1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'slab_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 120 #include <net/sock.h> 121 122 #include <asm/cacheflush.h> 123 #include <asm/tlbflush.h> 124 #include <asm/page.h> 125 126 #include <trace/events/kmem.h> 127 128 #include "internal.h" 129 130 #include "slab.h" 131 132 /* 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 134 * 0 for faster, smaller code (especially in the critical paths). 135 * 136 * STATS - 1 to collect stats for /proc/slabinfo. 137 * 0 for faster, smaller code (especially in the critical paths). 138 * 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 140 */ 141 142 #ifdef CONFIG_DEBUG_SLAB 143 #define DEBUG 1 144 #define STATS 1 145 #define FORCED_DEBUG 1 146 #else 147 #define DEBUG 0 148 #define STATS 0 149 #define FORCED_DEBUG 0 150 #endif 151 152 /* Shouldn't this be in a header file somewhere? */ 153 #define BYTES_PER_WORD sizeof(void *) 154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 155 156 #ifndef ARCH_KMALLOC_FLAGS 157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 158 #endif 159 160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 162 163 #if FREELIST_BYTE_INDEX 164 typedef unsigned char freelist_idx_t; 165 #else 166 typedef unsigned short freelist_idx_t; 167 #endif 168 169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 170 171 /* 172 * struct array_cache 173 * 174 * Purpose: 175 * - LIFO ordering, to hand out cache-warm objects from _alloc 176 * - reduce the number of linked list operations 177 * - reduce spinlock operations 178 * 179 * The limit is stored in the per-cpu structure to reduce the data cache 180 * footprint. 181 * 182 */ 183 struct array_cache { 184 unsigned int avail; 185 unsigned int limit; 186 unsigned int batchcount; 187 unsigned int touched; 188 void *entry[]; /* 189 * Must have this definition in here for the proper 190 * alignment of array_cache. Also simplifies accessing 191 * the entries. 192 */ 193 }; 194 195 struct alien_cache { 196 spinlock_t lock; 197 struct array_cache ac; 198 }; 199 200 /* 201 * Need this for bootstrapping a per node allocator. 202 */ 203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 205 #define CACHE_CACHE 0 206 #define SIZE_NODE (MAX_NUMNODES) 207 208 static int drain_freelist(struct kmem_cache *cache, 209 struct kmem_cache_node *n, int tofree); 210 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 211 int node, struct list_head *list); 212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 214 static void cache_reap(struct work_struct *unused); 215 216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 217 void **list); 218 static inline void fixup_slab_list(struct kmem_cache *cachep, 219 struct kmem_cache_node *n, struct page *page, 220 void **list); 221 static int slab_early_init = 1; 222 223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 224 225 static void kmem_cache_node_init(struct kmem_cache_node *parent) 226 { 227 INIT_LIST_HEAD(&parent->slabs_full); 228 INIT_LIST_HEAD(&parent->slabs_partial); 229 INIT_LIST_HEAD(&parent->slabs_free); 230 parent->shared = NULL; 231 parent->alien = NULL; 232 parent->colour_next = 0; 233 spin_lock_init(&parent->list_lock); 234 parent->free_objects = 0; 235 parent->free_touched = 0; 236 } 237 238 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 239 do { \ 240 INIT_LIST_HEAD(listp); \ 241 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 242 } while (0) 243 244 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 245 do { \ 246 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 247 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 248 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 249 } while (0) 250 251 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL) 252 #define CFLGS_OFF_SLAB (0x80000000UL) 253 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 254 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 255 256 #define BATCHREFILL_LIMIT 16 257 /* 258 * Optimization question: fewer reaps means less probability for unnessary 259 * cpucache drain/refill cycles. 260 * 261 * OTOH the cpuarrays can contain lots of objects, 262 * which could lock up otherwise freeable slabs. 263 */ 264 #define REAPTIMEOUT_AC (2*HZ) 265 #define REAPTIMEOUT_NODE (4*HZ) 266 267 #if STATS 268 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 269 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 270 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 271 #define STATS_INC_GROWN(x) ((x)->grown++) 272 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 273 #define STATS_SET_HIGH(x) \ 274 do { \ 275 if ((x)->num_active > (x)->high_mark) \ 276 (x)->high_mark = (x)->num_active; \ 277 } while (0) 278 #define STATS_INC_ERR(x) ((x)->errors++) 279 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 280 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 281 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 282 #define STATS_SET_FREEABLE(x, i) \ 283 do { \ 284 if ((x)->max_freeable < i) \ 285 (x)->max_freeable = i; \ 286 } while (0) 287 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 288 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 289 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 290 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 291 #else 292 #define STATS_INC_ACTIVE(x) do { } while (0) 293 #define STATS_DEC_ACTIVE(x) do { } while (0) 294 #define STATS_INC_ALLOCED(x) do { } while (0) 295 #define STATS_INC_GROWN(x) do { } while (0) 296 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 297 #define STATS_SET_HIGH(x) do { } while (0) 298 #define STATS_INC_ERR(x) do { } while (0) 299 #define STATS_INC_NODEALLOCS(x) do { } while (0) 300 #define STATS_INC_NODEFREES(x) do { } while (0) 301 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 302 #define STATS_SET_FREEABLE(x, i) do { } while (0) 303 #define STATS_INC_ALLOCHIT(x) do { } while (0) 304 #define STATS_INC_ALLOCMISS(x) do { } while (0) 305 #define STATS_INC_FREEHIT(x) do { } while (0) 306 #define STATS_INC_FREEMISS(x) do { } while (0) 307 #endif 308 309 #if DEBUG 310 311 /* 312 * memory layout of objects: 313 * 0 : objp 314 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 315 * the end of an object is aligned with the end of the real 316 * allocation. Catches writes behind the end of the allocation. 317 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 318 * redzone word. 319 * cachep->obj_offset: The real object. 320 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 321 * cachep->size - 1* BYTES_PER_WORD: last caller address 322 * [BYTES_PER_WORD long] 323 */ 324 static int obj_offset(struct kmem_cache *cachep) 325 { 326 return cachep->obj_offset; 327 } 328 329 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 330 { 331 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 332 return (unsigned long long*) (objp + obj_offset(cachep) - 333 sizeof(unsigned long long)); 334 } 335 336 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 337 { 338 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 339 if (cachep->flags & SLAB_STORE_USER) 340 return (unsigned long long *)(objp + cachep->size - 341 sizeof(unsigned long long) - 342 REDZONE_ALIGN); 343 return (unsigned long long *) (objp + cachep->size - 344 sizeof(unsigned long long)); 345 } 346 347 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 348 { 349 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 350 return (void **)(objp + cachep->size - BYTES_PER_WORD); 351 } 352 353 #else 354 355 #define obj_offset(x) 0 356 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 357 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 358 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 359 360 #endif 361 362 #ifdef CONFIG_DEBUG_SLAB_LEAK 363 364 static inline bool is_store_user_clean(struct kmem_cache *cachep) 365 { 366 return atomic_read(&cachep->store_user_clean) == 1; 367 } 368 369 static inline void set_store_user_clean(struct kmem_cache *cachep) 370 { 371 atomic_set(&cachep->store_user_clean, 1); 372 } 373 374 static inline void set_store_user_dirty(struct kmem_cache *cachep) 375 { 376 if (is_store_user_clean(cachep)) 377 atomic_set(&cachep->store_user_clean, 0); 378 } 379 380 #else 381 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 382 383 #endif 384 385 /* 386 * Do not go above this order unless 0 objects fit into the slab or 387 * overridden on the command line. 388 */ 389 #define SLAB_MAX_ORDER_HI 1 390 #define SLAB_MAX_ORDER_LO 0 391 static int slab_max_order = SLAB_MAX_ORDER_LO; 392 static bool slab_max_order_set __initdata; 393 394 static inline struct kmem_cache *virt_to_cache(const void *obj) 395 { 396 struct page *page = virt_to_head_page(obj); 397 return page->slab_cache; 398 } 399 400 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 401 unsigned int idx) 402 { 403 return page->s_mem + cache->size * idx; 404 } 405 406 /* 407 * We want to avoid an expensive divide : (offset / cache->size) 408 * Using the fact that size is a constant for a particular cache, 409 * we can replace (offset / cache->size) by 410 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 411 */ 412 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 413 const struct page *page, void *obj) 414 { 415 u32 offset = (obj - page->s_mem); 416 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 417 } 418 419 #define BOOT_CPUCACHE_ENTRIES 1 420 /* internal cache of cache description objs */ 421 static struct kmem_cache kmem_cache_boot = { 422 .batchcount = 1, 423 .limit = BOOT_CPUCACHE_ENTRIES, 424 .shared = 1, 425 .size = sizeof(struct kmem_cache), 426 .name = "kmem_cache", 427 }; 428 429 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 430 431 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 432 { 433 return this_cpu_ptr(cachep->cpu_cache); 434 } 435 436 /* 437 * Calculate the number of objects and left-over bytes for a given buffer size. 438 */ 439 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 440 unsigned long flags, size_t *left_over) 441 { 442 unsigned int num; 443 size_t slab_size = PAGE_SIZE << gfporder; 444 445 /* 446 * The slab management structure can be either off the slab or 447 * on it. For the latter case, the memory allocated for a 448 * slab is used for: 449 * 450 * - @buffer_size bytes for each object 451 * - One freelist_idx_t for each object 452 * 453 * We don't need to consider alignment of freelist because 454 * freelist will be at the end of slab page. The objects will be 455 * at the correct alignment. 456 * 457 * If the slab management structure is off the slab, then the 458 * alignment will already be calculated into the size. Because 459 * the slabs are all pages aligned, the objects will be at the 460 * correct alignment when allocated. 461 */ 462 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 463 num = slab_size / buffer_size; 464 *left_over = slab_size % buffer_size; 465 } else { 466 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 467 *left_over = slab_size % 468 (buffer_size + sizeof(freelist_idx_t)); 469 } 470 471 return num; 472 } 473 474 #if DEBUG 475 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 476 477 static void __slab_error(const char *function, struct kmem_cache *cachep, 478 char *msg) 479 { 480 pr_err("slab error in %s(): cache `%s': %s\n", 481 function, cachep->name, msg); 482 dump_stack(); 483 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 484 } 485 #endif 486 487 /* 488 * By default on NUMA we use alien caches to stage the freeing of 489 * objects allocated from other nodes. This causes massive memory 490 * inefficiencies when using fake NUMA setup to split memory into a 491 * large number of small nodes, so it can be disabled on the command 492 * line 493 */ 494 495 static int use_alien_caches __read_mostly = 1; 496 static int __init noaliencache_setup(char *s) 497 { 498 use_alien_caches = 0; 499 return 1; 500 } 501 __setup("noaliencache", noaliencache_setup); 502 503 static int __init slab_max_order_setup(char *str) 504 { 505 get_option(&str, &slab_max_order); 506 slab_max_order = slab_max_order < 0 ? 0 : 507 min(slab_max_order, MAX_ORDER - 1); 508 slab_max_order_set = true; 509 510 return 1; 511 } 512 __setup("slab_max_order=", slab_max_order_setup); 513 514 #ifdef CONFIG_NUMA 515 /* 516 * Special reaping functions for NUMA systems called from cache_reap(). 517 * These take care of doing round robin flushing of alien caches (containing 518 * objects freed on different nodes from which they were allocated) and the 519 * flushing of remote pcps by calling drain_node_pages. 520 */ 521 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 522 523 static void init_reap_node(int cpu) 524 { 525 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 526 node_online_map); 527 } 528 529 static void next_reap_node(void) 530 { 531 int node = __this_cpu_read(slab_reap_node); 532 533 node = next_node_in(node, node_online_map); 534 __this_cpu_write(slab_reap_node, node); 535 } 536 537 #else 538 #define init_reap_node(cpu) do { } while (0) 539 #define next_reap_node(void) do { } while (0) 540 #endif 541 542 /* 543 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 544 * via the workqueue/eventd. 545 * Add the CPU number into the expiration time to minimize the possibility of 546 * the CPUs getting into lockstep and contending for the global cache chain 547 * lock. 548 */ 549 static void start_cpu_timer(int cpu) 550 { 551 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 552 553 /* 554 * When this gets called from do_initcalls via cpucache_init(), 555 * init_workqueues() has already run, so keventd will be setup 556 * at that time. 557 */ 558 if (keventd_up() && reap_work->work.func == NULL) { 559 init_reap_node(cpu); 560 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 561 schedule_delayed_work_on(cpu, reap_work, 562 __round_jiffies_relative(HZ, cpu)); 563 } 564 } 565 566 static void init_arraycache(struct array_cache *ac, int limit, int batch) 567 { 568 /* 569 * The array_cache structures contain pointers to free object. 570 * However, when such objects are allocated or transferred to another 571 * cache the pointers are not cleared and they could be counted as 572 * valid references during a kmemleak scan. Therefore, kmemleak must 573 * not scan such objects. 574 */ 575 kmemleak_no_scan(ac); 576 if (ac) { 577 ac->avail = 0; 578 ac->limit = limit; 579 ac->batchcount = batch; 580 ac->touched = 0; 581 } 582 } 583 584 static struct array_cache *alloc_arraycache(int node, int entries, 585 int batchcount, gfp_t gfp) 586 { 587 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 588 struct array_cache *ac = NULL; 589 590 ac = kmalloc_node(memsize, gfp, node); 591 init_arraycache(ac, entries, batchcount); 592 return ac; 593 } 594 595 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 596 struct page *page, void *objp) 597 { 598 struct kmem_cache_node *n; 599 int page_node; 600 LIST_HEAD(list); 601 602 page_node = page_to_nid(page); 603 n = get_node(cachep, page_node); 604 605 spin_lock(&n->list_lock); 606 free_block(cachep, &objp, 1, page_node, &list); 607 spin_unlock(&n->list_lock); 608 609 slabs_destroy(cachep, &list); 610 } 611 612 /* 613 * Transfer objects in one arraycache to another. 