xref: /openbmc/linux/mm/slab.c (revision 68198dca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/slab.c
4  * Written by Mark Hemment, 1996/97.
5  * (markhe@nextd.demon.co.uk)
6  *
7  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8  *
9  * Major cleanup, different bufctl logic, per-cpu arrays
10  *	(c) 2000 Manfred Spraul
11  *
12  * Cleanup, make the head arrays unconditional, preparation for NUMA
13  * 	(c) 2002 Manfred Spraul
14  *
15  * An implementation of the Slab Allocator as described in outline in;
16  *	UNIX Internals: The New Frontiers by Uresh Vahalia
17  *	Pub: Prentice Hall	ISBN 0-13-101908-2
18  * or with a little more detail in;
19  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
20  *	Jeff Bonwick (Sun Microsystems).
21  *	Presented at: USENIX Summer 1994 Technical Conference
22  *
23  * The memory is organized in caches, one cache for each object type.
24  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25  * Each cache consists out of many slabs (they are small (usually one
26  * page long) and always contiguous), and each slab contains multiple
27  * initialized objects.
28  *
29  * This means, that your constructor is used only for newly allocated
30  * slabs and you must pass objects with the same initializations to
31  * kmem_cache_free.
32  *
33  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34  * normal). If you need a special memory type, then must create a new
35  * cache for that memory type.
36  *
37  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38  *   full slabs with 0 free objects
39  *   partial slabs
40  *   empty slabs with no allocated objects
41  *
42  * If partial slabs exist, then new allocations come from these slabs,
43  * otherwise from empty slabs or new slabs are allocated.
44  *
45  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47  *
48  * Each cache has a short per-cpu head array, most allocs
49  * and frees go into that array, and if that array overflows, then 1/2
50  * of the entries in the array are given back into the global cache.
51  * The head array is strictly LIFO and should improve the cache hit rates.
52  * On SMP, it additionally reduces the spinlock operations.
53  *
54  * The c_cpuarray may not be read with enabled local interrupts -
55  * it's changed with a smp_call_function().
56  *
57  * SMP synchronization:
58  *  constructors and destructors are called without any locking.
59  *  Several members in struct kmem_cache and struct slab never change, they
60  *	are accessed without any locking.
61  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
62  *  	and local interrupts are disabled so slab code is preempt-safe.
63  *  The non-constant members are protected with a per-cache irq spinlock.
64  *
65  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66  * in 2000 - many ideas in the current implementation are derived from
67  * his patch.
68  *
69  * Further notes from the original documentation:
70  *
71  * 11 April '97.  Started multi-threading - markhe
72  *	The global cache-chain is protected by the mutex 'slab_mutex'.
73  *	The sem is only needed when accessing/extending the cache-chain, which
74  *	can never happen inside an interrupt (kmem_cache_create(),
75  *	kmem_cache_shrink() and kmem_cache_reap()).
76  *
77  *	At present, each engine can be growing a cache.  This should be blocked.
78  *
79  * 15 March 2005. NUMA slab allocator.
80  *	Shai Fultheim <shai@scalex86.org>.
81  *	Shobhit Dayal <shobhit@calsoftinc.com>
82  *	Alok N Kataria <alokk@calsoftinc.com>
83  *	Christoph Lameter <christoph@lameter.com>
84  *
85  *	Modified the slab allocator to be node aware on NUMA systems.
86  *	Each node has its own list of partial, free and full slabs.
87  *	All object allocations for a node occur from node specific slab lists.
88  */
89 
90 #include	<linux/slab.h>
91 #include	<linux/mm.h>
92 #include	<linux/poison.h>
93 #include	<linux/swap.h>
94 #include	<linux/cache.h>
95 #include	<linux/interrupt.h>
96 #include	<linux/init.h>
97 #include	<linux/compiler.h>
98 #include	<linux/cpuset.h>
99 #include	<linux/proc_fs.h>
100 #include	<linux/seq_file.h>
101 #include	<linux/notifier.h>
102 #include	<linux/kallsyms.h>
103 #include	<linux/cpu.h>
104 #include	<linux/sysctl.h>
105 #include	<linux/module.h>
106 #include	<linux/rcupdate.h>
107 #include	<linux/string.h>
108 #include	<linux/uaccess.h>
109 #include	<linux/nodemask.h>
110 #include	<linux/kmemleak.h>
111 #include	<linux/mempolicy.h>
112 #include	<linux/mutex.h>
113 #include	<linux/fault-inject.h>
114 #include	<linux/rtmutex.h>
115 #include	<linux/reciprocal_div.h>
116 #include	<linux/debugobjects.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 #include	<linux/sched/task_stack.h>
120 
121 #include	<net/sock.h>
122 
123 #include	<asm/cacheflush.h>
124 #include	<asm/tlbflush.h>
125 #include	<asm/page.h>
126 
127 #include <trace/events/kmem.h>
128 
129 #include	"internal.h"
130 
131 #include	"slab.h"
132 
133 /*
134  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135  *		  0 for faster, smaller code (especially in the critical paths).
136  *
137  * STATS	- 1 to collect stats for /proc/slabinfo.
138  *		  0 for faster, smaller code (especially in the critical paths).
139  *
140  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141  */
142 
143 #ifdef CONFIG_DEBUG_SLAB
144 #define	DEBUG		1
145 #define	STATS		1
146 #define	FORCED_DEBUG	1
147 #else
148 #define	DEBUG		0
149 #define	STATS		0
150 #define	FORCED_DEBUG	0
151 #endif
152 
153 /* Shouldn't this be in a header file somewhere? */
154 #define	BYTES_PER_WORD		sizeof(void *)
155 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160 
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169 
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171 
172 /*
173  * struct array_cache
174  *
175  * Purpose:
176  * - LIFO ordering, to hand out cache-warm objects from _alloc
177  * - reduce the number of linked list operations
178  * - reduce spinlock operations
179  *
180  * The limit is stored in the per-cpu structure to reduce the data cache
181  * footprint.
182  *
183  */
184 struct array_cache {
185 	unsigned int avail;
186 	unsigned int limit;
187 	unsigned int batchcount;
188 	unsigned int touched;
189 	void *entry[];	/*
190 			 * Must have this definition in here for the proper
191 			 * alignment of array_cache. Also simplifies accessing
192 			 * the entries.
193 			 */
194 };
195 
196 struct alien_cache {
197 	spinlock_t lock;
198 	struct array_cache ac;
199 };
200 
201 /*
202  * Need this for bootstrapping a per node allocator.
203  */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define	CACHE_CACHE 0
207 #define	SIZE_NODE (MAX_NUMNODES)
208 
209 static int drain_freelist(struct kmem_cache *cache,
210 			struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 			int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216 
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 						void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 				struct kmem_cache_node *n, struct page *page,
221 				void **list);
222 static int slab_early_init = 1;
223 
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 	INIT_LIST_HEAD(&parent->slabs_full);
229 	INIT_LIST_HEAD(&parent->slabs_partial);
230 	INIT_LIST_HEAD(&parent->slabs_free);
231 	parent->total_slabs = 0;
232 	parent->free_slabs = 0;
233 	parent->shared = NULL;
234 	parent->alien = NULL;
235 	parent->colour_next = 0;
236 	spin_lock_init(&parent->list_lock);
237 	parent->free_objects = 0;
238 	parent->free_touched = 0;
239 }
240 
241 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
242 	do {								\
243 		INIT_LIST_HEAD(listp);					\
244 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 	} while (0)
246 
247 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
248 	do {								\
249 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
250 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
252 	} while (0)
253 
254 #define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
258 
259 #define BATCHREFILL_LIMIT	16
260 /*
261  * Optimization question: fewer reaps means less probability for unnessary
262  * cpucache drain/refill cycles.
263  *
264  * OTOH the cpuarrays can contain lots of objects,
265  * which could lock up otherwise freeable slabs.
266  */
267 #define REAPTIMEOUT_AC		(2*HZ)
268 #define REAPTIMEOUT_NODE	(4*HZ)
269 
270 #if STATS
271 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
272 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
273 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
274 #define	STATS_INC_GROWN(x)	((x)->grown++)
275 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
276 #define	STATS_SET_HIGH(x)						\
277 	do {								\
278 		if ((x)->num_active > (x)->high_mark)			\
279 			(x)->high_mark = (x)->num_active;		\
280 	} while (0)
281 #define	STATS_INC_ERR(x)	((x)->errors++)
282 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
285 #define	STATS_SET_FREEABLE(x, i)					\
286 	do {								\
287 		if ((x)->max_freeable < i)				\
288 			(x)->max_freeable = i;				\
289 	} while (0)
290 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
294 #else
295 #define	STATS_INC_ACTIVE(x)	do { } while (0)
296 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
297 #define	STATS_INC_ALLOCED(x)	do { } while (0)
298 #define	STATS_INC_GROWN(x)	do { } while (0)
299 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
300 #define	STATS_SET_HIGH(x)	do { } while (0)
301 #define	STATS_INC_ERR(x)	do { } while (0)
302 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303 #define	STATS_INC_NODEFREES(x)	do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
305 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
307 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
308 #define STATS_INC_FREEHIT(x)	do { } while (0)
309 #define STATS_INC_FREEMISS(x)	do { } while (0)
310 #endif
311 
312 #if DEBUG
313 
314 /*
315  * memory layout of objects:
316  * 0		: objp
317  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318  * 		the end of an object is aligned with the end of the real
319  * 		allocation. Catches writes behind the end of the allocation.
320  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321  * 		redzone word.
322  * cachep->obj_offset: The real object.
323  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324  * cachep->size - 1* BYTES_PER_WORD: last caller address
325  *					[BYTES_PER_WORD long]
326  */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 	return cachep->obj_offset;
330 }
331 
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 	return (unsigned long long*) (objp + obj_offset(cachep) -
336 				      sizeof(unsigned long long));
337 }
338 
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 	if (cachep->flags & SLAB_STORE_USER)
343 		return (unsigned long long *)(objp + cachep->size -
344 					      sizeof(unsigned long long) -
345 					      REDZONE_ALIGN);
346 	return (unsigned long long *) (objp + cachep->size -
347 				       sizeof(unsigned long long));
348 }
349 
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355 
356 #else
357 
358 #define obj_offset(x)			0
359 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
362 
363 #endif
364 
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366 
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 	return atomic_read(&cachep->store_user_clean) == 1;
370 }
371 
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 	atomic_set(&cachep->store_user_clean, 1);
375 }
376 
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 	if (is_store_user_clean(cachep))
380 		atomic_set(&cachep->store_user_clean, 0);
381 }
382 
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385 
386 #endif
387 
388 /*
389  * Do not go above this order unless 0 objects fit into the slab or
390  * overridden on the command line.
391  */
392 #define	SLAB_MAX_ORDER_HI	1
393 #define	SLAB_MAX_ORDER_LO	0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396 
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 	struct page *page = virt_to_head_page(obj);
400 	return page->slab_cache;
401 }
402 
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 				 unsigned int idx)
405 {
406 	return page->s_mem + cache->size * idx;
407 }
408 
409 /*
410  * We want to avoid an expensive divide : (offset / cache->size)
411  *   Using the fact that size is a constant for a particular cache,
412  *   we can replace (offset / cache->size) by
413  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
414  */
415 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 					const struct page *page, void *obj)
417 {
418 	u32 offset = (obj - page->s_mem);
419 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 }
421 
422 #define BOOT_CPUCACHE_ENTRIES	1
423 /* internal cache of cache description objs */
424 static struct kmem_cache kmem_cache_boot = {
425 	.batchcount = 1,
426 	.limit = BOOT_CPUCACHE_ENTRIES,
427 	.shared = 1,
428 	.size = sizeof(struct kmem_cache),
429 	.name = "kmem_cache",
430 };
431 
432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433 
434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435 {
436 	return this_cpu_ptr(cachep->cpu_cache);
437 }
438 
439 /*
440  * Calculate the number of objects and left-over bytes for a given buffer size.
441  */
442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 		slab_flags_t flags, size_t *left_over)
444 {
445 	unsigned int num;
446 	size_t slab_size = PAGE_SIZE << gfporder;
447 
448 	/*
449 	 * The slab management structure can be either off the slab or
450 	 * on it. For the latter case, the memory allocated for a
451 	 * slab is used for:
452 	 *
453 	 * - @buffer_size bytes for each object
454 	 * - One freelist_idx_t for each object
455 	 *
456 	 * We don't need to consider alignment of freelist because
457 	 * freelist will be at the end of slab page. The objects will be
458 	 * at the correct alignment.
459 	 *
460 	 * If the slab management structure is off the slab, then the
461 	 * alignment will already be calculated into the size. Because
462 	 * the slabs are all pages aligned, the objects will be at the
463 	 * correct alignment when allocated.
464 	 */
465 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 		num = slab_size / buffer_size;
467 		*left_over = slab_size % buffer_size;
468 	} else {
469 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 		*left_over = slab_size %
471 			(buffer_size + sizeof(freelist_idx_t));
472 	}
473 
474 	return num;
475 }
476 
477 #if DEBUG
478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479 
480 static void __slab_error(const char *function, struct kmem_cache *cachep,
481 			char *msg)
482 {
483 	pr_err("slab error in %s(): cache `%s': %s\n",
484 	       function, cachep->name, msg);
485 	dump_stack();
486 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487 }
488 #endif
489 
490 /*
491  * By default on NUMA we use alien caches to stage the freeing of
492  * objects allocated from other nodes. This causes massive memory
493  * inefficiencies when using fake NUMA setup to split memory into a
494  * large number of small nodes, so it can be disabled on the command
495  * line
496   */
497 
498 static int use_alien_caches __read_mostly = 1;
499 static int __init noaliencache_setup(char *s)
500 {
501 	use_alien_caches = 0;
502 	return 1;
503 }
504 __setup("noaliencache", noaliencache_setup);
505 
506 static int __init slab_max_order_setup(char *str)
507 {
508 	get_option(&str, &slab_max_order);
509 	slab_max_order = slab_max_order < 0 ? 0 :
510 				min(slab_max_order, MAX_ORDER - 1);
511 	slab_max_order_set = true;
512 
513 	return 1;
514 }
515 __setup("slab_max_order=", slab_max_order_setup);
516 
517 #ifdef CONFIG_NUMA
518 /*
519  * Special reaping functions for NUMA systems called from cache_reap().
520  * These take care of doing round robin flushing of alien caches (containing
521  * objects freed on different nodes from which they were allocated) and the
522  * flushing of remote pcps by calling drain_node_pages.
523  */
524 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525 
526 static void init_reap_node(int cpu)
527 {
528 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 						    node_online_map);
530 }
531 
532 static void next_reap_node(void)
533 {
534 	int node = __this_cpu_read(slab_reap_node);
535 
536 	node = next_node_in(node, node_online_map);
537 	__this_cpu_write(slab_reap_node, node);
538 }
539 
540 #else
541 #define init_reap_node(cpu) do { } while (0)
542 #define next_reap_node(void) do { } while (0)
543 #endif
544 
545 /*
546  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
547  * via the workqueue/eventd.
548  * Add the CPU number into the expiration time to minimize the possibility of
549  * the CPUs getting into lockstep and contending for the global cache chain
550  * lock.
551  */
552 static void start_cpu_timer(int cpu)
553 {
554 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555 
556 	if (reap_work->work.func == NULL) {
557 		init_reap_node(cpu);
558 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 		schedule_delayed_work_on(cpu, reap_work,
560 					__round_jiffies_relative(HZ, cpu));
561 	}
562 }
563 
564 static void init_arraycache(struct array_cache *ac, int limit, int batch)
565 {
566 	/*
567 	 * The array_cache structures contain pointers to free object.
568 	 * However, when such objects are allocated or transferred to another
569 	 * cache the pointers are not cleared and they could be counted as
570 	 * valid references during a kmemleak scan. Therefore, kmemleak must
571 	 * not scan such objects.
572 	 */
573 	kmemleak_no_scan(ac);
574 	if (ac) {
575 		ac->avail = 0;
576 		ac->limit = limit;
577 		ac->batchcount = batch;
578 		ac->touched = 0;
579 	}
580 }
581 
582 static struct array_cache *alloc_arraycache(int node, int entries,
583 					    int batchcount, gfp_t gfp)
584 {
585 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 	struct array_cache *ac = NULL;
587 
588 	ac = kmalloc_node(memsize, gfp, node);
589 	init_arraycache(ac, entries, batchcount);
590 	return ac;
591 }
592 
593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 					struct page *page, void *objp)
595 {
596 	struct kmem_cache_node *n;
597 	int page_node;
598 	LIST_HEAD(list);
599 
600 	page_node = page_to_nid(page);
601 	n = get_node(cachep, page_node);
602 
603 	spin_lock(&n->list_lock);
604 	free_block(cachep, &objp, 1, page_node, &list);
605 	spin_unlock(&n->list_lock);
606 
607 	slabs_destroy(cachep, &list);
608 }
609 
610 /*
611  * Transfer objects in one arraycache to another.
