((x)->grown++) 272 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 273 #define STATS_SET_HIGH(x) \ 274 do { \ 275 if ((x)->num_active > (x)->high_mark) \ 276 (x)->high_mark = (x)->num_active; \ 277 } while (0) 278 #define STATS_INC_ERR(x) ((x)->errors++) 279 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 280 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 281 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 282 #define STATS_SET_FREEABLE(x, i) \ 283 do { \ 284 if ((x)->max_freeable < i) \ 285 (x)->max_freeable = i; \ 286 } while (0) 287 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 288 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 289 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 290 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 291 #else 292 #define STATS_INC_ACTIVE(x) do { } while (0) 293 #define STATS_DEC_ACTIVE(x) do { } while (0) 294 #define STATS_INC_ALLOCED(x) do { } while (0) 295 #define STATS_INC_GROWN(x) do { } while (0) 296 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 297 #define STATS_SET_HIGH(x) do { } while (0) 298 #define STATS_INC_ERR(x) do { } while (0) 299 #define STATS_INC_NODEALLOCS(x) do { } while (0) 300 #define STATS_INC_NODEFREES(x) do { } while (0) 301 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 302 #define STATS_SET_FREEABLE(x, i) do { } while (0) 303 #define STATS_INC_ALLOCHIT(x) do { } while (0) 304 #define STATS_INC_ALLOCMISS(x) do { } while (0) 305 #define STATS_INC_FREEHIT(x) do { } while (0) 306 #define STATS_INC_FREEMISS(x) do { } while (0) 307 #endif 308 309 #if DEBUG 310 311 /* 312 * memory layout of objects: 313 * 0 : objp 314 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 315 * the end of an object is aligned with the end of the real 316 * allocation. Catches writes behind the end of the allocation. 317 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 318 * redzone word. 319 * cachep->obj_offset: The real object. 320 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 321 * cachep->size - 1* BYTES_PER_WORD: last caller address 322 * [BYTES_PER_WORD long] 323 */ 324 static int obj_offset(struct kmem_cache *cachep) 325 { 326 return cachep->obj_offset; 327 } 328 329 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 330 { 331 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 332 return (unsigned long long*) (objp + obj_offset(cachep) - 333 sizeof(unsigned long long)); 334 } 335 336 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 337 { 338 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 339 if (cachep->flags & SLAB_STORE_USER) 340 return (unsigned long long *)(objp + cachep->size - 341 sizeof(unsigned long long) - 342 REDZONE_ALIGN); 343 return (unsigned long long *) (objp + cachep->size - 344 sizeof(unsigned long long)); 345 } 346 347 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 348 { 349 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 350 return (void **)(objp + cachep->size - BYTES_PER_WORD); 351 } 352 353 #else 354 355 #define obj_offset(x) 0 356 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 357 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 358 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 359 360 #endif 361 362 #ifdef CONFIG_DEBUG_SLAB_LEAK 363 364 static inline bool is_store_user_clean(struct kmem_cache *cachep) 365 { 366 return atomic_read(&cachep->store_user_clean) == 1; 367 } 368 369 static inline void set_store_user_clean(struct kmem_cache *cachep) 370 { 371 atomic_set(&cachep->store_user_clean, 1); 372 } 373 374 static inline void set_store_user_dirty(struct kmem_cache *cachep) 375 { 376 if (is_store_user_clean(cachep)) 377 atomic_set(&cachep->store_user_clean, 0); 378 } 379 380 #else 381 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 382 383 #endif 384 385 /* 386 * Do not go above this order unless 0 objects fit into the slab or 387 * overridden on the command line. 388 */ 389 #define SLAB_MAX_ORDER_HI 1 390 #define SLAB_MAX_ORDER_LO 0 391 static int slab_max_order = SLAB_MAX_ORDER_LO; 392 static bool slab_max_order_set __initdata; 393 394 static inline struct kmem_cache *virt_to_cache(const void *obj) 395 { 396 struct page *page = virt_to_head_page(obj); 397 return page->slab_cache; 398 } 399 400 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 401 unsigned int idx) 402 { 403 return page->s_mem + cache->size * idx; 404 } 405 406 /* 407 * We want to avoid an expensive divide : (offset / cache->size) 408 * Using the fact that size is a constant for a particular cache, 409 * we can replace (offset / cache->size) by 410 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 411 */ 412 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 413 const struct page *page, void *obj) 414 { 415 u32 offset = (obj - page->s_mem); 416 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 417 } 418 419 #define BOOT_CPUCACHE_ENTRIES 1 420 /* internal cache of cache description objs */ 421 static struct kmem_cache kmem_cache_boot = { 422 .batchcount = 1, 423 .limit = BOOT_CPUCACHE_ENTRIES, 424 .shared = 1, 425 .size = sizeof(struct kmem_cache), 426 .name = "kmem_cache", 427 }; 428 429 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 430 431 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 432 { 433 return this_cpu_ptr(cachep->cpu_cache); 434 } 435 436 /* 437 * Calculate the number of objects and left-over bytes for a given buffer size. 438 */ 439 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 440 unsigned long flags, size_t *left_over) 441 { 442 unsigned int num; 443 size_t slab_size = PAGE_SIZE << gfporder; 444 445 /* 446 * The slab management structure can be either off the slab or 447 * on it. For the latter case, the memory allocated for a 448 * slab is used for: 449 * 450 * - @buffer_size bytes for each object 451 * - One freelist_idx_t for each object 452 * 453 * We don't need to consider alignment of freelist because 454 * freelist will be at the end of slab page. The objects will be 455 * at the correct alignment. 456 * 457 * If the slab management structure is off the slab, then the 458 * alignment will already be calculated into the size. Because 459 * the slabs are all pages aligned, the objects will be at the 460 * correct alignment when allocated. 461 */ 462 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 463 num = slab_size / buffer_size; 464 *left_over = slab_size % buffer_size; 465 } else { 466 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 467 *left_over = slab_size % 468 (buffer_size + sizeof(freelist_idx_t)); 469 } 470 471 return num; 472 } 473 474 #if DEBUG 475 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 476 477 static void __slab_error(const char *function, struct kmem_cache *cachep, 478 char *msg) 479 { 480 pr_err("slab error in %s(): cache `%s': %s\n", 481 function, cachep->name, msg); 482 dump_stack(); 483 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 484 } 485 #endif 486 487 /* 488 * By default on NUMA we use alien caches to stage the freeing of 489 * objects allocated from other nodes. This causes massive memory 490 * inefficiencies when using fake NUMA setup to split memory into a 491 * large number of small nodes, so it can be disabled on the command 492 * line 493 */ 494 495 static int use_alien_caches __read_mostly = 1; 496 static int __init noaliencache_setup(char *s) 497 { 498 use_alien_caches = 0; 499 return 1; 500 } 501 __setup("noaliencache", noaliencache_setup); 502 503 static int __init slab_max_order_setup(char *str) 504 { 505 get_option(&str, &slab_max_order); 506 slab_max_order = slab_max_order < 0 ? 0 : 507 min(slab_max_order, MAX_ORDER - 1); 508 slab_max_order_set = true; 509 510 return 1; 511 } 512 __setup("slab_max_order=", slab_max_order_setup); 513 514 #ifdef CONFIG_NUMA 515 /* 516 * Special reaping functions for NUMA systems called from cache_reap(). 517 * These take care of doing round robin flushing of alien caches (containing 518 * objects freed on different nodes from which they were allocated) and the 519 * flushing of remote pcps by calling drain_node_pages. 520 */ 521 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 522 523 static void init_reap_node(int cpu) 524 { 525 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 526 node_online_map); 527 } 528 529 static void next_reap_node(void) 530 { 531 int node = __this_cpu_read(slab_reap_node); 532 533 node = next_node_in(node, node_online_map); 534 __this_cpu_write(slab_reap_node, node); 535 } 536 537 #else 538 #define init_reap_node(cpu) do { } while (0) 539 #define next_reap_node(void) do { } while (0) 540 #endif 541 542 /* 543 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 544 * via the workqueue/eventd. 545 * Add the CPU number into the expiration time to minimize the possibility of 546 * the CPUs getting into lockstep and contending for the global cache chain 547 * lock. 548 */ 549 static void start_cpu_timer(int cpu) 550 { 551 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 552 553 /* 554 * When this gets called from do_initcalls via cpucache_init(), 555 * init_workqueues() has already run, so keventd will be setup 556 * at that time. 557 */ 558 if (keventd_up() && reap_work->work.func == NULL) { 559 init_reap_node(cpu); 560 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 561 schedule_delayed_work_on(cpu, reap_work, 562 __round_jiffies_relative(HZ, cpu)); 563 } 564 } 565 566 static void init_arraycache(struct array_cache *ac, int limit, int batch) 567 { 568 /* 569 * The array_cache structures contain pointers to free object. 570 * However, when such objects are allocated or transferred to another 571 * cache the pointers are not cleared and they could be counted as 572 * valid references during a kmemleak scan. Therefore, kmemleak must 573 * not scan such objects. 574 */ 575 kmemleak_no_scan(ac); 576 if (ac) { 577 ac->avail = 0; 578 ac->limit = limit; 579 ac->batchcount = batch; 580 ac->touched = 0; 581 } 582 } 583 584 static struct array_cache *alloc_arraycache(int node, int entries, 585 int batchcount, gfp_t gfp) 586 { 587 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 588 struct array_cache *ac = NULL; 589 590 ac = kmalloc_node(memsize, gfp, node); 591 init_arraycache(ac, entries, batchcount); 592 return ac; 593 } 594 595 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 596 struct page *page, void *objp) 597 { 598 struct kmem_cache_node *n; 599 int page_node; 600 LIST_HEAD(list); 601 602 page_node = page_to_nid(page); 603 n = get_node(cachep, page_node); 604 605 spin_lock(&n->list_lock); 606 free_block(cachep, &objp, 1, page_node, &list); 607 spin_unlock(&n->list_lock); 608 609 slabs_destroy(cachep, &list); 610 } 611 612 /* 613 * Transfer objects in one arraycache to another. 614 * Locking must be handled by the caller. 615 * 616 * Return the number of entries transferred. 617 */ 618 static int transfer_objects(struct array_cache *to, 619 struct array_cache *from, unsigned int max) 620 { 621 /* Figure out how many entries to transfer */ 622 int nr = min3(from->avail, max, to->limit - to->avail); 623 624 if (!nr) 625 return 0; 626 627 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 628 sizeof(void *) *nr); 629 630 from->avail -= nr; 631 to->avail += nr; 632 return nr; 633 } 634 635 #ifndef CONFIG_NUMA 636 637 #define drain_alien_cache(cachep, alien) do { } while (0) 638 #define reap_alien(cachep, n) do { } while (0) 639 640 static inline struct alien_cache **alloc_alien_cache(int node, 641 int limit, gfp_t gfp) 642 { 643 return NULL; 644 } 645 646 static inline void free_alien_cache(struct alien_cache **ac_ptr) 647 { 648 } 649 650 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 651 { 652 return 0; 653 } 654 655 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 656 gfp_t flags) 657 { 658 return NULL; 659 } 660 661 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 662 gfp_t flags, int nodeid) 663 { 664 return NULL; 665 } 666 667 static inline gfp_t gfp_exact_node(gfp_t flags) 668 { 669 return flags & ~__GFP_NOFAIL; 670 } 671 672 #else /* CONFIG_NUMA */ 673 674 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 675 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 676 677 static struct alien_cache *__alloc_alien_cache(int node, int entries, 678 int batch, gfp_t gfp) 679 { 680 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 681 struct alien_cache *alc = NULL; 682 683 alc = kmalloc_node(memsize, gfp, node); 684 init_arraycache(&alc->ac, entries, batch); 685 spin_lock_init(&alc->lock); 686 return alc; 687 } 688 689 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 690 { 691 struct alien_cache **alc_ptr; 692 size_t memsize = sizeof(void *) * nr_node_ids; 693 int i; 694 695 if (limit > 1) 696 limit = 12; 697 alc_ptr = kzalloc_node(memsize, gfp, node); 698 if (!alc_ptr) 699 return NULL; 700 701 for_each_node(i) { 702 if (i == node || !node_online(i)) 703 continue; 704 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 705 if (!alc_ptr[i]) { 706 for (i--; i >= 0; i--) 707 kfree(alc_ptr[i]); 708 kfree(alc_ptr); 709 return NULL; 710 } 711 } 712 return alc_ptr; 713 } 714 715 static void free_alien_cache(struct alien_cache **alc_ptr) 716 { 717 int i; 718 719 if (!alc_ptr) 720 return; 721 for_each_node(i) 722 kfree(alc_ptr[i]); 723 kfree(alc_ptr); 724 } 725 726 static void __drain_alien_cache(struct kmem_cache *cachep, 727 struct array_cache *ac, int node, 728 struct list_head *list) 729 { 730 struct kmem_cache_node *n = get_node(cachep, node); 731 732 if (ac->avail) { 733 spin_lock(&n->list_lock); 734 /* 735 * Stuff objects into the remote nodes shared array first. 736 * That way we could avoid the overhead of putting the objects 737 * into the free lists and getting them back later. 738 */ 739 if (n->shared) 740 transfer_objects(n->shared, ac, ac->limit); 741 742 free_block(cachep, ac->entry, ac->avail, node, list); 743 ac->avail = 0; 744 spin_unlock(&n->list_lock); 745 } 746 } 747 748 /* 749 * Called from cache_reap() to regularly drain alien caches round robin. 