xref: /openbmc/linux/mm/slab.c (revision 6b66a6f2)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * struct array_cache
173  *
174  * Purpose:
175  * - LIFO ordering, to hand out cache-warm objects from _alloc
176  * - reduce the number of linked list operations
177  * - reduce spinlock operations
178  *
179  * The limit is stored in the per-cpu structure to reduce the data cache
180  * footprint.
181  *
182  */
183 struct array_cache {
184 	unsigned int avail;
185 	unsigned int limit;
186 	unsigned int batchcount;
187 	unsigned int touched;
188 	void *entry[];	/*
189 			 * Must have this definition in here for the proper
190 			 * alignment of array_cache. Also simplifies accessing
191 			 * the entries.
192 			 */
193 };
194 
195 struct alien_cache {
196 	spinlock_t lock;
197 	struct array_cache ac;
198 };
199 
200 /*
201  * Need this for bootstrapping a per node allocator.
202  */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define	CACHE_CACHE 0
206 #define	SIZE_NODE (MAX_NUMNODES)
207 
208 static int drain_freelist(struct kmem_cache *cache,
209 			struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 			int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215 
216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 						void **list);
218 static inline void fixup_slab_list(struct kmem_cache *cachep,
219 				struct kmem_cache_node *n, struct page *page,
220 				void **list);
221 static int slab_early_init = 1;
222 
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
224 
225 static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 {
227 	INIT_LIST_HEAD(&parent->slabs_full);
228 	INIT_LIST_HEAD(&parent->slabs_partial);
229 	INIT_LIST_HEAD(&parent->slabs_free);
230 	parent->total_slabs = 0;
231 	parent->free_slabs = 0;
232 	parent->shared = NULL;
233 	parent->alien = NULL;
234 	parent->colour_next = 0;
235 	spin_lock_init(&parent->list_lock);
236 	parent->free_objects = 0;
237 	parent->free_touched = 0;
238 }
239 
240 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
241 	do {								\
242 		INIT_LIST_HEAD(listp);					\
243 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
244 	} while (0)
245 
246 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
247 	do {								\
248 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
249 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
250 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
251 	} while (0)
252 
253 #define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
254 #define CFLGS_OFF_SLAB		(0x80000000UL)
255 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
256 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
257 
258 #define BATCHREFILL_LIMIT	16
259 /*
260  * Optimization question: fewer reaps means less probability for unnessary
261  * cpucache drain/refill cycles.
262  *
263  * OTOH the cpuarrays can contain lots of objects,
264  * which could lock up otherwise freeable slabs.
265  */
266 #define REAPTIMEOUT_AC		(2*HZ)
267 #define REAPTIMEOUT_NODE	(4*HZ)
268 
269 #if STATS
270 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
271 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
272 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
273 #define	STATS_INC_GROWN(x)	((x)->grown++)
274 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
275 #define	STATS_SET_HIGH(x)						\
276 	do {								\
277 		if ((x)->num_active > (x)->high_mark)			\
278 			(x)->high_mark = (x)->num_active;		\
279 	} while (0)
280 #define	STATS_INC_ERR(x)	((x)->errors++)
281 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
282 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
283 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
284 #define	STATS_SET_FREEABLE(x, i)					\
285 	do {								\
286 		if ((x)->max_freeable < i)				\
287 			(x)->max_freeable = i;				\
288 	} while (0)
289 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
290 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
291 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
292 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
293 #else
294 #define	STATS_INC_ACTIVE(x)	do { } while (0)
295 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
296 #define	STATS_INC_ALLOCED(x)	do { } while (0)
297 #define	STATS_INC_GROWN(x)	do { } while (0)
298 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
299 #define	STATS_SET_HIGH(x)	do { } while (0)
300 #define	STATS_INC_ERR(x)	do { } while (0)
301 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
302 #define	STATS_INC_NODEFREES(x)	do { } while (0)
303 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
304 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
305 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
306 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
307 #define STATS_INC_FREEHIT(x)	do { } while (0)
308 #define STATS_INC_FREEMISS(x)	do { } while (0)
309 #endif
310 
311 #if DEBUG
312 
313 /*
314  * memory layout of objects:
315  * 0		: objp
316  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
317  * 		the end of an object is aligned with the end of the real
318  * 		allocation. Catches writes behind the end of the allocation.
319  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
320  * 		redzone word.
321  * cachep->obj_offset: The real object.
322  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
323  * cachep->size - 1* BYTES_PER_WORD: last caller address
324  *					[BYTES_PER_WORD long]
325  */
326 static int obj_offset(struct kmem_cache *cachep)
327 {
328 	return cachep->obj_offset;
329 }
330 
331 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
332 {
333 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 	return (unsigned long long*) (objp + obj_offset(cachep) -
335 				      sizeof(unsigned long long));
336 }
337 
338 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
339 {
340 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
341 	if (cachep->flags & SLAB_STORE_USER)
342 		return (unsigned long long *)(objp + cachep->size -
343 					      sizeof(unsigned long long) -
344 					      REDZONE_ALIGN);
345 	return (unsigned long long *) (objp + cachep->size -
346 				       sizeof(unsigned long long));
347 }
348 
349 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
350 {
351 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
352 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
353 }
354 
355 #else
356 
357 #define obj_offset(x)			0
358 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
359 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
360 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
361 
362 #endif
363 
364 #ifdef CONFIG_DEBUG_SLAB_LEAK
365 
366 static inline bool is_store_user_clean(struct kmem_cache *cachep)
367 {
368 	return atomic_read(&cachep->store_user_clean) == 1;
369 }
370 
371 static inline void set_store_user_clean(struct kmem_cache *cachep)
372 {
373 	atomic_set(&cachep->store_user_clean, 1);
374 }
375 
376 static inline void set_store_user_dirty(struct kmem_cache *cachep)
377 {
378 	if (is_store_user_clean(cachep))
379 		atomic_set(&cachep->store_user_clean, 0);
380 }
381 
382 #else
383 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
384 
385 #endif
386 
387 /*
388  * Do not go above this order unless 0 objects fit into the slab or
389  * overridden on the command line.
390  */
391 #define	SLAB_MAX_ORDER_HI	1
392 #define	SLAB_MAX_ORDER_LO	0
393 static int slab_max_order = SLAB_MAX_ORDER_LO;
394 static bool slab_max_order_set __initdata;
395 
396 static inline struct kmem_cache *virt_to_cache(const void *obj)
397 {
398 	struct page *page = virt_to_head_page(obj);
399 	return page->slab_cache;
400 }
401 
402 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
403 				 unsigned int idx)
404 {
405 	return page->s_mem + cache->size * idx;
406 }
407 
408 /*
409  * We want to avoid an expensive divide : (offset / cache->size)
410  *   Using the fact that size is a constant for a particular cache,
411  *   we can replace (offset / cache->size) by
412  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
413  */
414 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
415 					const struct page *page, void *obj)
416 {
417 	u32 offset = (obj - page->s_mem);
418 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
419 }
420 
421 #define BOOT_CPUCACHE_ENTRIES	1
422 /* internal cache of cache description objs */
423 static struct kmem_cache kmem_cache_boot = {
424 	.batchcount = 1,
425 	.limit = BOOT_CPUCACHE_ENTRIES,
426 	.shared = 1,
427 	.size = sizeof(struct kmem_cache),
428 	.name = "kmem_cache",
429 };
430 
431 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
432 
433 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
434 {
435 	return this_cpu_ptr(cachep->cpu_cache);
436 }
437 
438 /*
439  * Calculate the number of objects and left-over bytes for a given buffer size.
440  */
441 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
442 		unsigned long flags, size_t *left_over)
443 {
444 	unsigned int num;
445 	size_t slab_size = PAGE_SIZE << gfporder;
446 
447 	/*
448 	 * The slab management structure can be either off the slab or
449 	 * on it. For the latter case, the memory allocated for a
450 	 * slab is used for:
451 	 *
452 	 * - @buffer_size bytes for each object
453 	 * - One freelist_idx_t for each object
454 	 *
455 	 * We don't need to consider alignment of freelist because
456 	 * freelist will be at the end of slab page. The objects will be
457 	 * at the correct alignment.
458 	 *
459 	 * If the slab management structure is off the slab, then the
460 	 * alignment will already be calculated into the size. Because
461 	 * the slabs are all pages aligned, the objects will be at the
462 	 * correct alignment when allocated.
463 	 */
464 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
465 		num = slab_size / buffer_size;
466 		*left_over = slab_size % buffer_size;
467 	} else {
468 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
469 		*left_over = slab_size %
470 			(buffer_size + sizeof(freelist_idx_t));
471 	}
472 
473 	return num;
474 }
475 
476 #if DEBUG
477 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
478 
479 static void __slab_error(const char *function, struct kmem_cache *cachep,
480 			char *msg)
481 {
482 	pr_err("slab error in %s(): cache `%s': %s\n",
483 	       function, cachep->name, msg);
484 	dump_stack();
485 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
486 }
487 #endif
488 
489 /*
490  * By default on NUMA we use alien caches to stage the freeing of
491  * objects allocated from other nodes. This causes massive memory
492  * inefficiencies when using fake NUMA setup to split memory into a
493  * large number of small nodes, so it can be disabled on the command
494  * line
495   */
496 
497 static int use_alien_caches __read_mostly = 1;
498 static int __init noaliencache_setup(char *s)
499 {
500 	use_alien_caches = 0;
501 	return 1;
502 }
503 __setup("noaliencache", noaliencache_setup);
504 
505 static int __init slab_max_order_setup(char *str)
506 {
507 	get_option(&str, &slab_max_order);
508 	slab_max_order = slab_max_order < 0 ? 0 :
509 				min(slab_max_order, MAX_ORDER - 1);
510 	slab_max_order_set = true;
511 
512 	return 1;
513 }
514 __setup("slab_max_order=", slab_max_order_setup);
515 
516 #ifdef CONFIG_NUMA
517 /*
518  * Special reaping functions for NUMA systems called from cache_reap().
519  * These take care of doing round robin flushing of alien caches (containing
520  * objects freed on different nodes from which they were allocated) and the
521  * flushing of remote pcps by calling drain_node_pages.
522  */
523 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
524 
525 static void init_reap_node(int cpu)
526 {
527 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
528 						    node_online_map);
529 }
530 
531 static void next_reap_node(void)
532 {
533 	int node = __this_cpu_read(slab_reap_node);
534 
535 	node = next_node_in(node, node_online_map);
536 	__this_cpu_write(slab_reap_node, node);
537 }
538 
539 #else
540 #define init_reap_node(cpu) do { } while (0)
541 #define next_reap_node(void) do { } while (0)
542 #endif
543 
544 /*
545  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
546  * via the workqueue/eventd.
547  * Add the CPU number into the expiration time to minimize the possibility of
548  * the CPUs getting into lockstep and contending for the global cache chain
549  * lock.
550  */
551 static void start_cpu_timer(int cpu)
552 {
553 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
554 
555 	if (reap_work->work.func == NULL) {
556 		init_reap_node(cpu);
557 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
558 		schedule_delayed_work_on(cpu, reap_work,
559 					__round_jiffies_relative(HZ, cpu));
560 	}
561 }
562 
563 static void init_arraycache(struct array_cache *ac, int limit, int batch)
564 {
565 	/*
566 	 * The array_cache structures contain pointers to free object.
567 	 * However, when such objects are allocated or transferred to another
568 	 * cache the pointers are not cleared and they could be counted as
569 	 * valid references during a kmemleak scan. Therefore, kmemleak must
570 	 * not scan such objects.
571 	 */
572 	kmemleak_no_scan(ac);
573 	if (ac) {
574 		ac->avail = 0;
575 		ac->limit = limit;
576 		ac->batchcount = batch;
577 		ac->touched = 0;
578 	}
579 }
580 
581 static struct array_cache *alloc_arraycache(int node, int entries,
582 					    int batchcount, gfp_t gfp)
583 {
584 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
585 	struct array_cache *ac = NULL;
586 
587 	ac = kmalloc_node(memsize, gfp, node);
588 	init_arraycache(ac, entries, batchcount);
589 	return ac;
590 }
591 
592 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
593 					struct page *page, void *objp)
594 {
595 	struct kmem_cache_node *n;
596 	int page_node;
597 	LIST_HEAD(list);
598 
599 	page_node = page_to_nid(page);
600 	n = get_node(cachep, page_node);
601 
602 	spin_lock(&n->list_lock);
603 	free_block(cachep, &objp, 1, page_node, &list);
604 	spin_unlock(&n->list_lock);
605 
606 	slabs_destroy(cachep, &list);
607 }
608 
609 /*
610  * Transfer objects in one arraycache to another.
611  * Locking must be handled by the caller.
612  *
613  * Return the number of entries transferred.
614  */
615 static int transfer_objects(struct array_cache *to,
616 		struct array_cache *from, unsigned int max)
617 {
618 	/* Figure out how many entries to transfer */
619 	int nr = min3(from->avail, max, to->limit - to->avail);
620 
621 	if (!nr)
622 		return 0;
623 
624 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
625 			sizeof(void *) *nr);
626 
627 	from->avail -= nr;
628 	to->avail += nr;
629 	return nr;
630 }
631 
632 #ifndef CONFIG_NUMA
633 
634 #define drain_alien_cache(cachep, alien) do { } while (0)
635 #define reap_alien(cachep, n) do { } while (0)
636 
637 static inline struct alien_cache **alloc_alien_cache(int node,
638 						int limit, gfp_t gfp)
639 {
640 	return NULL;
641 }
642 
643 static inline void free_alien_cache(struct alien_cache **ac_ptr)
644 {
645 }
646 
647 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
648 {
649 	return 0;
650 }
651 
652 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
653 		gfp_t flags)
654 {
655 	return NULL;
656 }
657 
658 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
659 		 gfp_t flags, int nodeid)
660 {
661 	return NULL;
662 }
663 
664 static inline gfp_t gfp_exact_node(gfp_t flags)
665 {
666 	return flags & ~__GFP_NOFAIL;
667 }
668 
669 #else	/* CONFIG_NUMA */
670 
671 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
672 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
673 
674 static struct alien_cache *__alloc_alien_cache(int node, int entries,
675 						int batch, gfp_t gfp)
676 {
677 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
678 	struct alien_cache *alc = NULL;
679 
680 	alc = kmalloc_node(memsize, gfp, node);
681 	init_arraycache(&alc->ac, entries, batch);
682 	spin_lock_init(&alc->lock);
683 	return alc;
684 }
685 
686 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
687 {
688 	struct alien_cache **alc_ptr;
689 	size_t memsize = sizeof(void *) * nr_node_ids;
690 	int i;
691 
692 	if (limit > 1)
693 		limit = 12;
694 	alc_ptr = kzalloc_node(memsize, gfp, node);
695 	if (!alc_ptr)
696 		return NULL;
697 
698 	for_each_node(i) {
699 		if (i == node || !node_online(i))
700 			continue;
701 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
702 		if (!alc_ptr[i]) {
703 			for (i--; i >= 0; i--)
704 				kfree(alc_ptr[i]);
705 			kfree(alc_ptr);
706 			return NULL;
707 		}
708 	}
709 	return alc_ptr;
710 }
711 
712 static void free_alien_cache(struct alien_cache **alc_ptr)
713 {
714 	int i;
715 
716 	if (!alc_ptr)
717 		return;
718 	for_each_node(i)
719 	    kfree(alc_ptr[i]);
720 	kfree(alc_ptr);
721 }
722 
723 static void __drain_alien_cache(struct kmem_cache *cachep,
724 				struct array_cache *ac, int node,
725 				struct list_head *list)
726 {
727 	struct kmem_cache_node *n = get_node(cachep, node);
728 
729 	if (ac->avail) {
730 		spin_lock(&n->list_lock);
731 		/*
732 		 * Stuff objects into the remote nodes shared array first.
733 		 * That way we could avoid the overhead of putting the objects
734 		 * into the free lists and getting them back later.
735 		 */
736 		if (n->shared)
737 			transfer_objects(n->shared, ac, ac->limit);
738 
739 		free_block(cachep, ac->entry, ac->avail, node, list);
740 		ac->avail = 0;
741 		spin_unlock(&n->list_lock);
742 	}
743 }
744 
745 /*
746  * Called from cache_reap() to regularly drain alien caches round robin.