612  * Locking must be handled by the caller.
613  *
614  * Return the number of entries transferred.
615  */
616 static int transfer_objects(struct array_cache *to,
617 		struct array_cache *from, unsigned int max)
618 {
619 	/* Figure out how many entries to transfer */
620 	int nr = min3(from->avail, max, to->limit - to->avail);
621 
622 	if (!nr)
623 		return 0;
624 
625 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 			sizeof(void *) *nr);
627 
628 	from->avail -= nr;
629 	to->avail += nr;
630 	return nr;
631 }
632 
633 #ifndef CONFIG_NUMA
634 
635 #define drain_alien_cache(cachep, alien) do { } while (0)
636 #define reap_alien(cachep, n) do { } while (0)
637 
638 static inline struct alien_cache **alloc_alien_cache(int node,
639 						int limit, gfp_t gfp)
640 {
641 	return NULL;
642 }
643 
644 static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 {
646 }
647 
648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649 {
650 	return 0;
651 }
652 
653 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 		gfp_t flags)
655 {
656 	return NULL;
657 }
658 
659 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 		 gfp_t flags, int nodeid)
661 {
662 	return NULL;
663 }
664 
665 static inline gfp_t gfp_exact_node(gfp_t flags)
666 {
667 	return flags & ~__GFP_NOFAIL;
668 }
669 
670 #else	/* CONFIG_NUMA */
671 
672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674 
675 static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 						int batch, gfp_t gfp)
677 {
678 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 	struct alien_cache *alc = NULL;
680 
681 	alc = kmalloc_node(memsize, gfp, node);
682 	init_arraycache(&alc->ac, entries, batch);
683 	spin_lock_init(&alc->lock);
684 	return alc;
685 }
686 
687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688 {
689 	struct alien_cache **alc_ptr;
690 	size_t memsize = sizeof(void *) * nr_node_ids;
691 	int i;
692 
693 	if (limit > 1)
694 		limit = 12;
695 	alc_ptr = kzalloc_node(memsize, gfp, node);
696 	if (!alc_ptr)
697 		return NULL;
698 
699 	for_each_node(i) {
700 		if (i == node || !node_online(i))
701 			continue;
702 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 		if (!alc_ptr[i]) {
704 			for (i--; i >= 0; i--)
705 				kfree(alc_ptr[i]);
706 			kfree(alc_ptr);
707 			return NULL;
708 		}
709 	}
710 	return alc_ptr;
711 }
712 
713 static void free_alien_cache(struct alien_cache **alc_ptr)
714 {
715 	int i;
716 
717 	if (!alc_ptr)
718 		return;
719 	for_each_node(i)
720 	    kfree(alc_ptr[i]);
721 	kfree(alc_ptr);
722 }
723 
724 static void __drain_alien_cache(struct kmem_cache *cachep,
725 				struct array_cache *ac, int node,
726 				struct list_head *list)
727 {
728 	struct kmem_cache_node *n = get_node(cachep, node);
729 
730 	if (ac->avail) {
731 		spin_lock(&n->list_lock);
732 		/*
733 		 * Stuff objects into the remote nodes shared array first.
734 		 * That way we could avoid the overhead of putting the objects
735 		 * into the free lists and getting them back later.
736 		 */
737 		if (n->shared)
738 			transfer_objects(n->shared, ac, ac->limit);
739 
740 		free_block(cachep, ac->entry, ac->avail, node, list);
741 		ac->avail = 0;
742 		spin_unlock(&n->list_lock);
743 	}
744 }
745 
746 /*
747  * Called from cache_reap() to regularly drain alien caches round robin.
748  */
749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750 {
751 	int node = __this_cpu_read(slab_reap_node);
752 
753 	if (n->alien) {
754 		struct alien_cache *alc = n->alien[node];
755 		struct array_cache *ac;
756 
757 		if (alc) {
758 			ac = &alc->ac;
759 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 				LIST_HEAD(list);
761 
762 				__drain_alien_cache(cachep, ac, node, &list);
763 				spin_unlock_irq(&alc->lock);
764 				slabs_destroy(cachep, &list);
765 			}
766 		}
767 	}
768 }
769 
770 static void drain_alien_cache(struct kmem_cache *cachep,
771 				struct alien_cache **alien)
772 {
773 	int i = 0;
774 	struct alien_cache *alc;
775 	struct array_cache *ac;
776 	unsigned long flags;
777 
778 	for_each_online_node(i) {
779 		alc = alien[i];
780 		if (alc) {
781 			LIST_HEAD(list);
782 
783 			ac = &alc->ac;
784 			spin_lock_irqsave(&alc->lock, flags);
785 			__drain_alien_cache(cachep, ac, i, &list);
786 			spin_unlock_irqrestore(&alc->lock, flags);
787 			slabs_destroy(cachep, &list);
788 		}
789 	}
790 }
791 
792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 				int node, int page_node)
794 {
795 	struct kmem_cache_node *n;
796 	struct alien_cache *alien = NULL;
797 	struct array_cache *ac;
798 	LIST_HEAD(list);
799 
800 	n = get_node(cachep, node);
801 	STATS_INC_NODEFREES(cachep);
802 	if (n->alien && n->alien[page_node]) {
803 		alien = n->alien[page_node];
804 		ac = &alien->ac;
805 		spin_lock(&alien->lock);
806 		if (unlikely(ac->avail == ac->limit)) {
807 			STATS_INC_ACOVERFLOW(cachep);
808 			__drain_alien_cache(cachep, ac, page_node, &list);
809 		}
810 		ac->entry[ac->avail++] = objp;
811 		spin_unlock(&alien->lock);
812 		slabs_destroy(cachep, &list);
813 	} else {
814 		n = get_node(cachep, page_node);
815 		spin_lock(&n->list_lock);
816 		free_block(cachep, &objp, 1, page_node, &list);
817 		spin_unlock(&n->list_lock);
818 		slabs_destroy(cachep, &list);
819 	}
820 	return 1;
821 }
822 
823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824 {
825 	int page_node = page_to_nid(virt_to_page(objp));
826 	int node = numa_mem_id();
827 	/*
828 	 * Make sure we are not freeing a object from another node to the array
829 	 * cache on this cpu.
830 	 */
831 	if (likely(node == page_node))
832 		return 0;
833 
834 	return __cache_free_alien(cachep, objp, node, page_node);
835 }
836 
837 /*
838  * Construct gfp mask to allocate from a specific node but do not reclaim or
839  * warn about failures.
840  */
841 static inline gfp_t gfp_exact_node(gfp_t flags)
842 {
843 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
844 }
845 #endif
846 
847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848 {
849 	struct kmem_cache_node *n;
850 
851 	/*
852 	 * Set up the kmem_cache_node for cpu before we can
853 	 * begin anything. Make sure some other cpu on this
854 	 * node has not already allocated this
855 	 */
856 	n = get_node(cachep, node);
857 	if (n) {
858 		spin_lock_irq(&n->list_lock);
859 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 				cachep->num;
861 		spin_unlock_irq(&n->list_lock);
862 
863 		return 0;
864 	}
865 
866 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 	if (!n)
868 		return -ENOMEM;
869 
870 	kmem_cache_node_init(n);
871 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873 
874 	n->free_limit =
875 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876 
877 	/*
878 	 * The kmem_cache_nodes don't come and go as CPUs
879 	 * come and go.  slab_mutex is sufficient
880 	 * protection here.
881 	 */
882 	cachep->node[node] = n;
883 
884 	return 0;
885 }
886 
887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888 /*
889  * Allocates and initializes node for a node on each slab cache, used for
890  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
891  * will be allocated off-node since memory is not yet online for the new node.
892  * When hotplugging memory or a cpu, existing node are not replaced if
893  * already in use.
894  *
895  * Must hold slab_mutex.
896  */
897 static int init_cache_node_node(int node)
898 {
899 	int ret;
900 	struct kmem_cache *cachep;
901 
902 	list_for_each_entry(cachep, &slab_caches, list) {
903 		ret = init_cache_node(cachep, node, GFP_KERNEL);
904 		if (ret)
905 			return ret;
906 	}
907 
908 	return 0;
909 }
910 #endif
911 
912 static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 				int node, gfp_t gfp, bool force_change)
914 {
915 	int ret = -ENOMEM;
916 	struct kmem_cache_node *n;
917 	struct array_cache *old_shared = NULL;
918 	struct array_cache *new_shared = NULL;
919 	struct alien_cache **new_alien = NULL;
920 	LIST_HEAD(list);
921 
922 	if (use_alien_caches) {
923 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 		if (!new_alien)
925 			goto fail;
926 	}
927 
928 	if (cachep->shared) {
929 		new_shared = alloc_arraycache(node,
930 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 		if (!new_shared)
932 			goto fail;
933 	}
934 
935 	ret = init_cache_node(cachep, node, gfp);
936 	if (ret)
937 		goto fail;
938 
939 	n = get_node(cachep, node);
940 	spin_lock_irq(&n->list_lock);
941 	if (n->shared && force_change) {
942 		free_block(cachep, n->shared->entry,
943 				n->shared->avail, node, &list);
944 		n->shared->avail = 0;
945 	}
946 
947 	if (!n->shared || force_change) {
948 		old_shared = n->shared;
949 		n->shared = new_shared;
950 		new_shared = NULL;
951 	}
952 
953 	if (!n->alien) {
954 		n->alien = new_alien;
955 		new_alien = NULL;
956 	}
957 
958 	spin_unlock_irq(&n->list_lock);
959 	slabs_destroy(cachep, &list);
960 
961 	/*
962 	 * To protect lockless access to n->shared during irq disabled context.
963 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 	 * guaranteed to be valid until irq is re-enabled, because it will be
965 	 * freed after synchronize_sched().
966 	 */
967 	if (old_shared && force_change)
968 		synchronize_sched();
969 
970 fail:
971 	kfree(old_shared);
972 	kfree(new_shared);
973 	free_alien_cache(new_alien);
974 
975 	return ret;
976 }
977 
978 #ifdef CONFIG_SMP
979 
980 static void cpuup_canceled(long cpu)
981 {
982 	struct kmem_cache *cachep;
983 	struct kmem_cache_node *n = NULL;
984 	int node = cpu_to_mem(cpu);
985 	const struct cpumask *mask = cpumask_of_node(node);
986 
987 	list_for_each_entry(cachep, &slab_caches, list) {
988 		struct array_cache *nc;
989 		struct array_cache *shared;
990 		struct alien_cache **alien;
991 		LIST_HEAD(list);
992 
993 		n = get_node(cachep, node);
994 		if (!n)
995 			continue;
996 
997 		spin_lock_irq(&n->list_lock);
998 
999 		/* Free limit for this kmem_cache_node */
1000 		n->free_limit -= cachep->batchcount;
1001 
1002 		/* cpu is dead; no one can alloc from it. */
1003 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 		if (nc) {
1005 			free_block(cachep, nc->entry, nc->avail, node, &list);
1006 			nc->avail = 0;
1007 		}
1008 
1009 		if (!cpumask_empty(mask)) {
1010 			spin_unlock_irq(&n->list_lock);
1011 			goto free_slab;
1012 		}
1013 
1014 		shared = n->shared;
1015 		if (shared) {
1016 			free_block(cachep, shared->entry,
1017 				   shared->avail, node, &list);
1018 			n->shared = NULL;
1019 		}
1020 
1021 		alien = n->alien;
1022 		n->alien = NULL;
1023 
1024 		spin_unlock_irq(&n->list_lock);
1025 
1026 		kfree(shared);
1027 		if (alien) {
1028 			drain_alien_cache(cachep, alien);
1029 			free_alien_cache(alien);
1030 		}
1031 
1032 free_slab:
1033 		slabs_destroy(cachep, &list);
1034 	}
1035 	/*
1036 	 * In the previous loop, all the objects were freed to
1037 	 * the respective cache's slabs,  now we can go ahead and
1038 	 * shrink each nodelist to its limit.
1039 	 */
1040 	list_for_each_entry(cachep, &slab_caches, list) {
1041 		n = get_node(cachep, node);
1042 		if (!n)
1043 			continue;
1044 		drain_freelist(cachep, n, INT_MAX);
1045 	}
1046 }
1047 
1048 static int cpuup_prepare(long cpu)
1049 {
1050 	struct kmem_cache *cachep;
1051 	int node = cpu_to_mem(cpu);
1052 	int err;
1053 
1054 	/*
1055 	 * We need to do this right in the beginning since
1056 	 * alloc_arraycache's are going to use this list.
1057 	 * kmalloc_node allows us to add the slab to the right
1058 	 * kmem_cache_node and not this cpu's kmem_cache_node
1059 	 */
1060 	err = init_cache_node_node(node);
1061 	if (err < 0)
1062 		goto bad;
1063 
1064 	/*
1065 	 * Now we can go ahead with allocating the shared arrays and
1066 	 * array caches
1067 	 */
1068 	list_for_each_entry(cachep, &slab_caches, list) {
1069 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 		if (err)
1071 			goto bad;
1072 	}
1073 
1074 	return 0;
1075 bad:
1076 	cpuup_canceled(cpu);
1077 	return -ENOMEM;
1078 }
1079 
1080 int slab_prepare_cpu(unsigned int cpu)
1081 {
1082 	int err;
1083 
1084 	mutex_lock(&slab_mutex);
1085 	err = cpuup_prepare(cpu);
1086 	mutex_unlock(&slab_mutex);
1087 	return err;
1088 }
1089 
1090 /*
1091  * This is called for a failed online attempt and for a successful
1092  * offline.
1093  *
1094  * Even if all the cpus of a node are down, we don't free the
1095  * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096  * a kmalloc allocation from another cpu for memory from the node of
1097  * the cpu going down.  The list3 structure is usually allocated from
1098  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099  */
1100 int slab_dead_cpu(unsigned int cpu)
1101 {
1102 	mutex_lock(&slab_mutex);
1103 	cpuup_canceled(cpu);
1104 	mutex_unlock(&slab_mutex);
1105 	return 0;
1106 }
1107 #endif
1108 
1109 static int slab_online_cpu(unsigned int cpu)
1110 {
1111 	start_cpu_timer(cpu);
1112 	return 0;
1113 }
1114 
1115 static int slab_offline_cpu(unsigned int cpu)
1116 {
1117 	/*
1118 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 	 * that if cache_reap() is invoked it cannot do anything
1120 	 * expensive but will only modify reap_work and reschedule the
1121 	 * timer.
1122 	 */
1123 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 	/* Now the cache_reaper is guaranteed to be not running. */
1125 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 	return 0;
1127 }
1128 
1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130 /*
1131  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132  * Returns -EBUSY if all objects cannot be drained so that the node is not
1133  * removed.
1134  *
1135  * Must hold slab_mutex.
1136  */
1137 static int __meminit drain_cache_node_node(int node)
1138 {
1139 	struct kmem_cache *cachep;
1140 	int ret = 0;
1141 
1142 	list_for_each_entry(cachep, &slab_caches, list) {
1143 		struct kmem_cache_node *n;
1144 
1145 		n = get_node(cachep, node);
1146 		if (!n)
1147 			continue;
1148 
1149 		drain_freelist(cachep, n, INT_MAX);
1150 
1151 		if (!list_empty(&n->slabs_full) ||
1152 		    !list_empty(&n->slabs_partial)) {
1153 			ret = -EBUSY;
1154 			break;
1155 		}
1156 	}
1157 	return ret;
1158 }
1159 
1160 static int __meminit slab_memory_callback(struct notifier_block *self,
1161 					unsigned long action, void *arg)
1162 {
1163 	struct memory_notify *mnb = arg;
1164 	int ret = 0;
1165 	int nid;
1166 
1167 	nid = mnb->status_change_nid;
1168 	if (nid < 0)
1169 		goto out;
1170 
1171 	switch (action) {
1172 	case MEM_GOING_ONLINE:
1173 		mutex_lock(&slab_mutex);
1174 		ret = init_cache_node_node(nid);
1175 		mutex_unlock(&slab_mutex);
1176 		break;
1177 	case MEM_GOING_OFFLINE:
1178 		mutex_lock(&slab_mutex);
1179 		ret = drain_cache_node_node(nid);
1180 		mutex_unlock(&slab_mutex);
1181 		break;
1182 	case MEM_ONLINE:
1183 	case MEM_OFFLINE:
1184 	case MEM_CANCEL_ONLINE:
1185 	case MEM_CANCEL_OFFLINE:
1186 		break;
1187 	}
1188 out:
1189 	return notifier_from_errno(ret);
1190 }
1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192 
1193 /*
1194  * swap the static kmem_cache_node with kmalloced memory
1195  */
1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197 				int nodeid)
1198 {
1199 	struct kmem_cache_node *ptr;
1200 
1201 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 	BUG_ON(!ptr);
1203 
1204 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 	/*
1206 	 * Do not assume that spinlocks can be initialized via memcpy:
1207 	 */
1208 	spin_lock_init(&ptr->list_lock);
1209 
1210 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211 	cachep->node[nodeid] = ptr;
1212 }
1213 
1214 /*
1215  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216  * size of kmem_cache_node.