750 */ 751 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 752 { 753 int node = __this_cpu_read(slab_reap_node); 754 755 if (n->alien) { 756 struct alien_cache *alc = n->alien[node]; 757 struct array_cache *ac; 758 759 if (alc) { 760 ac = &alc->ac; 761 if (ac->avail && spin_trylock_irq(&alc->lock)) { 762 LIST_HEAD(list); 763 764 __drain_alien_cache(cachep, ac, node, &list); 765 spin_unlock_irq(&alc->lock); 766 slabs_destroy(cachep, &list); 767 } 768 } 769 } 770 } 771 772 static void drain_alien_cache(struct kmem_cache *cachep, 773 struct alien_cache **alien) 774 { 775 int i = 0; 776 struct alien_cache *alc; 777 struct array_cache *ac; 778 unsigned long flags; 779 780 for_each_online_node(i) { 781 alc = alien[i]; 782 if (alc) { 783 LIST_HEAD(list); 784 785 ac = &alc->ac; 786 spin_lock_irqsave(&alc->lock, flags); 787 __drain_alien_cache(cachep, ac, i, &list); 788 spin_unlock_irqrestore(&alc->lock, flags); 789 slabs_destroy(cachep, &list); 790 } 791 } 792 } 793 794 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 795 int node, int page_node) 796 { 797 struct kmem_cache_node *n; 798 struct alien_cache *alien = NULL; 799 struct array_cache *ac; 800 LIST_HEAD(list); 801 802 n = get_node(cachep, node); 803 STATS_INC_NODEFREES(cachep); 804 if (n->alien && n->alien[page_node]) { 805 alien = n->alien[page_node]; 806 ac = &alien->ac; 807 spin_lock(&alien->lock); 808 if (unlikely(ac->avail == ac->limit)) { 809 STATS_INC_ACOVERFLOW(cachep); 810 __drain_alien_cache(cachep, ac, page_node, &list); 811 } 812 ac->entry[ac->avail++] = objp; 813 spin_unlock(&alien->lock); 814 slabs_destroy(cachep, &list); 815 } else { 816 n = get_node(cachep, page_node); 817 spin_lock(&n->list_lock); 818 free_block(cachep, &objp, 1, page_node, &list); 819 spin_unlock(&n->list_lock); 820 slabs_destroy(cachep, &list); 821 } 822 return 1; 823 } 824 825 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 826 { 827 int page_node = page_to_nid(virt_to_page(objp)); 828 int node = numa_mem_id(); 829 /* 830 * Make sure we are not freeing a object from another node to the array 831 * cache on this cpu. 832 */ 833 if (likely(node == page_node)) 834 return 0; 835 836 return __cache_free_alien(cachep, objp, node, page_node); 837 } 838 839 /* 840 * Construct gfp mask to allocate from a specific node but do not reclaim or 841 * warn about failures. 842 */ 843 static inline gfp_t gfp_exact_node(gfp_t flags) 844 { 845 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 846 } 847 #endif 848 849 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 850 { 851 struct kmem_cache_node *n; 852 853 /* 854 * Set up the kmem_cache_node for cpu before we can 855 * begin anything. Make sure some other cpu on this 856 * node has not already allocated this 857 */ 858 n = get_node(cachep, node); 859 if (n) { 860 spin_lock_irq(&n->list_lock); 861 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 862 cachep->num; 863 spin_unlock_irq(&n->list_lock); 864 865 return 0; 866 } 867 868 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 869 if (!n) 870 return -ENOMEM; 871 872 kmem_cache_node_init(n); 873 n->next_reap = jiffies + REAPTIMEOUT_NODE + 874 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 875 876 n->free_limit = 877 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 878 879 /* 880 * The kmem_cache_nodes don't come and go as CPUs 881 * come and go. slab_mutex is sufficient 882 * protection here. 883 */ 884 cachep->node[node] = n; 885 886 return 0; 887 } 888 889 /* 890 * Allocates and initializes node for a node on each slab cache, used for 891 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 892 * will be allocated off-node since memory is not yet online for the new node. 893 * When hotplugging memory or a cpu, existing node are not replaced if 894 * already in use. 895 * 896 * Must hold slab_mutex. 897 */ 898 static int init_cache_node_node(int node) 899 { 900 int ret; 901 struct kmem_cache *cachep; 902 903 list_for_each_entry(cachep, &slab_caches, list) { 904 ret = init_cache_node(cachep, node, GFP_KERNEL); 905 if (ret) 906 return ret; 907 } 908 909 return 0; 910 } 911 912 static int setup_kmem_cache_node(struct kmem_cache *cachep, 913 int node, gfp_t gfp, bool force_change) 914 { 915 int ret = -ENOMEM; 916 struct kmem_cache_node *n; 917 struct array_cache *old_shared = NULL; 918 struct array_cache *new_shared = NULL; 919 struct alien_cache **new_alien = NULL; 920 LIST_HEAD(list); 921 922 if (use_alien_caches) { 923 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 924 if (!new_alien) 925 goto fail; 926 } 927 928 if (cachep->shared) { 929 new_shared = alloc_arraycache(node, 930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 931 if (!new_shared) 932 goto fail; 933 } 934 935 ret = init_cache_node(cachep, node, gfp); 936 if (ret) 937 goto fail; 938 939 n = get_node(cachep, node); 940 spin_lock_irq(&n->list_lock); 941 if (n->shared && force_change) { 942 free_block(cachep, n->shared->entry, 943 n->shared->avail, node, &list); 944 n->shared->avail = 0; 945 } 946 947 if (!n->shared || force_change) { 948 old_shared = n->shared; 949 n->shared = new_shared; 950 new_shared = NULL; 951 } 952 953 if (!n->alien) { 954 n->alien = new_alien; 955 new_alien = NULL; 956 } 957 958 spin_unlock_irq(&n->list_lock); 959 slabs_destroy(cachep, &list); 960 961 /* 962 * To protect lockless access to n->shared during irq disabled context. 963 * If n->shared isn't NULL in irq disabled context, accessing to it is 964 * guaranteed to be valid until irq is re-enabled, because it will be 965 * freed after synchronize_sched(). 966 */ 967 if (force_change) 968 synchronize_sched(); 969 970 fail: 971 kfree(old_shared); 972 kfree(new_shared); 973 free_alien_cache(new_alien); 974 975 return ret; 976 } 977 978 static void cpuup_canceled(long cpu) 979 { 980 struct kmem_cache *cachep; 981 struct kmem_cache_node *n = NULL; 982 int node = cpu_to_mem(cpu); 983 const struct cpumask *mask = cpumask_of_node(node); 984 985 list_for_each_entry(cachep, &slab_caches, list) { 986 struct array_cache *nc; 987 struct array_cache *shared; 988 struct alien_cache **alien; 989 LIST_HEAD(list); 990 991 n = get_node(cachep, node); 992 if (!n) 993 continue; 994 995 spin_lock_irq(&n->list_lock); 996 997 /* Free limit for this kmem_cache_node */ 998 n->free_limit -= cachep->batchcount; 999 1000 /* cpu is dead; no one can alloc from it. */ 1001 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 1002 if (nc) { 1003 free_block(cachep, nc->entry, nc->avail, node, &list); 1004 nc->avail = 0; 1005 } 1006 1007 if (!cpumask_empty(mask)) { 1008 spin_unlock_irq(&n->list_lock); 1009 goto free_slab; 1010 } 1011 1012 shared = n->shared; 1013 if (shared) { 1014 free_block(cachep, shared->entry, 1015 shared->avail, node, &list); 1016 n->shared = NULL; 1017 } 1018 1019 alien = n->alien; 1020 n->alien = NULL; 1021 1022 spin_unlock_irq(&n->list_lock); 1023 1024 kfree(shared); 1025 if (alien) { 1026 drain_alien_cache(cachep, alien); 1027 free_alien_cache(alien); 1028 } 1029 1030 free_slab: 1031 slabs_destroy(cachep, &list); 1032 } 1033 /* 1034 * In the previous loop, all the objects were freed to 1035 * the respective cache's slabs, now we can go ahead and 1036 * shrink each nodelist to its limit. 1037 */ 1038 list_for_each_entry(cachep, &slab_caches, list) { 1039 n = get_node(cachep, node); 1040 if (!n) 1041 continue; 1042 drain_freelist(cachep, n, INT_MAX); 1043 } 1044 } 1045 1046 static int cpuup_prepare(long cpu) 1047 { 1048 struct kmem_cache *cachep; 1049 int node = cpu_to_mem(cpu); 1050 int err; 1051 1052 /* 1053 * We need to do this right in the beginning since 1054 * alloc_arraycache's are going to use this list. 1055 * kmalloc_node allows us to add the slab to the right 1056 * kmem_cache_node and not this cpu's kmem_cache_node 1057 */ 1058 err = init_cache_node_node(node); 1059 if (err < 0) 1060 goto bad; 1061 1062 /* 1063 * Now we can go ahead with allocating the shared arrays and 1064 * array caches 1065 */ 1066 list_for_each_entry(cachep, &slab_caches, list) { 1067 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1068 if (err) 1069 goto bad; 1070 } 1071 1072 return 0; 1073 bad: 1074 cpuup_canceled(cpu); 1075 return -ENOMEM; 1076 } 1077 1078 static int cpuup_callback(struct notifier_block *nfb, 1079 unsigned long action, void *hcpu) 1080 { 1081 long cpu = (long)hcpu; 1082 int err = 0; 1083 1084 switch (action) { 1085 case CPU_UP_PREPARE: 1086 case CPU_UP_PREPARE_FROZEN: 1087 mutex_lock(&slab_mutex); 1088 err = cpuup_prepare(cpu); 1089 mutex_unlock(&slab_mutex); 1090 break; 1091 case CPU_ONLINE: 1092 case CPU_ONLINE_FROZEN: 1093 start_cpu_timer(cpu); 1094 break; 1095 #ifdef CONFIG_HOTPLUG_CPU 1096 case CPU_DOWN_PREPARE: 1097 case CPU_DOWN_PREPARE_FROZEN: 1098 /* 1099 * Shutdown cache reaper. Note that the slab_mutex is 1100 * held so that if cache_reap() is invoked it cannot do 1101 * anything expensive but will only modify reap_work 1102 * and reschedule the timer. 1103 */ 1104 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1105 /* Now the cache_reaper is guaranteed to be not running. */ 1106 per_cpu(slab_reap_work, cpu).work.func = NULL; 1107 break; 1108 case CPU_DOWN_FAILED: 1109 case CPU_DOWN_FAILED_FROZEN: 1110 start_cpu_timer(cpu); 1111 break; 1112 case CPU_DEAD: 1113 case CPU_DEAD_FROZEN: 1114 /* 1115 * Even if all the cpus of a node are down, we don't free the 1116 * kmem_cache_node of any cache. This to avoid a race between 1117 * cpu_down, and a kmalloc allocation from another cpu for 1118 * memory from the node of the cpu going down. The node 1119 * structure is usually allocated from kmem_cache_create() and 1120 * gets destroyed at kmem_cache_destroy(). 1121 */ 1122 /* fall through */ 1123 #endif 1124 case CPU_UP_CANCELED: 1125 case CPU_UP_CANCELED_FROZEN: 1126 mutex_lock(&slab_mutex); 1127 cpuup_canceled(cpu); 1128 mutex_unlock(&slab_mutex); 1129 break; 1130 } 1131 return notifier_from_errno(err); 1132 } 1133 1134 static struct notifier_block cpucache_notifier = { 1135 &cpuup_callback, NULL, 0 1136 }; 1137 1138 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1139 /* 1140 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1141 * Returns -EBUSY if all objects cannot be drained so that the node is not 1142 * removed. 1143 * 1144 * Must hold slab_mutex. 1145 */ 1146 static int __meminit drain_cache_node_node(int node) 1147 { 1148 struct kmem_cache *cachep; 1149 int ret = 0; 1150 1151 list_for_each_entry(cachep, &slab_caches, list) { 1152 struct kmem_cache_node *n; 1153 1154 n = get_node(cachep, node); 1155 if (!n) 1156 continue; 1157 1158 drain_freelist(cachep, n, INT_MAX); 1159 1160 if (!list_empty(&n->slabs_full) || 1161 !list_empty(&n->slabs_partial)) { 1162 ret = -EBUSY; 1163 break; 1164 } 1165 } 1166 return ret; 1167 } 1168 1169 static int __meminit slab_memory_callback(struct notifier_block *self, 1170 unsigned long action, void *arg) 1171 { 1172 struct memory_notify *mnb = arg; 1173 int ret = 0; 1174 int nid; 1175 1176 nid = mnb->status_change_nid; 1177 if (nid < 0) 1178 goto out; 1179 1180 switch (action) { 1181 case MEM_GOING_ONLINE: 1182 mutex_lock(&slab_mutex); 1183 ret = init_cache_node_node(nid); 1184 mutex_unlock(&slab_mutex); 1185 break; 1186 case MEM_GOING_OFFLINE: 1187 mutex_lock(&slab_mutex); 1188 ret = drain_cache_node_node(nid); 1189 mutex_unlock(&slab_mutex); 1190 break; 1191 case MEM_ONLINE: 1192 case MEM_OFFLINE: 1193 case MEM_CANCEL_ONLINE: 1194 case MEM_CANCEL_OFFLINE: 1195 break; 1196 } 1197 out: 1198 return notifier_from_errno(ret); 1199 } 1200 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1201 1202 /* 1203 * swap the static kmem_cache_node with kmalloced memory 1204 */ 1205 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1206 int nodeid) 1207 { 1208 struct kmem_cache_node *ptr; 1209 1210 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1211 BUG_ON(!ptr); 1212 1213 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1214 /* 1215 * Do not assume that spinlocks can be initialized via memcpy: 1216 */ 1217 spin_lock_init(&ptr->list_lock); 1218 1219 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1220 cachep->node[nodeid] = ptr; 1221 } 1222 1223 /* 1224 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1225 * size of kmem_cache_node. 1226 */ 1227 static void __init set_up_node(struct kmem_cache *cachep, int index) 1228 { 1229 int node; 1230 1231 for_each_online_node(node) { 1232 cachep->node[node] = &init_kmem_cache_node[index + node]; 1233 cachep->node[node]->next_reap = jiffies + 1234 REAPTIMEOUT_NODE + 1235 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1236 } 1237 } 1238 1239 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1240 static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list, 1241 size_t count) 1242 { 1243 size_t i; 1244 unsigned int rand; 1245 1246 for (i = 0; i < count; i++) 1247 list[i] = i; 1248 1249 /* Fisher-Yates shuffle */ 1250 for (i = count - 1; i > 0; i--) { 1251 rand = prandom_u32_state(state); 1252 rand %= (i + 1); 1253 swap(list[i], list[rand]); 1254 } 1255 } 1256 1257 /* Create a random sequence per cache */ 1258 static int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp) 1259 { 1260 unsigned int seed, count = cachep->num; 1261 struct rnd_state state; 1262 1263 if (count < 2) 1264 return 0; 1265 1266 /* If it fails, we will just use the global lists */ 1267 cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), gfp); 1268 if (!cachep->random_seq) 1269 return -ENOMEM; 1270 1271 /* Get best entropy at this stage */ 1272 get_random_bytes_arch(&seed, sizeof(seed)); 1273 prandom_seed_state(&state, seed); 1274 1275 freelist_randomize(&state, cachep->random_seq, count); 1276 return 0; 1277 } 1278 1279 /* Destroy the per-cache random freelist sequence */ 1280 static void cache_random_seq_destroy(struct kmem_cache *cachep) 1281 { 1282 kfree(cachep->random_seq); 1283 cachep->random_seq = NULL; 1284 } 1285 #else 1286 static inline int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp) 1287 { 1288 return 0; 1289 } 1290 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } 1291 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1292 1293 1294 /* 1295 * Initialisation. Called after the page allocator have been initialised and 1296 * before smp_init(). 1297 */ 1298 void __init kmem_cache_init(void) 1299 { 1300 int i; 1301 1302 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1303 sizeof(struct rcu_head)); 1304 kmem_cache = &kmem_cache_boot; 1305 1306 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1307 use_alien_caches = 0; 1308 1309 for (i = 0; i < NUM_INIT_LISTS; i++) 1310 kmem_cache_node_init(&init_kmem_cache_node[i]); 1311 1312 /* 1313 * Fragmentation resistance on low memory - only use bigger 1314 * page orders on machines with more than 32MB of memory if 1315 * not overridden on the command line. 1316 */ 1317 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1318 slab_max_order = SLAB_MAX_ORDER_HI; 1319 1320 /* Bootstrap is tricky, because several objects are allocated 1321 * from caches that do not exist yet: 1322 * 1) initialize the kmem_cache cache: it contains the struct 1323 * kmem_cache structures of all caches, except kmem_cache itself: 1324 * kmem_cache is statically allocated. 