747  */
748 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
749 {
750 	int node = __this_cpu_read(slab_reap_node);
751 
752 	if (n->alien) {
753 		struct alien_cache *alc = n->alien[node];
754 		struct array_cache *ac;
755 
756 		if (alc) {
757 			ac = &alc->ac;
758 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
759 				LIST_HEAD(list);
760 
761 				__drain_alien_cache(cachep, ac, node, &list);
762 				spin_unlock_irq(&alc->lock);
763 				slabs_destroy(cachep, &list);
764 			}
765 		}
766 	}
767 }
768 
769 static void drain_alien_cache(struct kmem_cache *cachep,
770 				struct alien_cache **alien)
771 {
772 	int i = 0;
773 	struct alien_cache *alc;
774 	struct array_cache *ac;
775 	unsigned long flags;
776 
777 	for_each_online_node(i) {
778 		alc = alien[i];
779 		if (alc) {
780 			LIST_HEAD(list);
781 
782 			ac = &alc->ac;
783 			spin_lock_irqsave(&alc->lock, flags);
784 			__drain_alien_cache(cachep, ac, i, &list);
785 			spin_unlock_irqrestore(&alc->lock, flags);
786 			slabs_destroy(cachep, &list);
787 		}
788 	}
789 }
790 
791 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
792 				int node, int page_node)
793 {
794 	struct kmem_cache_node *n;
795 	struct alien_cache *alien = NULL;
796 	struct array_cache *ac;
797 	LIST_HEAD(list);
798 
799 	n = get_node(cachep, node);
800 	STATS_INC_NODEFREES(cachep);
801 	if (n->alien && n->alien[page_node]) {
802 		alien = n->alien[page_node];
803 		ac = &alien->ac;
804 		spin_lock(&alien->lock);
805 		if (unlikely(ac->avail == ac->limit)) {
806 			STATS_INC_ACOVERFLOW(cachep);
807 			__drain_alien_cache(cachep, ac, page_node, &list);
808 		}
809 		ac->entry[ac->avail++] = objp;
810 		spin_unlock(&alien->lock);
811 		slabs_destroy(cachep, &list);
812 	} else {
813 		n = get_node(cachep, page_node);
814 		spin_lock(&n->list_lock);
815 		free_block(cachep, &objp, 1, page_node, &list);
816 		spin_unlock(&n->list_lock);
817 		slabs_destroy(cachep, &list);
818 	}
819 	return 1;
820 }
821 
822 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
823 {
824 	int page_node = page_to_nid(virt_to_page(objp));
825 	int node = numa_mem_id();
826 	/*
827 	 * Make sure we are not freeing a object from another node to the array
828 	 * cache on this cpu.
829 	 */
830 	if (likely(node == page_node))
831 		return 0;
832 
833 	return __cache_free_alien(cachep, objp, node, page_node);
834 }
835 
836 /*
837  * Construct gfp mask to allocate from a specific node but do not reclaim or
838  * warn about failures.
839  */
840 static inline gfp_t gfp_exact_node(gfp_t flags)
841 {
842 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
843 }
844 #endif
845 
846 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
847 {
848 	struct kmem_cache_node *n;
849 
850 	/*
851 	 * Set up the kmem_cache_node for cpu before we can
852 	 * begin anything. Make sure some other cpu on this
853 	 * node has not already allocated this
854 	 */
855 	n = get_node(cachep, node);
856 	if (n) {
857 		spin_lock_irq(&n->list_lock);
858 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
859 				cachep->num;
860 		spin_unlock_irq(&n->list_lock);
861 
862 		return 0;
863 	}
864 
865 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
866 	if (!n)
867 		return -ENOMEM;
868 
869 	kmem_cache_node_init(n);
870 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
871 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
872 
873 	n->free_limit =
874 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
875 
876 	/*
877 	 * The kmem_cache_nodes don't come and go as CPUs
878 	 * come and go.  slab_mutex is sufficient
879 	 * protection here.
880 	 */
881 	cachep->node[node] = n;
882 
883 	return 0;
884 }
885 
886 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
887 /*
888  * Allocates and initializes node for a node on each slab cache, used for
889  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
890  * will be allocated off-node since memory is not yet online for the new node.
891  * When hotplugging memory or a cpu, existing node are not replaced if
892  * already in use.
893  *
894  * Must hold slab_mutex.
895  */
896 static int init_cache_node_node(int node)
897 {
898 	int ret;
899 	struct kmem_cache *cachep;
900 
901 	list_for_each_entry(cachep, &slab_caches, list) {
902 		ret = init_cache_node(cachep, node, GFP_KERNEL);
903 		if (ret)
904 			return ret;
905 	}
906 
907 	return 0;
908 }
909 #endif
910 
911 static int setup_kmem_cache_node(struct kmem_cache *cachep,
912 				int node, gfp_t gfp, bool force_change)
913 {
914 	int ret = -ENOMEM;
915 	struct kmem_cache_node *n;
916 	struct array_cache *old_shared = NULL;
917 	struct array_cache *new_shared = NULL;
918 	struct alien_cache **new_alien = NULL;
919 	LIST_HEAD(list);
920 
921 	if (use_alien_caches) {
922 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
923 		if (!new_alien)
924 			goto fail;
925 	}
926 
927 	if (cachep->shared) {
928 		new_shared = alloc_arraycache(node,
929 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
930 		if (!new_shared)
931 			goto fail;
932 	}
933 
934 	ret = init_cache_node(cachep, node, gfp);
935 	if (ret)
936 		goto fail;
937 
938 	n = get_node(cachep, node);
939 	spin_lock_irq(&n->list_lock);
940 	if (n->shared && force_change) {
941 		free_block(cachep, n->shared->entry,
942 				n->shared->avail, node, &list);
943 		n->shared->avail = 0;
944 	}
945 
946 	if (!n->shared || force_change) {
947 		old_shared = n->shared;
948 		n->shared = new_shared;
949 		new_shared = NULL;
950 	}
951 
952 	if (!n->alien) {
953 		n->alien = new_alien;
954 		new_alien = NULL;
955 	}
956 
957 	spin_unlock_irq(&n->list_lock);
958 	slabs_destroy(cachep, &list);
959 
960 	/*
961 	 * To protect lockless access to n->shared during irq disabled context.
962 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
963 	 * guaranteed to be valid until irq is re-enabled, because it will be
964 	 * freed after synchronize_sched().
965 	 */
966 	if (old_shared && force_change)
967 		synchronize_sched();
968 
969 fail:
970 	kfree(old_shared);
971 	kfree(new_shared);
972 	free_alien_cache(new_alien);
973 
974 	return ret;
975 }
976 
977 #ifdef CONFIG_SMP
978 
979 static void cpuup_canceled(long cpu)
980 {
981 	struct kmem_cache *cachep;
982 	struct kmem_cache_node *n = NULL;
983 	int node = cpu_to_mem(cpu);
984 	const struct cpumask *mask = cpumask_of_node(node);
985 
986 	list_for_each_entry(cachep, &slab_caches, list) {
987 		struct array_cache *nc;
988 		struct array_cache *shared;
989 		struct alien_cache **alien;
990 		LIST_HEAD(list);
991 
992 		n = get_node(cachep, node);
993 		if (!n)
994 			continue;
995 
996 		spin_lock_irq(&n->list_lock);
997 
998 		/* Free limit for this kmem_cache_node */
999 		n->free_limit -= cachep->batchcount;
1000 
1001 		/* cpu is dead; no one can alloc from it. */
1002 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1003 		if (nc) {
1004 			free_block(cachep, nc->entry, nc->avail, node, &list);
1005 			nc->avail = 0;
1006 		}
1007 
1008 		if (!cpumask_empty(mask)) {
1009 			spin_unlock_irq(&n->list_lock);
1010 			goto free_slab;
1011 		}
1012 
1013 		shared = n->shared;
1014 		if (shared) {
1015 			free_block(cachep, shared->entry,
1016 				   shared->avail, node, &list);
1017 			n->shared = NULL;
1018 		}
1019 
1020 		alien = n->alien;
1021 		n->alien = NULL;
1022 
1023 		spin_unlock_irq(&n->list_lock);
1024 
1025 		kfree(shared);
1026 		if (alien) {
1027 			drain_alien_cache(cachep, alien);
1028 			free_alien_cache(alien);
1029 		}
1030 
1031 free_slab:
1032 		slabs_destroy(cachep, &list);
1033 	}
1034 	/*
1035 	 * In the previous loop, all the objects were freed to
1036 	 * the respective cache's slabs,  now we can go ahead and
1037 	 * shrink each nodelist to its limit.
1038 	 */
1039 	list_for_each_entry(cachep, &slab_caches, list) {
1040 		n = get_node(cachep, node);
1041 		if (!n)
1042 			continue;
1043 		drain_freelist(cachep, n, INT_MAX);
1044 	}
1045 }
1046 
1047 static int cpuup_prepare(long cpu)
1048 {
1049 	struct kmem_cache *cachep;
1050 	int node = cpu_to_mem(cpu);
1051 	int err;
1052 
1053 	/*
1054 	 * We need to do this right in the beginning since
1055 	 * alloc_arraycache's are going to use this list.
1056 	 * kmalloc_node allows us to add the slab to the right
1057 	 * kmem_cache_node and not this cpu's kmem_cache_node
1058 	 */
1059 	err = init_cache_node_node(node);
1060 	if (err < 0)
1061 		goto bad;
1062 
1063 	/*
1064 	 * Now we can go ahead with allocating the shared arrays and
1065 	 * array caches
1066 	 */
1067 	list_for_each_entry(cachep, &slab_caches, list) {
1068 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1069 		if (err)
1070 			goto bad;
1071 	}
1072 
1073 	return 0;
1074 bad:
1075 	cpuup_canceled(cpu);
1076 	return -ENOMEM;
1077 }
1078 
1079 int slab_prepare_cpu(unsigned int cpu)
1080 {
1081 	int err;
1082 
1083 	mutex_lock(&slab_mutex);
1084 	err = cpuup_prepare(cpu);
1085 	mutex_unlock(&slab_mutex);
1086 	return err;
1087 }
1088 
1089 /*
1090  * This is called for a failed online attempt and for a successful
1091  * offline.
1092  *
1093  * Even if all the cpus of a node are down, we don't free the
1094  * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1095  * a kmalloc allocation from another cpu for memory from the node of
1096  * the cpu going down.  The list3 structure is usually allocated from
1097  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1098  */
1099 int slab_dead_cpu(unsigned int cpu)
1100 {
1101 	mutex_lock(&slab_mutex);
1102 	cpuup_canceled(cpu);
1103 	mutex_unlock(&slab_mutex);
1104 	return 0;
1105 }
1106 #endif
1107 
1108 static int slab_online_cpu(unsigned int cpu)
1109 {
1110 	start_cpu_timer(cpu);
1111 	return 0;
1112 }
1113 
1114 static int slab_offline_cpu(unsigned int cpu)
1115 {
1116 	/*
1117 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1118 	 * that if cache_reap() is invoked it cannot do anything
1119 	 * expensive but will only modify reap_work and reschedule the
1120 	 * timer.
1121 	 */
1122 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1123 	/* Now the cache_reaper is guaranteed to be not running. */
1124 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1125 	return 0;
1126 }
1127 
1128 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1129 /*
1130  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1131  * Returns -EBUSY if all objects cannot be drained so that the node is not
1132  * removed.
1133  *
1134  * Must hold slab_mutex.
1135  */
1136 static int __meminit drain_cache_node_node(int node)
1137 {
1138 	struct kmem_cache *cachep;
1139 	int ret = 0;
1140 
1141 	list_for_each_entry(cachep, &slab_caches, list) {
1142 		struct kmem_cache_node *n;
1143 
1144 		n = get_node(cachep, node);
1145 		if (!n)
1146 			continue;
1147 
1148 		drain_freelist(cachep, n, INT_MAX);
1149 
1150 		if (!list_empty(&n->slabs_full) ||
1151 		    !list_empty(&n->slabs_partial)) {
1152 			ret = -EBUSY;
1153 			break;
1154 		}
1155 	}
1156 	return ret;
1157 }
1158 
1159 static int __meminit slab_memory_callback(struct notifier_block *self,
1160 					unsigned long action, void *arg)
1161 {
1162 	struct memory_notify *mnb = arg;
1163 	int ret = 0;
1164 	int nid;
1165 
1166 	nid = mnb->status_change_nid;
1167 	if (nid < 0)
1168 		goto out;
1169 
1170 	switch (action) {
1171 	case MEM_GOING_ONLINE:
1172 		mutex_lock(&slab_mutex);
1173 		ret = init_cache_node_node(nid);
1174 		mutex_unlock(&slab_mutex);
1175 		break;
1176 	case MEM_GOING_OFFLINE:
1177 		mutex_lock(&slab_mutex);
1178 		ret = drain_cache_node_node(nid);
1179 		mutex_unlock(&slab_mutex);
1180 		break;
1181 	case MEM_ONLINE:
1182 	case MEM_OFFLINE:
1183 	case MEM_CANCEL_ONLINE:
1184 	case MEM_CANCEL_OFFLINE:
1185 		break;
1186 	}
1187 out:
1188 	return notifier_from_errno(ret);
1189 }
1190 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1191 
1192 /*
1193  * swap the static kmem_cache_node with kmalloced memory
1194  */
1195 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1196 				int nodeid)
1197 {
1198 	struct kmem_cache_node *ptr;
1199 
1200 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1201 	BUG_ON(!ptr);
1202 
1203 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1204 	/*
1205 	 * Do not assume that spinlocks can be initialized via memcpy:
1206 	 */
1207 	spin_lock_init(&ptr->list_lock);
1208 
1209 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1210 	cachep->node[nodeid] = ptr;
1211 }
1212 
1213 /*
1214  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1215  * size of kmem_cache_node.
1216  */
1217 static void __init set_up_node(struct kmem_cache *cachep, int index)
1218 {
1219 	int node;
1220 
1221 	for_each_online_node(node) {
1222 		cachep->node[node] = &init_kmem_cache_node[index + node];
1223 		cachep->node[node]->next_reap = jiffies +
1224 		    REAPTIMEOUT_NODE +
1225 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1226 	}
1227 }
1228 
1229 /*
1230  * Initialisation.  Called after the page allocator have been initialised and
1231  * before smp_init().
1232  */
1233 void __init kmem_cache_init(void)
1234 {
1235 	int i;
1236 
1237 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1238 					sizeof(struct rcu_head));
1239 	kmem_cache = &kmem_cache_boot;
1240 
1241 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1242 		use_alien_caches = 0;
1243 
1244 	for (i = 0; i < NUM_INIT_LISTS; i++)
1245 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1246 
1247 	/*
1248 	 * Fragmentation resistance on low memory - only use bigger
1249 	 * page orders on machines with more than 32MB of memory if
1250 	 * not overridden on the command line.
1251 	 */
1252 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1253 		slab_max_order = SLAB_MAX_ORDER_HI;
1254 
1255 	/* Bootstrap is tricky, because several objects are allocated
1256 	 * from caches that do not exist yet:
1257 	 * 1) initialize the kmem_cache cache: it contains the struct
1258 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1259 	 *    kmem_cache is statically allocated.
1260 	 *    Initially an __init data area is used for the head array and the
1261 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1262 	 *    array at the end of the bootstrap.
1263 	 * 2) Create the first kmalloc cache.
1264 	 *    The struct kmem_cache for the new cache is allocated normally.
1265 	 *    An __init data area is used for the head array.
1266 	 * 3) Create the remaining kmalloc caches, with minimally sized
1267 	 *    head arrays.
1268 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1269 	 *    kmalloc cache with kmalloc allocated arrays.
1270 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1271 	 *    the other cache's with kmalloc allocated memory.
1272 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1273 	 */
1274 
1275 	/* 1) create the kmem_cache */
1276 
1277 	/*
1278 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1279 	 */
1280 	create_boot_cache(kmem_cache, "kmem_cache",
1281 		offsetof(struct kmem_cache, node) +
1282 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1283 				  SLAB_HWCACHE_ALIGN);
1284 	list_add(&kmem_cache->list, &slab_caches);
1285 	slab_state = PARTIAL;
1286 
1287 	/*
1288 	 * Initialize the caches that provide memory for the  kmem_cache_node
1289 	 * structures first.  Without this, further allocations will bug.