614 * Locking must be handled by the caller. 615 * 616 * Return the number of entries transferred. 617 */ 618 static int transfer_objects(struct array_cache *to, 619 struct array_cache *from, unsigned int max) 620 { 621 /* Figure out how many entries to transfer */ 622 int nr = min3(from->avail, max, to->limit - to->avail); 623 624 if (!nr) 625 return 0; 626 627 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 628 sizeof(void *) *nr); 629 630 from->avail -= nr; 631 to->avail += nr; 632 return nr; 633 } 634 635 #ifndef CONFIG_NUMA 636 637 #define drain_alien_cache(cachep, alien) do { } while (0) 638 #define reap_alien(cachep, n) do { } while (0) 639 640 static inline struct alien_cache **alloc_alien_cache(int node, 641 int limit, gfp_t gfp) 642 { 643 return NULL; 644 } 645 646 static inline void free_alien_cache(struct alien_cache **ac_ptr) 647 { 648 } 649 650 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 651 { 652 return 0; 653 } 654 655 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 656 gfp_t flags) 657 { 658 return NULL; 659 } 660 661 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 662 gfp_t flags, int nodeid) 663 { 664 return NULL; 665 } 666 667 static inline gfp_t gfp_exact_node(gfp_t flags) 668 { 669 return flags & ~__GFP_NOFAIL; 670 } 671 672 #else /* CONFIG_NUMA */ 673 674 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 675 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 676 677 static struct alien_cache *__alloc_alien_cache(int node, int entries, 678 int batch, gfp_t gfp) 679 { 680 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 681 struct alien_cache *alc = NULL; 682 683 alc = kmalloc_node(memsize, gfp, node); 684 init_arraycache(&alc->ac, entries, batch); 685 spin_lock_init(&alc->lock); 686 return alc; 687 } 688 689 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 690 { 691 struct alien_cache **alc_ptr; 692 size_t memsize = sizeof(void *) * nr_node_ids; 693 int i; 694 695 if (limit > 1) 696 limit = 12; 697 alc_ptr = kzalloc_node(memsize, gfp, node); 698 if (!alc_ptr) 699 return NULL; 700 701 for_each_node(i) { 702 if (i == node || !node_online(i)) 703 continue; 704 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 705 if (!alc_ptr[i]) { 706 for (i--; i >= 0; i--) 707 kfree(alc_ptr[i]); 708 kfree(alc_ptr); 709 return NULL; 710 } 711 } 712 return alc_ptr; 713 } 714 715 static void free_alien_cache(struct alien_cache **alc_ptr) 716 { 717 int i; 718 719 if (!alc_ptr) 720 return; 721 for_each_node(i) 722 kfree(alc_ptr[i]); 723 kfree(alc_ptr); 724 } 725 726 static void __drain_alien_cache(struct kmem_cache *cachep, 727 struct array_cache *ac, int node, 728 struct list_head *list) 729 { 730 struct kmem_cache_node *n = get_node(cachep, node); 731 732 if (ac->avail) { 733 spin_lock(&n->list_lock); 734 /* 735 * Stuff objects into the remote nodes shared array first. 736 * That way we could avoid the overhead of putting the objects 737 * into the free lists and getting them back later. 738 */ 739 if (n->shared) 740 transfer_objects(n->shared, ac, ac->limit); 741 742 free_block(cachep, ac->entry, ac->avail, node, list); 743 ac->avail = 0; 744 spin_unlock(&n->list_lock); 745 } 746 } 747 748 /* 749 * Called from cache_reap() to regularly drain alien caches round robin. 750 */ 751 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 752 { 753 int node = __this_cpu_read(slab_reap_node); 754 755 if (n->alien) { 756 struct alien_cache *alc = n->alien[node]; 757 struct array_cache *ac; 758 759 if (alc) { 760 ac = &alc->ac; 761 if (ac->avail && spin_trylock_irq(&alc->lock)) { 762 LIST_HEAD(list); 763 764 __drain_alien_cache(cachep, ac, node, &list); 765 spin_unlock_irq(&alc->lock); 766 slabs_destroy(cachep, &list); 767 } 768 } 769 } 770 } 771 772 static void drain_alien_cache(struct kmem_cache *cachep, 773 struct alien_cache **alien) 774 { 775 int i = 0; 776 struct alien_cache *alc; 777 struct array_cache *ac; 778 unsigned long flags; 779 780 for_each_online_node(i) { 781 alc = alien[i]; 782 if (alc) { 783 LIST_HEAD(list); 784 785 ac = &alc->ac; 786 spin_lock_irqsave(&alc->lock, flags); 787 __drain_alien_cache(cachep, ac, i, &list); 788 spin_unlock_irqrestore(&alc->lock, flags); 789 slabs_destroy(cachep, &list); 790 } 791 } 792 } 793 794 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 795 int node, int page_node) 796 { 797 struct kmem_cache_node *n; 798 struct alien_cache *alien = NULL; 799 struct array_cache *ac; 800 LIST_HEAD(list); 801 802 n = get_node(cachep, node); 803 STATS_INC_NODEFREES(cachep); 804 if (n->alien && n->alien[page_node]) { 805 alien = n->alien[page_node]; 806 ac = &alien->ac; 807 spin_lock(&alien->lock); 808 if (unlikely(ac->avail == ac->limit)) { 809 STATS_INC_ACOVERFLOW(cachep); 810 __drain_alien_cache(cachep, ac, page_node, &list); 811 } 812 ac->entry[ac->avail++] = objp; 813 spin_unlock(&alien->lock); 814 slabs_destroy(cachep, &list); 815 } else { 816 n = get_node(cachep, page_node); 817 spin_lock(&n->list_lock); 818 free_block(cachep, &objp, 1, page_node, &list); 819 spin_unlock(&n->list_lock); 820 slabs_destroy(cachep, &list); 821 } 822 return 1; 823 } 824 825 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 826 { 827 int page_node = page_to_nid(virt_to_page(objp)); 828 int node = numa_mem_id(); 829 /* 830 * Make sure we are not freeing a object from another node to the array 831 * cache on this cpu. 832 */ 833 if (likely(node == page_node)) 834 return 0; 835 836 return __cache_free_alien(cachep, objp, node, page_node); 837 } 838 839 /* 840 * Construct gfp mask to allocate from a specific node but do not reclaim or 841 * warn about failures. 842 */ 843 static inline gfp_t gfp_exact_node(gfp_t flags) 844 { 845 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 846 } 847 #endif 848 849 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 850 { 851 struct kmem_cache_node *n; 852 853 /* 854 * Set up the kmem_cache_node for cpu before we can 855 * begin anything. Make sure some other cpu on this 856 * node has not already allocated this 857 */ 858 n = get_node(cachep, node); 859 if (n) { 860 spin_lock_irq(&n->list_lock); 861 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 862 cachep->num; 863 spin_unlock_irq(&n->list_lock); 864 865 return 0; 866 } 867 868 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 869 if (!n) 870 return -ENOMEM; 871 872 kmem_cache_node_init(n); 873 n->next_reap = jiffies + REAPTIMEOUT_NODE + 874 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 875 876 n->free_limit = 877 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 878 879 /* 880 * The kmem_cache_nodes don't come and go as CPUs 881 * come and go. slab_mutex is sufficient 882 * protection here. 883 */ 884 cachep->node[node] = n; 885 886 return 0; 887 } 888 889 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 890 /* 891 * Allocates and initializes node for a node on each slab cache, used for 892 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 893 * will be allocated off-node since memory is not yet online for the new node. 894 * When hotplugging memory or a cpu, existing node are not replaced if 895 * already in use. 896 * 897 * Must hold slab_mutex. 898 */ 899 static int init_cache_node_node(int node) 900 { 901 int ret; 902 struct kmem_cache *cachep; 903 904 list_for_each_entry(cachep, &slab_caches, list) { 905 ret = init_cache_node(cachep, node, GFP_KERNEL); 906 if (ret) 907 return ret; 908 } 909 910 return 0; 911 } 912 #endif 913 914 static int setup_kmem_cache_node(struct kmem_cache *cachep, 915 int node, gfp_t gfp, bool force_change) 916 { 917 int ret = -ENOMEM; 918 struct kmem_cache_node *n; 919 struct array_cache *old_shared = NULL; 920 struct array_cache *new_shared = NULL; 921 struct alien_cache **new_alien = NULL; 922 LIST_HEAD(list); 923 924 if (use_alien_caches) { 925 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 926 if (!new_alien) 927 goto fail; 928 } 929 930 if (cachep->shared) { 931 new_shared = alloc_arraycache(node, 932 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 933 if (!new_shared) 934 goto fail; 935 } 936 937 ret = init_cache_node(cachep, node, gfp); 938 if (ret) 939 goto fail; 940 941 n = get_node(cachep, node); 942 spin_lock_irq(&n->list_lock); 943 if (n->shared && force_change) { 944 free_block(cachep, n->shared->entry, 945 n->shared->avail, node, &list); 946 n->shared->avail = 0; 947 } 948 949 if (!n->shared || force_change) { 950 old_shared = n->shared; 951 n->shared = new_shared; 952 new_shared = NULL; 953 } 954 955 if (!n->alien) { 956 n->alien = new_alien; 957 new_alien = NULL; 958 } 959 960 spin_unlock_irq(&n->list_lock); 961 slabs_destroy(cachep, &list); 962 963 /* 964 * To protect lockless access to n->shared during irq disabled context. 965 * If n->shared isn't NULL in irq disabled context, accessing to it is 966 * guaranteed to be valid until irq is re-enabled, because it will be 967 * freed after synchronize_sched(). 968 */ 969 if (force_change) 970 synchronize_sched(); 971 972 fail: 973 kfree(old_shared); 974 kfree(new_shared); 975 free_alien_cache(new_alien); 976 977 return ret; 978 } 979 980 #ifdef CONFIG_SMP 981 982 static void cpuup_canceled(long cpu) 983 { 984 struct kmem_cache *cachep; 985 struct kmem_cache_node *n = NULL; 986 int node = cpu_to_mem(cpu); 987 const struct cpumask *mask = cpumask_of_node(node); 988 989 list_for_each_entry(cachep, &slab_caches, list) { 990 struct array_cache *nc; 991 struct array_cache *shared; 992 struct alien_cache **alien; 993 LIST_HEAD(list); 994 995 n = get_node(cachep, node); 996 if (!n) 997 continue; 998 999 spin_lock_irq(&n->list_lock); 1000 1001 /* Free limit for this kmem_cache_node */ 1002 n->free_limit -= cachep->batchcount; 1003 1004 /* cpu is dead; no one can alloc from it. */ 1005 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 1006 if (nc) { 1007 free_block(cachep, nc->entry, nc->avail, node, &list); 1008 nc->avail = 0; 1009 } 1010 1011 if (!cpumask_empty(mask)) { 1012 spin_unlock_irq(&n->list_lock); 1013 goto free_slab; 1014 } 1015 1016 shared = n->shared; 1017 if (shared) { 1018 free_block(cachep, shared->entry, 1019 shared->avail, node, &list); 1020 n->shared = NULL; 1021 } 1022 1023 alien = n->alien; 1024 n->alien = NULL; 1025 1026 spin_unlock_irq(&n->list_lock); 1027 1028 kfree(shared); 1029 if (alien) { 1030 drain_alien_cache(cachep, alien); 1031 free_alien_cache(alien); 1032 } 1033 1034 free_slab: 1035 slabs_destroy(cachep, &list); 1036 } 1037 /* 1038 * In the previous loop, all the objects were freed to 1039 * the respective cache's slabs, now we can go ahead and 1040 * shrink each nodelist to its limit. 1041 */ 1042 list_for_each_entry(cachep, &slab_caches, list) { 1043 n = get_node(cachep, node); 1044 if (!n) 1045 continue; 1046 drain_freelist(cachep, n, INT_MAX); 1047 } 1048 } 1049 1050 static int cpuup_prepare(long cpu) 1051 { 1052 struct kmem_cache *cachep; 1053 int node = cpu_to_mem(cpu); 1054 int err; 1055 1056 /* 1057 * We need to do this right in the beginning since 1058 * alloc_arraycache's are going to use this list. 1059 * kmalloc_node allows us to add the slab to the right 1060 * kmem_cache_node and not this cpu's kmem_cache_node 1061 */ 1062 err = init_cache_node_node(node); 1063 if (err < 0) 1064 goto bad; 1065 1066 /* 1067 * Now we can go ahead with allocating the shared arrays and 1068 * array caches 1069 */ 1070 list_for_each_entry(cachep, &slab_caches, list) { 1071 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1072 if (err) 1073 goto bad; 1074 } 1075 1076 return 0; 1077 bad: 1078 cpuup_canceled(cpu); 1079 return -ENOMEM; 1080 } 1081 1082 int slab_prepare_cpu(unsigned int cpu) 1083 { 1084 int err; 1085 1086 mutex_lock(&slab_mutex); 1087 err = cpuup_prepare(cpu); 1088 mutex_unlock(&slab_mutex); 1089 return err; 1090 } 1091 1092 /* 1093 * This is called for a failed online attempt and for a successful 1094 * offline. 1095 * 1096 * Even if all the cpus of a node are down, we don't free the 1097 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1098 * a kmalloc allocation from another cpu for memory from the node of 1099 * the cpu going down. The list3 structure is usually allocated from 1100 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1101 */ 1102 int slab_dead_cpu(unsigned int cpu) 1103 { 1104 mutex_lock(&slab_mutex); 1105 cpuup_canceled(cpu); 1106 mutex_unlock(&slab_mutex); 1107 return 0; 1108 } 1109 #endif 1110 1111 static int slab_online_cpu(unsigned int cpu) 1112 { 1113 start_cpu_timer(cpu); 1114 return 0; 1115 } 1116 1117 static int slab_offline_cpu(unsigned int cpu) 1118 { 1119 /* 1120 * Shutdown cache reaper. Note that the slab_mutex is held so 1121 * that if cache_reap() is invoked it cannot do anything 1122 * expensive but will only modify reap_work and reschedule the 1123 * timer. 1124 */ 1125 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1126 /* Now the cache_reaper is guaranteed to be not running. */ 1127 per_cpu(slab_reap_work, cpu).work.func = NULL; 1128 return 0; 1129 } 1130 1131 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1132 /* 1133 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1134 * Returns -EBUSY if all objects cannot be drained so that the node is not 1135 * removed. 1136 * 1137 * Must hold slab_mutex. 1138 */ 1139 static int __meminit drain_cache_node_node(int node) 1140 { 1141 struct kmem_cache *cachep; 1142 int ret = 0; 1143 1144 list_for_each_entry(cachep, &slab_caches, list) { 1145 struct kmem_cache_node *n; 1146 1147 n = get_node(cachep, node); 1148 if (!n) 1149 continue; 1150 1151 drain_freelist(cachep, n, INT_MAX); 1152 1153 if (!list_empty(&n->slabs_full) || 1154 !list_empty(&n->slabs_partial)) { 1155 ret = -EBUSY; 1156 break; 1157 } 1158 } 1159 return ret; 1160 } 1161 1162 static int __meminit slab_memory_callback(struct notifier_block *self, 1163 unsigned long action, void *arg) 1164 { 1165 struct memory_notify *mnb = arg; 1166 int ret = 0; 1167 int nid; 1168 1169 nid = mnb->status_change_nid; 1170 if (nid < 0) 1171 goto out; 1172 1173 switch (action) { 1174 case MEM_GOING_ONLINE: 1175 mutex_lock(&slab_mutex); 1176 ret = init_cache_node_node(nid); 1177 mutex_unlock(&slab_mutex); 1178 break; 1179 case MEM_GOING_OFFLINE: 1180 mutex_lock(&slab_mutex); 1181 ret = drain_cache_node_node(nid); 1182 mutex_unlock(&slab_mutex); 1183 break; 1184 case MEM_ONLINE: 1185 case MEM_OFFLINE: 1186 case MEM_CANCEL_ONLINE: 1187 case MEM_CANCEL_OFFLINE: 1188 break; 1189 } 1190 out: 1191 return notifier_from_errno(ret); 1192 } 1193 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1194 1195 /* 1196 * swap the static kmem_cache_node with kmalloced memory 1197 */ 1198 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1199 int nodeid) 1200 { 1201 struct kmem_cache_node *ptr; 1202 1203 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1204 BUG_ON(!ptr); 1205 1206 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1207 /* 1208 * Do not assume that spinlocks can be initialized via memcpy: 1209 */ 1210 spin_lock_init(&ptr->list_lock); 1211 1212 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1213 cachep->node[nodeid] = ptr; 1214 } 1215 1216 /* 1217 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1218 * size of kmem_cache_node. 1219 */ 1220 static void __init set_up_node(struct kmem_cache *cachep, int index) 1221 { 1222 int node; 1223 1224 for_each_online_node(node) { 1225 cachep->node[node] = &init_kmem_cache_node[index + node]; 1226 cachep->node[node]->next_reap = jiffies + 1227 REAPTIMEOUT_NODE + 1228 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1229 } 1230 } 1231 1232 /* 1233 * Initialisation. Called after the page allocator have been initialised and 1234 * before smp_init(). 