1325 * Initially an __init data area is used for the head array and the 1326 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1327 * array at the end of the bootstrap. 1328 * 2) Create the first kmalloc cache. 1329 * The struct kmem_cache for the new cache is allocated normally. 1330 * An __init data area is used for the head array. 1331 * 3) Create the remaining kmalloc caches, with minimally sized 1332 * head arrays. 1333 * 4) Replace the __init data head arrays for kmem_cache and the first 1334 * kmalloc cache with kmalloc allocated arrays. 1335 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1336 * the other cache's with kmalloc allocated memory. 1337 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1338 */ 1339 1340 /* 1) create the kmem_cache */ 1341 1342 /* 1343 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1344 */ 1345 create_boot_cache(kmem_cache, "kmem_cache", 1346 offsetof(struct kmem_cache, node) + 1347 nr_node_ids * sizeof(struct kmem_cache_node *), 1348 SLAB_HWCACHE_ALIGN); 1349 list_add(&kmem_cache->list, &slab_caches); 1350 slab_state = PARTIAL; 1351 1352 /* 1353 * Initialize the caches that provide memory for the kmem_cache_node 1354 * structures first. Without this, further allocations will bug. 1355 */ 1356 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node", 1357 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1358 slab_state = PARTIAL_NODE; 1359 setup_kmalloc_cache_index_table(); 1360 1361 slab_early_init = 0; 1362 1363 /* 5) Replace the bootstrap kmem_cache_node */ 1364 { 1365 int nid; 1366 1367 for_each_online_node(nid) { 1368 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1369 1370 init_list(kmalloc_caches[INDEX_NODE], 1371 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1372 } 1373 } 1374 1375 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1376 } 1377 1378 void __init kmem_cache_init_late(void) 1379 { 1380 struct kmem_cache *cachep; 1381 1382 slab_state = UP; 1383 1384 /* 6) resize the head arrays to their final sizes */ 1385 mutex_lock(&slab_mutex); 1386 list_for_each_entry(cachep, &slab_caches, list) 1387 if (enable_cpucache(cachep, GFP_NOWAIT)) 1388 BUG(); 1389 mutex_unlock(&slab_mutex); 1390 1391 /* Done! */ 1392 slab_state = FULL; 1393 1394 /* 1395 * Register a cpu startup notifier callback that initializes 1396 * cpu_cache_get for all new cpus 1397 */ 1398 register_cpu_notifier(&cpucache_notifier); 1399 1400 #ifdef CONFIG_NUMA 1401 /* 1402 * Register a memory hotplug callback that initializes and frees 1403 * node. 1404 */ 1405 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1406 #endif 1407 1408 /* 1409 * The reap timers are started later, with a module init call: That part 1410 * of the kernel is not yet operational. 1411 */ 1412 } 1413 1414 static int __init cpucache_init(void) 1415 { 1416 int cpu; 1417 1418 /* 1419 * Register the timers that return unneeded pages to the page allocator 1420 */ 1421 for_each_online_cpu(cpu) 1422 start_cpu_timer(cpu); 1423 1424 /* Done! */ 1425 slab_state = FULL; 1426 return 0; 1427 } 1428 __initcall(cpucache_init); 1429 1430 static noinline void 1431 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1432 { 1433 #if DEBUG 1434 struct kmem_cache_node *n; 1435 struct page *page; 1436 unsigned long flags; 1437 int node; 1438 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1439 DEFAULT_RATELIMIT_BURST); 1440 1441 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1442 return; 1443 1444 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1445 nodeid, gfpflags, &gfpflags); 1446 pr_warn(" cache: %s, object size: %d, order: %d\n", 1447 cachep->name, cachep->size, cachep->gfporder); 1448 1449 for_each_kmem_cache_node(cachep, node, n) { 1450 unsigned long active_objs = 0, num_objs = 0, free_objects = 0; 1451 unsigned long active_slabs = 0, num_slabs = 0; 1452 1453 spin_lock_irqsave(&n->list_lock, flags); 1454 list_for_each_entry(page, &n->slabs_full, lru) { 1455 active_objs += cachep->num; 1456 active_slabs++; 1457 } 1458 list_for_each_entry(page, &n->slabs_partial, lru) { 1459 active_objs += page->active; 1460 active_slabs++; 1461 } 1462 list_for_each_entry(page, &n->slabs_free, lru) 1463 num_slabs++; 1464 1465 free_objects += n->free_objects; 1466 spin_unlock_irqrestore(&n->list_lock, flags); 1467 1468 num_slabs += active_slabs; 1469 num_objs = num_slabs * cachep->num; 1470 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", 1471 node, active_slabs, num_slabs, active_objs, num_objs, 1472 free_objects); 1473 } 1474 #endif 1475 } 1476 1477 /* 1478 * Interface to system's page allocator. No need to hold the 1479 * kmem_cache_node ->list_lock. 1480 * 1481 * If we requested dmaable memory, we will get it. Even if we 1482 * did not request dmaable memory, we might get it, but that 1483 * would be relatively rare and ignorable. 1484 */ 1485 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1486 int nodeid) 1487 { 1488 struct page *page; 1489 int nr_pages; 1490 1491 flags |= cachep->allocflags; 1492 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1493 flags |= __GFP_RECLAIMABLE; 1494 1495 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1496 if (!page) { 1497 slab_out_of_memory(cachep, flags, nodeid); 1498 return NULL; 1499 } 1500 1501 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1502 __free_pages(page, cachep->gfporder); 1503 return NULL; 1504 } 1505 1506 nr_pages = (1 << cachep->gfporder); 1507 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1508 add_zone_page_state(page_zone(page), 1509 NR_SLAB_RECLAIMABLE, nr_pages); 1510 else 1511 add_zone_page_state(page_zone(page), 1512 NR_SLAB_UNRECLAIMABLE, nr_pages); 1513 1514 __SetPageSlab(page); 1515 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1516 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1517 SetPageSlabPfmemalloc(page); 1518 1519 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1520 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1521 1522 if (cachep->ctor) 1523 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1524 else 1525 kmemcheck_mark_unallocated_pages(page, nr_pages); 1526 } 1527 1528 return page; 1529 } 1530 1531 /* 1532 * Interface to system's page release. 1533 */ 1534 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1535 { 1536 int order = cachep->gfporder; 1537 unsigned long nr_freed = (1 << order); 1538 1539 kmemcheck_free_shadow(page, order); 1540 1541 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1542 sub_zone_page_state(page_zone(page), 1543 NR_SLAB_RECLAIMABLE, nr_freed); 1544 else 1545 sub_zone_page_state(page_zone(page), 1546 NR_SLAB_UNRECLAIMABLE, nr_freed); 1547 1548 BUG_ON(!PageSlab(page)); 1549 __ClearPageSlabPfmemalloc(page); 1550 __ClearPageSlab(page); 1551 page_mapcount_reset(page); 1552 page->mapping = NULL; 1553 1554 if (current->reclaim_state) 1555 current->reclaim_state->reclaimed_slab += nr_freed; 1556 memcg_uncharge_slab(page, order, cachep); 1557 __free_pages(page, order); 1558 } 1559 1560 static void kmem_rcu_free(struct rcu_head *head) 1561 { 1562 struct kmem_cache *cachep; 1563 struct page *page; 1564 1565 page = container_of(head, struct page, rcu_head); 1566 cachep = page->slab_cache; 1567 1568 kmem_freepages(cachep, page); 1569 } 1570 1571 #if DEBUG 1572 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1573 { 1574 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1575 (cachep->size % PAGE_SIZE) == 0) 1576 return true; 1577 1578 return false; 1579 } 1580 1581 #ifdef CONFIG_DEBUG_PAGEALLOC 1582 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1583 unsigned long caller) 1584 { 1585 int size = cachep->object_size; 1586 1587 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1588 1589 if (size < 5 * sizeof(unsigned long)) 1590 return; 1591 1592 *addr++ = 0x12345678; 1593 *addr++ = caller; 1594 *addr++ = smp_processor_id(); 1595 size -= 3 * sizeof(unsigned long); 1596 { 1597 unsigned long *sptr = &caller; 1598 unsigned long svalue; 1599 1600 while (!kstack_end(sptr)) { 1601 svalue = *sptr++; 1602 if (kernel_text_address(svalue)) { 1603 *addr++ = svalue; 1604 size -= sizeof(unsigned long); 1605 if (size <= sizeof(unsigned long)) 1606 break; 1607 } 1608 } 1609 1610 } 1611 *addr++ = 0x87654321; 1612 } 1613 1614 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1615 int map, unsigned long caller) 1616 { 1617 if (!is_debug_pagealloc_cache(cachep)) 1618 return; 1619 1620 if (caller) 1621 store_stackinfo(cachep, objp, caller); 1622 1623 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1624 } 1625 1626 #else 1627 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1628 int map, unsigned long caller) {} 1629 1630 #endif 1631 1632 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1633 { 1634 int size = cachep->object_size; 1635 addr = &((char *)addr)[obj_offset(cachep)]; 1636 1637 memset(addr, val, size); 1638 *(unsigned char *)(addr + size - 1) = POISON_END; 1639 } 1640 1641 static void dump_line(char *data, int offset, int limit) 1642 { 1643 int i; 1644 unsigned char error = 0; 1645 int bad_count = 0; 1646 1647 pr_err("%03x: ", offset); 1648 for (i = 0; i < limit; i++) { 1649 if (data[offset + i] != POISON_FREE) { 1650 error = data[offset + i]; 1651 bad_count++; 1652 } 1653 } 1654 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1655 &data[offset], limit, 1); 1656 1657 if (bad_count == 1) { 1658 error ^= POISON_FREE; 1659 if (!(error & (error - 1))) { 1660 pr_err("Single bit error detected. Probably bad RAM.\n"); 1661 #ifdef CONFIG_X86 1662 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1663 #else 1664 pr_err("Run a memory test tool.\n"); 1665 #endif 1666 } 1667 } 1668 } 1669 #endif 1670 1671 #if DEBUG 1672 1673 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1674 { 1675 int i, size; 1676 char *realobj; 1677 1678 if (cachep->flags & SLAB_RED_ZONE) { 1679 pr_err("Redzone: 0x%llx/0x%llx\n", 1680 *dbg_redzone1(cachep, objp), 1681 *dbg_redzone2(cachep, objp)); 1682 } 1683 1684 if (cachep->flags & SLAB_STORE_USER) { 1685 pr_err("Last user: [<%p>](%pSR)\n", 1686 *dbg_userword(cachep, objp), 1687 *dbg_userword(cachep, objp)); 1688 } 1689 realobj = (char *)objp + obj_offset(cachep); 1690 size = cachep->object_size; 1691 for (i = 0; i < size && lines; i += 16, lines--) { 1692 int limit; 1693 limit = 16; 1694 if (i + limit > size) 1695 limit = size - i; 1696 dump_line(realobj, i, limit); 1697 } 1698 } 1699 1700 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1701 { 1702 char *realobj; 1703 int size, i; 1704 int lines = 0; 1705 1706 if (is_debug_pagealloc_cache(cachep)) 1707 return; 1708 1709 realobj = (char *)objp + obj_offset(cachep); 1710 size = cachep->object_size; 1711 1712 for (i = 0; i < size; i++) { 1713 char exp = POISON_FREE; 1714 if (i == size - 1) 1715 exp = POISON_END; 1716 if (realobj[i] != exp) { 1717 int limit; 1718 /* Mismatch ! */ 1719 /* Print header */ 1720 if (lines == 0) { 1721 pr_err("Slab corruption (%s): %s start=%p, len=%d\n", 1722 print_tainted(), cachep->name, 1723 realobj, size); 1724 print_objinfo(cachep, objp, 0); 1725 } 1726 /* Hexdump the affected line */ 1727 i = (i / 16) * 16; 1728 limit = 16; 1729 if (i + limit > size) 1730 limit = size - i; 1731 dump_line(realobj, i, limit); 1732 i += 16; 1733 lines++; 1734 /* Limit to 5 lines */ 1735 if (lines > 5) 1736 break; 1737 } 1738 } 1739 if (lines != 0) { 1740 /* Print some data about the neighboring objects, if they 1741 * exist: 1742 */ 1743 struct page *page = virt_to_head_page(objp); 1744 unsigned int objnr; 1745 1746 objnr = obj_to_index(cachep, page, objp); 1747 if (objnr) { 1748 objp = index_to_obj(cachep, page, objnr - 1); 1749 realobj = (char *)objp + obj_offset(cachep); 1750 pr_err("Prev obj: start=%p, len=%d\n", realobj, size); 1751 print_objinfo(cachep, objp, 2); 1752 } 1753 if (objnr + 1 < cachep->num) { 1754 objp = index_to_obj(cachep, page, objnr + 1); 1755 realobj = (char *)objp + obj_offset(cachep); 1756 pr_err("Next obj: start=%p, len=%d\n", realobj, size); 1757 print_objinfo(cachep, objp, 2); 1758 } 1759 } 1760 } 1761 #endif 1762 1763 #if DEBUG 1764 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1765 struct page *page) 1766 { 1767 int i; 1768 1769 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1770 poison_obj(cachep, page->freelist - obj_offset(cachep), 1771 POISON_FREE); 1772 } 1773 1774 for (i = 0; i < cachep->num; i++) { 1775 void *objp = index_to_obj(cachep, page, i); 1776 1777 if (cachep->flags & SLAB_POISON) { 1778 check_poison_obj(cachep, objp); 1779 slab_kernel_map(cachep, objp, 1, 0); 1780 } 1781 if (cachep->flags & SLAB_RED_ZONE) { 1782 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1783 slab_error(cachep, "start of a freed object was overwritten"); 1784 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1785 slab_error(cachep, "end of a freed object was overwritten"); 1786 } 1787 } 1788 } 1789 #else 1790 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1791 struct page *page) 1792 { 1793 } 1794 #endif 1795 1796 /** 1797 * slab_destroy - destroy and release all objects in a slab 1798 * @cachep: cache pointer being destroyed 1799 * @page: page pointer being destroyed 1800 * 1801 * Destroy all the objs in a slab page, and release the mem back to the system. 1802 * Before calling the slab page must have been unlinked from the cache. The 1803 * kmem_cache_node ->list_lock is not held/needed. 1804 */ 1805 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1806 { 1807 void *freelist; 1808 1809 freelist = page->freelist; 1810 slab_destroy_debugcheck(cachep, page); 1811 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 1812 call_rcu(&page->rcu_head, kmem_rcu_free); 1813 else 1814 kmem_freepages(cachep, page); 1815 1816 /* 1817 * From now on, we don't use freelist 1818 * although actual page can be freed in rcu context 1819 */ 1820 if (OFF_SLAB(cachep)) 1821 kmem_cache_free(cachep->freelist_cache, freelist); 1822 } 1823 1824 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1825 { 1826 struct page *page, *n; 1827 1828 list_for_each_entry_safe(page, n, list, lru) { 1829 list_del(&page->lru); 1830 slab_destroy(cachep, page); 1831 } 1832 } 1833 1834 /** 1835 * calculate_slab_order - calculate size (page order) of slabs 1836 * @cachep: pointer to the cache that is being created 1837 * @size: size of objects to be created in this cache. 1838 * @flags: slab allocation flags 1839 * 1840 * Also calculates the number of objects per slab. 1841 * 1842 * This could be made much more intelligent. For now, try to avoid using 1843 * high order pages for slabs. When the gfp() functions are more friendly 1844 * towards high-order requests, this should be changed. 