xref: /openbmc/linux/mm/slab.c (revision 6dfcd296)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * struct array_cache
173  *
174  * Purpose:
175  * - LIFO ordering, to hand out cache-warm objects from _alloc
176  * - reduce the number of linked list operations
177  * - reduce spinlock operations
178  *
179  * The limit is stored in the per-cpu structure to reduce the data cache
180  * footprint.
181  *
182  */
183 struct array_cache {
184 	unsigned int avail;
185 	unsigned int limit;
186 	unsigned int batchcount;
187 	unsigned int touched;
188 	void *entry[];	/*
189 			 * Must have this definition in here for the proper
190 			 * alignment of array_cache. Also simplifies accessing
191 			 * the entries.
192 			 */
193 };
194 
195 struct alien_cache {
196 	spinlock_t lock;
197 	struct array_cache ac;
198 };
199 
200 /*
201  * Need this for bootstrapping a per node allocator.
202  */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define	CACHE_CACHE 0
206 #define	SIZE_NODE (MAX_NUMNODES)
207 
208 static int drain_freelist(struct kmem_cache *cache,
209 			struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 			int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215 
216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 						void **list);
218 static inline void fixup_slab_list(struct kmem_cache *cachep,
219 				struct kmem_cache_node *n, struct page *page,
220 				void **list);
221 static int slab_early_init = 1;
222 
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
224 
225 static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 {
227 	INIT_LIST_HEAD(&parent->slabs_full);
228 	INIT_LIST_HEAD(&parent->slabs_partial);
229 	INIT_LIST_HEAD(&parent->slabs_free);
230 	parent->shared = NULL;
231 	parent->alien = NULL;
232 	parent->colour_next = 0;
233 	spin_lock_init(&parent->list_lock);
234 	parent->free_objects = 0;
235 	parent->free_touched = 0;
236 }
237 
238 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
239 	do {								\
240 		INIT_LIST_HEAD(listp);					\
241 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
242 	} while (0)
243 
244 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
245 	do {								\
246 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
247 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
248 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
249 	} while (0)
250 
251 #define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
252 #define CFLGS_OFF_SLAB		(0x80000000UL)
253 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
254 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
255 
256 #define BATCHREFILL_LIMIT	16
257 /*
258  * Optimization question: fewer reaps means less probability for unnessary
259  * cpucache drain/refill cycles.
260  *
261  * OTOH the cpuarrays can contain lots of objects,
262  * which could lock up otherwise freeable slabs.
263  */
264 #define REAPTIMEOUT_AC		(2*HZ)
265 #define REAPTIMEOUT_NODE	(4*HZ)
266 
267 #if STATS
268 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
269 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
270 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
271 #define	STATS_INC_GROWN(x)	((x)->grown++)
272 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
273 #define	STATS_SET_HIGH(x)						\
274 	do {								\
275 		if ((x)->num_active > (x)->high_mark)			\
276 			(x)->high_mark = (x)->num_active;		\
277 	} while (0)
278 #define	STATS_INC_ERR(x)	((x)->errors++)
279 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
280 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
281 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
282 #define	STATS_SET_FREEABLE(x, i)					\
283 	do {								\
284 		if ((x)->max_freeable < i)				\
285 			(x)->max_freeable = i;				\
286 	} while (0)
287 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
288 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
289 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
290 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
291 #else
292 #define	STATS_INC_ACTIVE(x)	do { } while (0)
293 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
294 #define	STATS_INC_ALLOCED(x)	do { } while (0)
295 #define	STATS_INC_GROWN(x)	do { } while (0)
296 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
297 #define	STATS_SET_HIGH(x)	do { } while (0)
298 #define	STATS_INC_ERR(x)	do { } while (0)
299 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
300 #define	STATS_INC_NODEFREES(x)	do { } while (0)
301 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
302 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
303 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
304 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
305 #define STATS_INC_FREEHIT(x)	do { } while (0)
306 #define STATS_INC_FREEMISS(x)	do { } while (0)
307 #endif
308 
309 #if DEBUG
310 
311 /*
312  * memory layout of objects:
313  * 0		: objp
314  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
315  * 		the end of an object is aligned with the end of the real
316  * 		allocation. Catches writes behind the end of the allocation.
317  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
318  * 		redzone word.
319  * cachep->obj_offset: The real object.
320  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
321  * cachep->size - 1* BYTES_PER_WORD: last caller address
322  *					[BYTES_PER_WORD long]
323  */
324 static int obj_offset(struct kmem_cache *cachep)
325 {
326 	return cachep->obj_offset;
327 }
328 
329 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
330 {
331 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
332 	return (unsigned long long*) (objp + obj_offset(cachep) -
333 				      sizeof(unsigned long long));
334 }
335 
336 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
337 {
338 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
339 	if (cachep->flags & SLAB_STORE_USER)
340 		return (unsigned long long *)(objp + cachep->size -
341 					      sizeof(unsigned long long) -
342 					      REDZONE_ALIGN);
343 	return (unsigned long long *) (objp + cachep->size -
344 				       sizeof(unsigned long long));
345 }
346 
347 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
348 {
349 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
350 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
351 }
352 
353 #else
354 
355 #define obj_offset(x)			0
356 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
357 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
358 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
359 
360 #endif
361 
362 #ifdef CONFIG_DEBUG_SLAB_LEAK
363 
364 static inline bool is_store_user_clean(struct kmem_cache *cachep)
365 {
366 	return atomic_read(&cachep->store_user_clean) == 1;
367 }
368 
369 static inline void set_store_user_clean(struct kmem_cache *cachep)
370 {
371 	atomic_set(&cachep->store_user_clean, 1);
372 }
373 
374 static inline void set_store_user_dirty(struct kmem_cache *cachep)
375 {
376 	if (is_store_user_clean(cachep))
377 		atomic_set(&cachep->store_user_clean, 0);
378 }
379 
380 #else
381 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
382 
383 #endif
384 
385 /*
386  * Do not go above this order unless 0 objects fit into the slab or
387  * overridden on the command line.
388  */
389 #define	SLAB_MAX_ORDER_HI	1
390 #define	SLAB_MAX_ORDER_LO	0
391 static int slab_max_order = SLAB_MAX_ORDER_LO;
392 static bool slab_max_order_set __initdata;
393 
394 static inline struct kmem_cache *virt_to_cache(const void *obj)
395 {
396 	struct page *page = virt_to_head_page(obj);
397 	return page->slab_cache;
398 }
399 
400 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
401 				 unsigned int idx)
402 {
403 	return page->s_mem + cache->size * idx;
404 }
405 
406 /*
407  * We want to avoid an expensive divide : (offset / cache->size)
408  *   Using the fact that size is a constant for a particular cache,
409  *   we can replace (offset / cache->size) by
410  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
411  */
412 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
413 					const struct page *page, void *obj)
414 {
415 	u32 offset = (obj - page->s_mem);
416 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
417 }
418 
419 #define BOOT_CPUCACHE_ENTRIES	1
420 /* internal cache of cache description objs */
421 static struct kmem_cache kmem_cache_boot = {
422 	.batchcount = 1,
423 	.limit = BOOT_CPUCACHE_ENTRIES,
424 	.shared = 1,
425 	.size = sizeof(struct kmem_cache),
426 	.name = "kmem_cache",
427 };
428 
429 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
430 
431 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
432 {
433 	return this_cpu_ptr(cachep->cpu_cache);
434 }
435 
436 /*
437  * Calculate the number of objects and left-over bytes for a given buffer size.
438  */
439 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
440 		unsigned long flags, size_t *left_over)
441 {
442 	unsigned int num;
443 	size_t slab_size = PAGE_SIZE << gfporder;
444 
445 	/*
446 	 * The slab management structure can be either off the slab or
447 	 * on it. For the latter case, the memory allocated for a
448 	 * slab is used for:
449 	 *
450 	 * - @buffer_size bytes for each object
451 	 * - One freelist_idx_t for each object
452 	 *
453 	 * We don't need to consider alignment of freelist because
454 	 * freelist will be at the end of slab page. The objects will be
455 	 * at the correct alignment.
456 	 *
457 	 * If the slab management structure is off the slab, then the
458 	 * alignment will already be calculated into the size. Because
459 	 * the slabs are all pages aligned, the objects will be at the
460 	 * correct alignment when allocated.
461 	 */
462 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
463 		num = slab_size / buffer_size;
464 		*left_over = slab_size % buffer_size;
465 	} else {
466 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
467 		*left_over = slab_size %
468 			(buffer_size + sizeof(freelist_idx_t));
469 	}
470 
471 	return num;
472 }
473 
474 #if DEBUG
475 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
476 
477 static void __slab_error(const char *function, struct kmem_cache *cachep,
478 			char *msg)
479 {
480 	pr_err("slab error in %s(): cache `%s': %s\n",
481 	       function, cachep->name, msg);
482 	dump_stack();
483 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
484 }
485 #endif
486 
487 /*
488  * By default on NUMA we use alien caches to stage the freeing of
489  * objects allocated from other nodes. This causes massive memory
490  * inefficiencies when using fake NUMA setup to split memory into a
491  * large number of small nodes, so it can be disabled on the command
492  * line
493   */
494 
495 static int use_alien_caches __read_mostly = 1;
496 static int __init noaliencache_setup(char *s)
497 {
498 	use_alien_caches = 0;
499 	return 1;
500 }
501 __setup("noaliencache", noaliencache_setup);
502 
503 static int __init slab_max_order_setup(char *str)
504 {
505 	get_option(&str, &slab_max_order);
506 	slab_max_order = slab_max_order < 0 ? 0 :
507 				min(slab_max_order, MAX_ORDER - 1);
508 	slab_max_order_set = true;
509 
510 	return 1;
511 }
512 __setup("slab_max_order=", slab_max_order_setup);
513 
514 #ifdef CONFIG_NUMA
515 /*
516  * Special reaping functions for NUMA systems called from cache_reap().
517  * These take care of doing round robin flushing of alien caches (containing
518  * objects freed on different nodes from which they were allocated) and the
519  * flushing of remote pcps by calling drain_node_pages.
520  */
521 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
522 
523 static void init_reap_node(int cpu)
524 {
525 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
526 						    node_online_map);
527 }
528 
529 static void next_reap_node(void)
530 {
531 	int node = __this_cpu_read(slab_reap_node);
532 
533 	node = next_node_in(node, node_online_map);
534 	__this_cpu_write(slab_reap_node, node);
535 }
536 
537 #else
538 #define init_reap_node(cpu) do { } while (0)
539 #define next_reap_node(void) do { } while (0)
540 #endif
541 
542 /*
543  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
544  * via the workqueue/eventd.
545  * Add the CPU number into the expiration time to minimize the possibility of
546  * the CPUs getting into lockstep and contending for the global cache chain
547  * lock.
548  */
549 static void start_cpu_timer(int cpu)
550 {
551 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
552 
553 	/*
554 	 * When this gets called from do_initcalls via cpucache_init(),
555 	 * init_workqueues() has already run, so keventd will be setup
556 	 * at that time.
557 	 */
558 	if (keventd_up() && reap_work->work.func == NULL) {
559 		init_reap_node(cpu);
560 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
561 		schedule_delayed_work_on(cpu, reap_work,
562 					__round_jiffies_relative(HZ, cpu));
563 	}
564 }
565 
566 static void init_arraycache(struct array_cache *ac, int limit, int batch)
567 {
568 	/*
569 	 * The array_cache structures contain pointers to free object.
570 	 * However, when such objects are allocated or transferred to another
571 	 * cache the pointers are not cleared and they could be counted as
572 	 * valid references during a kmemleak scan. Therefore, kmemleak must
573 	 * not scan such objects.
574 	 */
575 	kmemleak_no_scan(ac);
576 	if (ac) {
577 		ac->avail = 0;
578 		ac->limit = limit;
579 		ac->batchcount = batch;
580 		ac->touched = 0;
581 	}
582 }
583 
584 static struct array_cache *alloc_arraycache(int node, int entries,
585 					    int batchcount, gfp_t gfp)
586 {
587 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
588 	struct array_cache *ac = NULL;
589 
590 	ac = kmalloc_node(memsize, gfp, node);
591 	init_arraycache(ac, entries, batchcount);
592 	return ac;
593 }
594 
595 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
596 					struct page *page, void *objp)
597 {
598 	struct kmem_cache_node *n;
599 	int page_node;
600 	LIST_HEAD(list);
601 
602 	page_node = page_to_nid(page);
603 	n = get_node(cachep, page_node);
604 
605 	spin_lock(&n->list_lock);
606 	free_block(cachep, &objp, 1, page_node, &list);
607 	spin_unlock(&n->list_lock);
608 
609 	slabs_destroy(cachep, &list);
610 }
611 
612 /*
613  * Transfer objects in one arraycache to another.
614  * Locking must be handled by the caller.
615  *
616  * Return the number of entries transferred.
617  */
618 static int transfer_objects(struct array_cache *to,
619 		struct array_cache *from, unsigned int max)
620 {
621 	/* Figure out how many entries to transfer */
622 	int nr = min3(from->avail, max, to->limit - to->avail);
623 
624 	if (!nr)
625 		return 0;
626 
627 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
628 			sizeof(void *) *nr);
629 
630 	from->avail -= nr;
631 	to->avail += nr;
632 	return nr;
633 }
634 
635 #ifndef CONFIG_NUMA
636 
637 #define drain_alien_cache(cachep, alien) do { } while (0)
638 #define reap_alien(cachep, n) do { } while (0)
639 
640 static inline struct alien_cache **alloc_alien_cache(int node,
641 						int limit, gfp_t gfp)
642 {
643 	return NULL;
644 }
645 
646 static inline void free_alien_cache(struct alien_cache **ac_ptr)
647 {
648 }
649 
650 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
651 {
652 	return 0;
653 }
654 
655 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
656 		gfp_t flags)
657 {
658 	return NULL;
659 }
660 
661 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
662 		 gfp_t flags, int nodeid)
663 {
664 	return NULL;
665 }
666 
667 static inline gfp_t gfp_exact_node(gfp_t flags)
668 {
669 	return flags & ~__GFP_NOFAIL;
670 }
671 
672 #else	/* CONFIG_NUMA */
673 
674 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
675 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
676 
677 static struct alien_cache *__alloc_alien_cache(int node, int entries,
678 						int batch, gfp_t gfp)
679 {
680 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
681 	struct alien_cache *alc = NULL;
682 
683 	alc = kmalloc_node(memsize, gfp, node);
684 	init_arraycache(&alc->ac, entries, batch);
685 	spin_lock_init(&alc->lock);
686 	return alc;
687 }
688 
689 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
690 {
691 	struct alien_cache **alc_ptr;
692 	size_t memsize = sizeof(void *) * nr_node_ids;
693 	int i;
694 
695 	if (limit > 1)
696 		limit = 12;
697 	alc_ptr = kzalloc_node(memsize, gfp, node);
698 	if (!alc_ptr)
699 		return NULL;
700 
701 	for_each_node(i) {
702 		if (i == node || !node_online(i))
703 			continue;
704 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
705 		if (!alc_ptr[i]) {
706 			for (i--; i >= 0; i--)
707 				kfree(alc_ptr[i]);
708 			kfree(alc_ptr);
709 			return NULL;
710 		}
711 	}
712 	return alc_ptr;
713 }
714 
715 static void free_alien_cache(struct alien_cache **alc_ptr)
716 {
717 	int i;
718 
719 	if (!alc_ptr)
720 		return;
721 	for_each_node(i)
722 	    kfree(alc_ptr[i]);
723 	kfree(alc_ptr);
724 }
725 
726 static void __drain_alien_cache(struct kmem_cache *cachep,
727 				struct array_cache *ac, int node,
728 				struct list_head *list)
729 {
730 	struct kmem_cache_node *n = get_node(cachep, node);
731 
732 	if (ac->avail) {
733 		spin_lock(&n->list_lock);
734 		/*
735 		 * Stuff objects into the remote nodes shared array first.
736 		 * That way we could avoid the overhead of putting the objects
737 		 * into the free lists and getting them back later.
738 		 */
739 		if (n->shared)
740 			transfer_objects(n->shared, ac, ac->limit);
741 
742 		free_block(cachep, ac->entry, ac->avail, node, list);
743 		ac->avail = 0;
744 		spin_unlock(&n->list_lock);
745 	}
746 }
747 
748 /*
749  * Called from cache_reap() to regularly drain alien caches round robin.
