1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/cpu.h> 104 #include <linux/sysctl.h> 105 #include <linux/module.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 #ifdef CONFIG_DEBUG_SLAB_LEAK 366 367 static inline bool is_store_user_clean(struct kmem_cache *cachep) 368 { 369 return atomic_read(&cachep->store_user_clean) == 1; 370 } 371 372 static inline void set_store_user_clean(struct kmem_cache *cachep) 373 { 374 atomic_set(&cachep->store_user_clean, 1); 375 } 376 377 static inline void set_store_user_dirty(struct kmem_cache *cachep) 378 { 379 if (is_store_user_clean(cachep)) 380 atomic_set(&cachep->store_user_clean, 0); 381 } 382 383 #else 384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 385 386 #endif 387 388 /* 389 * Do not go above this order unless 0 objects fit into the slab or 390 * overridden on the command line. 391 */ 392 #define SLAB_MAX_ORDER_HI 1 393 #define SLAB_MAX_ORDER_LO 0 394 static int slab_max_order = SLAB_MAX_ORDER_LO; 395 static bool slab_max_order_set __initdata; 396 397 static inline struct kmem_cache *virt_to_cache(const void *obj) 398 { 399 struct page *page = virt_to_head_page(obj); 400 return page->slab_cache; 401 } 402 403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 404 unsigned int idx) 405 { 406 return page->s_mem + cache->size * idx; 407 } 408 409 /* 410 * We want to avoid an expensive divide : (offset / cache->size) 411 * Using the fact that size is a constant for a particular cache, 412 * we can replace (offset / cache->size) by 413 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 414 */ 415 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 416 const struct page *page, void *obj) 417 { 418 u32 offset = (obj - page->s_mem); 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 420 } 421 422 #define BOOT_CPUCACHE_ENTRIES 1 423 /* internal cache of cache description objs */ 424 static struct kmem_cache kmem_cache_boot = { 425 .batchcount = 1, 426 .limit = BOOT_CPUCACHE_ENTRIES, 427 .shared = 1, 428 .size = sizeof(struct kmem_cache), 429 .name = "kmem_cache", 430 }; 431 432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 433 434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 435 { 436 return this_cpu_ptr(cachep->cpu_cache); 437 } 438 439 /* 440 * Calculate the number of objects and left-over bytes for a given buffer size. 441 */ 442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 443 slab_flags_t flags, size_t *left_over) 444 { 445 unsigned int num; 446 size_t slab_size = PAGE_SIZE << gfporder; 447 448 /* 449 * The slab management structure can be either off the slab or 450 * on it. For the latter case, the memory allocated for a 451 * slab is used for: 452 * 453 * - @buffer_size bytes for each object 454 * - One freelist_idx_t for each object 455 * 456 * We don't need to consider alignment of freelist because 457 * freelist will be at the end of slab page. The objects will be 458 * at the correct alignment. 459 * 460 * If the slab management structure is off the slab, then the 461 * alignment will already be calculated into the size. Because 462 * the slabs are all pages aligned, the objects will be at the 463 * correct alignment when allocated. 464 */ 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 466 num = slab_size / buffer_size; 467 *left_over = slab_size % buffer_size; 468 } else { 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 470 *left_over = slab_size % 471 (buffer_size + sizeof(freelist_idx_t)); 472 } 473 474 return num; 475 } 476 477 #if DEBUG 478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 479 480 static void __slab_error(const char *function, struct kmem_cache *cachep, 481 char *msg) 482 { 483 pr_err("slab error in %s(): cache `%s': %s\n", 484 function, cachep->name, msg); 485 dump_stack(); 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 487 } 488 #endif 489 490 /* 491 * By default on NUMA we use alien caches to stage the freeing of 492 * objects allocated from other nodes. This causes massive memory 493 * inefficiencies when using fake NUMA setup to split memory into a 494 * large number of small nodes, so it can be disabled on the command 495 * line 496 */ 497 498 static int use_alien_caches __read_mostly = 1; 499 static int __init noaliencache_setup(char *s) 500 { 501 use_alien_caches = 0; 502 return 1; 503 } 504 __setup("noaliencache", noaliencache_setup); 505 506 static int __init slab_max_order_setup(char *str) 507 { 508 get_option(&str, &slab_max_order); 509 slab_max_order = slab_max_order < 0 ? 0 : 510 min(slab_max_order, MAX_ORDER - 1); 511 slab_max_order_set = true; 512 513 return 1; 514 } 515 __setup("slab_max_order=", slab_max_order_setup); 516 517 #ifdef CONFIG_NUMA 518 /* 519 * Special reaping functions for NUMA systems called from cache_reap(). 520 * These take care of doing round robin flushing of alien caches (containing 521 * objects freed on different nodes from which they were allocated) and the 522 * flushing of remote pcps by calling drain_node_pages. 523 */ 524 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 525 526 static void init_reap_node(int cpu) 527 { 528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 529 node_online_map); 530 } 531 532 static void next_reap_node(void) 533 { 534 int node = __this_cpu_read(slab_reap_node); 535 536 node = next_node_in(node, node_online_map); 537 __this_cpu_write(slab_reap_node, node); 538 } 539 540 #else 541 #define init_reap_node(cpu) do { } while (0) 542 #define next_reap_node(void) do { } while (0) 543 #endif 544 545 /* 546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 547 * via the workqueue/eventd. 548 * Add the CPU number into the expiration time to minimize the possibility of 549 * the CPUs getting into lockstep and contending for the global cache chain 550 * lock. 551 */ 552 static void start_cpu_timer(int cpu) 553 { 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 555 556 if (reap_work->work.func == NULL) { 557 init_reap_node(cpu); 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 559 schedule_delayed_work_on(cpu, reap_work, 560 __round_jiffies_relative(HZ, cpu)); 561 } 562 } 563 564 static void init_arraycache(struct array_cache *ac, int limit, int batch) 565 { 566 /* 567 * The array_cache structures contain pointers to free object. 568 * However, when such objects are allocated or transferred to another 569 * cache the pointers are not cleared and they could be counted as 570 * valid references during a kmemleak scan. Therefore, kmemleak must 571 * not scan such objects. 572 */ 573 kmemleak_no_scan(ac); 574 if (ac) { 575 ac->avail = 0; 576 ac->limit = limit; 577 ac->batchcount = batch; 578 ac->touched = 0; 579 } 580 } 581 582 static struct array_cache *alloc_arraycache(int node, int entries, 583 int batchcount, gfp_t gfp) 584 { 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 586 struct array_cache *ac = NULL; 587 588 ac = kmalloc_node(memsize, gfp, node); 589 init_arraycache(ac, entries, batchcount); 590 return ac; 591 } 592 593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 594 struct page *page, void *objp) 595 { 596 struct kmem_cache_node *n; 597 int page_node; 598 LIST_HEAD(list); 599 600 page_node = page_to_nid(page); 601 n = get_node(cachep, page_node); 602 603 spin_lock(&n->list_lock); 604 free_block(cachep, &objp, 1, page_node, &list); 605 spin_unlock(&n->list_lock); 606 607 slabs_destroy(cachep, &list); 608 } 609 610 /* 611 * Transfer objects in one arraycache to another. 612 * Locking must be handled by the caller. 613 * 614 * Return the number of entries transferred. 615 */ 616 static int transfer_objects(struct array_cache *to, 617 struct array_cache *from, unsigned int max) 618 { 619 /* Figure out how many entries to transfer */ 620 int nr = min3(from->avail, max, to->limit - to->avail); 621 622 if (!nr) 623 return 0; 624 625 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 626 sizeof(void *) *nr); 627 628 from->avail -= nr; 629 to->avail += nr; 630 return nr; 631 } 632 633 #ifndef CONFIG_NUMA 634 635 #define drain_alien_cache(cachep, alien) do { } while (0) 636 #define reap_alien(cachep, n) do { } while (0) 637 638 static inline struct alien_cache **alloc_alien_cache(int node, 639 int limit, gfp_t gfp) 640 { 641 return NULL; 642 } 643 644 static inline void free_alien_cache(struct alien_cache **ac_ptr) 645 { 646 } 647 648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 649 { 650 return 0; 651 } 652 653 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 654 gfp_t flags) 655 { 656 return NULL; 657 } 658 659 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 660 gfp_t flags, int nodeid) 661 { 662 return NULL; 663 } 664 665 static inline gfp_t gfp_exact_node(gfp_t flags) 666 { 667 return flags & ~__GFP_NOFAIL; 668 } 669 670 #else /* CONFIG_NUMA */ 671 672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 674 675 static struct alien_cache *__alloc_alien_cache(int node, int entries, 676 int batch, gfp_t gfp) 677 { 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 679 struct alien_cache *alc = NULL; 680 681 alc = kmalloc_node(memsize, gfp, node); 682 init_arraycache(&alc->ac, entries, batch); 683 spin_lock_init(&alc->lock); 684 return alc; 685 } 686 687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 688 { 689 struct alien_cache **alc_ptr; 690 size_t memsize = sizeof(void *) * nr_node_ids; 691 int i; 692 693 if (limit > 1) 694 limit = 12; 695 alc_ptr = kzalloc_node(memsize, gfp, node); 696 if (!alc_ptr) 697 return NULL; 698 699 for_each_node(i) { 700 if (i == node || !node_online(i)) 701 continue; 702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 703 if (!alc_ptr[i]) { 704 for (i--; i >= 0; i--) 705 kfree(alc_ptr[i]); 706 kfree(alc_ptr); 707 return NULL; 708 } 709 } 710 return alc_ptr; 711 } 712 713 static void free_alien_cache(struct alien_cache **alc_ptr) 714 { 715 int i; 716 717 if (!alc_ptr) 718 return; 719 for_each_node(i) 720 kfree(alc_ptr[i]); 721 kfree(alc_ptr); 722 } 723 724 static void __drain_alien_cache(struct kmem_cache *cachep, 725 struct array_cache *ac, int node, 726 struct list_head *list) 727 { 728 struct kmem_cache_node *n = get_node(cachep, node); 729 730 if (ac->avail) { 731 spin_lock(&n->list_lock); 732 /* 733 * Stuff objects into the remote nodes shared array first. 734 * That way we could avoid the overhead of putting the objects 735 * into the free lists and getting them back later. 736 */ 737 if (n->shared) 738 transfer_objects(n->shared, ac, ac->limit); 739 740 free_block(cachep, ac->entry, ac->avail, node, list); 741 ac->avail = 0; 742 spin_unlock(&n->list_lock); 743 } 744 } 745 746 /* 747 * Called from cache_reap() to regularly drain alien caches round robin. 