1845 */ 1846 static size_t calculate_slab_order(struct kmem_cache *cachep, 1847 size_t size, unsigned long flags) 1848 { 1849 size_t left_over = 0; 1850 int gfporder; 1851 1852 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1853 unsigned int num; 1854 size_t remainder; 1855 1856 num = cache_estimate(gfporder, size, flags, &remainder); 1857 if (!num) 1858 continue; 1859 1860 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1861 if (num > SLAB_OBJ_MAX_NUM) 1862 break; 1863 1864 if (flags & CFLGS_OFF_SLAB) { 1865 struct kmem_cache *freelist_cache; 1866 size_t freelist_size; 1867 1868 freelist_size = num * sizeof(freelist_idx_t); 1869 freelist_cache = kmalloc_slab(freelist_size, 0u); 1870 if (!freelist_cache) 1871 continue; 1872 1873 /* 1874 * Needed to avoid possible looping condition 1875 * in cache_grow_begin() 1876 */ 1877 if (OFF_SLAB(freelist_cache)) 1878 continue; 1879 1880 /* check if off slab has enough benefit */ 1881 if (freelist_cache->size > cachep->size / 2) 1882 continue; 1883 } 1884 1885 /* Found something acceptable - save it away */ 1886 cachep->num = num; 1887 cachep->gfporder = gfporder; 1888 left_over = remainder; 1889 1890 /* 1891 * A VFS-reclaimable slab tends to have most allocations 1892 * as GFP_NOFS and we really don't want to have to be allocating 1893 * higher-order pages when we are unable to shrink dcache. 1894 */ 1895 if (flags & SLAB_RECLAIM_ACCOUNT) 1896 break; 1897 1898 /* 1899 * Large number of objects is good, but very large slabs are 1900 * currently bad for the gfp()s. 1901 */ 1902 if (gfporder >= slab_max_order) 1903 break; 1904 1905 /* 1906 * Acceptable internal fragmentation? 1907 */ 1908 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1909 break; 1910 } 1911 return left_over; 1912 } 1913 1914 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1915 struct kmem_cache *cachep, int entries, int batchcount) 1916 { 1917 int cpu; 1918 size_t size; 1919 struct array_cache __percpu *cpu_cache; 1920 1921 size = sizeof(void *) * entries + sizeof(struct array_cache); 1922 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1923 1924 if (!cpu_cache) 1925 return NULL; 1926 1927 for_each_possible_cpu(cpu) { 1928 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1929 entries, batchcount); 1930 } 1931 1932 return cpu_cache; 1933 } 1934 1935 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1936 { 1937 if (slab_state >= FULL) 1938 return enable_cpucache(cachep, gfp); 1939 1940 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1941 if (!cachep->cpu_cache) 1942 return 1; 1943 1944 if (slab_state == DOWN) { 1945 /* Creation of first cache (kmem_cache). */ 1946 set_up_node(kmem_cache, CACHE_CACHE); 1947 } else if (slab_state == PARTIAL) { 1948 /* For kmem_cache_node */ 1949 set_up_node(cachep, SIZE_NODE); 1950 } else { 1951 int node; 1952 1953 for_each_online_node(node) { 1954 cachep->node[node] = kmalloc_node( 1955 sizeof(struct kmem_cache_node), gfp, node); 1956 BUG_ON(!cachep->node[node]); 1957 kmem_cache_node_init(cachep->node[node]); 1958 } 1959 } 1960 1961 cachep->node[numa_mem_id()]->next_reap = 1962 jiffies + REAPTIMEOUT_NODE + 1963 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1964 1965 cpu_cache_get(cachep)->avail = 0; 1966 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1967 cpu_cache_get(cachep)->batchcount = 1; 1968 cpu_cache_get(cachep)->touched = 0; 1969 cachep->batchcount = 1; 1970 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1971 return 0; 1972 } 1973 1974 unsigned long kmem_cache_flags(unsigned long object_size, 1975 unsigned long flags, const char *name, 1976 void (*ctor)(void *)) 1977 { 1978 return flags; 1979 } 1980 1981 struct kmem_cache * 1982 __kmem_cache_alias(const char *name, size_t size, size_t align, 1983 unsigned long flags, void (*ctor)(void *)) 1984 { 1985 struct kmem_cache *cachep; 1986 1987 cachep = find_mergeable(size, align, flags, name, ctor); 1988 if (cachep) { 1989 cachep->refcount++; 1990 1991 /* 1992 * Adjust the object sizes so that we clear 1993 * the complete object on kzalloc. 1994 */ 1995 cachep->object_size = max_t(int, cachep->object_size, size); 1996 } 1997 return cachep; 1998 } 1999 2000 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 2001 size_t size, unsigned long flags) 2002 { 2003 size_t left; 2004 2005 cachep->num = 0; 2006 2007 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU) 2008 return false; 2009 2010 left = calculate_slab_order(cachep, size, 2011 flags | CFLGS_OBJFREELIST_SLAB); 2012 if (!cachep->num) 2013 return false; 2014 2015 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 2016 return false; 2017 2018 cachep->colour = left / cachep->colour_off; 2019 2020 return true; 2021 } 2022 2023 static bool set_off_slab_cache(struct kmem_cache *cachep, 2024 size_t size, unsigned long flags) 2025 { 2026 size_t left; 2027 2028 cachep->num = 0; 2029 2030 /* 2031 * Always use on-slab management when SLAB_NOLEAKTRACE 2032 * to avoid recursive calls into kmemleak. 2033 */ 2034 if (flags & SLAB_NOLEAKTRACE) 2035 return false; 2036 2037 /* 2038 * Size is large, assume best to place the slab management obj 2039 * off-slab (should allow better packing of objs). 2040 */ 2041 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 2042 if (!cachep->num) 2043 return false; 2044 2045 /* 2046 * If the slab has been placed off-slab, and we have enough space then 2047 * move it on-slab. This is at the expense of any extra colouring. 2048 */ 2049 if (left >= cachep->num * sizeof(freelist_idx_t)) 2050 return false; 2051 2052 cachep->colour = left / cachep->colour_off; 2053 2054 return true; 2055 } 2056 2057 static bool set_on_slab_cache(struct kmem_cache *cachep, 2058 size_t size, unsigned long flags) 2059 { 2060 size_t left; 2061 2062 cachep->num = 0; 2063 2064 left = calculate_slab_order(cachep, size, flags); 2065 if (!cachep->num) 2066 return false; 2067 2068 cachep->colour = left / cachep->colour_off; 2069 2070 return true; 2071 } 2072 2073 /** 2074 * __kmem_cache_create - Create a cache. 2075 * @cachep: cache management descriptor 2076 * @flags: SLAB flags 2077 * 2078 * Returns a ptr to the cache on success, NULL on failure. 2079 * Cannot be called within a int, but can be interrupted. 2080 * The @ctor is run when new pages are allocated by the cache. 2081 * 2082 * The flags are 2083 * 2084 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2085 * to catch references to uninitialised memory. 2086 * 2087 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2088 * for buffer overruns. 2089 * 2090 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2091 * cacheline. This can be beneficial if you're counting cycles as closely 2092 * as davem. 2093 */ 2094 int 2095 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2096 { 2097 size_t ralign = BYTES_PER_WORD; 2098 gfp_t gfp; 2099 int err; 2100 size_t size = cachep->size; 2101 2102 #if DEBUG 2103 #if FORCED_DEBUG 2104 /* 2105 * Enable redzoning and last user accounting, except for caches with 2106 * large objects, if the increased size would increase the object size 2107 * above the next power of two: caches with object sizes just above a 2108 * power of two have a significant amount of internal fragmentation. 2109 */ 2110 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2111 2 * sizeof(unsigned long long))) 2112 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2113 if (!(flags & SLAB_DESTROY_BY_RCU)) 2114 flags |= SLAB_POISON; 2115 #endif 2116 #endif 2117 2118 /* 2119 * Check that size is in terms of words. This is needed to avoid 2120 * unaligned accesses for some archs when redzoning is used, and makes 2121 * sure any on-slab bufctl's are also correctly aligned. 2122 */ 2123 if (size & (BYTES_PER_WORD - 1)) { 2124 size += (BYTES_PER_WORD - 1); 2125 size &= ~(BYTES_PER_WORD - 1); 2126 } 2127 2128 if (flags & SLAB_RED_ZONE) { 2129 ralign = REDZONE_ALIGN; 2130 /* If redzoning, ensure that the second redzone is suitably 2131 * aligned, by adjusting the object size accordingly. */ 2132 size += REDZONE_ALIGN - 1; 2133 size &= ~(REDZONE_ALIGN - 1); 2134 } 2135 2136 /* 3) caller mandated alignment */ 2137 if (ralign < cachep->align) { 2138 ralign = cachep->align; 2139 } 2140 /* disable debug if necessary */ 2141 if (ralign > __alignof__(unsigned long long)) 2142 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2143 /* 2144 * 4) Store it. 2145 */ 2146 cachep->align = ralign; 2147 cachep->colour_off = cache_line_size(); 2148 /* Offset must be a multiple of the alignment. */ 2149 if (cachep->colour_off < cachep->align) 2150 cachep->colour_off = cachep->align; 2151 2152 if (slab_is_available()) 2153 gfp = GFP_KERNEL; 2154 else 2155 gfp = GFP_NOWAIT; 2156 2157 #if DEBUG 2158 2159 /* 2160 * Both debugging options require word-alignment which is calculated 2161 * into align above. 2162 */ 2163 if (flags & SLAB_RED_ZONE) { 2164 /* add space for red zone words */ 2165 cachep->obj_offset += sizeof(unsigned long long); 2166 size += 2 * sizeof(unsigned long long); 2167 } 2168 if (flags & SLAB_STORE_USER) { 2169 /* user store requires one word storage behind the end of 2170 * the real object. But if the second red zone needs to be 2171 * aligned to 64 bits, we must allow that much space. 2172 */ 2173 if (flags & SLAB_RED_ZONE) 2174 size += REDZONE_ALIGN; 2175 else 2176 size += BYTES_PER_WORD; 2177 } 2178 #endif 2179 2180 kasan_cache_create(cachep, &size, &flags); 2181 2182 size = ALIGN(size, cachep->align); 2183 /* 2184 * We should restrict the number of objects in a slab to implement 2185 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2186 */ 2187 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2188 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2189 2190 #if DEBUG 2191 /* 2192 * To activate debug pagealloc, off-slab management is necessary 2193 * requirement. In early phase of initialization, small sized slab 2194 * doesn't get initialized so it would not be possible. So, we need 2195 * to check size >= 256. It guarantees that all necessary small 2196 * sized slab is initialized in current slab initialization sequence. 2197 */ 2198 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2199 size >= 256 && cachep->object_size > cache_line_size()) { 2200 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2201 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2202 2203 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2204 flags |= CFLGS_OFF_SLAB; 2205 cachep->obj_offset += tmp_size - size; 2206 size = tmp_size; 2207 goto done; 2208 } 2209 } 2210 } 2211 #endif 2212 2213 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2214 flags |= CFLGS_OBJFREELIST_SLAB; 2215 goto done; 2216 } 2217 2218 if (set_off_slab_cache(cachep, size, flags)) { 2219 flags |= CFLGS_OFF_SLAB; 2220 goto done; 2221 } 2222 2223 if (set_on_slab_cache(cachep, size, flags)) 2224 goto done; 2225 2226 return -E2BIG; 2227 2228 done: 2229 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2230 cachep->flags = flags; 2231 cachep->allocflags = __GFP_COMP; 2232 if (flags & SLAB_CACHE_DMA) 2233 cachep->allocflags |= GFP_DMA; 2234 cachep->size = size; 2235 cachep->reciprocal_buffer_size = reciprocal_value(size); 2236 2237 #if DEBUG 2238 /* 2239 * If we're going to use the generic kernel_map_pages() 2240 * poisoning, then it's going to smash the contents of 2241 * the redzone and userword anyhow, so switch them off. 2242 */ 2243 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2244 (cachep->flags & SLAB_POISON) && 2245 is_debug_pagealloc_cache(cachep)) 2246 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2247 #endif 2248 2249 if (OFF_SLAB(cachep)) { 2250 cachep->freelist_cache = 2251 kmalloc_slab(cachep->freelist_size, 0u); 2252 } 2253 2254 err = setup_cpu_cache(cachep, gfp); 2255 if (err) { 2256 __kmem_cache_release(cachep); 2257 return err; 2258 } 2259 2260 return 0; 2261 } 2262 2263 #if DEBUG 2264 static void check_irq_off(void) 2265 { 2266 BUG_ON(!irqs_disabled()); 2267 } 2268 2269 static void check_irq_on(void) 2270 { 2271 BUG_ON(irqs_disabled()); 2272 } 2273 2274 static void check_mutex_acquired(void) 2275 { 2276 BUG_ON(!mutex_is_locked(&slab_mutex)); 2277 } 2278 2279 static void check_spinlock_acquired(struct kmem_cache *cachep) 2280 { 2281 #ifdef CONFIG_SMP 2282 check_irq_off(); 2283 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2284 #endif 2285 } 2286 2287 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2288 { 2289 #ifdef CONFIG_SMP 2290 check_irq_off(); 2291 assert_spin_locked(&get_node(cachep, node)->list_lock); 2292 #endif 2293 } 2294 2295 #else 2296 #define check_irq_off() do { } while(0) 2297 #define check_irq_on() do { } while(0) 2298 #define check_mutex_acquired() do { } while(0) 2299 #define check_spinlock_acquired(x) do { } while(0) 2300 #define check_spinlock_acquired_node(x, y) do { } while(0) 2301 #endif 2302 2303 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2304 int node, bool free_all, struct list_head *list) 2305 { 2306 int tofree; 2307 2308 if (!ac || !ac->avail) 2309 return; 2310 2311 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2312 if (tofree > ac->avail) 2313 tofree = (ac->avail + 1) / 2; 2314 2315 free_block(cachep, ac->entry, tofree, node, list); 2316 ac->avail -= tofree; 2317 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2318 } 2319 2320 static void do_drain(void *arg) 2321 { 2322 struct kmem_cache *cachep = arg; 2323 struct array_cache *ac; 2324 int node = numa_mem_id(); 2325 struct kmem_cache_node *n; 2326 LIST_HEAD(list); 2327 2328 check_irq_off(); 2329 ac = cpu_cache_get(cachep); 2330 n = get_node(cachep, node); 2331 spin_lock(&n->list_lock); 2332 free_block(cachep, ac->entry, ac->avail, node, &list); 2333 spin_unlock(&n->list_lock); 2334 slabs_destroy(cachep, &list); 2335 ac->avail = 0; 2336 } 2337 2338 static void drain_cpu_caches(struct kmem_cache *cachep) 2339 { 2340 struct kmem_cache_node *n; 2341 int node; 2342 LIST_HEAD(list); 2343 2344 on_each_cpu(do_drain, cachep, 1); 2345 check_irq_on(); 2346 for_each_kmem_cache_node(cachep, node, n) 2347 if (n->alien) 2348 drain_alien_cache(cachep, n->alien); 2349 2350 for_each_kmem_cache_node(cachep, node, n) { 2351 spin_lock_irq(&n->list_lock); 2352 drain_array_locked(cachep, n->shared, node, true, &list); 2353 spin_unlock_irq(&n->list_lock); 2354 2355 slabs_destroy(cachep, &list); 2356 } 2357 } 2358 2359 /* 2360 * Remove slabs from the list of free slabs. 2361 * Specify the number of slabs to drain in tofree. 2362 * 2363 * Returns the actual number of slabs released. 