1290 	 */
1291 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1292 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1293 	slab_state = PARTIAL_NODE;
1294 	setup_kmalloc_cache_index_table();
1295 
1296 	slab_early_init = 0;
1297 
1298 	/* 5) Replace the bootstrap kmem_cache_node */
1299 	{
1300 		int nid;
1301 
1302 		for_each_online_node(nid) {
1303 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1304 
1305 			init_list(kmalloc_caches[INDEX_NODE],
1306 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1307 		}
1308 	}
1309 
1310 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1311 }
1312 
1313 void __init kmem_cache_init_late(void)
1314 {
1315 	struct kmem_cache *cachep;
1316 
1317 	slab_state = UP;
1318 
1319 	/* 6) resize the head arrays to their final sizes */
1320 	mutex_lock(&slab_mutex);
1321 	list_for_each_entry(cachep, &slab_caches, list)
1322 		if (enable_cpucache(cachep, GFP_NOWAIT))
1323 			BUG();
1324 	mutex_unlock(&slab_mutex);
1325 
1326 	/* Done! */
1327 	slab_state = FULL;
1328 
1329 #ifdef CONFIG_NUMA
1330 	/*
1331 	 * Register a memory hotplug callback that initializes and frees
1332 	 * node.
1333 	 */
1334 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1335 #endif
1336 
1337 	/*
1338 	 * The reap timers are started later, with a module init call: That part
1339 	 * of the kernel is not yet operational.
1340 	 */
1341 }
1342 
1343 static int __init cpucache_init(void)
1344 {
1345 	int ret;
1346 
1347 	/*
1348 	 * Register the timers that return unneeded pages to the page allocator
1349 	 */
1350 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1351 				slab_online_cpu, slab_offline_cpu);
1352 	WARN_ON(ret < 0);
1353 
1354 	/* Done! */
1355 	slab_state = FULL;
1356 	return 0;
1357 }
1358 __initcall(cpucache_init);
1359 
1360 static noinline void
1361 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1362 {
1363 #if DEBUG
1364 	struct kmem_cache_node *n;
1365 	unsigned long flags;
1366 	int node;
1367 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1368 				      DEFAULT_RATELIMIT_BURST);
1369 
1370 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1371 		return;
1372 
1373 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1374 		nodeid, gfpflags, &gfpflags);
1375 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1376 		cachep->name, cachep->size, cachep->gfporder);
1377 
1378 	for_each_kmem_cache_node(cachep, node, n) {
1379 		unsigned long total_slabs, free_slabs, free_objs;
1380 
1381 		spin_lock_irqsave(&n->list_lock, flags);
1382 		total_slabs = n->total_slabs;
1383 		free_slabs = n->free_slabs;
1384 		free_objs = n->free_objects;
1385 		spin_unlock_irqrestore(&n->list_lock, flags);
1386 
1387 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1388 			node, total_slabs - free_slabs, total_slabs,
1389 			(total_slabs * cachep->num) - free_objs,
1390 			total_slabs * cachep->num);
1391 	}
1392 #endif
1393 }
1394 
1395 /*
1396  * Interface to system's page allocator. No need to hold the
1397  * kmem_cache_node ->list_lock.
1398  *
1399  * If we requested dmaable memory, we will get it. Even if we
1400  * did not request dmaable memory, we might get it, but that
1401  * would be relatively rare and ignorable.
1402  */
1403 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1404 								int nodeid)
1405 {
1406 	struct page *page;
1407 	int nr_pages;
1408 
1409 	flags |= cachep->allocflags;
1410 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1411 		flags |= __GFP_RECLAIMABLE;
1412 
1413 	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1414 	if (!page) {
1415 		slab_out_of_memory(cachep, flags, nodeid);
1416 		return NULL;
1417 	}
1418 
1419 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1420 		__free_pages(page, cachep->gfporder);
1421 		return NULL;
1422 	}
1423 
1424 	nr_pages = (1 << cachep->gfporder);
1425 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426 		add_zone_page_state(page_zone(page),
1427 			NR_SLAB_RECLAIMABLE, nr_pages);
1428 	else
1429 		add_zone_page_state(page_zone(page),
1430 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1431 
1432 	__SetPageSlab(page);
1433 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1434 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1435 		SetPageSlabPfmemalloc(page);
1436 
1437 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1438 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1439 
1440 		if (cachep->ctor)
1441 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1442 		else
1443 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1444 	}
1445 
1446 	return page;
1447 }
1448 
1449 /*
1450  * Interface to system's page release.
1451  */
1452 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1453 {
1454 	int order = cachep->gfporder;
1455 	unsigned long nr_freed = (1 << order);
1456 
1457 	kmemcheck_free_shadow(page, order);
1458 
1459 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1460 		sub_zone_page_state(page_zone(page),
1461 				NR_SLAB_RECLAIMABLE, nr_freed);
1462 	else
1463 		sub_zone_page_state(page_zone(page),
1464 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1465 
1466 	BUG_ON(!PageSlab(page));
1467 	__ClearPageSlabPfmemalloc(page);
1468 	__ClearPageSlab(page);
1469 	page_mapcount_reset(page);
1470 	page->mapping = NULL;
1471 
1472 	if (current->reclaim_state)
1473 		current->reclaim_state->reclaimed_slab += nr_freed;
1474 	memcg_uncharge_slab(page, order, cachep);
1475 	__free_pages(page, order);
1476 }
1477 
1478 static void kmem_rcu_free(struct rcu_head *head)
1479 {
1480 	struct kmem_cache *cachep;
1481 	struct page *page;
1482 
1483 	page = container_of(head, struct page, rcu_head);
1484 	cachep = page->slab_cache;
1485 
1486 	kmem_freepages(cachep, page);
1487 }
1488 
1489 #if DEBUG
1490 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1491 {
1492 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1493 		(cachep->size % PAGE_SIZE) == 0)
1494 		return true;
1495 
1496 	return false;
1497 }
1498 
1499 #ifdef CONFIG_DEBUG_PAGEALLOC
1500 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1501 			    unsigned long caller)
1502 {
1503 	int size = cachep->object_size;
1504 
1505 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1506 
1507 	if (size < 5 * sizeof(unsigned long))
1508 		return;
1509 
1510 	*addr++ = 0x12345678;
1511 	*addr++ = caller;
1512 	*addr++ = smp_processor_id();
1513 	size -= 3 * sizeof(unsigned long);
1514 	{
1515 		unsigned long *sptr = &caller;
1516 		unsigned long svalue;
1517 
1518 		while (!kstack_end(sptr)) {
1519 			svalue = *sptr++;
1520 			if (kernel_text_address(svalue)) {
1521 				*addr++ = svalue;
1522 				size -= sizeof(unsigned long);
1523 				if (size <= sizeof(unsigned long))
1524 					break;
1525 			}
1526 		}
1527 
1528 	}
1529 	*addr++ = 0x87654321;
1530 }
1531 
1532 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1533 				int map, unsigned long caller)
1534 {
1535 	if (!is_debug_pagealloc_cache(cachep))
1536 		return;
1537 
1538 	if (caller)
1539 		store_stackinfo(cachep, objp, caller);
1540 
1541 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1542 }
1543 
1544 #else
1545 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1546 				int map, unsigned long caller) {}
1547 
1548 #endif
1549 
1550 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1551 {
1552 	int size = cachep->object_size;
1553 	addr = &((char *)addr)[obj_offset(cachep)];
1554 
1555 	memset(addr, val, size);
1556 	*(unsigned char *)(addr + size - 1) = POISON_END;
1557 }
1558 
1559 static void dump_line(char *data, int offset, int limit)
1560 {
1561 	int i;
1562 	unsigned char error = 0;
1563 	int bad_count = 0;
1564 
1565 	pr_err("%03x: ", offset);
1566 	for (i = 0; i < limit; i++) {
1567 		if (data[offset + i] != POISON_FREE) {
1568 			error = data[offset + i];
1569 			bad_count++;
1570 		}
1571 	}
1572 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1573 			&data[offset], limit, 1);
1574 
1575 	if (bad_count == 1) {
1576 		error ^= POISON_FREE;
1577 		if (!(error & (error - 1))) {
1578 			pr_err("Single bit error detected. Probably bad RAM.\n");
1579 #ifdef CONFIG_X86
1580 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1581 #else
1582 			pr_err("Run a memory test tool.\n");
1583 #endif
1584 		}
1585 	}
1586 }
1587 #endif
1588 
1589 #if DEBUG
1590 
1591 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1592 {
1593 	int i, size;
1594 	char *realobj;
1595 
1596 	if (cachep->flags & SLAB_RED_ZONE) {
1597 		pr_err("Redzone: 0x%llx/0x%llx\n",
1598 		       *dbg_redzone1(cachep, objp),
1599 		       *dbg_redzone2(cachep, objp));
1600 	}
1601 
1602 	if (cachep->flags & SLAB_STORE_USER) {
1603 		pr_err("Last user: [<%p>](%pSR)\n",
1604 		       *dbg_userword(cachep, objp),
1605 		       *dbg_userword(cachep, objp));
1606 	}
1607 	realobj = (char *)objp + obj_offset(cachep);
1608 	size = cachep->object_size;
1609 	for (i = 0; i < size && lines; i += 16, lines--) {
1610 		int limit;
1611 		limit = 16;
1612 		if (i + limit > size)
1613 			limit = size - i;
1614 		dump_line(realobj, i, limit);
1615 	}
1616 }
1617 
1618 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1619 {
1620 	char *realobj;
1621 	int size, i;
1622 	int lines = 0;
1623 
1624 	if (is_debug_pagealloc_cache(cachep))
1625 		return;
1626 
1627 	realobj = (char *)objp + obj_offset(cachep);
1628 	size = cachep->object_size;
1629 
1630 	for (i = 0; i < size; i++) {
1631 		char exp = POISON_FREE;
1632 		if (i == size - 1)
1633 			exp = POISON_END;
1634 		if (realobj[i] != exp) {
1635 			int limit;
1636 			/* Mismatch ! */
1637 			/* Print header */
1638 			if (lines == 0) {
1639 				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1640 				       print_tainted(), cachep->name,
1641 				       realobj, size);
1642 				print_objinfo(cachep, objp, 0);
1643 			}
1644 			/* Hexdump the affected line */
1645 			i = (i / 16) * 16;
1646 			limit = 16;
1647 			if (i + limit > size)
1648 				limit = size - i;
1649 			dump_line(realobj, i, limit);
1650 			i += 16;
1651 			lines++;
1652 			/* Limit to 5 lines */
1653 			if (lines > 5)
1654 				break;
1655 		}
1656 	}
1657 	if (lines != 0) {
1658 		/* Print some data about the neighboring objects, if they
1659 		 * exist:
1660 		 */
1661 		struct page *page = virt_to_head_page(objp);
1662 		unsigned int objnr;
1663 
1664 		objnr = obj_to_index(cachep, page, objp);
1665 		if (objnr) {
1666 			objp = index_to_obj(cachep, page, objnr - 1);
1667 			realobj = (char *)objp + obj_offset(cachep);
1668 			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1669 			print_objinfo(cachep, objp, 2);
1670 		}
1671 		if (objnr + 1 < cachep->num) {
1672 			objp = index_to_obj(cachep, page, objnr + 1);
1673 			realobj = (char *)objp + obj_offset(cachep);
1674 			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1675 			print_objinfo(cachep, objp, 2);
1676 		}
1677 	}
1678 }
1679 #endif
1680 
1681 #if DEBUG
1682 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1683 						struct page *page)
1684 {
1685 	int i;
1686 
1687 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1688 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1689 			POISON_FREE);
1690 	}
1691 
1692 	for (i = 0; i < cachep->num; i++) {
1693 		void *objp = index_to_obj(cachep, page, i);
1694 
1695 		if (cachep->flags & SLAB_POISON) {
1696 			check_poison_obj(cachep, objp);
1697 			slab_kernel_map(cachep, objp, 1, 0);
1698 		}
1699 		if (cachep->flags & SLAB_RED_ZONE) {
1700 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1701 				slab_error(cachep, "start of a freed object was overwritten");
1702 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1703 				slab_error(cachep, "end of a freed object was overwritten");
1704 		}
1705 	}
1706 }
1707 #else
1708 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1709 						struct page *page)
1710 {
1711 }
1712 #endif
1713 
1714 /**
1715  * slab_destroy - destroy and release all objects in a slab
1716  * @cachep: cache pointer being destroyed
1717  * @page: page pointer being destroyed
1718  *
1719  * Destroy all the objs in a slab page, and release the mem back to the system.
1720  * Before calling the slab page must have been unlinked from the cache. The
1721  * kmem_cache_node ->list_lock is not held/needed.
1722  */
1723 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1724 {
1725 	void *freelist;
1726 
1727 	freelist = page->freelist;
1728 	slab_destroy_debugcheck(cachep, page);
1729 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1730 		call_rcu(&page->rcu_head, kmem_rcu_free);
1731 	else
1732 		kmem_freepages(cachep, page);
1733 
1734 	/*
1735 	 * From now on, we don't use freelist
1736 	 * although actual page can be freed in rcu context
1737 	 */
1738 	if (OFF_SLAB(cachep))
1739 		kmem_cache_free(cachep->freelist_cache, freelist);
1740 }
1741 
1742 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1743 {
1744 	struct page *page, *n;
1745 
1746 	list_for_each_entry_safe(page, n, list, lru) {
1747 		list_del(&page->lru);
1748 		slab_destroy(cachep, page);
1749 	}
1750 }
1751 
1752 /**
1753  * calculate_slab_order - calculate size (page order) of slabs
1754  * @cachep: pointer to the cache that is being created
1755  * @size: size of objects to be created in this cache.
1756  * @flags: slab allocation flags
1757  *
1758  * Also calculates the number of objects per slab.
1759  *
1760  * This could be made much more intelligent.  For now, try to avoid using
1761  * high order pages for slabs.  When the gfp() functions are more friendly
1762  * towards high-order requests, this should be changed.
1763  */
1764 static size_t calculate_slab_order(struct kmem_cache *cachep,
1765 				size_t size, unsigned long flags)
1766 {
1767 	size_t left_over = 0;
1768 	int gfporder;
1769 
1770 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1771 		unsigned int num;
1772 		size_t remainder;
1773 
1774 		num = cache_estimate(gfporder, size, flags, &remainder);
1775 		if (!num)
1776 			continue;
1777 
1778 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1779 		if (num > SLAB_OBJ_MAX_NUM)
1780 			break;
1781 
1782 		if (flags & CFLGS_OFF_SLAB) {
1783 			struct kmem_cache *freelist_cache;
1784 			size_t freelist_size;
1785 
1786 			freelist_size = num * sizeof(freelist_idx_t);
1787 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1788 			if (!freelist_cache)
1789 				continue;
1790 
1791 			/*
1792 			 * Needed to avoid possible looping condition
1793 			 * in cache_grow_begin()
1794 			 */
1795 			if (OFF_SLAB(freelist_cache))
1796 				continue;
1797 
1798 			/* check if off slab has enough benefit */
1799 			if (freelist_cache->size > cachep->size / 2)
1800 				continue;
1801 		}
1802 
1803 		/* Found something acceptable - save it away */
1804 		cachep->num = num;
1805 		cachep->gfporder = gfporder;
1806 		left_over = remainder;
1807 
1808 		/*
1809 		 * A VFS-reclaimable slab tends to have most allocations
1810 		 * as GFP_NOFS and we really don't want to have to be allocating
1811 		 * higher-order pages when we are unable to shrink dcache.
1812 		 */
1813 		if (flags & SLAB_RECLAIM_ACCOUNT)
1814 			break;
1815 
1816 		/*
1817 		 * Large number of objects is good, but very large slabs are
1818 		 * currently bad for the gfp()s.
1819 		 */
1820 		if (gfporder >= slab_max_order)
1821 			break;
1822 
1823 		/*
1824 		 * Acceptable internal fragmentation?