748 */ 749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 750 { 751 int node = __this_cpu_read(slab_reap_node); 752 753 if (n->alien) { 754 struct alien_cache *alc = n->alien[node]; 755 struct array_cache *ac; 756 757 if (alc) { 758 ac = &alc->ac; 759 if (ac->avail && spin_trylock_irq(&alc->lock)) { 760 LIST_HEAD(list); 761 762 __drain_alien_cache(cachep, ac, node, &list); 763 spin_unlock_irq(&alc->lock); 764 slabs_destroy(cachep, &list); 765 } 766 } 767 } 768 } 769 770 static void drain_alien_cache(struct kmem_cache *cachep, 771 struct alien_cache **alien) 772 { 773 int i = 0; 774 struct alien_cache *alc; 775 struct array_cache *ac; 776 unsigned long flags; 777 778 for_each_online_node(i) { 779 alc = alien[i]; 780 if (alc) { 781 LIST_HEAD(list); 782 783 ac = &alc->ac; 784 spin_lock_irqsave(&alc->lock, flags); 785 __drain_alien_cache(cachep, ac, i, &list); 786 spin_unlock_irqrestore(&alc->lock, flags); 787 slabs_destroy(cachep, &list); 788 } 789 } 790 } 791 792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 793 int node, int page_node) 794 { 795 struct kmem_cache_node *n; 796 struct alien_cache *alien = NULL; 797 struct array_cache *ac; 798 LIST_HEAD(list); 799 800 n = get_node(cachep, node); 801 STATS_INC_NODEFREES(cachep); 802 if (n->alien && n->alien[page_node]) { 803 alien = n->alien[page_node]; 804 ac = &alien->ac; 805 spin_lock(&alien->lock); 806 if (unlikely(ac->avail == ac->limit)) { 807 STATS_INC_ACOVERFLOW(cachep); 808 __drain_alien_cache(cachep, ac, page_node, &list); 809 } 810 ac->entry[ac->avail++] = objp; 811 spin_unlock(&alien->lock); 812 slabs_destroy(cachep, &list); 813 } else { 814 n = get_node(cachep, page_node); 815 spin_lock(&n->list_lock); 816 free_block(cachep, &objp, 1, page_node, &list); 817 spin_unlock(&n->list_lock); 818 slabs_destroy(cachep, &list); 819 } 820 return 1; 821 } 822 823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 824 { 825 int page_node = page_to_nid(virt_to_page(objp)); 826 int node = numa_mem_id(); 827 /* 828 * Make sure we are not freeing a object from another node to the array 829 * cache on this cpu. 830 */ 831 if (likely(node == page_node)) 832 return 0; 833 834 return __cache_free_alien(cachep, objp, node, page_node); 835 } 836 837 /* 838 * Construct gfp mask to allocate from a specific node but do not reclaim or 839 * warn about failures. 840 */ 841 static inline gfp_t gfp_exact_node(gfp_t flags) 842 { 843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 844 } 845 #endif 846 847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 848 { 849 struct kmem_cache_node *n; 850 851 /* 852 * Set up the kmem_cache_node for cpu before we can 853 * begin anything. Make sure some other cpu on this 854 * node has not already allocated this 855 */ 856 n = get_node(cachep, node); 857 if (n) { 858 spin_lock_irq(&n->list_lock); 859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 860 cachep->num; 861 spin_unlock_irq(&n->list_lock); 862 863 return 0; 864 } 865 866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 867 if (!n) 868 return -ENOMEM; 869 870 kmem_cache_node_init(n); 871 n->next_reap = jiffies + REAPTIMEOUT_NODE + 872 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 873 874 n->free_limit = 875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 876 877 /* 878 * The kmem_cache_nodes don't come and go as CPUs 879 * come and go. slab_mutex is sufficient 880 * protection here. 881 */ 882 cachep->node[node] = n; 883 884 return 0; 885 } 886 887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 888 /* 889 * Allocates and initializes node for a node on each slab cache, used for 890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 891 * will be allocated off-node since memory is not yet online for the new node. 892 * When hotplugging memory or a cpu, existing node are not replaced if 893 * already in use. 894 * 895 * Must hold slab_mutex. 896 */ 897 static int init_cache_node_node(int node) 898 { 899 int ret; 900 struct kmem_cache *cachep; 901 902 list_for_each_entry(cachep, &slab_caches, list) { 903 ret = init_cache_node(cachep, node, GFP_KERNEL); 904 if (ret) 905 return ret; 906 } 907 908 return 0; 909 } 910 #endif 911 912 static int setup_kmem_cache_node(struct kmem_cache *cachep, 913 int node, gfp_t gfp, bool force_change) 914 { 915 int ret = -ENOMEM; 916 struct kmem_cache_node *n; 917 struct array_cache *old_shared = NULL; 918 struct array_cache *new_shared = NULL; 919 struct alien_cache **new_alien = NULL; 920 LIST_HEAD(list); 921 922 if (use_alien_caches) { 923 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 924 if (!new_alien) 925 goto fail; 926 } 927 928 if (cachep->shared) { 929 new_shared = alloc_arraycache(node, 930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 931 if (!new_shared) 932 goto fail; 933 } 934 935 ret = init_cache_node(cachep, node, gfp); 936 if (ret) 937 goto fail; 938 939 n = get_node(cachep, node); 940 spin_lock_irq(&n->list_lock); 941 if (n->shared && force_change) { 942 free_block(cachep, n->shared->entry, 943 n->shared->avail, node, &list); 944 n->shared->avail = 0; 945 } 946 947 if (!n->shared || force_change) { 948 old_shared = n->shared; 949 n->shared = new_shared; 950 new_shared = NULL; 951 } 952 953 if (!n->alien) { 954 n->alien = new_alien; 955 new_alien = NULL; 956 } 957 958 spin_unlock_irq(&n->list_lock); 959 slabs_destroy(cachep, &list); 960 961 /* 962 * To protect lockless access to n->shared during irq disabled context. 963 * If n->shared isn't NULL in irq disabled context, accessing to it is 964 * guaranteed to be valid until irq is re-enabled, because it will be 965 * freed after synchronize_sched(). 966 */ 967 if (old_shared && force_change) 968 synchronize_sched(); 969 970 fail: 971 kfree(old_shared); 972 kfree(new_shared); 973 free_alien_cache(new_alien); 974 975 return ret; 976 } 977 978 #ifdef CONFIG_SMP 979 980 static void cpuup_canceled(long cpu) 981 { 982 struct kmem_cache *cachep; 983 struct kmem_cache_node *n = NULL; 984 int node = cpu_to_mem(cpu); 985 const struct cpumask *mask = cpumask_of_node(node); 986 987 list_for_each_entry(cachep, &slab_caches, list) { 988 struct array_cache *nc; 989 struct array_cache *shared; 990 struct alien_cache **alien; 991 LIST_HEAD(list); 992 993 n = get_node(cachep, node); 994 if (!n) 995 continue; 996 997 spin_lock_irq(&n->list_lock); 998 999 /* Free limit for this kmem_cache_node */ 1000 n->free_limit -= cachep->batchcount; 1001 1002 /* cpu is dead; no one can alloc from it. */ 1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 1004 if (nc) { 1005 free_block(cachep, nc->entry, nc->avail, node, &list); 1006 nc->avail = 0; 1007 } 1008 1009 if (!cpumask_empty(mask)) { 1010 spin_unlock_irq(&n->list_lock); 1011 goto free_slab; 1012 } 1013 1014 shared = n->shared; 1015 if (shared) { 1016 free_block(cachep, shared->entry, 1017 shared->avail, node, &list); 1018 n->shared = NULL; 1019 } 1020 1021 alien = n->alien; 1022 n->alien = NULL; 1023 1024 spin_unlock_irq(&n->list_lock); 1025 1026 kfree(shared); 1027 if (alien) { 1028 drain_alien_cache(cachep, alien); 1029 free_alien_cache(alien); 1030 } 1031 1032 free_slab: 1033 slabs_destroy(cachep, &list); 1034 } 1035 /* 1036 * In the previous loop, all the objects were freed to 1037 * the respective cache's slabs, now we can go ahead and 1038 * shrink each nodelist to its limit. 1039 */ 1040 list_for_each_entry(cachep, &slab_caches, list) { 1041 n = get_node(cachep, node); 1042 if (!n) 1043 continue; 1044 drain_freelist(cachep, n, INT_MAX); 1045 } 1046 } 1047 1048 static int cpuup_prepare(long cpu) 1049 { 1050 struct kmem_cache *cachep; 1051 int node = cpu_to_mem(cpu); 1052 int err; 1053 1054 /* 1055 * We need to do this right in the beginning since 1056 * alloc_arraycache's are going to use this list. 1057 * kmalloc_node allows us to add the slab to the right 1058 * kmem_cache_node and not this cpu's kmem_cache_node 1059 */ 1060 err = init_cache_node_node(node); 1061 if (err < 0) 1062 goto bad; 1063 1064 /* 1065 * Now we can go ahead with allocating the shared arrays and 1066 * array caches 1067 */ 1068 list_for_each_entry(cachep, &slab_caches, list) { 1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1070 if (err) 1071 goto bad; 1072 } 1073 1074 return 0; 1075 bad: 1076 cpuup_canceled(cpu); 1077 return -ENOMEM; 1078 } 1079 1080 int slab_prepare_cpu(unsigned int cpu) 1081 { 1082 int err; 1083 1084 mutex_lock(&slab_mutex); 1085 err = cpuup_prepare(cpu); 1086 mutex_unlock(&slab_mutex); 1087 return err; 1088 } 1089 1090 /* 1091 * This is called for a failed online attempt and for a successful 1092 * offline. 1093 * 1094 * Even if all the cpus of a node are down, we don't free the 1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1096 * a kmalloc allocation from another cpu for memory from the node of 1097 * the cpu going down. The list3 structure is usually allocated from 1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1099 */ 1100 int slab_dead_cpu(unsigned int cpu) 1101 { 1102 mutex_lock(&slab_mutex); 1103 cpuup_canceled(cpu); 1104 mutex_unlock(&slab_mutex); 1105 return 0; 1106 } 1107 #endif 1108 1109 static int slab_online_cpu(unsigned int cpu) 1110 { 1111 start_cpu_timer(cpu); 1112 return 0; 1113 } 1114 1115 static int slab_offline_cpu(unsigned int cpu) 1116 { 1117 /* 1118 * Shutdown cache reaper. Note that the slab_mutex is held so 1119 * that if cache_reap() is invoked it cannot do anything 1120 * expensive but will only modify reap_work and reschedule the 1121 * timer. 1122 */ 1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1124 /* Now the cache_reaper is guaranteed to be not running. */ 1125 per_cpu(slab_reap_work, cpu).work.func = NULL; 1126 return 0; 1127 } 1128 1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1130 /* 1131 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1132 * Returns -EBUSY if all objects cannot be drained so that the node is not 1133 * removed. 1134 * 1135 * Must hold slab_mutex. 1136 */ 1137 static int __meminit drain_cache_node_node(int node) 1138 { 1139 struct kmem_cache *cachep; 1140 int ret = 0; 1141 1142 list_for_each_entry(cachep, &slab_caches, list) { 1143 struct kmem_cache_node *n; 1144 1145 n = get_node(cachep, node); 1146 if (!n) 1147 continue; 1148 1149 drain_freelist(cachep, n, INT_MAX); 1150 1151 if (!list_empty(&n->slabs_full) || 1152 !list_empty(&n->slabs_partial)) { 1153 ret = -EBUSY; 1154 break; 1155 } 1156 } 1157 return ret; 1158 } 1159 1160 static int __meminit slab_memory_callback(struct notifier_block *self, 1161 unsigned long action, void *arg) 1162 { 1163 struct memory_notify *mnb = arg; 1164 int ret = 0; 1165 int nid; 1166 1167 nid = mnb->status_change_nid; 1168 if (nid < 0) 1169 goto out; 1170 1171 switch (action) { 1172 case MEM_GOING_ONLINE: 1173 mutex_lock(&slab_mutex); 1174 ret = init_cache_node_node(nid); 1175 mutex_unlock(&slab_mutex); 1176 break; 1177 case MEM_GOING_OFFLINE: 1178 mutex_lock(&slab_mutex); 1179 ret = drain_cache_node_node(nid); 1180 mutex_unlock(&slab_mutex); 1181 break; 1182 case MEM_ONLINE: 1183 case MEM_OFFLINE: 1184 case MEM_CANCEL_ONLINE: 1185 case MEM_CANCEL_OFFLINE: 1186 break; 1187 } 1188 out: 1189 return notifier_from_errno(ret); 1190 } 1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1192 1193 /* 1194 * swap the static kmem_cache_node with kmalloced memory 1195 */ 1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1197 int nodeid) 1198 { 1199 struct kmem_cache_node *ptr; 1200 1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1202 BUG_ON(!ptr); 1203 1204 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1205 /* 1206 * Do not assume that spinlocks can be initialized via memcpy: 1207 */ 1208 spin_lock_init(&ptr->list_lock); 1209 1210 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1211 cachep->node[nodeid] = ptr; 1212 } 1213 1214 /* 1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1216 * size of kmem_cache_node. 1217 */ 1218 static void __init set_up_node(struct kmem_cache *cachep, int index) 1219 { 1220 int node; 1221 1222 for_each_online_node(node) { 1223 cachep->node[node] = &init_kmem_cache_node[index + node]; 1224 cachep->node[node]->next_reap = jiffies + 1225 REAPTIMEOUT_NODE + 1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1227 } 1228 } 1229 1230 /* 1231 * Initialisation. Called after the page allocator have been initialised and 1232 * before smp_init(). 