1217  */
1218 static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 {
1220 	int node;
1221 
1222 	for_each_online_node(node) {
1223 		cachep->node[node] = &init_kmem_cache_node[index + node];
1224 		cachep->node[node]->next_reap = jiffies +
1225 		    REAPTIMEOUT_NODE +
1226 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 	}
1228 }
1229 
1230 /*
1231  * Initialisation.  Called after the page allocator have been initialised and
1232  * before smp_init().
1233  */
1234 void __init kmem_cache_init(void)
1235 {
1236 	int i;
1237 
1238 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 					sizeof(struct rcu_head));
1240 	kmem_cache = &kmem_cache_boot;
1241 
1242 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 		use_alien_caches = 0;
1244 
1245 	for (i = 0; i < NUM_INIT_LISTS; i++)
1246 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1247 
1248 	/*
1249 	 * Fragmentation resistance on low memory - only use bigger
1250 	 * page orders on machines with more than 32MB of memory if
1251 	 * not overridden on the command line.
1252 	 */
1253 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254 		slab_max_order = SLAB_MAX_ORDER_HI;
1255 
1256 	/* Bootstrap is tricky, because several objects are allocated
1257 	 * from caches that do not exist yet:
1258 	 * 1) initialize the kmem_cache cache: it contains the struct
1259 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1260 	 *    kmem_cache is statically allocated.
1261 	 *    Initially an __init data area is used for the head array and the
1262 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1263 	 *    array at the end of the bootstrap.
1264 	 * 2) Create the first kmalloc cache.
1265 	 *    The struct kmem_cache for the new cache is allocated normally.
1266 	 *    An __init data area is used for the head array.
1267 	 * 3) Create the remaining kmalloc caches, with minimally sized
1268 	 *    head arrays.
1269 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1270 	 *    kmalloc cache with kmalloc allocated arrays.
1271 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272 	 *    the other cache's with kmalloc allocated memory.
1273 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274 	 */
1275 
1276 	/* 1) create the kmem_cache */
1277 
1278 	/*
1279 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280 	 */
1281 	create_boot_cache(kmem_cache, "kmem_cache",
1282 		offsetof(struct kmem_cache, node) +
1283 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1284 				  SLAB_HWCACHE_ALIGN);
1285 	list_add(&kmem_cache->list, &slab_caches);
1286 	slab_state = PARTIAL;
1287 
1288 	/*
1289 	 * Initialize the caches that provide memory for the  kmem_cache_node
1290 	 * structures first.  Without this, further allocations will bug.
1291 	 */
1292 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1293 				kmalloc_info[INDEX_NODE].name,
1294 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1295 	slab_state = PARTIAL_NODE;
1296 	setup_kmalloc_cache_index_table();
1297 
1298 	slab_early_init = 0;
1299 
1300 	/* 5) Replace the bootstrap kmem_cache_node */
1301 	{
1302 		int nid;
1303 
1304 		for_each_online_node(nid) {
1305 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306 
1307 			init_list(kmalloc_caches[INDEX_NODE],
1308 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309 		}
1310 	}
1311 
1312 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313 }
1314 
1315 void __init kmem_cache_init_late(void)
1316 {
1317 	struct kmem_cache *cachep;
1318 
1319 	slab_state = UP;
1320 
1321 	/* 6) resize the head arrays to their final sizes */
1322 	mutex_lock(&slab_mutex);
1323 	list_for_each_entry(cachep, &slab_caches, list)
1324 		if (enable_cpucache(cachep, GFP_NOWAIT))
1325 			BUG();
1326 	mutex_unlock(&slab_mutex);
1327 
1328 	/* Done! */
1329 	slab_state = FULL;
1330 
1331 #ifdef CONFIG_NUMA
1332 	/*
1333 	 * Register a memory hotplug callback that initializes and frees
1334 	 * node.
1335 	 */
1336 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337 #endif
1338 
1339 	/*
1340 	 * The reap timers are started later, with a module init call: That part
1341 	 * of the kernel is not yet operational.
1342 	 */
1343 }
1344 
1345 static int __init cpucache_init(void)
1346 {
1347 	int ret;
1348 
1349 	/*
1350 	 * Register the timers that return unneeded pages to the page allocator
1351 	 */
1352 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353 				slab_online_cpu, slab_offline_cpu);
1354 	WARN_ON(ret < 0);
1355 
1356 	/* Done! */
1357 	slab_state = FULL;
1358 	return 0;
1359 }
1360 __initcall(cpucache_init);
1361 
1362 static noinline void
1363 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1364 {
1365 #if DEBUG
1366 	struct kmem_cache_node *n;
1367 	unsigned long flags;
1368 	int node;
1369 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1370 				      DEFAULT_RATELIMIT_BURST);
1371 
1372 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1373 		return;
1374 
1375 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1376 		nodeid, gfpflags, &gfpflags);
1377 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1378 		cachep->name, cachep->size, cachep->gfporder);
1379 
1380 	for_each_kmem_cache_node(cachep, node, n) {
1381 		unsigned long total_slabs, free_slabs, free_objs;
1382 
1383 		spin_lock_irqsave(&n->list_lock, flags);
1384 		total_slabs = n->total_slabs;
1385 		free_slabs = n->free_slabs;
1386 		free_objs = n->free_objects;
1387 		spin_unlock_irqrestore(&n->list_lock, flags);
1388 
1389 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1390 			node, total_slabs - free_slabs, total_slabs,
1391 			(total_slabs * cachep->num) - free_objs,
1392 			total_slabs * cachep->num);
1393 	}
1394 #endif
1395 }
1396 
1397 /*
1398  * Interface to system's page allocator. No need to hold the
1399  * kmem_cache_node ->list_lock.
1400  *
1401  * If we requested dmaable memory, we will get it. Even if we
1402  * did not request dmaable memory, we might get it, but that
1403  * would be relatively rare and ignorable.
1404  */
1405 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1406 								int nodeid)
1407 {
1408 	struct page *page;
1409 	int nr_pages;
1410 
1411 	flags |= cachep->allocflags;
1412 
1413 	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1414 	if (!page) {
1415 		slab_out_of_memory(cachep, flags, nodeid);
1416 		return NULL;
1417 	}
1418 
1419 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1420 		__free_pages(page, cachep->gfporder);
1421 		return NULL;
1422 	}
1423 
1424 	nr_pages = (1 << cachep->gfporder);
1425 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426 		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1427 	else
1428 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1429 
1430 	__SetPageSlab(page);
1431 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1432 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1433 		SetPageSlabPfmemalloc(page);
1434 
1435 	return page;
1436 }
1437 
1438 /*
1439  * Interface to system's page release.
1440  */
1441 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1442 {
1443 	int order = cachep->gfporder;
1444 	unsigned long nr_freed = (1 << order);
1445 
1446 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1447 		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1448 	else
1449 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1450 
1451 	BUG_ON(!PageSlab(page));
1452 	__ClearPageSlabPfmemalloc(page);
1453 	__ClearPageSlab(page);
1454 	page_mapcount_reset(page);
1455 	page->mapping = NULL;
1456 
1457 	if (current->reclaim_state)
1458 		current->reclaim_state->reclaimed_slab += nr_freed;
1459 	memcg_uncharge_slab(page, order, cachep);
1460 	__free_pages(page, order);
1461 }
1462 
1463 static void kmem_rcu_free(struct rcu_head *head)
1464 {
1465 	struct kmem_cache *cachep;
1466 	struct page *page;
1467 
1468 	page = container_of(head, struct page, rcu_head);
1469 	cachep = page->slab_cache;
1470 
1471 	kmem_freepages(cachep, page);
1472 }
1473 
1474 #if DEBUG
1475 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1476 {
1477 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1478 		(cachep->size % PAGE_SIZE) == 0)
1479 		return true;
1480 
1481 	return false;
1482 }
1483 
1484 #ifdef CONFIG_DEBUG_PAGEALLOC
1485 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1486 			    unsigned long caller)
1487 {
1488 	int size = cachep->object_size;
1489 
1490 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1491 
1492 	if (size < 5 * sizeof(unsigned long))
1493 		return;
1494 
1495 	*addr++ = 0x12345678;
1496 	*addr++ = caller;
1497 	*addr++ = smp_processor_id();
1498 	size -= 3 * sizeof(unsigned long);
1499 	{
1500 		unsigned long *sptr = &caller;
1501 		unsigned long svalue;
1502 
1503 		while (!kstack_end(sptr)) {
1504 			svalue = *sptr++;
1505 			if (kernel_text_address(svalue)) {
1506 				*addr++ = svalue;
1507 				size -= sizeof(unsigned long);
1508 				if (size <= sizeof(unsigned long))
1509 					break;
1510 			}
1511 		}
1512 
1513 	}
1514 	*addr++ = 0x87654321;
1515 }
1516 
1517 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1518 				int map, unsigned long caller)
1519 {
1520 	if (!is_debug_pagealloc_cache(cachep))
1521 		return;
1522 
1523 	if (caller)
1524 		store_stackinfo(cachep, objp, caller);
1525 
1526 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1527 }
1528 
1529 #else
1530 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1531 				int map, unsigned long caller) {}
1532 
1533 #endif
1534 
1535 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1536 {
1537 	int size = cachep->object_size;
1538 	addr = &((char *)addr)[obj_offset(cachep)];
1539 
1540 	memset(addr, val, size);
1541 	*(unsigned char *)(addr + size - 1) = POISON_END;
1542 }
1543 
1544 static void dump_line(char *data, int offset, int limit)
1545 {
1546 	int i;
1547 	unsigned char error = 0;
1548 	int bad_count = 0;
1549 
1550 	pr_err("%03x: ", offset);
1551 	for (i = 0; i < limit; i++) {
1552 		if (data[offset + i] != POISON_FREE) {
1553 			error = data[offset + i];
1554 			bad_count++;
1555 		}
1556 	}
1557 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1558 			&data[offset], limit, 1);
1559 
1560 	if (bad_count == 1) {
1561 		error ^= POISON_FREE;
1562 		if (!(error & (error - 1))) {
1563 			pr_err("Single bit error detected. Probably bad RAM.\n");
1564 #ifdef CONFIG_X86
1565 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1566 #else
1567 			pr_err("Run a memory test tool.\n");
1568 #endif
1569 		}
1570 	}
1571 }
1572 #endif
1573 
1574 #if DEBUG
1575 
1576 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1577 {
1578 	int i, size;
1579 	char *realobj;
1580 
1581 	if (cachep->flags & SLAB_RED_ZONE) {
1582 		pr_err("Redzone: 0x%llx/0x%llx\n",
1583 		       *dbg_redzone1(cachep, objp),
1584 		       *dbg_redzone2(cachep, objp));
1585 	}
1586 
1587 	if (cachep->flags & SLAB_STORE_USER)
1588 		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1589 	realobj = (char *)objp + obj_offset(cachep);
1590 	size = cachep->object_size;
1591 	for (i = 0; i < size && lines; i += 16, lines--) {
1592 		int limit;
1593 		limit = 16;
1594 		if (i + limit > size)
1595 			limit = size - i;
1596 		dump_line(realobj, i, limit);
1597 	}
1598 }
1599 
1600 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1601 {
1602 	char *realobj;
1603 	int size, i;
1604 	int lines = 0;
1605 
1606 	if (is_debug_pagealloc_cache(cachep))
1607 		return;
1608 
1609 	realobj = (char *)objp + obj_offset(cachep);
1610 	size = cachep->object_size;
1611 
1612 	for (i = 0; i < size; i++) {
1613 		char exp = POISON_FREE;
1614 		if (i == size - 1)
1615 			exp = POISON_END;
1616 		if (realobj[i] != exp) {
1617 			int limit;
1618 			/* Mismatch ! */
1619 			/* Print header */
1620 			if (lines == 0) {
1621 				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1622 				       print_tainted(), cachep->name,
1623 				       realobj, size);
1624 				print_objinfo(cachep, objp, 0);
1625 			}
1626 			/* Hexdump the affected line */
1627 			i = (i / 16) * 16;
1628 			limit = 16;
1629 			if (i + limit > size)
1630 				limit = size - i;
1631 			dump_line(realobj, i, limit);
1632 			i += 16;
1633 			lines++;
1634 			/* Limit to 5 lines */
1635 			if (lines > 5)
1636 				break;
1637 		}
1638 	}
1639 	if (lines != 0) {
1640 		/* Print some data about the neighboring objects, if they
1641 		 * exist:
1642 		 */
1643 		struct page *page = virt_to_head_page(objp);
1644 		unsigned int objnr;
1645 
1646 		objnr = obj_to_index(cachep, page, objp);
1647 		if (objnr) {
1648 			objp = index_to_obj(cachep, page, objnr - 1);
1649 			realobj = (char *)objp + obj_offset(cachep);
1650 			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1651 			print_objinfo(cachep, objp, 2);
1652 		}
1653 		if (objnr + 1 < cachep->num) {
1654 			objp = index_to_obj(cachep, page, objnr + 1);
1655 			realobj = (char *)objp + obj_offset(cachep);
1656 			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1657 			print_objinfo(cachep, objp, 2);
1658 		}
1659 	}
1660 }
1661 #endif
1662 
1663 #if DEBUG
1664 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1665 						struct page *page)
1666 {
1667 	int i;
1668 
1669 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1670 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1671 			POISON_FREE);
1672 	}
1673 
1674 	for (i = 0; i < cachep->num; i++) {
1675 		void *objp = index_to_obj(cachep, page, i);
1676 
1677 		if (cachep->flags & SLAB_POISON) {
1678 			check_poison_obj(cachep, objp);
1679 			slab_kernel_map(cachep, objp, 1, 0);
1680 		}
1681 		if (cachep->flags & SLAB_RED_ZONE) {
1682 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1683 				slab_error(cachep, "start of a freed object was overwritten");
1684 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1685 				slab_error(cachep, "end of a freed object was overwritten");
1686 		}
1687 	}
1688 }
1689 #else
1690 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1691 						struct page *page)
1692 {
1693 }
1694 #endif
1695 
1696 /**
1697  * slab_destroy - destroy and release all objects in a slab
1698  * @cachep: cache pointer being destroyed
1699  * @page: page pointer being destroyed
1700  *
1701  * Destroy all the objs in a slab page, and release the mem back to the system.
1702  * Before calling the slab page must have been unlinked from the cache. The
1703  * kmem_cache_node ->list_lock is not held/needed.
1704  */
1705 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1706 {
1707 	void *freelist;
1708 
1709 	freelist = page->freelist;
1710 	slab_destroy_debugcheck(cachep, page);
1711 	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1712 		call_rcu(&page->rcu_head, kmem_rcu_free);
1713 	else
1714 		kmem_freepages(cachep, page);
1715 
1716 	/*
1717 	 * From now on, we don't use freelist
1718 	 * although actual page can be freed in rcu context
1719 	 */
1720 	if (OFF_SLAB(cachep))
1721 		kmem_cache_free(cachep->freelist_cache, freelist);
1722 }
1723 
1724 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1725 {
1726 	struct page *page, *n;
1727 
1728 	list_for_each_entry_safe(page, n, list, lru) {
1729 		list_del(&page->lru);
1730 		slab_destroy(cachep, page);
1731 	}
1732 }
1733 
1734 /**
1735  * calculate_slab_order - calculate size (page order) of slabs
1736  * @cachep: pointer to the cache that is being created
1737  * @size: size of objects to be created in this cache.
1738  * @flags: slab allocation flags
1739  *
1740  * Also calculates the number of objects per slab.
1741  *
1742  * This could be made much more intelligent.  For now, try to avoid using
1743  * high order pages for slabs.  When the gfp() functions are more friendly
1744  * towards high-order requests, this should be changed.