750  */
751 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
752 {
753 	int node = __this_cpu_read(slab_reap_node);
754 
755 	if (n->alien) {
756 		struct alien_cache *alc = n->alien[node];
757 		struct array_cache *ac;
758 
759 		if (alc) {
760 			ac = &alc->ac;
761 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
762 				LIST_HEAD(list);
763 
764 				__drain_alien_cache(cachep, ac, node, &list);
765 				spin_unlock_irq(&alc->lock);
766 				slabs_destroy(cachep, &list);
767 			}
768 		}
769 	}
770 }
771 
772 static void drain_alien_cache(struct kmem_cache *cachep,
773 				struct alien_cache **alien)
774 {
775 	int i = 0;
776 	struct alien_cache *alc;
777 	struct array_cache *ac;
778 	unsigned long flags;
779 
780 	for_each_online_node(i) {
781 		alc = alien[i];
782 		if (alc) {
783 			LIST_HEAD(list);
784 
785 			ac = &alc->ac;
786 			spin_lock_irqsave(&alc->lock, flags);
787 			__drain_alien_cache(cachep, ac, i, &list);
788 			spin_unlock_irqrestore(&alc->lock, flags);
789 			slabs_destroy(cachep, &list);
790 		}
791 	}
792 }
793 
794 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
795 				int node, int page_node)
796 {
797 	struct kmem_cache_node *n;
798 	struct alien_cache *alien = NULL;
799 	struct array_cache *ac;
800 	LIST_HEAD(list);
801 
802 	n = get_node(cachep, node);
803 	STATS_INC_NODEFREES(cachep);
804 	if (n->alien && n->alien[page_node]) {
805 		alien = n->alien[page_node];
806 		ac = &alien->ac;
807 		spin_lock(&alien->lock);
808 		if (unlikely(ac->avail == ac->limit)) {
809 			STATS_INC_ACOVERFLOW(cachep);
810 			__drain_alien_cache(cachep, ac, page_node, &list);
811 		}
812 		ac->entry[ac->avail++] = objp;
813 		spin_unlock(&alien->lock);
814 		slabs_destroy(cachep, &list);
815 	} else {
816 		n = get_node(cachep, page_node);
817 		spin_lock(&n->list_lock);
818 		free_block(cachep, &objp, 1, page_node, &list);
819 		spin_unlock(&n->list_lock);
820 		slabs_destroy(cachep, &list);
821 	}
822 	return 1;
823 }
824 
825 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
826 {
827 	int page_node = page_to_nid(virt_to_page(objp));
828 	int node = numa_mem_id();
829 	/*
830 	 * Make sure we are not freeing a object from another node to the array
831 	 * cache on this cpu.
832 	 */
833 	if (likely(node == page_node))
834 		return 0;
835 
836 	return __cache_free_alien(cachep, objp, node, page_node);
837 }
838 
839 /*
840  * Construct gfp mask to allocate from a specific node but do not reclaim or
841  * warn about failures.
842  */
843 static inline gfp_t gfp_exact_node(gfp_t flags)
844 {
845 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
846 }
847 #endif
848 
849 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
850 {
851 	struct kmem_cache_node *n;
852 
853 	/*
854 	 * Set up the kmem_cache_node for cpu before we can
855 	 * begin anything. Make sure some other cpu on this
856 	 * node has not already allocated this
857 	 */
858 	n = get_node(cachep, node);
859 	if (n) {
860 		spin_lock_irq(&n->list_lock);
861 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
862 				cachep->num;
863 		spin_unlock_irq(&n->list_lock);
864 
865 		return 0;
866 	}
867 
868 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
869 	if (!n)
870 		return -ENOMEM;
871 
872 	kmem_cache_node_init(n);
873 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
874 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
875 
876 	n->free_limit =
877 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
878 
879 	/*
880 	 * The kmem_cache_nodes don't come and go as CPUs
881 	 * come and go.  slab_mutex is sufficient
882 	 * protection here.
883 	 */
884 	cachep->node[node] = n;
885 
886 	return 0;
887 }
888 
889 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
890 /*
891  * Allocates and initializes node for a node on each slab cache, used for
892  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
893  * will be allocated off-node since memory is not yet online for the new node.
894  * When hotplugging memory or a cpu, existing node are not replaced if
895  * already in use.
896  *
897  * Must hold slab_mutex.
898  */
899 static int init_cache_node_node(int node)
900 {
901 	int ret;
902 	struct kmem_cache *cachep;
903 
904 	list_for_each_entry(cachep, &slab_caches, list) {
905 		ret = init_cache_node(cachep, node, GFP_KERNEL);
906 		if (ret)
907 			return ret;
908 	}
909 
910 	return 0;
911 }
912 #endif
913 
914 static int setup_kmem_cache_node(struct kmem_cache *cachep,
915 				int node, gfp_t gfp, bool force_change)
916 {
917 	int ret = -ENOMEM;
918 	struct kmem_cache_node *n;
919 	struct array_cache *old_shared = NULL;
920 	struct array_cache *new_shared = NULL;
921 	struct alien_cache **new_alien = NULL;
922 	LIST_HEAD(list);
923 
924 	if (use_alien_caches) {
925 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
926 		if (!new_alien)
927 			goto fail;
928 	}
929 
930 	if (cachep->shared) {
931 		new_shared = alloc_arraycache(node,
932 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
933 		if (!new_shared)
934 			goto fail;
935 	}
936 
937 	ret = init_cache_node(cachep, node, gfp);
938 	if (ret)
939 		goto fail;
940 
941 	n = get_node(cachep, node);
942 	spin_lock_irq(&n->list_lock);
943 	if (n->shared && force_change) {
944 		free_block(cachep, n->shared->entry,
945 				n->shared->avail, node, &list);
946 		n->shared->avail = 0;
947 	}
948 
949 	if (!n->shared || force_change) {
950 		old_shared = n->shared;
951 		n->shared = new_shared;
952 		new_shared = NULL;
953 	}
954 
955 	if (!n->alien) {
956 		n->alien = new_alien;
957 		new_alien = NULL;
958 	}
959 
960 	spin_unlock_irq(&n->list_lock);
961 	slabs_destroy(cachep, &list);
962 
963 	/*
964 	 * To protect lockless access to n->shared during irq disabled context.
965 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
966 	 * guaranteed to be valid until irq is re-enabled, because it will be
967 	 * freed after synchronize_sched().
968 	 */
969 	if (force_change)
970 		synchronize_sched();
971 
972 fail:
973 	kfree(old_shared);
974 	kfree(new_shared);
975 	free_alien_cache(new_alien);
976 
977 	return ret;
978 }
979 
980 #ifdef CONFIG_SMP
981 
982 static void cpuup_canceled(long cpu)
983 {
984 	struct kmem_cache *cachep;
985 	struct kmem_cache_node *n = NULL;
986 	int node = cpu_to_mem(cpu);
987 	const struct cpumask *mask = cpumask_of_node(node);
988 
989 	list_for_each_entry(cachep, &slab_caches, list) {
990 		struct array_cache *nc;
991 		struct array_cache *shared;
992 		struct alien_cache **alien;
993 		LIST_HEAD(list);
994 
995 		n = get_node(cachep, node);
996 		if (!n)
997 			continue;
998 
999 		spin_lock_irq(&n->list_lock);
1000 
1001 		/* Free limit for this kmem_cache_node */
1002 		n->free_limit -= cachep->batchcount;
1003 
1004 		/* cpu is dead; no one can alloc from it. */
1005 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1006 		if (nc) {
1007 			free_block(cachep, nc->entry, nc->avail, node, &list);
1008 			nc->avail = 0;
1009 		}
1010 
1011 		if (!cpumask_empty(mask)) {
1012 			spin_unlock_irq(&n->list_lock);
1013 			goto free_slab;
1014 		}
1015 
1016 		shared = n->shared;
1017 		if (shared) {
1018 			free_block(cachep, shared->entry,
1019 				   shared->avail, node, &list);
1020 			n->shared = NULL;
1021 		}
1022 
1023 		alien = n->alien;
1024 		n->alien = NULL;
1025 
1026 		spin_unlock_irq(&n->list_lock);
1027 
1028 		kfree(shared);
1029 		if (alien) {
1030 			drain_alien_cache(cachep, alien);
1031 			free_alien_cache(alien);
1032 		}
1033 
1034 free_slab:
1035 		slabs_destroy(cachep, &list);
1036 	}
1037 	/*
1038 	 * In the previous loop, all the objects were freed to
1039 	 * the respective cache's slabs,  now we can go ahead and
1040 	 * shrink each nodelist to its limit.
1041 	 */
1042 	list_for_each_entry(cachep, &slab_caches, list) {
1043 		n = get_node(cachep, node);
1044 		if (!n)
1045 			continue;
1046 		drain_freelist(cachep, n, INT_MAX);
1047 	}
1048 }
1049 
1050 static int cpuup_prepare(long cpu)
1051 {
1052 	struct kmem_cache *cachep;
1053 	int node = cpu_to_mem(cpu);
1054 	int err;
1055 
1056 	/*
1057 	 * We need to do this right in the beginning since
1058 	 * alloc_arraycache's are going to use this list.
1059 	 * kmalloc_node allows us to add the slab to the right
1060 	 * kmem_cache_node and not this cpu's kmem_cache_node
1061 	 */
1062 	err = init_cache_node_node(node);
1063 	if (err < 0)
1064 		goto bad;
1065 
1066 	/*
1067 	 * Now we can go ahead with allocating the shared arrays and
1068 	 * array caches
1069 	 */
1070 	list_for_each_entry(cachep, &slab_caches, list) {
1071 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1072 		if (err)
1073 			goto bad;
1074 	}
1075 
1076 	return 0;
1077 bad:
1078 	cpuup_canceled(cpu);
1079 	return -ENOMEM;
1080 }
1081 
1082 int slab_prepare_cpu(unsigned int cpu)
1083 {
1084 	int err;
1085 
1086 	mutex_lock(&slab_mutex);
1087 	err = cpuup_prepare(cpu);
1088 	mutex_unlock(&slab_mutex);
1089 	return err;
1090 }
1091 
1092 /*
1093  * This is called for a failed online attempt and for a successful
1094  * offline.
1095  *
1096  * Even if all the cpus of a node are down, we don't free the
1097  * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1098  * a kmalloc allocation from another cpu for memory from the node of
1099  * the cpu going down.  The list3 structure is usually allocated from
1100  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1101  */
1102 int slab_dead_cpu(unsigned int cpu)
1103 {
1104 	mutex_lock(&slab_mutex);
1105 	cpuup_canceled(cpu);
1106 	mutex_unlock(&slab_mutex);
1107 	return 0;
1108 }
1109 #endif
1110 
1111 static int slab_online_cpu(unsigned int cpu)
1112 {
1113 	start_cpu_timer(cpu);
1114 	return 0;
1115 }
1116 
1117 static int slab_offline_cpu(unsigned int cpu)
1118 {
1119 	/*
1120 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1121 	 * that if cache_reap() is invoked it cannot do anything
1122 	 * expensive but will only modify reap_work and reschedule the
1123 	 * timer.
1124 	 */
1125 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1126 	/* Now the cache_reaper is guaranteed to be not running. */
1127 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1128 	return 0;
1129 }
1130 
1131 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1132 /*
1133  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1134  * Returns -EBUSY if all objects cannot be drained so that the node is not
1135  * removed.
1136  *
1137  * Must hold slab_mutex.
1138  */
1139 static int __meminit drain_cache_node_node(int node)
1140 {
1141 	struct kmem_cache *cachep;
1142 	int ret = 0;
1143 
1144 	list_for_each_entry(cachep, &slab_caches, list) {
1145 		struct kmem_cache_node *n;
1146 
1147 		n = get_node(cachep, node);
1148 		if (!n)
1149 			continue;
1150 
1151 		drain_freelist(cachep, n, INT_MAX);
1152 
1153 		if (!list_empty(&n->slabs_full) ||
1154 		    !list_empty(&n->slabs_partial)) {
1155 			ret = -EBUSY;
1156 			break;
1157 		}
1158 	}
1159 	return ret;
1160 }
1161 
1162 static int __meminit slab_memory_callback(struct notifier_block *self,
1163 					unsigned long action, void *arg)
1164 {
1165 	struct memory_notify *mnb = arg;
1166 	int ret = 0;
1167 	int nid;
1168 
1169 	nid = mnb->status_change_nid;
1170 	if (nid < 0)
1171 		goto out;
1172 
1173 	switch (action) {
1174 	case MEM_GOING_ONLINE:
1175 		mutex_lock(&slab_mutex);
1176 		ret = init_cache_node_node(nid);
1177 		mutex_unlock(&slab_mutex);
1178 		break;
1179 	case MEM_GOING_OFFLINE:
1180 		mutex_lock(&slab_mutex);
1181 		ret = drain_cache_node_node(nid);
1182 		mutex_unlock(&slab_mutex);
1183 		break;
1184 	case MEM_ONLINE:
1185 	case MEM_OFFLINE:
1186 	case MEM_CANCEL_ONLINE:
1187 	case MEM_CANCEL_OFFLINE:
1188 		break;
1189 	}
1190 out:
1191 	return notifier_from_errno(ret);
1192 }
1193 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1194 
1195 /*
1196  * swap the static kmem_cache_node with kmalloced memory
1197  */
1198 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1199 				int nodeid)
1200 {
1201 	struct kmem_cache_node *ptr;
1202 
1203 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1204 	BUG_ON(!ptr);
1205 
1206 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1207 	/*
1208 	 * Do not assume that spinlocks can be initialized via memcpy:
1209 	 */
1210 	spin_lock_init(&ptr->list_lock);
1211 
1212 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1213 	cachep->node[nodeid] = ptr;
1214 }
1215 
1216 /*
1217  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1218  * size of kmem_cache_node.
1219  */
1220 static void __init set_up_node(struct kmem_cache *cachep, int index)
1221 {
1222 	int node;
1223 
1224 	for_each_online_node(node) {
1225 		cachep->node[node] = &init_kmem_cache_node[index + node];
1226 		cachep->node[node]->next_reap = jiffies +
1227 		    REAPTIMEOUT_NODE +
1228 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1229 	}
1230 }
1231 
1232 /*
1233  * Initialisation.  Called after the page allocator have been initialised and
1234  * before smp_init().
1235  */
1236 void __init kmem_cache_init(void)
1237 {
1238 	int i;
1239 
1240 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1241 					sizeof(struct rcu_head));
1242 	kmem_cache = &kmem_cache_boot;
1243 
1244 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1245 		use_alien_caches = 0;
1246 
1247 	for (i = 0; i < NUM_INIT_LISTS; i++)
1248 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1249 
1250 	/*
1251 	 * Fragmentation resistance on low memory - only use bigger
1252 	 * page orders on machines with more than 32MB of memory if
1253 	 * not overridden on the command line.
1254 	 */
1255 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1256 		slab_max_order = SLAB_MAX_ORDER_HI;
1257 
1258 	/* Bootstrap is tricky, because several objects are allocated
1259 	 * from caches that do not exist yet:
1260 	 * 1) initialize the kmem_cache cache: it contains the struct
1261 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1262 	 *    kmem_cache is statically allocated.
1263 	 *    Initially an __init data area is used for the head array and the
1264 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1265 	 *    array at the end of the bootstrap.
1266 	 * 2) Create the first kmalloc cache.
1267 	 *    The struct kmem_cache for the new cache is allocated normally.
1268 	 *    An __init data area is used for the head array.
1269 	 * 3) Create the remaining kmalloc caches, with minimally sized
1270 	 *    head arrays.
1271 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1272 	 *    kmalloc cache with kmalloc allocated arrays.
1273 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1274 	 *    the other cache's with kmalloc allocated memory.
1275 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1276 	 */
1277 
1278 	/* 1) create the kmem_cache */
1279 
1280 	/*
1281 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1282 	 */
1283 	create_boot_cache(kmem_cache, "kmem_cache",
1284 		offsetof(struct kmem_cache, node) +
1285 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1286 				  SLAB_HWCACHE_ALIGN);
1287 	list_add(&kmem_cache->list, &slab_caches);
1288 	slab_state = PARTIAL;
1289 
1290 	/*
1291 	 * Initialize the caches that provide memory for the  kmem_cache_node
1292 	 * structures first.  Without this, further allocations will bug.