1233 */ 1234 void __init kmem_cache_init(void) 1235 { 1236 int i; 1237 1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1239 sizeof(struct rcu_head)); 1240 kmem_cache = &kmem_cache_boot; 1241 1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1243 use_alien_caches = 0; 1244 1245 for (i = 0; i < NUM_INIT_LISTS; i++) 1246 kmem_cache_node_init(&init_kmem_cache_node[i]); 1247 1248 /* 1249 * Fragmentation resistance on low memory - only use bigger 1250 * page orders on machines with more than 32MB of memory if 1251 * not overridden on the command line. 1252 */ 1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1254 slab_max_order = SLAB_MAX_ORDER_HI; 1255 1256 /* Bootstrap is tricky, because several objects are allocated 1257 * from caches that do not exist yet: 1258 * 1) initialize the kmem_cache cache: it contains the struct 1259 * kmem_cache structures of all caches, except kmem_cache itself: 1260 * kmem_cache is statically allocated. 1261 * Initially an __init data area is used for the head array and the 1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1263 * array at the end of the bootstrap. 1264 * 2) Create the first kmalloc cache. 1265 * The struct kmem_cache for the new cache is allocated normally. 1266 * An __init data area is used for the head array. 1267 * 3) Create the remaining kmalloc caches, with minimally sized 1268 * head arrays. 1269 * 4) Replace the __init data head arrays for kmem_cache and the first 1270 * kmalloc cache with kmalloc allocated arrays. 1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1272 * the other cache's with kmalloc allocated memory. 1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1274 */ 1275 1276 /* 1) create the kmem_cache */ 1277 1278 /* 1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1280 */ 1281 create_boot_cache(kmem_cache, "kmem_cache", 1282 offsetof(struct kmem_cache, node) + 1283 nr_node_ids * sizeof(struct kmem_cache_node *), 1284 SLAB_HWCACHE_ALIGN); 1285 list_add(&kmem_cache->list, &slab_caches); 1286 slab_state = PARTIAL; 1287 1288 /* 1289 * Initialize the caches that provide memory for the kmem_cache_node 1290 * structures first. Without this, further allocations will bug. 1291 */ 1292 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache( 1293 kmalloc_info[INDEX_NODE].name, 1294 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1295 slab_state = PARTIAL_NODE; 1296 setup_kmalloc_cache_index_table(); 1297 1298 slab_early_init = 0; 1299 1300 /* 5) Replace the bootstrap kmem_cache_node */ 1301 { 1302 int nid; 1303 1304 for_each_online_node(nid) { 1305 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1306 1307 init_list(kmalloc_caches[INDEX_NODE], 1308 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1309 } 1310 } 1311 1312 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1313 } 1314 1315 void __init kmem_cache_init_late(void) 1316 { 1317 struct kmem_cache *cachep; 1318 1319 slab_state = UP; 1320 1321 /* 6) resize the head arrays to their final sizes */ 1322 mutex_lock(&slab_mutex); 1323 list_for_each_entry(cachep, &slab_caches, list) 1324 if (enable_cpucache(cachep, GFP_NOWAIT)) 1325 BUG(); 1326 mutex_unlock(&slab_mutex); 1327 1328 /* Done! */ 1329 slab_state = FULL; 1330 1331 #ifdef CONFIG_NUMA 1332 /* 1333 * Register a memory hotplug callback that initializes and frees 1334 * node. 1335 */ 1336 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1337 #endif 1338 1339 /* 1340 * The reap timers are started later, with a module init call: That part 1341 * of the kernel is not yet operational. 1342 */ 1343 } 1344 1345 static int __init cpucache_init(void) 1346 { 1347 int ret; 1348 1349 /* 1350 * Register the timers that return unneeded pages to the page allocator 1351 */ 1352 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1353 slab_online_cpu, slab_offline_cpu); 1354 WARN_ON(ret < 0); 1355 1356 /* Done! */ 1357 slab_state = FULL; 1358 return 0; 1359 } 1360 __initcall(cpucache_init); 1361 1362 static noinline void 1363 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1364 { 1365 #if DEBUG 1366 struct kmem_cache_node *n; 1367 unsigned long flags; 1368 int node; 1369 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1370 DEFAULT_RATELIMIT_BURST); 1371 1372 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1373 return; 1374 1375 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1376 nodeid, gfpflags, &gfpflags); 1377 pr_warn(" cache: %s, object size: %d, order: %d\n", 1378 cachep->name, cachep->size, cachep->gfporder); 1379 1380 for_each_kmem_cache_node(cachep, node, n) { 1381 unsigned long total_slabs, free_slabs, free_objs; 1382 1383 spin_lock_irqsave(&n->list_lock, flags); 1384 total_slabs = n->total_slabs; 1385 free_slabs = n->free_slabs; 1386 free_objs = n->free_objects; 1387 spin_unlock_irqrestore(&n->list_lock, flags); 1388 1389 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1390 node, total_slabs - free_slabs, total_slabs, 1391 (total_slabs * cachep->num) - free_objs, 1392 total_slabs * cachep->num); 1393 } 1394 #endif 1395 } 1396 1397 /* 1398 * Interface to system's page allocator. No need to hold the 1399 * kmem_cache_node ->list_lock. 1400 * 1401 * If we requested dmaable memory, we will get it. Even if we 1402 * did not request dmaable memory, we might get it, but that 1403 * would be relatively rare and ignorable. 1404 */ 1405 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1406 int nodeid) 1407 { 1408 struct page *page; 1409 int nr_pages; 1410 1411 flags |= cachep->allocflags; 1412 1413 page = __alloc_pages_node(nodeid, flags, cachep->gfporder); 1414 if (!page) { 1415 slab_out_of_memory(cachep, flags, nodeid); 1416 return NULL; 1417 } 1418 1419 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1420 __free_pages(page, cachep->gfporder); 1421 return NULL; 1422 } 1423 1424 nr_pages = (1 << cachep->gfporder); 1425 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1426 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages); 1427 else 1428 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages); 1429 1430 __SetPageSlab(page); 1431 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1432 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1433 SetPageSlabPfmemalloc(page); 1434 1435 return page; 1436 } 1437 1438 /* 1439 * Interface to system's page release. 1440 */ 1441 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1442 { 1443 int order = cachep->gfporder; 1444 unsigned long nr_freed = (1 << order); 1445 1446 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1447 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed); 1448 else 1449 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed); 1450 1451 BUG_ON(!PageSlab(page)); 1452 __ClearPageSlabPfmemalloc(page); 1453 __ClearPageSlab(page); 1454 page_mapcount_reset(page); 1455 page->mapping = NULL; 1456 1457 if (current->reclaim_state) 1458 current->reclaim_state->reclaimed_slab += nr_freed; 1459 memcg_uncharge_slab(page, order, cachep); 1460 __free_pages(page, order); 1461 } 1462 1463 static void kmem_rcu_free(struct rcu_head *head) 1464 { 1465 struct kmem_cache *cachep; 1466 struct page *page; 1467 1468 page = container_of(head, struct page, rcu_head); 1469 cachep = page->slab_cache; 1470 1471 kmem_freepages(cachep, page); 1472 } 1473 1474 #if DEBUG 1475 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1476 { 1477 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1478 (cachep->size % PAGE_SIZE) == 0) 1479 return true; 1480 1481 return false; 1482 } 1483 1484 #ifdef CONFIG_DEBUG_PAGEALLOC 1485 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1486 unsigned long caller) 1487 { 1488 int size = cachep->object_size; 1489 1490 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1491 1492 if (size < 5 * sizeof(unsigned long)) 1493 return; 1494 1495 *addr++ = 0x12345678; 1496 *addr++ = caller; 1497 *addr++ = smp_processor_id(); 1498 size -= 3 * sizeof(unsigned long); 1499 { 1500 unsigned long *sptr = &caller; 1501 unsigned long svalue; 1502 1503 while (!kstack_end(sptr)) { 1504 svalue = *sptr++; 1505 if (kernel_text_address(svalue)) { 1506 *addr++ = svalue; 1507 size -= sizeof(unsigned long); 1508 if (size <= sizeof(unsigned long)) 1509 break; 1510 } 1511 } 1512 1513 } 1514 *addr++ = 0x87654321; 1515 } 1516 1517 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1518 int map, unsigned long caller) 1519 { 1520 if (!is_debug_pagealloc_cache(cachep)) 1521 return; 1522 1523 if (caller) 1524 store_stackinfo(cachep, objp, caller); 1525 1526 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1527 } 1528 1529 #else 1530 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1531 int map, unsigned long caller) {} 1532 1533 #endif 1534 1535 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1536 { 1537 int size = cachep->object_size; 1538 addr = &((char *)addr)[obj_offset(cachep)]; 1539 1540 memset(addr, val, size); 1541 *(unsigned char *)(addr + size - 1) = POISON_END; 1542 } 1543 1544 static void dump_line(char *data, int offset, int limit) 1545 { 1546 int i; 1547 unsigned char error = 0; 1548 int bad_count = 0; 1549 1550 pr_err("%03x: ", offset); 1551 for (i = 0; i < limit; i++) { 1552 if (data[offset + i] != POISON_FREE) { 1553 error = data[offset + i]; 1554 bad_count++; 1555 } 1556 } 1557 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1558 &data[offset], limit, 1); 1559 1560 if (bad_count == 1) { 1561 error ^= POISON_FREE; 1562 if (!(error & (error - 1))) { 1563 pr_err("Single bit error detected. Probably bad RAM.\n"); 1564 #ifdef CONFIG_X86 1565 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1566 #else 1567 pr_err("Run a memory test tool.