1235 */ 1236 void __init kmem_cache_init(void) 1237 { 1238 int i; 1239 1240 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1241 sizeof(struct rcu_head)); 1242 kmem_cache = &kmem_cache_boot; 1243 1244 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1245 use_alien_caches = 0; 1246 1247 for (i = 0; i < NUM_INIT_LISTS; i++) 1248 kmem_cache_node_init(&init_kmem_cache_node[i]); 1249 1250 /* 1251 * Fragmentation resistance on low memory - only use bigger 1252 * page orders on machines with more than 32MB of memory if 1253 * not overridden on the command line. 1254 */ 1255 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1256 slab_max_order = SLAB_MAX_ORDER_HI; 1257 1258 /* Bootstrap is tricky, because several objects are allocated 1259 * from caches that do not exist yet: 1260 * 1) initialize the kmem_cache cache: it contains the struct 1261 * kmem_cache structures of all caches, except kmem_cache itself: 1262 * kmem_cache is statically allocated. 1263 * Initially an __init data area is used for the head array and the 1264 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1265 * array at the end of the bootstrap. 1266 * 2) Create the first kmalloc cache. 1267 * The struct kmem_cache for the new cache is allocated normally. 1268 * An __init data area is used for the head array. 1269 * 3) Create the remaining kmalloc caches, with minimally sized 1270 * head arrays. 1271 * 4) Replace the __init data head arrays for kmem_cache and the first 1272 * kmalloc cache with kmalloc allocated arrays. 1273 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1274 * the other cache's with kmalloc allocated memory. 1275 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1276 */ 1277 1278 /* 1) create the kmem_cache */ 1279 1280 /* 1281 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1282 */ 1283 create_boot_cache(kmem_cache, "kmem_cache", 1284 offsetof(struct kmem_cache, node) + 1285 nr_node_ids * sizeof(struct kmem_cache_node *), 1286 SLAB_HWCACHE_ALIGN); 1287 list_add(&kmem_cache->list, &slab_caches); 1288 slab_state = PARTIAL; 1289 1290 /* 1291 * Initialize the caches that provide memory for the kmem_cache_node 1292 * structures first. Without this, further allocations will bug. 1293 */ 1294 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node", 1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1296 slab_state = PARTIAL_NODE; 1297 setup_kmalloc_cache_index_table(); 1298 1299 slab_early_init = 0; 1300 1301 /* 5) Replace the bootstrap kmem_cache_node */ 1302 { 1303 int nid; 1304 1305 for_each_online_node(nid) { 1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1307 1308 init_list(kmalloc_caches[INDEX_NODE], 1309 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1310 } 1311 } 1312 1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1314 } 1315 1316 void __init kmem_cache_init_late(void) 1317 { 1318 struct kmem_cache *cachep; 1319 1320 slab_state = UP; 1321 1322 /* 6) resize the head arrays to their final sizes */ 1323 mutex_lock(&slab_mutex); 1324 list_for_each_entry(cachep, &slab_caches, list) 1325 if (enable_cpucache(cachep, GFP_NOWAIT)) 1326 BUG(); 1327 mutex_unlock(&slab_mutex); 1328 1329 /* Done! */ 1330 slab_state = FULL; 1331 1332 #ifdef CONFIG_NUMA 1333 /* 1334 * Register a memory hotplug callback that initializes and frees 1335 * node. 1336 */ 1337 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1338 #endif 1339 1340 /* 1341 * The reap timers are started later, with a module init call: That part 1342 * of the kernel is not yet operational. 1343 */ 1344 } 1345 1346 static int __init cpucache_init(void) 1347 { 1348 int ret; 1349 1350 /* 1351 * Register the timers that return unneeded pages to the page allocator 1352 */ 1353 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1354 slab_online_cpu, slab_offline_cpu); 1355 WARN_ON(ret < 0); 1356 1357 /* Done! */ 1358 slab_state = FULL; 1359 return 0; 1360 } 1361 __initcall(cpucache_init); 1362 1363 static noinline void 1364 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1365 { 1366 #if DEBUG 1367 struct kmem_cache_node *n; 1368 struct page *page; 1369 unsigned long flags; 1370 int node; 1371 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1372 DEFAULT_RATELIMIT_BURST); 1373 1374 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1375 return; 1376 1377 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1378 nodeid, gfpflags, &gfpflags); 1379 pr_warn(" cache: %s, object size: %d, order: %d\n", 1380 cachep->name, cachep->size, cachep->gfporder); 1381 1382 for_each_kmem_cache_node(cachep, node, n) { 1383 unsigned long active_objs = 0, num_objs = 0, free_objects = 0; 1384 unsigned long active_slabs = 0, num_slabs = 0; 1385 1386 spin_lock_irqsave(&n->list_lock, flags); 1387 list_for_each_entry(page, &n->slabs_full, lru) { 1388 active_objs += cachep->num; 1389 active_slabs++; 1390 } 1391 list_for_each_entry(page, &n->slabs_partial, lru) { 1392 active_objs += page->active; 1393 active_slabs++; 1394 } 1395 list_for_each_entry(page, &n->slabs_free, lru) 1396 num_slabs++; 1397 1398 free_objects += n->free_objects; 1399 spin_unlock_irqrestore(&n->list_lock, flags); 1400 1401 num_slabs += active_slabs; 1402 num_objs = num_slabs * cachep->num; 1403 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", 1404 node, active_slabs, num_slabs, active_objs, num_objs, 1405 free_objects); 1406 } 1407 #endif 1408 } 1409 1410 /* 1411 * Interface to system's page allocator. No need to hold the 1412 * kmem_cache_node ->list_lock. 1413 * 1414 * If we requested dmaable memory, we will get it. Even if we 1415 * did not request dmaable memory, we might get it, but that 1416 * would be relatively rare and ignorable. 1417 */ 1418 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1419 int nodeid) 1420 { 1421 struct page *page; 1422 int nr_pages; 1423 1424 flags |= cachep->allocflags; 1425 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1426 flags |= __GFP_RECLAIMABLE; 1427 1428 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1429 if (!page) { 1430 slab_out_of_memory(cachep, flags, nodeid); 1431 return NULL; 1432 } 1433 1434 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1435 __free_pages(page, cachep->gfporder); 1436 return NULL; 1437 } 1438 1439 nr_pages = (1 << cachep->gfporder); 1440 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1441 add_zone_page_state(page_zone(page), 1442 NR_SLAB_RECLAIMABLE, nr_pages); 1443 else 1444 add_zone_page_state(page_zone(page), 1445 NR_SLAB_UNRECLAIMABLE, nr_pages); 1446 1447 __SetPageSlab(page); 1448 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1449 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1450 SetPageSlabPfmemalloc(page); 1451 1452 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1453 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1454 1455 if (cachep->ctor) 1456 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1457 else 1458 kmemcheck_mark_unallocated_pages(page, nr_pages); 1459 } 1460 1461 return page; 1462 } 1463 1464 /* 1465 * Interface to system's page release. 1466 */ 1467 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1468 { 1469 int order = cachep->gfporder; 1470 unsigned long nr_freed = (1 << order); 1471 1472 kmemcheck_free_shadow(page, order); 1473 1474 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1475 sub_zone_page_state(page_zone(page), 1476 NR_SLAB_RECLAIMABLE, nr_freed); 1477 else 1478 sub_zone_page_state(page_zone(page), 1479 NR_SLAB_UNRECLAIMABLE, nr_freed); 1480 1481 BUG_ON(!PageSlab(page)); 1482 __ClearPageSlabPfmemalloc(page); 1483 __ClearPageSlab(page); 1484 page_mapcount_reset(page); 1485 page->mapping = NULL; 1486 1487 if (current->reclaim_state) 1488 current->reclaim_state->reclaimed_slab += nr_freed; 1489 memcg_uncharge_slab(page, order, cachep); 1490 __free_pages(page, order); 1491 } 1492 1493 static void kmem_rcu_free(struct rcu_head *head) 1494 { 1495 struct kmem_cache *cachep; 1496 struct page *page; 1497 1498 page = container_of(head, struct page, rcu_head); 1499 cachep = page->slab_cache; 1500 1501 kmem_freepages(cachep, page); 1502 } 1503 1504 #if DEBUG 1505 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1506 { 1507 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1508 (cachep->size % PAGE_SIZE) == 0) 1509 return true; 1510 1511 return false; 1512 } 1513 1514 #ifdef CONFIG_DEBUG_PAGEALLOC 1515 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1516 unsigned long caller) 1517 { 1518 int size = cachep->object_size; 1519 1520 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1521 1522 if (size < 5 * sizeof(unsigned long)) 1523 return; 1524 1525 *addr++ = 0x12345678; 1526 *addr++ = caller; 1527 *addr++ = smp_processor_id(); 1528 size -= 3 * sizeof(unsigned long); 1529 { 1530 unsigned long *sptr = &caller; 1531 unsigned long svalue; 1532 1533 while (!kstack_end(sptr)) { 1534 svalue = *sptr++; 1535 if (kernel_text_address(svalue)) { 1536 *addr++ = svalue; 1537 size -= sizeof(unsigned long); 1538 if (size <= sizeof(unsigned long)) 1539 break; 1540 } 1541 } 1542 1543 } 1544 *addr++ = 0x87654321; 1545 } 1546 1547 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1548 int map, unsigned long caller) 1549 { 1550 if (!is_debug_pagealloc_cache(cachep)) 1551 return; 1552 1553 if (caller) 1554 store_stackinfo(cachep, objp, caller); 1555 1556 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1557 } 1558 1559 #else 1560 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1561 int map, unsigned long caller) {} 1562 1563 #endif 1564 1565 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1566 { 1567 int size = cachep->object_size; 1568 addr = &((char *)addr)[obj_offset(cachep)]; 1569 1570 memset(addr, val, size); 1571 *(unsigned char *)(addr + size - 1) = POISON_END; 1572 } 1573 1574 static void dump_line(char *data, int offset, int limit) 1575 { 1576 int i; 1577 unsigned char error = 0; 1578 int bad_count = 0; 1579 1580 pr_err("%03x: ", offset); 1581 for (i = 0; i < limit; i++) { 1582 if (data[offset + i] != POISON_FREE) { 1583 error = data[offset + i]; 1584 bad_count++; 1585 } 1586 } 1587 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1588 &data[offset], limit, 1); 1589 1590 if (bad_count == 1) { 1591 error ^= POISON_FREE; 1592 if (!(error & (error - 1))) { 1593 pr_err("Single bit error detected. Probably bad RAM.\n"); 1594 #ifdef CONFIG_X86 1595 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1596 #else 1597 pr_err("Run a memory test tool.\n"); 1598 #endif 1599 } 1600 } 1601 } 1602 #endif 1603 1604 #if DEBUG 1605 1606 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1607 { 1608 int i, size; 1609 char *realobj; 1610 1611 if (cachep->flags & SLAB_RED_ZONE) { 1612 pr_err("Redzone: 0x%llx/0x%llx\n", 1613 *dbg_redzone1(cachep, objp), 1614 *dbg_redzone2(cachep, objp)); 1615 } 1616 1617 if (cachep->flags & SLAB_STORE_USER) { 1618 pr_err("Last user: [<%p>](%pSR)\n", 1619 *dbg_userword(cachep, objp), 1620 *dbg_userword(cachep, objp)); 1621 } 1622 realobj = (char *)objp + obj_offset(cachep); 1623 size = cachep->object_size; 1624 for (i = 0; i < size && lines; i += 16, lines--) { 1625 int limit; 1626 limit = 16; 1627 if (i + limit > size) 1628 limit = size - i; 1629 dump_line(realobj, i, limit); 1630 } 1631 } 1632 1633 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1634 { 1635 char *realobj; 1636 int size, i; 1637 int lines = 0; 1638 1639 if (is_debug_pagealloc_cache(cachep)) 1640 return; 1641 1642 realobj = (char *)objp + obj_offset(cachep); 1643 size = cachep->object_size; 1644 1645 for (i = 0; i < size; i++) { 1646 char exp = POISON_FREE; 1647 if (i == size - 1) 1648 exp = POISON_END; 1649 if (realobj[i] != exp) { 1650 int limit; 1651 /* Mismatch ! */ 1652 /* Print header */ 1653 if (lines == 0) { 1654 pr_err("Slab corruption (%s): %s start=%p, len=%d\n", 1655 print_tainted(), cachep->name, 1656 realobj, size); 1657 print_objinfo(cachep, objp, 0); 1658 } 1659 /* Hexdump the affected line */ 1660 i = (i / 16) * 16; 1661 limit = 16; 1662 if (i + limit > size) 1663 limit = size - i; 1664 dump_line(realobj, i, limit); 1665 i += 16; 1666 lines++; 1667 /* Limit to 5 lines */ 1668 if (lines > 5) 1669 break; 1670 } 1671 } 1672 if (lines != 0) { 1673 /* Print some data about the neighboring objects, if they 1674 * exist: 1675 */ 1676 struct page *page = virt_to_head_page(objp); 1677 unsigned int objnr; 1678 1679 objnr = obj_to_index(cachep, page, objp); 1680 if (objnr) { 1681 objp = index_to_obj(cachep, page, objnr - 1); 1682 realobj = (char *)objp + obj_offset(cachep); 1683 pr_err("Prev obj: start=%p, len=%d\n", realobj, size); 1684 print_objinfo(cachep, objp, 2); 1685 } 1686 if (objnr + 1 < cachep->num) { 1687 objp = index_to_obj(cachep, page, objnr + 1); 1688 realobj = (char *)objp + obj_offset(cachep); 1689 pr_err("Next obj: start=%p, len=%d\n", realobj, size); 1690 print_objinfo(cachep, objp, 2); 1691 } 1692 } 1693 } 1694 #endif 1695 1696 #if DEBUG 1697 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1698 struct page *page) 1699 { 1700 int i; 1701 1702 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1703 poison_obj(cachep, page->freelist - obj_offset(cachep), 1704 POISON_FREE); 1705 } 1706 1707 for (i = 0; i < cachep->num; i++) { 1708 void *objp = index_to_obj(cachep, page, i); 1709 1710 if (cachep->flags & SLAB_POISON) { 1711 check_poison_obj(cachep, objp); 1712 slab_kernel_map(cachep, objp, 1, 0); 1713 } 1714 if (cachep->flags & SLAB_RED_ZONE) { 1715 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1716 slab_error(cachep, "start of a freed object was overwritten"); 1717 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1718 slab_error(cachep, "end of a freed object was overwritten"); 1719 } 1720 } 1721 } 1722 #else 1723 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1724 struct page *page) 1725 { 1726 } 1727 #endif 1728 1729 /** 1730 * slab_destroy - destroy and release all objects in a slab 1731 * @cachep: cache pointer being destroyed 1732 * @page: page pointer being destroyed 1733 * 1734 * Destroy all the objs in a slab page, and release the mem back to the system. 1735 * Before calling the slab page must have been unlinked from the cache. The 1736 * kmem_cache_node ->list_lock is not held/needed. 