1293 	 */
1294 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1295 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1296 	slab_state = PARTIAL_NODE;
1297 	setup_kmalloc_cache_index_table();
1298 
1299 	slab_early_init = 0;
1300 
1301 	/* 5) Replace the bootstrap kmem_cache_node */
1302 	{
1303 		int nid;
1304 
1305 		for_each_online_node(nid) {
1306 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1307 
1308 			init_list(kmalloc_caches[INDEX_NODE],
1309 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1310 		}
1311 	}
1312 
1313 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1314 }
1315 
1316 void __init kmem_cache_init_late(void)
1317 {
1318 	struct kmem_cache *cachep;
1319 
1320 	slab_state = UP;
1321 
1322 	/* 6) resize the head arrays to their final sizes */
1323 	mutex_lock(&slab_mutex);
1324 	list_for_each_entry(cachep, &slab_caches, list)
1325 		if (enable_cpucache(cachep, GFP_NOWAIT))
1326 			BUG();
1327 	mutex_unlock(&slab_mutex);
1328 
1329 	/* Done! */
1330 	slab_state = FULL;
1331 
1332 #ifdef CONFIG_NUMA
1333 	/*
1334 	 * Register a memory hotplug callback that initializes and frees
1335 	 * node.
1336 	 */
1337 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1338 #endif
1339 
1340 	/*
1341 	 * The reap timers are started later, with a module init call: That part
1342 	 * of the kernel is not yet operational.
1343 	 */
1344 }
1345 
1346 static int __init cpucache_init(void)
1347 {
1348 	int ret;
1349 
1350 	/*
1351 	 * Register the timers that return unneeded pages to the page allocator
1352 	 */
1353 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1354 				slab_online_cpu, slab_offline_cpu);
1355 	WARN_ON(ret < 0);
1356 
1357 	/* Done! */
1358 	slab_state = FULL;
1359 	return 0;
1360 }
1361 __initcall(cpucache_init);
1362 
1363 static noinline void
1364 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1365 {
1366 #if DEBUG
1367 	struct kmem_cache_node *n;
1368 	struct page *page;
1369 	unsigned long flags;
1370 	int node;
1371 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1372 				      DEFAULT_RATELIMIT_BURST);
1373 
1374 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1375 		return;
1376 
1377 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1378 		nodeid, gfpflags, &gfpflags);
1379 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1380 		cachep->name, cachep->size, cachep->gfporder);
1381 
1382 	for_each_kmem_cache_node(cachep, node, n) {
1383 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1384 		unsigned long active_slabs = 0, num_slabs = 0;
1385 
1386 		spin_lock_irqsave(&n->list_lock, flags);
1387 		list_for_each_entry(page, &n->slabs_full, lru) {
1388 			active_objs += cachep->num;
1389 			active_slabs++;
1390 		}
1391 		list_for_each_entry(page, &n->slabs_partial, lru) {
1392 			active_objs += page->active;
1393 			active_slabs++;
1394 		}
1395 		list_for_each_entry(page, &n->slabs_free, lru)
1396 			num_slabs++;
1397 
1398 		free_objects += n->free_objects;
1399 		spin_unlock_irqrestore(&n->list_lock, flags);
1400 
1401 		num_slabs += active_slabs;
1402 		num_objs = num_slabs * cachep->num;
1403 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1404 			node, active_slabs, num_slabs, active_objs, num_objs,
1405 			free_objects);
1406 	}
1407 #endif
1408 }
1409 
1410 /*
1411  * Interface to system's page allocator. No need to hold the
1412  * kmem_cache_node ->list_lock.
1413  *
1414  * If we requested dmaable memory, we will get it. Even if we
1415  * did not request dmaable memory, we might get it, but that
1416  * would be relatively rare and ignorable.
1417  */
1418 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1419 								int nodeid)
1420 {
1421 	struct page *page;
1422 	int nr_pages;
1423 
1424 	flags |= cachep->allocflags;
1425 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426 		flags |= __GFP_RECLAIMABLE;
1427 
1428 	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1429 	if (!page) {
1430 		slab_out_of_memory(cachep, flags, nodeid);
1431 		return NULL;
1432 	}
1433 
1434 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1435 		__free_pages(page, cachep->gfporder);
1436 		return NULL;
1437 	}
1438 
1439 	nr_pages = (1 << cachep->gfporder);
1440 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1441 		add_zone_page_state(page_zone(page),
1442 			NR_SLAB_RECLAIMABLE, nr_pages);
1443 	else
1444 		add_zone_page_state(page_zone(page),
1445 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1446 
1447 	__SetPageSlab(page);
1448 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1449 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1450 		SetPageSlabPfmemalloc(page);
1451 
1452 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1453 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1454 
1455 		if (cachep->ctor)
1456 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1457 		else
1458 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1459 	}
1460 
1461 	return page;
1462 }
1463 
1464 /*
1465  * Interface to system's page release.
1466  */
1467 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1468 {
1469 	int order = cachep->gfporder;
1470 	unsigned long nr_freed = (1 << order);
1471 
1472 	kmemcheck_free_shadow(page, order);
1473 
1474 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1475 		sub_zone_page_state(page_zone(page),
1476 				NR_SLAB_RECLAIMABLE, nr_freed);
1477 	else
1478 		sub_zone_page_state(page_zone(page),
1479 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1480 
1481 	BUG_ON(!PageSlab(page));
1482 	__ClearPageSlabPfmemalloc(page);
1483 	__ClearPageSlab(page);
1484 	page_mapcount_reset(page);
1485 	page->mapping = NULL;
1486 
1487 	if (current->reclaim_state)
1488 		current->reclaim_state->reclaimed_slab += nr_freed;
1489 	memcg_uncharge_slab(page, order, cachep);
1490 	__free_pages(page, order);
1491 }
1492 
1493 static void kmem_rcu_free(struct rcu_head *head)
1494 {
1495 	struct kmem_cache *cachep;
1496 	struct page *page;
1497 
1498 	page = container_of(head, struct page, rcu_head);
1499 	cachep = page->slab_cache;
1500 
1501 	kmem_freepages(cachep, page);
1502 }
1503 
1504 #if DEBUG
1505 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1506 {
1507 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1508 		(cachep->size % PAGE_SIZE) == 0)
1509 		return true;
1510 
1511 	return false;
1512 }
1513 
1514 #ifdef CONFIG_DEBUG_PAGEALLOC
1515 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1516 			    unsigned long caller)
1517 {
1518 	int size = cachep->object_size;
1519 
1520 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1521 
1522 	if (size < 5 * sizeof(unsigned long))
1523 		return;
1524 
1525 	*addr++ = 0x12345678;
1526 	*addr++ = caller;
1527 	*addr++ = smp_processor_id();
1528 	size -= 3 * sizeof(unsigned long);
1529 	{
1530 		unsigned long *sptr = &caller;
1531 		unsigned long svalue;
1532 
1533 		while (!kstack_end(sptr)) {
1534 			svalue = *sptr++;
1535 			if (kernel_text_address(svalue)) {
1536 				*addr++ = svalue;
1537 				size -= sizeof(unsigned long);
1538 				if (size <= sizeof(unsigned long))
1539 					break;
1540 			}
1541 		}
1542 
1543 	}
1544 	*addr++ = 0x87654321;
1545 }
1546 
1547 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1548 				int map, unsigned long caller)
1549 {
1550 	if (!is_debug_pagealloc_cache(cachep))
1551 		return;
1552 
1553 	if (caller)
1554 		store_stackinfo(cachep, objp, caller);
1555 
1556 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1557 }
1558 
1559 #else
1560 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1561 				int map, unsigned long caller) {}
1562 
1563 #endif
1564 
1565 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1566 {
1567 	int size = cachep->object_size;
1568 	addr = &((char *)addr)[obj_offset(cachep)];
1569 
1570 	memset(addr, val, size);
1571 	*(unsigned char *)(addr + size - 1) = POISON_END;
1572 }
1573 
1574 static void dump_line(char *data, int offset, int limit)
1575 {
1576 	int i;
1577 	unsigned char error = 0;
1578 	int bad_count = 0;
1579 
1580 	pr_err("%03x: ", offset);
1581 	for (i = 0; i < limit; i++) {
1582 		if (data[offset + i] != POISON_FREE) {
1583 			error = data[offset + i];
1584 			bad_count++;
1585 		}
1586 	}
1587 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1588 			&data[offset], limit, 1);
1589 
1590 	if (bad_count == 1) {
1591 		error ^= POISON_FREE;
1592 		if (!(error & (error - 1))) {
1593 			pr_err("Single bit error detected. Probably bad RAM.\n");
1594 #ifdef CONFIG_X86
1595 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1596 #else
1597 			pr_err("Run a memory test tool.\n");
1598 #endif
1599 		}
1600 	}
1601 }
1602 #endif
1603 
1604 #if DEBUG
1605 
1606 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1607 {
1608 	int i, size;
1609 	char *realobj;
1610 
1611 	if (cachep->flags & SLAB_RED_ZONE) {
1612 		pr_err("Redzone: 0x%llx/0x%llx\n",
1613 		       *dbg_redzone1(cachep, objp),
1614 		       *dbg_redzone2(cachep, objp));
1615 	}
1616 
1617 	if (cachep->flags & SLAB_STORE_USER) {
1618 		pr_err("Last user: [<%p>](%pSR)\n",
1619 		       *dbg_userword(cachep, objp),
1620 		       *dbg_userword(cachep, objp));
1621 	}
1622 	realobj = (char *)objp + obj_offset(cachep);
1623 	size = cachep->object_size;
1624 	for (i = 0; i < size && lines; i += 16, lines--) {
1625 		int limit;
1626 		limit = 16;
1627 		if (i + limit > size)
1628 			limit = size - i;
1629 		dump_line(realobj, i, limit);
1630 	}
1631 }
1632 
1633 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1634 {
1635 	char *realobj;
1636 	int size, i;
1637 	int lines = 0;
1638 
1639 	if (is_debug_pagealloc_cache(cachep))
1640 		return;
1641 
1642 	realobj = (char *)objp + obj_offset(cachep);
1643 	size = cachep->object_size;
1644 
1645 	for (i = 0; i < size; i++) {
1646 		char exp = POISON_FREE;
1647 		if (i == size - 1)
1648 			exp = POISON_END;
1649 		if (realobj[i] != exp) {
1650 			int limit;
1651 			/* Mismatch ! */
1652 			/* Print header */
1653 			if (lines == 0) {
1654 				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1655 				       print_tainted(), cachep->name,
1656 				       realobj, size);
1657 				print_objinfo(cachep, objp, 0);
1658 			}
1659 			/* Hexdump the affected line */
1660 			i = (i / 16) * 16;
1661 			limit = 16;
1662 			if (i + limit > size)
1663 				limit = size - i;
1664 			dump_line(realobj, i, limit);
1665 			i += 16;
1666 			lines++;
1667 			/* Limit to 5 lines */
1668 			if (lines > 5)
1669 				break;
1670 		}
1671 	}
1672 	if (lines != 0) {
1673 		/* Print some data about the neighboring objects, if they
1674 		 * exist:
1675 		 */
1676 		struct page *page = virt_to_head_page(objp);
1677 		unsigned int objnr;
1678 
1679 		objnr = obj_to_index(cachep, page, objp);
1680 		if (objnr) {
1681 			objp = index_to_obj(cachep, page, objnr - 1);
1682 			realobj = (char *)objp + obj_offset(cachep);
1683 			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1684 			print_objinfo(cachep, objp, 2);
1685 		}
1686 		if (objnr + 1 < cachep->num) {
1687 			objp = index_to_obj(cachep, page, objnr + 1);
1688 			realobj = (char *)objp + obj_offset(cachep);
1689 			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1690 			print_objinfo(cachep, objp, 2);
1691 		}
1692 	}
1693 }
1694 #endif
1695 
1696 #if DEBUG
1697 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1698 						struct page *page)
1699 {
1700 	int i;
1701 
1702 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1703 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1704 			POISON_FREE);
1705 	}
1706 
1707 	for (i = 0; i < cachep->num; i++) {
1708 		void *objp = index_to_obj(cachep, page, i);
1709 
1710 		if (cachep->flags & SLAB_POISON) {
1711 			check_poison_obj(cachep, objp);
1712 			slab_kernel_map(cachep, objp, 1, 0);
1713 		}
1714 		if (cachep->flags & SLAB_RED_ZONE) {
1715 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1716 				slab_error(cachep, "start of a freed object was overwritten");
1717 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1718 				slab_error(cachep, "end of a freed object was overwritten");
1719 		}
1720 	}
1721 }
1722 #else
1723 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1724 						struct page *page)
1725 {
1726 }
1727 #endif
1728 
1729 /**
1730  * slab_destroy - destroy and release all objects in a slab
1731  * @cachep: cache pointer being destroyed
1732  * @page: page pointer being destroyed
1733  *
1734  * Destroy all the objs in a slab page, and release the mem back to the system.
1735  * Before calling the slab page must have been unlinked from the cache. The
1736  * kmem_cache_node ->list_lock is not held/needed.
1737  */
1738 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1739 {
1740 	void *freelist;
1741 
1742 	freelist = page->freelist;
1743 	slab_destroy_debugcheck(cachep, page);
1744 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1745 		call_rcu(&page->rcu_head, kmem_rcu_free);
1746 	else
1747 		kmem_freepages(cachep, page);
1748 
1749 	/*
1750 	 * From now on, we don't use freelist
1751 	 * although actual page can be freed in rcu context
1752 	 */
1753 	if (OFF_SLAB(cachep))
1754 		kmem_cache_free(cachep->freelist_cache, freelist);
1755 }
1756 
1757 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1758 {
1759 	struct page *page, *n;
1760 
1761 	list_for_each_entry_safe(page, n, list, lru) {
1762 		list_del(&page->lru);
1763 		slab_destroy(cachep, page);
1764 	}
1765 }
1766 
1767 /**
1768  * calculate_slab_order - calculate size (page order) of slabs
1769  * @cachep: pointer to the cache that is being created
1770  * @size: size of objects to be created in this cache.
1771  * @flags: slab allocation flags
1772  *
1773  * Also calculates the number of objects per slab.
1774  *
1775  * This could be made much more intelligent.  For now, try to avoid using
1776  * high order pages for slabs.  When the gfp() functions are more friendly
1777  * towards high-order requests, this should be changed.
1778  */
1779 static size_t calculate_slab_order(struct kmem_cache *cachep,
1780 				size_t size, unsigned long flags)
1781 {
1782 	size_t left_over = 0;
1783 	int gfporder;
1784 
1785 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1786 		unsigned int num;
1787 		size_t remainder;
1788 
1789 		num = cache_estimate(gfporder, size, flags, &remainder);
1790 		if (!num)
1791 			continue;
1792 
1793 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1794 		if (num > SLAB_OBJ_MAX_NUM)
1795 			break;
1796 
1797 		if (flags & CFLGS_OFF_SLAB) {
1798 			struct kmem_cache *freelist_cache;
1799 			size_t freelist_size;
1800 
1801 			freelist_size = num * sizeof(freelist_idx_t);
1802 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1803 			if (!freelist_cache)
1804 				continue;
1805 
1806 			/*
1807 			 * Needed to avoid possible looping condition
1808 			 * in cache_grow_begin()
1809 			 */
1810 			if (OFF_SLAB(freelist_cache))
1811 				continue;
1812 
1813 			/* check if off slab has enough benefit */
1814 			if (freelist_cache->size > cachep->size / 2)
1815 				continue;
1816 		}
1817 
1818 		/* Found something acceptable - save it away */
1819 		cachep->num = num;
1820 		cachep->gfporder = gfporder;
1821 		left_over = remainder;
1822 
1823 		/*
1824 		 * A VFS-reclaimable slab tends to have most allocations
1825 		 * as GFP_NOFS and we really don't want to have to be allocating
1826 		 * higher-order pages when we are unable to shrink dcache.
1827 		 */
1828 		if (flags & SLAB_RECLAIM_ACCOUNT)
1829 			break;
1830 
1831 		/*
1832 		 * Large number of objects is good, but very large slabs are
1833 		 * currently bad for the gfp()s.
1834 		 */
1835 		if (gfporder >= slab_max_order)
1836 			break;
1837 
1838 		/*
1839 		 * Acceptable internal fragmentation?