2364 */ 2365 static int drain_freelist(struct kmem_cache *cache, 2366 struct kmem_cache_node *n, int tofree) 2367 { 2368 struct list_head *p; 2369 int nr_freed; 2370 struct page *page; 2371 2372 nr_freed = 0; 2373 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2374 2375 spin_lock_irq(&n->list_lock); 2376 p = n->slabs_free.prev; 2377 if (p == &n->slabs_free) { 2378 spin_unlock_irq(&n->list_lock); 2379 goto out; 2380 } 2381 2382 page = list_entry(p, struct page, lru); 2383 list_del(&page->lru); 2384 /* 2385 * Safe to drop the lock. The slab is no longer linked 2386 * to the cache. 2387 */ 2388 n->free_objects -= cache->num; 2389 spin_unlock_irq(&n->list_lock); 2390 slab_destroy(cache, page); 2391 nr_freed++; 2392 } 2393 out: 2394 return nr_freed; 2395 } 2396 2397 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate) 2398 { 2399 int ret = 0; 2400 int node; 2401 struct kmem_cache_node *n; 2402 2403 drain_cpu_caches(cachep); 2404 2405 check_irq_on(); 2406 for_each_kmem_cache_node(cachep, node, n) { 2407 drain_freelist(cachep, n, INT_MAX); 2408 2409 ret += !list_empty(&n->slabs_full) || 2410 !list_empty(&n->slabs_partial); 2411 } 2412 return (ret ? 1 : 0); 2413 } 2414 2415 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2416 { 2417 return __kmem_cache_shrink(cachep, false); 2418 } 2419 2420 void __kmem_cache_release(struct kmem_cache *cachep) 2421 { 2422 int i; 2423 struct kmem_cache_node *n; 2424 2425 cache_random_seq_destroy(cachep); 2426 2427 free_percpu(cachep->cpu_cache); 2428 2429 /* NUMA: free the node structures */ 2430 for_each_kmem_cache_node(cachep, i, n) { 2431 kfree(n->shared); 2432 free_alien_cache(n->alien); 2433 kfree(n); 2434 cachep->node[i] = NULL; 2435 } 2436 } 2437 2438 /* 2439 * Get the memory for a slab management obj. 2440 * 2441 * For a slab cache when the slab descriptor is off-slab, the 2442 * slab descriptor can't come from the same cache which is being created, 2443 * Because if it is the case, that means we defer the creation of 2444 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2445 * And we eventually call down to __kmem_cache_create(), which 2446 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2447 * This is a "chicken-and-egg" problem. 2448 * 2449 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2450 * which are all initialized during kmem_cache_init(). 2451 */ 2452 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2453 struct page *page, int colour_off, 2454 gfp_t local_flags, int nodeid) 2455 { 2456 void *freelist; 2457 void *addr = page_address(page); 2458 2459 page->s_mem = addr + colour_off; 2460 page->active = 0; 2461 2462 if (OBJFREELIST_SLAB(cachep)) 2463 freelist = NULL; 2464 else if (OFF_SLAB(cachep)) { 2465 /* Slab management obj is off-slab. */ 2466 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2467 local_flags, nodeid); 2468 if (!freelist) 2469 return NULL; 2470 } else { 2471 /* We will use last bytes at the slab for freelist */ 2472 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2473 cachep->freelist_size; 2474 } 2475 2476 return freelist; 2477 } 2478 2479 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2480 { 2481 return ((freelist_idx_t *)page->freelist)[idx]; 2482 } 2483 2484 static inline void set_free_obj(struct page *page, 2485 unsigned int idx, freelist_idx_t val) 2486 { 2487 ((freelist_idx_t *)(page->freelist))[idx] = val; 2488 } 2489 2490 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2491 { 2492 #if DEBUG 2493 int i; 2494 2495 for (i = 0; i < cachep->num; i++) { 2496 void *objp = index_to_obj(cachep, page, i); 2497 2498 if (cachep->flags & SLAB_STORE_USER) 2499 *dbg_userword(cachep, objp) = NULL; 2500 2501 if (cachep->flags & SLAB_RED_ZONE) { 2502 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2503 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2504 } 2505 /* 2506 * Constructors are not allowed to allocate memory from the same 2507 * cache which they are a constructor for. Otherwise, deadlock. 2508 * They must also be threaded. 2509 */ 2510 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2511 kasan_unpoison_object_data(cachep, 2512 objp + obj_offset(cachep)); 2513 cachep->ctor(objp + obj_offset(cachep)); 2514 kasan_poison_object_data( 2515 cachep, objp + obj_offset(cachep)); 2516 } 2517 2518 if (cachep->flags & SLAB_RED_ZONE) { 2519 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2520 slab_error(cachep, "constructor overwrote the end of an object"); 2521 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2522 slab_error(cachep, "constructor overwrote the start of an object"); 2523 } 2524 /* need to poison the objs? */ 2525 if (cachep->flags & SLAB_POISON) { 2526 poison_obj(cachep, objp, POISON_FREE); 2527 slab_kernel_map(cachep, objp, 0, 0); 2528 } 2529 } 2530 #endif 2531 } 2532 2533 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2534 /* Hold information during a freelist initialization */ 2535 union freelist_init_state { 2536 struct { 2537 unsigned int pos; 2538 freelist_idx_t *list; 2539 unsigned int count; 2540 unsigned int rand; 2541 }; 2542 struct rnd_state rnd_state; 2543 }; 2544 2545 /* 2546 * Initialize the state based on the randomization methode available. 2547 * return true if the pre-computed list is available, false otherwize. 2548 */ 2549 static bool freelist_state_initialize(union freelist_init_state *state, 2550 struct kmem_cache *cachep, 2551 unsigned int count) 2552 { 2553 bool ret; 2554 unsigned int rand; 2555 2556 /* Use best entropy available to define a random shift */ 2557 get_random_bytes_arch(&rand, sizeof(rand)); 2558 2559 /* Use a random state if the pre-computed list is not available */ 2560 if (!cachep->random_seq) { 2561 prandom_seed_state(&state->rnd_state, rand); 2562 ret = false; 2563 } else { 2564 state->list = cachep->random_seq; 2565 state->count = count; 2566 state->pos = 0; 2567 state->rand = rand; 2568 ret = true; 2569 } 2570 return ret; 2571 } 2572 2573 /* Get the next entry on the list and randomize it using a random shift */ 2574 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2575 { 2576 return (state->list[state->pos++] + state->rand) % state->count; 2577 } 2578 2579 /* 2580 * Shuffle the freelist initialization state based on pre-computed lists. 2581 * return true if the list was successfully shuffled, false otherwise. 2582 */ 2583 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2584 { 2585 unsigned int objfreelist = 0, i, count = cachep->num; 2586 union freelist_init_state state; 2587 bool precomputed; 2588 2589 if (count < 2) 2590 return false; 2591 2592 precomputed = freelist_state_initialize(&state, cachep, count); 2593 2594 /* Take a random entry as the objfreelist */ 2595 if (OBJFREELIST_SLAB(cachep)) { 2596 if (!precomputed) 2597 objfreelist = count - 1; 2598 else 2599 objfreelist = next_random_slot(&state); 2600 page->freelist = index_to_obj(cachep, page, objfreelist) + 2601 obj_offset(cachep); 2602 count--; 2603 } 2604 2605 /* 2606 * On early boot, generate the list dynamically. 2607 * Later use a pre-computed list for speed. 2608 */ 2609 if (!precomputed) { 2610 freelist_randomize(&state.rnd_state, page->freelist, count); 2611 } else { 2612 for (i = 0; i < count; i++) 2613 set_free_obj(page, i, next_random_slot(&state)); 2614 } 2615 2616 if (OBJFREELIST_SLAB(cachep)) 2617 set_free_obj(page, cachep->num - 1, objfreelist); 2618 2619 return true; 2620 } 2621 #else 2622 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2623 struct page *page) 2624 { 2625 return false; 2626 } 2627 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2628 2629 static void cache_init_objs(struct kmem_cache *cachep, 2630 struct page *page) 2631 { 2632 int i; 2633 void *objp; 2634 bool shuffled; 2635 2636 cache_init_objs_debug(cachep, page); 2637 2638 /* Try to randomize the freelist if enabled */ 2639 shuffled = shuffle_freelist(cachep, page); 2640 2641 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2642 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2643 obj_offset(cachep); 2644 } 2645 2646 for (i = 0; i < cachep->num; i++) { 2647 /* constructor could break poison info */ 2648 if (DEBUG == 0 && cachep->ctor) { 2649 objp = index_to_obj(cachep, page, i); 2650 kasan_unpoison_object_data(cachep, objp); 2651 cachep->ctor(objp); 2652 kasan_poison_object_data(cachep, objp); 2653 } 2654 2655 if (!shuffled) 2656 set_free_obj(page, i, i); 2657 } 2658 } 2659 2660 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2661 { 2662 void *objp; 2663 2664 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2665 page->active++; 2666 2667 #if DEBUG 2668 if (cachep->flags & SLAB_STORE_USER) 2669 set_store_user_dirty(cachep); 2670 #endif 2671 2672 return objp; 2673 } 2674 2675 static void slab_put_obj(struct kmem_cache *cachep, 2676 struct page *page, void *objp) 2677 { 2678 unsigned int objnr = obj_to_index(cachep, page, objp); 2679 #if DEBUG 2680 unsigned int i; 2681 2682 /* Verify double free bug */ 2683 for (i = page->active; i < cachep->num; i++) { 2684 if (get_free_obj(page, i) == objnr) { 2685 pr_err("slab: double free detected in cache '%s', objp %p\n", 2686 cachep->name, objp); 2687 BUG(); 2688 } 2689 } 2690 #endif 2691 page->active--; 2692 if (!page->freelist) 2693 page->freelist = objp + obj_offset(cachep); 2694 2695 set_free_obj(page, page->active, objnr); 2696 } 2697 2698 /* 2699 * Map pages beginning at addr to the given cache and slab. This is required 2700 * for the slab allocator to be able to lookup the cache and slab of a 2701 * virtual address for kfree, ksize, and slab debugging. 2702 */ 2703 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2704 void *freelist) 2705 { 2706 page->slab_cache = cache; 2707 page->freelist = freelist; 2708 } 2709 2710 /* 2711 * Grow (by 1) the number of slabs within a cache. This is called by 2712 * kmem_cache_alloc() when there are no active objs left in a cache. 2713 */ 2714 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2715 gfp_t flags, int nodeid) 2716 { 2717 void *freelist; 2718 size_t offset; 2719 gfp_t local_flags; 2720 int page_node; 2721 struct kmem_cache_node *n; 2722 struct page *page; 2723 2724 /* 2725 * Be lazy and only check for valid flags here, keeping it out of the 2726 * critical path in kmem_cache_alloc(). 2727 */ 2728 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2729 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 2730 BUG(); 2731 } 2732 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2733 2734 check_irq_off(); 2735 if (gfpflags_allow_blocking(local_flags)) 2736 local_irq_enable(); 2737 2738 /* 2739 * Get mem for the objs. Attempt to allocate a physical page from 2740 * 'nodeid'. 2741 */ 2742 page = kmem_getpages(cachep, local_flags, nodeid); 2743 if (!page) 2744 goto failed; 2745 2746 page_node = page_to_nid(page); 2747 n = get_node(cachep, page_node); 2748 2749 /* Get colour for the slab, and cal the next value. */ 2750 n->colour_next++; 2751 if (n->colour_next >= cachep->colour) 2752 n->colour_next = 0; 2753 2754 offset = n->colour_next; 2755 if (offset >= cachep->colour) 2756 offset = 0; 2757 2758 offset *= cachep->colour_off; 2759 2760 /* Get slab management. */ 2761 freelist = alloc_slabmgmt(cachep, page, offset, 2762 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2763 if (OFF_SLAB(cachep) && !freelist) 2764 goto opps1; 2765 2766 slab_map_pages(cachep, page, freelist); 2767 2768 kasan_poison_slab(page); 2769 cache_init_objs(cachep, page); 2770 2771 if (gfpflags_allow_blocking(local_flags)) 2772 local_irq_disable(); 2773 2774 return page; 2775 2776 opps1: 2777 kmem_freepages(cachep, page); 2778 failed: 2779 if (gfpflags_allow_blocking(local_flags)) 2780 local_irq_disable(); 2781 return NULL; 2782 } 2783 2784 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2785 { 2786 struct kmem_cache_node *n; 2787 void *list = NULL; 2788 2789 check_irq_off(); 2790 2791 if (!page) 2792 return; 2793 2794 INIT_LIST_HEAD(&page->lru); 2795 n = get_node(cachep, page_to_nid(page)); 2796 2797 spin_lock(&n->list_lock); 2798 if (!page->active) 2799 list_add_tail(&page->lru, &(n->slabs_free)); 2800 else 2801 fixup_slab_list(cachep, n, page, &list); 2802 STATS_INC_GROWN(cachep); 2803 n->free_objects += cachep->num - page->active; 2804 spin_unlock(&n->list_lock); 2805 2806 fixup_objfreelist_debug(cachep, &list); 2807 } 2808 2809 #if DEBUG 2810 2811 /* 2812 * Perform extra freeing checks: 2813 * - detect bad pointers. 2814 * - POISON/RED_ZONE checking 2815 */ 2816 static void kfree_debugcheck(const void *objp) 2817 { 2818 if (!virt_addr_valid(objp)) { 2819 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2820 (unsigned long)objp); 2821 BUG(); 2822 } 2823 } 2824 2825 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2826 { 2827 unsigned long long redzone1, redzone2; 2828 2829 redzone1 = *dbg_redzone1(cache, obj); 2830 redzone2 = *dbg_redzone2(cache, obj); 2831 2832 /* 2833 * Redzone is ok. 2834 */ 2835 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2836 return; 2837 2838 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2839 slab_error(cache, "double free detected"); 2840 else 2841 slab_error(cache, "memory outside object was overwritten"); 2842 2843 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2844 obj, redzone1, redzone2); 2845 } 2846 2847 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2848 unsigned long caller) 2849 { 2850 unsigned int objnr; 2851 struct page *page; 2852 2853 BUG_ON(virt_to_cache(objp) != cachep); 2854 2855 objp -= obj_offset(cachep); 2856 kfree_debugcheck(objp); 2857 page = virt_to_head_page(objp); 2858 2859 if (cachep->flags & SLAB_RED_ZONE) { 2860 verify_redzone_free(cachep, objp); 2861 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2862 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2863 } 2864 if (cachep->flags & SLAB_STORE_USER) { 2865 set_store_user_dirty(cachep); 2866 *dbg_userword(cachep, objp) = (void *)caller; 2867 } 2868 2869 objnr = obj_to_index(cachep, page, objp); 2870 2871 BUG_ON(objnr >= cachep->num); 2872 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2873 2874 if (cachep->flags & SLAB_POISON) { 2875 poison_obj(cachep, objp, POISON_FREE); 2876 slab_kernel_map(cachep, objp, 0, caller); 2877 } 2878 return objp; 2879 } 2880 2881 #else 2882 #define kfree_debugcheck(x) do { } while(0) 2883 #define cache_free_debugcheck(x,objp,z) (objp) 2884 #endif 2885 2886 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2887 void **list) 2888 { 2889 #if DEBUG 2890 void *next = *list; 2891 void *objp; 2892 2893 while (next) { 2894 objp = next - obj_offset(cachep); 2895 next = *(void **)next; 2896 poison_obj(cachep, objp, POISON_FREE); 2897 } 2898 #endif 2899 } 2900 2901 static inline void fixup_slab_list(struct kmem_cache *cachep, 2902 struct kmem_cache_node *n, struct page *page, 2903 void **list) 2904 { 2905 /* move slabp to correct slabp list: */ 2906 list_del(&page->lru); 