1745  */
1746 static size_t calculate_slab_order(struct kmem_cache *cachep,
1747 				size_t size, slab_flags_t flags)
1748 {
1749 	size_t left_over = 0;
1750 	int gfporder;
1751 
1752 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1753 		unsigned int num;
1754 		size_t remainder;
1755 
1756 		num = cache_estimate(gfporder, size, flags, &remainder);
1757 		if (!num)
1758 			continue;
1759 
1760 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1761 		if (num > SLAB_OBJ_MAX_NUM)
1762 			break;
1763 
1764 		if (flags & CFLGS_OFF_SLAB) {
1765 			struct kmem_cache *freelist_cache;
1766 			size_t freelist_size;
1767 
1768 			freelist_size = num * sizeof(freelist_idx_t);
1769 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1770 			if (!freelist_cache)
1771 				continue;
1772 
1773 			/*
1774 			 * Needed to avoid possible looping condition
1775 			 * in cache_grow_begin()
1776 			 */
1777 			if (OFF_SLAB(freelist_cache))
1778 				continue;
1779 
1780 			/* check if off slab has enough benefit */
1781 			if (freelist_cache->size > cachep->size / 2)
1782 				continue;
1783 		}
1784 
1785 		/* Found something acceptable - save it away */
1786 		cachep->num = num;
1787 		cachep->gfporder = gfporder;
1788 		left_over = remainder;
1789 
1790 		/*
1791 		 * A VFS-reclaimable slab tends to have most allocations
1792 		 * as GFP_NOFS and we really don't want to have to be allocating
1793 		 * higher-order pages when we are unable to shrink dcache.
1794 		 */
1795 		if (flags & SLAB_RECLAIM_ACCOUNT)
1796 			break;
1797 
1798 		/*
1799 		 * Large number of objects is good, but very large slabs are
1800 		 * currently bad for the gfp()s.
1801 		 */
1802 		if (gfporder >= slab_max_order)
1803 			break;
1804 
1805 		/*
1806 		 * Acceptable internal fragmentation?
1807 		 */
1808 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1809 			break;
1810 	}
1811 	return left_over;
1812 }
1813 
1814 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1815 		struct kmem_cache *cachep, int entries, int batchcount)
1816 {
1817 	int cpu;
1818 	size_t size;
1819 	struct array_cache __percpu *cpu_cache;
1820 
1821 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1822 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1823 
1824 	if (!cpu_cache)
1825 		return NULL;
1826 
1827 	for_each_possible_cpu(cpu) {
1828 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1829 				entries, batchcount);
1830 	}
1831 
1832 	return cpu_cache;
1833 }
1834 
1835 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1836 {
1837 	if (slab_state >= FULL)
1838 		return enable_cpucache(cachep, gfp);
1839 
1840 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1841 	if (!cachep->cpu_cache)
1842 		return 1;
1843 
1844 	if (slab_state == DOWN) {
1845 		/* Creation of first cache (kmem_cache). */
1846 		set_up_node(kmem_cache, CACHE_CACHE);
1847 	} else if (slab_state == PARTIAL) {
1848 		/* For kmem_cache_node */
1849 		set_up_node(cachep, SIZE_NODE);
1850 	} else {
1851 		int node;
1852 
1853 		for_each_online_node(node) {
1854 			cachep->node[node] = kmalloc_node(
1855 				sizeof(struct kmem_cache_node), gfp, node);
1856 			BUG_ON(!cachep->node[node]);
1857 			kmem_cache_node_init(cachep->node[node]);
1858 		}
1859 	}
1860 
1861 	cachep->node[numa_mem_id()]->next_reap =
1862 			jiffies + REAPTIMEOUT_NODE +
1863 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1864 
1865 	cpu_cache_get(cachep)->avail = 0;
1866 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1867 	cpu_cache_get(cachep)->batchcount = 1;
1868 	cpu_cache_get(cachep)->touched = 0;
1869 	cachep->batchcount = 1;
1870 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1871 	return 0;
1872 }
1873 
1874 slab_flags_t kmem_cache_flags(unsigned long object_size,
1875 	slab_flags_t flags, const char *name,
1876 	void (*ctor)(void *))
1877 {
1878 	return flags;
1879 }
1880 
1881 struct kmem_cache *
1882 __kmem_cache_alias(const char *name, size_t size, size_t align,
1883 		   slab_flags_t flags, void (*ctor)(void *))
1884 {
1885 	struct kmem_cache *cachep;
1886 
1887 	cachep = find_mergeable(size, align, flags, name, ctor);
1888 	if (cachep) {
1889 		cachep->refcount++;
1890 
1891 		/*
1892 		 * Adjust the object sizes so that we clear
1893 		 * the complete object on kzalloc.
1894 		 */
1895 		cachep->object_size = max_t(int, cachep->object_size, size);
1896 	}
1897 	return cachep;
1898 }
1899 
1900 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1901 			size_t size, slab_flags_t flags)
1902 {
1903 	size_t left;
1904 
1905 	cachep->num = 0;
1906 
1907 	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1908 		return false;
1909 
1910 	left = calculate_slab_order(cachep, size,
1911 			flags | CFLGS_OBJFREELIST_SLAB);
1912 	if (!cachep->num)
1913 		return false;
1914 
1915 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1916 		return false;
1917 
1918 	cachep->colour = left / cachep->colour_off;
1919 
1920 	return true;
1921 }
1922 
1923 static bool set_off_slab_cache(struct kmem_cache *cachep,
1924 			size_t size, slab_flags_t flags)
1925 {
1926 	size_t left;
1927 
1928 	cachep->num = 0;
1929 
1930 	/*
1931 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1932 	 * to avoid recursive calls into kmemleak.
1933 	 */
1934 	if (flags & SLAB_NOLEAKTRACE)
1935 		return false;
1936 
1937 	/*
1938 	 * Size is large, assume best to place the slab management obj
1939 	 * off-slab (should allow better packing of objs).
1940 	 */
1941 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1942 	if (!cachep->num)
1943 		return false;
1944 
1945 	/*
1946 	 * If the slab has been placed off-slab, and we have enough space then
1947 	 * move it on-slab. This is at the expense of any extra colouring.
1948 	 */
1949 	if (left >= cachep->num * sizeof(freelist_idx_t))
1950 		return false;
1951 
1952 	cachep->colour = left / cachep->colour_off;
1953 
1954 	return true;
1955 }
1956 
1957 static bool set_on_slab_cache(struct kmem_cache *cachep,
1958 			size_t size, slab_flags_t flags)
1959 {
1960 	size_t left;
1961 
1962 	cachep->num = 0;
1963 
1964 	left = calculate_slab_order(cachep, size, flags);
1965 	if (!cachep->num)
1966 		return false;
1967 
1968 	cachep->colour = left / cachep->colour_off;
1969 
1970 	return true;
1971 }
1972 
1973 /**
1974  * __kmem_cache_create - Create a cache.
1975  * @cachep: cache management descriptor
1976  * @flags: SLAB flags
1977  *
1978  * Returns a ptr to the cache on success, NULL on failure.
1979  * Cannot be called within a int, but can be interrupted.
1980  * The @ctor is run when new pages are allocated by the cache.
1981  *
1982  * The flags are
1983  *
1984  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1985  * to catch references to uninitialised memory.
1986  *
1987  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1988  * for buffer overruns.
1989  *
1990  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1991  * cacheline.  This can be beneficial if you're counting cycles as closely
1992  * as davem.
1993  */
1994 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1995 {
1996 	size_t ralign = BYTES_PER_WORD;
1997 	gfp_t gfp;
1998 	int err;
1999 	size_t size = cachep->size;
2000 
2001 #if DEBUG
2002 #if FORCED_DEBUG
2003 	/*
2004 	 * Enable redzoning and last user accounting, except for caches with
2005 	 * large objects, if the increased size would increase the object size
2006 	 * above the next power of two: caches with object sizes just above a
2007 	 * power of two have a significant amount of internal fragmentation.
2008 	 */
2009 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2010 						2 * sizeof(unsigned long long)))
2011 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2012 	if (!(flags & SLAB_TYPESAFE_BY_RCU))
2013 		flags |= SLAB_POISON;
2014 #endif
2015 #endif
2016 
2017 	/*
2018 	 * Check that size is in terms of words.  This is needed to avoid
2019 	 * unaligned accesses for some archs when redzoning is used, and makes
2020 	 * sure any on-slab bufctl's are also correctly aligned.
2021 	 */
2022 	size = ALIGN(size, BYTES_PER_WORD);
2023 
2024 	if (flags & SLAB_RED_ZONE) {
2025 		ralign = REDZONE_ALIGN;
2026 		/* If redzoning, ensure that the second redzone is suitably
2027 		 * aligned, by adjusting the object size accordingly. */
2028 		size = ALIGN(size, REDZONE_ALIGN);
2029 	}
2030 
2031 	/* 3) caller mandated alignment */
2032 	if (ralign < cachep->align) {
2033 		ralign = cachep->align;
2034 	}
2035 	/* disable debug if necessary */
2036 	if (ralign > __alignof__(unsigned long long))
2037 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2038 	/*
2039 	 * 4) Store it.
2040 	 */
2041 	cachep->align = ralign;
2042 	cachep->colour_off = cache_line_size();
2043 	/* Offset must be a multiple of the alignment. */
2044 	if (cachep->colour_off < cachep->align)
2045 		cachep->colour_off = cachep->align;
2046 
2047 	if (slab_is_available())
2048 		gfp = GFP_KERNEL;
2049 	else
2050 		gfp = GFP_NOWAIT;
2051 
2052 #if DEBUG
2053 
2054 	/*
2055 	 * Both debugging options require word-alignment which is calculated
2056 	 * into align above.
2057 	 */
2058 	if (flags & SLAB_RED_ZONE) {
2059 		/* add space for red zone words */
2060 		cachep->obj_offset += sizeof(unsigned long long);
2061 		size += 2 * sizeof(unsigned long long);
2062 	}
2063 	if (flags & SLAB_STORE_USER) {
2064 		/* user store requires one word storage behind the end of
2065 		 * the real object. But if the second red zone needs to be
2066 		 * aligned to 64 bits, we must allow that much space.
2067 		 */
2068 		if (flags & SLAB_RED_ZONE)
2069 			size += REDZONE_ALIGN;
2070 		else
2071 			size += BYTES_PER_WORD;
2072 	}
2073 #endif
2074 
2075 	kasan_cache_create(cachep, &size, &flags);
2076 
2077 	size = ALIGN(size, cachep->align);
2078 	/*
2079 	 * We should restrict the number of objects in a slab to implement
2080 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2081 	 */
2082 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2083 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2084 
2085 #if DEBUG
2086 	/*
2087 	 * To activate debug pagealloc, off-slab management is necessary
2088 	 * requirement. In early phase of initialization, small sized slab
2089 	 * doesn't get initialized so it would not be possible. So, we need
2090 	 * to check size >= 256. It guarantees that all necessary small
2091 	 * sized slab is initialized in current slab initialization sequence.
2092 	 */
2093 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2094 		size >= 256 && cachep->object_size > cache_line_size()) {
2095 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2096 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2097 
2098 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2099 				flags |= CFLGS_OFF_SLAB;
2100 				cachep->obj_offset += tmp_size - size;
2101 				size = tmp_size;
2102 				goto done;
2103 			}
2104 		}
2105 	}
2106 #endif
2107 
2108 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2109 		flags |= CFLGS_OBJFREELIST_SLAB;
2110 		goto done;
2111 	}
2112 
2113 	if (set_off_slab_cache(cachep, size, flags)) {
2114 		flags |= CFLGS_OFF_SLAB;
2115 		goto done;
2116 	}
2117 
2118 	if (set_on_slab_cache(cachep, size, flags))
2119 		goto done;
2120 
2121 	return -E2BIG;
2122 
2123 done:
2124 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2125 	cachep->flags = flags;
2126 	cachep->allocflags = __GFP_COMP;
2127 	if (flags & SLAB_CACHE_DMA)
2128 		cachep->allocflags |= GFP_DMA;
2129 	if (flags & SLAB_RECLAIM_ACCOUNT)
2130 		cachep->allocflags |= __GFP_RECLAIMABLE;
2131 	cachep->size = size;
2132 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2133 
2134 #if DEBUG
2135 	/*
2136 	 * If we're going to use the generic kernel_map_pages()
2137 	 * poisoning, then it's going to smash the contents of
2138 	 * the redzone and userword anyhow, so switch them off.
2139 	 */
2140 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2141 		(cachep->flags & SLAB_POISON) &&
2142 		is_debug_pagealloc_cache(cachep))
2143 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2144 #endif
2145 
2146 	if (OFF_SLAB(cachep)) {
2147 		cachep->freelist_cache =
2148 			kmalloc_slab(cachep->freelist_size, 0u);
2149 	}
2150 
2151 	err = setup_cpu_cache(cachep, gfp);
2152 	if (err) {
2153 		__kmem_cache_release(cachep);
2154 		return err;
2155 	}
2156 
2157 	return 0;
2158 }
2159 
2160 #if DEBUG
2161 static void check_irq_off(void)
2162 {
2163 	BUG_ON(!irqs_disabled());
2164 }
2165 
2166 static void check_irq_on(void)
2167 {
2168 	BUG_ON(irqs_disabled());
2169 }
2170 
2171 static void check_mutex_acquired(void)
2172 {
2173 	BUG_ON(!mutex_is_locked(&slab_mutex));
2174 }
2175 
2176 static void check_spinlock_acquired(struct kmem_cache *cachep)
2177 {
2178 #ifdef CONFIG_SMP
2179 	check_irq_off();
2180 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2181 #endif
2182 }
2183 
2184 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2185 {
2186 #ifdef CONFIG_SMP
2187 	check_irq_off();
2188 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2189 #endif
2190 }
2191 
2192 #else
2193 #define check_irq_off()	do { } while(0)
2194 #define check_irq_on()	do { } while(0)
2195 #define check_mutex_acquired()	do { } while(0)
2196 #define check_spinlock_acquired(x) do { } while(0)
2197 #define check_spinlock_acquired_node(x, y) do { } while(0)
2198 #endif
2199 
2200 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2201 				int node, bool free_all, struct list_head *list)
2202 {
2203 	int tofree;
2204 
2205 	if (!ac || !ac->avail)
2206 		return;
2207 
2208 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2209 	if (tofree > ac->avail)
2210 		tofree = (ac->avail + 1) / 2;
2211 
2212 	free_block(cachep, ac->entry, tofree, node, list);
2213 	ac->avail -= tofree;
2214 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2215 }
2216 
2217 static void do_drain(void *arg)
2218 {
2219 	struct kmem_cache *cachep = arg;
2220 	struct array_cache *ac;
2221 	int node = numa_mem_id();
2222 	struct kmem_cache_node *n;
2223 	LIST_HEAD(list);
2224 
2225 	check_irq_off();
2226 	ac = cpu_cache_get(cachep);
2227 	n = get_node(cachep, node);
2228 	spin_lock(&n->list_lock);
2229 	free_block(cachep, ac->entry, ac->avail, node, &list);
2230 	spin_unlock(&n->list_lock);
2231 	slabs_destroy(cachep, &list);
2232 	ac->avail = 0;
2233 }
2234 
2235 static void drain_cpu_caches(struct kmem_cache *cachep)
2236 {
2237 	struct kmem_cache_node *n;
2238 	int node;
2239 	LIST_HEAD(list);
2240 
2241 	on_each_cpu(do_drain, cachep, 1);
2242 	check_irq_on();
2243 	for_each_kmem_cache_node(cachep, node, n)
2244 		if (n->alien)
2245 			drain_alien_cache(cachep, n->alien);
2246 
2247 	for_each_kmem_cache_node(cachep, node, n) {
2248 		spin_lock_irq(&n->list_lock);
2249 		drain_array_locked(cachep, n->shared, node, true, &list);
2250 		spin_unlock_irq(&n->list_lock);
2251 
2252 		slabs_destroy(cachep, &list);
2253 	}
2254 }
2255 
2256 /*
2257  * Remove slabs from the list of free slabs.
2258  * Specify the number of slabs to drain in tofree.
2259  *
2260  * Returns the actual number of slabs released.
2261  */
2262 static int drain_freelist(struct kmem_cache *cache,
2263 			struct kmem_cache_node *n, int tofree)
2264 {
2265 	struct list_head *p;
2266 	int nr_freed;
2267 	struct page *page;
2268 
2269 	nr_freed = 0;
2270 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2271 
2272 		spin_lock_irq(&n->list_lock);
2273 		p = n->slabs_free.prev;
2274 		if (p == &n->slabs_free) {
2275 			spin_unlock_irq(&n->list_lock);
2276 			goto out;
2277 		}
2278 
2279 		page = list_entry(p, struct page, lru);
2280 		list_del(&page->lru);
2281 		n->free_slabs--;
2282 		n->total_slabs--;
2283 		/*
2284 		 * Safe to drop the lock. The slab is no longer linked
2285 		 * to the cache.