1825 		 */
1826 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1827 			break;
1828 	}
1829 	return left_over;
1830 }
1831 
1832 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1833 		struct kmem_cache *cachep, int entries, int batchcount)
1834 {
1835 	int cpu;
1836 	size_t size;
1837 	struct array_cache __percpu *cpu_cache;
1838 
1839 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1840 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1841 
1842 	if (!cpu_cache)
1843 		return NULL;
1844 
1845 	for_each_possible_cpu(cpu) {
1846 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1847 				entries, batchcount);
1848 	}
1849 
1850 	return cpu_cache;
1851 }
1852 
1853 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1854 {
1855 	if (slab_state >= FULL)
1856 		return enable_cpucache(cachep, gfp);
1857 
1858 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1859 	if (!cachep->cpu_cache)
1860 		return 1;
1861 
1862 	if (slab_state == DOWN) {
1863 		/* Creation of first cache (kmem_cache). */
1864 		set_up_node(kmem_cache, CACHE_CACHE);
1865 	} else if (slab_state == PARTIAL) {
1866 		/* For kmem_cache_node */
1867 		set_up_node(cachep, SIZE_NODE);
1868 	} else {
1869 		int node;
1870 
1871 		for_each_online_node(node) {
1872 			cachep->node[node] = kmalloc_node(
1873 				sizeof(struct kmem_cache_node), gfp, node);
1874 			BUG_ON(!cachep->node[node]);
1875 			kmem_cache_node_init(cachep->node[node]);
1876 		}
1877 	}
1878 
1879 	cachep->node[numa_mem_id()]->next_reap =
1880 			jiffies + REAPTIMEOUT_NODE +
1881 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1882 
1883 	cpu_cache_get(cachep)->avail = 0;
1884 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1885 	cpu_cache_get(cachep)->batchcount = 1;
1886 	cpu_cache_get(cachep)->touched = 0;
1887 	cachep->batchcount = 1;
1888 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1889 	return 0;
1890 }
1891 
1892 unsigned long kmem_cache_flags(unsigned long object_size,
1893 	unsigned long flags, const char *name,
1894 	void (*ctor)(void *))
1895 {
1896 	return flags;
1897 }
1898 
1899 struct kmem_cache *
1900 __kmem_cache_alias(const char *name, size_t size, size_t align,
1901 		   unsigned long flags, void (*ctor)(void *))
1902 {
1903 	struct kmem_cache *cachep;
1904 
1905 	cachep = find_mergeable(size, align, flags, name, ctor);
1906 	if (cachep) {
1907 		cachep->refcount++;
1908 
1909 		/*
1910 		 * Adjust the object sizes so that we clear
1911 		 * the complete object on kzalloc.
1912 		 */
1913 		cachep->object_size = max_t(int, cachep->object_size, size);
1914 	}
1915 	return cachep;
1916 }
1917 
1918 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1919 			size_t size, unsigned long flags)
1920 {
1921 	size_t left;
1922 
1923 	cachep->num = 0;
1924 
1925 	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1926 		return false;
1927 
1928 	left = calculate_slab_order(cachep, size,
1929 			flags | CFLGS_OBJFREELIST_SLAB);
1930 	if (!cachep->num)
1931 		return false;
1932 
1933 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1934 		return false;
1935 
1936 	cachep->colour = left / cachep->colour_off;
1937 
1938 	return true;
1939 }
1940 
1941 static bool set_off_slab_cache(struct kmem_cache *cachep,
1942 			size_t size, unsigned long flags)
1943 {
1944 	size_t left;
1945 
1946 	cachep->num = 0;
1947 
1948 	/*
1949 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1950 	 * to avoid recursive calls into kmemleak.
1951 	 */
1952 	if (flags & SLAB_NOLEAKTRACE)
1953 		return false;
1954 
1955 	/*
1956 	 * Size is large, assume best to place the slab management obj
1957 	 * off-slab (should allow better packing of objs).
1958 	 */
1959 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1960 	if (!cachep->num)
1961 		return false;
1962 
1963 	/*
1964 	 * If the slab has been placed off-slab, and we have enough space then
1965 	 * move it on-slab. This is at the expense of any extra colouring.
1966 	 */
1967 	if (left >= cachep->num * sizeof(freelist_idx_t))
1968 		return false;
1969 
1970 	cachep->colour = left / cachep->colour_off;
1971 
1972 	return true;
1973 }
1974 
1975 static bool set_on_slab_cache(struct kmem_cache *cachep,
1976 			size_t size, unsigned long flags)
1977 {
1978 	size_t left;
1979 
1980 	cachep->num = 0;
1981 
1982 	left = calculate_slab_order(cachep, size, flags);
1983 	if (!cachep->num)
1984 		return false;
1985 
1986 	cachep->colour = left / cachep->colour_off;
1987 
1988 	return true;
1989 }
1990 
1991 /**
1992  * __kmem_cache_create - Create a cache.
1993  * @cachep: cache management descriptor
1994  * @flags: SLAB flags
1995  *
1996  * Returns a ptr to the cache on success, NULL on failure.
1997  * Cannot be called within a int, but can be interrupted.
1998  * The @ctor is run when new pages are allocated by the cache.
1999  *
2000  * The flags are
2001  *
2002  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2003  * to catch references to uninitialised memory.
2004  *
2005  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2006  * for buffer overruns.
2007  *
2008  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2009  * cacheline.  This can be beneficial if you're counting cycles as closely
2010  * as davem.
2011  */
2012 int
2013 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2014 {
2015 	size_t ralign = BYTES_PER_WORD;
2016 	gfp_t gfp;
2017 	int err;
2018 	size_t size = cachep->size;
2019 
2020 #if DEBUG
2021 #if FORCED_DEBUG
2022 	/*
2023 	 * Enable redzoning and last user accounting, except for caches with
2024 	 * large objects, if the increased size would increase the object size
2025 	 * above the next power of two: caches with object sizes just above a
2026 	 * power of two have a significant amount of internal fragmentation.
2027 	 */
2028 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2029 						2 * sizeof(unsigned long long)))
2030 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2031 	if (!(flags & SLAB_DESTROY_BY_RCU))
2032 		flags |= SLAB_POISON;
2033 #endif
2034 #endif
2035 
2036 	/*
2037 	 * Check that size is in terms of words.  This is needed to avoid
2038 	 * unaligned accesses for some archs when redzoning is used, and makes
2039 	 * sure any on-slab bufctl's are also correctly aligned.
2040 	 */
2041 	if (size & (BYTES_PER_WORD - 1)) {
2042 		size += (BYTES_PER_WORD - 1);
2043 		size &= ~(BYTES_PER_WORD - 1);
2044 	}
2045 
2046 	if (flags & SLAB_RED_ZONE) {
2047 		ralign = REDZONE_ALIGN;
2048 		/* If redzoning, ensure that the second redzone is suitably
2049 		 * aligned, by adjusting the object size accordingly. */
2050 		size += REDZONE_ALIGN - 1;
2051 		size &= ~(REDZONE_ALIGN - 1);
2052 	}
2053 
2054 	/* 3) caller mandated alignment */
2055 	if (ralign < cachep->align) {
2056 		ralign = cachep->align;
2057 	}
2058 	/* disable debug if necessary */
2059 	if (ralign > __alignof__(unsigned long long))
2060 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2061 	/*
2062 	 * 4) Store it.
2063 	 */
2064 	cachep->align = ralign;
2065 	cachep->colour_off = cache_line_size();
2066 	/* Offset must be a multiple of the alignment. */
2067 	if (cachep->colour_off < cachep->align)
2068 		cachep->colour_off = cachep->align;
2069 
2070 	if (slab_is_available())
2071 		gfp = GFP_KERNEL;
2072 	else
2073 		gfp = GFP_NOWAIT;
2074 
2075 #if DEBUG
2076 
2077 	/*
2078 	 * Both debugging options require word-alignment which is calculated
2079 	 * into align above.
2080 	 */
2081 	if (flags & SLAB_RED_ZONE) {
2082 		/* add space for red zone words */
2083 		cachep->obj_offset += sizeof(unsigned long long);
2084 		size += 2 * sizeof(unsigned long long);
2085 	}
2086 	if (flags & SLAB_STORE_USER) {
2087 		/* user store requires one word storage behind the end of
2088 		 * the real object. But if the second red zone needs to be
2089 		 * aligned to 64 bits, we must allow that much space.
2090 		 */
2091 		if (flags & SLAB_RED_ZONE)
2092 			size += REDZONE_ALIGN;
2093 		else
2094 			size += BYTES_PER_WORD;
2095 	}
2096 #endif
2097 
2098 	kasan_cache_create(cachep, &size, &flags);
2099 
2100 	size = ALIGN(size, cachep->align);
2101 	/*
2102 	 * We should restrict the number of objects in a slab to implement
2103 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2104 	 */
2105 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2106 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2107 
2108 #if DEBUG
2109 	/*
2110 	 * To activate debug pagealloc, off-slab management is necessary
2111 	 * requirement. In early phase of initialization, small sized slab
2112 	 * doesn't get initialized so it would not be possible. So, we need
2113 	 * to check size >= 256. It guarantees that all necessary small
2114 	 * sized slab is initialized in current slab initialization sequence.
2115 	 */
2116 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2117 		size >= 256 && cachep->object_size > cache_line_size()) {
2118 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2119 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2120 
2121 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2122 				flags |= CFLGS_OFF_SLAB;
2123 				cachep->obj_offset += tmp_size - size;
2124 				size = tmp_size;
2125 				goto done;
2126 			}
2127 		}
2128 	}
2129 #endif
2130 
2131 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2132 		flags |= CFLGS_OBJFREELIST_SLAB;
2133 		goto done;
2134 	}
2135 
2136 	if (set_off_slab_cache(cachep, size, flags)) {
2137 		flags |= CFLGS_OFF_SLAB;
2138 		goto done;
2139 	}
2140 
2141 	if (set_on_slab_cache(cachep, size, flags))
2142 		goto done;
2143 
2144 	return -E2BIG;
2145 
2146 done:
2147 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2148 	cachep->flags = flags;
2149 	cachep->allocflags = __GFP_COMP;
2150 	if (flags & SLAB_CACHE_DMA)
2151 		cachep->allocflags |= GFP_DMA;
2152 	cachep->size = size;
2153 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2154 
2155 #if DEBUG
2156 	/*
2157 	 * If we're going to use the generic kernel_map_pages()
2158 	 * poisoning, then it's going to smash the contents of
2159 	 * the redzone and userword anyhow, so switch them off.
2160 	 */
2161 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2162 		(cachep->flags & SLAB_POISON) &&
2163 		is_debug_pagealloc_cache(cachep))
2164 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2165 #endif
2166 
2167 	if (OFF_SLAB(cachep)) {
2168 		cachep->freelist_cache =
2169 			kmalloc_slab(cachep->freelist_size, 0u);
2170 	}
2171 
2172 	err = setup_cpu_cache(cachep, gfp);
2173 	if (err) {
2174 		__kmem_cache_release(cachep);
2175 		return err;
2176 	}
2177 
2178 	return 0;
2179 }
2180 
2181 #if DEBUG
2182 static void check_irq_off(void)
2183 {
2184 	BUG_ON(!irqs_disabled());
2185 }
2186 
2187 static void check_irq_on(void)
2188 {
2189 	BUG_ON(irqs_disabled());
2190 }
2191 
2192 static void check_mutex_acquired(void)
2193 {
2194 	BUG_ON(!mutex_is_locked(&slab_mutex));
2195 }
2196 
2197 static void check_spinlock_acquired(struct kmem_cache *cachep)
2198 {
2199 #ifdef CONFIG_SMP
2200 	check_irq_off();
2201 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2202 #endif
2203 }
2204 
2205 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2206 {
2207 #ifdef CONFIG_SMP
2208 	check_irq_off();
2209 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2210 #endif
2211 }
2212 
2213 #else
2214 #define check_irq_off()	do { } while(0)
2215 #define check_irq_on()	do { } while(0)
2216 #define check_mutex_acquired()	do { } while(0)
2217 #define check_spinlock_acquired(x) do { } while(0)
2218 #define check_spinlock_acquired_node(x, y) do { } while(0)
2219 #endif
2220 
2221 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2222 				int node, bool free_all, struct list_head *list)
2223 {
2224 	int tofree;
2225 
2226 	if (!ac || !ac->avail)
2227 		return;
2228 
2229 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2230 	if (tofree > ac->avail)
2231 		tofree = (ac->avail + 1) / 2;
2232 
2233 	free_block(cachep, ac->entry, tofree, node, list);
2234 	ac->avail -= tofree;
2235 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2236 }
2237 
2238 static void do_drain(void *arg)
2239 {
2240 	struct kmem_cache *cachep = arg;
2241 	struct array_cache *ac;
2242 	int node = numa_mem_id();
2243 	struct kmem_cache_node *n;
2244 	LIST_HEAD(list);
2245 
2246 	check_irq_off();
2247 	ac = cpu_cache_get(cachep);
2248 	n = get_node(cachep, node);
2249 	spin_lock(&n->list_lock);
2250 	free_block(cachep, ac->entry, ac->avail, node, &list);
2251 	spin_unlock(&n->list_lock);
2252 	slabs_destroy(cachep, &list);
2253 	ac->avail = 0;
2254 }
2255 
2256 static void drain_cpu_caches(struct kmem_cache *cachep)
2257 {
2258 	struct kmem_cache_node *n;
2259 	int node;
2260 	LIST_HEAD(list);
2261 
2262 	on_each_cpu(do_drain, cachep, 1);
2263 	check_irq_on();
2264 	for_each_kmem_cache_node(cachep, node, n)
2265 		if (n->alien)
2266 			drain_alien_cache(cachep, n->alien);
2267 
2268 	for_each_kmem_cache_node(cachep, node, n) {
2269 		spin_lock_irq(&n->list_lock);
2270 		drain_array_locked(cachep, n->shared, node, true, &list);
2271 		spin_unlock_irq(&n->list_lock);
2272 
2273 		slabs_destroy(cachep, &list);
2274 	}
2275 }
2276 
2277 /*
2278  * Remove slabs from the list of free slabs.
2279  * Specify the number of slabs to drain in tofree.
2280  *
2281  * Returns the actual number of slabs released.
2282  */
2283 static int drain_freelist(struct kmem_cache *cache,
2284 			struct kmem_cache_node *n, int tofree)
2285 {
2286 	struct list_head *p;
2287 	int nr_freed;
2288 	struct page *page;
2289 
2290 	nr_freed = 0;
2291 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2292 
2293 		spin_lock_irq(&n->list_lock);
2294 		p = n->slabs_free.prev;
2295 		if (p == &n->slabs_free) {
2296 			spin_unlock_irq(&n->list_lock);
2297 			goto out;
2298 		}
2299 
2300 		page = list_entry(p, struct page, lru);
2301 		list_del(&page->lru);
2302 		n->free_slabs--;
2303 		n->total_slabs--;
2304 		/*
2305 		 * Safe to drop the lock. The slab is no longer linked
2306 		 * to the cache.
2307 		 */
2308 		n->free_objects -= cache->num;
2309 		spin_unlock_irq(&n->list_lock);
2310 		slab_destroy(cache, page);
2311 		nr_freed++;
2312 	}
2313 out:
2314 	return nr_freed;
2315 }
2316 
2317 int __kmem_cache_shrink(struct kmem_cache *cachep)
2318 {
2319 	int ret = 0;
2320 	int node;
2321 	struct kmem_cache_node *n;
2322 
2323 	drain_cpu_caches(cachep);
2324 
2325 	check_irq_on();
2326 	for_each_kmem_cache_node(cachep, node, n) {
2327 		drain_freelist(cachep, n, INT_MAX);
2328 
2329 		ret += !list_empty(&n->slabs_full) ||
2330 			!list_empty(&n->slabs_partial);
2331 	}
2332 	return (ret ? 1 : 0);
2333 }
2334 
2335 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2336 {
2337 	return __kmem_cache_shrink(cachep);
2338 }
2339 
2340 void __kmem_cache_release(struct kmem_cache *cachep)
2341 {
2342 	int i;
2343 	struct kmem_cache_node *n;
2344 
2345 	cache_random_seq_destroy(cachep);
2346 
2347 	free_percpu(cachep->cpu_cache);
2348 
2349 	/* NUMA: free the node structures */
2350 	for_each_kmem_cache_node(cachep, i, n) {
2351 		kfree(n->shared);
2352 		free_alien_cache(n->alien);
2353 		kfree(n);
2354 		cachep->node[i] = NULL;
2355 	}
2356 }
2357 
2358 /*
2359  * Get the memory for a slab management obj.