\n"); 1568 #endif 1569 } 1570 } 1571 } 1572 #endif 1573 1574 #if DEBUG 1575 1576 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1577 { 1578 int i, size; 1579 char *realobj; 1580 1581 if (cachep->flags & SLAB_RED_ZONE) { 1582 pr_err("Redzone: 0x%llx/0x%llx\n", 1583 *dbg_redzone1(cachep, objp), 1584 *dbg_redzone2(cachep, objp)); 1585 } 1586 1587 if (cachep->flags & SLAB_STORE_USER) 1588 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1589 realobj = (char *)objp + obj_offset(cachep); 1590 size = cachep->object_size; 1591 for (i = 0; i < size && lines; i += 16, lines--) { 1592 int limit; 1593 limit = 16; 1594 if (i + limit > size) 1595 limit = size - i; 1596 dump_line(realobj, i, limit); 1597 } 1598 } 1599 1600 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1601 { 1602 char *realobj; 1603 int size, i; 1604 int lines = 0; 1605 1606 if (is_debug_pagealloc_cache(cachep)) 1607 return; 1608 1609 realobj = (char *)objp + obj_offset(cachep); 1610 size = cachep->object_size; 1611 1612 for (i = 0; i < size; i++) { 1613 char exp = POISON_FREE; 1614 if (i == size - 1) 1615 exp = POISON_END; 1616 if (realobj[i] != exp) { 1617 int limit; 1618 /* Mismatch ! */ 1619 /* Print header */ 1620 if (lines == 0) { 1621 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1622 print_tainted(), cachep->name, 1623 realobj, size); 1624 print_objinfo(cachep, objp, 0); 1625 } 1626 /* Hexdump the affected line */ 1627 i = (i / 16) * 16; 1628 limit = 16; 1629 if (i + limit > size) 1630 limit = size - i; 1631 dump_line(realobj, i, limit); 1632 i += 16; 1633 lines++; 1634 /* Limit to 5 lines */ 1635 if (lines > 5) 1636 break; 1637 } 1638 } 1639 if (lines != 0) { 1640 /* Print some data about the neighboring objects, if they 1641 * exist: 1642 */ 1643 struct page *page = virt_to_head_page(objp); 1644 unsigned int objnr; 1645 1646 objnr = obj_to_index(cachep, page, objp); 1647 if (objnr) { 1648 objp = index_to_obj(cachep, page, objnr - 1); 1649 realobj = (char *)objp + obj_offset(cachep); 1650 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1651 print_objinfo(cachep, objp, 2); 1652 } 1653 if (objnr + 1 < cachep->num) { 1654 objp = index_to_obj(cachep, page, objnr + 1); 1655 realobj = (char *)objp + obj_offset(cachep); 1656 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1657 print_objinfo(cachep, objp, 2); 1658 } 1659 } 1660 } 1661 #endif 1662 1663 #if DEBUG 1664 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1665 struct page *page) 1666 { 1667 int i; 1668 1669 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1670 poison_obj(cachep, page->freelist - obj_offset(cachep), 1671 POISON_FREE); 1672 } 1673 1674 for (i = 0; i < cachep->num; i++) { 1675 void *objp = index_to_obj(cachep, page, i); 1676 1677 if (cachep->flags & SLAB_POISON) { 1678 check_poison_obj(cachep, objp); 1679 slab_kernel_map(cachep, objp, 1, 0); 1680 } 1681 if (cachep->flags & SLAB_RED_ZONE) { 1682 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1683 slab_error(cachep, "start of a freed object was overwritten"); 1684 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1685 slab_error(cachep, "end of a freed object was overwritten"); 1686 } 1687 } 1688 } 1689 #else 1690 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1691 struct page *page) 1692 { 1693 } 1694 #endif 1695 1696 /** 1697 * slab_destroy - destroy and release all objects in a slab 1698 * @cachep: cache pointer being destroyed 1699 * @page: page pointer being destroyed 1700 * 1701 * Destroy all the objs in a slab page, and release the mem back to the system. 1702 * Before calling the slab page must have been unlinked from the cache. The 1703 * kmem_cache_node ->list_lock is not held/needed. 1704 */ 1705 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1706 { 1707 void *freelist; 1708 1709 freelist = page->freelist; 1710 slab_destroy_debugcheck(cachep, page); 1711 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1712 call_rcu(&page->rcu_head, kmem_rcu_free); 1713 else 1714 kmem_freepages(cachep, page); 1715 1716 /* 1717 * From now on, we don't use freelist 1718 * although actual page can be freed in rcu context 1719 */ 1720 if (OFF_SLAB(cachep)) 1721 kmem_cache_free(cachep->freelist_cache, freelist); 1722 } 1723 1724 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1725 { 1726 struct page *page, *n; 1727 1728 list_for_each_entry_safe(page, n, list, lru) { 1729 list_del(&page->lru); 1730 slab_destroy(cachep, page); 1731 } 1732 } 1733 1734 /** 1735 * calculate_slab_order - calculate size (page order) of slabs 1736 * @cachep: pointer to the cache that is being created 1737 * @size: size of objects to be created in this cache. 1738 * @flags: slab allocation flags 1739 * 1740 * Also calculates the number of objects per slab. 1741 * 1742 * This could be made much more intelligent. For now, try to avoid using 1743 * high order pages for slabs. When the gfp() functions are more friendly 1744 * towards high-order requests, this should be changed. 1745 */ 1746 static size_t calculate_slab_order(struct kmem_cache *cachep, 1747 size_t size, slab_flags_t flags) 1748 { 1749 size_t left_over = 0; 1750 int gfporder; 1751 1752 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1753 unsigned int num; 1754 size_t remainder; 1755 1756 num = cache_estimate(gfporder, size, flags, &remainder); 1757 if (!num) 1758 continue; 1759 1760 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1761 if (num > SLAB_OBJ_MAX_NUM) 1762 break; 1763 1764 if (flags & CFLGS_OFF_SLAB) { 1765 struct kmem_cache *freelist_cache; 1766 size_t freelist_size; 1767 1768 freelist_size = num * sizeof(freelist_idx_t); 1769 freelist_cache = kmalloc_slab(freelist_size, 0u); 1770 if (!freelist_cache) 1771 continue; 1772 1773 /* 1774 * Needed to avoid possible looping condition 1775 * in cache_grow_begin() 1776 */ 1777 if (OFF_SLAB(freelist_cache)) 1778 continue; 1779 1780 /* check if off slab has enough benefit */ 1781 if (freelist_cache->size > cachep->size / 2) 1782 continue; 1783 } 1784 1785 /* Found something acceptable - save it away */ 1786 cachep->num = num; 1787 cachep->gfporder = gfporder; 1788 left_over = remainder; 1789 1790 /* 1791 * A VFS-reclaimable slab tends to have most allocations 1792 * as GFP_NOFS and we really don't want to have to be allocating 1793 * higher-order pages when we are unable to shrink dcache. 1794 */ 1795 if (flags & SLAB_RECLAIM_ACCOUNT) 1796 break; 1797 1798 /* 1799 * Large number of objects is good, but very large slabs are 1800 * currently bad for the gfp()s. 1801 */ 1802 if (gfporder >= slab_max_order) 1803 break; 1804 1805 /* 1806 * Acceptable internal fragmentation? 1807 */ 1808 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1809 break; 1810 } 1811 return left_over; 1812 } 1813 1814 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1815 struct kmem_cache *cachep, int entries, int batchcount) 1816 { 1817 int cpu; 1818 size_t size; 1819 struct array_cache __percpu *cpu_cache; 1820 1821 size = sizeof(void *) * entries + sizeof(struct array_cache); 1822 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1823 1824 if (!cpu_cache) 1825 return NULL; 1826 1827 for_each_possible_cpu(cpu) { 1828 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1829 entries, batchcount); 1830 } 1831 1832 return cpu_cache; 1833 } 1834 1835 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1836 { 1837 if (slab_state >= FULL) 1838 return enable_cpucache(cachep, gfp); 1839 1840 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1841 if (!cachep->cpu_cache) 1842 return 1; 1843 1844 if (slab_state == DOWN) { 1845 /* Creation of first cache (kmem_cache). */ 1846 set_up_node(kmem_cache, CACHE_CACHE); 1847 } else if (slab_state == PARTIAL) { 1848 /* For kmem_cache_node */ 1849 set_up_node(cachep, SIZE_NODE); 1850 } else { 1851 int node; 1852 1853 for_each_online_node(node) { 1854 cachep->node[node] = kmalloc_node( 1855 sizeof(struct kmem_cache_node), gfp, node); 1856 BUG_ON(!cachep->node[node]); 1857 kmem_cache_node_init(cachep->node[node]); 1858 } 1859 } 1860 1861 cachep->node[numa_mem_id()]->next_reap = 1862 jiffies + REAPTIMEOUT_NODE + 1863 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1864 1865 cpu_cache_get(cachep)->avail = 0; 1866 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1867 cpu_cache_get(cachep)->batchcount = 1; 1868 cpu_cache_get(cachep)->touched = 0; 1869 cachep->batchcount = 1; 1870 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1871 return 0; 1872 } 1873 1874 slab_flags_t kmem_cache_flags(unsigned long object_size, 1875 slab_flags_t flags, const char *name, 1876 void (*ctor)(void *)) 1877 { 1878 return flags; 1879 } 1880 1881 struct kmem_cache * 1882 __kmem_cache_alias(const char *name, size_t size, size_t align, 1883 slab_flags_t flags, void (*ctor)(void *)) 1884 { 1885 struct kmem_cache *cachep; 1886 1887 cachep = find_mergeable(size, align, flags, name, ctor); 1888 if (cachep) { 1889 cachep->refcount++; 1890 1891 /* 1892 * Adjust the object sizes so that we clear 1893 * the complete object on kzalloc. 1894 */ 1895 cachep->object_size = max_t(int, cachep->object_size, size); 1896 } 1897 return cachep; 1898 } 1899 1900 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1901 size_t size, slab_flags_t flags) 1902 { 1903 size_t left; 1904 1905 cachep->num = 0; 1906 1907 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1908 return false; 1909 1910 left = calculate_slab_order(cachep, size, 1911 flags | CFLGS_OBJFREELIST_SLAB); 1912 if (!cachep->num) 1913 return false; 1914 1915 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1916 return false; 1917 1918 cachep->colour = left / cachep->colour_off; 1919 1920 return true; 1921 } 1922 1923 static bool set_off_slab_cache(struct kmem_cache *cachep, 1924 size_t size, slab_flags_t flags) 1925 { 1926 size_t left; 1927 1928 cachep->num = 0; 1929 1930 /* 1931 * Always use on-slab management when SLAB_NOLEAKTRACE 1932 * to avoid recursive calls into kmemleak. 1933 */ 1934 if (flags & SLAB_NOLEAKTRACE) 1935 return false; 1936 1937 /* 1938 * Size is large, assume best to place the slab management obj 1939 * off-slab (should allow better packing of objs). 1940 */ 1941 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1942 if (!cachep->num) 1943 return false; 1944 1945 /* 1946 * If the slab has been placed off-slab, and we have enough space then 1947 * move it on-slab. This is at the expense of any extra colouring. 1948 */ 1949 if (left >= cachep->num * sizeof(freelist_idx_t)) 1950 return false; 1951 1952 cachep->colour = left / cachep->colour_off; 1953 1954 return true; 1955 } 1956 1957 static bool set_on_slab_cache(struct kmem_cache *cachep, 1958 size_t size, slab_flags_t flags) 1959 { 1960 size_t left; 1961 1962 cachep->num = 0; 1963 1964 left = calculate_slab_order(cachep, size, flags); 1965 if (!cachep->num) 1966 return false; 1967 1968 cachep->colour = left / cachep->colour_off; 1969 1970 return true; 1971 } 1972 1973 /** 1974 * __kmem_cache_create - Create a cache. 1975 * @cachep: cache management descriptor 1976 * @flags: SLAB flags 1977 * 1978 * Returns a ptr to the cache on success, NULL on failure. 1979 * Cannot be called within a int, but can be interrupted. 1980 * The @ctor is run when new pages are allocated by the cache. 1981 * 1982 * The flags are 1983 * 1984 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1985 * to catch references to uninitialised memory. 1986 * 1987 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1988 * for buffer overruns. 1989 * 1990 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1991 * cacheline. This can be beneficial if you're counting cycles as closely 1992 * as davem. 1993 */ 1994 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1995 { 1996 size_t ralign = BYTES_PER_WORD; 1997 gfp_t gfp; 1998 int err; 1999 size_t size = cachep->size; 2000 2001 #if DEBUG 2002 #if FORCED_DEBUG 2003 /* 2004 * Enable redzoning and last user accounting, except for caches with 2005 * large objects, if the increased size would increase the object size 2006 * above the next power of two: caches with object sizes just above a 2007 * power of two have a significant amount of internal fragmentation. 