1840 		 */
1841 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1842 			break;
1843 	}
1844 	return left_over;
1845 }
1846 
1847 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1848 		struct kmem_cache *cachep, int entries, int batchcount)
1849 {
1850 	int cpu;
1851 	size_t size;
1852 	struct array_cache __percpu *cpu_cache;
1853 
1854 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1855 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1856 
1857 	if (!cpu_cache)
1858 		return NULL;
1859 
1860 	for_each_possible_cpu(cpu) {
1861 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1862 				entries, batchcount);
1863 	}
1864 
1865 	return cpu_cache;
1866 }
1867 
1868 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1869 {
1870 	if (slab_state >= FULL)
1871 		return enable_cpucache(cachep, gfp);
1872 
1873 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1874 	if (!cachep->cpu_cache)
1875 		return 1;
1876 
1877 	if (slab_state == DOWN) {
1878 		/* Creation of first cache (kmem_cache). */
1879 		set_up_node(kmem_cache, CACHE_CACHE);
1880 	} else if (slab_state == PARTIAL) {
1881 		/* For kmem_cache_node */
1882 		set_up_node(cachep, SIZE_NODE);
1883 	} else {
1884 		int node;
1885 
1886 		for_each_online_node(node) {
1887 			cachep->node[node] = kmalloc_node(
1888 				sizeof(struct kmem_cache_node), gfp, node);
1889 			BUG_ON(!cachep->node[node]);
1890 			kmem_cache_node_init(cachep->node[node]);
1891 		}
1892 	}
1893 
1894 	cachep->node[numa_mem_id()]->next_reap =
1895 			jiffies + REAPTIMEOUT_NODE +
1896 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1897 
1898 	cpu_cache_get(cachep)->avail = 0;
1899 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1900 	cpu_cache_get(cachep)->batchcount = 1;
1901 	cpu_cache_get(cachep)->touched = 0;
1902 	cachep->batchcount = 1;
1903 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1904 	return 0;
1905 }
1906 
1907 unsigned long kmem_cache_flags(unsigned long object_size,
1908 	unsigned long flags, const char *name,
1909 	void (*ctor)(void *))
1910 {
1911 	return flags;
1912 }
1913 
1914 struct kmem_cache *
1915 __kmem_cache_alias(const char *name, size_t size, size_t align,
1916 		   unsigned long flags, void (*ctor)(void *))
1917 {
1918 	struct kmem_cache *cachep;
1919 
1920 	cachep = find_mergeable(size, align, flags, name, ctor);
1921 	if (cachep) {
1922 		cachep->refcount++;
1923 
1924 		/*
1925 		 * Adjust the object sizes so that we clear
1926 		 * the complete object on kzalloc.
1927 		 */
1928 		cachep->object_size = max_t(int, cachep->object_size, size);
1929 	}
1930 	return cachep;
1931 }
1932 
1933 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1934 			size_t size, unsigned long flags)
1935 {
1936 	size_t left;
1937 
1938 	cachep->num = 0;
1939 
1940 	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1941 		return false;
1942 
1943 	left = calculate_slab_order(cachep, size,
1944 			flags | CFLGS_OBJFREELIST_SLAB);
1945 	if (!cachep->num)
1946 		return false;
1947 
1948 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1949 		return false;
1950 
1951 	cachep->colour = left / cachep->colour_off;
1952 
1953 	return true;
1954 }
1955 
1956 static bool set_off_slab_cache(struct kmem_cache *cachep,
1957 			size_t size, unsigned long flags)
1958 {
1959 	size_t left;
1960 
1961 	cachep->num = 0;
1962 
1963 	/*
1964 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1965 	 * to avoid recursive calls into kmemleak.
1966 	 */
1967 	if (flags & SLAB_NOLEAKTRACE)
1968 		return false;
1969 
1970 	/*
1971 	 * Size is large, assume best to place the slab management obj
1972 	 * off-slab (should allow better packing of objs).
1973 	 */
1974 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1975 	if (!cachep->num)
1976 		return false;
1977 
1978 	/*
1979 	 * If the slab has been placed off-slab, and we have enough space then
1980 	 * move it on-slab. This is at the expense of any extra colouring.
1981 	 */
1982 	if (left >= cachep->num * sizeof(freelist_idx_t))
1983 		return false;
1984 
1985 	cachep->colour = left / cachep->colour_off;
1986 
1987 	return true;
1988 }
1989 
1990 static bool set_on_slab_cache(struct kmem_cache *cachep,
1991 			size_t size, unsigned long flags)
1992 {
1993 	size_t left;
1994 
1995 	cachep->num = 0;
1996 
1997 	left = calculate_slab_order(cachep, size, flags);
1998 	if (!cachep->num)
1999 		return false;
2000 
2001 	cachep->colour = left / cachep->colour_off;
2002 
2003 	return true;
2004 }
2005 
2006 /**
2007  * __kmem_cache_create - Create a cache.
2008  * @cachep: cache management descriptor
2009  * @flags: SLAB flags
2010  *
2011  * Returns a ptr to the cache on success, NULL on failure.
2012  * Cannot be called within a int, but can be interrupted.
2013  * The @ctor is run when new pages are allocated by the cache.
2014  *
2015  * The flags are
2016  *
2017  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2018  * to catch references to uninitialised memory.
2019  *
2020  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2021  * for buffer overruns.
2022  *
2023  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2024  * cacheline.  This can be beneficial if you're counting cycles as closely
2025  * as davem.
2026  */
2027 int
2028 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2029 {
2030 	size_t ralign = BYTES_PER_WORD;
2031 	gfp_t gfp;
2032 	int err;
2033 	size_t size = cachep->size;
2034 
2035 #if DEBUG
2036 #if FORCED_DEBUG
2037 	/*
2038 	 * Enable redzoning and last user accounting, except for caches with
2039 	 * large objects, if the increased size would increase the object size
2040 	 * above the next power of two: caches with object sizes just above a
2041 	 * power of two have a significant amount of internal fragmentation.
2042 	 */
2043 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2044 						2 * sizeof(unsigned long long)))
2045 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2046 	if (!(flags & SLAB_DESTROY_BY_RCU))
2047 		flags |= SLAB_POISON;
2048 #endif
2049 #endif
2050 
2051 	/*
2052 	 * Check that size is in terms of words.  This is needed to avoid
2053 	 * unaligned accesses for some archs when redzoning is used, and makes
2054 	 * sure any on-slab bufctl's are also correctly aligned.
2055 	 */
2056 	if (size & (BYTES_PER_WORD - 1)) {
2057 		size += (BYTES_PER_WORD - 1);
2058 		size &= ~(BYTES_PER_WORD - 1);
2059 	}
2060 
2061 	if (flags & SLAB_RED_ZONE) {
2062 		ralign = REDZONE_ALIGN;
2063 		/* If redzoning, ensure that the second redzone is suitably
2064 		 * aligned, by adjusting the object size accordingly. */
2065 		size += REDZONE_ALIGN - 1;
2066 		size &= ~(REDZONE_ALIGN - 1);
2067 	}
2068 
2069 	/* 3) caller mandated alignment */
2070 	if (ralign < cachep->align) {
2071 		ralign = cachep->align;
2072 	}
2073 	/* disable debug if necessary */
2074 	if (ralign > __alignof__(unsigned long long))
2075 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2076 	/*
2077 	 * 4) Store it.
2078 	 */
2079 	cachep->align = ralign;
2080 	cachep->colour_off = cache_line_size();
2081 	/* Offset must be a multiple of the alignment. */
2082 	if (cachep->colour_off < cachep->align)
2083 		cachep->colour_off = cachep->align;
2084 
2085 	if (slab_is_available())
2086 		gfp = GFP_KERNEL;
2087 	else
2088 		gfp = GFP_NOWAIT;
2089 
2090 #if DEBUG
2091 
2092 	/*
2093 	 * Both debugging options require word-alignment which is calculated
2094 	 * into align above.
2095 	 */
2096 	if (flags & SLAB_RED_ZONE) {
2097 		/* add space for red zone words */
2098 		cachep->obj_offset += sizeof(unsigned long long);
2099 		size += 2 * sizeof(unsigned long long);
2100 	}
2101 	if (flags & SLAB_STORE_USER) {
2102 		/* user store requires one word storage behind the end of
2103 		 * the real object. But if the second red zone needs to be
2104 		 * aligned to 64 bits, we must allow that much space.
2105 		 */
2106 		if (flags & SLAB_RED_ZONE)
2107 			size += REDZONE_ALIGN;
2108 		else
2109 			size += BYTES_PER_WORD;
2110 	}
2111 #endif
2112 
2113 	kasan_cache_create(cachep, &size, &flags);
2114 
2115 	size = ALIGN(size, cachep->align);
2116 	/*
2117 	 * We should restrict the number of objects in a slab to implement
2118 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2119 	 */
2120 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2121 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2122 
2123 #if DEBUG
2124 	/*
2125 	 * To activate debug pagealloc, off-slab management is necessary
2126 	 * requirement. In early phase of initialization, small sized slab
2127 	 * doesn't get initialized so it would not be possible. So, we need
2128 	 * to check size >= 256. It guarantees that all necessary small
2129 	 * sized slab is initialized in current slab initialization sequence.
2130 	 */
2131 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2132 		size >= 256 && cachep->object_size > cache_line_size()) {
2133 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2134 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2135 
2136 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2137 				flags |= CFLGS_OFF_SLAB;
2138 				cachep->obj_offset += tmp_size - size;
2139 				size = tmp_size;
2140 				goto done;
2141 			}
2142 		}
2143 	}
2144 #endif
2145 
2146 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2147 		flags |= CFLGS_OBJFREELIST_SLAB;
2148 		goto done;
2149 	}
2150 
2151 	if (set_off_slab_cache(cachep, size, flags)) {
2152 		flags |= CFLGS_OFF_SLAB;
2153 		goto done;
2154 	}
2155 
2156 	if (set_on_slab_cache(cachep, size, flags))
2157 		goto done;
2158 
2159 	return -E2BIG;
2160 
2161 done:
2162 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2163 	cachep->flags = flags;
2164 	cachep->allocflags = __GFP_COMP;
2165 	if (flags & SLAB_CACHE_DMA)
2166 		cachep->allocflags |= GFP_DMA;
2167 	cachep->size = size;
2168 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2169 
2170 #if DEBUG
2171 	/*
2172 	 * If we're going to use the generic kernel_map_pages()
2173 	 * poisoning, then it's going to smash the contents of
2174 	 * the redzone and userword anyhow, so switch them off.
2175 	 */
2176 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2177 		(cachep->flags & SLAB_POISON) &&
2178 		is_debug_pagealloc_cache(cachep))
2179 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2180 #endif
2181 
2182 	if (OFF_SLAB(cachep)) {
2183 		cachep->freelist_cache =
2184 			kmalloc_slab(cachep->freelist_size, 0u);
2185 	}
2186 
2187 	err = setup_cpu_cache(cachep, gfp);
2188 	if (err) {
2189 		__kmem_cache_release(cachep);
2190 		return err;
2191 	}
2192 
2193 	return 0;
2194 }
2195 
2196 #if DEBUG
2197 static void check_irq_off(void)
2198 {
2199 	BUG_ON(!irqs_disabled());
2200 }
2201 
2202 static void check_irq_on(void)
2203 {
2204 	BUG_ON(irqs_disabled());
2205 }
2206 
2207 static void check_mutex_acquired(void)
2208 {
2209 	BUG_ON(!mutex_is_locked(&slab_mutex));
2210 }
2211 
2212 static void check_spinlock_acquired(struct kmem_cache *cachep)
2213 {
2214 #ifdef CONFIG_SMP
2215 	check_irq_off();
2216 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2217 #endif
2218 }
2219 
2220 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2221 {
2222 #ifdef CONFIG_SMP
2223 	check_irq_off();
2224 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2225 #endif
2226 }
2227 
2228 #else
2229 #define check_irq_off()	do { } while(0)
2230 #define check_irq_on()	do { } while(0)
2231 #define check_mutex_acquired()	do { } while(0)
2232 #define check_spinlock_acquired(x) do { } while(0)
2233 #define check_spinlock_acquired_node(x, y) do { } while(0)
2234 #endif
2235 
2236 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2237 				int node, bool free_all, struct list_head *list)
2238 {
2239 	int tofree;
2240 
2241 	if (!ac || !ac->avail)
2242 		return;
2243 
2244 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2245 	if (tofree > ac->avail)
2246 		tofree = (ac->avail + 1) / 2;
2247 
2248 	free_block(cachep, ac->entry, tofree, node, list);
2249 	ac->avail -= tofree;
2250 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2251 }
2252 
2253 static void do_drain(void *arg)
2254 {
2255 	struct kmem_cache *cachep = arg;
2256 	struct array_cache *ac;
2257 	int node = numa_mem_id();
2258 	struct kmem_cache_node *n;
2259 	LIST_HEAD(list);
2260 
2261 	check_irq_off();
2262 	ac = cpu_cache_get(cachep);
2263 	n = get_node(cachep, node);
2264 	spin_lock(&n->list_lock);
2265 	free_block(cachep, ac->entry, ac->avail, node, &list);
2266 	spin_unlock(&n->list_lock);
2267 	slabs_destroy(cachep, &list);
2268 	ac->avail = 0;
2269 }
2270 
2271 static void drain_cpu_caches(struct kmem_cache *cachep)
2272 {
2273 	struct kmem_cache_node *n;
2274 	int node;
2275 	LIST_HEAD(list);
2276 
2277 	on_each_cpu(do_drain, cachep, 1);
2278 	check_irq_on();
2279 	for_each_kmem_cache_node(cachep, node, n)
2280 		if (n->alien)
2281 			drain_alien_cache(cachep, n->alien);
2282 
2283 	for_each_kmem_cache_node(cachep, node, n) {
2284 		spin_lock_irq(&n->list_lock);
2285 		drain_array_locked(cachep, n->shared, node, true, &list);
2286 		spin_unlock_irq(&n->list_lock);
2287 
2288 		slabs_destroy(cachep, &list);
2289 	}
2290 }
2291 
2292 /*
2293  * Remove slabs from the list of free slabs.
2294  * Specify the number of slabs to drain in tofree.
2295  *
2296  * Returns the actual number of slabs released.
2297  */
2298 static int drain_freelist(struct kmem_cache *cache,
2299 			struct kmem_cache_node *n, int tofree)
2300 {
2301 	struct list_head *p;
2302 	int nr_freed;
2303 	struct page *page;
2304 
2305 	nr_freed = 0;
2306 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2307 
2308 		spin_lock_irq(&n->list_lock);
2309 		p = n->slabs_free.prev;
2310 		if (p == &n->slabs_free) {
2311 			spin_unlock_irq(&n->list_lock);
2312 			goto out;
2313 		}
2314 
2315 		page = list_entry(p, struct page, lru);
2316 		list_del(&page->lru);
2317 		/*
2318 		 * Safe to drop the lock. The slab is no longer linked
2319 		 * to the cache.
2320 		 */
2321 		n->free_objects -= cache->num;
2322 		spin_unlock_irq(&n->list_lock);
2323 		slab_destroy(cache, page);
2324 		nr_freed++;
2325 	}
2326 out:
2327 	return nr_freed;
2328 }
2329 
2330 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2331 {
2332 	int ret = 0;
2333 	int node;
2334 	struct kmem_cache_node *n;
2335 
2336 	drain_cpu_caches(cachep);
2337 
2338 	check_irq_on();
2339 	for_each_kmem_cache_node(cachep, node, n) {
2340 		drain_freelist(cachep, n, INT_MAX);
2341 
2342 		ret += !list_empty(&n->slabs_full) ||
2343 			!list_empty(&n->slabs_partial);
2344 	}
2345 	return (ret ? 1 : 0);
2346 }
2347 
2348 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2349 {
2350 	return __kmem_cache_shrink(cachep, false);
2351 }
2352 
2353 void __kmem_cache_release(struct kmem_cache *cachep)
2354 {
2355 	int i;
2356 	struct kmem_cache_node *n;
2357 
2358 	cache_random_seq_destroy(cachep);
2359 
2360 	free_percpu(cachep->cpu_cache);
2361 
2362 	/* NUMA: free the node structures */
2363 	for_each_kmem_cache_node(cachep, i, n) {
2364 		kfree(n->shared);
2365 		free_alien_cache(n->alien);
2366 		kfree(n);
2367 		cachep->node[i] = NULL;
2368 	}
2369 }
2370 
2371 /*
2372  * Get the memory for a slab management obj.