2360  *
2361  * For a slab cache when the slab descriptor is off-slab, the
2362  * slab descriptor can't come from the same cache which is being created,
2363  * Because if it is the case, that means we defer the creation of
2364  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2365  * And we eventually call down to __kmem_cache_create(), which
2366  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2367  * This is a "chicken-and-egg" problem.
2368  *
2369  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2370  * which are all initialized during kmem_cache_init().
2371  */
2372 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2373 				   struct page *page, int colour_off,
2374 				   gfp_t local_flags, int nodeid)
2375 {
2376 	void *freelist;
2377 	void *addr = page_address(page);
2378 
2379 	page->s_mem = addr + colour_off;
2380 	page->active = 0;
2381 
2382 	if (OBJFREELIST_SLAB(cachep))
2383 		freelist = NULL;
2384 	else if (OFF_SLAB(cachep)) {
2385 		/* Slab management obj is off-slab. */
2386 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2387 					      local_flags, nodeid);
2388 		if (!freelist)
2389 			return NULL;
2390 	} else {
2391 		/* We will use last bytes at the slab for freelist */
2392 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2393 				cachep->freelist_size;
2394 	}
2395 
2396 	return freelist;
2397 }
2398 
2399 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2400 {
2401 	return ((freelist_idx_t *)page->freelist)[idx];
2402 }
2403 
2404 static inline void set_free_obj(struct page *page,
2405 					unsigned int idx, freelist_idx_t val)
2406 {
2407 	((freelist_idx_t *)(page->freelist))[idx] = val;
2408 }
2409 
2410 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2411 {
2412 #if DEBUG
2413 	int i;
2414 
2415 	for (i = 0; i < cachep->num; i++) {
2416 		void *objp = index_to_obj(cachep, page, i);
2417 
2418 		if (cachep->flags & SLAB_STORE_USER)
2419 			*dbg_userword(cachep, objp) = NULL;
2420 
2421 		if (cachep->flags & SLAB_RED_ZONE) {
2422 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2423 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2424 		}
2425 		/*
2426 		 * Constructors are not allowed to allocate memory from the same
2427 		 * cache which they are a constructor for.  Otherwise, deadlock.
2428 		 * They must also be threaded.
2429 		 */
2430 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2431 			kasan_unpoison_object_data(cachep,
2432 						   objp + obj_offset(cachep));
2433 			cachep->ctor(objp + obj_offset(cachep));
2434 			kasan_poison_object_data(
2435 				cachep, objp + obj_offset(cachep));
2436 		}
2437 
2438 		if (cachep->flags & SLAB_RED_ZONE) {
2439 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2440 				slab_error(cachep, "constructor overwrote the end of an object");
2441 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2442 				slab_error(cachep, "constructor overwrote the start of an object");
2443 		}
2444 		/* need to poison the objs? */
2445 		if (cachep->flags & SLAB_POISON) {
2446 			poison_obj(cachep, objp, POISON_FREE);
2447 			slab_kernel_map(cachep, objp, 0, 0);
2448 		}
2449 	}
2450 #endif
2451 }
2452 
2453 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2454 /* Hold information during a freelist initialization */
2455 union freelist_init_state {
2456 	struct {
2457 		unsigned int pos;
2458 		unsigned int *list;
2459 		unsigned int count;
2460 	};
2461 	struct rnd_state rnd_state;
2462 };
2463 
2464 /*
2465  * Initialize the state based on the randomization methode available.
2466  * return true if the pre-computed list is available, false otherwize.
2467  */
2468 static bool freelist_state_initialize(union freelist_init_state *state,
2469 				struct kmem_cache *cachep,
2470 				unsigned int count)
2471 {
2472 	bool ret;
2473 	unsigned int rand;
2474 
2475 	/* Use best entropy available to define a random shift */
2476 	rand = get_random_int();
2477 
2478 	/* Use a random state if the pre-computed list is not available */
2479 	if (!cachep->random_seq) {
2480 		prandom_seed_state(&state->rnd_state, rand);
2481 		ret = false;
2482 	} else {
2483 		state->list = cachep->random_seq;
2484 		state->count = count;
2485 		state->pos = rand % count;
2486 		ret = true;
2487 	}
2488 	return ret;
2489 }
2490 
2491 /* Get the next entry on the list and randomize it using a random shift */
2492 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2493 {
2494 	if (state->pos >= state->count)
2495 		state->pos = 0;
2496 	return state->list[state->pos++];
2497 }
2498 
2499 /* Swap two freelist entries */
2500 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2501 {
2502 	swap(((freelist_idx_t *)page->freelist)[a],
2503 		((freelist_idx_t *)page->freelist)[b]);
2504 }
2505 
2506 /*
2507  * Shuffle the freelist initialization state based on pre-computed lists.
2508  * return true if the list was successfully shuffled, false otherwise.
2509  */
2510 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2511 {
2512 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2513 	union freelist_init_state state;
2514 	bool precomputed;
2515 
2516 	if (count < 2)
2517 		return false;
2518 
2519 	precomputed = freelist_state_initialize(&state, cachep, count);
2520 
2521 	/* Take a random entry as the objfreelist */
2522 	if (OBJFREELIST_SLAB(cachep)) {
2523 		if (!precomputed)
2524 			objfreelist = count - 1;
2525 		else
2526 			objfreelist = next_random_slot(&state);
2527 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2528 						obj_offset(cachep);
2529 		count--;
2530 	}
2531 
2532 	/*
2533 	 * On early boot, generate the list dynamically.
2534 	 * Later use a pre-computed list for speed.
2535 	 */
2536 	if (!precomputed) {
2537 		for (i = 0; i < count; i++)
2538 			set_free_obj(page, i, i);
2539 
2540 		/* Fisher-Yates shuffle */
2541 		for (i = count - 1; i > 0; i--) {
2542 			rand = prandom_u32_state(&state.rnd_state);
2543 			rand %= (i + 1);
2544 			swap_free_obj(page, i, rand);
2545 		}
2546 	} else {
2547 		for (i = 0; i < count; i++)
2548 			set_free_obj(page, i, next_random_slot(&state));
2549 	}
2550 
2551 	if (OBJFREELIST_SLAB(cachep))
2552 		set_free_obj(page, cachep->num - 1, objfreelist);
2553 
2554 	return true;
2555 }
2556 #else
2557 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2558 				struct page *page)
2559 {
2560 	return false;
2561 }
2562 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2563 
2564 static void cache_init_objs(struct kmem_cache *cachep,
2565 			    struct page *page)
2566 {
2567 	int i;
2568 	void *objp;
2569 	bool shuffled;
2570 
2571 	cache_init_objs_debug(cachep, page);
2572 
2573 	/* Try to randomize the freelist if enabled */
2574 	shuffled = shuffle_freelist(cachep, page);
2575 
2576 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2577 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2578 						obj_offset(cachep);
2579 	}
2580 
2581 	for (i = 0; i < cachep->num; i++) {
2582 		objp = index_to_obj(cachep, page, i);
2583 		kasan_init_slab_obj(cachep, objp);
2584 
2585 		/* constructor could break poison info */
2586 		if (DEBUG == 0 && cachep->ctor) {
2587 			kasan_unpoison_object_data(cachep, objp);
2588 			cachep->ctor(objp);
2589 			kasan_poison_object_data(cachep, objp);
2590 		}
2591 
2592 		if (!shuffled)
2593 			set_free_obj(page, i, i);
2594 	}
2595 }
2596 
2597 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2598 {
2599 	void *objp;
2600 
2601 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2602 	page->active++;
2603 
2604 #if DEBUG
2605 	if (cachep->flags & SLAB_STORE_USER)
2606 		set_store_user_dirty(cachep);
2607 #endif
2608 
2609 	return objp;
2610 }
2611 
2612 static void slab_put_obj(struct kmem_cache *cachep,
2613 			struct page *page, void *objp)
2614 {
2615 	unsigned int objnr = obj_to_index(cachep, page, objp);
2616 #if DEBUG
2617 	unsigned int i;
2618 
2619 	/* Verify double free bug */
2620 	for (i = page->active; i < cachep->num; i++) {
2621 		if (get_free_obj(page, i) == objnr) {
2622 			pr_err("slab: double free detected in cache '%s', objp %p\n",
2623 			       cachep->name, objp);
2624 			BUG();
2625 		}
2626 	}
2627 #endif
2628 	page->active--;
2629 	if (!page->freelist)
2630 		page->freelist = objp + obj_offset(cachep);
2631 
2632 	set_free_obj(page, page->active, objnr);
2633 }
2634 
2635 /*
2636  * Map pages beginning at addr to the given cache and slab. This is required
2637  * for the slab allocator to be able to lookup the cache and slab of a
2638  * virtual address for kfree, ksize, and slab debugging.
2639  */
2640 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2641 			   void *freelist)
2642 {
2643 	page->slab_cache = cache;
2644 	page->freelist = freelist;
2645 }
2646 
2647 /*
2648  * Grow (by 1) the number of slabs within a cache.  This is called by
2649  * kmem_cache_alloc() when there are no active objs left in a cache.
2650  */
2651 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2652 				gfp_t flags, int nodeid)
2653 {
2654 	void *freelist;
2655 	size_t offset;
2656 	gfp_t local_flags;
2657 	int page_node;
2658 	struct kmem_cache_node *n;
2659 	struct page *page;
2660 
2661 	/*
2662 	 * Be lazy and only check for valid flags here,  keeping it out of the
2663 	 * critical path in kmem_cache_alloc().
2664 	 */
2665 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2666 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2667 		flags &= ~GFP_SLAB_BUG_MASK;
2668 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2669 				invalid_mask, &invalid_mask, flags, &flags);
2670 		dump_stack();
2671 	}
2672 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2673 
2674 	check_irq_off();
2675 	if (gfpflags_allow_blocking(local_flags))
2676 		local_irq_enable();
2677 
2678 	/*
2679 	 * Get mem for the objs.  Attempt to allocate a physical page from
2680 	 * 'nodeid'.
2681 	 */
2682 	page = kmem_getpages(cachep, local_flags, nodeid);
2683 	if (!page)
2684 		goto failed;
2685 
2686 	page_node = page_to_nid(page);
2687 	n = get_node(cachep, page_node);
2688 
2689 	/* Get colour for the slab, and cal the next value. */
2690 	n->colour_next++;
2691 	if (n->colour_next >= cachep->colour)
2692 		n->colour_next = 0;
2693 
2694 	offset = n->colour_next;
2695 	if (offset >= cachep->colour)
2696 		offset = 0;
2697 
2698 	offset *= cachep->colour_off;
2699 
2700 	/* Get slab management. */
2701 	freelist = alloc_slabmgmt(cachep, page, offset,
2702 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2703 	if (OFF_SLAB(cachep) && !freelist)
2704 		goto opps1;
2705 
2706 	slab_map_pages(cachep, page, freelist);
2707 
2708 	kasan_poison_slab(page);
2709 	cache_init_objs(cachep, page);
2710 
2711 	if (gfpflags_allow_blocking(local_flags))
2712 		local_irq_disable();
2713 
2714 	return page;
2715 
2716 opps1:
2717 	kmem_freepages(cachep, page);
2718 failed:
2719 	if (gfpflags_allow_blocking(local_flags))
2720 		local_irq_disable();
2721 	return NULL;
2722 }
2723 
2724 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2725 {
2726 	struct kmem_cache_node *n;
2727 	void *list = NULL;
2728 
2729 	check_irq_off();
2730 
2731 	if (!page)
2732 		return;
2733 
2734 	INIT_LIST_HEAD(&page->lru);
2735 	n = get_node(cachep, page_to_nid(page));
2736 
2737 	spin_lock(&n->list_lock);
2738 	n->total_slabs++;
2739 	if (!page->active) {
2740 		list_add_tail(&page->lru, &(n->slabs_free));
2741 		n->free_slabs++;
2742 	} else
2743 		fixup_slab_list(cachep, n, page, &list);
2744 
2745 	STATS_INC_GROWN(cachep);
2746 	n->free_objects += cachep->num - page->active;
2747 	spin_unlock(&n->list_lock);
2748 
2749 	fixup_objfreelist_debug(cachep, &list);
2750 }
2751 
2752 #if DEBUG
2753 
2754 /*
2755  * Perform extra freeing checks:
2756  * - detect bad pointers.
2757  * - POISON/RED_ZONE checking
2758  */
2759 static void kfree_debugcheck(const void *objp)
2760 {
2761 	if (!virt_addr_valid(objp)) {
2762 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2763 		       (unsigned long)objp);
2764 		BUG();
2765 	}
2766 }
2767 
2768 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2769 {
2770 	unsigned long long redzone1, redzone2;
2771 
2772 	redzone1 = *dbg_redzone1(cache, obj);
2773 	redzone2 = *dbg_redzone2(cache, obj);
2774 
2775 	/*
2776 	 * Redzone is ok.
2777 	 */
2778 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2779 		return;
2780 
2781 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2782 		slab_error(cache, "double free detected");
2783 	else
2784 		slab_error(cache, "memory outside object was overwritten");
2785 
2786 	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2787 	       obj, redzone1, redzone2);
2788 }
2789 
2790 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2791 				   unsigned long caller)
2792 {
2793 	unsigned int objnr;
2794 	struct page *page;
2795 
2796 	BUG_ON(virt_to_cache(objp) != cachep);
2797 
2798 	objp -= obj_offset(cachep);
2799 	kfree_debugcheck(objp);
2800 	page = virt_to_head_page(objp);
2801 
2802 	if (cachep->flags & SLAB_RED_ZONE) {
2803 		verify_redzone_free(cachep, objp);
2804 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2805 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2806 	}
2807 	if (cachep->flags & SLAB_STORE_USER) {
2808 		set_store_user_dirty(cachep);
2809 		*dbg_userword(cachep, objp) = (void *)caller;
2810 	}
2811 
2812 	objnr = obj_to_index(cachep, page, objp);
2813 
2814 	BUG_ON(objnr >= cachep->num);
2815 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2816 
2817 	if (cachep->flags & SLAB_POISON) {
2818 		poison_obj(cachep, objp, POISON_FREE);
2819 		slab_kernel_map(cachep, objp, 0, caller);
2820 	}
2821 	return objp;
2822 }
2823 
2824 #else
2825 #define kfree_debugcheck(x) do { } while(0)
2826 #define cache_free_debugcheck(x,objp,z) (objp)
2827 #endif
2828 
2829 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2830 						void **list)
2831 {
2832 #if DEBUG
2833 	void *next = *list;
2834 	void *objp;
2835 
2836 	while (next) {
2837 		objp = next - obj_offset(cachep);
2838 		next = *(void **)next;
2839 		poison_obj(cachep, objp, POISON_FREE);
2840 	}
2841 #endif
2842 }
2843 
2844 static inline void fixup_slab_list(struct kmem_cache *cachep,
2845 				struct kmem_cache_node *n, struct page *page,
2846 				void **list)
2847 {
2848 	/* move slabp to correct slabp list: */
2849 	list_del(&page->lru);
2850 	if (page->active == cachep->num) {
2851 		list_add(&page->lru, &n->slabs_full);
2852 		if (OBJFREELIST_SLAB(cachep)) {
2853 #if DEBUG
2854 			/* Poisoning will be done without holding the lock */
2855 			if (cachep->flags & SLAB_POISON) {
2856 				void **objp = page->freelist;
2857 
2858 				*objp = *list;
2859 				*list = objp;
2860 			}
2861 #endif
2862 			page->freelist = NULL;
2863 		}
2864 	} else
2865 		list_add(&page->lru, &n->slabs_partial);
2866 }
2867 
2868 /* Try to find non-pfmemalloc slab if needed */
2869 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2870 					struct page *page, bool pfmemalloc)
2871 {
2872 	if (!page)
2873 		return NULL;
2874 
2875 	if (pfmemalloc)
2876 		return page;
2877 
2878 	if (!PageSlabPfmemalloc(page))
2879 		return page;
2880 
2881 	/* No need to keep pfmemalloc slab if we have enough free objects */
2882 	if (n->free_objects > n->free_limit) {
2883 		ClearPageSlabPfmemalloc(page);
2884 		return page;
2885 	}
2886 
2887 	/* Move pfmemalloc slab to the end of list to speed up next search */
2888 	list_del(&page->lru);
2889 	if (!page->active) {
2890 		list_add_tail(&page->lru, &n->slabs_free);
2891 		n->free_slabs++;
2892 	} else
2893 		list_add_tail(&page->lru, &n->slabs_partial);
2894 
2895 	list_for_each_entry(page, &n->slabs_partial, lru) {
2896 		if (!PageSlabPfmemalloc(page))
2897 			return page;
2898 	}
2899 
2900 	n->free_touched = 1;
2901 	list_for_each_entry(page, &n->slabs_free, lru) {
2902 		if (!PageSlabPfmemalloc(page)) {
2903 			n->free_slabs--;
2904 			return page;
2905 		}
2906 	}
2907 
2908 	return NULL;
2909 }
2910 
2911 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2912 {
2913 	struct page *page;
2914 
2915 	assert_spin_locked(&n->list_lock);
2916 	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2917 	if (!page) {
2918 		n->free_touched = 1;
2919 		page = list_first_entry_or_null(&n->slabs_free, struct page,
2920 						lru);
2921 		if (page)
2922 			n->free_slabs--;
2923 	}
2924 
2925 	if (sk_memalloc_socks())
2926 		page = get_valid_first_slab(n, page, pfmemalloc);
2927 
2928 	return page;
2929 }
2930 
2931 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2932 				struct kmem_cache_node *n, gfp_t flags)
2933 {
2934 	struct page *page;
2935 	void *obj;
2936 	void *list = NULL;
2937 
2938 	if (!gfp_pfmemalloc_allowed(flags))
2939 		return NULL;
2940 
2941 	spin_lock(&n->list_lock);
2942 	page = get_first_slab(n, true);
2943 	if (!page) {
2944 		spin_unlock(&n->list_lock);
2945 		return NULL;
2946 	}
2947 
2948 	obj = slab_get_obj(cachep, page);
2949 	n->free_objects--;
2950 
2951 	fixup_slab_list(cachep, n, page, &list);
2952 
2953 	spin_unlock(&n->list_lock);
2954 	fixup_objfreelist_debug(cachep, &list);
2955 
2956 	return obj;
2957 }
2958 
2959 /*
2960  * Slab list should be fixed up by fixup_slab_list() for existing slab
2961  * or cache_grow_end() for new slab
2962  */
2963 static __always_inline int alloc_block(struct kmem_cache *cachep,
2964 		struct array_cache *ac, struct page *page, int batchcount)
2965 {
2966 	/*
2967 	 * There must be at least one object available for
2968 	 * allocation.