2008 */ 2009 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2010 2 * sizeof(unsigned long long))) 2011 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2012 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 2013 flags |= SLAB_POISON; 2014 #endif 2015 #endif 2016 2017 /* 2018 * Check that size is in terms of words. This is needed to avoid 2019 * unaligned accesses for some archs when redzoning is used, and makes 2020 * sure any on-slab bufctl's are also correctly aligned. 2021 */ 2022 size = ALIGN(size, BYTES_PER_WORD); 2023 2024 if (flags & SLAB_RED_ZONE) { 2025 ralign = REDZONE_ALIGN; 2026 /* If redzoning, ensure that the second redzone is suitably 2027 * aligned, by adjusting the object size accordingly. */ 2028 size = ALIGN(size, REDZONE_ALIGN); 2029 } 2030 2031 /* 3) caller mandated alignment */ 2032 if (ralign < cachep->align) { 2033 ralign = cachep->align; 2034 } 2035 /* disable debug if necessary */ 2036 if (ralign > __alignof__(unsigned long long)) 2037 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2038 /* 2039 * 4) Store it. 2040 */ 2041 cachep->align = ralign; 2042 cachep->colour_off = cache_line_size(); 2043 /* Offset must be a multiple of the alignment. */ 2044 if (cachep->colour_off < cachep->align) 2045 cachep->colour_off = cachep->align; 2046 2047 if (slab_is_available()) 2048 gfp = GFP_KERNEL; 2049 else 2050 gfp = GFP_NOWAIT; 2051 2052 #if DEBUG 2053 2054 /* 2055 * Both debugging options require word-alignment which is calculated 2056 * into align above. 2057 */ 2058 if (flags & SLAB_RED_ZONE) { 2059 /* add space for red zone words */ 2060 cachep->obj_offset += sizeof(unsigned long long); 2061 size += 2 * sizeof(unsigned long long); 2062 } 2063 if (flags & SLAB_STORE_USER) { 2064 /* user store requires one word storage behind the end of 2065 * the real object. But if the second red zone needs to be 2066 * aligned to 64 bits, we must allow that much space. 2067 */ 2068 if (flags & SLAB_RED_ZONE) 2069 size += REDZONE_ALIGN; 2070 else 2071 size += BYTES_PER_WORD; 2072 } 2073 #endif 2074 2075 kasan_cache_create(cachep, &size, &flags); 2076 2077 size = ALIGN(size, cachep->align); 2078 /* 2079 * We should restrict the number of objects in a slab to implement 2080 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2081 */ 2082 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2083 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2084 2085 #if DEBUG 2086 /* 2087 * To activate debug pagealloc, off-slab management is necessary 2088 * requirement. In early phase of initialization, small sized slab 2089 * doesn't get initialized so it would not be possible. So, we need 2090 * to check size >= 256. It guarantees that all necessary small 2091 * sized slab is initialized in current slab initialization sequence. 2092 */ 2093 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2094 size >= 256 && cachep->object_size > cache_line_size()) { 2095 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2096 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2097 2098 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2099 flags |= CFLGS_OFF_SLAB; 2100 cachep->obj_offset += tmp_size - size; 2101 size = tmp_size; 2102 goto done; 2103 } 2104 } 2105 } 2106 #endif 2107 2108 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2109 flags |= CFLGS_OBJFREELIST_SLAB; 2110 goto done; 2111 } 2112 2113 if (set_off_slab_cache(cachep, size, flags)) { 2114 flags |= CFLGS_OFF_SLAB; 2115 goto done; 2116 } 2117 2118 if (set_on_slab_cache(cachep, size, flags)) 2119 goto done; 2120 2121 return -E2BIG; 2122 2123 done: 2124 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2125 cachep->flags = flags; 2126 cachep->allocflags = __GFP_COMP; 2127 if (flags & SLAB_CACHE_DMA) 2128 cachep->allocflags |= GFP_DMA; 2129 if (flags & SLAB_RECLAIM_ACCOUNT) 2130 cachep->allocflags |= __GFP_RECLAIMABLE; 2131 cachep->size = size; 2132 cachep->reciprocal_buffer_size = reciprocal_value(size); 2133 2134 #if DEBUG 2135 /* 2136 * If we're going to use the generic kernel_map_pages() 2137 * poisoning, then it's going to smash the contents of 2138 * the redzone and userword anyhow, so switch them off. 2139 */ 2140 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2141 (cachep->flags & SLAB_POISON) && 2142 is_debug_pagealloc_cache(cachep)) 2143 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2144 #endif 2145 2146 if (OFF_SLAB(cachep)) { 2147 cachep->freelist_cache = 2148 kmalloc_slab(cachep->freelist_size, 0u); 2149 } 2150 2151 err = setup_cpu_cache(cachep, gfp); 2152 if (err) { 2153 __kmem_cache_release(cachep); 2154 return err; 2155 } 2156 2157 return 0; 2158 } 2159 2160 #if DEBUG 2161 static void check_irq_off(void) 2162 { 2163 BUG_ON(!irqs_disabled()); 2164 } 2165 2166 static void check_irq_on(void) 2167 { 2168 BUG_ON(irqs_disabled()); 2169 } 2170 2171 static void check_mutex_acquired(void) 2172 { 2173 BUG_ON(!mutex_is_locked(&slab_mutex)); 2174 } 2175 2176 static void check_spinlock_acquired(struct kmem_cache *cachep) 2177 { 2178 #ifdef CONFIG_SMP 2179 check_irq_off(); 2180 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2181 #endif 2182 } 2183 2184 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2185 { 2186 #ifdef CONFIG_SMP 2187 check_irq_off(); 2188 assert_spin_locked(&get_node(cachep, node)->list_lock); 2189 #endif 2190 } 2191 2192 #else 2193 #define check_irq_off() do { } while(0) 2194 #define check_irq_on() do { } while(0) 2195 #define check_mutex_acquired() do { } while(0) 2196 #define check_spinlock_acquired(x) do { } while(0) 2197 #define check_spinlock_acquired_node(x, y) do { } while(0) 2198 #endif 2199 2200 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2201 int node, bool free_all, struct list_head *list) 2202 { 2203 int tofree; 2204 2205 if (!ac || !ac->avail) 2206 return; 2207 2208 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2209 if (tofree > ac->avail) 2210 tofree = (ac->avail + 1) / 2; 2211 2212 free_block(cachep, ac->entry, tofree, node, list); 2213 ac->avail -= tofree; 2214 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2215 } 2216 2217 static void do_drain(void *arg) 2218 { 2219 struct kmem_cache *cachep = arg; 2220 struct array_cache *ac; 2221 int node = numa_mem_id(); 2222 struct kmem_cache_node *n; 2223 LIST_HEAD(list); 2224 2225 check_irq_off(); 2226 ac = cpu_cache_get(cachep); 2227 n = get_node(cachep, node); 2228 spin_lock(&n->list_lock); 2229 free_block(cachep, ac->entry, ac->avail, node, &list); 2230 spin_unlock(&n->list_lock); 2231 slabs_destroy(cachep, &list); 2232 ac->avail = 0; 2233 } 2234 2235 static void drain_cpu_caches(struct kmem_cache *cachep) 2236 { 2237 struct kmem_cache_node *n; 2238 int node; 2239 LIST_HEAD(list); 2240 2241 on_each_cpu(do_drain, cachep, 1); 2242 check_irq_on(); 2243 for_each_kmem_cache_node(cachep, node, n) 2244 if (n->alien) 2245 drain_alien_cache(cachep, n->alien); 2246 2247 for_each_kmem_cache_node(cachep, node, n) { 2248 spin_lock_irq(&n->list_lock); 2249 drain_array_locked(cachep, n->shared, node, true, &list); 2250 spin_unlock_irq(&n->list_lock); 2251 2252 slabs_destroy(cachep, &list); 2253 } 2254 } 2255 2256 /* 2257 * Remove slabs from the list of free slabs. 2258 * Specify the number of slabs to drain in tofree. 2259 * 2260 * Returns the actual number of slabs released. 2261 */ 2262 static int drain_freelist(struct kmem_cache *cache, 2263 struct kmem_cache_node *n, int tofree) 2264 { 2265 struct list_head *p; 2266 int nr_freed; 2267 struct page *page; 2268 2269 nr_freed = 0; 2270 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2271 2272 spin_lock_irq(&n->list_lock); 2273 p = n->slabs_free.prev; 2274 if (p == &n->slabs_free) { 2275 spin_unlock_irq(&n->list_lock); 2276 goto out; 2277 } 2278 2279 page = list_entry(p, struct page, lru); 2280 list_del(&page->lru); 2281 n->free_slabs--; 2282 n->total_slabs--; 2283 /* 2284 * Safe to drop the lock. The slab is no longer linked 2285 * to the cache. 2286 */ 2287 n->free_objects -= cache->num; 2288 spin_unlock_irq(&n->list_lock); 2289 slab_destroy(cache, page); 2290 nr_freed++; 2291 } 2292 out: 2293 return nr_freed; 2294 } 2295 2296 int __kmem_cache_shrink(struct kmem_cache *cachep) 2297 { 2298 int ret = 0; 2299 int node; 2300 struct kmem_cache_node *n; 2301 2302 drain_cpu_caches(cachep); 2303 2304 check_irq_on(); 2305 for_each_kmem_cache_node(cachep, node, n) { 2306 drain_freelist(cachep, n, INT_MAX); 2307 2308 ret += !list_empty(&n->slabs_full) || 2309 !list_empty(&n->slabs_partial); 2310 } 2311 return (ret ? 1 : 0); 2312 } 2313 2314 #ifdef CONFIG_MEMCG 2315 void __kmemcg_cache_deactivate(struct kmem_cache *cachep) 2316 { 2317 __kmem_cache_shrink(cachep); 2318 } 2319 #endif 2320 2321 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2322 { 2323 return __kmem_cache_shrink(cachep); 2324 } 2325 2326 void __kmem_cache_release(struct kmem_cache *cachep) 2327 { 2328 int i; 2329 struct kmem_cache_node *n; 2330 2331 cache_random_seq_destroy(cachep); 2332 2333 free_percpu(cachep->cpu_cache); 2334 2335 /* NUMA: free the node structures */ 2336 for_each_kmem_cache_node(cachep, i, n) { 2337 kfree(n->shared); 2338 free_alien_cache(n->alien); 2339 kfree(n); 2340 cachep->node[i] = NULL; 2341 } 2342 } 2343 2344 /* 2345 * Get the memory for a slab management obj. 2346 * 2347 * For a slab cache when the slab descriptor is off-slab, the 2348 * slab descriptor can't come from the same cache which is being created, 2349 * Because if it is the case, that means we defer the creation of 2350 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2351 * And we eventually call down to __kmem_cache_create(), which 2352 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2353 * This is a "chicken-and-egg" problem. 2354 * 2355 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2356 * which are all initialized during kmem_cache_init(). 2357 */ 2358 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2359 struct page *page, int colour_off, 2360 gfp_t local_flags, int nodeid) 2361 { 2362 void *freelist; 2363 void *addr = page_address(page); 2364 2365 page->s_mem = addr + colour_off; 2366 page->active = 0; 2367 2368 if (OBJFREELIST_SLAB(cachep)) 2369 freelist = NULL; 2370 else if (OFF_SLAB(cachep)) { 2371 /* Slab management obj is off-slab. */ 2372 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2373 local_flags, nodeid); 2374 if (!freelist) 2375 return NULL; 2376 } else { 2377 /* We will use last bytes at the slab for freelist */ 2378 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2379 cachep->freelist_size; 2380 } 2381 2382 return freelist; 2383 } 2384 2385 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2386 { 2387 return ((freelist_idx_t *)page->freelist)[idx]; 2388 } 2389 2390 static inline void set_free_obj(struct page *page, 2391 unsigned int idx, freelist_idx_t val) 2392 { 2393 ((freelist_idx_t *)(page->freelist))[idx] = val; 2394 } 2395 2396 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2397 { 2398 #if DEBUG 2399 int i; 2400 2401 for (i = 0; i < cachep->num; i++) { 2402 void *objp = index_to_obj(cachep, page, i); 2403 2404 if (cachep->flags & SLAB_STORE_USER) 2405 *dbg_userword(cachep, objp) = NULL; 2406 2407 if (cachep->flags & SLAB_RED_ZONE) { 2408 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2409 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2410 } 2411 /* 2412 * Constructors are not allowed to allocate memory from the same 2413 * cache which they are a constructor for. Otherwise, deadlock. 