2373  *
2374  * For a slab cache when the slab descriptor is off-slab, the
2375  * slab descriptor can't come from the same cache which is being created,
2376  * Because if it is the case, that means we defer the creation of
2377  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2378  * And we eventually call down to __kmem_cache_create(), which
2379  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2380  * This is a "chicken-and-egg" problem.
2381  *
2382  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2383  * which are all initialized during kmem_cache_init().
2384  */
2385 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2386 				   struct page *page, int colour_off,
2387 				   gfp_t local_flags, int nodeid)
2388 {
2389 	void *freelist;
2390 	void *addr = page_address(page);
2391 
2392 	page->s_mem = addr + colour_off;
2393 	page->active = 0;
2394 
2395 	if (OBJFREELIST_SLAB(cachep))
2396 		freelist = NULL;
2397 	else if (OFF_SLAB(cachep)) {
2398 		/* Slab management obj is off-slab. */
2399 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2400 					      local_flags, nodeid);
2401 		if (!freelist)
2402 			return NULL;
2403 	} else {
2404 		/* We will use last bytes at the slab for freelist */
2405 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2406 				cachep->freelist_size;
2407 	}
2408 
2409 	return freelist;
2410 }
2411 
2412 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2413 {
2414 	return ((freelist_idx_t *)page->freelist)[idx];
2415 }
2416 
2417 static inline void set_free_obj(struct page *page,
2418 					unsigned int idx, freelist_idx_t val)
2419 {
2420 	((freelist_idx_t *)(page->freelist))[idx] = val;
2421 }
2422 
2423 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2424 {
2425 #if DEBUG
2426 	int i;
2427 
2428 	for (i = 0; i < cachep->num; i++) {
2429 		void *objp = index_to_obj(cachep, page, i);
2430 
2431 		if (cachep->flags & SLAB_STORE_USER)
2432 			*dbg_userword(cachep, objp) = NULL;
2433 
2434 		if (cachep->flags & SLAB_RED_ZONE) {
2435 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2436 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2437 		}
2438 		/*
2439 		 * Constructors are not allowed to allocate memory from the same
2440 		 * cache which they are a constructor for.  Otherwise, deadlock.
2441 		 * They must also be threaded.
2442 		 */
2443 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2444 			kasan_unpoison_object_data(cachep,
2445 						   objp + obj_offset(cachep));
2446 			cachep->ctor(objp + obj_offset(cachep));
2447 			kasan_poison_object_data(
2448 				cachep, objp + obj_offset(cachep));
2449 		}
2450 
2451 		if (cachep->flags & SLAB_RED_ZONE) {
2452 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2453 				slab_error(cachep, "constructor overwrote the end of an object");
2454 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2455 				slab_error(cachep, "constructor overwrote the start of an object");
2456 		}
2457 		/* need to poison the objs? */
2458 		if (cachep->flags & SLAB_POISON) {
2459 			poison_obj(cachep, objp, POISON_FREE);
2460 			slab_kernel_map(cachep, objp, 0, 0);
2461 		}
2462 	}
2463 #endif
2464 }
2465 
2466 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2467 /* Hold information during a freelist initialization */
2468 union freelist_init_state {
2469 	struct {
2470 		unsigned int pos;
2471 		unsigned int *list;
2472 		unsigned int count;
2473 		unsigned int rand;
2474 	};
2475 	struct rnd_state rnd_state;
2476 };
2477 
2478 /*
2479  * Initialize the state based on the randomization methode available.
2480  * return true if the pre-computed list is available, false otherwize.
2481  */
2482 static bool freelist_state_initialize(union freelist_init_state *state,
2483 				struct kmem_cache *cachep,
2484 				unsigned int count)
2485 {
2486 	bool ret;
2487 	unsigned int rand;
2488 
2489 	/* Use best entropy available to define a random shift */
2490 	rand = get_random_int();
2491 
2492 	/* Use a random state if the pre-computed list is not available */
2493 	if (!cachep->random_seq) {
2494 		prandom_seed_state(&state->rnd_state, rand);
2495 		ret = false;
2496 	} else {
2497 		state->list = cachep->random_seq;
2498 		state->count = count;
2499 		state->pos = 0;
2500 		state->rand = rand;
2501 		ret = true;
2502 	}
2503 	return ret;
2504 }
2505 
2506 /* Get the next entry on the list and randomize it using a random shift */
2507 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2508 {
2509 	return (state->list[state->pos++] + state->rand) % state->count;
2510 }
2511 
2512 /* Swap two freelist entries */
2513 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2514 {
2515 	swap(((freelist_idx_t *)page->freelist)[a],
2516 		((freelist_idx_t *)page->freelist)[b]);
2517 }
2518 
2519 /*
2520  * Shuffle the freelist initialization state based on pre-computed lists.
2521  * return true if the list was successfully shuffled, false otherwise.
2522  */
2523 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2524 {
2525 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2526 	union freelist_init_state state;
2527 	bool precomputed;
2528 
2529 	if (count < 2)
2530 		return false;
2531 
2532 	precomputed = freelist_state_initialize(&state, cachep, count);
2533 
2534 	/* Take a random entry as the objfreelist */
2535 	if (OBJFREELIST_SLAB(cachep)) {
2536 		if (!precomputed)
2537 			objfreelist = count - 1;
2538 		else
2539 			objfreelist = next_random_slot(&state);
2540 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2541 						obj_offset(cachep);
2542 		count--;
2543 	}
2544 
2545 	/*
2546 	 * On early boot, generate the list dynamically.
2547 	 * Later use a pre-computed list for speed.
2548 	 */
2549 	if (!precomputed) {
2550 		for (i = 0; i < count; i++)
2551 			set_free_obj(page, i, i);
2552 
2553 		/* Fisher-Yates shuffle */
2554 		for (i = count - 1; i > 0; i--) {
2555 			rand = prandom_u32_state(&state.rnd_state);
2556 			rand %= (i + 1);
2557 			swap_free_obj(page, i, rand);
2558 		}
2559 	} else {
2560 		for (i = 0; i < count; i++)
2561 			set_free_obj(page, i, next_random_slot(&state));
2562 	}
2563 
2564 	if (OBJFREELIST_SLAB(cachep))
2565 		set_free_obj(page, cachep->num - 1, objfreelist);
2566 
2567 	return true;
2568 }
2569 #else
2570 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2571 				struct page *page)
2572 {
2573 	return false;
2574 }
2575 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2576 
2577 static void cache_init_objs(struct kmem_cache *cachep,
2578 			    struct page *page)
2579 {
2580 	int i;
2581 	void *objp;
2582 	bool shuffled;
2583 
2584 	cache_init_objs_debug(cachep, page);
2585 
2586 	/* Try to randomize the freelist if enabled */
2587 	shuffled = shuffle_freelist(cachep, page);
2588 
2589 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2590 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2591 						obj_offset(cachep);
2592 	}
2593 
2594 	for (i = 0; i < cachep->num; i++) {
2595 		objp = index_to_obj(cachep, page, i);
2596 		kasan_init_slab_obj(cachep, objp);
2597 
2598 		/* constructor could break poison info */
2599 		if (DEBUG == 0 && cachep->ctor) {
2600 			kasan_unpoison_object_data(cachep, objp);
2601 			cachep->ctor(objp);
2602 			kasan_poison_object_data(cachep, objp);
2603 		}
2604 
2605 		if (!shuffled)
2606 			set_free_obj(page, i, i);
2607 	}
2608 }
2609 
2610 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2611 {
2612 	void *objp;
2613 
2614 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2615 	page->active++;
2616 
2617 #if DEBUG
2618 	if (cachep->flags & SLAB_STORE_USER)
2619 		set_store_user_dirty(cachep);
2620 #endif
2621 
2622 	return objp;
2623 }
2624 
2625 static void slab_put_obj(struct kmem_cache *cachep,
2626 			struct page *page, void *objp)
2627 {
2628 	unsigned int objnr = obj_to_index(cachep, page, objp);
2629 #if DEBUG
2630 	unsigned int i;
2631 
2632 	/* Verify double free bug */
2633 	for (i = page->active; i < cachep->num; i++) {
2634 		if (get_free_obj(page, i) == objnr) {
2635 			pr_err("slab: double free detected in cache '%s', objp %p\n",
2636 			       cachep->name, objp);
2637 			BUG();
2638 		}
2639 	}
2640 #endif
2641 	page->active--;
2642 	if (!page->freelist)
2643 		page->freelist = objp + obj_offset(cachep);
2644 
2645 	set_free_obj(page, page->active, objnr);
2646 }
2647 
2648 /*
2649  * Map pages beginning at addr to the given cache and slab. This is required
2650  * for the slab allocator to be able to lookup the cache and slab of a
2651  * virtual address for kfree, ksize, and slab debugging.
2652  */
2653 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2654 			   void *freelist)
2655 {
2656 	page->slab_cache = cache;
2657 	page->freelist = freelist;
2658 }
2659 
2660 /*
2661  * Grow (by 1) the number of slabs within a cache.  This is called by
2662  * kmem_cache_alloc() when there are no active objs left in a cache.
2663  */
2664 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2665 				gfp_t flags, int nodeid)
2666 {
2667 	void *freelist;
2668 	size_t offset;
2669 	gfp_t local_flags;
2670 	int page_node;
2671 	struct kmem_cache_node *n;
2672 	struct page *page;
2673 
2674 	/*
2675 	 * Be lazy and only check for valid flags here,  keeping it out of the
2676 	 * critical path in kmem_cache_alloc().
2677 	 */
2678 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2679 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2680 		flags &= ~GFP_SLAB_BUG_MASK;
2681 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2682 				invalid_mask, &invalid_mask, flags, &flags);
2683 		dump_stack();
2684 	}
2685 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2686 
2687 	check_irq_off();
2688 	if (gfpflags_allow_blocking(local_flags))
2689 		local_irq_enable();
2690 
2691 	/*
2692 	 * Get mem for the objs.  Attempt to allocate a physical page from
2693 	 * 'nodeid'.
2694 	 */
2695 	page = kmem_getpages(cachep, local_flags, nodeid);
2696 	if (!page)
2697 		goto failed;
2698 
2699 	page_node = page_to_nid(page);
2700 	n = get_node(cachep, page_node);
2701 
2702 	/* Get colour for the slab, and cal the next value. */
2703 	n->colour_next++;
2704 	if (n->colour_next >= cachep->colour)
2705 		n->colour_next = 0;
2706 
2707 	offset = n->colour_next;
2708 	if (offset >= cachep->colour)
2709 		offset = 0;
2710 
2711 	offset *= cachep->colour_off;
2712 
2713 	/* Get slab management. */
2714 	freelist = alloc_slabmgmt(cachep, page, offset,
2715 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2716 	if (OFF_SLAB(cachep) && !freelist)
2717 		goto opps1;
2718 
2719 	slab_map_pages(cachep, page, freelist);
2720 
2721 	kasan_poison_slab(page);
2722 	cache_init_objs(cachep, page);
2723 
2724 	if (gfpflags_allow_blocking(local_flags))
2725 		local_irq_disable();
2726 
2727 	return page;
2728 
2729 opps1:
2730 	kmem_freepages(cachep, page);
2731 failed:
2732 	if (gfpflags_allow_blocking(local_flags))
2733 		local_irq_disable();
2734 	return NULL;
2735 }
2736 
2737 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2738 {
2739 	struct kmem_cache_node *n;
2740 	void *list = NULL;
2741 
2742 	check_irq_off();
2743 
2744 	if (!page)
2745 		return;
2746 
2747 	INIT_LIST_HEAD(&page->lru);
2748 	n = get_node(cachep, page_to_nid(page));
2749 
2750 	spin_lock(&n->list_lock);
2751 	if (!page->active)
2752 		list_add_tail(&page->lru, &(n->slabs_free));
2753 	else
2754 		fixup_slab_list(cachep, n, page, &list);
2755 	STATS_INC_GROWN(cachep);
2756 	n->free_objects += cachep->num - page->active;
2757 	spin_unlock(&n->list_lock);
2758 
2759 	fixup_objfreelist_debug(cachep, &list);
2760 }
2761 
2762 #if DEBUG
2763 
2764 /*
2765  * Perform extra freeing checks:
2766  * - detect bad pointers.
2767  * - POISON/RED_ZONE checking
2768  */
2769 static void kfree_debugcheck(const void *objp)
2770 {
2771 	if (!virt_addr_valid(objp)) {
2772 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2773 		       (unsigned long)objp);
2774 		BUG();
2775 	}
2776 }
2777 
2778 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2779 {
2780 	unsigned long long redzone1, redzone2;
2781 
2782 	redzone1 = *dbg_redzone1(cache, obj);
2783 	redzone2 = *dbg_redzone2(cache, obj);
2784 
2785 	/*
2786 	 * Redzone is ok.
2787 	 */
2788 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2789 		return;
2790 
2791 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2792 		slab_error(cache, "double free detected");
2793 	else
2794 		slab_error(cache, "memory outside object was overwritten");
2795 
2796 	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2797 	       obj, redzone1, redzone2);
2798 }
2799 
2800 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2801 				   unsigned long caller)
2802 {
2803 	unsigned int objnr;
2804 	struct page *page;
2805 
2806 	BUG_ON(virt_to_cache(objp) != cachep);
2807 
2808 	objp -= obj_offset(cachep);
2809 	kfree_debugcheck(objp);
2810 	page = virt_to_head_page(objp);
2811 
2812 	if (cachep->flags & SLAB_RED_ZONE) {
2813 		verify_redzone_free(cachep, objp);
2814 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2815 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2816 	}
2817 	if (cachep->flags & SLAB_STORE_USER) {
2818 		set_store_user_dirty(cachep);
2819 		*dbg_userword(cachep, objp) = (void *)caller;
2820 	}
2821 
2822 	objnr = obj_to_index(cachep, page, objp);
2823 
2824 	BUG_ON(objnr >= cachep->num);
2825 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2826 
2827 	if (cachep->flags & SLAB_POISON) {
2828 		poison_obj(cachep, objp, POISON_FREE);
2829 		slab_kernel_map(cachep, objp, 0, caller);
2830 	}
2831 	return objp;
2832 }
2833 
2834 #else
2835 #define kfree_debugcheck(x) do { } while(0)
2836 #define cache_free_debugcheck(x,objp,z) (objp)
2837 #endif
2838 
2839 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2840 						void **list)
2841 {
2842 #if DEBUG
2843 	void *next = *list;
2844 	void *objp;
2845 
2846 	while (next) {
2847 		objp = next - obj_offset(cachep);
2848 		next = *(void **)next;
2849 		poison_obj(cachep, objp, POISON_FREE);
2850 	}
2851 #endif
2852 }
2853 
2854 static inline void fixup_slab_list(struct kmem_cache *cachep,
2855 				struct kmem_cache_node *n, struct page *page,
2856 				void **list)
2857 {
2858 	/* move slabp to correct slabp list: */
2859 	list_del(&page->lru);
2860 	if (page->active == cachep->num) {
2861 		list_add(&page->lru, &n->slabs_full);
2862 		if (OBJFREELIST_SLAB(cachep)) {
2863 #if DEBUG
2864 			/* Poisoning will be done without holding the lock */
2865 			if (cachep->flags & SLAB_POISON) {
2866 				void **objp = page->freelist;
2867 
2868 				*objp = *list;
2869 				*list = objp;
2870 			}
2871 #endif
2872 			page->freelist = NULL;
2873 		}
2874 	} else
2875 		list_add(&page->lru, &n->slabs_partial);
2876 }
2877 
2878 /* Try to find non-pfmemalloc slab if needed */
2879 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2880 					struct page *page, bool pfmemalloc)
2881 {
2882 	if (!page)
2883 		return NULL;
2884 
2885 	if (pfmemalloc)
2886 		return page;
2887 
2888 	if (!PageSlabPfmemalloc(page))
2889 		return page;
2890 
2891 	/* No need to keep pfmemalloc slab if we have enough free objects */
2892 	if (n->free_objects > n->free_limit) {
2893 		ClearPageSlabPfmemalloc(page);
2894 		return page;
2895 	}
2896 
2897 	/* Move pfmemalloc slab to the end of list to speed up next search */
2898 	list_del(&page->lru);
2899 	if (!page->active)
2900 		list_add_tail(&page->lru, &n->slabs_free);
2901 	else
2902 		list_add_tail(&page->lru, &n->slabs_partial);
2903 
2904 	list_for_each_entry(page, &n->slabs_partial, lru) {
2905 		if (!PageSlabPfmemalloc(page))
2906 			return page;
2907 	}
2908 
2909 	list_for_each_entry(page, &n->slabs_free, lru) {
2910 		if (!PageSlabPfmemalloc(page))
2911 			return page;
2912 	}
2913 
2914 	return NULL;
2915 }
2916 
2917 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2918 {
2919 	struct page *page;
2920 
2921 	page = list_first_entry_or_null(&n->slabs_partial,
2922 			struct page, lru);
2923 	if (!page) {
2924 		n->free_touched = 1;
2925 		page = list_first_entry_or_null(&n->slabs_free,
2926 				struct page, lru);
2927 	}
2928 
2929 	if (sk_memalloc_socks())
2930 		return get_valid_first_slab(n, page, pfmemalloc);
2931 
2932 	return page;
2933 }
2934 
2935 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2936 				struct kmem_cache_node *n, gfp_t flags)
2937 {
2938 	struct page *page;
2939 	void *obj;
2940 	void *list = NULL;
2941 
2942 	if (!gfp_pfmemalloc_allowed(flags))
2943 		return NULL;
2944 
2945 	spin_lock(&n->list_lock);
2946 	page = get_first_slab(n, true);
2947 	if (!page) {
2948 		spin_unlock(&n->list_lock);
2949 		return NULL;
2950 	}
2951 
2952 	obj = slab_get_obj(cachep, page);
2953 	n->free_objects--;
2954 
2955 	fixup_slab_list(cachep, n, page, &list);
2956 
2957 	spin_unlock(&n->list_lock);
2958 	fixup_objfreelist_debug(cachep, &list);
2959 
2960 	return obj;
2961 }
2962 
2963 /*
2964  * Slab list should be fixed up by fixup_slab_list() for existing slab
2965  * or cache_grow_end() for new slab
2966  */
2967 static __always_inline int alloc_block(struct kmem_cache *cachep,
2968 		struct array_cache *ac, struct page *page, int batchcount)
2969 {
2970 	/*
2971 	 * There must be at least one object available for
2972 	 * allocation.