2969 	 */
2970 	BUG_ON(page->active >= cachep->num);
2971 
2972 	while (page->active < cachep->num && batchcount--) {
2973 		STATS_INC_ALLOCED(cachep);
2974 		STATS_INC_ACTIVE(cachep);
2975 		STATS_SET_HIGH(cachep);
2976 
2977 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2978 	}
2979 
2980 	return batchcount;
2981 }
2982 
2983 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2984 {
2985 	int batchcount;
2986 	struct kmem_cache_node *n;
2987 	struct array_cache *ac, *shared;
2988 	int node;
2989 	void *list = NULL;
2990 	struct page *page;
2991 
2992 	check_irq_off();
2993 	node = numa_mem_id();
2994 
2995 	ac = cpu_cache_get(cachep);
2996 	batchcount = ac->batchcount;
2997 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2998 		/*
2999 		 * If there was little recent activity on this cache, then
3000 		 * perform only a partial refill.  Otherwise we could generate
3001 		 * refill bouncing.
3002 		 */
3003 		batchcount = BATCHREFILL_LIMIT;
3004 	}
3005 	n = get_node(cachep, node);
3006 
3007 	BUG_ON(ac->avail > 0 || !n);
3008 	shared = READ_ONCE(n->shared);
3009 	if (!n->free_objects && (!shared || !shared->avail))
3010 		goto direct_grow;
3011 
3012 	spin_lock(&n->list_lock);
3013 	shared = READ_ONCE(n->shared);
3014 
3015 	/* See if we can refill from the shared array */
3016 	if (shared && transfer_objects(ac, shared, batchcount)) {
3017 		shared->touched = 1;
3018 		goto alloc_done;
3019 	}
3020 
3021 	while (batchcount > 0) {
3022 		/* Get slab alloc is to come from. */
3023 		page = get_first_slab(n, false);
3024 		if (!page)
3025 			goto must_grow;
3026 
3027 		check_spinlock_acquired(cachep);
3028 
3029 		batchcount = alloc_block(cachep, ac, page, batchcount);
3030 		fixup_slab_list(cachep, n, page, &list);
3031 	}
3032 
3033 must_grow:
3034 	n->free_objects -= ac->avail;
3035 alloc_done:
3036 	spin_unlock(&n->list_lock);
3037 	fixup_objfreelist_debug(cachep, &list);
3038 
3039 direct_grow:
3040 	if (unlikely(!ac->avail)) {
3041 		/* Check if we can use obj in pfmemalloc slab */
3042 		if (sk_memalloc_socks()) {
3043 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3044 
3045 			if (obj)
3046 				return obj;
3047 		}
3048 
3049 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3050 
3051 		/*
3052 		 * cache_grow_begin() can reenable interrupts,
3053 		 * then ac could change.
3054 		 */
3055 		ac = cpu_cache_get(cachep);
3056 		if (!ac->avail && page)
3057 			alloc_block(cachep, ac, page, batchcount);
3058 		cache_grow_end(cachep, page);
3059 
3060 		if (!ac->avail)
3061 			return NULL;
3062 	}
3063 	ac->touched = 1;
3064 
3065 	return ac->entry[--ac->avail];
3066 }
3067 
3068 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3069 						gfp_t flags)
3070 {
3071 	might_sleep_if(gfpflags_allow_blocking(flags));
3072 }
3073 
3074 #if DEBUG
3075 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3076 				gfp_t flags, void *objp, unsigned long caller)
3077 {
3078 	if (!objp)
3079 		return objp;
3080 	if (cachep->flags & SLAB_POISON) {
3081 		check_poison_obj(cachep, objp);
3082 		slab_kernel_map(cachep, objp, 1, 0);
3083 		poison_obj(cachep, objp, POISON_INUSE);
3084 	}
3085 	if (cachep->flags & SLAB_STORE_USER)
3086 		*dbg_userword(cachep, objp) = (void *)caller;
3087 
3088 	if (cachep->flags & SLAB_RED_ZONE) {
3089 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3090 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3091 			slab_error(cachep, "double free, or memory outside object was overwritten");
3092 			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3093 			       objp, *dbg_redzone1(cachep, objp),
3094 			       *dbg_redzone2(cachep, objp));
3095 		}
3096 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3097 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3098 	}
3099 
3100 	objp += obj_offset(cachep);
3101 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3102 		cachep->ctor(objp);
3103 	if (ARCH_SLAB_MINALIGN &&
3104 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3105 		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3106 		       objp, (int)ARCH_SLAB_MINALIGN);
3107 	}
3108 	return objp;
3109 }
3110 #else
3111 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3112 #endif
3113 
3114 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3115 {
3116 	void *objp;
3117 	struct array_cache *ac;
3118 
3119 	check_irq_off();
3120 
3121 	ac = cpu_cache_get(cachep);
3122 	if (likely(ac->avail)) {
3123 		ac->touched = 1;
3124 		objp = ac->entry[--ac->avail];
3125 
3126 		STATS_INC_ALLOCHIT(cachep);
3127 		goto out;
3128 	}
3129 
3130 	STATS_INC_ALLOCMISS(cachep);
3131 	objp = cache_alloc_refill(cachep, flags);
3132 	/*
3133 	 * the 'ac' may be updated by cache_alloc_refill(),
3134 	 * and kmemleak_erase() requires its correct value.
3135 	 */
3136 	ac = cpu_cache_get(cachep);
3137 
3138 out:
3139 	/*
3140 	 * To avoid a false negative, if an object that is in one of the
3141 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3142 	 * treat the array pointers as a reference to the object.
3143 	 */
3144 	if (objp)
3145 		kmemleak_erase(&ac->entry[ac->avail]);
3146 	return objp;
3147 }
3148 
3149 #ifdef CONFIG_NUMA
3150 /*
3151  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3152  *
3153  * If we are in_interrupt, then process context, including cpusets and
3154  * mempolicy, may not apply and should not be used for allocation policy.
3155  */
3156 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3157 {
3158 	int nid_alloc, nid_here;
3159 
3160 	if (in_interrupt() || (flags & __GFP_THISNODE))
3161 		return NULL;
3162 	nid_alloc = nid_here = numa_mem_id();
3163 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3164 		nid_alloc = cpuset_slab_spread_node();
3165 	else if (current->mempolicy)
3166 		nid_alloc = mempolicy_slab_node();
3167 	if (nid_alloc != nid_here)
3168 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3169 	return NULL;
3170 }
3171 
3172 /*
3173  * Fallback function if there was no memory available and no objects on a
3174  * certain node and fall back is permitted. First we scan all the
3175  * available node for available objects. If that fails then we
3176  * perform an allocation without specifying a node. This allows the page
3177  * allocator to do its reclaim / fallback magic. We then insert the
3178  * slab into the proper nodelist and then allocate from it.
3179  */
3180 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3181 {
3182 	struct zonelist *zonelist;
3183 	struct zoneref *z;
3184 	struct zone *zone;
3185 	enum zone_type high_zoneidx = gfp_zone(flags);
3186 	void *obj = NULL;
3187 	struct page *page;
3188 	int nid;
3189 	unsigned int cpuset_mems_cookie;
3190 
3191 	if (flags & __GFP_THISNODE)
3192 		return NULL;
3193 
3194 retry_cpuset:
3195 	cpuset_mems_cookie = read_mems_allowed_begin();
3196 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3197 
3198 retry:
3199 	/*
3200 	 * Look through allowed nodes for objects available
3201 	 * from existing per node queues.
3202 	 */
3203 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3204 		nid = zone_to_nid(zone);
3205 
3206 		if (cpuset_zone_allowed(zone, flags) &&
3207 			get_node(cache, nid) &&
3208 			get_node(cache, nid)->free_objects) {
3209 				obj = ____cache_alloc_node(cache,
3210 					gfp_exact_node(flags), nid);
3211 				if (obj)
3212 					break;
3213 		}
3214 	}
3215 
3216 	if (!obj) {
3217 		/*
3218 		 * This allocation will be performed within the constraints
3219 		 * of the current cpuset / memory policy requirements.
3220 		 * We may trigger various forms of reclaim on the allowed
3221 		 * set and go into memory reserves if necessary.
3222 		 */
3223 		page = cache_grow_begin(cache, flags, numa_mem_id());
3224 		cache_grow_end(cache, page);
3225 		if (page) {
3226 			nid = page_to_nid(page);
3227 			obj = ____cache_alloc_node(cache,
3228 				gfp_exact_node(flags), nid);
3229 
3230 			/*
3231 			 * Another processor may allocate the objects in
3232 			 * the slab since we are not holding any locks.
3233 			 */
3234 			if (!obj)
3235 				goto retry;
3236 		}
3237 	}
3238 
3239 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3240 		goto retry_cpuset;
3241 	return obj;
3242 }
3243 
3244 /*
3245  * A interface to enable slab creation on nodeid
3246  */
3247 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3248 				int nodeid)
3249 {
3250 	struct page *page;
3251 	struct kmem_cache_node *n;
3252 	void *obj = NULL;
3253 	void *list = NULL;
3254 
3255 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3256 	n = get_node(cachep, nodeid);
3257 	BUG_ON(!n);
3258 
3259 	check_irq_off();
3260 	spin_lock(&n->list_lock);
3261 	page = get_first_slab(n, false);
3262 	if (!page)
3263 		goto must_grow;
3264 
3265 	check_spinlock_acquired_node(cachep, nodeid);
3266 
3267 	STATS_INC_NODEALLOCS(cachep);
3268 	STATS_INC_ACTIVE(cachep);
3269 	STATS_SET_HIGH(cachep);
3270 
3271 	BUG_ON(page->active == cachep->num);
3272 
3273 	obj = slab_get_obj(cachep, page);
3274 	n->free_objects--;
3275 
3276 	fixup_slab_list(cachep, n, page, &list);
3277 
3278 	spin_unlock(&n->list_lock);
3279 	fixup_objfreelist_debug(cachep, &list);
3280 	return obj;
3281 
3282 must_grow:
3283 	spin_unlock(&n->list_lock);
3284 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3285 	if (page) {
3286 		/* This slab isn't counted yet so don't update free_objects */
3287 		obj = slab_get_obj(cachep, page);
3288 	}
3289 	cache_grow_end(cachep, page);
3290 
3291 	return obj ? obj : fallback_alloc(cachep, flags);
3292 }
3293 
3294 static __always_inline void *
3295 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3296 		   unsigned long caller)
3297 {
3298 	unsigned long save_flags;
3299 	void *ptr;
3300 	int slab_node = numa_mem_id();
3301 
3302 	flags &= gfp_allowed_mask;
3303 	cachep = slab_pre_alloc_hook(cachep, flags);
3304 	if (unlikely(!cachep))
3305 		return NULL;
3306 
3307 	cache_alloc_debugcheck_before(cachep, flags);
3308 	local_irq_save(save_flags);
3309 
3310 	if (nodeid == NUMA_NO_NODE)
3311 		nodeid = slab_node;
3312 
3313 	if (unlikely(!get_node(cachep, nodeid))) {
3314 		/* Node not bootstrapped yet */
3315 		ptr = fallback_alloc(cachep, flags);
3316 		goto out;
3317 	}
3318 
3319 	if (nodeid == slab_node) {
3320 		/*
3321 		 * Use the locally cached objects if possible.
3322 		 * However ____cache_alloc does not allow fallback
3323 		 * to other nodes. It may fail while we still have
3324 		 * objects on other nodes available.
3325 		 */
3326 		ptr = ____cache_alloc(cachep, flags);
3327 		if (ptr)
3328 			goto out;
3329 	}
3330 	/* ___cache_alloc_node can fall back to other nodes */
3331 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3332   out:
3333 	local_irq_restore(save_flags);
3334 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3335 
3336 	if (unlikely(flags & __GFP_ZERO) && ptr)
3337 		memset(ptr, 0, cachep->object_size);
3338 
3339 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3340 	return ptr;
3341 }
3342 
3343 static __always_inline void *
3344 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3345 {
3346 	void *objp;
3347 
3348 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3349 		objp = alternate_node_alloc(cache, flags);
3350 		if (objp)
3351 			goto out;
3352 	}
3353 	objp = ____cache_alloc(cache, flags);
3354 
3355 	/*
3356 	 * We may just have run out of memory on the local node.
3357 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3358 	 */
3359 	if (!objp)
3360 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3361 
3362   out:
3363 	return objp;
3364 }
3365 #else
3366 
3367 static __always_inline void *
3368 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3369 {
3370 	return ____cache_alloc(cachep, flags);
3371 }
3372 
3373 #endif /* CONFIG_NUMA */
3374 
3375 static __always_inline void *
3376 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3377 {
3378 	unsigned long save_flags;
3379 	void *objp;
3380 
3381 	flags &= gfp_allowed_mask;
3382 	cachep = slab_pre_alloc_hook(cachep, flags);
3383 	if (unlikely(!cachep))
3384 		return NULL;
3385 
3386 	cache_alloc_debugcheck_before(cachep, flags);
3387 	local_irq_save(save_flags);
3388 	objp = __do_cache_alloc(cachep, flags);
3389 	local_irq_restore(save_flags);
3390 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3391 	prefetchw(objp);
3392 
3393 	if (unlikely(flags & __GFP_ZERO) && objp)
3394 		memset(objp, 0, cachep->object_size);
3395 
3396 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3397 	return objp;
3398 }
3399 
3400 /*
3401  * Caller needs to acquire correct kmem_cache_node's list_lock
3402  * @list: List of detached free slabs should be freed by caller
3403  */
3404 static void free_block(struct kmem_cache *cachep, void **objpp,
3405 			int nr_objects, int node, struct list_head *list)
3406 {
3407 	int i;
3408 	struct kmem_cache_node *n = get_node(cachep, node);
3409 	struct page *page;
3410 
3411 	n->free_objects += nr_objects;
3412 
3413 	for (i = 0; i < nr_objects; i++) {
3414 		void *objp;
3415 		struct page *page;
3416 
3417 		objp = objpp[i];
3418 
3419 		page = virt_to_head_page(objp);
3420 		list_del(&page->lru);
3421 		check_spinlock_acquired_node(cachep, node);
3422 		slab_put_obj(cachep, page, objp);
3423 		STATS_DEC_ACTIVE(cachep);
3424 
3425 		/* fixup slab chains */
3426 		if (page->active == 0) {
3427 			list_add(&page->lru, &n->slabs_free);
3428 			n->free_slabs++;
3429 		} else {
3430 			/* Unconditionally move a slab to the end of the
3431 			 * partial list on free - maximum time for the
3432 			 * other objects to be freed, too.