2414 * They must also be threaded. 2415 */ 2416 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2417 kasan_unpoison_object_data(cachep, 2418 objp + obj_offset(cachep)); 2419 cachep->ctor(objp + obj_offset(cachep)); 2420 kasan_poison_object_data( 2421 cachep, objp + obj_offset(cachep)); 2422 } 2423 2424 if (cachep->flags & SLAB_RED_ZONE) { 2425 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2426 slab_error(cachep, "constructor overwrote the end of an object"); 2427 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2428 slab_error(cachep, "constructor overwrote the start of an object"); 2429 } 2430 /* need to poison the objs? */ 2431 if (cachep->flags & SLAB_POISON) { 2432 poison_obj(cachep, objp, POISON_FREE); 2433 slab_kernel_map(cachep, objp, 0, 0); 2434 } 2435 } 2436 #endif 2437 } 2438 2439 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2440 /* Hold information during a freelist initialization */ 2441 union freelist_init_state { 2442 struct { 2443 unsigned int pos; 2444 unsigned int *list; 2445 unsigned int count; 2446 }; 2447 struct rnd_state rnd_state; 2448 }; 2449 2450 /* 2451 * Initialize the state based on the randomization methode available. 2452 * return true if the pre-computed list is available, false otherwize. 2453 */ 2454 static bool freelist_state_initialize(union freelist_init_state *state, 2455 struct kmem_cache *cachep, 2456 unsigned int count) 2457 { 2458 bool ret; 2459 unsigned int rand; 2460 2461 /* Use best entropy available to define a random shift */ 2462 rand = get_random_int(); 2463 2464 /* Use a random state if the pre-computed list is not available */ 2465 if (!cachep->random_seq) { 2466 prandom_seed_state(&state->rnd_state, rand); 2467 ret = false; 2468 } else { 2469 state->list = cachep->random_seq; 2470 state->count = count; 2471 state->pos = rand % count; 2472 ret = true; 2473 } 2474 return ret; 2475 } 2476 2477 /* Get the next entry on the list and randomize it using a random shift */ 2478 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2479 { 2480 if (state->pos >= state->count) 2481 state->pos = 0; 2482 return state->list[state->pos++]; 2483 } 2484 2485 /* Swap two freelist entries */ 2486 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2487 { 2488 swap(((freelist_idx_t *)page->freelist)[a], 2489 ((freelist_idx_t *)page->freelist)[b]); 2490 } 2491 2492 /* 2493 * Shuffle the freelist initialization state based on pre-computed lists. 2494 * return true if the list was successfully shuffled, false otherwise. 2495 */ 2496 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2497 { 2498 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2499 union freelist_init_state state; 2500 bool precomputed; 2501 2502 if (count < 2) 2503 return false; 2504 2505 precomputed = freelist_state_initialize(&state, cachep, count); 2506 2507 /* Take a random entry as the objfreelist */ 2508 if (OBJFREELIST_SLAB(cachep)) { 2509 if (!precomputed) 2510 objfreelist = count - 1; 2511 else 2512 objfreelist = next_random_slot(&state); 2513 page->freelist = index_to_obj(cachep, page, objfreelist) + 2514 obj_offset(cachep); 2515 count--; 2516 } 2517 2518 /* 2519 * On early boot, generate the list dynamically. 2520 * Later use a pre-computed list for speed. 2521 */ 2522 if (!precomputed) { 2523 for (i = 0; i < count; i++) 2524 set_free_obj(page, i, i); 2525 2526 /* Fisher-Yates shuffle */ 2527 for (i = count - 1; i > 0; i--) { 2528 rand = prandom_u32_state(&state.rnd_state); 2529 rand %= (i + 1); 2530 swap_free_obj(page, i, rand); 2531 } 2532 } else { 2533 for (i = 0; i < count; i++) 2534 set_free_obj(page, i, next_random_slot(&state)); 2535 } 2536 2537 if (OBJFREELIST_SLAB(cachep)) 2538 set_free_obj(page, cachep->num - 1, objfreelist); 2539 2540 return true; 2541 } 2542 #else 2543 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2544 struct page *page) 2545 { 2546 return false; 2547 } 2548 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2549 2550 static void cache_init_objs(struct kmem_cache *cachep, 2551 struct page *page) 2552 { 2553 int i; 2554 void *objp; 2555 bool shuffled; 2556 2557 cache_init_objs_debug(cachep, page); 2558 2559 /* Try to randomize the freelist if enabled */ 2560 shuffled = shuffle_freelist(cachep, page); 2561 2562 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2563 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2564 obj_offset(cachep); 2565 } 2566 2567 for (i = 0; i < cachep->num; i++) { 2568 objp = index_to_obj(cachep, page, i); 2569 kasan_init_slab_obj(cachep, objp); 2570 2571 /* constructor could break poison info */ 2572 if (DEBUG == 0 && cachep->ctor) { 2573 kasan_unpoison_object_data(cachep, objp); 2574 cachep->ctor(objp); 2575 kasan_poison_object_data(cachep, objp); 2576 } 2577 2578 if (!shuffled) 2579 set_free_obj(page, i, i); 2580 } 2581 } 2582 2583 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2584 { 2585 void *objp; 2586 2587 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2588 page->active++; 2589 2590 #if DEBUG 2591 if (cachep->flags & SLAB_STORE_USER) 2592 set_store_user_dirty(cachep); 2593 #endif 2594 2595 return objp; 2596 } 2597 2598 static void slab_put_obj(struct kmem_cache *cachep, 2599 struct page *page, void *objp) 2600 { 2601 unsigned int objnr = obj_to_index(cachep, page, objp); 2602 #if DEBUG 2603 unsigned int i; 2604 2605 /* Verify double free bug */ 2606 for (i = page->active; i < cachep->num; i++) { 2607 if (get_free_obj(page, i) == objnr) { 2608 pr_err("slab: double free detected in cache '%s', objp %px\n", 2609 cachep->name, objp); 2610 BUG(); 2611 } 2612 } 2613 #endif 2614 page->active--; 2615 if (!page->freelist) 2616 page->freelist = objp + obj_offset(cachep); 2617 2618 set_free_obj(page, page->active, objnr); 2619 } 2620 2621 /* 2622 * Map pages beginning at addr to the given cache and slab. This is required 2623 * for the slab allocator to be able to lookup the cache and slab of a 2624 * virtual address for kfree, ksize, and slab debugging. 2625 */ 2626 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2627 void *freelist) 2628 { 2629 page->slab_cache = cache; 2630 page->freelist = freelist; 2631 } 2632 2633 /* 2634 * Grow (by 1) the number of slabs within a cache. This is called by 2635 * kmem_cache_alloc() when there are no active objs left in a cache. 2636 */ 2637 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2638 gfp_t flags, int nodeid) 2639 { 2640 void *freelist; 2641 size_t offset; 2642 gfp_t local_flags; 2643 int page_node; 2644 struct kmem_cache_node *n; 2645 struct page *page; 2646 2647 /* 2648 * Be lazy and only check for valid flags here, keeping it out of the 2649 * critical path in kmem_cache_alloc(). 2650 */ 2651 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2652 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2653 flags &= ~GFP_SLAB_BUG_MASK; 2654 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2655 invalid_mask, &invalid_mask, flags, &flags); 2656 dump_stack(); 2657 } 2658 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2659 2660 check_irq_off(); 2661 if (gfpflags_allow_blocking(local_flags)) 2662 local_irq_enable(); 2663 2664 /* 2665 * Get mem for the objs. Attempt to allocate a physical page from 2666 * 'nodeid'. 2667 */ 2668 page = kmem_getpages(cachep, local_flags, nodeid); 2669 if (!page) 2670 goto failed; 2671 2672 page_node = page_to_nid(page); 2673 n = get_node(cachep, page_node); 2674 2675 /* Get colour for the slab, and cal the next value. */ 2676 n->colour_next++; 2677 if (n->colour_next >= cachep->colour) 2678 n->colour_next = 0; 2679 2680 offset = n->colour_next; 2681 if (offset >= cachep->colour) 2682 offset = 0; 2683 2684 offset *= cachep->colour_off; 2685 2686 /* Get slab management. */ 2687 freelist = alloc_slabmgmt(cachep, page, offset, 2688 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2689 if (OFF_SLAB(cachep) && !freelist) 2690 goto opps1; 2691 2692 slab_map_pages(cachep, page, freelist); 2693 2694 kasan_poison_slab(page); 2695 cache_init_objs(cachep, page); 2696 2697 if (gfpflags_allow_blocking(local_flags)) 2698 local_irq_disable(); 2699 2700 return page; 2701 2702 opps1: 2703 kmem_freepages(cachep, page); 2704 failed: 2705 if (gfpflags_allow_blocking(local_flags)) 2706 local_irq_disable(); 2707 return NULL; 2708 } 2709 2710 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2711 { 2712 struct kmem_cache_node *n; 2713 void *list = NULL; 2714 2715 check_irq_off(); 2716 2717 if (!page) 2718 return; 2719 2720 INIT_LIST_HEAD(&page->lru); 2721 n = get_node(cachep, page_to_nid(page)); 2722 2723 spin_lock(&n->list_lock); 2724 n->total_slabs++; 2725 if (!page->active) { 2726 list_add_tail(&page->lru, &(n->slabs_free)); 2727 n->free_slabs++; 2728 } else 2729 fixup_slab_list(cachep, n, page, &list); 2730 2731 STATS_INC_GROWN(cachep); 2732 n->free_objects += cachep->num - page->active; 2733 spin_unlock(&n->list_lock); 2734 2735 fixup_objfreelist_debug(cachep, &list); 2736 } 2737 2738 #if DEBUG 2739 2740 /* 2741 * Perform extra freeing checks: 2742 * - detect bad pointers. 