2973 	 */
2974 	BUG_ON(page->active >= cachep->num);
2975 
2976 	while (page->active < cachep->num && batchcount--) {
2977 		STATS_INC_ALLOCED(cachep);
2978 		STATS_INC_ACTIVE(cachep);
2979 		STATS_SET_HIGH(cachep);
2980 
2981 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2982 	}
2983 
2984 	return batchcount;
2985 }
2986 
2987 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2988 {
2989 	int batchcount;
2990 	struct kmem_cache_node *n;
2991 	struct array_cache *ac, *shared;
2992 	int node;
2993 	void *list = NULL;
2994 	struct page *page;
2995 
2996 	check_irq_off();
2997 	node = numa_mem_id();
2998 
2999 	ac = cpu_cache_get(cachep);
3000 	batchcount = ac->batchcount;
3001 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3002 		/*
3003 		 * If there was little recent activity on this cache, then
3004 		 * perform only a partial refill.  Otherwise we could generate
3005 		 * refill bouncing.
3006 		 */
3007 		batchcount = BATCHREFILL_LIMIT;
3008 	}
3009 	n = get_node(cachep, node);
3010 
3011 	BUG_ON(ac->avail > 0 || !n);
3012 	shared = READ_ONCE(n->shared);
3013 	if (!n->free_objects && (!shared || !shared->avail))
3014 		goto direct_grow;
3015 
3016 	spin_lock(&n->list_lock);
3017 	shared = READ_ONCE(n->shared);
3018 
3019 	/* See if we can refill from the shared array */
3020 	if (shared && transfer_objects(ac, shared, batchcount)) {
3021 		shared->touched = 1;
3022 		goto alloc_done;
3023 	}
3024 
3025 	while (batchcount > 0) {
3026 		/* Get slab alloc is to come from. */
3027 		page = get_first_slab(n, false);
3028 		if (!page)
3029 			goto must_grow;
3030 
3031 		check_spinlock_acquired(cachep);
3032 
3033 		batchcount = alloc_block(cachep, ac, page, batchcount);
3034 		fixup_slab_list(cachep, n, page, &list);
3035 	}
3036 
3037 must_grow:
3038 	n->free_objects -= ac->avail;
3039 alloc_done:
3040 	spin_unlock(&n->list_lock);
3041 	fixup_objfreelist_debug(cachep, &list);
3042 
3043 direct_grow:
3044 	if (unlikely(!ac->avail)) {
3045 		/* Check if we can use obj in pfmemalloc slab */
3046 		if (sk_memalloc_socks()) {
3047 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3048 
3049 			if (obj)
3050 				return obj;
3051 		}
3052 
3053 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3054 
3055 		/*
3056 		 * cache_grow_begin() can reenable interrupts,
3057 		 * then ac could change.
3058 		 */
3059 		ac = cpu_cache_get(cachep);
3060 		if (!ac->avail && page)
3061 			alloc_block(cachep, ac, page, batchcount);
3062 		cache_grow_end(cachep, page);
3063 
3064 		if (!ac->avail)
3065 			return NULL;
3066 	}
3067 	ac->touched = 1;
3068 
3069 	return ac->entry[--ac->avail];
3070 }
3071 
3072 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3073 						gfp_t flags)
3074 {
3075 	might_sleep_if(gfpflags_allow_blocking(flags));
3076 }
3077 
3078 #if DEBUG
3079 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3080 				gfp_t flags, void *objp, unsigned long caller)
3081 {
3082 	if (!objp)
3083 		return objp;
3084 	if (cachep->flags & SLAB_POISON) {
3085 		check_poison_obj(cachep, objp);
3086 		slab_kernel_map(cachep, objp, 1, 0);
3087 		poison_obj(cachep, objp, POISON_INUSE);
3088 	}
3089 	if (cachep->flags & SLAB_STORE_USER)
3090 		*dbg_userword(cachep, objp) = (void *)caller;
3091 
3092 	if (cachep->flags & SLAB_RED_ZONE) {
3093 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3094 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3095 			slab_error(cachep, "double free, or memory outside object was overwritten");
3096 			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3097 			       objp, *dbg_redzone1(cachep, objp),
3098 			       *dbg_redzone2(cachep, objp));
3099 		}
3100 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3101 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3102 	}
3103 
3104 	objp += obj_offset(cachep);
3105 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3106 		cachep->ctor(objp);
3107 	if (ARCH_SLAB_MINALIGN &&
3108 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3109 		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3110 		       objp, (int)ARCH_SLAB_MINALIGN);
3111 	}
3112 	return objp;
3113 }
3114 #else
3115 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3116 #endif
3117 
3118 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3119 {
3120 	void *objp;
3121 	struct array_cache *ac;
3122 
3123 	check_irq_off();
3124 
3125 	ac = cpu_cache_get(cachep);
3126 	if (likely(ac->avail)) {
3127 		ac->touched = 1;
3128 		objp = ac->entry[--ac->avail];
3129 
3130 		STATS_INC_ALLOCHIT(cachep);
3131 		goto out;
3132 	}
3133 
3134 	STATS_INC_ALLOCMISS(cachep);
3135 	objp = cache_alloc_refill(cachep, flags);
3136 	/*
3137 	 * the 'ac' may be updated by cache_alloc_refill(),
3138 	 * and kmemleak_erase() requires its correct value.
3139 	 */
3140 	ac = cpu_cache_get(cachep);
3141 
3142 out:
3143 	/*
3144 	 * To avoid a false negative, if an object that is in one of the
3145 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3146 	 * treat the array pointers as a reference to the object.
3147 	 */
3148 	if (objp)
3149 		kmemleak_erase(&ac->entry[ac->avail]);
3150 	return objp;
3151 }
3152 
3153 #ifdef CONFIG_NUMA
3154 /*
3155  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3156  *
3157  * If we are in_interrupt, then process context, including cpusets and
3158  * mempolicy, may not apply and should not be used for allocation policy.
3159  */
3160 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3161 {
3162 	int nid_alloc, nid_here;
3163 
3164 	if (in_interrupt() || (flags & __GFP_THISNODE))
3165 		return NULL;
3166 	nid_alloc = nid_here = numa_mem_id();
3167 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3168 		nid_alloc = cpuset_slab_spread_node();
3169 	else if (current->mempolicy)
3170 		nid_alloc = mempolicy_slab_node();
3171 	if (nid_alloc != nid_here)
3172 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3173 	return NULL;
3174 }
3175 
3176 /*
3177  * Fallback function if there was no memory available and no objects on a
3178  * certain node and fall back is permitted. First we scan all the
3179  * available node for available objects. If that fails then we
3180  * perform an allocation without specifying a node. This allows the page
3181  * allocator to do its reclaim / fallback magic. We then insert the
3182  * slab into the proper nodelist and then allocate from it.
3183  */
3184 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3185 {
3186 	struct zonelist *zonelist;
3187 	struct zoneref *z;
3188 	struct zone *zone;
3189 	enum zone_type high_zoneidx = gfp_zone(flags);
3190 	void *obj = NULL;
3191 	struct page *page;
3192 	int nid;
3193 	unsigned int cpuset_mems_cookie;
3194 
3195 	if (flags & __GFP_THISNODE)
3196 		return NULL;
3197 
3198 retry_cpuset:
3199 	cpuset_mems_cookie = read_mems_allowed_begin();
3200 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3201 
3202 retry:
3203 	/*
3204 	 * Look through allowed nodes for objects available
3205 	 * from existing per node queues.
3206 	 */
3207 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3208 		nid = zone_to_nid(zone);
3209 
3210 		if (cpuset_zone_allowed(zone, flags) &&
3211 			get_node(cache, nid) &&
3212 			get_node(cache, nid)->free_objects) {
3213 				obj = ____cache_alloc_node(cache,
3214 					gfp_exact_node(flags), nid);
3215 				if (obj)
3216 					break;
3217 		}
3218 	}
3219 
3220 	if (!obj) {
3221 		/*
3222 		 * This allocation will be performed within the constraints
3223 		 * of the current cpuset / memory policy requirements.
3224 		 * We may trigger various forms of reclaim on the allowed
3225 		 * set and go into memory reserves if necessary.
3226 		 */
3227 		page = cache_grow_begin(cache, flags, numa_mem_id());
3228 		cache_grow_end(cache, page);
3229 		if (page) {
3230 			nid = page_to_nid(page);
3231 			obj = ____cache_alloc_node(cache,
3232 				gfp_exact_node(flags), nid);
3233 
3234 			/*
3235 			 * Another processor may allocate the objects in
3236 			 * the slab since we are not holding any locks.
3237 			 */
3238 			if (!obj)
3239 				goto retry;
3240 		}
3241 	}
3242 
3243 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3244 		goto retry_cpuset;
3245 	return obj;
3246 }
3247 
3248 /*
3249  * A interface to enable slab creation on nodeid
3250  */
3251 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3252 				int nodeid)
3253 {
3254 	struct page *page;
3255 	struct kmem_cache_node *n;
3256 	void *obj = NULL;
3257 	void *list = NULL;
3258 
3259 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3260 	n = get_node(cachep, nodeid);
3261 	BUG_ON(!n);
3262 
3263 	check_irq_off();
3264 	spin_lock(&n->list_lock);
3265 	page = get_first_slab(n, false);
3266 	if (!page)
3267 		goto must_grow;
3268 
3269 	check_spinlock_acquired_node(cachep, nodeid);
3270 
3271 	STATS_INC_NODEALLOCS(cachep);
3272 	STATS_INC_ACTIVE(cachep);
3273 	STATS_SET_HIGH(cachep);
3274 
3275 	BUG_ON(page->active == cachep->num);
3276 
3277 	obj = slab_get_obj(cachep, page);
3278 	n->free_objects--;
3279 
3280 	fixup_slab_list(cachep, n, page, &list);
3281 
3282 	spin_unlock(&n->list_lock);
3283 	fixup_objfreelist_debug(cachep, &list);
3284 	return obj;
3285 
3286 must_grow:
3287 	spin_unlock(&n->list_lock);
3288 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3289 	if (page) {
3290 		/* This slab isn't counted yet so don't update free_objects */
3291 		obj = slab_get_obj(cachep, page);
3292 	}
3293 	cache_grow_end(cachep, page);
3294 
3295 	return obj ? obj : fallback_alloc(cachep, flags);
3296 }
3297 
3298 static __always_inline void *
3299 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3300 		   unsigned long caller)
3301 {
3302 	unsigned long save_flags;
3303 	void *ptr;
3304 	int slab_node = numa_mem_id();
3305 
3306 	flags &= gfp_allowed_mask;
3307 	cachep = slab_pre_alloc_hook(cachep, flags);
3308 	if (unlikely(!cachep))
3309 		return NULL;
3310 
3311 	cache_alloc_debugcheck_before(cachep, flags);
3312 	local_irq_save(save_flags);
3313 
3314 	if (nodeid == NUMA_NO_NODE)
3315 		nodeid = slab_node;
3316 
3317 	if (unlikely(!get_node(cachep, nodeid))) {
3318 		/* Node not bootstrapped yet */
3319 		ptr = fallback_alloc(cachep, flags);
3320 		goto out;
3321 	}
3322 
3323 	if (nodeid == slab_node) {
3324 		/*
3325 		 * Use the locally cached objects if possible.
3326 		 * However ____cache_alloc does not allow fallback
3327 		 * to other nodes. It may fail while we still have
3328 		 * objects on other nodes available.
3329 		 */
3330 		ptr = ____cache_alloc(cachep, flags);
3331 		if (ptr)
3332 			goto out;
3333 	}
3334 	/* ___cache_alloc_node can fall back to other nodes */
3335 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3336   out:
3337 	local_irq_restore(save_flags);
3338 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3339 
3340 	if (unlikely(flags & __GFP_ZERO) && ptr)
3341 		memset(ptr, 0, cachep->object_size);
3342 
3343 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3344 	return ptr;
3345 }
3346 
3347 static __always_inline void *
3348 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3349 {
3350 	void *objp;
3351 
3352 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3353 		objp = alternate_node_alloc(cache, flags);
3354 		if (objp)
3355 			goto out;
3356 	}
3357 	objp = ____cache_alloc(cache, flags);
3358 
3359 	/*
3360 	 * We may just have run out of memory on the local node.
3361 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3362 	 */
3363 	if (!objp)
3364 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3365 
3366   out:
3367 	return objp;
3368 }
3369 #else
3370 
3371 static __always_inline void *
3372 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3373 {
3374 	return ____cache_alloc(cachep, flags);
3375 }
3376 
3377 #endif /* CONFIG_NUMA */
3378 
3379 static __always_inline void *
3380 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3381 {
3382 	unsigned long save_flags;
3383 	void *objp;
3384 
3385 	flags &= gfp_allowed_mask;
3386 	cachep = slab_pre_alloc_hook(cachep, flags);
3387 	if (unlikely(!cachep))
3388 		return NULL;
3389 
3390 	cache_alloc_debugcheck_before(cachep, flags);
3391 	local_irq_save(save_flags);
3392 	objp = __do_cache_alloc(cachep, flags);
3393 	local_irq_restore(save_flags);
3394 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3395 	prefetchw(objp);
3396 
3397 	if (unlikely(flags & __GFP_ZERO) && objp)
3398 		memset(objp, 0, cachep->object_size);
3399 
3400 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3401 	return objp;
3402 }
3403 
3404 /*
3405  * Caller needs to acquire correct kmem_cache_node's list_lock
3406  * @list: List of detached free slabs should be freed by caller
3407  */
3408 static void free_block(struct kmem_cache *cachep, void **objpp,
3409 			int nr_objects, int node, struct list_head *list)
3410 {
3411 	int i;
3412 	struct kmem_cache_node *n = get_node(cachep, node);
3413 	struct page *page;
3414 
3415 	n->free_objects += nr_objects;
3416 
3417 	for (i = 0; i < nr_objects; i++) {
3418 		void *objp;
3419 		struct page *page;
3420 
3421 		objp = objpp[i];
3422 
3423 		page = virt_to_head_page(objp);
3424 		list_del(&page->lru);
3425 		check_spinlock_acquired_node(cachep, node);
3426 		slab_put_obj(cachep, page, objp);
3427 		STATS_DEC_ACTIVE(cachep);
3428 
3429 		/* fixup slab chains */
3430 		if (page->active == 0)
3431 			list_add(&page->lru, &n->slabs_free);
3432 		else {
3433 			/* Unconditionally move a slab to the end of the
3434 			 * partial list on free - maximum time for the
3435 			 * other objects to be freed, too.