2907 if (page->active == cachep->num) { 2908 list_add(&page->lru, &n->slabs_full); 2909 if (OBJFREELIST_SLAB(cachep)) { 2910 #if DEBUG 2911 /* Poisoning will be done without holding the lock */ 2912 if (cachep->flags & SLAB_POISON) { 2913 void **objp = page->freelist; 2914 2915 *objp = *list; 2916 *list = objp; 2917 } 2918 #endif 2919 page->freelist = NULL; 2920 } 2921 } else 2922 list_add(&page->lru, &n->slabs_partial); 2923 } 2924 2925 /* Try to find non-pfmemalloc slab if needed */ 2926 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2927 struct page *page, bool pfmemalloc) 2928 { 2929 if (!page) 2930 return NULL; 2931 2932 if (pfmemalloc) 2933 return page; 2934 2935 if (!PageSlabPfmemalloc(page)) 2936 return page; 2937 2938 /* No need to keep pfmemalloc slab if we have enough free objects */ 2939 if (n->free_objects > n->free_limit) { 2940 ClearPageSlabPfmemalloc(page); 2941 return page; 2942 } 2943 2944 /* Move pfmemalloc slab to the end of list to speed up next search */ 2945 list_del(&page->lru); 2946 if (!page->active) 2947 list_add_tail(&page->lru, &n->slabs_free); 2948 else 2949 list_add_tail(&page->lru, &n->slabs_partial); 2950 2951 list_for_each_entry(page, &n->slabs_partial, lru) { 2952 if (!PageSlabPfmemalloc(page)) 2953 return page; 2954 } 2955 2956 list_for_each_entry(page, &n->slabs_free, lru) { 2957 if (!PageSlabPfmemalloc(page)) 2958 return page; 2959 } 2960 2961 return NULL; 2962 } 2963 2964 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2965 { 2966 struct page *page; 2967 2968 page = list_first_entry_or_null(&n->slabs_partial, 2969 struct page, lru); 2970 if (!page) { 2971 n->free_touched = 1; 2972 page = list_first_entry_or_null(&n->slabs_free, 2973 struct page, lru); 2974 } 2975 2976 if (sk_memalloc_socks()) 2977 return get_valid_first_slab(n, page, pfmemalloc); 2978 2979 return page; 2980 } 2981 2982 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2983 struct kmem_cache_node *n, gfp_t flags) 2984 { 2985 struct page *page; 2986 void *obj; 2987 void *list = NULL; 2988 2989 if (!gfp_pfmemalloc_allowed(flags)) 2990 return NULL; 2991 2992 spin_lock(&n->list_lock); 2993 page = get_first_slab(n, true); 2994 if (!page) { 2995 spin_unlock(&n->list_lock); 2996 return NULL; 2997 } 2998 2999 obj = slab_get_obj(cachep, page); 3000 n->free_objects--; 3001 3002 fixup_slab_list(cachep, n, page, &list); 3003 3004 spin_unlock(&n->list_lock); 3005 fixup_objfreelist_debug(cachep, &list); 3006 3007 return obj; 3008 } 3009 3010 /* 3011 * Slab list should be fixed up by fixup_slab_list() for existing slab 3012 * or cache_grow_end() for new slab 3013 */ 3014 static __always_inline int alloc_block(struct kmem_cache *cachep, 3015 struct array_cache *ac, struct page *page, int batchcount) 3016 { 3017 /* 3018 * There must be at least one object available for 3019 * allocation. 3020 */ 3021 BUG_ON(page->active >= cachep->num); 3022 3023 while (page->active < cachep->num && batchcount--) { 3024 STATS_INC_ALLOCED(cachep); 3025 STATS_INC_ACTIVE(cachep); 3026 STATS_SET_HIGH(cachep); 3027 3028 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 3029 } 3030 3031 return batchcount; 3032 } 3033 3034 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 3035 { 3036 int batchcount; 3037 struct kmem_cache_node *n; 3038 struct array_cache *ac, *shared; 3039 int node; 3040 void *list = NULL; 3041 struct page *page; 3042 3043 check_irq_off(); 3044 node = numa_mem_id(); 3045 3046 ac = cpu_cache_get(cachep); 3047 batchcount = ac->batchcount; 3048 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 3049 /* 3050 * If there was little recent activity on this cache, then 3051 * perform only a partial refill. Otherwise we could generate 3052 * refill bouncing. 3053 */ 3054 batchcount = BATCHREFILL_LIMIT; 3055 } 3056 n = get_node(cachep, node); 3057 3058 BUG_ON(ac->avail > 0 || !n); 3059 shared = READ_ONCE(n->shared); 3060 if (!n->free_objects && (!shared || !shared->avail)) 3061 goto direct_grow; 3062 3063 spin_lock(&n->list_lock); 3064 shared = READ_ONCE(n->shared); 3065 3066 /* See if we can refill from the shared array */ 3067 if (shared && transfer_objects(ac, shared, batchcount)) { 3068 shared->touched = 1; 3069 goto alloc_done; 3070 } 3071 3072 while (batchcount > 0) { 3073 /* Get slab alloc is to come from. */ 3074 page = get_first_slab(n, false); 3075 if (!page) 3076 goto must_grow; 3077 3078 check_spinlock_acquired(cachep); 3079 3080 batchcount = alloc_block(cachep, ac, page, batchcount); 3081 fixup_slab_list(cachep, n, page, &list); 3082 } 3083 3084 must_grow: 3085 n->free_objects -= ac->avail; 3086 alloc_done: 3087 spin_unlock(&n->list_lock); 3088 fixup_objfreelist_debug(cachep, &list); 3089 3090 direct_grow: 3091 if (unlikely(!ac->avail)) { 3092 /* Check if we can use obj in pfmemalloc slab */ 3093 if (sk_memalloc_socks()) { 3094 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 3095 3096 if (obj) 3097 return obj; 3098 } 3099 3100 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 3101 3102 /* 3103 * cache_grow_begin() can reenable interrupts, 3104 * then ac could change. 3105 */ 3106 ac = cpu_cache_get(cachep); 3107 if (!ac->avail && page) 3108 alloc_block(cachep, ac, page, batchcount); 3109 cache_grow_end(cachep, page); 3110 3111 if (!ac->avail) 3112 return NULL; 3113 } 3114 ac->touched = 1; 3115 3116 return ac->entry[--ac->avail]; 3117 } 3118 3119 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3120 gfp_t flags) 3121 { 3122 might_sleep_if(gfpflags_allow_blocking(flags)); 3123 } 3124 3125 #if DEBUG 3126 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3127 gfp_t flags, void *objp, unsigned long caller) 3128 { 3129 if (!objp) 3130 return objp; 3131 if (cachep->flags & SLAB_POISON) { 3132 check_poison_obj(cachep, objp); 3133 slab_kernel_map(cachep, objp, 1, 0); 3134 poison_obj(cachep, objp, POISON_INUSE); 3135 } 3136 if (cachep->flags & SLAB_STORE_USER) 3137 *dbg_userword(cachep, objp) = (void *)caller; 3138 3139 if (cachep->flags & SLAB_RED_ZONE) { 3140 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3141 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3142 slab_error(cachep, "double free, or memory outside object was overwritten"); 3143 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3144 objp, *dbg_redzone1(cachep, objp), 3145 *dbg_redzone2(cachep, objp)); 3146 } 3147 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3148 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3149 } 3150 3151 objp += obj_offset(cachep); 3152 if (cachep->ctor && cachep->flags & SLAB_POISON) 3153 cachep->ctor(objp); 3154 if (ARCH_SLAB_MINALIGN && 3155 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3156 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3157 objp, (int)ARCH_SLAB_MINALIGN); 3158 } 3159 return objp; 3160 } 3161 #else 3162 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3163 #endif 3164 3165 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3166 { 3167 void *objp; 3168 struct array_cache *ac; 3169 3170 check_irq_off(); 3171 3172 ac = cpu_cache_get(cachep); 3173 if (likely(ac->avail)) { 3174 ac->touched = 1; 3175 objp = ac->entry[--ac->avail]; 3176 3177 STATS_INC_ALLOCHIT(cachep); 3178 goto out; 3179 } 3180 3181 STATS_INC_ALLOCMISS(cachep); 3182 objp = cache_alloc_refill(cachep, flags); 3183 /* 3184 * the 'ac' may be updated by cache_alloc_refill(), 3185 * and kmemleak_erase() requires its correct value. 3186 */ 3187 ac = cpu_cache_get(cachep); 3188 3189 out: 3190 /* 3191 * To avoid a false negative, if an object that is in one of the 3192 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3193 * treat the array pointers as a reference to the object. 3194 */ 3195 if (objp) 3196 kmemleak_erase(&ac->entry[ac->avail]); 3197 return objp; 3198 } 3199 3200 #ifdef CONFIG_NUMA 3201 /* 3202 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3203 * 3204 * If we are in_interrupt, then process context, including cpusets and 3205 * mempolicy, may not apply and should not be used for allocation policy. 3206 */ 3207 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3208 { 3209 int nid_alloc, nid_here; 3210 3211 if (in_interrupt() || (flags & __GFP_THISNODE)) 3212 return NULL; 3213 nid_alloc = nid_here = numa_mem_id(); 3214 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3215 nid_alloc = cpuset_slab_spread_node(); 3216 else if (current->mempolicy) 3217 nid_alloc = mempolicy_slab_node(); 3218 if (nid_alloc != nid_here) 3219 return ____cache_alloc_node(cachep, flags, nid_alloc); 3220 return NULL; 3221 } 3222 3223 /* 3224 * Fallback function if there was no memory available and no objects on a 3225 * certain node and fall back is permitted. First we scan all the 3226 * available node for available objects. If that fails then we 3227 * perform an allocation without specifying a node. This allows the page 3228 * allocator to do its reclaim / fallback magic. We then insert the 3229 * slab into the proper nodelist and then allocate from it. 3230 */ 3231 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3232 { 3233 struct zonelist *zonelist; 3234 struct zoneref *z; 3235 struct zone *zone; 3236 enum zone_type high_zoneidx = gfp_zone(flags); 3237 void *obj = NULL; 3238 struct page *page; 3239 int nid; 3240 unsigned int cpuset_mems_cookie; 3241 3242 if (flags & __GFP_THISNODE) 3243 return NULL; 3244 3245 retry_cpuset: 3246 cpuset_mems_cookie = read_mems_allowed_begin(); 3247 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3248 3249 retry: 3250 /* 3251 * Look through allowed nodes for objects available 3252 * from existing per node queues. 3253 */ 3254 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3255 nid = zone_to_nid(zone); 3256 3257 if (cpuset_zone_allowed(zone, flags) && 3258 get_node(cache, nid) && 3259 get_node(cache, nid)->free_objects) { 3260 obj = ____cache_alloc_node(cache, 3261 gfp_exact_node(flags), nid); 3262 if (obj) 3263 break; 3264 } 3265 } 3266 3267 if (!obj) { 3268 /* 3269 * This allocation will be performed within the constraints 3270 * of the current cpuset / memory policy requirements. 3271 * We may trigger various forms of reclaim on the allowed 3272 * set and go into memory reserves if necessary. 3273 */ 3274 page = cache_grow_begin(cache, flags, numa_mem_id()); 3275 cache_grow_end(cache, page); 3276 if (page) { 3277 nid = page_to_nid(page); 3278 obj = ____cache_alloc_node(cache, 3279 gfp_exact_node(flags), nid); 3280 3281 /* 3282 * Another processor may allocate the objects in 3283 * the slab since we are not holding any locks. 3284 */ 3285 if (!obj) 3286 goto retry; 3287 } 3288 } 3289 3290 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3291 goto retry_cpuset; 3292 return obj; 3293 } 3294 3295 /* 3296 * A interface to enable slab creation on nodeid 3297 */ 3298 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3299 int nodeid) 3300 { 3301 struct page *page; 3302 struct kmem_cache_node *n; 3303 void *obj = NULL; 3304 void *list = NULL; 3305 3306 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3307 n = get_node(cachep, nodeid); 3308 BUG_ON(!n); 3309 3310 check_irq_off(); 3311 spin_lock(&n->list_lock); 3312 page = get_first_slab(n, false); 3313 if (!page) 3314 goto must_grow; 3315 3316 check_spinlock_acquired_node(cachep, nodeid); 3317 3318 STATS_INC_NODEALLOCS(cachep); 3319 STATS_INC_ACTIVE(cachep); 3320 STATS_SET_HIGH(cachep); 3321 3322 BUG_ON(page->active == cachep->num); 3323 3324 obj = slab_get_obj(cachep, page); 3325 n->free_objects--; 3326 3327 fixup_slab_list(cachep, n, page, &list); 3328 3329 spin_unlock(&n->list_lock); 3330 fixup_objfreelist_debug(cachep, &list); 3331 return obj; 3332 3333 must_grow: 3334 spin_unlock(&n->list_lock); 3335 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3336 if (page) { 3337 /* This slab isn't counted yet so don't update free_objects */ 3338 obj = slab_get_obj(cachep, page); 3339 } 3340 cache_grow_end(cachep, page); 3341 3342 return obj ? obj : fallback_alloc(cachep, flags); 3343 } 3344 3345 static __always_inline void * 3346 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3347 unsigned long caller) 3348 { 3349 unsigned long save_flags; 3350 void *ptr; 3351 int slab_node = numa_mem_id(); 3352 3353 flags &= gfp_allowed_mask; 3354 cachep = slab_pre_alloc_hook(cachep, flags); 3355 if (unlikely(!cachep)) 3356 return NULL; 3357 3358 cache_alloc_debugcheck_before(cachep, flags); 3359 local_irq_save(save_flags); 3360 3361 if (nodeid == NUMA_NO_NODE) 3362 nodeid = slab_node; 3363 3364 if (unlikely(!get_node(cachep, nodeid))) { 3365 /* Node not bootstrapped yet */ 3366 ptr = fallback_alloc(cachep, flags); 3367 goto out; 3368 } 3369 3370 if (nodeid == slab_node) { 3371 /* 3372 * Use the locally cached objects if possible. 3373 * However ____cache_alloc does not allow fallback 3374 * to other nodes. It may fail while we still have 3375 * objects on other nodes available. 