1737 */ 1738 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1739 { 1740 void *freelist; 1741 1742 freelist = page->freelist; 1743 slab_destroy_debugcheck(cachep, page); 1744 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 1745 call_rcu(&page->rcu_head, kmem_rcu_free); 1746 else 1747 kmem_freepages(cachep, page); 1748 1749 /* 1750 * From now on, we don't use freelist 1751 * although actual page can be freed in rcu context 1752 */ 1753 if (OFF_SLAB(cachep)) 1754 kmem_cache_free(cachep->freelist_cache, freelist); 1755 } 1756 1757 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1758 { 1759 struct page *page, *n; 1760 1761 list_for_each_entry_safe(page, n, list, lru) { 1762 list_del(&page->lru); 1763 slab_destroy(cachep, page); 1764 } 1765 } 1766 1767 /** 1768 * calculate_slab_order - calculate size (page order) of slabs 1769 * @cachep: pointer to the cache that is being created 1770 * @size: size of objects to be created in this cache. 1771 * @flags: slab allocation flags 1772 * 1773 * Also calculates the number of objects per slab. 1774 * 1775 * This could be made much more intelligent. For now, try to avoid using 1776 * high order pages for slabs. When the gfp() functions are more friendly 1777 * towards high-order requests, this should be changed. 1778 */ 1779 static size_t calculate_slab_order(struct kmem_cache *cachep, 1780 size_t size, unsigned long flags) 1781 { 1782 size_t left_over = 0; 1783 int gfporder; 1784 1785 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1786 unsigned int num; 1787 size_t remainder; 1788 1789 num = cache_estimate(gfporder, size, flags, &remainder); 1790 if (!num) 1791 continue; 1792 1793 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1794 if (num > SLAB_OBJ_MAX_NUM) 1795 break; 1796 1797 if (flags & CFLGS_OFF_SLAB) { 1798 struct kmem_cache *freelist_cache; 1799 size_t freelist_size; 1800 1801 freelist_size = num * sizeof(freelist_idx_t); 1802 freelist_cache = kmalloc_slab(freelist_size, 0u); 1803 if (!freelist_cache) 1804 continue; 1805 1806 /* 1807 * Needed to avoid possible looping condition 1808 * in cache_grow_begin() 1809 */ 1810 if (OFF_SLAB(freelist_cache)) 1811 continue; 1812 1813 /* check if off slab has enough benefit */ 1814 if (freelist_cache->size > cachep->size / 2) 1815 continue; 1816 } 1817 1818 /* Found something acceptable - save it away */ 1819 cachep->num = num; 1820 cachep->gfporder = gfporder; 1821 left_over = remainder; 1822 1823 /* 1824 * A VFS-reclaimable slab tends to have most allocations 1825 * as GFP_NOFS and we really don't want to have to be allocating 1826 * higher-order pages when we are unable to shrink dcache. 1827 */ 1828 if (flags & SLAB_RECLAIM_ACCOUNT) 1829 break; 1830 1831 /* 1832 * Large number of objects is good, but very large slabs are 1833 * currently bad for the gfp()s. 1834 */ 1835 if (gfporder >= slab_max_order) 1836 break; 1837 1838 /* 1839 * Acceptable internal fragmentation? 1840 */ 1841 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1842 break; 1843 } 1844 return left_over; 1845 } 1846 1847 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1848 struct kmem_cache *cachep, int entries, int batchcount) 1849 { 1850 int cpu; 1851 size_t size; 1852 struct array_cache __percpu *cpu_cache; 1853 1854 size = sizeof(void *) * entries + sizeof(struct array_cache); 1855 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1856 1857 if (!cpu_cache) 1858 return NULL; 1859 1860 for_each_possible_cpu(cpu) { 1861 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1862 entries, batchcount); 1863 } 1864 1865 return cpu_cache; 1866 } 1867 1868 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1869 { 1870 if (slab_state >= FULL) 1871 return enable_cpucache(cachep, gfp); 1872 1873 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1874 if (!cachep->cpu_cache) 1875 return 1; 1876 1877 if (slab_state == DOWN) { 1878 /* Creation of first cache (kmem_cache). */ 1879 set_up_node(kmem_cache, CACHE_CACHE); 1880 } else if (slab_state == PARTIAL) { 1881 /* For kmem_cache_node */ 1882 set_up_node(cachep, SIZE_NODE); 1883 } else { 1884 int node; 1885 1886 for_each_online_node(node) { 1887 cachep->node[node] = kmalloc_node( 1888 sizeof(struct kmem_cache_node), gfp, node); 1889 BUG_ON(!cachep->node[node]); 1890 kmem_cache_node_init(cachep->node[node]); 1891 } 1892 } 1893 1894 cachep->node[numa_mem_id()]->next_reap = 1895 jiffies + REAPTIMEOUT_NODE + 1896 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1897 1898 cpu_cache_get(cachep)->avail = 0; 1899 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1900 cpu_cache_get(cachep)->batchcount = 1; 1901 cpu_cache_get(cachep)->touched = 0; 1902 cachep->batchcount = 1; 1903 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1904 return 0; 1905 } 1906 1907 unsigned long kmem_cache_flags(unsigned long object_size, 1908 unsigned long flags, const char *name, 1909 void (*ctor)(void *)) 1910 { 1911 return flags; 1912 } 1913 1914 struct kmem_cache * 1915 __kmem_cache_alias(const char *name, size_t size, size_t align, 1916 unsigned long flags, void (*ctor)(void *)) 1917 { 1918 struct kmem_cache *cachep; 1919 1920 cachep = find_mergeable(size, align, flags, name, ctor); 1921 if (cachep) { 1922 cachep->refcount++; 1923 1924 /* 1925 * Adjust the object sizes so that we clear 1926 * the complete object on kzalloc. 1927 */ 1928 cachep->object_size = max_t(int, cachep->object_size, size); 1929 } 1930 return cachep; 1931 } 1932 1933 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1934 size_t size, unsigned long flags) 1935 { 1936 size_t left; 1937 1938 cachep->num = 0; 1939 1940 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU) 1941 return false; 1942 1943 left = calculate_slab_order(cachep, size, 1944 flags | CFLGS_OBJFREELIST_SLAB); 1945 if (!cachep->num) 1946 return false; 1947 1948 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1949 return false; 1950 1951 cachep->colour = left / cachep->colour_off; 1952 1953 return true; 1954 } 1955 1956 static bool set_off_slab_cache(struct kmem_cache *cachep, 1957 size_t size, unsigned long flags) 1958 { 1959 size_t left; 1960 1961 cachep->num = 0; 1962 1963 /* 1964 * Always use on-slab management when SLAB_NOLEAKTRACE 1965 * to avoid recursive calls into kmemleak. 1966 */ 1967 if (flags & SLAB_NOLEAKTRACE) 1968 return false; 1969 1970 /* 1971 * Size is large, assume best to place the slab management obj 1972 * off-slab (should allow better packing of objs). 1973 */ 1974 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1975 if (!cachep->num) 1976 return false; 1977 1978 /* 1979 * If the slab has been placed off-slab, and we have enough space then 1980 * move it on-slab. This is at the expense of any extra colouring. 1981 */ 1982 if (left >= cachep->num * sizeof(freelist_idx_t)) 1983 return false; 1984 1985 cachep->colour = left / cachep->colour_off; 1986 1987 return true; 1988 } 1989 1990 static bool set_on_slab_cache(struct kmem_cache *cachep, 1991 size_t size, unsigned long flags) 1992 { 1993 size_t left; 1994 1995 cachep->num = 0; 1996 1997 left = calculate_slab_order(cachep, size, flags); 1998 if (!cachep->num) 1999 return false; 2000 2001 cachep->colour = left / cachep->colour_off; 2002 2003 return true; 2004 } 2005 2006 /** 2007 * __kmem_cache_create - Create a cache. 2008 * @cachep: cache management descriptor 2009 * @flags: SLAB flags 2010 * 2011 * Returns a ptr to the cache on success, NULL on failure. 2012 * Cannot be called within a int, but can be interrupted. 2013 * The @ctor is run when new pages are allocated by the cache. 2014 * 2015 * The flags are 2016 * 2017 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2018 * to catch references to uninitialised memory. 2019 * 2020 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2021 * for buffer overruns. 2022 * 2023 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2024 * cacheline. This can be beneficial if you're counting cycles as closely 2025 * as davem. 2026 */ 2027 int 2028 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2029 { 2030 size_t ralign = BYTES_PER_WORD; 2031 gfp_t gfp; 2032 int err; 2033 size_t size = cachep->size; 2034 2035 #if DEBUG 2036 #if FORCED_DEBUG 2037 /* 2038 * Enable redzoning and last user accounting, except for caches with 2039 * large objects, if the increased size would increase the object size 2040 * above the next power of two: caches with object sizes just above a 2041 * power of two have a significant amount of internal fragmentation. 2042 */ 2043 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2044 2 * sizeof(unsigned long long))) 2045 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2046 if (!(flags & SLAB_DESTROY_BY_RCU)) 2047 flags |= SLAB_POISON; 2048 #endif 2049 #endif 2050 2051 /* 2052 * Check that size is in terms of words. This is needed to avoid 2053 * unaligned accesses for some archs when redzoning is used, and makes 2054 * sure any on-slab bufctl's are also correctly aligned. 2055 */ 2056 if (size & (BYTES_PER_WORD - 1)) { 2057 size += (BYTES_PER_WORD - 1); 2058 size &= ~(BYTES_PER_WORD - 1); 2059 } 2060 2061 if (flags & SLAB_RED_ZONE) { 2062 ralign = REDZONE_ALIGN; 2063 /* If redzoning, ensure that the second redzone is suitably 2064 * aligned, by adjusting the object size accordingly. */ 2065 size += REDZONE_ALIGN - 1; 2066 size &= ~(REDZONE_ALIGN - 1); 2067 } 2068 2069 /* 3) caller mandated alignment */ 2070 if (ralign < cachep->align) { 2071 ralign = cachep->align; 2072 } 2073 /* disable debug if necessary */ 2074 if (ralign > __alignof__(unsigned long long)) 2075 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2076 /* 2077 * 4) Store it. 2078 */ 2079 cachep->align = ralign; 2080 cachep->colour_off = cache_line_size(); 2081 /* Offset must be a multiple of the alignment. */ 2082 if (cachep->colour_off < cachep->align) 2083 cachep->colour_off = cachep->align; 2084 2085 if (slab_is_available()) 2086 gfp = GFP_KERNEL; 2087 else 2088 gfp = GFP_NOWAIT; 2089 2090 #if DEBUG 2091 2092 /* 2093 * Both debugging options require word-alignment which is calculated 2094 * into align above. 2095 */ 2096 if (flags & SLAB_RED_ZONE) { 2097 /* add space for red zone words */ 2098 cachep->obj_offset += sizeof(unsigned long long); 2099 size += 2 * sizeof(unsigned long long); 2100 } 2101 if (flags & SLAB_STORE_USER) { 2102 /* user store requires one word storage behind the end of 2103 * the real object. But if the second red zone needs to be 2104 * aligned to 64 bits, we must allow that much space. 2105 */ 2106 if (flags & SLAB_RED_ZONE) 2107 size += REDZONE_ALIGN; 2108 else 2109 size += BYTES_PER_WORD; 2110 } 2111 #endif 2112 2113 kasan_cache_create(cachep, &size, &flags); 2114 2115 size = ALIGN(size, cachep->align); 2116 /* 2117 * We should restrict the number of objects in a slab to implement 2118 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2119 */ 2120 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2121 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2122 2123 #if DEBUG 2124 /* 2125 * To activate debug pagealloc, off-slab management is necessary 2126 * requirement. In early phase of initialization, small sized slab 2127 * doesn't get initialized so it would not be possible. So, we need 2128 * to check size >= 256. It guarantees that all necessary small 2129 * sized slab is initialized in current slab initialization sequence. 2130 */ 2131 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2132 size >= 256 && cachep->object_size > cache_line_size()) { 2133 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2134 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2135 2136 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2137 flags |= CFLGS_OFF_SLAB; 2138 cachep->obj_offset += tmp_size - size; 2139 size = tmp_size; 2140 goto done; 2141 } 2142 } 2143 } 2144 #endif 2145 2146 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2147 flags |= CFLGS_OBJFREELIST_SLAB; 2148 goto done; 2149 } 2150 2151 if (set_off_slab_cache(cachep, size, flags)) { 2152 flags |= CFLGS_OFF_SLAB; 2153 goto done; 2154 } 2155 2156 if (set_on_slab_cache(cachep, size, flags)) 2157 goto done; 2158 2159 return -E2BIG; 2160 2161 done: 2162 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2163 cachep->flags = flags; 2164 cachep->allocflags = __GFP_COMP; 2165 if (flags & SLAB_CACHE_DMA) 2166 cachep->allocflags |= GFP_DMA; 2167 cachep->size = size; 2168 cachep->reciprocal_buffer_size = reciprocal_value(size); 2169 2170 #if DEBUG 2171 /* 2172 * If we're going to use the generic kernel_map_pages() 2173 * poisoning, then it's going to smash the contents of 2174 * the redzone and userword anyhow, so switch them off. 2175 */ 2176 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2177 (cachep->flags & SLAB_POISON) && 2178 is_debug_pagealloc_cache(cachep)) 2179 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2180 #endif 2181 2182 if (OFF_SLAB(cachep)) { 2183 cachep->freelist_cache = 2184 kmalloc_slab(cachep->freelist_size, 0u); 2185 } 2186 2187 err = setup_cpu_cache(cachep, gfp); 2188 if (err) { 2189 __kmem_cache_release(cachep); 2190 return err; 2191 } 2192 2193 return 0; 2194 } 2195 2196 #if DEBUG 2197 static void check_irq_off(void) 2198 { 2199 BUG_ON(!irqs_disabled()); 2200 } 2201 2202 static void check_irq_on(void) 2203 { 2204 BUG_ON(irqs_disabled()); 2205 } 2206 2207 static void check_mutex_acquired(void) 2208 { 2209 BUG_ON(!mutex_is_locked(&slab_mutex)); 2210 } 2211 2212 static void check_spinlock_acquired(struct kmem_cache *cachep) 2213 { 2214 #ifdef CONFIG_SMP 2215 check_irq_off(); 2216 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2217 #endif 2218 } 2219 2220 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2221 { 2222 #ifdef CONFIG_SMP 2223 check_irq_off(); 2224 assert_spin_locked(&get_node(cachep, node)->list_lock); 2225 #endif 2226 } 2227 2228 #else 2229 #define check_irq_off() do { } while(0) 2230 #define check_irq_on() do { } while(0) 2231 #define check_mutex_acquired() do { } while(0) 2232 #define check_spinlock_acquired(x) do { } while(0) 2233 #define check_spinlock_acquired_node(x, y) do { } while(0) 2234 #endif 2235 2236 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2237 int node, bool free_all, struct list_head *list) 2238 { 2239 int tofree; 2240 2241 if (!ac || !ac->avail) 2242 return; 2243 2244 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2245 if (tofree > ac->avail) 2246 tofree = (ac->avail + 1) / 2; 2247 2248 free_block(cachep, ac->entry, tofree, node, list); 2249 ac->avail -= tofree; 2250 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2251 } 2252 2253 static void do_drain(void *arg) 2254 { 2255 struct kmem_cache *cachep = arg; 2256 struct array_cache *ac; 2257 int node = numa_mem_id(); 2258 struct kmem_cache_node *n; 2259 LIST_HEAD(list); 2260 2261 check_irq_off(); 2262 ac = cpu_cache_get(cachep); 2263 n = get_node(cachep, node); 2264 spin_lock(&n->list_lock); 2265 free_block(cachep, ac->entry, ac->avail, node, &list); 2266 spin_unlock(&n->list_lock); 2267 slabs_destroy(cachep, &list); 2268 ac->avail = 0; 2269 } 2270 2271 static void drain_cpu_caches(struct kmem_cache *cachep) 2272 { 2273 struct kmem_cache_node *n; 2274 int node; 2275 LIST_HEAD(list); 2276 2277 on_each_cpu(do_drain, cachep, 1); 2278 check_irq_on(); 2279 for_each_kmem_cache_node(cachep, node, n) 2280 if (n->alien) 2281 drain_alien_cache(cachep, n->alien); 2282 2283 for_each_kmem_cache_node(cachep, node, n) { 2284 spin_lock_irq(&n->list_lock); 2285 drain_array_locked(cachep, n->shared, node, true, &list); 2286 spin_unlock_irq(&n->list_lock); 2287 2288 slabs_destroy(cachep, &list); 2289 } 2290 } 2291 2292 /* 2293 * Remove slabs from the list of free slabs. 