3433 			 */
3434 			list_add_tail(&page->lru, &n->slabs_partial);
3435 		}
3436 	}
3437 
3438 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3439 		n->free_objects -= cachep->num;
3440 
3441 		page = list_last_entry(&n->slabs_free, struct page, lru);
3442 		list_move(&page->lru, list);
3443 		n->free_slabs--;
3444 		n->total_slabs--;
3445 	}
3446 }
3447 
3448 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3449 {
3450 	int batchcount;
3451 	struct kmem_cache_node *n;
3452 	int node = numa_mem_id();
3453 	LIST_HEAD(list);
3454 
3455 	batchcount = ac->batchcount;
3456 
3457 	check_irq_off();
3458 	n = get_node(cachep, node);
3459 	spin_lock(&n->list_lock);
3460 	if (n->shared) {
3461 		struct array_cache *shared_array = n->shared;
3462 		int max = shared_array->limit - shared_array->avail;
3463 		if (max) {
3464 			if (batchcount > max)
3465 				batchcount = max;
3466 			memcpy(&(shared_array->entry[shared_array->avail]),
3467 			       ac->entry, sizeof(void *) * batchcount);
3468 			shared_array->avail += batchcount;
3469 			goto free_done;
3470 		}
3471 	}
3472 
3473 	free_block(cachep, ac->entry, batchcount, node, &list);
3474 free_done:
3475 #if STATS
3476 	{
3477 		int i = 0;
3478 		struct page *page;
3479 
3480 		list_for_each_entry(page, &n->slabs_free, lru) {
3481 			BUG_ON(page->active);
3482 
3483 			i++;
3484 		}
3485 		STATS_SET_FREEABLE(cachep, i);
3486 	}
3487 #endif
3488 	spin_unlock(&n->list_lock);
3489 	slabs_destroy(cachep, &list);
3490 	ac->avail -= batchcount;
3491 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3492 }
3493 
3494 /*
3495  * Release an obj back to its cache. If the obj has a constructed state, it must
3496  * be in this state _before_ it is released.  Called with disabled ints.
3497  */
3498 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3499 				unsigned long caller)
3500 {
3501 	/* Put the object into the quarantine, don't touch it for now. */
3502 	if (kasan_slab_free(cachep, objp))
3503 		return;
3504 
3505 	___cache_free(cachep, objp, caller);
3506 }
3507 
3508 void ___cache_free(struct kmem_cache *cachep, void *objp,
3509 		unsigned long caller)
3510 {
3511 	struct array_cache *ac = cpu_cache_get(cachep);
3512 
3513 	check_irq_off();
3514 	kmemleak_free_recursive(objp, cachep->flags);
3515 	objp = cache_free_debugcheck(cachep, objp, caller);
3516 
3517 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3518 
3519 	/*
3520 	 * Skip calling cache_free_alien() when the platform is not numa.
3521 	 * This will avoid cache misses that happen while accessing slabp (which
3522 	 * is per page memory  reference) to get nodeid. Instead use a global
3523 	 * variable to skip the call, which is mostly likely to be present in
3524 	 * the cache.
3525 	 */
3526 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3527 		return;
3528 
3529 	if (ac->avail < ac->limit) {
3530 		STATS_INC_FREEHIT(cachep);
3531 	} else {
3532 		STATS_INC_FREEMISS(cachep);
3533 		cache_flusharray(cachep, ac);
3534 	}
3535 
3536 	if (sk_memalloc_socks()) {
3537 		struct page *page = virt_to_head_page(objp);
3538 
3539 		if (unlikely(PageSlabPfmemalloc(page))) {
3540 			cache_free_pfmemalloc(cachep, page, objp);
3541 			return;
3542 		}
3543 	}
3544 
3545 	ac->entry[ac->avail++] = objp;
3546 }
3547 
3548 /**
3549  * kmem_cache_alloc - Allocate an object
3550  * @cachep: The cache to allocate from.
3551  * @flags: See kmalloc().
3552  *
3553  * Allocate an object from this cache.  The flags are only relevant
3554  * if the cache has no available objects.
3555  */
3556 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3557 {
3558 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3559 
3560 	kasan_slab_alloc(cachep, ret, flags);
3561 	trace_kmem_cache_alloc(_RET_IP_, ret,
3562 			       cachep->object_size, cachep->size, flags);
3563 
3564 	return ret;
3565 }
3566 EXPORT_SYMBOL(kmem_cache_alloc);
3567 
3568 static __always_inline void
3569 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3570 				  size_t size, void **p, unsigned long caller)
3571 {
3572 	size_t i;
3573 
3574 	for (i = 0; i < size; i++)
3575 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3576 }
3577 
3578 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3579 			  void **p)
3580 {
3581 	size_t i;
3582 
3583 	s = slab_pre_alloc_hook(s, flags);
3584 	if (!s)
3585 		return 0;
3586 
3587 	cache_alloc_debugcheck_before(s, flags);
3588 
3589 	local_irq_disable();
3590 	for (i = 0; i < size; i++) {
3591 		void *objp = __do_cache_alloc(s, flags);
3592 
3593 		if (unlikely(!objp))
3594 			goto error;
3595 		p[i] = objp;
3596 	}
3597 	local_irq_enable();
3598 
3599 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3600 
3601 	/* Clear memory outside IRQ disabled section */
3602 	if (unlikely(flags & __GFP_ZERO))
3603 		for (i = 0; i < size; i++)
3604 			memset(p[i], 0, s->object_size);
3605 
3606 	slab_post_alloc_hook(s, flags, size, p);
3607 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3608 	return size;
3609 error:
3610 	local_irq_enable();
3611 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3612 	slab_post_alloc_hook(s, flags, i, p);
3613 	__kmem_cache_free_bulk(s, i, p);
3614 	return 0;
3615 }
3616 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3617 
3618 #ifdef CONFIG_TRACING
3619 void *
3620 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3621 {
3622 	void *ret;
3623 
3624 	ret = slab_alloc(cachep, flags, _RET_IP_);
3625 
3626 	kasan_kmalloc(cachep, ret, size, flags);
3627 	trace_kmalloc(_RET_IP_, ret,
3628 		      size, cachep->size, flags);
3629 	return ret;
3630 }
3631 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3632 #endif
3633 
3634 #ifdef CONFIG_NUMA
3635 /**
3636  * kmem_cache_alloc_node - Allocate an object on the specified node
3637  * @cachep: The cache to allocate from.
3638  * @flags: See kmalloc().
3639  * @nodeid: node number of the target node.
3640  *
3641  * Identical to kmem_cache_alloc but it will allocate memory on the given
3642  * node, which can improve the performance for cpu bound structures.
3643  *
3644  * Fallback to other node is possible if __GFP_THISNODE is not set.
3645  */
3646 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3647 {
3648 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3649 
3650 	kasan_slab_alloc(cachep, ret, flags);
3651 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3652 				    cachep->object_size, cachep->size,
3653 				    flags, nodeid);
3654 
3655 	return ret;
3656 }
3657 EXPORT_SYMBOL(kmem_cache_alloc_node);
3658 
3659 #ifdef CONFIG_TRACING
3660 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3661 				  gfp_t flags,
3662 				  int nodeid,
3663 				  size_t size)
3664 {
3665 	void *ret;
3666 
3667 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3668 
3669 	kasan_kmalloc(cachep, ret, size, flags);
3670 	trace_kmalloc_node(_RET_IP_, ret,
3671 			   size, cachep->size,
3672 			   flags, nodeid);
3673 	return ret;
3674 }
3675 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3676 #endif
3677 
3678 static __always_inline void *
3679 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3680 {
3681 	struct kmem_cache *cachep;
3682 	void *ret;
3683 
3684 	cachep = kmalloc_slab(size, flags);
3685 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3686 		return cachep;
3687 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3688 	kasan_kmalloc(cachep, ret, size, flags);
3689 
3690 	return ret;
3691 }
3692 
3693 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3694 {
3695 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3696 }
3697 EXPORT_SYMBOL(__kmalloc_node);
3698 
3699 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3700 		int node, unsigned long caller)
3701 {
3702 	return __do_kmalloc_node(size, flags, node, caller);
3703 }
3704 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3705 #endif /* CONFIG_NUMA */
3706 
3707 /**
3708  * __do_kmalloc - allocate memory
3709  * @size: how many bytes of memory are required.
3710  * @flags: the type of memory to allocate (see kmalloc).
3711  * @caller: function caller for debug tracking of the caller
3712  */
3713 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3714 					  unsigned long caller)
3715 {
3716 	struct kmem_cache *cachep;
3717 	void *ret;
3718 
3719 	cachep = kmalloc_slab(size, flags);
3720 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3721 		return cachep;
3722 	ret = slab_alloc(cachep, flags, caller);
3723 
3724 	kasan_kmalloc(cachep, ret, size, flags);
3725 	trace_kmalloc(caller, ret,
3726 		      size, cachep->size, flags);
3727 
3728 	return ret;
3729 }
3730 
3731 void *__kmalloc(size_t size, gfp_t flags)
3732 {
3733 	return __do_kmalloc(size, flags, _RET_IP_);
3734 }
3735 EXPORT_SYMBOL(__kmalloc);
3736 
3737 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3738 {
3739 	return __do_kmalloc(size, flags, caller);
3740 }
3741 EXPORT_SYMBOL(__kmalloc_track_caller);
3742 
3743 /**
3744  * kmem_cache_free - Deallocate an object
3745  * @cachep: The cache the allocation was from.
3746  * @objp: The previously allocated object.
3747  *
3748  * Free an object which was previously allocated from this
3749  * cache.
3750  */
3751 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3752 {
3753 	unsigned long flags;
3754 	cachep = cache_from_obj(cachep, objp);
3755 	if (!cachep)
3756 		return;
3757 
3758 	local_irq_save(flags);
3759 	debug_check_no_locks_freed(objp, cachep->object_size);
3760 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3761 		debug_check_no_obj_freed(objp, cachep->object_size);
3762 	__cache_free(cachep, objp, _RET_IP_);
3763 	local_irq_restore(flags);
3764 
3765 	trace_kmem_cache_free(_RET_IP_, objp);
3766 }
3767 EXPORT_SYMBOL(kmem_cache_free);
3768 
3769 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3770 {
3771 	struct kmem_cache *s;
3772 	size_t i;
3773 
3774 	local_irq_disable();
3775 	for (i = 0; i < size; i++) {
3776 		void *objp = p[i];
3777 
3778 		if (!orig_s) /* called via kfree_bulk */
3779 			s = virt_to_cache(objp);
3780 		else
3781 			s = cache_from_obj(orig_s, objp);
3782 
3783 		debug_check_no_locks_freed(objp, s->object_size);
3784 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3785 			debug_check_no_obj_freed(objp, s->object_size);
3786 
3787 		__cache_free(s, objp, _RET_IP_);
3788 	}
3789 	local_irq_enable();
3790 
3791 	/* FIXME: add tracing */
3792 }
3793 EXPORT_SYMBOL(kmem_cache_free_bulk);
3794 
3795 /**
3796  * kfree - free previously allocated memory
3797  * @objp: pointer returned by kmalloc.
3798  *
3799  * If @objp is NULL, no operation is performed.
3800  *
3801  * Don't free memory not originally allocated by kmalloc()
3802  * or you will run into trouble.
3803  */
3804 void kfree(const void *objp)
3805 {
3806 	struct kmem_cache *c;
3807 	unsigned long flags;
3808 
3809 	trace_kfree(_RET_IP_, objp);
3810 
3811 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3812 		return;
3813 	local_irq_save(flags);
3814 	kfree_debugcheck(objp);
3815 	c = virt_to_cache(objp);
3816 	debug_check_no_locks_freed(objp, c->object_size);
3817 
3818 	debug_check_no_obj_freed(objp, c->object_size);
3819 	__cache_free(c, (void *)objp, _RET_IP_);
3820 	local_irq_restore(flags);
3821 }
3822 EXPORT_SYMBOL(kfree);
3823 
3824 /*
3825  * This initializes kmem_cache_node or resizes various caches for all nodes.
3826  */
3827 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3828 {
3829 	int ret;
3830 	int node;
3831 	struct kmem_cache_node *n;
3832 
3833 	for_each_online_node(node) {
3834 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3835 		if (ret)
3836 			goto fail;
3837 
3838 	}
3839 
3840 	return 0;
3841 
3842 fail:
3843 	if (!cachep->list.next) {
3844 		/* Cache is not active yet. Roll back what we did */
3845 		node--;
3846 		while (node >= 0) {
3847 			n = get_node(cachep, node);
3848 			if (n) {
3849 				kfree(n->shared);
3850 				free_alien_cache(n->alien);
3851 				kfree(n);
3852 				cachep->node[node] = NULL;
3853 			}
3854 			node--;
3855 		}
3856 	}
3857 	return -ENOMEM;
3858 }
3859 
3860 /* Always called with the slab_mutex held */
3861 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3862 				int batchcount, int shared, gfp_t gfp)
3863 {
3864 	struct array_cache __percpu *cpu_cache, *prev;
3865 	int cpu;
3866 
3867 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3868 	if (!cpu_cache)
3869 		return -ENOMEM;
3870 
3871 	prev = cachep->cpu_cache;
3872 	cachep->cpu_cache = cpu_cache;
3873 	kick_all_cpus_sync();
3874 
3875 	check_irq_on();
3876 	cachep->batchcount = batchcount;
3877 	cachep->limit = limit;
3878 	cachep->shared = shared;
3879 
3880 	if (!prev)
3881 		goto setup_node;
3882 
3883 	for_each_online_cpu(cpu) {
3884 		LIST_HEAD(list);
3885 		int node;
3886 		struct kmem_cache_node *n;
3887 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3888 
3889 		node = cpu_to_mem(cpu);
3890 		n = get_node(cachep, node);
3891 		spin_lock_irq(&n->list_lock);
3892 		free_block(cachep, ac->entry, ac->avail, node, &list);
3893 		spin_unlock_irq(&n->list_lock);
3894 		slabs_destroy(cachep, &list);
3895 	}
3896 	free_percpu(prev);
3897 
3898 setup_node:
3899 	return setup_kmem_cache_nodes(cachep, gfp);
3900 }
3901 
3902 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3903 				int batchcount, int shared, gfp_t gfp)
3904 {
3905 	int ret;
3906 	struct kmem_cache *c;
3907 
3908 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3909 
3910 	if (slab_state < FULL)
3911 		return ret;
3912 
3913 	if ((ret < 0) || !is_root_cache(cachep))
3914 		return ret;
3915 
3916 	lockdep_assert_held(&slab_mutex);
3917 	for_each_memcg_cache(c, cachep) {
3918 		/* return value determined by the root cache only */
3919 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3920 	}
3921 
3922 	return ret;
3923 }
3924 
3925 /* Called with slab_mutex held always */
3926 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3927 {
3928 	int err;
3929 	int limit = 0;
3930 	int shared = 0;
3931 	int batchcount = 0;
3932 
3933 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3934 	if (err)
3935 		goto end;
3936 
3937 	if (!is_root_cache(cachep)) {
3938 		struct kmem_cache *root = memcg_root_cache(cachep);
3939 		limit = root->limit;
3940 		shared = root->shared;
3941 		batchcount = root->batchcount;
3942 	}
3943 
3944 	if (limit && shared && batchcount)
3945 		goto skip_setup;
3946 	/*
3947 	 * The head array serves three purposes:
3948 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3949 	 * - reduce the number of spinlock operations.