3376 */ 3377 ptr = ____cache_alloc(cachep, flags); 3378 if (ptr) 3379 goto out; 3380 } 3381 /* ___cache_alloc_node can fall back to other nodes */ 3382 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3383 out: 3384 local_irq_restore(save_flags); 3385 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3386 3387 if (unlikely(flags & __GFP_ZERO) && ptr) 3388 memset(ptr, 0, cachep->object_size); 3389 3390 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3391 return ptr; 3392 } 3393 3394 static __always_inline void * 3395 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3396 { 3397 void *objp; 3398 3399 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3400 objp = alternate_node_alloc(cache, flags); 3401 if (objp) 3402 goto out; 3403 } 3404 objp = ____cache_alloc(cache, flags); 3405 3406 /* 3407 * We may just have run out of memory on the local node. 3408 * ____cache_alloc_node() knows how to locate memory on other nodes 3409 */ 3410 if (!objp) 3411 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3412 3413 out: 3414 return objp; 3415 } 3416 #else 3417 3418 static __always_inline void * 3419 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3420 { 3421 return ____cache_alloc(cachep, flags); 3422 } 3423 3424 #endif /* CONFIG_NUMA */ 3425 3426 static __always_inline void * 3427 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3428 { 3429 unsigned long save_flags; 3430 void *objp; 3431 3432 flags &= gfp_allowed_mask; 3433 cachep = slab_pre_alloc_hook(cachep, flags); 3434 if (unlikely(!cachep)) 3435 return NULL; 3436 3437 cache_alloc_debugcheck_before(cachep, flags); 3438 local_irq_save(save_flags); 3439 objp = __do_cache_alloc(cachep, flags); 3440 local_irq_restore(save_flags); 3441 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3442 prefetchw(objp); 3443 3444 if (unlikely(flags & __GFP_ZERO) && objp) 3445 memset(objp, 0, cachep->object_size); 3446 3447 slab_post_alloc_hook(cachep, flags, 1, &objp); 3448 return objp; 3449 } 3450 3451 /* 3452 * Caller needs to acquire correct kmem_cache_node's list_lock 3453 * @list: List of detached free slabs should be freed by caller 3454 */ 3455 static void free_block(struct kmem_cache *cachep, void **objpp, 3456 int nr_objects, int node, struct list_head *list) 3457 { 3458 int i; 3459 struct kmem_cache_node *n = get_node(cachep, node); 3460 struct page *page; 3461 3462 n->free_objects += nr_objects; 3463 3464 for (i = 0; i < nr_objects; i++) { 3465 void *objp; 3466 struct page *page; 3467 3468 objp = objpp[i]; 3469 3470 page = virt_to_head_page(objp); 3471 list_del(&page->lru); 3472 check_spinlock_acquired_node(cachep, node); 3473 slab_put_obj(cachep, page, objp); 3474 STATS_DEC_ACTIVE(cachep); 3475 3476 /* fixup slab chains */ 3477 if (page->active == 0) 3478 list_add(&page->lru, &n->slabs_free); 3479 else { 3480 /* Unconditionally move a slab to the end of the 3481 * partial list on free - maximum time for the 3482 * other objects to be freed, too. 3483 */ 3484 list_add_tail(&page->lru, &n->slabs_partial); 3485 } 3486 } 3487 3488 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3489 n->free_objects -= cachep->num; 3490 3491 page = list_last_entry(&n->slabs_free, struct page, lru); 3492 list_del(&page->lru); 3493 list_add(&page->lru, list); 3494 } 3495 } 3496 3497 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3498 { 3499 int batchcount; 3500 struct kmem_cache_node *n; 3501 int node = numa_mem_id(); 3502 LIST_HEAD(list); 3503 3504 batchcount = ac->batchcount; 3505 3506 check_irq_off(); 3507 n = get_node(cachep, node); 3508 spin_lock(&n->list_lock); 3509 if (n->shared) { 3510 struct array_cache *shared_array = n->shared; 3511 int max = shared_array->limit - shared_array->avail; 3512 if (max) { 3513 if (batchcount > max) 3514 batchcount = max; 3515 memcpy(&(shared_array->entry[shared_array->avail]), 3516 ac->entry, sizeof(void *) * batchcount); 3517 shared_array->avail += batchcount; 3518 goto free_done; 3519 } 3520 } 3521 3522 free_block(cachep, ac->entry, batchcount, node, &list); 3523 free_done: 3524 #if STATS 3525 { 3526 int i = 0; 3527 struct page *page; 3528 3529 list_for_each_entry(page, &n->slabs_free, lru) { 3530 BUG_ON(page->active); 3531 3532 i++; 3533 } 3534 STATS_SET_FREEABLE(cachep, i); 3535 } 3536 #endif 3537 spin_unlock(&n->list_lock); 3538 slabs_destroy(cachep, &list); 3539 ac->avail -= batchcount; 3540 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3541 } 3542 3543 /* 3544 * Release an obj back to its cache. If the obj has a constructed state, it must 3545 * be in this state _before_ it is released. Called with disabled ints. 3546 */ 3547 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3548 unsigned long caller) 3549 { 3550 /* Put the object into the quarantine, don't touch it for now. */ 3551 if (kasan_slab_free(cachep, objp)) 3552 return; 3553 3554 ___cache_free(cachep, objp, caller); 3555 } 3556 3557 void ___cache_free(struct kmem_cache *cachep, void *objp, 3558 unsigned long caller) 3559 { 3560 struct array_cache *ac = cpu_cache_get(cachep); 3561 3562 check_irq_off(); 3563 kmemleak_free_recursive(objp, cachep->flags); 3564 objp = cache_free_debugcheck(cachep, objp, caller); 3565 3566 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3567 3568 /* 3569 * Skip calling cache_free_alien() when the platform is not numa. 3570 * This will avoid cache misses that happen while accessing slabp (which 3571 * is per page memory reference) to get nodeid. Instead use a global 3572 * variable to skip the call, which is mostly likely to be present in 3573 * the cache. 3574 */ 3575 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3576 return; 3577 3578 if (ac->avail < ac->limit) { 3579 STATS_INC_FREEHIT(cachep); 3580 } else { 3581 STATS_INC_FREEMISS(cachep); 3582 cache_flusharray(cachep, ac); 3583 } 3584 3585 if (sk_memalloc_socks()) { 3586 struct page *page = virt_to_head_page(objp); 3587 3588 if (unlikely(PageSlabPfmemalloc(page))) { 3589 cache_free_pfmemalloc(cachep, page, objp); 3590 return; 3591 } 3592 } 3593 3594 ac->entry[ac->avail++] = objp; 3595 } 3596 3597 /** 3598 * kmem_cache_alloc - Allocate an object 3599 * @cachep: The cache to allocate from. 3600 * @flags: See kmalloc(). 3601 * 3602 * Allocate an object from this cache. The flags are only relevant 3603 * if the cache has no available objects. 3604 */ 3605 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3606 { 3607 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3608 3609 kasan_slab_alloc(cachep, ret, flags); 3610 trace_kmem_cache_alloc(_RET_IP_, ret, 3611 cachep->object_size, cachep->size, flags); 3612 3613 return ret; 3614 } 3615 EXPORT_SYMBOL(kmem_cache_alloc); 3616 3617 static __always_inline void 3618 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3619 size_t size, void **p, unsigned long caller) 3620 { 3621 size_t i; 3622 3623 for (i = 0; i < size; i++) 3624 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3625 } 3626 3627 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3628 void **p) 3629 { 3630 size_t i; 3631 3632 s = slab_pre_alloc_hook(s, flags); 3633 if (!s) 3634 return 0; 3635 3636 cache_alloc_debugcheck_before(s, flags); 3637 3638 local_irq_disable(); 3639 for (i = 0; i < size; i++) { 3640 void *objp = __do_cache_alloc(s, flags); 3641 3642 if (unlikely(!objp)) 3643 goto error; 3644 p[i] = objp; 3645 } 3646 local_irq_enable(); 3647 3648 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3649 3650 /* Clear memory outside IRQ disabled section */ 3651 if (unlikely(flags & __GFP_ZERO)) 3652 for (i = 0; i < size; i++) 3653 memset(p[i], 0, s->object_size); 3654 3655 slab_post_alloc_hook(s, flags, size, p); 3656 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3657 return size; 3658 error: 3659 local_irq_enable(); 3660 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3661 slab_post_alloc_hook(s, flags, i, p); 3662 __kmem_cache_free_bulk(s, i, p); 3663 return 0; 3664 } 3665 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3666 3667 #ifdef CONFIG_TRACING 3668 void * 3669 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3670 { 3671 void *ret; 3672 3673 ret = slab_alloc(cachep, flags, _RET_IP_); 3674 3675 kasan_kmalloc(cachep, ret, size, flags); 3676 trace_kmalloc(_RET_IP_, ret, 3677 size, cachep->size, flags); 3678 return ret; 3679 } 3680 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3681 #endif 3682 3683 #ifdef CONFIG_NUMA 3684 /** 3685 * kmem_cache_alloc_node - Allocate an object on the specified node 3686 * @cachep: The cache to allocate from. 3687 * @flags: See kmalloc(). 3688 * @nodeid: node number of the target node. 3689 * 3690 * Identical to kmem_cache_alloc but it will allocate memory on the given 3691 * node, which can improve the performance for cpu bound structures. 3692 * 3693 * Fallback to other node is possible if __GFP_THISNODE is not set. 3694 */ 3695 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3696 { 3697 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3698 3699 kasan_slab_alloc(cachep, ret, flags); 3700 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3701 cachep->object_size, cachep->size, 3702 flags, nodeid); 3703 3704 return ret; 3705 } 3706 EXPORT_SYMBOL(kmem_cache_alloc_node); 3707 3708 #ifdef CONFIG_TRACING 3709 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3710 gfp_t flags, 3711 int nodeid, 3712 size_t size) 3713 { 3714 void *ret; 3715 3716 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3717 3718 kasan_kmalloc(cachep, ret, size, flags); 3719 trace_kmalloc_node(_RET_IP_, ret, 3720 size, cachep->size, 3721 flags, nodeid); 3722 return ret; 3723 } 3724 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3725 #endif 3726 3727 static __always_inline void * 3728 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3729 { 3730 struct kmem_cache *cachep; 3731 void *ret; 3732 3733 cachep = kmalloc_slab(size, flags); 3734 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3735 return cachep; 3736 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3737 kasan_kmalloc(cachep, ret, size, flags); 3738 3739 return ret; 3740 } 3741 3742 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3743 { 3744 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3745 } 3746 EXPORT_SYMBOL(__kmalloc_node); 3747 3748 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3749 int node, unsigned long caller) 3750 { 3751 return __do_kmalloc_node(size, flags, node, caller); 3752 } 3753 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3754 #endif /* CONFIG_NUMA */ 3755 3756 /** 3757 * __do_kmalloc - allocate memory 3758 * @size: how many bytes of memory are required. 3759 * @flags: the type of memory to allocate (see kmalloc). 3760 * @caller: function caller for debug tracking of the caller 3761 */ 3762 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3763 unsigned long caller) 3764 { 3765 struct kmem_cache *cachep; 3766 void *ret; 3767 3768 cachep = kmalloc_slab(size, flags); 3769 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3770 return cachep; 3771 ret = slab_alloc(cachep, flags, caller); 3772 3773 kasan_kmalloc(cachep, ret, size, flags); 3774 trace_kmalloc(caller, ret, 3775 size, cachep->size, flags); 3776 3777 return ret; 3778 } 3779 3780 void *__kmalloc(size_t size, gfp_t flags) 3781 { 3782 return __do_kmalloc(size, flags, _RET_IP_); 3783 } 3784 EXPORT_SYMBOL(__kmalloc); 3785 3786 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3787 { 3788 return __do_kmalloc(size, flags, caller); 3789 } 3790 EXPORT_SYMBOL(__kmalloc_track_caller); 3791 3792 /** 3793 * kmem_cache_free - Deallocate an object 3794 * @cachep: The cache the allocation was from. 3795 * @objp: The previously allocated object. 3796 * 3797 * Free an object which was previously allocated from this 3798 * cache. 3799 */ 3800 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3801 { 3802 unsigned long flags; 3803 cachep = cache_from_obj(cachep, objp); 3804 if (!cachep) 3805 return; 3806 3807 local_irq_save(flags); 3808 debug_check_no_locks_freed(objp, cachep->object_size); 3809 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3810 debug_check_no_obj_freed(objp, cachep->object_size); 3811 __cache_free(cachep, objp, _RET_IP_); 3812 local_irq_restore(flags); 3813 3814 trace_kmem_cache_free(_RET_IP_, objp); 3815 } 3816 EXPORT_SYMBOL(kmem_cache_free); 3817 3818 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3819 { 3820 struct kmem_cache *s; 3821 size_t i; 3822 3823 local_irq_disable(); 3824 for (i = 0; i < size; i++) { 3825 void *objp = p[i]; 3826 3827 if (!orig_s) /* called via kfree_bulk */ 3828 s = virt_to_cache(objp); 3829 else 3830 s = cache_from_obj(orig_s, objp); 3831 3832 debug_check_no_locks_freed(objp, s->object_size); 3833 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3834 debug_check_no_obj_freed(objp, s->object_size); 3835 3836 __cache_free(s, objp, _RET_IP_); 3837 } 3838 local_irq_enable(); 3839 3840 /* FIXME: add tracing */ 3841 } 3842 EXPORT_SYMBOL(kmem_cache_free_bulk); 3843 3844 /** 3845 * kfree - free previously allocated memory 3846 * @objp: pointer returned by kmalloc. 3847 * 3848 * If @objp is NULL, no operation is performed. 3849 * 3850 * Don't free memory not originally allocated by kmalloc() 3851 * or you will run into trouble. 3852 */ 3853 void kfree(const void *objp) 3854 { 3855 struct kmem_cache *c; 3856 unsigned long flags; 3857 3858 trace_kfree(_RET_IP_, objp); 3859 3860 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3861 return; 3862 local_irq_save(flags); 3863 kfree_debugcheck(objp); 3864 c = virt_to_cache(objp); 3865 debug_check_no_locks_freed(objp, c->object_size); 3866 3867 debug_check_no_obj_freed(objp, c->object_size); 3868 __cache_free(c, (void *)objp, _RET_IP_); 3869 local_irq_restore(flags); 3870 } 3871 EXPORT_SYMBOL(kfree); 3872 3873 /* 3874 * This initializes kmem_cache_node or resizes various caches for all nodes. 3875 */ 3876 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3877 { 3878 int ret; 3879 int node; 3880 struct kmem_cache_node *n; 3881 3882 for_each_online_node(node) { 3883 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3884 if (ret) 3885 goto fail; 3886 3887 } 3888 3889 return 0; 3890 3891 fail: 3892 if (!cachep->list.next) { 3893 /* Cache is not active yet. Roll back what we did */ 3894 node--; 3895 while (node >= 0) { 3896 n = get_node(cachep, node); 3897 if (n) { 3898 kfree(n->shared); 3899 free_alien_cache(n->alien); 3900 kfree(n); 3901 cachep->node[node] = NULL; 3902 } 3903 node--; 3904 } 3905 } 3906 return -ENOMEM; 3907 } 3908 3909 /* Always called with the slab_mutex held */ 3910 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3911 int batchcount, int shared, gfp_t gfp) 3912 { 3913 struct array_cache __percpu *cpu_cache, *prev; 3914 int cpu; 3915 3916 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3917 if (!cpu_cache) 3918 return -ENOMEM; 3919 3920 prev = cachep->cpu_cache; 3921 cachep->cpu_cache = cpu_cache; 3922 kick_all_cpus_sync(); 3923 3924 check_irq_on(); 3925 cachep->batchcount = batchcount; 3926 cachep->limit = limit; 3927 cachep->shared = shared; 3928 3929 if (!prev) 3930 goto setup_node; 3931 3932 for_each_online_cpu(cpu) { 3933 LIST_HEAD(list); 3934 int node; 3935 struct kmem_cache_node *n; 3936 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3937 3938 node = cpu_to_mem(cpu); 3939 n = get_node(cachep, node); 3940 spin_lock_irq(&n->list_lock); 3941 free_block(cachep, ac->entry, ac->avail, node, &list); 3942 spin_unlock_irq(&n->list_lock); 3943 slabs_destroy(cachep, &list); 3944 } 3945 free_percpu(prev); 3946 3947 setup_node: 3948 return setup_kmem_cache_nodes(cachep, gfp); 3949 } 3950 3951 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3952 int batchcount, int shared, gfp_t gfp) 3953 { 3954 int ret; 3955 struct kmem_cache *c; 3956 3957 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3958 3959 if (slab_state < FULL) 3960 return ret; 3961 3962 if ((ret < 0) || !is_root_cache(cachep)) 3963 return ret; 3964 3965 lockdep_assert_held(&slab_mutex); 3966 for_each_memcg_cache(c, cachep) { 3967 /* return value determined by the root cache only */ 3968 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3969 } 3970 3971 return ret; 3972 } 3973 3974 /* Called with slab_mutex held always */ 3975 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3976 { 3977 int err; 3978 int limit = 0; 3979 int shared = 0; 3980 int batchcount = 0; 3981 3982 err = cache_random_seq_create(cachep, gfp); 3983 if (err) 3984 goto end; 3985 3986 if (!is_root_cache(cachep)) { 3987 struct kmem_cache *root = memcg_root_cache(cachep); 3988 limit = root->limit; 3989 shared = root->shared; 3990 batchcount = root->batchcount; 3991 } 3992 3993 if (limit && shared && batchcount) 3994 goto skip_setup; 3995 /* 3996 * The head array serves three purposes: 3997 * - create a LIFO ordering, i.e. return objects that are cache-warm 3998 * - reduce the number of spinlock operations. 