2286 		 */
2287 		n->free_objects -= cache->num;
2288 		spin_unlock_irq(&n->list_lock);
2289 		slab_destroy(cache, page);
2290 		nr_freed++;
2291 	}
2292 out:
2293 	return nr_freed;
2294 }
2295 
2296 int __kmem_cache_shrink(struct kmem_cache *cachep)
2297 {
2298 	int ret = 0;
2299 	int node;
2300 	struct kmem_cache_node *n;
2301 
2302 	drain_cpu_caches(cachep);
2303 
2304 	check_irq_on();
2305 	for_each_kmem_cache_node(cachep, node, n) {
2306 		drain_freelist(cachep, n, INT_MAX);
2307 
2308 		ret += !list_empty(&n->slabs_full) ||
2309 			!list_empty(&n->slabs_partial);
2310 	}
2311 	return (ret ? 1 : 0);
2312 }
2313 
2314 #ifdef CONFIG_MEMCG
2315 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2316 {
2317 	__kmem_cache_shrink(cachep);
2318 }
2319 #endif
2320 
2321 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2322 {
2323 	return __kmem_cache_shrink(cachep);
2324 }
2325 
2326 void __kmem_cache_release(struct kmem_cache *cachep)
2327 {
2328 	int i;
2329 	struct kmem_cache_node *n;
2330 
2331 	cache_random_seq_destroy(cachep);
2332 
2333 	free_percpu(cachep->cpu_cache);
2334 
2335 	/* NUMA: free the node structures */
2336 	for_each_kmem_cache_node(cachep, i, n) {
2337 		kfree(n->shared);
2338 		free_alien_cache(n->alien);
2339 		kfree(n);
2340 		cachep->node[i] = NULL;
2341 	}
2342 }
2343 
2344 /*
2345  * Get the memory for a slab management obj.
2346  *
2347  * For a slab cache when the slab descriptor is off-slab, the
2348  * slab descriptor can't come from the same cache which is being created,
2349  * Because if it is the case, that means we defer the creation of
2350  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2351  * And we eventually call down to __kmem_cache_create(), which
2352  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2353  * This is a "chicken-and-egg" problem.
2354  *
2355  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2356  * which are all initialized during kmem_cache_init().
2357  */
2358 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2359 				   struct page *page, int colour_off,
2360 				   gfp_t local_flags, int nodeid)
2361 {
2362 	void *freelist;
2363 	void *addr = page_address(page);
2364 
2365 	page->s_mem = addr + colour_off;
2366 	page->active = 0;
2367 
2368 	if (OBJFREELIST_SLAB(cachep))
2369 		freelist = NULL;
2370 	else if (OFF_SLAB(cachep)) {
2371 		/* Slab management obj is off-slab. */
2372 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2373 					      local_flags, nodeid);
2374 		if (!freelist)
2375 			return NULL;
2376 	} else {
2377 		/* We will use last bytes at the slab for freelist */
2378 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2379 				cachep->freelist_size;
2380 	}
2381 
2382 	return freelist;
2383 }
2384 
2385 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2386 {
2387 	return ((freelist_idx_t *)page->freelist)[idx];
2388 }
2389 
2390 static inline void set_free_obj(struct page *page,
2391 					unsigned int idx, freelist_idx_t val)
2392 {
2393 	((freelist_idx_t *)(page->freelist))[idx] = val;
2394 }
2395 
2396 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2397 {
2398 #if DEBUG
2399 	int i;
2400 
2401 	for (i = 0; i < cachep->num; i++) {
2402 		void *objp = index_to_obj(cachep, page, i);
2403 
2404 		if (cachep->flags & SLAB_STORE_USER)
2405 			*dbg_userword(cachep, objp) = NULL;
2406 
2407 		if (cachep->flags & SLAB_RED_ZONE) {
2408 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2409 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2410 		}
2411 		/*
2412 		 * Constructors are not allowed to allocate memory from the same
2413 		 * cache which they are a constructor for.  Otherwise, deadlock.
2414 		 * They must also be threaded.
2415 		 */
2416 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2417 			kasan_unpoison_object_data(cachep,
2418 						   objp + obj_offset(cachep));
2419 			cachep->ctor(objp + obj_offset(cachep));
2420 			kasan_poison_object_data(
2421 				cachep, objp + obj_offset(cachep));
2422 		}
2423 
2424 		if (cachep->flags & SLAB_RED_ZONE) {
2425 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2426 				slab_error(cachep, "constructor overwrote the end of an object");
2427 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2428 				slab_error(cachep, "constructor overwrote the start of an object");
2429 		}
2430 		/* need to poison the objs? */
2431 		if (cachep->flags & SLAB_POISON) {
2432 			poison_obj(cachep, objp, POISON_FREE);
2433 			slab_kernel_map(cachep, objp, 0, 0);
2434 		}
2435 	}
2436 #endif
2437 }
2438 
2439 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2440 /* Hold information during a freelist initialization */
2441 union freelist_init_state {
2442 	struct {
2443 		unsigned int pos;
2444 		unsigned int *list;
2445 		unsigned int count;
2446 	};
2447 	struct rnd_state rnd_state;
2448 };
2449 
2450 /*
2451  * Initialize the state based on the randomization methode available.
2452  * return true if the pre-computed list is available, false otherwize.
2453  */
2454 static bool freelist_state_initialize(union freelist_init_state *state,
2455 				struct kmem_cache *cachep,
2456 				unsigned int count)
2457 {
2458 	bool ret;
2459 	unsigned int rand;
2460 
2461 	/* Use best entropy available to define a random shift */
2462 	rand = get_random_int();
2463 
2464 	/* Use a random state if the pre-computed list is not available */
2465 	if (!cachep->random_seq) {
2466 		prandom_seed_state(&state->rnd_state, rand);
2467 		ret = false;
2468 	} else {
2469 		state->list = cachep->random_seq;
2470 		state->count = count;
2471 		state->pos = rand % count;
2472 		ret = true;
2473 	}
2474 	return ret;
2475 }
2476 
2477 /* Get the next entry on the list and randomize it using a random shift */
2478 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2479 {
2480 	if (state->pos >= state->count)
2481 		state->pos = 0;
2482 	return state->list[state->pos++];
2483 }
2484 
2485 /* Swap two freelist entries */
2486 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2487 {
2488 	swap(((freelist_idx_t *)page->freelist)[a],
2489 		((freelist_idx_t *)page->freelist)[b]);
2490 }
2491 
2492 /*
2493  * Shuffle the freelist initialization state based on pre-computed lists.
2494  * return true if the list was successfully shuffled, false otherwise.
2495  */
2496 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2497 {
2498 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2499 	union freelist_init_state state;
2500 	bool precomputed;
2501 
2502 	if (count < 2)
2503 		return false;
2504 
2505 	precomputed = freelist_state_initialize(&state, cachep, count);
2506 
2507 	/* Take a random entry as the objfreelist */
2508 	if (OBJFREELIST_SLAB(cachep)) {
2509 		if (!precomputed)
2510 			objfreelist = count - 1;
2511 		else
2512 			objfreelist = next_random_slot(&state);
2513 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2514 						obj_offset(cachep);
2515 		count--;
2516 	}
2517 
2518 	/*
2519 	 * On early boot, generate the list dynamically.
2520 	 * Later use a pre-computed list for speed.
2521 	 */
2522 	if (!precomputed) {
2523 		for (i = 0; i < count; i++)
2524 			set_free_obj(page, i, i);
2525 
2526 		/* Fisher-Yates shuffle */
2527 		for (i = count - 1; i > 0; i--) {
2528 			rand = prandom_u32_state(&state.rnd_state);
2529 			rand %= (i + 1);
2530 			swap_free_obj(page, i, rand);
2531 		}
2532 	} else {
2533 		for (i = 0; i < count; i++)
2534 			set_free_obj(page, i, next_random_slot(&state));
2535 	}
2536 
2537 	if (OBJFREELIST_SLAB(cachep))
2538 		set_free_obj(page, cachep->num - 1, objfreelist);
2539 
2540 	return true;
2541 }
2542 #else
2543 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2544 				struct page *page)
2545 {
2546 	return false;
2547 }
2548 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2549 
2550 static void cache_init_objs(struct kmem_cache *cachep,
2551 			    struct page *page)
2552 {
2553 	int i;
2554 	void *objp;
2555 	bool shuffled;
2556 
2557 	cache_init_objs_debug(cachep, page);
2558 
2559 	/* Try to randomize the freelist if enabled */
2560 	shuffled = shuffle_freelist(cachep, page);
2561 
2562 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2563 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2564 						obj_offset(cachep);
2565 	}
2566 
2567 	for (i = 0; i < cachep->num; i++) {
2568 		objp = index_to_obj(cachep, page, i);
2569 		kasan_init_slab_obj(cachep, objp);
2570 
2571 		/* constructor could break poison info */
2572 		if (DEBUG == 0 && cachep->ctor) {
2573 			kasan_unpoison_object_data(cachep, objp);
2574 			cachep->ctor(objp);
2575 			kasan_poison_object_data(cachep, objp);
2576 		}
2577 
2578 		if (!shuffled)
2579 			set_free_obj(page, i, i);
2580 	}
2581 }
2582 
2583 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2584 {
2585 	void *objp;
2586 
2587 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2588 	page->active++;
2589 
2590 #if DEBUG
2591 	if (cachep->flags & SLAB_STORE_USER)
2592 		set_store_user_dirty(cachep);
2593 #endif
2594 
2595 	return objp;
2596 }
2597 
2598 static void slab_put_obj(struct kmem_cache *cachep,
2599 			struct page *page, void *objp)
2600 {
2601 	unsigned int objnr = obj_to_index(cachep, page, objp);
2602 #if DEBUG
2603 	unsigned int i;
2604 
2605 	/* Verify double free bug */
2606 	for (i = page->active; i < cachep->num; i++) {
2607 		if (get_free_obj(page, i) == objnr) {
2608 			pr_err("slab: double free detected in cache '%s', objp %px\n",
2609 			       cachep->name, objp);
2610 			BUG();
2611 		}
2612 	}
2613 #endif
2614 	page->active--;
2615 	if (!page->freelist)
2616 		page->freelist = objp + obj_offset(cachep);
2617 
2618 	set_free_obj(page, page->active, objnr);
2619 }
2620 
2621 /*
2622  * Map pages beginning at addr to the given cache and slab. This is required
2623  * for the slab allocator to be able to lookup the cache and slab of a
2624  * virtual address for kfree, ksize, and slab debugging.
2625  */
2626 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2627 			   void *freelist)
2628 {
2629 	page->slab_cache = cache;
2630 	page->freelist = freelist;
2631 }
2632 
2633 /*
2634  * Grow (by 1) the number of slabs within a cache.  This is called by
2635  * kmem_cache_alloc() when there are no active objs left in a cache.
2636  */
2637 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2638 				gfp_t flags, int nodeid)
2639 {
2640 	void *freelist;
2641 	size_t offset;
2642 	gfp_t local_flags;
2643 	int page_node;
2644 	struct kmem_cache_node *n;
2645 	struct page *page;
2646 
2647 	/*
2648 	 * Be lazy and only check for valid flags here,  keeping it out of the
2649 	 * critical path in kmem_cache_alloc().
2650 	 */
2651 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2652 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2653 		flags &= ~GFP_SLAB_BUG_MASK;
2654 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2655 				invalid_mask, &invalid_mask, flags, &flags);
2656 		dump_stack();
2657 	}
2658 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2659 
2660 	check_irq_off();
2661 	if (gfpflags_allow_blocking(local_flags))
2662 		local_irq_enable();
2663 
2664 	/*
2665 	 * Get mem for the objs.  Attempt to allocate a physical page from
2666 	 * 'nodeid'.
2667 	 */
2668 	page = kmem_getpages(cachep, local_flags, nodeid);
2669 	if (!page)
2670 		goto failed;
2671 
2672 	page_node = page_to_nid(page);
2673 	n = get_node(cachep, page_node);
2674 
2675 	/* Get colour for the slab, and cal the next value. */
2676 	n->colour_next++;
2677 	if (n->colour_next >= cachep->colour)
2678 		n->colour_next = 0;
2679 
2680 	offset = n->colour_next;
2681 	if (offset >= cachep->colour)
2682 		offset = 0;
2683 
2684 	offset *= cachep->colour_off;
2685 
2686 	/* Get slab management. */
2687 	freelist = alloc_slabmgmt(cachep, page, offset,
2688 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2689 	if (OFF_SLAB(cachep) && !freelist)
2690 		goto opps1;
2691 
2692 	slab_map_pages(cachep, page, freelist);
2693 
2694 	kasan_poison_slab(page);
2695 	cache_init_objs(cachep, page);
2696 
2697 	if (gfpflags_allow_blocking(local_flags))
2698 		local_irq_disable();
2699 
2700 	return page;
2701 
2702 opps1:
2703 	kmem_freepages(cachep, page);
2704 failed:
2705 	if (gfpflags_allow_blocking(local_flags))
2706 		local_irq_disable();
2707 	return NULL;
2708 }
2709 
2710 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2711 {
2712 	struct kmem_cache_node *n;
2713 	void *list = NULL;
2714 
2715 	check_irq_off();
2716 
2717 	if (!page)
2718 		return;
2719 
2720 	INIT_LIST_HEAD(&page->lru);
2721 	n = get_node(cachep, page_to_nid(page));
2722 
2723 	spin_lock(&n->list_lock);
2724 	n->total_slabs++;
2725 	if (!page->active) {
2726 		list_add_tail(&page->lru, &(n->slabs_free));
2727 		n->free_slabs++;
2728 	} else
2729 		fixup_slab_list(cachep, n, page, &list);
2730 
2731 	STATS_INC_GROWN(cachep);
2732 	n->free_objects += cachep->num - page->active;
2733 	spin_unlock(&n->list_lock);
2734 
2735 	fixup_objfreelist_debug(cachep, &list);
2736 }
2737 
2738 #if DEBUG
2739 
2740 /*
2741  * Perform extra freeing checks:
2742  * - detect bad pointers.
2743  * - POISON/RED_ZONE checking
2744  */
2745 static void kfree_debugcheck(const void *objp)
2746 {
2747 	if (!virt_addr_valid(objp)) {
2748 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2749 		       (unsigned long)objp);
2750 		BUG();
2751 	}
2752 }
2753 
2754 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2755 {
2756 	unsigned long long redzone1, redzone2;
2757 
2758 	redzone1 = *dbg_redzone1(cache, obj);
2759 	redzone2 = *dbg_redzone2(cache, obj);
2760 
2761 	/*
2762 	 * Redzone is ok.