3436 			 */
3437 			list_add_tail(&page->lru, &n->slabs_partial);
3438 		}
3439 	}
3440 
3441 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3442 		n->free_objects -= cachep->num;
3443 
3444 		page = list_last_entry(&n->slabs_free, struct page, lru);
3445 		list_move(&page->lru, list);
3446 	}
3447 }
3448 
3449 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3450 {
3451 	int batchcount;
3452 	struct kmem_cache_node *n;
3453 	int node = numa_mem_id();
3454 	LIST_HEAD(list);
3455 
3456 	batchcount = ac->batchcount;
3457 
3458 	check_irq_off();
3459 	n = get_node(cachep, node);
3460 	spin_lock(&n->list_lock);
3461 	if (n->shared) {
3462 		struct array_cache *shared_array = n->shared;
3463 		int max = shared_array->limit - shared_array->avail;
3464 		if (max) {
3465 			if (batchcount > max)
3466 				batchcount = max;
3467 			memcpy(&(shared_array->entry[shared_array->avail]),
3468 			       ac->entry, sizeof(void *) * batchcount);
3469 			shared_array->avail += batchcount;
3470 			goto free_done;
3471 		}
3472 	}
3473 
3474 	free_block(cachep, ac->entry, batchcount, node, &list);
3475 free_done:
3476 #if STATS
3477 	{
3478 		int i = 0;
3479 		struct page *page;
3480 
3481 		list_for_each_entry(page, &n->slabs_free, lru) {
3482 			BUG_ON(page->active);
3483 
3484 			i++;
3485 		}
3486 		STATS_SET_FREEABLE(cachep, i);
3487 	}
3488 #endif
3489 	spin_unlock(&n->list_lock);
3490 	slabs_destroy(cachep, &list);
3491 	ac->avail -= batchcount;
3492 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3493 }
3494 
3495 /*
3496  * Release an obj back to its cache. If the obj has a constructed state, it must
3497  * be in this state _before_ it is released.  Called with disabled ints.
3498  */
3499 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3500 				unsigned long caller)
3501 {
3502 	/* Put the object into the quarantine, don't touch it for now. */
3503 	if (kasan_slab_free(cachep, objp))
3504 		return;
3505 
3506 	___cache_free(cachep, objp, caller);
3507 }
3508 
3509 void ___cache_free(struct kmem_cache *cachep, void *objp,
3510 		unsigned long caller)
3511 {
3512 	struct array_cache *ac = cpu_cache_get(cachep);
3513 
3514 	check_irq_off();
3515 	kmemleak_free_recursive(objp, cachep->flags);
3516 	objp = cache_free_debugcheck(cachep, objp, caller);
3517 
3518 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3519 
3520 	/*
3521 	 * Skip calling cache_free_alien() when the platform is not numa.
3522 	 * This will avoid cache misses that happen while accessing slabp (which
3523 	 * is per page memory  reference) to get nodeid. Instead use a global
3524 	 * variable to skip the call, which is mostly likely to be present in
3525 	 * the cache.
3526 	 */
3527 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3528 		return;
3529 
3530 	if (ac->avail < ac->limit) {
3531 		STATS_INC_FREEHIT(cachep);
3532 	} else {
3533 		STATS_INC_FREEMISS(cachep);
3534 		cache_flusharray(cachep, ac);
3535 	}
3536 
3537 	if (sk_memalloc_socks()) {
3538 		struct page *page = virt_to_head_page(objp);
3539 
3540 		if (unlikely(PageSlabPfmemalloc(page))) {
3541 			cache_free_pfmemalloc(cachep, page, objp);
3542 			return;
3543 		}
3544 	}
3545 
3546 	ac->entry[ac->avail++] = objp;
3547 }
3548 
3549 /**
3550  * kmem_cache_alloc - Allocate an object
3551  * @cachep: The cache to allocate from.
3552  * @flags: See kmalloc().
3553  *
3554  * Allocate an object from this cache.  The flags are only relevant
3555  * if the cache has no available objects.
3556  */
3557 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3558 {
3559 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3560 
3561 	kasan_slab_alloc(cachep, ret, flags);
3562 	trace_kmem_cache_alloc(_RET_IP_, ret,
3563 			       cachep->object_size, cachep->size, flags);
3564 
3565 	return ret;
3566 }
3567 EXPORT_SYMBOL(kmem_cache_alloc);
3568 
3569 static __always_inline void
3570 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3571 				  size_t size, void **p, unsigned long caller)
3572 {
3573 	size_t i;
3574 
3575 	for (i = 0; i < size; i++)
3576 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3577 }
3578 
3579 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3580 			  void **p)
3581 {
3582 	size_t i;
3583 
3584 	s = slab_pre_alloc_hook(s, flags);
3585 	if (!s)
3586 		return 0;
3587 
3588 	cache_alloc_debugcheck_before(s, flags);
3589 
3590 	local_irq_disable();
3591 	for (i = 0; i < size; i++) {
3592 		void *objp = __do_cache_alloc(s, flags);
3593 
3594 		if (unlikely(!objp))
3595 			goto error;
3596 		p[i] = objp;
3597 	}
3598 	local_irq_enable();
3599 
3600 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3601 
3602 	/* Clear memory outside IRQ disabled section */
3603 	if (unlikely(flags & __GFP_ZERO))
3604 		for (i = 0; i < size; i++)
3605 			memset(p[i], 0, s->object_size);
3606 
3607 	slab_post_alloc_hook(s, flags, size, p);
3608 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3609 	return size;
3610 error:
3611 	local_irq_enable();
3612 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3613 	slab_post_alloc_hook(s, flags, i, p);
3614 	__kmem_cache_free_bulk(s, i, p);
3615 	return 0;
3616 }
3617 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3618 
3619 #ifdef CONFIG_TRACING
3620 void *
3621 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3622 {
3623 	void *ret;
3624 
3625 	ret = slab_alloc(cachep, flags, _RET_IP_);
3626 
3627 	kasan_kmalloc(cachep, ret, size, flags);
3628 	trace_kmalloc(_RET_IP_, ret,
3629 		      size, cachep->size, flags);
3630 	return ret;
3631 }
3632 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3633 #endif
3634 
3635 #ifdef CONFIG_NUMA
3636 /**
3637  * kmem_cache_alloc_node - Allocate an object on the specified node
3638  * @cachep: The cache to allocate from.
3639  * @flags: See kmalloc().
3640  * @nodeid: node number of the target node.
3641  *
3642  * Identical to kmem_cache_alloc but it will allocate memory on the given
3643  * node, which can improve the performance for cpu bound structures.
3644  *
3645  * Fallback to other node is possible if __GFP_THISNODE is not set.
3646  */
3647 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3648 {
3649 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3650 
3651 	kasan_slab_alloc(cachep, ret, flags);
3652 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3653 				    cachep->object_size, cachep->size,
3654 				    flags, nodeid);
3655 
3656 	return ret;
3657 }
3658 EXPORT_SYMBOL(kmem_cache_alloc_node);
3659 
3660 #ifdef CONFIG_TRACING
3661 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3662 				  gfp_t flags,
3663 				  int nodeid,
3664 				  size_t size)
3665 {
3666 	void *ret;
3667 
3668 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3669 
3670 	kasan_kmalloc(cachep, ret, size, flags);
3671 	trace_kmalloc_node(_RET_IP_, ret,
3672 			   size, cachep->size,
3673 			   flags, nodeid);
3674 	return ret;
3675 }
3676 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3677 #endif
3678 
3679 static __always_inline void *
3680 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3681 {
3682 	struct kmem_cache *cachep;
3683 	void *ret;
3684 
3685 	cachep = kmalloc_slab(size, flags);
3686 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3687 		return cachep;
3688 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3689 	kasan_kmalloc(cachep, ret, size, flags);
3690 
3691 	return ret;
3692 }
3693 
3694 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3695 {
3696 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3697 }
3698 EXPORT_SYMBOL(__kmalloc_node);
3699 
3700 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3701 		int node, unsigned long caller)
3702 {
3703 	return __do_kmalloc_node(size, flags, node, caller);
3704 }
3705 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3706 #endif /* CONFIG_NUMA */
3707 
3708 /**
3709  * __do_kmalloc - allocate memory
3710  * @size: how many bytes of memory are required.
3711  * @flags: the type of memory to allocate (see kmalloc).
3712  * @caller: function caller for debug tracking of the caller
3713  */
3714 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3715 					  unsigned long caller)
3716 {
3717 	struct kmem_cache *cachep;
3718 	void *ret;
3719 
3720 	cachep = kmalloc_slab(size, flags);
3721 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3722 		return cachep;
3723 	ret = slab_alloc(cachep, flags, caller);
3724 
3725 	kasan_kmalloc(cachep, ret, size, flags);
3726 	trace_kmalloc(caller, ret,
3727 		      size, cachep->size, flags);
3728 
3729 	return ret;
3730 }
3731 
3732 void *__kmalloc(size_t size, gfp_t flags)
3733 {
3734 	return __do_kmalloc(size, flags, _RET_IP_);
3735 }
3736 EXPORT_SYMBOL(__kmalloc);
3737 
3738 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3739 {
3740 	return __do_kmalloc(size, flags, caller);
3741 }
3742 EXPORT_SYMBOL(__kmalloc_track_caller);
3743 
3744 /**
3745  * kmem_cache_free - Deallocate an object
3746  * @cachep: The cache the allocation was from.
3747  * @objp: The previously allocated object.
3748  *
3749  * Free an object which was previously allocated from this
3750  * cache.
3751  */
3752 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3753 {
3754 	unsigned long flags;
3755 	cachep = cache_from_obj(cachep, objp);
3756 	if (!cachep)
3757 		return;
3758 
3759 	local_irq_save(flags);
3760 	debug_check_no_locks_freed(objp, cachep->object_size);
3761 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3762 		debug_check_no_obj_freed(objp, cachep->object_size);
3763 	__cache_free(cachep, objp, _RET_IP_);
3764 	local_irq_restore(flags);
3765 
3766 	trace_kmem_cache_free(_RET_IP_, objp);
3767 }
3768 EXPORT_SYMBOL(kmem_cache_free);
3769 
3770 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3771 {
3772 	struct kmem_cache *s;
3773 	size_t i;
3774 
3775 	local_irq_disable();
3776 	for (i = 0; i < size; i++) {
3777 		void *objp = p[i];
3778 
3779 		if (!orig_s) /* called via kfree_bulk */
3780 			s = virt_to_cache(objp);
3781 		else
3782 			s = cache_from_obj(orig_s, objp);
3783 
3784 		debug_check_no_locks_freed(objp, s->object_size);
3785 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3786 			debug_check_no_obj_freed(objp, s->object_size);
3787 
3788 		__cache_free(s, objp, _RET_IP_);
3789 	}
3790 	local_irq_enable();
3791 
3792 	/* FIXME: add tracing */
3793 }
3794 EXPORT_SYMBOL(kmem_cache_free_bulk);
3795 
3796 /**
3797  * kfree - free previously allocated memory
3798  * @objp: pointer returned by kmalloc.
3799  *
3800  * If @objp is NULL, no operation is performed.
3801  *
3802  * Don't free memory not originally allocated by kmalloc()
3803  * or you will run into trouble.
3804  */
3805 void kfree(const void *objp)
3806 {
3807 	struct kmem_cache *c;
3808 	unsigned long flags;
3809 
3810 	trace_kfree(_RET_IP_, objp);
3811 
3812 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3813 		return;
3814 	local_irq_save(flags);
3815 	kfree_debugcheck(objp);
3816 	c = virt_to_cache(objp);
3817 	debug_check_no_locks_freed(objp, c->object_size);
3818 
3819 	debug_check_no_obj_freed(objp, c->object_size);
3820 	__cache_free(c, (void *)objp, _RET_IP_);
3821 	local_irq_restore(flags);
3822 }
3823 EXPORT_SYMBOL(kfree);
3824 
3825 /*
3826  * This initializes kmem_cache_node or resizes various caches for all nodes.
3827  */
3828 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3829 {
3830 	int ret;
3831 	int node;
3832 	struct kmem_cache_node *n;
3833 
3834 	for_each_online_node(node) {
3835 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3836 		if (ret)
3837 			goto fail;
3838 
3839 	}
3840 
3841 	return 0;
3842 
3843 fail:
3844 	if (!cachep->list.next) {
3845 		/* Cache is not active yet. Roll back what we did */
3846 		node--;
3847 		while (node >= 0) {
3848 			n = get_node(cachep, node);
3849 			if (n) {
3850 				kfree(n->shared);
3851 				free_alien_cache(n->alien);
3852 				kfree(n);
3853 				cachep->node[node] = NULL;
3854 			}
3855 			node--;
3856 		}
3857 	}
3858 	return -ENOMEM;
3859 }
3860 
3861 /* Always called with the slab_mutex held */
3862 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3863 				int batchcount, int shared, gfp_t gfp)
3864 {
3865 	struct array_cache __percpu *cpu_cache, *prev;
3866 	int cpu;
3867 
3868 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3869 	if (!cpu_cache)
3870 		return -ENOMEM;
3871 
3872 	prev = cachep->cpu_cache;
3873 	cachep->cpu_cache = cpu_cache;
3874 	kick_all_cpus_sync();
3875 
3876 	check_irq_on();
3877 	cachep->batchcount = batchcount;
3878 	cachep->limit = limit;
3879 	cachep->shared = shared;
3880 
3881 	if (!prev)
3882 		goto setup_node;
3883 
3884 	for_each_online_cpu(cpu) {
3885 		LIST_HEAD(list);
3886 		int node;
3887 		struct kmem_cache_node *n;
3888 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3889 
3890 		node = cpu_to_mem(cpu);
3891 		n = get_node(cachep, node);
3892 		spin_lock_irq(&n->list_lock);
3893 		free_block(cachep, ac->entry, ac->avail, node, &list);
3894 		spin_unlock_irq(&n->list_lock);
3895 		slabs_destroy(cachep, &list);
3896 	}
3897 	free_percpu(prev);
3898 
3899 setup_node:
3900 	return setup_kmem_cache_nodes(cachep, gfp);
3901 }
3902 
3903 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3904 				int batchcount, int shared, gfp_t gfp)
3905 {
3906 	int ret;
3907 	struct kmem_cache *c;
3908 
3909 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3910 
3911 	if (slab_state < FULL)
3912 		return ret;
3913 
3914 	if ((ret < 0) || !is_root_cache(cachep))
3915 		return ret;
3916 
3917 	lockdep_assert_held(&slab_mutex);
3918 	for_each_memcg_cache(c, cachep) {
3919 		/* return value determined by the root cache only */
3920 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3921 	}
3922 
3923 	return ret;
3924 }
3925 
3926 /* Called with slab_mutex held always */
3927 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3928 {
3929 	int err;
3930 	int limit = 0;
3931 	int shared = 0;
3932 	int batchcount = 0;
3933 
3934 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3935 	if (err)
3936 		goto end;
3937 
3938 	if (!is_root_cache(cachep)) {
3939 		struct kmem_cache *root = memcg_root_cache(cachep);
3940 		limit = root->limit;
3941 		shared = root->shared;
3942 		batchcount = root->batchcount;
3943 	}
3944 
3945 	if (limit && shared && batchcount)
3946 		goto skip_setup;
3947 	/*
3948 	 * The head array serves three purposes:
3949 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3950 	 * - reduce the number of spinlock operations.
3951 	 * - reduce the number of linked list operations on the slab and
3952 	 *   bufctl chains: array operations are cheaper.
3953 	 * The numbers are guessed, we should auto-tune as described by
3954 	 * Bonwick.
3955 	 */
3956 	if (cachep->size > 131072)
3957 		limit = 1;
3958 	else if (cachep->size > PAGE_SIZE)
3959 		limit = 8;
3960 	else if (cachep->size > 1024)
3961 		limit = 24;
3962 	else if (cachep->size > 256)
3963 		limit = 54;
3964 	else
3965 		limit = 120;
3966 
3967 	/*
3968 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3969 	 * allocation behaviour: Most allocs on one cpu, most free operations
3970 	 * on another cpu. For these cases, an efficient object passing between
3971 	 * cpus is necessary. This is provided by a shared array. The array
3972 	 * replaces Bonwick's magazine layer.