2743 * - POISON/RED_ZONE checking 2744 */ 2745 static void kfree_debugcheck(const void *objp) 2746 { 2747 if (!virt_addr_valid(objp)) { 2748 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2749 (unsigned long)objp); 2750 BUG(); 2751 } 2752 } 2753 2754 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2755 { 2756 unsigned long long redzone1, redzone2; 2757 2758 redzone1 = *dbg_redzone1(cache, obj); 2759 redzone2 = *dbg_redzone2(cache, obj); 2760 2761 /* 2762 * Redzone is ok. 2763 */ 2764 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2765 return; 2766 2767 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2768 slab_error(cache, "double free detected"); 2769 else 2770 slab_error(cache, "memory outside object was overwritten"); 2771 2772 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2773 obj, redzone1, redzone2); 2774 } 2775 2776 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2777 unsigned long caller) 2778 { 2779 unsigned int objnr; 2780 struct page *page; 2781 2782 BUG_ON(virt_to_cache(objp) != cachep); 2783 2784 objp -= obj_offset(cachep); 2785 kfree_debugcheck(objp); 2786 page = virt_to_head_page(objp); 2787 2788 if (cachep->flags & SLAB_RED_ZONE) { 2789 verify_redzone_free(cachep, objp); 2790 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2791 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2792 } 2793 if (cachep->flags & SLAB_STORE_USER) { 2794 set_store_user_dirty(cachep); 2795 *dbg_userword(cachep, objp) = (void *)caller; 2796 } 2797 2798 objnr = obj_to_index(cachep, page, objp); 2799 2800 BUG_ON(objnr >= cachep->num); 2801 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2802 2803 if (cachep->flags & SLAB_POISON) { 2804 poison_obj(cachep, objp, POISON_FREE); 2805 slab_kernel_map(cachep, objp, 0, caller); 2806 } 2807 return objp; 2808 } 2809 2810 #else 2811 #define kfree_debugcheck(x) do { } while(0) 2812 #define cache_free_debugcheck(x,objp,z) (objp) 2813 #endif 2814 2815 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2816 void **list) 2817 { 2818 #if DEBUG 2819 void *next = *list; 2820 void *objp; 2821 2822 while (next) { 2823 objp = next - obj_offset(cachep); 2824 next = *(void **)next; 2825 poison_obj(cachep, objp, POISON_FREE); 2826 } 2827 #endif 2828 } 2829 2830 static inline void fixup_slab_list(struct kmem_cache *cachep, 2831 struct kmem_cache_node *n, struct page *page, 2832 void **list) 2833 { 2834 /* move slabp to correct slabp list: */ 2835 list_del(&page->lru); 2836 if (page->active == cachep->num) { 2837 list_add(&page->lru, &n->slabs_full); 2838 if (OBJFREELIST_SLAB(cachep)) { 2839 #if DEBUG 2840 /* Poisoning will be done without holding the lock */ 2841 if (cachep->flags & SLAB_POISON) { 2842 void **objp = page->freelist; 2843 2844 *objp = *list; 2845 *list = objp; 2846 } 2847 #endif 2848 page->freelist = NULL; 2849 } 2850 } else 2851 list_add(&page->lru, &n->slabs_partial); 2852 } 2853 2854 /* Try to find non-pfmemalloc slab if needed */ 2855 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2856 struct page *page, bool pfmemalloc) 2857 { 2858 if (!page) 2859 return NULL; 2860 2861 if (pfmemalloc) 2862 return page; 2863 2864 if (!PageSlabPfmemalloc(page)) 2865 return page; 2866 2867 /* No need to keep pfmemalloc slab if we have enough free objects */ 2868 if (n->free_objects > n->free_limit) { 2869 ClearPageSlabPfmemalloc(page); 2870 return page; 2871 } 2872 2873 /* Move pfmemalloc slab to the end of list to speed up next search */ 2874 list_del(&page->lru); 2875 if (!page->active) { 2876 list_add_tail(&page->lru, &n->slabs_free); 2877 n->free_slabs++; 2878 } else 2879 list_add_tail(&page->lru, &n->slabs_partial); 2880 2881 list_for_each_entry(page, &n->slabs_partial, lru) { 2882 if (!PageSlabPfmemalloc(page)) 2883 return page; 2884 } 2885 2886 n->free_touched = 1; 2887 list_for_each_entry(page, &n->slabs_free, lru) { 2888 if (!PageSlabPfmemalloc(page)) { 2889 n->free_slabs--; 2890 return page; 2891 } 2892 } 2893 2894 return NULL; 2895 } 2896 2897 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2898 { 2899 struct page *page; 2900 2901 assert_spin_locked(&n->list_lock); 2902 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru); 2903 if (!page) { 2904 n->free_touched = 1; 2905 page = list_first_entry_or_null(&n->slabs_free, struct page, 2906 lru); 2907 if (page) 2908 n->free_slabs--; 2909 } 2910 2911 if (sk_memalloc_socks()) 2912 page = get_valid_first_slab(n, page, pfmemalloc); 2913 2914 return page; 2915 } 2916 2917 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2918 struct kmem_cache_node *n, gfp_t flags) 2919 { 2920 struct page *page; 2921 void *obj; 2922 void *list = NULL; 2923 2924 if (!gfp_pfmemalloc_allowed(flags)) 2925 return NULL; 2926 2927 spin_lock(&n->list_lock); 2928 page = get_first_slab(n, true); 2929 if (!page) { 2930 spin_unlock(&n->list_lock); 2931 return NULL; 2932 } 2933 2934 obj = slab_get_obj(cachep, page); 2935 n->free_objects--; 2936 2937 fixup_slab_list(cachep, n, page, &list); 2938 2939 spin_unlock(&n->list_lock); 2940 fixup_objfreelist_debug(cachep, &list); 2941 2942 return obj; 2943 } 2944 2945 /* 2946 * Slab list should be fixed up by fixup_slab_list() for existing slab 2947 * or cache_grow_end() for new slab 2948 */ 2949 static __always_inline int alloc_block(struct kmem_cache *cachep, 2950 struct array_cache *ac, struct page *page, int batchcount) 2951 { 2952 /* 2953 * There must be at least one object available for 2954 * allocation. 2955 */ 2956 BUG_ON(page->active >= cachep->num); 2957 2958 while (page->active < cachep->num && batchcount--) { 2959 STATS_INC_ALLOCED(cachep); 2960 STATS_INC_ACTIVE(cachep); 2961 STATS_SET_HIGH(cachep); 2962 2963 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2964 } 2965 2966 return batchcount; 2967 } 2968 2969 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2970 { 2971 int batchcount; 2972 struct kmem_cache_node *n; 2973 struct array_cache *ac, *shared; 2974 int node; 2975 void *list = NULL; 2976 struct page *page; 2977 2978 check_irq_off(); 2979 node = numa_mem_id(); 2980 2981 ac = cpu_cache_get(cachep); 2982 batchcount = ac->batchcount; 2983 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2984 /* 2985 * If there was little recent activity on this cache, then 2986 * perform only a partial refill. Otherwise we could generate 2987 * refill bouncing. 2988 */ 2989 batchcount = BATCHREFILL_LIMIT; 2990 } 2991 n = get_node(cachep, node); 2992 2993 BUG_ON(ac->avail > 0 || !n); 2994 shared = READ_ONCE(n->shared); 2995 if (!n->free_objects && (!shared || !shared->avail)) 2996 goto direct_grow; 2997 2998 spin_lock(&n->list_lock); 2999 shared = READ_ONCE(n->shared); 3000 3001 /* See if we can refill from the shared array */ 3002 if (shared && transfer_objects(ac, shared, batchcount)) { 3003 shared->touched = 1; 3004 goto alloc_done; 3005 } 3006 3007 while (batchcount > 0) { 3008 /* Get slab alloc is to come from. */ 3009 page = get_first_slab(n, false); 3010 if (!page) 3011 goto must_grow; 3012 3013 check_spinlock_acquired(cachep); 3014 3015 batchcount = alloc_block(cachep, ac, page, batchcount); 3016 fixup_slab_list(cachep, n, page, &list); 3017 } 3018 3019 must_grow: 3020 n->free_objects -= ac->avail; 3021 alloc_done: 3022 spin_unlock(&n->list_lock); 3023 fixup_objfreelist_debug(cachep, &list); 3024 3025 direct_grow: 3026 if (unlikely(!ac->avail)) { 3027 /* Check if we can use obj in pfmemalloc slab */ 3028 if (sk_memalloc_socks()) { 3029 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 3030 3031 if (obj) 3032 return obj; 3033 } 3034 3035 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 3036 3037 /* 3038 * cache_grow_begin() can reenable interrupts, 3039 * then ac could change. 3040 */ 3041 ac = cpu_cache_get(cachep); 3042 if (!ac->avail && page) 3043 alloc_block(cachep, ac, page, batchcount); 3044 cache_grow_end(cachep, page); 3045 3046 if (!ac->avail) 3047 return NULL; 3048 } 3049 ac->touched = 1; 3050 3051 return ac->entry[--ac->avail]; 3052 } 3053 3054 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3055 gfp_t flags) 3056 { 3057 might_sleep_if(gfpflags_allow_blocking(flags)); 3058 } 3059 3060 #if DEBUG 3061 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3062 gfp_t flags, void *objp, unsigned long caller) 3063 { 3064 if (!objp) 3065 return objp; 3066 if (cachep->flags & SLAB_POISON) { 3067 check_poison_obj(cachep, objp); 3068 slab_kernel_map(cachep, objp, 1, 0); 3069 poison_obj(cachep, objp, POISON_INUSE); 3070 } 3071 if (cachep->flags & SLAB_STORE_USER) 3072 *dbg_userword(cachep, objp) = (void *)caller; 3073 3074 if (cachep->flags & SLAB_RED_ZONE) { 3075 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3076 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3077 slab_error(cachep, "double free, or memory outside object was overwritten"); 3078 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 3079 objp, *dbg_redzone1(cachep, objp), 3080 *dbg_redzone2(cachep, objp)); 3081 } 3082 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3083 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3084 } 3085 3086 objp += obj_offset(cachep); 3087 if (cachep->ctor && cachep->flags & SLAB_POISON) 3088 cachep->ctor(objp); 3089 if (ARCH_SLAB_MINALIGN && 3090 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3091 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3092 objp, (int)ARCH_SLAB_MINALIGN); 3093 } 3094 return objp; 3095 } 3096 #else 3097 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3098 #endif 3099 3100 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3101 { 3102 void *objp; 3103 struct array_cache *ac; 3104 3105 check_irq_off(); 3106 3107 ac = cpu_cache_get(cachep); 3108 if (likely(ac->avail)) { 3109 ac->touched = 1; 3110 objp = ac->entry[--ac->avail]; 3111 3112 STATS_INC_ALLOCHIT(cachep); 3113 goto out; 3114 } 3115 3116 STATS_INC_ALLOCMISS(cachep); 3117 objp = cache_alloc_refill(cachep, flags); 3118 /* 3119 * the 'ac' may be updated by cache_alloc_refill(), 3120 * and kmemleak_erase() requires its correct value. 3121 */ 3122 ac = cpu_cache_get(cachep); 3123 3124 out: 3125 /* 3126 * To avoid a false negative, if an object that is in one of the 3127 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3128 * treat the array pointers as a reference to the object. 3129 */ 3130 if (objp) 3131 kmemleak_erase(&ac->entry[ac->avail]); 3132 return objp; 3133 } 3134 3135 #ifdef CONFIG_NUMA 3136 /* 3137 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3138 * 3139 * If we are in_interrupt, then process context, including cpusets and 3140 * mempolicy, may not apply and should not be used for allocation policy. 3141 */ 3142 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3143 { 3144 int nid_alloc, nid_here; 3145 3146 if (in_interrupt() || (flags & __GFP_THISNODE)) 3147 return NULL; 3148 nid_alloc = nid_here = numa_mem_id(); 3149 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3150 nid_alloc = cpuset_slab_spread_node(); 3151 else if (current->mempolicy) 3152 nid_alloc = mempolicy_slab_node(); 3153 if (nid_alloc != nid_here) 3154 return ____cache_alloc_node(cachep, flags, nid_alloc); 3155 return NULL; 3156 } 3157 3158 /* 3159 * Fallback function if there was no memory available and no objects on a 3160 * certain node and fall back is permitted. First we scan all the 3161 * available node for available objects. If that fails then we 3162 * perform an allocation without specifying a node. This allows the page 3163 * allocator to do its reclaim / fallback magic. We then insert the 3164 * slab into the proper nodelist and then allocate from it. 3165 */ 3166 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3167 { 3168 struct zonelist *zonelist; 3169 struct zoneref *z; 3170 struct zone *zone; 3171 enum zone_type high_zoneidx = gfp_zone(flags); 3172 void *obj = NULL; 3173 struct page *page; 3174 int nid; 3175 unsigned int cpuset_mems_cookie; 3176 3177 if (flags & __GFP_THISNODE) 3178 return NULL; 3179 3180 retry_cpuset: 3181 cpuset_mems_cookie = read_mems_allowed_begin(); 3182 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3183 3184 retry: 3185 /* 3186 * Look through allowed nodes for objects available 3187 * from existing per node queues. 3188 */ 3189 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3190 nid = zone_to_nid(zone); 3191 3192 if (cpuset_zone_allowed(zone, flags) && 3193 get_node(cache, nid) && 3194 get_node(cache, nid)->free_objects) { 3195 obj = ____cache_alloc_node(cache, 3196 gfp_exact_node(flags), nid); 3197 if (obj) 3198 break; 3199 } 3200 } 3201 3202 if (!obj) { 3203 /* 3204 * This allocation will be performed within the constraints 3205 * of the current cpuset / memory policy requirements. 