3950 	 * - reduce the number of linked list operations on the slab and
3951 	 *   bufctl chains: array operations are cheaper.
3952 	 * The numbers are guessed, we should auto-tune as described by
3953 	 * Bonwick.
3954 	 */
3955 	if (cachep->size > 131072)
3956 		limit = 1;
3957 	else if (cachep->size > PAGE_SIZE)
3958 		limit = 8;
3959 	else if (cachep->size > 1024)
3960 		limit = 24;
3961 	else if (cachep->size > 256)
3962 		limit = 54;
3963 	else
3964 		limit = 120;
3965 
3966 	/*
3967 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3968 	 * allocation behaviour: Most allocs on one cpu, most free operations
3969 	 * on another cpu. For these cases, an efficient object passing between
3970 	 * cpus is necessary. This is provided by a shared array. The array
3971 	 * replaces Bonwick's magazine layer.
3972 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3973 	 * to a larger limit. Thus disabled by default.
3974 	 */
3975 	shared = 0;
3976 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3977 		shared = 8;
3978 
3979 #if DEBUG
3980 	/*
3981 	 * With debugging enabled, large batchcount lead to excessively long
3982 	 * periods with disabled local interrupts. Limit the batchcount
3983 	 */
3984 	if (limit > 32)
3985 		limit = 32;
3986 #endif
3987 	batchcount = (limit + 1) / 2;
3988 skip_setup:
3989 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3990 end:
3991 	if (err)
3992 		pr_err("enable_cpucache failed for %s, error %d\n",
3993 		       cachep->name, -err);
3994 	return err;
3995 }
3996 
3997 /*
3998  * Drain an array if it contains any elements taking the node lock only if
3999  * necessary. Note that the node listlock also protects the array_cache
4000  * if drain_array() is used on the shared array.
4001  */
4002 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4003 			 struct array_cache *ac, int node)
4004 {
4005 	LIST_HEAD(list);
4006 
4007 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
4008 	check_mutex_acquired();
4009 
4010 	if (!ac || !ac->avail)
4011 		return;
4012 
4013 	if (ac->touched) {
4014 		ac->touched = 0;
4015 		return;
4016 	}
4017 
4018 	spin_lock_irq(&n->list_lock);
4019 	drain_array_locked(cachep, ac, node, false, &list);
4020 	spin_unlock_irq(&n->list_lock);
4021 
4022 	slabs_destroy(cachep, &list);
4023 }
4024 
4025 /**
4026  * cache_reap - Reclaim memory from caches.
4027  * @w: work descriptor
4028  *
4029  * Called from workqueue/eventd every few seconds.
4030  * Purpose:
4031  * - clear the per-cpu caches for this CPU.
4032  * - return freeable pages to the main free memory pool.
4033  *
4034  * If we cannot acquire the cache chain mutex then just give up - we'll try
4035  * again on the next iteration.
4036  */
4037 static void cache_reap(struct work_struct *w)
4038 {
4039 	struct kmem_cache *searchp;
4040 	struct kmem_cache_node *n;
4041 	int node = numa_mem_id();
4042 	struct delayed_work *work = to_delayed_work(w);
4043 
4044 	if (!mutex_trylock(&slab_mutex))
4045 		/* Give up. Setup the next iteration. */
4046 		goto out;
4047 
4048 	list_for_each_entry(searchp, &slab_caches, list) {
4049 		check_irq_on();
4050 
4051 		/*
4052 		 * We only take the node lock if absolutely necessary and we
4053 		 * have established with reasonable certainty that
4054 		 * we can do some work if the lock was obtained.
4055 		 */
4056 		n = get_node(searchp, node);
4057 
4058 		reap_alien(searchp, n);
4059 
4060 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4061 
4062 		/*
4063 		 * These are racy checks but it does not matter
4064 		 * if we skip one check or scan twice.
4065 		 */
4066 		if (time_after(n->next_reap, jiffies))
4067 			goto next;
4068 
4069 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4070 
4071 		drain_array(searchp, n, n->shared, node);
4072 
4073 		if (n->free_touched)
4074 			n->free_touched = 0;
4075 		else {
4076 			int freed;
4077 
4078 			freed = drain_freelist(searchp, n, (n->free_limit +
4079 				5 * searchp->num - 1) / (5 * searchp->num));
4080 			STATS_ADD_REAPED(searchp, freed);
4081 		}
4082 next:
4083 		cond_resched();
4084 	}
4085 	check_irq_on();
4086 	mutex_unlock(&slab_mutex);
4087 	next_reap_node();
4088 out:
4089 	/* Set up the next iteration */
4090 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4091 }
4092 
4093 #ifdef CONFIG_SLABINFO
4094 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4095 {
4096 	unsigned long active_objs, num_objs, active_slabs;
4097 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4098 	unsigned long free_slabs = 0;
4099 	int node;
4100 	struct kmem_cache_node *n;
4101 
4102 	for_each_kmem_cache_node(cachep, node, n) {
4103 		check_irq_on();
4104 		spin_lock_irq(&n->list_lock);
4105 
4106 		total_slabs += n->total_slabs;
4107 		free_slabs += n->free_slabs;
4108 		free_objs += n->free_objects;
4109 
4110 		if (n->shared)
4111 			shared_avail += n->shared->avail;
4112 
4113 		spin_unlock_irq(&n->list_lock);
4114 	}
4115 	num_objs = total_slabs * cachep->num;
4116 	active_slabs = total_slabs - free_slabs;
4117 	active_objs = num_objs - free_objs;
4118 
4119 	sinfo->active_objs = active_objs;
4120 	sinfo->num_objs = num_objs;
4121 	sinfo->active_slabs = active_slabs;
4122 	sinfo->num_slabs = total_slabs;
4123 	sinfo->shared_avail = shared_avail;
4124 	sinfo->limit = cachep->limit;
4125 	sinfo->batchcount = cachep->batchcount;
4126 	sinfo->shared = cachep->shared;
4127 	sinfo->objects_per_slab = cachep->num;
4128 	sinfo->cache_order = cachep->gfporder;
4129 }
4130 
4131 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4132 {
4133 #if STATS
4134 	{			/* node stats */
4135 		unsigned long high = cachep->high_mark;
4136 		unsigned long allocs = cachep->num_allocations;
4137 		unsigned long grown = cachep->grown;
4138 		unsigned long reaped = cachep->reaped;
4139 		unsigned long errors = cachep->errors;
4140 		unsigned long max_freeable = cachep->max_freeable;
4141 		unsigned long node_allocs = cachep->node_allocs;
4142 		unsigned long node_frees = cachep->node_frees;
4143 		unsigned long overflows = cachep->node_overflow;
4144 
4145 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4146 			   allocs, high, grown,
4147 			   reaped, errors, max_freeable, node_allocs,
4148 			   node_frees, overflows);
4149 	}
4150 	/* cpu stats */
4151 	{
4152 		unsigned long allochit = atomic_read(&cachep->allochit);
4153 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4154 		unsigned long freehit = atomic_read(&cachep->freehit);
4155 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4156 
4157 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4158 			   allochit, allocmiss, freehit, freemiss);
4159 	}
4160 #endif
4161 }
4162 
4163 #define MAX_SLABINFO_WRITE 128
4164 /**
4165  * slabinfo_write - Tuning for the slab allocator
4166  * @file: unused
4167  * @buffer: user buffer
4168  * @count: data length
4169  * @ppos: unused
4170  */
4171 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4172 		       size_t count, loff_t *ppos)
4173 {
4174 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4175 	int limit, batchcount, shared, res;
4176 	struct kmem_cache *cachep;
4177 
4178 	if (count > MAX_SLABINFO_WRITE)
4179 		return -EINVAL;
4180 	if (copy_from_user(&kbuf, buffer, count))
4181 		return -EFAULT;
4182 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4183 
4184 	tmp = strchr(kbuf, ' ');
4185 	if (!tmp)
4186 		return -EINVAL;
4187 	*tmp = '\0';
4188 	tmp++;
4189 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4190 		return -EINVAL;
4191 
4192 	/* Find the cache in the chain of caches. */
4193 	mutex_lock(&slab_mutex);
4194 	res = -EINVAL;
4195 	list_for_each_entry(cachep, &slab_caches, list) {
4196 		if (!strcmp(cachep->name, kbuf)) {
4197 			if (limit < 1 || batchcount < 1 ||
4198 					batchcount > limit || shared < 0) {
4199 				res = 0;
4200 			} else {
4201 				res = do_tune_cpucache(cachep, limit,
4202 						       batchcount, shared,
4203 						       GFP_KERNEL);
4204 			}
4205 			break;
4206 		}
4207 	}
4208 	mutex_unlock(&slab_mutex);
4209 	if (res >= 0)
4210 		res = count;
4211 	return res;
4212 }
4213 
4214 #ifdef CONFIG_DEBUG_SLAB_LEAK
4215 
4216 static inline int add_caller(unsigned long *n, unsigned long v)
4217 {
4218 	unsigned long *p;
4219 	int l;
4220 	if (!v)
4221 		return 1;
4222 	l = n[1];
4223 	p = n + 2;
4224 	while (l) {
4225 		int i = l/2;
4226 		unsigned long *q = p + 2 * i;
4227 		if (*q == v) {
4228 			q[1]++;
4229 			return 1;
4230 		}
4231 		if (*q > v) {
4232 			l = i;
4233 		} else {
4234 			p = q + 2;
4235 			l -= i + 1;
4236 		}
4237 	}
4238 	if (++n[1] == n[0])
4239 		return 0;
4240 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4241 	p[0] = v;
4242 	p[1] = 1;
4243 	return 1;
4244 }
4245 
4246 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4247 						struct page *page)
4248 {
4249 	void *p;
4250 	int i, j;
4251 	unsigned long v;
4252 
4253 	if (n[0] == n[1])
4254 		return;
4255 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4256 		bool active = true;
4257 
4258 		for (j = page->active; j < c->num; j++) {
4259 			if (get_free_obj(page, j) == i) {
4260 				active = false;
4261 				break;
4262 			}
4263 		}
4264 
4265 		if (!active)
4266 			continue;
4267 
4268 		/*
4269 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4270 		 * mapping is established when actual object allocation and
4271 		 * we could mistakenly access the unmapped object in the cpu
4272 		 * cache.
4273 		 */
4274 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4275 			continue;
4276 
4277 		if (!add_caller(n, v))
4278 			return;
4279 	}
4280 }
4281 
4282 static void show_symbol(struct seq_file *m, unsigned long address)
4283 {
4284 #ifdef CONFIG_KALLSYMS
4285 	unsigned long offset, size;
4286 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4287 
4288 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4289 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4290 		if (modname[0])
4291 			seq_printf(m, " [%s]", modname);
4292 		return;
4293 	}
4294 #endif
4295 	seq_printf(m, "%p", (void *)address);
4296 }
4297 
4298 static int leaks_show(struct seq_file *m, void *p)
4299 {
4300 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4301 	struct page *page;
4302 	struct kmem_cache_node *n;
4303 	const char *name;
4304 	unsigned long *x = m->private;
4305 	int node;
4306 	int i;
4307 
4308 	if (!(cachep->flags & SLAB_STORE_USER))
4309 		return 0;
4310 	if (!(cachep->flags & SLAB_RED_ZONE))
4311 		return 0;
4312 
4313 	/*
4314 	 * Set store_user_clean and start to grab stored user information
4315 	 * for all objects on this cache. If some alloc/free requests comes
4316 	 * during the processing, information would be wrong so restart
4317 	 * whole processing.
4318 	 */
4319 	do {
4320 		set_store_user_clean(cachep);
4321 		drain_cpu_caches(cachep);
4322 
4323 		x[1] = 0;
4324 
4325 		for_each_kmem_cache_node(cachep, node, n) {
4326 
4327 			check_irq_on();
4328 			spin_lock_irq(&n->list_lock);
4329 
4330 			list_for_each_entry(page, &n->slabs_full, lru)
4331 				handle_slab(x, cachep, page);
4332 			list_for_each_entry(page, &n->slabs_partial, lru)
4333 				handle_slab(x, cachep, page);
4334 			spin_unlock_irq(&n->list_lock);
4335 		}
4336 	} while (!is_store_user_clean(cachep));
4337 
4338 	name = cachep->name;
4339 	if (x[0] == x[1]) {
4340 		/* Increase the buffer size */
4341 		mutex_unlock(&slab_mutex);
4342 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4343 		if (!m->private) {
4344 			/* Too bad, we are really out */
4345 			m->private = x;
4346 			mutex_lock(&slab_mutex);
4347 			return -ENOMEM;
4348 		}
4349 		*(unsigned long *)m->private = x[0] * 2;
4350 		kfree(x);
4351 		mutex_lock(&slab_mutex);
4352 		/* Now make sure this entry will be retried */
4353 		m->count = m->size;
4354 		return 0;
4355 	}
4356 	for (i = 0; i < x[1]; i++) {
4357 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4358 		show_symbol(m, x[2*i+2]);
4359 		seq_putc(m, '\n');
4360 	}
4361 
4362 	return 0;
4363 }
4364 
4365 static const struct seq_operations slabstats_op = {
4366 	.start = slab_start,
4367 	.next = slab_next,
4368 	.stop = slab_stop,
4369 	.show = leaks_show,
4370 };
4371 
4372 static int slabstats_open(struct inode *inode, struct file *file)
4373 {
4374 	unsigned long *n;
4375 
4376 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4377 	if (!n)
4378 		return -ENOMEM;
4379 
4380 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4381 
4382 	return 0;
4383 }
4384 
4385 static const struct file_operations proc_slabstats_operations = {
4386 	.open		= slabstats_open,
4387 	.read		= seq_read,
4388 	.llseek		= seq_lseek,
4389 	.release	= seq_release_private,
4390 };
4391 #endif
4392 
4393 static int __init slab_proc_init(void)
4394 {
4395 #ifdef CONFIG_DEBUG_SLAB_LEAK
4396 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4397 #endif
4398 	return 0;
4399 }
4400 module_init(slab_proc_init);
4401 #endif
4402 
4403 #ifdef CONFIG_HARDENED_USERCOPY
4404 /*
4405  * Rejects objects that are incorrectly sized.
4406  *
4407  * Returns NULL if check passes, otherwise const char * to name of cache
4408  * to indicate an error.
4409  */
4410 const char *__check_heap_object(const void *ptr, unsigned long n,
4411 				struct page *page)
4412 {
4413 	struct kmem_cache *cachep;
4414 	unsigned int objnr;
4415 	unsigned long offset;
4416 
4417 	/* Find and validate object. */
4418 	cachep = page->slab_cache;
4419 	objnr = obj_to_index(cachep, page, (void *)ptr);
4420 	BUG_ON(objnr >= cachep->num);
4421 
4422 	/* Find offset within object. */
4423 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4424 
4425 	/* Allow address range falling entirely within object size. */
4426 	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4427 		return NULL;
4428 
4429 	return cachep->name;
4430 }
4431 #endif /* CONFIG_HARDENED_USERCOPY */
4432 
4433 /**
4434  * ksize - get the actual amount of memory allocated for a given object
4435  * @objp: Pointer to the object
4436  *
4437  * kmalloc may internally round up allocations and return more memory
4438  * than requested. ksize() can be used to determine the actual amount of
4439  * memory allocated. The caller may use this additional memory, even though
4440  * a smaller amount of memory was initially specified with the kmalloc call.
4441  * The caller must guarantee that objp points to a valid object previously
4442  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4443  * must not be freed during the duration of the call.
4444  */
4445 size_t ksize(const void *objp)
4446 {
4447 	size_t size;
4448 
4449 	BUG_ON(!objp);
4450 	if (unlikely(objp == ZERO_SIZE_PTR))
4451 		return 0;
4452 
4453 	size = virt_to_cache(objp)->object_size;
4454 	/* We assume that ksize callers could use the whole allocated area,
4455 	 * so we need to unpoison this area.
4456 	 */
4457 	kasan_unpoison_shadow(objp, size);
4458 
4459 	return size;
4460 }
4461 EXPORT_SYMBOL(ksize);
4462