2294 * Specify the number of slabs to drain in tofree. 2295 * 2296 * Returns the actual number of slabs released. 2297 */ 2298 static int drain_freelist(struct kmem_cache *cache, 2299 struct kmem_cache_node *n, int tofree) 2300 { 2301 struct list_head *p; 2302 int nr_freed; 2303 struct page *page; 2304 2305 nr_freed = 0; 2306 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2307 2308 spin_lock_irq(&n->list_lock); 2309 p = n->slabs_free.prev; 2310 if (p == &n->slabs_free) { 2311 spin_unlock_irq(&n->list_lock); 2312 goto out; 2313 } 2314 2315 page = list_entry(p, struct page, lru); 2316 list_del(&page->lru); 2317 /* 2318 * Safe to drop the lock. The slab is no longer linked 2319 * to the cache. 2320 */ 2321 n->free_objects -= cache->num; 2322 spin_unlock_irq(&n->list_lock); 2323 slab_destroy(cache, page); 2324 nr_freed++; 2325 } 2326 out: 2327 return nr_freed; 2328 } 2329 2330 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate) 2331 { 2332 int ret = 0; 2333 int node; 2334 struct kmem_cache_node *n; 2335 2336 drain_cpu_caches(cachep); 2337 2338 check_irq_on(); 2339 for_each_kmem_cache_node(cachep, node, n) { 2340 drain_freelist(cachep, n, INT_MAX); 2341 2342 ret += !list_empty(&n->slabs_full) || 2343 !list_empty(&n->slabs_partial); 2344 } 2345 return (ret ? 1 : 0); 2346 } 2347 2348 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2349 { 2350 return __kmem_cache_shrink(cachep, false); 2351 } 2352 2353 void __kmem_cache_release(struct kmem_cache *cachep) 2354 { 2355 int i; 2356 struct kmem_cache_node *n; 2357 2358 cache_random_seq_destroy(cachep); 2359 2360 free_percpu(cachep->cpu_cache); 2361 2362 /* NUMA: free the node structures */ 2363 for_each_kmem_cache_node(cachep, i, n) { 2364 kfree(n->shared); 2365 free_alien_cache(n->alien); 2366 kfree(n); 2367 cachep->node[i] = NULL; 2368 } 2369 } 2370 2371 /* 2372 * Get the memory for a slab management obj. 2373 * 2374 * For a slab cache when the slab descriptor is off-slab, the 2375 * slab descriptor can't come from the same cache which is being created, 2376 * Because if it is the case, that means we defer the creation of 2377 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2378 * And we eventually call down to __kmem_cache_create(), which 2379 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2380 * This is a "chicken-and-egg" problem. 2381 * 2382 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2383 * which are all initialized during kmem_cache_init(). 2384 */ 2385 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2386 struct page *page, int colour_off, 2387 gfp_t local_flags, int nodeid) 2388 { 2389 void *freelist; 2390 void *addr = page_address(page); 2391 2392 page->s_mem = addr + colour_off; 2393 page->active = 0; 2394 2395 if (OBJFREELIST_SLAB(cachep)) 2396 freelist = NULL; 2397 else if (OFF_SLAB(cachep)) { 2398 /* Slab management obj is off-slab. */ 2399 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2400 local_flags, nodeid); 2401 if (!freelist) 2402 return NULL; 2403 } else { 2404 /* We will use last bytes at the slab for freelist */ 2405 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2406 cachep->freelist_size; 2407 } 2408 2409 return freelist; 2410 } 2411 2412 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2413 { 2414 return ((freelist_idx_t *)page->freelist)[idx]; 2415 } 2416 2417 static inline void set_free_obj(struct page *page, 2418 unsigned int idx, freelist_idx_t val) 2419 { 2420 ((freelist_idx_t *)(page->freelist))[idx] = val; 2421 } 2422 2423 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2424 { 2425 #if DEBUG 2426 int i; 2427 2428 for (i = 0; i < cachep->num; i++) { 2429 void *objp = index_to_obj(cachep, page, i); 2430 2431 if (cachep->flags & SLAB_STORE_USER) 2432 *dbg_userword(cachep, objp) = NULL; 2433 2434 if (cachep->flags & SLAB_RED_ZONE) { 2435 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2436 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2437 } 2438 /* 2439 * Constructors are not allowed to allocate memory from the same 2440 * cache which they are a constructor for. Otherwise, deadlock. 2441 * They must also be threaded. 2442 */ 2443 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2444 kasan_unpoison_object_data(cachep, 2445 objp + obj_offset(cachep)); 2446 cachep->ctor(objp + obj_offset(cachep)); 2447 kasan_poison_object_data( 2448 cachep, objp + obj_offset(cachep)); 2449 } 2450 2451 if (cachep->flags & SLAB_RED_ZONE) { 2452 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2453 slab_error(cachep, "constructor overwrote the end of an object"); 2454 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2455 slab_error(cachep, "constructor overwrote the start of an object"); 2456 } 2457 /* need to poison the objs? */ 2458 if (cachep->flags & SLAB_POISON) { 2459 poison_obj(cachep, objp, POISON_FREE); 2460 slab_kernel_map(cachep, objp, 0, 0); 2461 } 2462 } 2463 #endif 2464 } 2465 2466 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2467 /* Hold information during a freelist initialization */ 2468 union freelist_init_state { 2469 struct { 2470 unsigned int pos; 2471 unsigned int *list; 2472 unsigned int count; 2473 unsigned int rand; 2474 }; 2475 struct rnd_state rnd_state; 2476 }; 2477 2478 /* 2479 * Initialize the state based on the randomization methode available. 2480 * return true if the pre-computed list is available, false otherwize. 2481 */ 2482 static bool freelist_state_initialize(union freelist_init_state *state, 2483 struct kmem_cache *cachep, 2484 unsigned int count) 2485 { 2486 bool ret; 2487 unsigned int rand; 2488 2489 /* Use best entropy available to define a random shift */ 2490 rand = get_random_int(); 2491 2492 /* Use a random state if the pre-computed list is not available */ 2493 if (!cachep->random_seq) { 2494 prandom_seed_state(&state->rnd_state, rand); 2495 ret = false; 2496 } else { 2497 state->list = cachep->random_seq; 2498 state->count = count; 2499 state->pos = 0; 2500 state->rand = rand; 2501 ret = true; 2502 } 2503 return ret; 2504 } 2505 2506 /* Get the next entry on the list and randomize it using a random shift */ 2507 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2508 { 2509 return (state->list[state->pos++] + state->rand) % state->count; 2510 } 2511 2512 /* Swap two freelist entries */ 2513 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2514 { 2515 swap(((freelist_idx_t *)page->freelist)[a], 2516 ((freelist_idx_t *)page->freelist)[b]); 2517 } 2518 2519 /* 2520 * Shuffle the freelist initialization state based on pre-computed lists. 2521 * return true if the list was successfully shuffled, false otherwise. 2522 */ 2523 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2524 { 2525 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2526 union freelist_init_state state; 2527 bool precomputed; 2528 2529 if (count < 2) 2530 return false; 2531 2532 precomputed = freelist_state_initialize(&state, cachep, count); 2533 2534 /* Take a random entry as the objfreelist */ 2535 if (OBJFREELIST_SLAB(cachep)) { 2536 if (!precomputed) 2537 objfreelist = count - 1; 2538 else 2539 objfreelist = next_random_slot(&state); 2540 page->freelist = index_to_obj(cachep, page, objfreelist) + 2541 obj_offset(cachep); 2542 count--; 2543 } 2544 2545 /* 2546 * On early boot, generate the list dynamically. 2547 * Later use a pre-computed list for speed. 2548 */ 2549 if (!precomputed) { 2550 for (i = 0; i < count; i++) 2551 set_free_obj(page, i, i); 2552 2553 /* Fisher-Yates shuffle */ 2554 for (i = count - 1; i > 0; i--) { 2555 rand = prandom_u32_state(&state.rnd_state); 2556 rand %= (i + 1); 2557 swap_free_obj(page, i, rand); 2558 } 2559 } else { 2560 for (i = 0; i < count; i++) 2561 set_free_obj(page, i, next_random_slot(&state)); 2562 } 2563 2564 if (OBJFREELIST_SLAB(cachep)) 2565 set_free_obj(page, cachep->num - 1, objfreelist); 2566 2567 return true; 2568 } 2569 #else 2570 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2571 struct page *page) 2572 { 2573 return false; 2574 } 2575 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2576 2577 static void cache_init_objs(struct kmem_cache *cachep, 2578 struct page *page) 2579 { 2580 int i; 2581 void *objp; 2582 bool shuffled; 2583 2584 cache_init_objs_debug(cachep, page); 2585 2586 /* Try to randomize the freelist if enabled */ 2587 shuffled = shuffle_freelist(cachep, page); 2588 2589 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2590 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2591 obj_offset(cachep); 2592 } 2593 2594 for (i = 0; i < cachep->num; i++) { 2595 objp = index_to_obj(cachep, page, i); 2596 kasan_init_slab_obj(cachep, objp); 2597 2598 /* constructor could break poison info */ 2599 if (DEBUG == 0 && cachep->ctor) { 2600 kasan_unpoison_object_data(cachep, objp); 2601 cachep->ctor(objp); 2602 kasan_poison_object_data(cachep, objp); 2603 } 2604 2605 if (!shuffled) 2606 set_free_obj(page, i, i); 2607 } 2608 } 2609 2610 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2611 { 2612 void *objp; 2613 2614 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2615 page->active++; 2616 2617 #if DEBUG 2618 if (cachep->flags & SLAB_STORE_USER) 2619 set_store_user_dirty(cachep); 2620 #endif 2621 2622 return objp; 2623 } 2624 2625 static void slab_put_obj(struct kmem_cache *cachep, 2626 struct page *page, void *objp) 2627 { 2628 unsigned int objnr = obj_to_index(cachep, page, objp); 2629 #if DEBUG 2630 unsigned int i; 2631 2632 /* Verify double free bug */ 2633 for (i = page->active; i < cachep->num; i++) { 2634 if (get_free_obj(page, i) == objnr) { 2635 pr_err("slab: double free detected in cache '%s', objp %p\n", 2636 cachep->name, objp); 2637 BUG(); 2638 } 2639 } 2640 #endif 2641 page->active--; 2642 if (!page->freelist) 2643 page->freelist = objp + obj_offset(cachep); 2644 2645 set_free_obj(page, page->active, objnr); 2646 } 2647 2648 /* 2649 * Map pages beginning at addr to the given cache and slab. This is required 2650 * for the slab allocator to be able to lookup the cache and slab of a 2651 * virtual address for kfree, ksize, and slab debugging. 2652 */ 2653 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2654 void *freelist) 2655 { 2656 page->slab_cache = cache; 2657 page->freelist = freelist; 2658 } 2659 2660 /* 2661 * Grow (by 1) the number of slabs within a cache. This is called by 2662 * kmem_cache_alloc() when there are no active objs left in a cache. 2663 */ 2664 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2665 gfp_t flags, int nodeid) 2666 { 2667 void *freelist; 2668 size_t offset; 2669 gfp_t local_flags; 2670 int page_node; 2671 struct kmem_cache_node *n; 2672 struct page *page; 2673 2674 /* 2675 * Be lazy and only check for valid flags here, keeping it out of the 2676 * critical path in kmem_cache_alloc(). 2677 */ 2678 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2679 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2680 flags &= ~GFP_SLAB_BUG_MASK; 2681 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2682 invalid_mask, &invalid_mask, flags, &flags); 2683 dump_stack(); 2684 } 2685 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2686 2687 check_irq_off(); 2688 if (gfpflags_allow_blocking(local_flags)) 2689 local_irq_enable(); 2690 2691 /* 2692 * Get mem for the objs. Attempt to allocate a physical page from 2693 * 'nodeid'. 2694 */ 2695 page = kmem_getpages(cachep, local_flags, nodeid); 2696 if (!page) 2697 goto failed; 2698 2699 page_node = page_to_nid(page); 2700 n = get_node(cachep, page_node); 2701 2702 /* Get colour for the slab, and cal the next value. */ 2703 n->colour_next++; 2704 if (n->colour_next >= cachep->colour) 2705 n->colour_next = 0; 2706 2707 offset = n->colour_next; 2708 if (offset >= cachep->colour) 2709 offset = 0; 2710 2711 offset *= cachep->colour_off; 2712 2713 /* Get slab management. */ 2714 freelist = alloc_slabmgmt(cachep, page, offset, 2715 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2716 if (OFF_SLAB(cachep) && !freelist) 2717 goto opps1; 2718 2719 slab_map_pages(cachep, page, freelist); 2720 2721 kasan_poison_slab(page); 2722 cache_init_objs(cachep, page); 2723 2724 if (gfpflags_allow_blocking(local_flags)) 2725 local_irq_disable(); 2726 2727 return page; 2728 2729 opps1: 2730 kmem_freepages(cachep, page); 2731 failed: 2732 if (gfpflags_allow_blocking(local_flags)) 2733 local_irq_disable(); 2734 return NULL; 2735 } 2736 2737 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2738 { 2739 struct kmem_cache_node *n; 2740 void *list = NULL; 2741 2742 check_irq_off(); 2743 2744 if (!page) 2745 return; 2746 2747 INIT_LIST_HEAD(&page->lru); 2748 n = get_node(cachep, page_to_nid(page)); 2749 2750 spin_lock(&n->list_lock); 2751 if (!page->active) 2752 list_add_tail(&page->lru, &(n->slabs_free)); 2753 else 2754 fixup_slab_list(cachep, n, page, &list); 2755 STATS_INC_GROWN(cachep); 2756 n->free_objects += cachep->num - page->active; 2757 spin_unlock(&n->list_lock); 2758 2759 fixup_objfreelist_debug(cachep, &list); 2760 } 2761 2762 #if DEBUG 2763 2764 /* 2765 * Perform extra freeing checks: 2766 * - detect bad pointers. 