3973 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3974 	 * to a larger limit. Thus disabled by default.
3975 	 */
3976 	shared = 0;
3977 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3978 		shared = 8;
3979 
3980 #if DEBUG
3981 	/*
3982 	 * With debugging enabled, large batchcount lead to excessively long
3983 	 * periods with disabled local interrupts. Limit the batchcount
3984 	 */
3985 	if (limit > 32)
3986 		limit = 32;
3987 #endif
3988 	batchcount = (limit + 1) / 2;
3989 skip_setup:
3990 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3991 end:
3992 	if (err)
3993 		pr_err("enable_cpucache failed for %s, error %d\n",
3994 		       cachep->name, -err);
3995 	return err;
3996 }
3997 
3998 /*
3999  * Drain an array if it contains any elements taking the node lock only if
4000  * necessary. Note that the node listlock also protects the array_cache
4001  * if drain_array() is used on the shared array.
4002  */
4003 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4004 			 struct array_cache *ac, int node)
4005 {
4006 	LIST_HEAD(list);
4007 
4008 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
4009 	check_mutex_acquired();
4010 
4011 	if (!ac || !ac->avail)
4012 		return;
4013 
4014 	if (ac->touched) {
4015 		ac->touched = 0;
4016 		return;
4017 	}
4018 
4019 	spin_lock_irq(&n->list_lock);
4020 	drain_array_locked(cachep, ac, node, false, &list);
4021 	spin_unlock_irq(&n->list_lock);
4022 
4023 	slabs_destroy(cachep, &list);
4024 }
4025 
4026 /**
4027  * cache_reap - Reclaim memory from caches.
4028  * @w: work descriptor
4029  *
4030  * Called from workqueue/eventd every few seconds.
4031  * Purpose:
4032  * - clear the per-cpu caches for this CPU.
4033  * - return freeable pages to the main free memory pool.
4034  *
4035  * If we cannot acquire the cache chain mutex then just give up - we'll try
4036  * again on the next iteration.
4037  */
4038 static void cache_reap(struct work_struct *w)
4039 {
4040 	struct kmem_cache *searchp;
4041 	struct kmem_cache_node *n;
4042 	int node = numa_mem_id();
4043 	struct delayed_work *work = to_delayed_work(w);
4044 
4045 	if (!mutex_trylock(&slab_mutex))
4046 		/* Give up. Setup the next iteration. */
4047 		goto out;
4048 
4049 	list_for_each_entry(searchp, &slab_caches, list) {
4050 		check_irq_on();
4051 
4052 		/*
4053 		 * We only take the node lock if absolutely necessary and we
4054 		 * have established with reasonable certainty that
4055 		 * we can do some work if the lock was obtained.
4056 		 */
4057 		n = get_node(searchp, node);
4058 
4059 		reap_alien(searchp, n);
4060 
4061 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4062 
4063 		/*
4064 		 * These are racy checks but it does not matter
4065 		 * if we skip one check or scan twice.
4066 		 */
4067 		if (time_after(n->next_reap, jiffies))
4068 			goto next;
4069 
4070 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4071 
4072 		drain_array(searchp, n, n->shared, node);
4073 
4074 		if (n->free_touched)
4075 			n->free_touched = 0;
4076 		else {
4077 			int freed;
4078 
4079 			freed = drain_freelist(searchp, n, (n->free_limit +
4080 				5 * searchp->num - 1) / (5 * searchp->num));
4081 			STATS_ADD_REAPED(searchp, freed);
4082 		}
4083 next:
4084 		cond_resched();
4085 	}
4086 	check_irq_on();
4087 	mutex_unlock(&slab_mutex);
4088 	next_reap_node();
4089 out:
4090 	/* Set up the next iteration */
4091 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4092 }
4093 
4094 #ifdef CONFIG_SLABINFO
4095 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4096 {
4097 	struct page *page;
4098 	unsigned long active_objs;
4099 	unsigned long num_objs;
4100 	unsigned long active_slabs = 0;
4101 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4102 	const char *name;
4103 	char *error = NULL;
4104 	int node;
4105 	struct kmem_cache_node *n;
4106 
4107 	active_objs = 0;
4108 	num_slabs = 0;
4109 	for_each_kmem_cache_node(cachep, node, n) {
4110 
4111 		check_irq_on();
4112 		spin_lock_irq(&n->list_lock);
4113 
4114 		list_for_each_entry(page, &n->slabs_full, lru) {
4115 			if (page->active != cachep->num && !error)
4116 				error = "slabs_full accounting error";
4117 			active_objs += cachep->num;
4118 			active_slabs++;
4119 		}
4120 		list_for_each_entry(page, &n->slabs_partial, lru) {
4121 			if (page->active == cachep->num && !error)
4122 				error = "slabs_partial accounting error";
4123 			if (!page->active && !error)
4124 				error = "slabs_partial accounting error";
4125 			active_objs += page->active;
4126 			active_slabs++;
4127 		}
4128 		list_for_each_entry(page, &n->slabs_free, lru) {
4129 			if (page->active && !error)
4130 				error = "slabs_free accounting error";
4131 			num_slabs++;
4132 		}
4133 		free_objects += n->free_objects;
4134 		if (n->shared)
4135 			shared_avail += n->shared->avail;
4136 
4137 		spin_unlock_irq(&n->list_lock);
4138 	}
4139 	num_slabs += active_slabs;
4140 	num_objs = num_slabs * cachep->num;
4141 	if (num_objs - active_objs != free_objects && !error)
4142 		error = "free_objects accounting error";
4143 
4144 	name = cachep->name;
4145 	if (error)
4146 		pr_err("slab: cache %s error: %s\n", name, error);
4147 
4148 	sinfo->active_objs = active_objs;
4149 	sinfo->num_objs = num_objs;
4150 	sinfo->active_slabs = active_slabs;
4151 	sinfo->num_slabs = num_slabs;
4152 	sinfo->shared_avail = shared_avail;
4153 	sinfo->limit = cachep->limit;
4154 	sinfo->batchcount = cachep->batchcount;
4155 	sinfo->shared = cachep->shared;
4156 	sinfo->objects_per_slab = cachep->num;
4157 	sinfo->cache_order = cachep->gfporder;
4158 }
4159 
4160 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4161 {
4162 #if STATS
4163 	{			/* node stats */
4164 		unsigned long high = cachep->high_mark;
4165 		unsigned long allocs = cachep->num_allocations;
4166 		unsigned long grown = cachep->grown;
4167 		unsigned long reaped = cachep->reaped;
4168 		unsigned long errors = cachep->errors;
4169 		unsigned long max_freeable = cachep->max_freeable;
4170 		unsigned long node_allocs = cachep->node_allocs;
4171 		unsigned long node_frees = cachep->node_frees;
4172 		unsigned long overflows = cachep->node_overflow;
4173 
4174 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4175 			   allocs, high, grown,
4176 			   reaped, errors, max_freeable, node_allocs,
4177 			   node_frees, overflows);
4178 	}
4179 	/* cpu stats */
4180 	{
4181 		unsigned long allochit = atomic_read(&cachep->allochit);
4182 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4183 		unsigned long freehit = atomic_read(&cachep->freehit);
4184 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4185 
4186 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4187 			   allochit, allocmiss, freehit, freemiss);
4188 	}
4189 #endif
4190 }
4191 
4192 #define MAX_SLABINFO_WRITE 128
4193 /**
4194  * slabinfo_write - Tuning for the slab allocator
4195  * @file: unused
4196  * @buffer: user buffer
4197  * @count: data length
4198  * @ppos: unused
4199  */
4200 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4201 		       size_t count, loff_t *ppos)
4202 {
4203 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4204 	int limit, batchcount, shared, res;
4205 	struct kmem_cache *cachep;
4206 
4207 	if (count > MAX_SLABINFO_WRITE)
4208 		return -EINVAL;
4209 	if (copy_from_user(&kbuf, buffer, count))
4210 		return -EFAULT;
4211 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4212 
4213 	tmp = strchr(kbuf, ' ');
4214 	if (!tmp)
4215 		return -EINVAL;
4216 	*tmp = '\0';
4217 	tmp++;
4218 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4219 		return -EINVAL;
4220 
4221 	/* Find the cache in the chain of caches. */
4222 	mutex_lock(&slab_mutex);
4223 	res = -EINVAL;
4224 	list_for_each_entry(cachep, &slab_caches, list) {
4225 		if (!strcmp(cachep->name, kbuf)) {
4226 			if (limit < 1 || batchcount < 1 ||
4227 					batchcount > limit || shared < 0) {
4228 				res = 0;
4229 			} else {
4230 				res = do_tune_cpucache(cachep, limit,
4231 						       batchcount, shared,
4232 						       GFP_KERNEL);
4233 			}
4234 			break;
4235 		}
4236 	}
4237 	mutex_unlock(&slab_mutex);
4238 	if (res >= 0)
4239 		res = count;
4240 	return res;
4241 }
4242 
4243 #ifdef CONFIG_DEBUG_SLAB_LEAK
4244 
4245 static inline int add_caller(unsigned long *n, unsigned long v)
4246 {
4247 	unsigned long *p;
4248 	int l;
4249 	if (!v)
4250 		return 1;
4251 	l = n[1];
4252 	p = n + 2;
4253 	while (l) {
4254 		int i = l/2;
4255 		unsigned long *q = p + 2 * i;
4256 		if (*q == v) {
4257 			q[1]++;
4258 			return 1;
4259 		}
4260 		if (*q > v) {
4261 			l = i;
4262 		} else {
4263 			p = q + 2;
4264 			l -= i + 1;
4265 		}
4266 	}
4267 	if (++n[1] == n[0])
4268 		return 0;
4269 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4270 	p[0] = v;
4271 	p[1] = 1;
4272 	return 1;
4273 }
4274 
4275 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4276 						struct page *page)
4277 {
4278 	void *p;
4279 	int i, j;
4280 	unsigned long v;
4281 
4282 	if (n[0] == n[1])
4283 		return;
4284 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4285 		bool active = true;
4286 
4287 		for (j = page->active; j < c->num; j++) {
4288 			if (get_free_obj(page, j) == i) {
4289 				active = false;
4290 				break;
4291 			}
4292 		}
4293 
4294 		if (!active)
4295 			continue;
4296 
4297 		/*
4298 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4299 		 * mapping is established when actual object allocation and
4300 		 * we could mistakenly access the unmapped object in the cpu
4301 		 * cache.
4302 		 */
4303 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4304 			continue;
4305 
4306 		if (!add_caller(n, v))
4307 			return;
4308 	}
4309 }
4310 
4311 static void show_symbol(struct seq_file *m, unsigned long address)
4312 {
4313 #ifdef CONFIG_KALLSYMS
4314 	unsigned long offset, size;
4315 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4316 
4317 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4318 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4319 		if (modname[0])
4320 			seq_printf(m, " [%s]", modname);
4321 		return;
4322 	}
4323 #endif
4324 	seq_printf(m, "%p", (void *)address);
4325 }
4326 
4327 static int leaks_show(struct seq_file *m, void *p)
4328 {
4329 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4330 	struct page *page;
4331 	struct kmem_cache_node *n;
4332 	const char *name;
4333 	unsigned long *x = m->private;
4334 	int node;
4335 	int i;
4336 
4337 	if (!(cachep->flags & SLAB_STORE_USER))
4338 		return 0;
4339 	if (!(cachep->flags & SLAB_RED_ZONE))
4340 		return 0;
4341 
4342 	/*
4343 	 * Set store_user_clean and start to grab stored user information
4344 	 * for all objects on this cache. If some alloc/free requests comes
4345 	 * during the processing, information would be wrong so restart
4346 	 * whole processing.
4347 	 */
4348 	do {
4349 		set_store_user_clean(cachep);
4350 		drain_cpu_caches(cachep);
4351 
4352 		x[1] = 0;
4353 
4354 		for_each_kmem_cache_node(cachep, node, n) {
4355 
4356 			check_irq_on();
4357 			spin_lock_irq(&n->list_lock);
4358 
4359 			list_for_each_entry(page, &n->slabs_full, lru)
4360 				handle_slab(x, cachep, page);
4361 			list_for_each_entry(page, &n->slabs_partial, lru)
4362 				handle_slab(x, cachep, page);
4363 			spin_unlock_irq(&n->list_lock);
4364 		}
4365 	} while (!is_store_user_clean(cachep));
4366 
4367 	name = cachep->name;
4368 	if (x[0] == x[1]) {
4369 		/* Increase the buffer size */
4370 		mutex_unlock(&slab_mutex);
4371 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4372 		if (!m->private) {
4373 			/* Too bad, we are really out */
4374 			m->private = x;
4375 			mutex_lock(&slab_mutex);
4376 			return -ENOMEM;
4377 		}
4378 		*(unsigned long *)m->private = x[0] * 2;
4379 		kfree(x);
4380 		mutex_lock(&slab_mutex);
4381 		/* Now make sure this entry will be retried */
4382 		m->count = m->size;
4383 		return 0;
4384 	}
4385 	for (i = 0; i < x[1]; i++) {
4386 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4387 		show_symbol(m, x[2*i+2]);
4388 		seq_putc(m, '\n');
4389 	}
4390 
4391 	return 0;
4392 }
4393 
4394 static const struct seq_operations slabstats_op = {
4395 	.start = slab_start,
4396 	.next = slab_next,
4397 	.stop = slab_stop,
4398 	.show = leaks_show,
4399 };
4400 
4401 static int slabstats_open(struct inode *inode, struct file *file)
4402 {
4403 	unsigned long *n;
4404 
4405 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4406 	if (!n)
4407 		return -ENOMEM;
4408 
4409 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4410 
4411 	return 0;
4412 }
4413 
4414 static const struct file_operations proc_slabstats_operations = {
4415 	.open		= slabstats_open,
4416 	.read		= seq_read,
4417 	.llseek		= seq_lseek,
4418 	.release	= seq_release_private,
4419 };
4420 #endif
4421 
4422 static int __init slab_proc_init(void)
4423 {
4424 #ifdef CONFIG_DEBUG_SLAB_LEAK
4425 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4426 #endif
4427 	return 0;
4428 }
4429 module_init(slab_proc_init);
4430 #endif
4431 
4432 #ifdef CONFIG_HARDENED_USERCOPY
4433 /*
4434  * Rejects objects that are incorrectly sized.
4435  *
4436  * Returns NULL if check passes, otherwise const char * to name of cache
4437  * to indicate an error.
4438  */
4439 const char *__check_heap_object(const void *ptr, unsigned long n,
4440 				struct page *page)
4441 {
4442 	struct kmem_cache *cachep;
4443 	unsigned int objnr;
4444 	unsigned long offset;
4445 
4446 	/* Find and validate object. */
4447 	cachep = page->slab_cache;
4448 	objnr = obj_to_index(cachep, page, (void *)ptr);
4449 	BUG_ON(objnr >= cachep->num);
4450 
4451 	/* Find offset within object. */
4452 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4453 
4454 	/* Allow address range falling entirely within object size. */
4455 	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4456 		return NULL;
4457 
4458 	return cachep->name;
4459 }
4460 #endif /* CONFIG_HARDENED_USERCOPY */
4461 
4462 /**
4463  * ksize - get the actual amount of memory allocated for a given object
4464  * @objp: Pointer to the object
4465  *
4466  * kmalloc may internally round up allocations and return more memory
4467  * than requested. ksize() can be used to determine the actual amount of
4468  * memory allocated. The caller may use this additional memory, even though
4469  * a smaller amount of memory was initially specified with the kmalloc call.
4470  * The caller must guarantee that objp points to a valid object previously
4471  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4472  * must not be freed during the duration of the call.
4473  */
4474 size_t ksize(const void *objp)
4475 {
4476 	size_t size;
4477 
4478 	BUG_ON(!objp);
4479 	if (unlikely(objp == ZERO_SIZE_PTR))
4480 		return 0;
4481 
4482 	size = virt_to_cache(objp)->object_size;
4483 	/* We assume that ksize callers could use the whole allocated area,
4484 	 * so we need to unpoison this area.
4485 	 */
4486 	kasan_unpoison_shadow(objp, size);
4487 
4488 	return size;
4489 }
4490 EXPORT_SYMBOL(ksize);
4491