2763 	 */
2764 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2765 		return;
2766 
2767 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2768 		slab_error(cache, "double free detected");
2769 	else
2770 		slab_error(cache, "memory outside object was overwritten");
2771 
2772 	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2773 	       obj, redzone1, redzone2);
2774 }
2775 
2776 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2777 				   unsigned long caller)
2778 {
2779 	unsigned int objnr;
2780 	struct page *page;
2781 
2782 	BUG_ON(virt_to_cache(objp) != cachep);
2783 
2784 	objp -= obj_offset(cachep);
2785 	kfree_debugcheck(objp);
2786 	page = virt_to_head_page(objp);
2787 
2788 	if (cachep->flags & SLAB_RED_ZONE) {
2789 		verify_redzone_free(cachep, objp);
2790 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2791 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2792 	}
2793 	if (cachep->flags & SLAB_STORE_USER) {
2794 		set_store_user_dirty(cachep);
2795 		*dbg_userword(cachep, objp) = (void *)caller;
2796 	}
2797 
2798 	objnr = obj_to_index(cachep, page, objp);
2799 
2800 	BUG_ON(objnr >= cachep->num);
2801 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2802 
2803 	if (cachep->flags & SLAB_POISON) {
2804 		poison_obj(cachep, objp, POISON_FREE);
2805 		slab_kernel_map(cachep, objp, 0, caller);
2806 	}
2807 	return objp;
2808 }
2809 
2810 #else
2811 #define kfree_debugcheck(x) do { } while(0)
2812 #define cache_free_debugcheck(x,objp,z) (objp)
2813 #endif
2814 
2815 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2816 						void **list)
2817 {
2818 #if DEBUG
2819 	void *next = *list;
2820 	void *objp;
2821 
2822 	while (next) {
2823 		objp = next - obj_offset(cachep);
2824 		next = *(void **)next;
2825 		poison_obj(cachep, objp, POISON_FREE);
2826 	}
2827 #endif
2828 }
2829 
2830 static inline void fixup_slab_list(struct kmem_cache *cachep,
2831 				struct kmem_cache_node *n, struct page *page,
2832 				void **list)
2833 {
2834 	/* move slabp to correct slabp list: */
2835 	list_del(&page->lru);
2836 	if (page->active == cachep->num) {
2837 		list_add(&page->lru, &n->slabs_full);
2838 		if (OBJFREELIST_SLAB(cachep)) {
2839 #if DEBUG
2840 			/* Poisoning will be done without holding the lock */
2841 			if (cachep->flags & SLAB_POISON) {
2842 				void **objp = page->freelist;
2843 
2844 				*objp = *list;
2845 				*list = objp;
2846 			}
2847 #endif
2848 			page->freelist = NULL;
2849 		}
2850 	} else
2851 		list_add(&page->lru, &n->slabs_partial);
2852 }
2853 
2854 /* Try to find non-pfmemalloc slab if needed */
2855 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2856 					struct page *page, bool pfmemalloc)
2857 {
2858 	if (!page)
2859 		return NULL;
2860 
2861 	if (pfmemalloc)
2862 		return page;
2863 
2864 	if (!PageSlabPfmemalloc(page))
2865 		return page;
2866 
2867 	/* No need to keep pfmemalloc slab if we have enough free objects */
2868 	if (n->free_objects > n->free_limit) {
2869 		ClearPageSlabPfmemalloc(page);
2870 		return page;
2871 	}
2872 
2873 	/* Move pfmemalloc slab to the end of list to speed up next search */
2874 	list_del(&page->lru);
2875 	if (!page->active) {
2876 		list_add_tail(&page->lru, &n->slabs_free);
2877 		n->free_slabs++;
2878 	} else
2879 		list_add_tail(&page->lru, &n->slabs_partial);
2880 
2881 	list_for_each_entry(page, &n->slabs_partial, lru) {
2882 		if (!PageSlabPfmemalloc(page))
2883 			return page;
2884 	}
2885 
2886 	n->free_touched = 1;
2887 	list_for_each_entry(page, &n->slabs_free, lru) {
2888 		if (!PageSlabPfmemalloc(page)) {
2889 			n->free_slabs--;
2890 			return page;
2891 		}
2892 	}
2893 
2894 	return NULL;
2895 }
2896 
2897 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2898 {
2899 	struct page *page;
2900 
2901 	assert_spin_locked(&n->list_lock);
2902 	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2903 	if (!page) {
2904 		n->free_touched = 1;
2905 		page = list_first_entry_or_null(&n->slabs_free, struct page,
2906 						lru);
2907 		if (page)
2908 			n->free_slabs--;
2909 	}
2910 
2911 	if (sk_memalloc_socks())
2912 		page = get_valid_first_slab(n, page, pfmemalloc);
2913 
2914 	return page;
2915 }
2916 
2917 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2918 				struct kmem_cache_node *n, gfp_t flags)
2919 {
2920 	struct page *page;
2921 	void *obj;
2922 	void *list = NULL;
2923 
2924 	if (!gfp_pfmemalloc_allowed(flags))
2925 		return NULL;
2926 
2927 	spin_lock(&n->list_lock);
2928 	page = get_first_slab(n, true);
2929 	if (!page) {
2930 		spin_unlock(&n->list_lock);
2931 		return NULL;
2932 	}
2933 
2934 	obj = slab_get_obj(cachep, page);
2935 	n->free_objects--;
2936 
2937 	fixup_slab_list(cachep, n, page, &list);
2938 
2939 	spin_unlock(&n->list_lock);
2940 	fixup_objfreelist_debug(cachep, &list);
2941 
2942 	return obj;
2943 }
2944 
2945 /*
2946  * Slab list should be fixed up by fixup_slab_list() for existing slab
2947  * or cache_grow_end() for new slab
2948  */
2949 static __always_inline int alloc_block(struct kmem_cache *cachep,
2950 		struct array_cache *ac, struct page *page, int batchcount)
2951 {
2952 	/*
2953 	 * There must be at least one object available for
2954 	 * allocation.
2955 	 */
2956 	BUG_ON(page->active >= cachep->num);
2957 
2958 	while (page->active < cachep->num && batchcount--) {
2959 		STATS_INC_ALLOCED(cachep);
2960 		STATS_INC_ACTIVE(cachep);
2961 		STATS_SET_HIGH(cachep);
2962 
2963 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2964 	}
2965 
2966 	return batchcount;
2967 }
2968 
2969 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2970 {
2971 	int batchcount;
2972 	struct kmem_cache_node *n;
2973 	struct array_cache *ac, *shared;
2974 	int node;
2975 	void *list = NULL;
2976 	struct page *page;
2977 
2978 	check_irq_off();
2979 	node = numa_mem_id();
2980 
2981 	ac = cpu_cache_get(cachep);
2982 	batchcount = ac->batchcount;
2983 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2984 		/*
2985 		 * If there was little recent activity on this cache, then
2986 		 * perform only a partial refill.  Otherwise we could generate
2987 		 * refill bouncing.
2988 		 */
2989 		batchcount = BATCHREFILL_LIMIT;
2990 	}
2991 	n = get_node(cachep, node);
2992 
2993 	BUG_ON(ac->avail > 0 || !n);
2994 	shared = READ_ONCE(n->shared);
2995 	if (!n->free_objects && (!shared || !shared->avail))
2996 		goto direct_grow;
2997 
2998 	spin_lock(&n->list_lock);
2999 	shared = READ_ONCE(n->shared);
3000 
3001 	/* See if we can refill from the shared array */
3002 	if (shared && transfer_objects(ac, shared, batchcount)) {
3003 		shared->touched = 1;
3004 		goto alloc_done;
3005 	}
3006 
3007 	while (batchcount > 0) {
3008 		/* Get slab alloc is to come from. */
3009 		page = get_first_slab(n, false);
3010 		if (!page)
3011 			goto must_grow;
3012 
3013 		check_spinlock_acquired(cachep);
3014 
3015 		batchcount = alloc_block(cachep, ac, page, batchcount);
3016 		fixup_slab_list(cachep, n, page, &list);
3017 	}
3018 
3019 must_grow:
3020 	n->free_objects -= ac->avail;
3021 alloc_done:
3022 	spin_unlock(&n->list_lock);
3023 	fixup_objfreelist_debug(cachep, &list);
3024 
3025 direct_grow:
3026 	if (unlikely(!ac->avail)) {
3027 		/* Check if we can use obj in pfmemalloc slab */
3028 		if (sk_memalloc_socks()) {
3029 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3030 
3031 			if (obj)
3032 				return obj;
3033 		}
3034 
3035 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3036 
3037 		/*
3038 		 * cache_grow_begin() can reenable interrupts,
3039 		 * then ac could change.
3040 		 */
3041 		ac = cpu_cache_get(cachep);
3042 		if (!ac->avail && page)
3043 			alloc_block(cachep, ac, page, batchcount);
3044 		cache_grow_end(cachep, page);
3045 
3046 		if (!ac->avail)
3047 			return NULL;
3048 	}
3049 	ac->touched = 1;
3050 
3051 	return ac->entry[--ac->avail];
3052 }
3053 
3054 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3055 						gfp_t flags)
3056 {
3057 	might_sleep_if(gfpflags_allow_blocking(flags));
3058 }
3059 
3060 #if DEBUG
3061 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3062 				gfp_t flags, void *objp, unsigned long caller)
3063 {
3064 	if (!objp)
3065 		return objp;
3066 	if (cachep->flags & SLAB_POISON) {
3067 		check_poison_obj(cachep, objp);
3068 		slab_kernel_map(cachep, objp, 1, 0);
3069 		poison_obj(cachep, objp, POISON_INUSE);
3070 	}
3071 	if (cachep->flags & SLAB_STORE_USER)
3072 		*dbg_userword(cachep, objp) = (void *)caller;
3073 
3074 	if (cachep->flags & SLAB_RED_ZONE) {
3075 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3076 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3077 			slab_error(cachep, "double free, or memory outside object was overwritten");
3078 			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3079 			       objp, *dbg_redzone1(cachep, objp),
3080 			       *dbg_redzone2(cachep, objp));
3081 		}
3082 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3083 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3084 	}
3085 
3086 	objp += obj_offset(cachep);
3087 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3088 		cachep->ctor(objp);
3089 	if (ARCH_SLAB_MINALIGN &&
3090 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3091 		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3092 		       objp, (int)ARCH_SLAB_MINALIGN);
3093 	}
3094 	return objp;
3095 }
3096 #else
3097 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3098 #endif
3099 
3100 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3101 {
3102 	void *objp;
3103 	struct array_cache *ac;
3104 
3105 	check_irq_off();
3106 
3107 	ac = cpu_cache_get(cachep);
3108 	if (likely(ac->avail)) {
3109 		ac->touched = 1;
3110 		objp = ac->entry[--ac->avail];
3111 
3112 		STATS_INC_ALLOCHIT(cachep);
3113 		goto out;
3114 	}
3115 
3116 	STATS_INC_ALLOCMISS(cachep);
3117 	objp = cache_alloc_refill(cachep, flags);
3118 	/*
3119 	 * the 'ac' may be updated by cache_alloc_refill(),
3120 	 * and kmemleak_erase() requires its correct value.
3121 	 */
3122 	ac = cpu_cache_get(cachep);
3123 
3124 out:
3125 	/*
3126 	 * To avoid a false negative, if an object that is in one of the
3127 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3128 	 * treat the array pointers as a reference to the object.
3129 	 */
3130 	if (objp)
3131 		kmemleak_erase(&ac->entry[ac->avail]);
3132 	return objp;
3133 }
3134 
3135 #ifdef CONFIG_NUMA
3136 /*
3137  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3138  *
3139  * If we are in_interrupt, then process context, including cpusets and
3140  * mempolicy, may not apply and should not be used for allocation policy.
3141  */
3142 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3143 {
3144 	int nid_alloc, nid_here;
3145 
3146 	if (in_interrupt() || (flags & __GFP_THISNODE))
3147 		return NULL;
3148 	nid_alloc = nid_here = numa_mem_id();
3149 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3150 		nid_alloc = cpuset_slab_spread_node();
3151 	else if (current->mempolicy)
3152 		nid_alloc = mempolicy_slab_node();
3153 	if (nid_alloc != nid_here)
3154 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3155 	return NULL;
3156 }
3157 
3158 /*
3159  * Fallback function if there was no memory available and no objects on a
3160  * certain node and fall back is permitted. First we scan all the
3161  * available node for available objects. If that fails then we
3162  * perform an allocation without specifying a node. This allows the page
3163  * allocator to do its reclaim / fallback magic. We then insert the
3164  * slab into the proper nodelist and then allocate from it.
3165  */
3166 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3167 {
3168 	struct zonelist *zonelist;
3169 	struct zoneref *z;
3170 	struct zone *zone;
3171 	enum zone_type high_zoneidx = gfp_zone(flags);
3172 	void *obj = NULL;
3173 	struct page *page;
3174 	int nid;
3175 	unsigned int cpuset_mems_cookie;
3176 
3177 	if (flags & __GFP_THISNODE)
3178 		return NULL;
3179 
3180 retry_cpuset:
3181 	cpuset_mems_cookie = read_mems_allowed_begin();
3182 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3183 
3184 retry:
3185 	/*
3186 	 * Look through allowed nodes for objects available
3187 	 * from existing per node queues.
3188 	 */
3189 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3190 		nid = zone_to_nid(zone);
3191 
3192 		if (cpuset_zone_allowed(zone, flags) &&
3193 			get_node(cache, nid) &&
3194 			get_node(cache, nid)->free_objects) {
3195 				obj = ____cache_alloc_node(cache,
3196 					gfp_exact_node(flags), nid);
3197 				if (obj)
3198 					break;
3199 		}
3200 	}
3201 
3202 	if (!obj) {
3203 		/*
3204 		 * This allocation will be performed within the constraints
3205 		 * of the current cpuset / memory policy requirements.
3206 		 * We may trigger various forms of reclaim on the allowed
3207 		 * set and go into memory reserves if necessary.
3208 		 */
3209 		page = cache_grow_begin(cache, flags, numa_mem_id());
3210 		cache_grow_end(cache, page);
3211 		if (page) {
3212 			nid = page_to_nid(page);
3213 			obj = ____cache_alloc_node(cache,
3214 				gfp_exact_node(flags), nid);
3215 
3216 			/*
3217 			 * Another processor may allocate the objects in
3218 			 * the slab since we are not holding any locks.
3219 			 */
3220 			if (!obj)
3221 				goto retry;
3222 		}
3223 	}
3224 
3225 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3226 		goto retry_cpuset;
3227 	return obj;
3228 }
3229 
3230 /*
3231  * A interface to enable slab creation on nodeid
3232  */
3233 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3234 				int nodeid)
3235 {
3236 	struct page *page;
3237 	struct kmem_cache_node *n;
3238 	void *obj = NULL;
3239 	void *list = NULL;
3240 
3241 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3242 	n = get_node(cachep, nodeid);
3243 	BUG_ON(!n);
3244 
3245 	check_irq_off();
3246 	spin_lock(&n->list_lock);
3247 	page = get_first_slab(n, false);
3248 	if (!page)
3249 		goto must_grow;
3250 
3251 	check_spinlock_acquired_node(cachep, nodeid);
3252 
3253 	STATS_INC_NODEALLOCS(cachep);
3254 	STATS_INC_ACTIVE(cachep);
3255 	STATS_SET_HIGH(cachep);
3256 
3257 	BUG_ON(page->active == cachep->num);
3258 
3259 	obj = slab_get_obj(cachep, page);
3260 	n->free_objects--;
3261 
3262 	fixup_slab_list(cachep, n, page, &list);
3263 
3264 	spin_unlock(&n->list_lock);
3265 	fixup_objfreelist_debug(cachep, &list);
3266 	return obj;
3267 
3268 must_grow:
3269 	spin_unlock(&n->list_lock);
3270 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3271 	if (page) {
3272 		/* This slab isn't counted yet so don't update free_objects */
3273 		obj = slab_get_obj(cachep, page);
3274 	}
3275 	cache_grow_end(cachep, page);
3276 
3277 	return obj ? obj : fallback_alloc(cachep, flags);
3278 }
3279 
3280 static __always_inline void *
3281 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3282 		   unsigned long caller)
3283 {
3284 	unsigned long save_flags;
3285 	void *ptr;
3286 	int slab_node = numa_mem_id();
3287 
3288 	flags &= gfp_allowed_mask;
3289 	cachep = slab_pre_alloc_hook(cachep, flags);
3290 	if (unlikely(!cachep))
3291 		return NULL;
3292 
3293 	cache_alloc_debugcheck_before(cachep, flags);
3294 	local_irq_save(save_flags);
3295 
3296 	if (nodeid == NUMA_NO_NODE)
3297 		nodeid = slab_node;
3298 
3299 	if (unlikely(!get_node(cachep, nodeid))) {
3300 		/* Node not bootstrapped yet */
3301 		ptr = fallback_alloc(cachep, flags);
3302 		goto out;
3303 	}
3304 
3305 	if (nodeid == slab_node) {
3306 		/*
3307 		 * Use the locally cached objects if possible.
3308 		 * However ____cache_alloc does not allow fallback
3309 		 * to other nodes. It may fail while we still have
3310 		 * objects on other nodes available.
3311 		 */
3312 		ptr = ____cache_alloc(cachep, flags);
3313 		if (ptr)
3314 			goto out;
3315 	}
3316 	/* ___cache_alloc_node can fall back to other nodes */
3317 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3318   out:
3319 	local_irq_restore(save_flags);
3320 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3321 
3322 	if (unlikely(flags & __GFP_ZERO) && ptr)
3323 		memset(ptr, 0, cachep->object_size);
3324 
3325 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3326 	return ptr;
3327 }
3328 
3329 static __always_inline void *
3330 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3331 {
3332 	void *objp;
3333 
3334 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3335 		objp = alternate_node_alloc(cache, flags);
3336 		if (objp)
3337 			goto out;
3338 	}
3339 	objp = ____cache_alloc(cache, flags);
3340 
3341 	/*
3342 	 * We may just have run out of memory on the local node.