2767 * - POISON/RED_ZONE checking 2768 */ 2769 static void kfree_debugcheck(const void *objp) 2770 { 2771 if (!virt_addr_valid(objp)) { 2772 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2773 (unsigned long)objp); 2774 BUG(); 2775 } 2776 } 2777 2778 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2779 { 2780 unsigned long long redzone1, redzone2; 2781 2782 redzone1 = *dbg_redzone1(cache, obj); 2783 redzone2 = *dbg_redzone2(cache, obj); 2784 2785 /* 2786 * Redzone is ok. 2787 */ 2788 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2789 return; 2790 2791 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2792 slab_error(cache, "double free detected"); 2793 else 2794 slab_error(cache, "memory outside object was overwritten"); 2795 2796 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2797 obj, redzone1, redzone2); 2798 } 2799 2800 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2801 unsigned long caller) 2802 { 2803 unsigned int objnr; 2804 struct page *page; 2805 2806 BUG_ON(virt_to_cache(objp) != cachep); 2807 2808 objp -= obj_offset(cachep); 2809 kfree_debugcheck(objp); 2810 page = virt_to_head_page(objp); 2811 2812 if (cachep->flags & SLAB_RED_ZONE) { 2813 verify_redzone_free(cachep, objp); 2814 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2815 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2816 } 2817 if (cachep->flags & SLAB_STORE_USER) { 2818 set_store_user_dirty(cachep); 2819 *dbg_userword(cachep, objp) = (void *)caller; 2820 } 2821 2822 objnr = obj_to_index(cachep, page, objp); 2823 2824 BUG_ON(objnr >= cachep->num); 2825 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2826 2827 if (cachep->flags & SLAB_POISON) { 2828 poison_obj(cachep, objp, POISON_FREE); 2829 slab_kernel_map(cachep, objp, 0, caller); 2830 } 2831 return objp; 2832 } 2833 2834 #else 2835 #define kfree_debugcheck(x) do { } while(0) 2836 #define cache_free_debugcheck(x,objp,z) (objp) 2837 #endif 2838 2839 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2840 void **list) 2841 { 2842 #if DEBUG 2843 void *next = *list; 2844 void *objp; 2845 2846 while (next) { 2847 objp = next - obj_offset(cachep); 2848 next = *(void **)next; 2849 poison_obj(cachep, objp, POISON_FREE); 2850 } 2851 #endif 2852 } 2853 2854 static inline void fixup_slab_list(struct kmem_cache *cachep, 2855 struct kmem_cache_node *n, struct page *page, 2856 void **list) 2857 { 2858 /* move slabp to correct slabp list: */ 2859 list_del(&page->lru); 2860 if (page->active == cachep->num) { 2861 list_add(&page->lru, &n->slabs_full); 2862 if (OBJFREELIST_SLAB(cachep)) { 2863 #if DEBUG 2864 /* Poisoning will be done without holding the lock */ 2865 if (cachep->flags & SLAB_POISON) { 2866 void **objp = page->freelist; 2867 2868 *objp = *list; 2869 *list = objp; 2870 } 2871 #endif 2872 page->freelist = NULL; 2873 } 2874 } else 2875 list_add(&page->lru, &n->slabs_partial); 2876 } 2877 2878 /* Try to find non-pfmemalloc slab if needed */ 2879 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2880 struct page *page, bool pfmemalloc) 2881 { 2882 if (!page) 2883 return NULL; 2884 2885 if (pfmemalloc) 2886 return page; 2887 2888 if (!PageSlabPfmemalloc(page)) 2889 return page; 2890 2891 /* No need to keep pfmemalloc slab if we have enough free objects */ 2892 if (n->free_objects > n->free_limit) { 2893 ClearPageSlabPfmemalloc(page); 2894 return page; 2895 } 2896 2897 /* Move pfmemalloc slab to the end of list to speed up next search */ 2898 list_del(&page->lru); 2899 if (!page->active) 2900 list_add_tail(&page->lru, &n->slabs_free); 2901 else 2902 list_add_tail(&page->lru, &n->slabs_partial); 2903 2904 list_for_each_entry(page, &n->slabs_partial, lru) { 2905 if (!PageSlabPfmemalloc(page)) 2906 return page; 2907 } 2908 2909 list_for_each_entry(page, &n->slabs_free, lru) { 2910 if (!PageSlabPfmemalloc(page)) 2911 return page; 2912 } 2913 2914 return NULL; 2915 } 2916 2917 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2918 { 2919 struct page *page; 2920 2921 page = list_first_entry_or_null(&n->slabs_partial, 2922 struct page, lru); 2923 if (!page) { 2924 n->free_touched = 1; 2925 page = list_first_entry_or_null(&n->slabs_free, 2926 struct page, lru); 2927 } 2928 2929 if (sk_memalloc_socks()) 2930 return get_valid_first_slab(n, page, pfmemalloc); 2931 2932 return page; 2933 } 2934 2935 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2936 struct kmem_cache_node *n, gfp_t flags) 2937 { 2938 struct page *page; 2939 void *obj; 2940 void *list = NULL; 2941 2942 if (!gfp_pfmemalloc_allowed(flags)) 2943 return NULL; 2944 2945 spin_lock(&n->list_lock); 2946 page = get_first_slab(n, true); 2947 if (!page) { 2948 spin_unlock(&n->list_lock); 2949 return NULL; 2950 } 2951 2952 obj = slab_get_obj(cachep, page); 2953 n->free_objects--; 2954 2955 fixup_slab_list(cachep, n, page, &list); 2956 2957 spin_unlock(&n->list_lock); 2958 fixup_objfreelist_debug(cachep, &list); 2959 2960 return obj; 2961 } 2962 2963 /* 2964 * Slab list should be fixed up by fixup_slab_list() for existing slab 2965 * or cache_grow_end() for new slab 2966 */ 2967 static __always_inline int alloc_block(struct kmem_cache *cachep, 2968 struct array_cache *ac, struct page *page, int batchcount) 2969 { 2970 /* 2971 * There must be at least one object available for 2972 * allocation. 2973 */ 2974 BUG_ON(page->active >= cachep->num); 2975 2976 while (page->active < cachep->num && batchcount--) { 2977 STATS_INC_ALLOCED(cachep); 2978 STATS_INC_ACTIVE(cachep); 2979 STATS_SET_HIGH(cachep); 2980 2981 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2982 } 2983 2984 return batchcount; 2985 } 2986 2987 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2988 { 2989 int batchcount; 2990 struct kmem_cache_node *n; 2991 struct array_cache *ac, *shared; 2992 int node; 2993 void *list = NULL; 2994 struct page *page; 2995 2996 check_irq_off(); 2997 node = numa_mem_id(); 2998 2999 ac = cpu_cache_get(cachep); 3000 batchcount = ac->batchcount; 3001 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 3002 /* 3003 * If there was little recent activity on this cache, then 3004 * perform only a partial refill. Otherwise we could generate 3005 * refill bouncing. 3006 */ 3007 batchcount = BATCHREFILL_LIMIT; 3008 } 3009 n = get_node(cachep, node); 3010 3011 BUG_ON(ac->avail > 0 || !n); 3012 shared = READ_ONCE(n->shared); 3013 if (!n->free_objects && (!shared || !shared->avail)) 3014 goto direct_grow; 3015 3016 spin_lock(&n->list_lock); 3017 shared = READ_ONCE(n->shared); 3018 3019 /* See if we can refill from the shared array */ 3020 if (shared && transfer_objects(ac, shared, batchcount)) { 3021 shared->touched = 1; 3022 goto alloc_done; 3023 } 3024 3025 while (batchcount > 0) { 3026 /* Get slab alloc is to come from. */ 3027 page = get_first_slab(n, false); 3028 if (!page) 3029 goto must_grow; 3030 3031 check_spinlock_acquired(cachep); 3032 3033 batchcount = alloc_block(cachep, ac, page, batchcount); 3034 fixup_slab_list(cachep, n, page, &list); 3035 } 3036 3037 must_grow: 3038 n->free_objects -= ac->avail; 3039 alloc_done: 3040 spin_unlock(&n->list_lock); 3041 fixup_objfreelist_debug(cachep, &list); 3042 3043 direct_grow: 3044 if (unlikely(!ac->avail)) { 3045 /* Check if we can use obj in pfmemalloc slab */ 3046 if (sk_memalloc_socks()) { 3047 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 3048 3049 if (obj) 3050 return obj; 3051 } 3052 3053 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 3054 3055 /* 3056 * cache_grow_begin() can reenable interrupts, 3057 * then ac could change. 3058 */ 3059 ac = cpu_cache_get(cachep); 3060 if (!ac->avail && page) 3061 alloc_block(cachep, ac, page, batchcount); 3062 cache_grow_end(cachep, page); 3063 3064 if (!ac->avail) 3065 return NULL; 3066 } 3067 ac->touched = 1; 3068 3069 return ac->entry[--ac->avail]; 3070 } 3071 3072 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3073 gfp_t flags) 3074 { 3075 might_sleep_if(gfpflags_allow_blocking(flags)); 3076 } 3077 3078 #if DEBUG 3079 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3080 gfp_t flags, void *objp, unsigned long caller) 3081 { 3082 if (!objp) 3083 return objp; 3084 if (cachep->flags & SLAB_POISON) { 3085 check_poison_obj(cachep, objp); 3086 slab_kernel_map(cachep, objp, 1, 0); 3087 poison_obj(cachep, objp, POISON_INUSE); 3088 } 3089 if (cachep->flags & SLAB_STORE_USER) 3090 *dbg_userword(cachep, objp) = (void *)caller; 3091 3092 if (cachep->flags & SLAB_RED_ZONE) { 3093 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3094 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3095 slab_error(cachep, "double free, or memory outside object was overwritten"); 3096 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3097 objp, *dbg_redzone1(cachep, objp), 3098 *dbg_redzone2(cachep, objp)); 3099 } 3100 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3101 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3102 } 3103 3104 objp += obj_offset(cachep); 3105 if (cachep->ctor && cachep->flags & SLAB_POISON) 3106 cachep->ctor(objp); 3107 if (ARCH_SLAB_MINALIGN && 3108 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3109 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3110 objp, (int)ARCH_SLAB_MINALIGN); 3111 } 3112 return objp; 3113 } 3114 #else 3115 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3116 #endif 3117 3118 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3119 { 3120 void *objp; 3121 struct array_cache *ac; 3122 3123 check_irq_off(); 3124 3125 ac = cpu_cache_get(cachep); 3126 if (likely(ac->avail)) { 3127 ac->touched = 1; 3128 objp = ac->entry[--ac->avail]; 3129 3130 STATS_INC_ALLOCHIT(cachep); 3131 goto out; 3132 } 3133 3134 STATS_INC_ALLOCMISS(cachep); 3135 objp = cache_alloc_refill(cachep, flags); 3136 /* 3137 * the 'ac' may be updated by cache_alloc_refill(), 3138 * and kmemleak_erase() requires its correct value. 3139 */ 3140 ac = cpu_cache_get(cachep); 3141 3142 out: 3143 /* 3144 * To avoid a false negative, if an object that is in one of the 3145 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3146 * treat the array pointers as a reference to the object. 3147 */ 3148 if (objp) 3149 kmemleak_erase(&ac->entry[ac->avail]); 3150 return objp; 3151 } 3152 3153 #ifdef CONFIG_NUMA 3154 /* 3155 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3156 * 3157 * If we are in_interrupt, then process context, including cpusets and 3158 * mempolicy, may not apply and should not be used for allocation policy. 3159 */ 3160 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3161 { 3162 int nid_alloc, nid_here; 3163 3164 if (in_interrupt() || (flags & __GFP_THISNODE)) 3165 return NULL; 3166 nid_alloc = nid_here = numa_mem_id(); 3167 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3168 nid_alloc = cpuset_slab_spread_node(); 3169 else if (current->mempolicy) 3170 nid_alloc = mempolicy_slab_node(); 3171 if (nid_alloc != nid_here) 3172 return ____cache_alloc_node(cachep, flags, nid_alloc); 3173 return NULL; 3174 } 3175 3176 /* 3177 * Fallback function if there was no memory available and no objects on a 3178 * certain node and fall back is permitted. First we scan all the 3179 * available node for available objects. If that fails then we 3180 * perform an allocation without specifying a node. This allows the page 3181 * allocator to do its reclaim / fallback magic. We then insert the 3182 * slab into the proper nodelist and then allocate from it. 3183 */ 3184 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3185 { 3186 struct zonelist *zonelist; 3187 struct zoneref *z; 3188 struct zone *zone; 3189 enum zone_type high_zoneidx = gfp_zone(flags); 3190 void *obj = NULL; 3191 struct page *page; 3192 int nid; 3193 unsigned int cpuset_mems_cookie; 3194 3195 if (flags & __GFP_THISNODE) 3196 return NULL; 3197 3198 retry_cpuset: 3199 cpuset_mems_cookie = read_mems_allowed_begin(); 3200 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3201 3202 retry: 3203 /* 3204 * Look through allowed nodes for objects available 3205 * from existing per node queues. 3206 */ 3207 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3208 nid = zone_to_nid(zone); 3209 3210 if (cpuset_zone_allowed(zone, flags) && 3211 get_node(cache, nid) && 3212 get_node(cache, nid)->free_objects) { 3213 obj = ____cache_alloc_node(cache, 3214 gfp_exact_node(flags), nid); 3215 if (obj) 3216 break; 3217 } 3218 } 3219 3220 if (!obj) { 3221 /* 3222 * This allocation will be performed within the constraints 3223 * of the current cpuset / memory policy requirements. 3224 * We may trigger various forms of reclaim on the allowed 3225 * set and go into memory reserves if necessary. 3226 */ 3227 page = cache_grow_begin(cache, flags, numa_mem_id()); 3228 cache_grow_end(cache, page); 3229 if (page) { 3230 nid = page_to_nid(page); 3231 obj = ____cache_alloc_node(cache, 3232 gfp_exact_node(flags), nid); 3233 3234 /* 3235 * Another processor may allocate the objects in 3236 * the slab since we are not holding any locks. 3237 */ 3238 if (!obj) 3239 goto retry; 3240 } 3241 } 3242 3243 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3244 goto retry_cpuset; 3245 return obj; 3246 } 3247 3248 /* 3249 * A interface to enable slab creation on nodeid 3250 */ 3251 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3252 int nodeid) 3253 { 3254 struct page *page; 3255 struct kmem_cache_node *n; 3256 void *obj = NULL; 3257 void *list = NULL; 3258 3259 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3260 n = get_node(cachep, nodeid); 3261 BUG_ON(!n); 3262 3263 check_irq_off(); 3264 spin_lock(&n->list_lock); 3265 page = get_first_slab(n, false); 3266 if (!page) 3267 goto must_grow; 3268 3269 check_spinlock_acquired_node(cachep, nodeid); 3270 3271 STATS_INC_NODEALLOCS(cachep); 3272 STATS_INC_ACTIVE(cachep); 3273 STATS_SET_HIGH(cachep); 3274 3275 BUG_ON(page->active == cachep->num); 3276 3277 obj = slab_get_obj(cachep, page); 3278 n->free_objects--; 3279 3280 fixup_slab_list(cachep, n, page, &list); 3281 3282 spin_unlock(&n->list_lock); 3283 fixup_objfreelist_debug(cachep, &list); 3284 return obj; 3285 3286 must_grow: 3287 spin_unlock(&n->list_lock); 3288 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3289 if (page) { 3290 /* This slab isn't counted yet so don't update free_objects */ 3291 obj = slab_get_obj(cachep, page); 3292 } 3293 cache_grow_end(cachep, page); 3294 3295 return obj ? obj : fallback_alloc(cachep, flags); 3296 } 3297 3298 static __always_inline void * 3299 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3300 unsigned long caller) 3301 { 3302 unsigned long save_flags; 3303 void *ptr; 3304 int slab_node = numa_mem_id(); 3305 3306 flags &= gfp_allowed_mask; 3307 cachep = slab_pre_alloc_hook(cachep, flags); 3308 if (unlikely(!cachep)) 3309 return NULL; 3310 3311 cache_alloc_debugcheck_before(cachep, flags); 3312 local_irq_save(save_flags); 3313 3314 if (nodeid == NUMA_NO_NODE) 3315 nodeid = slab_node; 3316 3317 if (unlikely(!get_node(cachep, nodeid))) { 3318 /* Node not bootstrapped yet */ 3319 ptr = fallback_alloc(cachep, flags); 3320 goto out; 3321 } 3322 3323 if (nodeid == slab_node) { 3324 /* 3325 * Use the locally cached objects if possible. 3326 * However ____cache_alloc does not allow fallback 3327 * to other nodes. It may fail while we still have 3328 * objects on other nodes available. 