3999 * - reduce the number of linked list operations on the slab and 4000 * bufctl chains: array operations are cheaper. 4001 * The numbers are guessed, we should auto-tune as described by 4002 * Bonwick. 4003 */ 4004 if (cachep->size > 131072) 4005 limit = 1; 4006 else if (cachep->size > PAGE_SIZE) 4007 limit = 8; 4008 else if (cachep->size > 1024) 4009 limit = 24; 4010 else if (cachep->size > 256) 4011 limit = 54; 4012 else 4013 limit = 120; 4014 4015 /* 4016 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 4017 * allocation behaviour: Most allocs on one cpu, most free operations 4018 * on another cpu. For these cases, an efficient object passing between 4019 * cpus is necessary. This is provided by a shared array. The array 4020 * replaces Bonwick's magazine layer. 4021 * On uniprocessor, it's functionally equivalent (but less efficient) 4022 * to a larger limit. Thus disabled by default. 4023 */ 4024 shared = 0; 4025 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 4026 shared = 8; 4027 4028 #if DEBUG 4029 /* 4030 * With debugging enabled, large batchcount lead to excessively long 4031 * periods with disabled local interrupts. Limit the batchcount 4032 */ 4033 if (limit > 32) 4034 limit = 32; 4035 #endif 4036 batchcount = (limit + 1) / 2; 4037 skip_setup: 4038 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 4039 end: 4040 if (err) 4041 pr_err("enable_cpucache failed for %s, error %d\n", 4042 cachep->name, -err); 4043 return err; 4044 } 4045 4046 /* 4047 * Drain an array if it contains any elements taking the node lock only if 4048 * necessary. Note that the node listlock also protects the array_cache 4049 * if drain_array() is used on the shared array. 4050 */ 4051 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 4052 struct array_cache *ac, int node) 4053 { 4054 LIST_HEAD(list); 4055 4056 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 4057 check_mutex_acquired(); 4058 4059 if (!ac || !ac->avail) 4060 return; 4061 4062 if (ac->touched) { 4063 ac->touched = 0; 4064 return; 4065 } 4066 4067 spin_lock_irq(&n->list_lock); 4068 drain_array_locked(cachep, ac, node, false, &list); 4069 spin_unlock_irq(&n->list_lock); 4070 4071 slabs_destroy(cachep, &list); 4072 } 4073 4074 /** 4075 * cache_reap - Reclaim memory from caches. 4076 * @w: work descriptor 4077 * 4078 * Called from workqueue/eventd every few seconds. 4079 * Purpose: 4080 * - clear the per-cpu caches for this CPU. 4081 * - return freeable pages to the main free memory pool. 4082 * 4083 * If we cannot acquire the cache chain mutex then just give up - we'll try 4084 * again on the next iteration. 4085 */ 4086 static void cache_reap(struct work_struct *w) 4087 { 4088 struct kmem_cache *searchp; 4089 struct kmem_cache_node *n; 4090 int node = numa_mem_id(); 4091 struct delayed_work *work = to_delayed_work(w); 4092 4093 if (!mutex_trylock(&slab_mutex)) 4094 /* Give up. Setup the next iteration. */ 4095 goto out; 4096 4097 list_for_each_entry(searchp, &slab_caches, list) { 4098 check_irq_on(); 4099 4100 /* 4101 * We only take the node lock if absolutely necessary and we 4102 * have established with reasonable certainty that 4103 * we can do some work if the lock was obtained. 4104 */ 4105 n = get_node(searchp, node); 4106 4107 reap_alien(searchp, n); 4108 4109 drain_array(searchp, n, cpu_cache_get(searchp), node); 4110 4111 /* 4112 * These are racy checks but it does not matter 4113 * if we skip one check or scan twice. 4114 */ 4115 if (time_after(n->next_reap, jiffies)) 4116 goto next; 4117 4118 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4119 4120 drain_array(searchp, n, n->shared, node); 4121 4122 if (n->free_touched) 4123 n->free_touched = 0; 4124 else { 4125 int freed; 4126 4127 freed = drain_freelist(searchp, n, (n->free_limit + 4128 5 * searchp->num - 1) / (5 * searchp->num)); 4129 STATS_ADD_REAPED(searchp, freed); 4130 } 4131 next: 4132 cond_resched(); 4133 } 4134 check_irq_on(); 4135 mutex_unlock(&slab_mutex); 4136 next_reap_node(); 4137 out: 4138 /* Set up the next iteration */ 4139 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 4140 } 4141 4142 #ifdef CONFIG_SLABINFO 4143 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4144 { 4145 struct page *page; 4146 unsigned long active_objs; 4147 unsigned long num_objs; 4148 unsigned long active_slabs = 0; 4149 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4150 const char *name; 4151 char *error = NULL; 4152 int node; 4153 struct kmem_cache_node *n; 4154 4155 active_objs = 0; 4156 num_slabs = 0; 4157 for_each_kmem_cache_node(cachep, node, n) { 4158 4159 check_irq_on(); 4160 spin_lock_irq(&n->list_lock); 4161 4162 list_for_each_entry(page, &n->slabs_full, lru) { 4163 if (page->active != cachep->num && !error) 4164 error = "slabs_full accounting error"; 4165 active_objs += cachep->num; 4166 active_slabs++; 4167 } 4168 list_for_each_entry(page, &n->slabs_partial, lru) { 4169 if (page->active == cachep->num && !error) 4170 error = "slabs_partial accounting error"; 4171 if (!page->active && !error) 4172 error = "slabs_partial accounting error"; 4173 active_objs += page->active; 4174 active_slabs++; 4175 } 4176 list_for_each_entry(page, &n->slabs_free, lru) { 4177 if (page->active && !error) 4178 error = "slabs_free accounting error"; 4179 num_slabs++; 4180 } 4181 free_objects += n->free_objects; 4182 if (n->shared) 4183 shared_avail += n->shared->avail; 4184 4185 spin_unlock_irq(&n->list_lock); 4186 } 4187 num_slabs += active_slabs; 4188 num_objs = num_slabs * cachep->num; 4189 if (num_objs - active_objs != free_objects && !error) 4190 error = "free_objects accounting error"; 4191 4192 name = cachep->name; 4193 if (error) 4194 pr_err("slab: cache %s error: %s\n", name, error); 4195 4196 sinfo->active_objs = active_objs; 4197 sinfo->num_objs = num_objs; 4198 sinfo->active_slabs = active_slabs; 4199 sinfo->num_slabs = num_slabs; 4200 sinfo->shared_avail = shared_avail; 4201 sinfo->limit = cachep->limit; 4202 sinfo->batchcount = cachep->batchcount; 4203 sinfo->shared = cachep->shared; 4204 sinfo->objects_per_slab = cachep->num; 4205 sinfo->cache_order = cachep->gfporder; 4206 } 4207 4208 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4209 { 4210 #if STATS 4211 { /* node stats */ 4212 unsigned long high = cachep->high_mark; 4213 unsigned long allocs = cachep->num_allocations; 4214 unsigned long grown = cachep->grown; 4215 unsigned long reaped = cachep->reaped; 4216 unsigned long errors = cachep->errors; 4217 unsigned long max_freeable = cachep->max_freeable; 4218 unsigned long node_allocs = cachep->node_allocs; 4219 unsigned long node_frees = cachep->node_frees; 4220 unsigned long overflows = cachep->node_overflow; 4221 4222 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4223 allocs, high, grown, 4224 reaped, errors, max_freeable, node_allocs, 4225 node_frees, overflows); 4226 } 4227 /* cpu stats */ 4228 { 4229 unsigned long allochit = atomic_read(&cachep->allochit); 4230 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4231 unsigned long freehit = atomic_read(&cachep->freehit); 4232 unsigned long freemiss = atomic_read(&cachep->freemiss); 4233 4234 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4235 allochit, allocmiss, freehit, freemiss); 4236 } 4237 #endif 4238 } 4239 4240 #define MAX_SLABINFO_WRITE 128 4241 /** 4242 * slabinfo_write - Tuning for the slab allocator 4243 * @file: unused 4244 * @buffer: user buffer 4245 * @count: data length 4246 * @ppos: unused 4247 */ 4248 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4249 size_t count, loff_t *ppos) 4250 { 4251 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4252 int limit, batchcount, shared, res; 4253 struct kmem_cache *cachep; 4254 4255 if (count > MAX_SLABINFO_WRITE) 4256 return -EINVAL; 4257 if (copy_from_user(&kbuf, buffer, count)) 4258 return -EFAULT; 4259 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4260 4261 tmp = strchr(kbuf, ' '); 4262 if (!tmp) 4263 return -EINVAL; 4264 *tmp = '\0'; 4265 tmp++; 4266 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4267 return -EINVAL; 4268 4269 /* Find the cache in the chain of caches. */ 4270 mutex_lock(&slab_mutex); 4271 res = -EINVAL; 4272 list_for_each_entry(cachep, &slab_caches, list) { 4273 if (!strcmp(cachep->name, kbuf)) { 4274 if (limit < 1 || batchcount < 1 || 4275 batchcount > limit || shared < 0) { 4276 res = 0; 4277 } else { 4278 res = do_tune_cpucache(cachep, limit, 4279 batchcount, shared, 4280 GFP_KERNEL); 4281 } 4282 break; 4283 } 4284 } 4285 mutex_unlock(&slab_mutex); 4286 if (res >= 0) 4287 res = count; 4288 return res; 4289 } 4290 4291 #ifdef CONFIG_DEBUG_SLAB_LEAK 4292 4293 static inline int add_caller(unsigned long *n, unsigned long v) 4294 { 4295 unsigned long *p; 4296 int l; 4297 if (!v) 4298 return 1; 4299 l = n[1]; 4300 p = n + 2; 4301 while (l) { 4302 int i = l/2; 4303 unsigned long *q = p + 2 * i; 4304 if (*q == v) { 4305 q[1]++; 4306 return 1; 4307 } 4308 if (*q > v) { 4309 l = i; 4310 } else { 4311 p = q + 2; 4312 l -= i + 1; 4313 } 4314 } 4315 if (++n[1] == n[0]) 4316 return 0; 4317 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4318 p[0] = v; 4319 p[1] = 1; 4320 return 1; 4321 } 4322 4323 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4324 struct page *page) 4325 { 4326 void *p; 4327 int i, j; 4328 unsigned long v; 4329 4330 if (n[0] == n[1]) 4331 return; 4332 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4333 bool active = true; 4334 4335 for (j = page->active; j < c->num; j++) { 4336 if (get_free_obj(page, j) == i) { 4337 active = false; 4338 break; 4339 } 4340 } 4341 4342 if (!active) 4343 continue; 4344 4345 /* 4346 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4347 * mapping is established when actual object allocation and 4348 * we could mistakenly access the unmapped object in the cpu 4349 * cache. 4350 */ 4351 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4352 continue; 4353 4354 if (!add_caller(n, v)) 4355 return; 4356 } 4357 } 4358 4359 static void show_symbol(struct seq_file *m, unsigned long address) 4360 { 4361 #ifdef CONFIG_KALLSYMS 4362 unsigned long offset, size; 4363 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4364 4365 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4366 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4367 if (modname[0]) 4368 seq_printf(m, " [%s]", modname); 4369 return; 4370 } 4371 #endif 4372 seq_printf(m, "%p", (void *)address); 4373 } 4374 4375 static int leaks_show(struct seq_file *m, void *p) 4376 { 4377 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4378 struct page *page; 4379 struct kmem_cache_node *n; 4380 const char *name; 4381 unsigned long *x = m->private; 4382 int node; 4383 int i; 4384 4385 if (!(cachep->flags & SLAB_STORE_USER)) 4386 return 0; 4387 if (!(cachep->flags & SLAB_RED_ZONE)) 4388 return 0; 4389 4390 /* 4391 * Set store_user_clean and start to grab stored user information 4392 * for all objects on this cache. If some alloc/free requests comes 4393 * during the processing, information would be wrong so restart 4394 * whole processing. 4395 */ 4396 do { 4397 set_store_user_clean(cachep); 4398 drain_cpu_caches(cachep); 4399 4400 x[1] = 0; 4401 4402 for_each_kmem_cache_node(cachep, node, n) { 4403 4404 check_irq_on(); 4405 spin_lock_irq(&n->list_lock); 4406 4407 list_for_each_entry(page, &n->slabs_full, lru) 4408 handle_slab(x, cachep, page); 4409 list_for_each_entry(page, &n->slabs_partial, lru) 4410 handle_slab(x, cachep, page); 4411 spin_unlock_irq(&n->list_lock); 4412 } 4413 } while (!is_store_user_clean(cachep)); 4414 4415 name = cachep->name; 4416 if (x[0] == x[1]) { 4417 /* Increase the buffer size */ 4418 mutex_unlock(&slab_mutex); 4419 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4420 if (!m->private) { 4421 /* Too bad, we are really out */ 4422 m->private = x; 4423 mutex_lock(&slab_mutex); 4424 return -ENOMEM; 4425 } 4426 *(unsigned long *)m->private = x[0] * 2; 4427 kfree(x); 4428 mutex_lock(&slab_mutex); 4429 /* Now make sure this entry will be retried */ 4430 m->count = m->size; 4431 return 0; 4432 } 4433 for (i = 0; i < x[1]; i++) { 4434 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4435 show_symbol(m, x[2*i+2]); 4436 seq_putc(m, '\n'); 4437 } 4438 4439 return 0; 4440 } 4441 4442 static const struct seq_operations slabstats_op = { 4443 .start = slab_start, 4444 .next = slab_next, 4445 .stop = slab_stop, 4446 .show = leaks_show, 4447 }; 4448 4449 static int slabstats_open(struct inode *inode, struct file *file) 4450 { 4451 unsigned long *n; 4452 4453 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4454 if (!n) 4455 return -ENOMEM; 4456 4457 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4458 4459 return 0; 4460 } 4461 4462 static const struct file_operations proc_slabstats_operations = { 4463 .open = slabstats_open, 4464 .read = seq_read, 4465 .llseek = seq_lseek, 4466 .release = seq_release_private, 4467 }; 4468 #endif 4469 4470 static int __init slab_proc_init(void) 4471 { 4472 #ifdef CONFIG_DEBUG_SLAB_LEAK 4473 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4474 #endif 4475 return 0; 4476 } 4477 module_init(slab_proc_init); 4478 #endif 4479 4480 /** 4481 * ksize - get the actual amount of memory allocated for a given object 4482 * @objp: Pointer to the object 4483 * 4484 * kmalloc may internally round up allocations and return more memory 4485 * than requested. ksize() can be used to determine the actual amount of 4486 * memory allocated. The caller may use this additional memory, even though 4487 * a smaller amount of memory was initially specified with the kmalloc call. 4488 * The caller must guarantee that objp points to a valid object previously 4489 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4490 * must not be freed during the duration of the call. 4491 */ 4492 size_t ksize(const void *objp) 4493 { 4494 size_t size; 4495 4496 BUG_ON(!objp); 4497 if (unlikely(objp == ZERO_SIZE_PTR)) 4498 return 0; 4499 4500 size = virt_to_cache(objp)->object_size; 4501 /* We assume that ksize callers could use the whole allocated area, 4502 * so we need to unpoison this area. 4503 */ 4504 kasan_unpoison_shadow(objp, size); 4505 4506 return size; 4507 } 4508 EXPORT_SYMBOL(ksize); 4509