3343 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3344 	 */
3345 	if (!objp)
3346 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3347 
3348   out:
3349 	return objp;
3350 }
3351 #else
3352 
3353 static __always_inline void *
3354 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3355 {
3356 	return ____cache_alloc(cachep, flags);
3357 }
3358 
3359 #endif /* CONFIG_NUMA */
3360 
3361 static __always_inline void *
3362 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3363 {
3364 	unsigned long save_flags;
3365 	void *objp;
3366 
3367 	flags &= gfp_allowed_mask;
3368 	cachep = slab_pre_alloc_hook(cachep, flags);
3369 	if (unlikely(!cachep))
3370 		return NULL;
3371 
3372 	cache_alloc_debugcheck_before(cachep, flags);
3373 	local_irq_save(save_flags);
3374 	objp = __do_cache_alloc(cachep, flags);
3375 	local_irq_restore(save_flags);
3376 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3377 	prefetchw(objp);
3378 
3379 	if (unlikely(flags & __GFP_ZERO) && objp)
3380 		memset(objp, 0, cachep->object_size);
3381 
3382 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3383 	return objp;
3384 }
3385 
3386 /*
3387  * Caller needs to acquire correct kmem_cache_node's list_lock
3388  * @list: List of detached free slabs should be freed by caller
3389  */
3390 static void free_block(struct kmem_cache *cachep, void **objpp,
3391 			int nr_objects, int node, struct list_head *list)
3392 {
3393 	int i;
3394 	struct kmem_cache_node *n = get_node(cachep, node);
3395 	struct page *page;
3396 
3397 	n->free_objects += nr_objects;
3398 
3399 	for (i = 0; i < nr_objects; i++) {
3400 		void *objp;
3401 		struct page *page;
3402 
3403 		objp = objpp[i];
3404 
3405 		page = virt_to_head_page(objp);
3406 		list_del(&page->lru);
3407 		check_spinlock_acquired_node(cachep, node);
3408 		slab_put_obj(cachep, page, objp);
3409 		STATS_DEC_ACTIVE(cachep);
3410 
3411 		/* fixup slab chains */
3412 		if (page->active == 0) {
3413 			list_add(&page->lru, &n->slabs_free);
3414 			n->free_slabs++;
3415 		} else {
3416 			/* Unconditionally move a slab to the end of the
3417 			 * partial list on free - maximum time for the
3418 			 * other objects to be freed, too.
3419 			 */
3420 			list_add_tail(&page->lru, &n->slabs_partial);
3421 		}
3422 	}
3423 
3424 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3425 		n->free_objects -= cachep->num;
3426 
3427 		page = list_last_entry(&n->slabs_free, struct page, lru);
3428 		list_move(&page->lru, list);
3429 		n->free_slabs--;
3430 		n->total_slabs--;
3431 	}
3432 }
3433 
3434 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3435 {
3436 	int batchcount;
3437 	struct kmem_cache_node *n;
3438 	int node = numa_mem_id();
3439 	LIST_HEAD(list);
3440 
3441 	batchcount = ac->batchcount;
3442 
3443 	check_irq_off();
3444 	n = get_node(cachep, node);
3445 	spin_lock(&n->list_lock);
3446 	if (n->shared) {
3447 		struct array_cache *shared_array = n->shared;
3448 		int max = shared_array->limit - shared_array->avail;
3449 		if (max) {
3450 			if (batchcount > max)
3451 				batchcount = max;
3452 			memcpy(&(shared_array->entry[shared_array->avail]),
3453 			       ac->entry, sizeof(void *) * batchcount);
3454 			shared_array->avail += batchcount;
3455 			goto free_done;
3456 		}
3457 	}
3458 
3459 	free_block(cachep, ac->entry, batchcount, node, &list);
3460 free_done:
3461 #if STATS
3462 	{
3463 		int i = 0;
3464 		struct page *page;
3465 
3466 		list_for_each_entry(page, &n->slabs_free, lru) {
3467 			BUG_ON(page->active);
3468 
3469 			i++;
3470 		}
3471 		STATS_SET_FREEABLE(cachep, i);
3472 	}
3473 #endif
3474 	spin_unlock(&n->list_lock);
3475 	slabs_destroy(cachep, &list);
3476 	ac->avail -= batchcount;
3477 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3478 }
3479 
3480 /*
3481  * Release an obj back to its cache. If the obj has a constructed state, it must
3482  * be in this state _before_ it is released.  Called with disabled ints.
3483  */
3484 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3485 				unsigned long caller)
3486 {
3487 	/* Put the object into the quarantine, don't touch it for now. */
3488 	if (kasan_slab_free(cachep, objp))
3489 		return;
3490 
3491 	___cache_free(cachep, objp, caller);
3492 }
3493 
3494 void ___cache_free(struct kmem_cache *cachep, void *objp,
3495 		unsigned long caller)
3496 {
3497 	struct array_cache *ac = cpu_cache_get(cachep);
3498 
3499 	check_irq_off();
3500 	kmemleak_free_recursive(objp, cachep->flags);
3501 	objp = cache_free_debugcheck(cachep, objp, caller);
3502 
3503 	/*
3504 	 * Skip calling cache_free_alien() when the platform is not numa.
3505 	 * This will avoid cache misses that happen while accessing slabp (which
3506 	 * is per page memory  reference) to get nodeid. Instead use a global
3507 	 * variable to skip the call, which is mostly likely to be present in
3508 	 * the cache.
3509 	 */
3510 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3511 		return;
3512 
3513 	if (ac->avail < ac->limit) {
3514 		STATS_INC_FREEHIT(cachep);
3515 	} else {
3516 		STATS_INC_FREEMISS(cachep);
3517 		cache_flusharray(cachep, ac);
3518 	}
3519 
3520 	if (sk_memalloc_socks()) {
3521 		struct page *page = virt_to_head_page(objp);
3522 
3523 		if (unlikely(PageSlabPfmemalloc(page))) {
3524 			cache_free_pfmemalloc(cachep, page, objp);
3525 			return;
3526 		}
3527 	}
3528 
3529 	ac->entry[ac->avail++] = objp;
3530 }
3531 
3532 /**
3533  * kmem_cache_alloc - Allocate an object
3534  * @cachep: The cache to allocate from.
3535  * @flags: See kmalloc().
3536  *
3537  * Allocate an object from this cache.  The flags are only relevant
3538  * if the cache has no available objects.
3539  */
3540 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3541 {
3542 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3543 
3544 	kasan_slab_alloc(cachep, ret, flags);
3545 	trace_kmem_cache_alloc(_RET_IP_, ret,
3546 			       cachep->object_size, cachep->size, flags);
3547 
3548 	return ret;
3549 }
3550 EXPORT_SYMBOL(kmem_cache_alloc);
3551 
3552 static __always_inline void
3553 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3554 				  size_t size, void **p, unsigned long caller)
3555 {
3556 	size_t i;
3557 
3558 	for (i = 0; i < size; i++)
3559 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3560 }
3561 
3562 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3563 			  void **p)
3564 {
3565 	size_t i;
3566 
3567 	s = slab_pre_alloc_hook(s, flags);
3568 	if (!s)
3569 		return 0;
3570 
3571 	cache_alloc_debugcheck_before(s, flags);
3572 
3573 	local_irq_disable();
3574 	for (i = 0; i < size; i++) {
3575 		void *objp = __do_cache_alloc(s, flags);
3576 
3577 		if (unlikely(!objp))
3578 			goto error;
3579 		p[i] = objp;
3580 	}
3581 	local_irq_enable();
3582 
3583 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3584 
3585 	/* Clear memory outside IRQ disabled section */
3586 	if (unlikely(flags & __GFP_ZERO))
3587 		for (i = 0; i < size; i++)
3588 			memset(p[i], 0, s->object_size);
3589 
3590 	slab_post_alloc_hook(s, flags, size, p);
3591 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3592 	return size;
3593 error:
3594 	local_irq_enable();
3595 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3596 	slab_post_alloc_hook(s, flags, i, p);
3597 	__kmem_cache_free_bulk(s, i, p);
3598 	return 0;
3599 }
3600 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3601 
3602 #ifdef CONFIG_TRACING
3603 void *
3604 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3605 {
3606 	void *ret;
3607 
3608 	ret = slab_alloc(cachep, flags, _RET_IP_);
3609 
3610 	kasan_kmalloc(cachep, ret, size, flags);
3611 	trace_kmalloc(_RET_IP_, ret,
3612 		      size, cachep->size, flags);
3613 	return ret;
3614 }
3615 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3616 #endif
3617 
3618 #ifdef CONFIG_NUMA
3619 /**
3620  * kmem_cache_alloc_node - Allocate an object on the specified node
3621  * @cachep: The cache to allocate from.
3622  * @flags: See kmalloc().
3623  * @nodeid: node number of the target node.
3624  *
3625  * Identical to kmem_cache_alloc but it will allocate memory on the given
3626  * node, which can improve the performance for cpu bound structures.
3627  *
3628  * Fallback to other node is possible if __GFP_THISNODE is not set.
3629  */
3630 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3631 {
3632 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3633 
3634 	kasan_slab_alloc(cachep, ret, flags);
3635 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3636 				    cachep->object_size, cachep->size,
3637 				    flags, nodeid);
3638 
3639 	return ret;
3640 }
3641 EXPORT_SYMBOL(kmem_cache_alloc_node);
3642 
3643 #ifdef CONFIG_TRACING
3644 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3645 				  gfp_t flags,
3646 				  int nodeid,
3647 				  size_t size)
3648 {
3649 	void *ret;
3650 
3651 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3652 
3653 	kasan_kmalloc(cachep, ret, size, flags);
3654 	trace_kmalloc_node(_RET_IP_, ret,
3655 			   size, cachep->size,
3656 			   flags, nodeid);
3657 	return ret;
3658 }
3659 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3660 #endif
3661 
3662 static __always_inline void *
3663 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3664 {
3665 	struct kmem_cache *cachep;
3666 	void *ret;
3667 
3668 	cachep = kmalloc_slab(size, flags);
3669 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3670 		return cachep;
3671 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3672 	kasan_kmalloc(cachep, ret, size, flags);
3673 
3674 	return ret;
3675 }
3676 
3677 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3678 {
3679 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3680 }
3681 EXPORT_SYMBOL(__kmalloc_node);
3682 
3683 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3684 		int node, unsigned long caller)
3685 {
3686 	return __do_kmalloc_node(size, flags, node, caller);
3687 }
3688 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3689 #endif /* CONFIG_NUMA */
3690 
3691 /**
3692  * __do_kmalloc - allocate memory
3693  * @size: how many bytes of memory are required.
3694  * @flags: the type of memory to allocate (see kmalloc).
3695  * @caller: function caller for debug tracking of the caller
3696  */
3697 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3698 					  unsigned long caller)
3699 {
3700 	struct kmem_cache *cachep;
3701 	void *ret;
3702 
3703 	cachep = kmalloc_slab(size, flags);
3704 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3705 		return cachep;
3706 	ret = slab_alloc(cachep, flags, caller);
3707 
3708 	kasan_kmalloc(cachep, ret, size, flags);
3709 	trace_kmalloc(caller, ret,
3710 		      size, cachep->size, flags);
3711 
3712 	return ret;
3713 }
3714 
3715 void *__kmalloc(size_t size, gfp_t flags)
3716 {
3717 	return __do_kmalloc(size, flags, _RET_IP_);
3718 }
3719 EXPORT_SYMBOL(__kmalloc);
3720 
3721 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3722 {
3723 	return __do_kmalloc(size, flags, caller);
3724 }
3725 EXPORT_SYMBOL(__kmalloc_track_caller);
3726 
3727 /**
3728  * kmem_cache_free - Deallocate an object
3729  * @cachep: The cache the allocation was from.
3730  * @objp: The previously allocated object.
3731  *
3732  * Free an object which was previously allocated from this
3733  * cache.
3734  */
3735 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3736 {
3737 	unsigned long flags;
3738 	cachep = cache_from_obj(cachep, objp);
3739 	if (!cachep)
3740 		return;
3741 
3742 	local_irq_save(flags);
3743 	debug_check_no_locks_freed(objp, cachep->object_size);
3744 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3745 		debug_check_no_obj_freed(objp, cachep->object_size);
3746 	__cache_free(cachep, objp, _RET_IP_);
3747 	local_irq_restore(flags);
3748 
3749 	trace_kmem_cache_free(_RET_IP_, objp);
3750 }
3751 EXPORT_SYMBOL(kmem_cache_free);
3752 
3753 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3754 {
3755 	struct kmem_cache *s;
3756 	size_t i;
3757 
3758 	local_irq_disable();
3759 	for (i = 0; i < size; i++) {
3760 		void *objp = p[i];
3761 
3762 		if (!orig_s) /* called via kfree_bulk */
3763 			s = virt_to_cache(objp);
3764 		else
3765 			s = cache_from_obj(orig_s, objp);
3766 
3767 		debug_check_no_locks_freed(objp, s->object_size);
3768 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3769 			debug_check_no_obj_freed(objp, s->object_size);
3770 
3771 		__cache_free(s, objp, _RET_IP_);
3772 	}
3773 	local_irq_enable();
3774 
3775 	/* FIXME: add tracing */
3776 }
3777 EXPORT_SYMBOL(kmem_cache_free_bulk);
3778 
3779 /**
3780  * kfree - free previously allocated memory
3781  * @objp: pointer returned by kmalloc.
3782  *
3783  * If @objp is NULL, no operation is performed.
3784  *
3785  * Don't free memory not originally allocated by kmalloc()
3786  * or you will run into trouble.
3787  */
3788 void kfree(const void *objp)
3789 {
3790 	struct kmem_cache *c;
3791 	unsigned long flags;
3792 
3793 	trace_kfree(_RET_IP_, objp);
3794 
3795 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3796 		return;
3797 	local_irq_save(flags);
3798 	kfree_debugcheck(objp);
3799 	c = virt_to_cache(objp);
3800 	debug_check_no_locks_freed(objp, c->object_size);
3801 
3802 	debug_check_no_obj_freed(objp, c->object_size);
3803 	__cache_free(c, (void *)objp, _RET_IP_);
3804 	local_irq_restore(flags);
3805 }
3806 EXPORT_SYMBOL(kfree);
3807 
3808 /*
3809  * This initializes kmem_cache_node or resizes various caches for all nodes.
3810  */
3811 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3812 {
3813 	int ret;
3814 	int node;
3815 	struct kmem_cache_node *n;
3816 
3817 	for_each_online_node(node) {
3818 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3819 		if (ret)
3820 			goto fail;
3821 
3822 	}
3823 
3824 	return 0;
3825 
3826 fail:
3827 	if (!cachep->list.next) {
3828 		/* Cache is not active yet. Roll back what we did */
3829 		node--;
3830 		while (node >= 0) {
3831 			n = get_node(cachep, node);
3832 			if (n) {
3833 				kfree(n->shared);
3834 				free_alien_cache(n->alien);
3835 				kfree(n);
3836 				cachep->node[node] = NULL;
3837 			}
3838 			node--;
3839 		}
3840 	}
3841 	return -ENOMEM;
3842 }
3843 
3844 /* Always called with the slab_mutex held */
3845 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3846 				int batchcount, int shared, gfp_t gfp)
3847 {
3848 	struct array_cache __percpu *cpu_cache, *prev;
3849 	int cpu;
3850 
3851 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3852 	if (!cpu_cache)
3853 		return -ENOMEM;
3854 
3855 	prev = cachep->cpu_cache;
3856 	cachep->cpu_cache = cpu_cache;
3857 	/*
3858 	 * Without a previous cpu_cache there's no need to synchronize remote
3859 	 * cpus, so skip the IPIs.
3860 	 */
3861 	if (prev)
3862 		kick_all_cpus_sync();
3863 
3864 	check_irq_on();
3865 	cachep->batchcount = batchcount;
3866 	cachep->limit = limit;
3867 	cachep->shared = shared;
3868 
3869 	if (!prev)
3870 		goto setup_node;
3871 
3872 	for_each_online_cpu(cpu) {
3873 		LIST_HEAD(list);
3874 		int node;
3875 		struct kmem_cache_node *n;
3876 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3877 
3878 		node = cpu_to_mem(cpu);
3879 		n = get_node(cachep, node);
3880 		spin_lock_irq(&n->list_lock);
3881 		free_block(cachep, ac->entry, ac->avail, node, &list);
3882 		spin_unlock_irq(&n->list_lock);
3883 		slabs_destroy(cachep, &list);
3884 	}
3885 	free_percpu(prev);
3886 
3887 setup_node:
3888 	return setup_kmem_cache_nodes(cachep, gfp);
3889 }
3890 
3891 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3892 				int batchcount, int shared, gfp_t gfp)
3893 {
3894 	int ret;
3895 	struct kmem_cache *c;
3896 
3897 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3898 
3899 	if (slab_state < FULL)
3900 		return ret;
3901 
3902 	if ((ret < 0) || !is_root_cache(cachep))
3903 		return ret;
3904 
3905 	lockdep_assert_held(&slab_mutex);
3906 	for_each_memcg_cache(c, cachep) {
3907 		/* return value determined by the root cache only */
3908 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3909 	}
3910 
3911 	return ret;
3912 }
3913 
3914 /* Called with slab_mutex held always */
3915 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3916 {
3917 	int err;
3918 	int limit = 0;
3919 	int shared = 0;
3920 	int batchcount = 0;
3921 
3922 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3923 	if (err)
3924 		goto end;
3925 
3926 	if (!is_root_cache(cachep)) {
3927 		struct kmem_cache *root = memcg_root_cache(cachep);
3928 		limit = root->limit;
3929 		shared = root->shared;
3930 		batchcount = root->batchcount;
3931 	}
3932 
3933 	if (limit && shared && batchcount)
3934 		goto skip_setup;
3935 	/*
3936 	 * The head array serves three purposes:
3937 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3938 	 * - reduce the number of spinlock operations.