3329 */ 3330 ptr = ____cache_alloc(cachep, flags); 3331 if (ptr) 3332 goto out; 3333 } 3334 /* ___cache_alloc_node can fall back to other nodes */ 3335 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3336 out: 3337 local_irq_restore(save_flags); 3338 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3339 3340 if (unlikely(flags & __GFP_ZERO) && ptr) 3341 memset(ptr, 0, cachep->object_size); 3342 3343 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3344 return ptr; 3345 } 3346 3347 static __always_inline void * 3348 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3349 { 3350 void *objp; 3351 3352 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3353 objp = alternate_node_alloc(cache, flags); 3354 if (objp) 3355 goto out; 3356 } 3357 objp = ____cache_alloc(cache, flags); 3358 3359 /* 3360 * We may just have run out of memory on the local node. 3361 * ____cache_alloc_node() knows how to locate memory on other nodes 3362 */ 3363 if (!objp) 3364 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3365 3366 out: 3367 return objp; 3368 } 3369 #else 3370 3371 static __always_inline void * 3372 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3373 { 3374 return ____cache_alloc(cachep, flags); 3375 } 3376 3377 #endif /* CONFIG_NUMA */ 3378 3379 static __always_inline void * 3380 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3381 { 3382 unsigned long save_flags; 3383 void *objp; 3384 3385 flags &= gfp_allowed_mask; 3386 cachep = slab_pre_alloc_hook(cachep, flags); 3387 if (unlikely(!cachep)) 3388 return NULL; 3389 3390 cache_alloc_debugcheck_before(cachep, flags); 3391 local_irq_save(save_flags); 3392 objp = __do_cache_alloc(cachep, flags); 3393 local_irq_restore(save_flags); 3394 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3395 prefetchw(objp); 3396 3397 if (unlikely(flags & __GFP_ZERO) && objp) 3398 memset(objp, 0, cachep->object_size); 3399 3400 slab_post_alloc_hook(cachep, flags, 1, &objp); 3401 return objp; 3402 } 3403 3404 /* 3405 * Caller needs to acquire correct kmem_cache_node's list_lock 3406 * @list: List of detached free slabs should be freed by caller 3407 */ 3408 static void free_block(struct kmem_cache *cachep, void **objpp, 3409 int nr_objects, int node, struct list_head *list) 3410 { 3411 int i; 3412 struct kmem_cache_node *n = get_node(cachep, node); 3413 struct page *page; 3414 3415 n->free_objects += nr_objects; 3416 3417 for (i = 0; i < nr_objects; i++) { 3418 void *objp; 3419 struct page *page; 3420 3421 objp = objpp[i]; 3422 3423 page = virt_to_head_page(objp); 3424 list_del(&page->lru); 3425 check_spinlock_acquired_node(cachep, node); 3426 slab_put_obj(cachep, page, objp); 3427 STATS_DEC_ACTIVE(cachep); 3428 3429 /* fixup slab chains */ 3430 if (page->active == 0) 3431 list_add(&page->lru, &n->slabs_free); 3432 else { 3433 /* Unconditionally move a slab to the end of the 3434 * partial list on free - maximum time for the 3435 * other objects to be freed, too. 3436 */ 3437 list_add_tail(&page->lru, &n->slabs_partial); 3438 } 3439 } 3440 3441 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3442 n->free_objects -= cachep->num; 3443 3444 page = list_last_entry(&n->slabs_free, struct page, lru); 3445 list_move(&page->lru, list); 3446 } 3447 } 3448 3449 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3450 { 3451 int batchcount; 3452 struct kmem_cache_node *n; 3453 int node = numa_mem_id(); 3454 LIST_HEAD(list); 3455 3456 batchcount = ac->batchcount; 3457 3458 check_irq_off(); 3459 n = get_node(cachep, node); 3460 spin_lock(&n->list_lock); 3461 if (n->shared) { 3462 struct array_cache *shared_array = n->shared; 3463 int max = shared_array->limit - shared_array->avail; 3464 if (max) { 3465 if (batchcount > max) 3466 batchcount = max; 3467 memcpy(&(shared_array->entry[shared_array->avail]), 3468 ac->entry, sizeof(void *) * batchcount); 3469 shared_array->avail += batchcount; 3470 goto free_done; 3471 } 3472 } 3473 3474 free_block(cachep, ac->entry, batchcount, node, &list); 3475 free_done: 3476 #if STATS 3477 { 3478 int i = 0; 3479 struct page *page; 3480 3481 list_for_each_entry(page, &n->slabs_free, lru) { 3482 BUG_ON(page->active); 3483 3484 i++; 3485 } 3486 STATS_SET_FREEABLE(cachep, i); 3487 } 3488 #endif 3489 spin_unlock(&n->list_lock); 3490 slabs_destroy(cachep, &list); 3491 ac->avail -= batchcount; 3492 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3493 } 3494 3495 /* 3496 * Release an obj back to its cache. If the obj has a constructed state, it must 3497 * be in this state _before_ it is released. Called with disabled ints. 3498 */ 3499 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3500 unsigned long caller) 3501 { 3502 /* Put the object into the quarantine, don't touch it for now. */ 3503 if (kasan_slab_free(cachep, objp)) 3504 return; 3505 3506 ___cache_free(cachep, objp, caller); 3507 } 3508 3509 void ___cache_free(struct kmem_cache *cachep, void *objp, 3510 unsigned long caller) 3511 { 3512 struct array_cache *ac = cpu_cache_get(cachep); 3513 3514 check_irq_off(); 3515 kmemleak_free_recursive(objp, cachep->flags); 3516 objp = cache_free_debugcheck(cachep, objp, caller); 3517 3518 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3519 3520 /* 3521 * Skip calling cache_free_alien() when the platform is not numa. 3522 * This will avoid cache misses that happen while accessing slabp (which 3523 * is per page memory reference) to get nodeid. Instead use a global 3524 * variable to skip the call, which is mostly likely to be present in 3525 * the cache. 3526 */ 3527 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3528 return; 3529 3530 if (ac->avail < ac->limit) { 3531 STATS_INC_FREEHIT(cachep); 3532 } else { 3533 STATS_INC_FREEMISS(cachep); 3534 cache_flusharray(cachep, ac); 3535 } 3536 3537 if (sk_memalloc_socks()) { 3538 struct page *page = virt_to_head_page(objp); 3539 3540 if (unlikely(PageSlabPfmemalloc(page))) { 3541 cache_free_pfmemalloc(cachep, page, objp); 3542 return; 3543 } 3544 } 3545 3546 ac->entry[ac->avail++] = objp; 3547 } 3548 3549 /** 3550 * kmem_cache_alloc - Allocate an object 3551 * @cachep: The cache to allocate from. 3552 * @flags: See kmalloc(). 3553 * 3554 * Allocate an object from this cache. The flags are only relevant 3555 * if the cache has no available objects. 3556 */ 3557 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3558 { 3559 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3560 3561 kasan_slab_alloc(cachep, ret, flags); 3562 trace_kmem_cache_alloc(_RET_IP_, ret, 3563 cachep->object_size, cachep->size, flags); 3564 3565 return ret; 3566 } 3567 EXPORT_SYMBOL(kmem_cache_alloc); 3568 3569 static __always_inline void 3570 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3571 size_t size, void **p, unsigned long caller) 3572 { 3573 size_t i; 3574 3575 for (i = 0; i < size; i++) 3576 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3577 } 3578 3579 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3580 void **p) 3581 { 3582 size_t i; 3583 3584 s = slab_pre_alloc_hook(s, flags); 3585 if (!s) 3586 return 0; 3587 3588 cache_alloc_debugcheck_before(s, flags); 3589 3590 local_irq_disable(); 3591 for (i = 0; i < size; i++) { 3592 void *objp = __do_cache_alloc(s, flags); 3593 3594 if (unlikely(!objp)) 3595 goto error; 3596 p[i] = objp; 3597 } 3598 local_irq_enable(); 3599 3600 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3601 3602 /* Clear memory outside IRQ disabled section */ 3603 if (unlikely(flags & __GFP_ZERO)) 3604 for (i = 0; i < size; i++) 3605 memset(p[i], 0, s->object_size); 3606 3607 slab_post_alloc_hook(s, flags, size, p); 3608 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3609 return size; 3610 error: 3611 local_irq_enable(); 3612 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3613 slab_post_alloc_hook(s, flags, i, p); 3614 __kmem_cache_free_bulk(s, i, p); 3615 return 0; 3616 } 3617 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3618 3619 #ifdef CONFIG_TRACING 3620 void * 3621 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3622 { 3623 void *ret; 3624 3625 ret = slab_alloc(cachep, flags, _RET_IP_); 3626 3627 kasan_kmalloc(cachep, ret, size, flags); 3628 trace_kmalloc(_RET_IP_, ret, 3629 size, cachep->size, flags); 3630 return ret; 3631 } 3632 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3633 #endif 3634 3635 #ifdef CONFIG_NUMA 3636 /** 3637 * kmem_cache_alloc_node - Allocate an object on the specified node 3638 * @cachep: The cache to allocate from. 3639 * @flags: See kmalloc(). 3640 * @nodeid: node number of the target node. 3641 * 3642 * Identical to kmem_cache_alloc but it will allocate memory on the given 3643 * node, which can improve the performance for cpu bound structures. 3644 * 3645 * Fallback to other node is possible if __GFP_THISNODE is not set. 3646 */ 3647 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3648 { 3649 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3650 3651 kasan_slab_alloc(cachep, ret, flags); 3652 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3653 cachep->object_size, cachep->size, 3654 flags, nodeid); 3655 3656 return ret; 3657 } 3658 EXPORT_SYMBOL(kmem_cache_alloc_node); 3659 3660 #ifdef CONFIG_TRACING 3661 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3662 gfp_t flags, 3663 int nodeid, 3664 size_t size) 3665 { 3666 void *ret; 3667 3668 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3669 3670 kasan_kmalloc(cachep, ret, size, flags); 3671 trace_kmalloc_node(_RET_IP_, ret, 3672 size, cachep->size, 3673 flags, nodeid); 3674 return ret; 3675 } 3676 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3677 #endif 3678 3679 static __always_inline void * 3680 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3681 { 3682 struct kmem_cache *cachep; 3683 void *ret; 3684 3685 cachep = kmalloc_slab(size, flags); 3686 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3687 return cachep; 3688 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3689 kasan_kmalloc(cachep, ret, size, flags); 3690 3691 return ret; 3692 } 3693 3694 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3695 { 3696 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3697 } 3698 EXPORT_SYMBOL(__kmalloc_node); 3699 3700 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3701 int node, unsigned long caller) 3702 { 3703 return __do_kmalloc_node(size, flags, node, caller); 3704 } 3705 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3706 #endif /* CONFIG_NUMA */ 3707 3708 /** 3709 * __do_kmalloc - allocate memory 3710 * @size: how many bytes of memory are required. 3711 * @flags: the type of memory to allocate (see kmalloc). 3712 * @caller: function caller for debug tracking of the caller 3713 */ 3714 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3715 unsigned long caller) 3716 { 3717 struct kmem_cache *cachep; 3718 void *ret; 3719 3720 cachep = kmalloc_slab(size, flags); 3721 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3722 return cachep; 3723 ret = slab_alloc(cachep, flags, caller); 3724 3725 kasan_kmalloc(cachep, ret, size, flags); 3726 trace_kmalloc(caller, ret, 3727 size, cachep->size, flags); 3728 3729 return ret; 3730 } 3731 3732 void *__kmalloc(size_t size, gfp_t flags) 3733 { 3734 return __do_kmalloc(size, flags, _RET_IP_); 3735 } 3736 EXPORT_SYMBOL(__kmalloc); 3737 3738 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3739 { 3740 return __do_kmalloc(size, flags, caller); 3741 } 3742 EXPORT_SYMBOL(__kmalloc_track_caller); 3743 3744 /** 3745 * kmem_cache_free - Deallocate an object 3746 * @cachep: The cache the allocation was from. 3747 * @objp: The previously allocated object. 3748 * 3749 * Free an object which was previously allocated from this 3750 * cache. 3751 */ 3752 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3753 { 3754 unsigned long flags; 3755 cachep = cache_from_obj(cachep, objp); 3756 if (!cachep) 3757 return; 3758 3759 local_irq_save(flags); 3760 debug_check_no_locks_freed(objp, cachep->object_size); 3761 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3762 debug_check_no_obj_freed(objp, cachep->object_size); 3763 __cache_free(cachep, objp, _RET_IP_); 3764 local_irq_restore(flags); 3765 3766 trace_kmem_cache_free(_RET_IP_, objp); 3767 } 3768 EXPORT_SYMBOL(kmem_cache_free); 3769 3770 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3771 { 3772 struct kmem_cache *s; 3773 size_t i; 3774 3775 local_irq_disable(); 3776 for (i = 0; i < size; i++) { 3777 void *objp = p[i]; 3778 3779 if (!orig_s) /* called via kfree_bulk */ 3780 s = virt_to_cache(objp); 3781 else 3782 s = cache_from_obj(orig_s, objp); 3783 3784 debug_check_no_locks_freed(objp, s->object_size); 3785 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3786 debug_check_no_obj_freed(objp, s->object_size); 3787 3788 __cache_free(s, objp, _RET_IP_); 3789 } 3790 local_irq_enable(); 3791 3792 /* FIXME: add tracing */ 3793 } 3794 EXPORT_SYMBOL(kmem_cache_free_bulk); 3795 3796 /** 3797 * kfree - free previously allocated memory 3798 * @objp: pointer returned by kmalloc. 3799 * 3800 * If @objp is NULL, no operation is performed. 3801 * 3802 * Don't free memory not originally allocated by kmalloc() 3803 * or you will run into trouble. 3804 */ 3805 void kfree(const void *objp) 3806 { 3807 struct kmem_cache *c; 3808 unsigned long flags; 3809 3810 trace_kfree(_RET_IP_, objp); 3811 3812 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3813 return; 3814 local_irq_save(flags); 3815 kfree_debugcheck(objp); 3816 c = virt_to_cache(objp); 3817 debug_check_no_locks_freed(objp, c->object_size); 3818 3819 debug_check_no_obj_freed(objp, c->object_size); 3820 __cache_free(c, (void *)objp, _RET_IP_); 3821 local_irq_restore(flags); 3822 } 3823 EXPORT_SYMBOL(kfree); 3824 3825 /* 3826 * This initializes kmem_cache_node or resizes various caches for all nodes. 3827 */ 3828 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3829 { 3830 int ret; 3831 int node; 3832 struct kmem_cache_node *n; 3833 3834 for_each_online_node(node) { 3835 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3836 if (ret) 3837 goto fail; 3838 3839 } 3840 3841 return 0; 3842 3843 fail: 3844 if (!cachep->list.next) { 3845 /* Cache is not active yet. Roll back what we did */ 3846 node--; 3847 while (node >= 0) { 3848 n = get_node(cachep, node); 3849 if (n) { 3850 kfree(n->shared); 3851 free_alien_cache(n->alien); 3852 kfree(n); 3853 cachep->node[node] = NULL; 3854 } 3855 node--; 3856 } 3857 } 3858 return -ENOMEM; 3859 } 3860 3861 /* Always called with the slab_mutex held */ 3862 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3863 int batchcount, int shared, gfp_t gfp) 3864 { 3865 struct array_cache __percpu *cpu_cache, *prev; 3866 int cpu; 3867 3868 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3869 if (!cpu_cache) 3870 return -ENOMEM; 3871 3872 prev = cachep->cpu_cache; 3873 cachep->cpu_cache = cpu_cache; 3874 kick_all_cpus_sync(); 3875 3876 check_irq_on(); 3877 cachep->batchcount = batchcount; 3878 cachep->limit = limit; 3879 cachep->shared = shared; 3880 3881 if (!prev) 3882 goto setup_node; 3883 3884 for_each_online_cpu(cpu) { 3885 LIST_HEAD(list); 3886 int node; 3887 struct kmem_cache_node *n; 3888 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3889 3890 node = cpu_to_mem(cpu); 3891 n = get_node(cachep, node); 3892 spin_lock_irq(&n->list_lock); 3893 free_block(cachep, ac->entry, ac->avail, node, &list); 3894 spin_unlock_irq(&n->list_lock); 3895 slabs_destroy(cachep, &list); 3896 } 3897 free_percpu(prev); 3898 3899 setup_node: 3900 return setup_kmem_cache_nodes(cachep, gfp); 3901 } 3902 3903 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3904 int batchcount, int shared, gfp_t gfp) 3905 { 3906 int ret; 3907 struct kmem_cache *c; 3908 3909 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3910 3911 if (slab_state < FULL) 3912 return ret; 3913 3914 if ((ret < 0) || !is_root_cache(cachep)) 3915 return ret; 3916 3917 lockdep_assert_held(&slab_mutex); 3918 for_each_memcg_cache(c, cachep) { 3919 /* return value determined by the root cache only */ 3920 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3921 } 3922 3923 return ret; 3924 } 3925 3926 /* Called with slab_mutex held always */ 3927 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3928 { 3929 int err; 3930 int limit = 0; 3931 int shared = 0; 3932 int batchcount = 0; 3933 3934 err = cache_random_seq_create(cachep, cachep->num, gfp); 3935 if (err) 3936 goto end; 3937 3938 if (!is_root_cache(cachep)) { 3939 struct kmem_cache *root = memcg_root_cache(cachep); 3940 limit = root->limit; 3941 shared = root->shared; 3942 batchcount = root->batchcount; 3943 } 3944 3945 if (limit && shared && batchcount) 3946 goto skip_setup; 3947 /* 3948 * The head array serves three purposes: 3949 * - create a LIFO ordering, i.e. return objects that are cache-warm 3950 * - reduce the number of spinlock operations. 3951 * - reduce the number of linked list operations on the slab and 3952 * bufctl chains: array operations are cheaper. 3953 * The numbers are guessed, we should auto-tune as described by 3954 * Bonwick. 3955 */ 3956 if (cachep->size > 131072) 3957 limit = 1; 3958 else if (cachep->size > PAGE_SIZE) 3959 limit = 8; 3960 else if (cachep->size > 1024) 3961 limit = 24; 3962 else if (cachep->size > 256) 3963 limit = 54; 3964 else 3965 limit = 120; 3966 3967 /* 3968 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3969 * allocation behaviour: Most allocs on one cpu, most free operations 3970 * on another cpu. For these cases, an efficient object passing between 3971 * cpus is necessary. This is provided by a shared array. The array 3972 * replaces Bonwick's magazine layer. 3973 * On uniprocessor, it's functionally equivalent (but less efficient) 3974 * to a larger limit. Thus disabled by default. 3975 */ 3976 shared = 0; 3977 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3978 shared = 8; 3979 3980 #if DEBUG 3981 /* 3982 * With debugging enabled, large batchcount lead to excessively long 3983 * periods with disabled local interrupts. Limit the batchcount 3984 */ 3985 if (limit > 32) 3986 limit = 32; 3987 #endif 3988 batchcount = (limit + 1) / 2; 3989 skip_setup: 3990 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3991 end: 3992 if (err) 3993 pr_err("enable_cpucache failed for %s, error %d\n", 3994 cachep->name, -err); 3995 return err; 3996 } 3997 3998 /* 3999 * Drain an array if it contains any elements taking the node lock only if 4000 * necessary. Note that the node listlock also protects the array_cache 4001 * if drain_array() is used on the shared array. 4002 */ 4003 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 4004 struct array_cache *ac, int node) 4005 { 4006 LIST_HEAD(list); 4007 4008 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 4009 check_mutex_acquired(); 4010 4011 if (!ac || !ac->avail) 4012 return; 4013 4014 if (ac->touched) { 4015 ac->touched = 0; 4016 return; 4017 } 4018 4019 spin_lock_irq(&n->list_lock); 4020 drain_array_locked(cachep, ac, node, false, &list); 4021 spin_unlock_irq(&n->list_lock); 4022 4023 slabs_destroy(cachep, &list); 4024 } 4025 4026 /** 4027 * cache_reap - Reclaim memory from caches. 4028 * @w: work descriptor 4029 * 4030 * Called from workqueue/eventd every few seconds. 4031 * Purpose: 4032 * - clear the per-cpu caches for this CPU. 4033 * - return freeable pages to the main free memory pool. 4034 * 4035 * If we cannot acquire the cache chain mutex then just give up - we'll try 4036 * again on the next iteration. 4037 */ 4038 static void cache_reap(struct work_struct *w) 4039 { 4040 struct kmem_cache *searchp; 4041 struct kmem_cache_node *n; 4042 int node = numa_mem_id(); 4043 struct delayed_work *work = to_delayed_work(w); 4044 4045 if (!mutex_trylock(&slab_mutex)) 4046 /* Give up. Setup the next iteration. */ 4047 goto out; 4048 4049 list_for_each_entry(searchp, &slab_caches, list) { 4050 check_irq_on(); 4051 4052 /* 4053 * We only take the node lock if absolutely necessary and we 4054 * have established with reasonable certainty that 4055 * we can do some work if the lock was obtained. 4056 */ 4057 n = get_node(searchp, node); 4058 4059 reap_alien(searchp, n); 4060 4061 drain_array(searchp, n, cpu_cache_get(searchp), node); 4062 4063 /* 4064 * These are racy checks but it does not matter 4065 * if we skip one check or scan twice. 4066 */ 4067 if (time_after(n->next_reap, jiffies)) 4068 goto next; 4069 4070 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4071 4072 drain_array(searchp, n, n->shared, node); 4073 4074 if (n->free_touched) 4075 n->free_touched = 0; 4076 else { 4077 int freed; 4078 4079 freed = drain_freelist(searchp, n, (n->free_limit + 4080 5 * searchp->num - 1) / (5 * searchp->num)); 4081 STATS_ADD_REAPED(searchp, freed); 4082 } 4083 next: 4084 cond_resched(); 4085 } 4086 check_irq_on(); 4087 mutex_unlock(&slab_mutex); 4088 next_reap_node(); 4089 out: 4090 /* Set up the next iteration */ 4091 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 4092 } 4093 4094 #ifdef CONFIG_SLABINFO 4095 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4096 { 4097 struct page *page; 4098 unsigned long active_objs; 4099 unsigned long num_objs; 4100 unsigned long active_slabs = 0; 4101 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4102 const char *name; 4103 char *error = NULL; 4104 int node; 4105 struct kmem_cache_node *n; 4106 4107 active_objs = 0; 4108 num_slabs = 0; 4109 for_each_kmem_cache_node(cachep, node, n) { 4110 4111 check_irq_on(); 4112 spin_lock_irq(&n->list_lock); 4113 4114 list_for_each_entry(page, &n->slabs_full, lru) { 4115 if (page->active != cachep->num && !error) 4116 error = "slabs_full accounting error"; 4117 active_objs += cachep->num; 4118 active_slabs++; 4119 } 4120 list_for_each_entry(page, &n->slabs_partial, lru) { 4121 if (page->active == cachep->num && !error) 4122 error = "slabs_partial accounting error"; 4123 if (!page->active && !error) 4124 error = "slabs_partial accounting error"; 4125 active_objs += page->active; 4126 active_slabs++; 4127 } 4128 list_for_each_entry(page, &n->slabs_free, lru) { 4129 if (page->active && !error) 4130 error = "slabs_free accounting error"; 4131 num_slabs++; 4132 } 4133 free_objects += n->free_objects; 4134 if (n->shared) 4135 shared_avail += n->shared->avail; 4136 4137 spin_unlock_irq(&n->list_lock); 4138 } 4139 num_slabs += active_slabs; 4140 num_objs = num_slabs * cachep->num; 4141 if (num_objs - active_objs != free_objects && !error) 4142 error = "free_objects accounting error"; 4143 4144 name = cachep->name; 4145 if (error) 4146 pr_err("slab: cache %s error: %s\n", name, error); 4147 4148 sinfo->active_objs = active_objs; 4149 sinfo->num_objs = num_objs; 4150 sinfo->active_slabs = active_slabs; 4151 sinfo->num_slabs = num_slabs; 4152 sinfo->shared_avail = shared_avail; 4153 sinfo->limit = cachep->limit; 4154 sinfo->batchcount = cachep->batchcount; 4155 sinfo->shared = cachep->shared; 4156 sinfo->objects_per_slab = cachep->num; 4157 sinfo->cache_order = cachep->gfporder; 4158 } 4159 4160 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4161 { 4162 #if STATS 4163 { /* node stats */ 4164 unsigned long high = cachep->high_mark; 4165 unsigned long allocs = cachep->num_allocations; 4166 unsigned long grown = cachep->grown; 4167 unsigned long reaped = cachep->reaped; 4168 unsigned long errors = cachep->errors; 4169 unsigned long max_freeable = cachep->max_freeable; 4170 unsigned long node_allocs = cachep->node_allocs; 4171 unsigned long node_frees = cachep->node_frees; 4172 unsigned long overflows = cachep->node_overflow; 4173 4174 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4175 allocs, high, grown, 4176 reaped, errors, max_freeable, node_allocs, 4177 node_frees, overflows); 4178 } 4179 /* cpu stats */ 4180 { 4181 unsigned long allochit = atomic_read(&cachep->allochit); 4182 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4183 unsigned long freehit = atomic_read(&cachep->freehit); 4184 unsigned long freemiss = atomic_read(&cachep->freemiss); 4185 4186 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4187 allochit, allocmiss, freehit, freemiss); 4188 } 4189 #endif 4190 } 4191 4192 #define MAX_SLABINFO_WRITE 128 4193 /** 4194 * slabinfo_write - Tuning for the slab allocator 4195 * @file: unused 4196 * @buffer: user buffer 4197 * @count: data length 4198 * @ppos: unused 4199 */ 4200 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4201 size_t count, loff_t *ppos) 4202 { 4203 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4204 int limit, batchcount, shared, res; 4205 struct kmem_cache *cachep; 4206 4207 if (count > MAX_SLABINFO_WRITE) 4208 return -EINVAL; 4209 if (copy_from_user(&kbuf, buffer, count)) 4210 return -EFAULT; 4211 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4212 4213 tmp = strchr(kbuf, ' '); 4214 if (!tmp) 4215 return -EINVAL; 4216 *tmp = '\0'; 4217 tmp++; 4218 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4219 return -EINVAL; 4220 4221 /* Find the cache in the chain of caches. */ 4222 mutex_lock(&slab_mutex); 4223 res = -EINVAL; 4224 list_for_each_entry(cachep, &slab_caches, list) { 4225 if (!strcmp(cachep->name, kbuf)) { 4226 if (limit < 1 || batchcount < 1 || 4227 batchcount > limit || shared < 0) { 4228 res = 0; 4229 } else { 4230 res = do_tune_cpucache(cachep, limit, 4231 batchcount, shared, 4232 GFP_KERNEL); 4233 } 4234 break; 4235 } 4236 } 4237 mutex_unlock(&slab_mutex); 4238 if (res >= 0) 4239 res = count; 4240 return res; 4241 } 4242 4243 #ifdef CONFIG_DEBUG_SLAB_LEAK 4244 4245 static inline int add_caller(unsigned long *n, unsigned long v) 4246 { 4247 unsigned long *p; 4248 int l; 4249 if (!v) 4250 return 1; 4251 l = n[1]; 4252 p = n + 2; 4253 while (l) { 4254 int i = l/2; 4255 unsigned long *q = p + 2 * i; 4256 if (*q == v) { 4257 q[1]++; 4258 return 1; 4259 } 4260 if (*q > v) { 4261 l = i; 4262 } else { 4263 p = q + 2; 4264 l -= i + 1; 4265 } 4266 } 4267 if (++n[1] == n[0]) 4268 return 0; 4269 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4270 p[0] = v; 4271 p[1] = 1; 4272 return 1; 4273 } 4274 4275 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4276 struct page *page) 4277 { 4278 void *p; 4279 int i, j; 4280 unsigned long v; 4281 4282 if (n[0] == n[1]) 4283 return; 4284 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4285 bool active = true; 4286 4287 for (j = page->active; j < c->num; j++) { 4288 if (get_free_obj(page, j) == i) { 4289 active = false; 4290 break; 4291 } 4292 } 4293 4294 if (!active) 4295 continue; 4296 4297 /* 4298 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4299 * mapping is established when actual object allocation and 4300 * we could mistakenly access the unmapped object in the cpu 4301 * cache. 4302 */ 4303 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4304 continue; 4305 4306 if (!add_caller(n, v)) 4307 return; 4308 } 4309 } 4310 4311 static void show_symbol(struct seq_file *m, unsigned long address) 4312 { 4313 #ifdef CONFIG_KALLSYMS 4314 unsigned long offset, size; 4315 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4316 4317 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4318 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4319 if (modname[0]) 4320 seq_printf(m, " [%s]", modname); 4321 return; 4322 } 4323 #endif 4324 seq_printf(m, "%p", (void *)address); 4325 } 4326 4327 static int leaks_show(struct seq_file *m, void *p) 4328 { 4329 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4330 struct page *page; 4331 struct kmem_cache_node *n; 4332 const char *name; 4333 unsigned long *x = m->private; 4334 int node; 4335 int i; 4336 4337 if (!(cachep->flags & SLAB_STORE_USER)) 4338 return 0; 4339 if (!(cachep->flags & SLAB_RED_ZONE)) 4340 return 0; 4341 4342 /* 4343 * Set store_user_clean and start to grab stored user information 4344 * for all objects on this cache. If some alloc/free requests comes 4345 * during the processing, information would be wrong so restart 4346 * whole processing. 4347 */ 4348 do { 4349 set_store_user_clean(cachep); 4350 drain_cpu_caches(cachep); 4351 4352 x[1] = 0; 4353 4354 for_each_kmem_cache_node(cachep, node, n) { 4355 4356 check_irq_on(); 4357 spin_lock_irq(&n->list_lock); 4358 4359 list_for_each_entry(page, &n->slabs_full, lru) 4360 handle_slab(x, cachep, page); 4361 list_for_each_entry(page, &n->slabs_partial, lru) 4362 handle_slab(x, cachep, page); 4363 spin_unlock_irq(&n->list_lock); 4364 } 4365 } while (!is_store_user_clean(cachep)); 4366 4367 name = cachep->name; 4368 if (x[0] == x[1]) { 4369 /* Increase the buffer size */ 4370 mutex_unlock(&slab_mutex); 4371 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4372 if (!m->private) { 4373 /* Too bad, we are really out */ 4374 m->private = x; 4375 mutex_lock(&slab_mutex); 4376 return -ENOMEM; 4377 } 4378 *(unsigned long *)m->private = x[0] * 2; 4379 kfree(x); 4380 mutex_lock(&slab_mutex); 4381 /* Now make sure this entry will be retried */ 4382 m->count = m->size; 4383 return 0; 4384 } 4385 for (i = 0; i < x[1]; i++) { 4386 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4387 show_symbol(m, x[2*i+2]); 4388 seq_putc(m, '\n'); 4389 } 4390 4391 return 0; 4392 } 4393 4394 static const struct seq_operations slabstats_op = { 4395 .start = slab_start, 4396 .next = slab_next, 4397 .stop = slab_stop, 4398 .show = leaks_show, 4399 }; 4400 4401 static int slabstats_open(struct inode *inode, struct file *file) 4402 { 4403 unsigned long *n; 4404 4405 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4406 if (!n) 4407 return -ENOMEM; 4408 4409 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4410 4411 return 0; 4412 } 4413 4414 static const struct file_operations proc_slabstats_operations = { 4415 .open = slabstats_open, 4416 .read = seq_read, 4417 .llseek = seq_lseek, 4418 .release = seq_release_private, 4419 }; 4420 #endif 4421 4422 static int __init slab_proc_init(void) 4423 { 4424 #ifdef CONFIG_DEBUG_SLAB_LEAK 4425 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4426 #endif 4427 return 0; 4428 } 4429 module_init(slab_proc_init); 4430 #endif 4431 4432 #ifdef CONFIG_HARDENED_USERCOPY 4433 /* 4434 * Rejects objects that are incorrectly sized. 4435 * 4436 * Returns NULL if check passes, otherwise const char * to name of cache 4437 * to indicate an error. 4438 */ 4439 const char *__check_heap_object(const void *ptr, unsigned long n, 4440 struct page *page) 4441 { 4442 struct kmem_cache *cachep; 4443 unsigned int objnr; 4444 unsigned long offset; 4445 4446 /* Find and validate object. */ 4447 cachep = page->slab_cache; 4448 objnr = obj_to_index(cachep, page, (void *)ptr); 4449 BUG_ON(objnr >= cachep->num); 4450 4451 /* Find offset within object. */ 4452 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4453 4454 /* Allow address range falling entirely within object size. */ 4455 if (offset <= cachep->object_size && n <= cachep->object_size - offset) 4456 return NULL; 4457 4458 return cachep->name; 4459 } 4460 #endif /* CONFIG_HARDENED_USERCOPY */ 4461 4462 /** 4463 * ksize - get the actual amount of memory allocated for a given object 4464 * @objp: Pointer to the object 4465 * 4466 * kmalloc may internally round up allocations and return more memory 4467 * than requested. ksize() can be used to determine the actual amount of 4468 * memory allocated. The caller may use this additional memory, even though 4469 * a smaller amount of memory was initially specified with the kmalloc call. 4470 * The caller must guarantee that objp points to a valid object previously 4471 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4472 * must not be freed during the duration of the call. 4473 */ 4474 size_t ksize(const void *objp) 4475 { 4476 size_t size; 4477 4478 BUG_ON(!objp); 4479 if (unlikely(objp == ZERO_SIZE_PTR)) 4480 return 0; 4481 4482 size = virt_to_cache(objp)->object_size; 4483 /* We assume that ksize callers could use the whole allocated area, 4484 * so we need to unpoison this area. 4485 */ 4486 kasan_unpoison_shadow(objp, size); 4487 4488 return size; 4489 } 4490 EXPORT_SYMBOL(ksize); 4491