3939 	 * - reduce the number of linked list operations on the slab and
3940 	 *   bufctl chains: array operations are cheaper.
3941 	 * The numbers are guessed, we should auto-tune as described by
3942 	 * Bonwick.
3943 	 */
3944 	if (cachep->size > 131072)
3945 		limit = 1;
3946 	else if (cachep->size > PAGE_SIZE)
3947 		limit = 8;
3948 	else if (cachep->size > 1024)
3949 		limit = 24;
3950 	else if (cachep->size > 256)
3951 		limit = 54;
3952 	else
3953 		limit = 120;
3954 
3955 	/*
3956 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3957 	 * allocation behaviour: Most allocs on one cpu, most free operations
3958 	 * on another cpu. For these cases, an efficient object passing between
3959 	 * cpus is necessary. This is provided by a shared array. The array
3960 	 * replaces Bonwick's magazine layer.
3961 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3962 	 * to a larger limit. Thus disabled by default.
3963 	 */
3964 	shared = 0;
3965 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3966 		shared = 8;
3967 
3968 #if DEBUG
3969 	/*
3970 	 * With debugging enabled, large batchcount lead to excessively long
3971 	 * periods with disabled local interrupts. Limit the batchcount
3972 	 */
3973 	if (limit > 32)
3974 		limit = 32;
3975 #endif
3976 	batchcount = (limit + 1) / 2;
3977 skip_setup:
3978 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3979 end:
3980 	if (err)
3981 		pr_err("enable_cpucache failed for %s, error %d\n",
3982 		       cachep->name, -err);
3983 	return err;
3984 }
3985 
3986 /*
3987  * Drain an array if it contains any elements taking the node lock only if
3988  * necessary. Note that the node listlock also protects the array_cache
3989  * if drain_array() is used on the shared array.
3990  */
3991 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3992 			 struct array_cache *ac, int node)
3993 {
3994 	LIST_HEAD(list);
3995 
3996 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3997 	check_mutex_acquired();
3998 
3999 	if (!ac || !ac->avail)
4000 		return;
4001 
4002 	if (ac->touched) {
4003 		ac->touched = 0;
4004 		return;
4005 	}
4006 
4007 	spin_lock_irq(&n->list_lock);
4008 	drain_array_locked(cachep, ac, node, false, &list);
4009 	spin_unlock_irq(&n->list_lock);
4010 
4011 	slabs_destroy(cachep, &list);
4012 }
4013 
4014 /**
4015  * cache_reap - Reclaim memory from caches.
4016  * @w: work descriptor
4017  *
4018  * Called from workqueue/eventd every few seconds.
4019  * Purpose:
4020  * - clear the per-cpu caches for this CPU.
4021  * - return freeable pages to the main free memory pool.
4022  *
4023  * If we cannot acquire the cache chain mutex then just give up - we'll try
4024  * again on the next iteration.
4025  */
4026 static void cache_reap(struct work_struct *w)
4027 {
4028 	struct kmem_cache *searchp;
4029 	struct kmem_cache_node *n;
4030 	int node = numa_mem_id();
4031 	struct delayed_work *work = to_delayed_work(w);
4032 
4033 	if (!mutex_trylock(&slab_mutex))
4034 		/* Give up. Setup the next iteration. */
4035 		goto out;
4036 
4037 	list_for_each_entry(searchp, &slab_caches, list) {
4038 		check_irq_on();
4039 
4040 		/*
4041 		 * We only take the node lock if absolutely necessary and we
4042 		 * have established with reasonable certainty that
4043 		 * we can do some work if the lock was obtained.
4044 		 */
4045 		n = get_node(searchp, node);
4046 
4047 		reap_alien(searchp, n);
4048 
4049 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4050 
4051 		/*
4052 		 * These are racy checks but it does not matter
4053 		 * if we skip one check or scan twice.
4054 		 */
4055 		if (time_after(n->next_reap, jiffies))
4056 			goto next;
4057 
4058 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4059 
4060 		drain_array(searchp, n, n->shared, node);
4061 
4062 		if (n->free_touched)
4063 			n->free_touched = 0;
4064 		else {
4065 			int freed;
4066 
4067 			freed = drain_freelist(searchp, n, (n->free_limit +
4068 				5 * searchp->num - 1) / (5 * searchp->num));
4069 			STATS_ADD_REAPED(searchp, freed);
4070 		}
4071 next:
4072 		cond_resched();
4073 	}
4074 	check_irq_on();
4075 	mutex_unlock(&slab_mutex);
4076 	next_reap_node();
4077 out:
4078 	/* Set up the next iteration */
4079 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4080 }
4081 
4082 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4083 {
4084 	unsigned long active_objs, num_objs, active_slabs;
4085 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4086 	unsigned long free_slabs = 0;
4087 	int node;
4088 	struct kmem_cache_node *n;
4089 
4090 	for_each_kmem_cache_node(cachep, node, n) {
4091 		check_irq_on();
4092 		spin_lock_irq(&n->list_lock);
4093 
4094 		total_slabs += n->total_slabs;
4095 		free_slabs += n->free_slabs;
4096 		free_objs += n->free_objects;
4097 
4098 		if (n->shared)
4099 			shared_avail += n->shared->avail;
4100 
4101 		spin_unlock_irq(&n->list_lock);
4102 	}
4103 	num_objs = total_slabs * cachep->num;
4104 	active_slabs = total_slabs - free_slabs;
4105 	active_objs = num_objs - free_objs;
4106 
4107 	sinfo->active_objs = active_objs;
4108 	sinfo->num_objs = num_objs;
4109 	sinfo->active_slabs = active_slabs;
4110 	sinfo->num_slabs = total_slabs;
4111 	sinfo->shared_avail = shared_avail;
4112 	sinfo->limit = cachep->limit;
4113 	sinfo->batchcount = cachep->batchcount;
4114 	sinfo->shared = cachep->shared;
4115 	sinfo->objects_per_slab = cachep->num;
4116 	sinfo->cache_order = cachep->gfporder;
4117 }
4118 
4119 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4120 {
4121 #if STATS
4122 	{			/* node stats */
4123 		unsigned long high = cachep->high_mark;
4124 		unsigned long allocs = cachep->num_allocations;
4125 		unsigned long grown = cachep->grown;
4126 		unsigned long reaped = cachep->reaped;
4127 		unsigned long errors = cachep->errors;
4128 		unsigned long max_freeable = cachep->max_freeable;
4129 		unsigned long node_allocs = cachep->node_allocs;
4130 		unsigned long node_frees = cachep->node_frees;
4131 		unsigned long overflows = cachep->node_overflow;
4132 
4133 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4134 			   allocs, high, grown,
4135 			   reaped, errors, max_freeable, node_allocs,
4136 			   node_frees, overflows);
4137 	}
4138 	/* cpu stats */
4139 	{
4140 		unsigned long allochit = atomic_read(&cachep->allochit);
4141 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4142 		unsigned long freehit = atomic_read(&cachep->freehit);
4143 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4144 
4145 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4146 			   allochit, allocmiss, freehit, freemiss);
4147 	}
4148 #endif
4149 }
4150 
4151 #define MAX_SLABINFO_WRITE 128
4152 /**
4153  * slabinfo_write - Tuning for the slab allocator
4154  * @file: unused
4155  * @buffer: user buffer
4156  * @count: data length
4157  * @ppos: unused
4158  */
4159 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4160 		       size_t count, loff_t *ppos)
4161 {
4162 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4163 	int limit, batchcount, shared, res;
4164 	struct kmem_cache *cachep;
4165 
4166 	if (count > MAX_SLABINFO_WRITE)
4167 		return -EINVAL;
4168 	if (copy_from_user(&kbuf, buffer, count))
4169 		return -EFAULT;
4170 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4171 
4172 	tmp = strchr(kbuf, ' ');
4173 	if (!tmp)
4174 		return -EINVAL;
4175 	*tmp = '\0';
4176 	tmp++;
4177 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4178 		return -EINVAL;
4179 
4180 	/* Find the cache in the chain of caches. */
4181 	mutex_lock(&slab_mutex);
4182 	res = -EINVAL;
4183 	list_for_each_entry(cachep, &slab_caches, list) {
4184 		if (!strcmp(cachep->name, kbuf)) {
4185 			if (limit < 1 || batchcount < 1 ||
4186 					batchcount > limit || shared < 0) {
4187 				res = 0;
4188 			} else {
4189 				res = do_tune_cpucache(cachep, limit,
4190 						       batchcount, shared,
4191 						       GFP_KERNEL);
4192 			}
4193 			break;
4194 		}
4195 	}
4196 	mutex_unlock(&slab_mutex);
4197 	if (res >= 0)
4198 		res = count;
4199 	return res;
4200 }
4201 
4202 #ifdef CONFIG_DEBUG_SLAB_LEAK
4203 
4204 static inline int add_caller(unsigned long *n, unsigned long v)
4205 {
4206 	unsigned long *p;
4207 	int l;
4208 	if (!v)
4209 		return 1;
4210 	l = n[1];
4211 	p = n + 2;
4212 	while (l) {
4213 		int i = l/2;
4214 		unsigned long *q = p + 2 * i;
4215 		if (*q == v) {
4216 			q[1]++;
4217 			return 1;
4218 		}
4219 		if (*q > v) {
4220 			l = i;
4221 		} else {
4222 			p = q + 2;
4223 			l -= i + 1;
4224 		}
4225 	}
4226 	if (++n[1] == n[0])
4227 		return 0;
4228 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4229 	p[0] = v;
4230 	p[1] = 1;
4231 	return 1;
4232 }
4233 
4234 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4235 						struct page *page)
4236 {
4237 	void *p;
4238 	int i, j;
4239 	unsigned long v;
4240 
4241 	if (n[0] == n[1])
4242 		return;
4243 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4244 		bool active = true;
4245 
4246 		for (j = page->active; j < c->num; j++) {
4247 			if (get_free_obj(page, j) == i) {
4248 				active = false;
4249 				break;
4250 			}
4251 		}
4252 
4253 		if (!active)
4254 			continue;
4255 
4256 		/*
4257 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4258 		 * mapping is established when actual object allocation and
4259 		 * we could mistakenly access the unmapped object in the cpu
4260 		 * cache.
4261 		 */
4262 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4263 			continue;
4264 
4265 		if (!add_caller(n, v))
4266 			return;
4267 	}
4268 }
4269 
4270 static void show_symbol(struct seq_file *m, unsigned long address)
4271 {
4272 #ifdef CONFIG_KALLSYMS
4273 	unsigned long offset, size;
4274 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4275 
4276 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4277 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4278 		if (modname[0])
4279 			seq_printf(m, " [%s]", modname);
4280 		return;
4281 	}
4282 #endif
4283 	seq_printf(m, "%px", (void *)address);
4284 }
4285 
4286 static int leaks_show(struct seq_file *m, void *p)
4287 {
4288 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4289 	struct page *page;
4290 	struct kmem_cache_node *n;
4291 	const char *name;
4292 	unsigned long *x = m->private;
4293 	int node;
4294 	int i;
4295 
4296 	if (!(cachep->flags & SLAB_STORE_USER))
4297 		return 0;
4298 	if (!(cachep->flags & SLAB_RED_ZONE))
4299 		return 0;
4300 
4301 	/*
4302 	 * Set store_user_clean and start to grab stored user information
4303 	 * for all objects on this cache. If some alloc/free requests comes
4304 	 * during the processing, information would be wrong so restart
4305 	 * whole processing.
4306 	 */
4307 	do {
4308 		set_store_user_clean(cachep);
4309 		drain_cpu_caches(cachep);
4310 
4311 		x[1] = 0;
4312 
4313 		for_each_kmem_cache_node(cachep, node, n) {
4314 
4315 			check_irq_on();
4316 			spin_lock_irq(&n->list_lock);
4317 
4318 			list_for_each_entry(page, &n->slabs_full, lru)
4319 				handle_slab(x, cachep, page);
4320 			list_for_each_entry(page, &n->slabs_partial, lru)
4321 				handle_slab(x, cachep, page);
4322 			spin_unlock_irq(&n->list_lock);
4323 		}
4324 	} while (!is_store_user_clean(cachep));
4325 
4326 	name = cachep->name;
4327 	if (x[0] == x[1]) {
4328 		/* Increase the buffer size */
4329 		mutex_unlock(&slab_mutex);
4330 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4331 		if (!m->private) {
4332 			/* Too bad, we are really out */
4333 			m->private = x;
4334 			mutex_lock(&slab_mutex);
4335 			return -ENOMEM;
4336 		}
4337 		*(unsigned long *)m->private = x[0] * 2;
4338 		kfree(x);
4339 		mutex_lock(&slab_mutex);
4340 		/* Now make sure this entry will be retried */
4341 		m->count = m->size;
4342 		return 0;
4343 	}
4344 	for (i = 0; i < x[1]; i++) {
4345 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4346 		show_symbol(m, x[2*i+2]);
4347 		seq_putc(m, '\n');
4348 	}
4349 
4350 	return 0;
4351 }
4352 
4353 static const struct seq_operations slabstats_op = {
4354 	.start = slab_start,
4355 	.next = slab_next,
4356 	.stop = slab_stop,
4357 	.show = leaks_show,
4358 };
4359 
4360 static int slabstats_open(struct inode *inode, struct file *file)
4361 {
4362 	unsigned long *n;
4363 
4364 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4365 	if (!n)
4366 		return -ENOMEM;
4367 
4368 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4369 
4370 	return 0;
4371 }
4372 
4373 static const struct file_operations proc_slabstats_operations = {
4374 	.open		= slabstats_open,
4375 	.read		= seq_read,
4376 	.llseek		= seq_lseek,
4377 	.release	= seq_release_private,
4378 };
4379 #endif
4380 
4381 static int __init slab_proc_init(void)
4382 {
4383 #ifdef CONFIG_DEBUG_SLAB_LEAK
4384 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4385 #endif
4386 	return 0;
4387 }
4388 module_init(slab_proc_init);
4389 
4390 #ifdef CONFIG_HARDENED_USERCOPY
4391 /*
4392  * Rejects objects that are incorrectly sized.
4393  *
4394  * Returns NULL if check passes, otherwise const char * to name of cache
4395  * to indicate an error.
4396  */
4397 const char *__check_heap_object(const void *ptr, unsigned long n,
4398 				struct page *page)
4399 {
4400 	struct kmem_cache *cachep;
4401 	unsigned int objnr;
4402 	unsigned long offset;
4403 
4404 	/* Find and validate object. */
4405 	cachep = page->slab_cache;
4406 	objnr = obj_to_index(cachep, page, (void *)ptr);
4407 	BUG_ON(objnr >= cachep->num);
4408 
4409 	/* Find offset within object. */
4410 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4411 
4412 	/* Allow address range falling entirely within object size. */
4413 	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4414 		return NULL;
4415 
4416 	return cachep->name;
4417 }
4418 #endif /* CONFIG_HARDENED_USERCOPY */
4419 
4420 /**
4421  * ksize - get the actual amount of memory allocated for a given object
4422  * @objp: Pointer to the object
4423  *
4424  * kmalloc may internally round up allocations and return more memory
4425  * than requested. ksize() can be used to determine the actual amount of
4426  * memory allocated. The caller may use this additional memory, even though
4427  * a smaller amount of memory was initially specified with the kmalloc call.
4428  * The caller must guarantee that objp points to a valid object previously
4429  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4430  * must not be freed during the duration of the call.
4431  */
4432 size_t ksize(const void *objp)
4433 {
4434 	size_t size;
4435 
4436 	BUG_ON(!objp);
4437 	if (unlikely(objp == ZERO_SIZE_PTR))
4438 		return 0;
4439 
4440 	size = virt_to_cache(objp)->object_size;
4441 	/* We assume that ksize callers could use the whole allocated area,
4442 	 * so we need to unpoison this area.
4443 	 */
4444 	kasan_unpoison_shadow(objp, size);
4445 
4446 	return size;
4447 }
4448 EXPORT_SYMBOL(ksize);
4449