3206 * We may trigger various forms of reclaim on the allowed 3207 * set and go into memory reserves if necessary. 3208 */ 3209 page = cache_grow_begin(cache, flags, numa_mem_id()); 3210 cache_grow_end(cache, page); 3211 if (page) { 3212 nid = page_to_nid(page); 3213 obj = ____cache_alloc_node(cache, 3214 gfp_exact_node(flags), nid); 3215 3216 /* 3217 * Another processor may allocate the objects in 3218 * the slab since we are not holding any locks. 3219 */ 3220 if (!obj) 3221 goto retry; 3222 } 3223 } 3224 3225 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3226 goto retry_cpuset; 3227 return obj; 3228 } 3229 3230 /* 3231 * A interface to enable slab creation on nodeid 3232 */ 3233 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3234 int nodeid) 3235 { 3236 struct page *page; 3237 struct kmem_cache_node *n; 3238 void *obj = NULL; 3239 void *list = NULL; 3240 3241 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3242 n = get_node(cachep, nodeid); 3243 BUG_ON(!n); 3244 3245 check_irq_off(); 3246 spin_lock(&n->list_lock); 3247 page = get_first_slab(n, false); 3248 if (!page) 3249 goto must_grow; 3250 3251 check_spinlock_acquired_node(cachep, nodeid); 3252 3253 STATS_INC_NODEALLOCS(cachep); 3254 STATS_INC_ACTIVE(cachep); 3255 STATS_SET_HIGH(cachep); 3256 3257 BUG_ON(page->active == cachep->num); 3258 3259 obj = slab_get_obj(cachep, page); 3260 n->free_objects--; 3261 3262 fixup_slab_list(cachep, n, page, &list); 3263 3264 spin_unlock(&n->list_lock); 3265 fixup_objfreelist_debug(cachep, &list); 3266 return obj; 3267 3268 must_grow: 3269 spin_unlock(&n->list_lock); 3270 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3271 if (page) { 3272 /* This slab isn't counted yet so don't update free_objects */ 3273 obj = slab_get_obj(cachep, page); 3274 } 3275 cache_grow_end(cachep, page); 3276 3277 return obj ? obj : fallback_alloc(cachep, flags); 3278 } 3279 3280 static __always_inline void * 3281 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3282 unsigned long caller) 3283 { 3284 unsigned long save_flags; 3285 void *ptr; 3286 int slab_node = numa_mem_id(); 3287 3288 flags &= gfp_allowed_mask; 3289 cachep = slab_pre_alloc_hook(cachep, flags); 3290 if (unlikely(!cachep)) 3291 return NULL; 3292 3293 cache_alloc_debugcheck_before(cachep, flags); 3294 local_irq_save(save_flags); 3295 3296 if (nodeid == NUMA_NO_NODE) 3297 nodeid = slab_node; 3298 3299 if (unlikely(!get_node(cachep, nodeid))) { 3300 /* Node not bootstrapped yet */ 3301 ptr = fallback_alloc(cachep, flags); 3302 goto out; 3303 } 3304 3305 if (nodeid == slab_node) { 3306 /* 3307 * Use the locally cached objects if possible. 3308 * However ____cache_alloc does not allow fallback 3309 * to other nodes. It may fail while we still have 3310 * objects on other nodes available. 3311 */ 3312 ptr = ____cache_alloc(cachep, flags); 3313 if (ptr) 3314 goto out; 3315 } 3316 /* ___cache_alloc_node can fall back to other nodes */ 3317 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3318 out: 3319 local_irq_restore(save_flags); 3320 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3321 3322 if (unlikely(flags & __GFP_ZERO) && ptr) 3323 memset(ptr, 0, cachep->object_size); 3324 3325 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3326 return ptr; 3327 } 3328 3329 static __always_inline void * 3330 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3331 { 3332 void *objp; 3333 3334 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3335 objp = alternate_node_alloc(cache, flags); 3336 if (objp) 3337 goto out; 3338 } 3339 objp = ____cache_alloc(cache, flags); 3340 3341 /* 3342 * We may just have run out of memory on the local node. 3343 * ____cache_alloc_node() knows how to locate memory on other nodes 3344 */ 3345 if (!objp) 3346 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3347 3348 out: 3349 return objp; 3350 } 3351 #else 3352 3353 static __always_inline void * 3354 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3355 { 3356 return ____cache_alloc(cachep, flags); 3357 } 3358 3359 #endif /* CONFIG_NUMA */ 3360 3361 static __always_inline void * 3362 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3363 { 3364 unsigned long save_flags; 3365 void *objp; 3366 3367 flags &= gfp_allowed_mask; 3368 cachep = slab_pre_alloc_hook(cachep, flags); 3369 if (unlikely(!cachep)) 3370 return NULL; 3371 3372 cache_alloc_debugcheck_before(cachep, flags); 3373 local_irq_save(save_flags); 3374 objp = __do_cache_alloc(cachep, flags); 3375 local_irq_restore(save_flags); 3376 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3377 prefetchw(objp); 3378 3379 if (unlikely(flags & __GFP_ZERO) && objp) 3380 memset(objp, 0, cachep->object_size); 3381 3382 slab_post_alloc_hook(cachep, flags, 1, &objp); 3383 return objp; 3384 } 3385 3386 /* 3387 * Caller needs to acquire correct kmem_cache_node's list_lock 3388 * @list: List of detached free slabs should be freed by caller 3389 */ 3390 static void free_block(struct kmem_cache *cachep, void **objpp, 3391 int nr_objects, int node, struct list_head *list) 3392 { 3393 int i; 3394 struct kmem_cache_node *n = get_node(cachep, node); 3395 struct page *page; 3396 3397 n->free_objects += nr_objects; 3398 3399 for (i = 0; i < nr_objects; i++) { 3400 void *objp; 3401 struct page *page; 3402 3403 objp = objpp[i]; 3404 3405 page = virt_to_head_page(objp); 3406 list_del(&page->lru); 3407 check_spinlock_acquired_node(cachep, node); 3408 slab_put_obj(cachep, page, objp); 3409 STATS_DEC_ACTIVE(cachep); 3410 3411 /* fixup slab chains */ 3412 if (page->active == 0) { 3413 list_add(&page->lru, &n->slabs_free); 3414 n->free_slabs++; 3415 } else { 3416 /* Unconditionally move a slab to the end of the 3417 * partial list on free - maximum time for the 3418 * other objects to be freed, too. 3419 */ 3420 list_add_tail(&page->lru, &n->slabs_partial); 3421 } 3422 } 3423 3424 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3425 n->free_objects -= cachep->num; 3426 3427 page = list_last_entry(&n->slabs_free, struct page, lru); 3428 list_move(&page->lru, list); 3429 n->free_slabs--; 3430 n->total_slabs--; 3431 } 3432 } 3433 3434 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3435 { 3436 int batchcount; 3437 struct kmem_cache_node *n; 3438 int node = numa_mem_id(); 3439 LIST_HEAD(list); 3440 3441 batchcount = ac->batchcount; 3442 3443 check_irq_off(); 3444 n = get_node(cachep, node); 3445 spin_lock(&n->list_lock); 3446 if (n->shared) { 3447 struct array_cache *shared_array = n->shared; 3448 int max = shared_array->limit - shared_array->avail; 3449 if (max) { 3450 if (batchcount > max) 3451 batchcount = max; 3452 memcpy(&(shared_array->entry[shared_array->avail]), 3453 ac->entry, sizeof(void *) * batchcount); 3454 shared_array->avail += batchcount; 3455 goto free_done; 3456 } 3457 } 3458 3459 free_block(cachep, ac->entry, batchcount, node, &list); 3460 free_done: 3461 #if STATS 3462 { 3463 int i = 0; 3464 struct page *page; 3465 3466 list_for_each_entry(page, &n->slabs_free, lru) { 3467 BUG_ON(page->active); 3468 3469 i++; 3470 } 3471 STATS_SET_FREEABLE(cachep, i); 3472 } 3473 #endif 3474 spin_unlock(&n->list_lock); 3475 slabs_destroy(cachep, &list); 3476 ac->avail -= batchcount; 3477 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3478 } 3479 3480 /* 3481 * Release an obj back to its cache. If the obj has a constructed state, it must 3482 * be in this state _before_ it is released. Called with disabled ints. 3483 */ 3484 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3485 unsigned long caller) 3486 { 3487 /* Put the object into the quarantine, don't touch it for now. */ 3488 if (kasan_slab_free(cachep, objp)) 3489 return; 3490 3491 ___cache_free(cachep, objp, caller); 3492 } 3493 3494 void ___cache_free(struct kmem_cache *cachep, void *objp, 3495 unsigned long caller) 3496 { 3497 struct array_cache *ac = cpu_cache_get(cachep); 3498 3499 check_irq_off(); 3500 kmemleak_free_recursive(objp, cachep->flags); 3501 objp = cache_free_debugcheck(cachep, objp, caller); 3502 3503 /* 3504 * Skip calling cache_free_alien() when the platform is not numa. 3505 * This will avoid cache misses that happen while accessing slabp (which 3506 * is per page memory reference) to get nodeid. Instead use a global 3507 * variable to skip the call, which is mostly likely to be present in 3508 * the cache. 3509 */ 3510 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3511 return; 3512 3513 if (ac->avail < ac->limit) { 3514 STATS_INC_FREEHIT(cachep); 3515 } else { 3516 STATS_INC_FREEMISS(cachep); 3517 cache_flusharray(cachep, ac); 3518 } 3519 3520 if (sk_memalloc_socks()) { 3521 struct page *page = virt_to_head_page(objp); 3522 3523 if (unlikely(PageSlabPfmemalloc(page))) { 3524 cache_free_pfmemalloc(cachep, page, objp); 3525 return; 3526 } 3527 } 3528 3529 ac->entry[ac->avail++] = objp; 3530 } 3531 3532 /** 3533 * kmem_cache_alloc - Allocate an object 3534 * @cachep: The cache to allocate from. 3535 * @flags: See kmalloc(). 3536 * 3537 * Allocate an object from this cache. The flags are only relevant 3538 * if the cache has no available objects. 3539 */ 3540 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3541 { 3542 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3543 3544 kasan_slab_alloc(cachep, ret, flags); 3545 trace_kmem_cache_alloc(_RET_IP_, ret, 3546 cachep->object_size, cachep->size, flags); 3547 3548 return ret; 3549 } 3550 EXPORT_SYMBOL(kmem_cache_alloc); 3551 3552 static __always_inline void 3553 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3554 size_t size, void **p, unsigned long caller) 3555 { 3556 size_t i; 3557 3558 for (i = 0; i < size; i++) 3559 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3560 } 3561 3562 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3563 void **p) 3564 { 3565 size_t i; 3566 3567 s = slab_pre_alloc_hook(s, flags); 3568 if (!s) 3569 return 0; 3570 3571 cache_alloc_debugcheck_before(s, flags); 3572 3573 local_irq_disable(); 3574 for (i = 0; i < size; i++) { 3575 void *objp = __do_cache_alloc(s, flags); 3576 3577 if (unlikely(!objp)) 3578 goto error; 3579 p[i] = objp; 3580 } 3581 local_irq_enable(); 3582 3583 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3584 3585 /* Clear memory outside IRQ disabled section */ 3586 if (unlikely(flags & __GFP_ZERO)) 3587 for (i = 0; i < size; i++) 3588 memset(p[i], 0, s->object_size); 3589 3590 slab_post_alloc_hook(s, flags, size, p); 3591 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3592 return size; 3593 error: 3594 local_irq_enable(); 3595 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3596 slab_post_alloc_hook(s, flags, i, p); 3597 __kmem_cache_free_bulk(s, i, p); 3598 return 0; 3599 } 3600 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3601 3602 #ifdef CONFIG_TRACING 3603 void * 3604 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3605 { 3606 void *ret; 3607 3608 ret = slab_alloc(cachep, flags, _RET_IP_); 3609 3610 kasan_kmalloc(cachep, ret, size, flags); 3611 trace_kmalloc(_RET_IP_, ret, 3612 size, cachep->size, flags); 3613 return ret; 3614 } 3615 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3616 #endif 3617 3618 #ifdef CONFIG_NUMA 3619 /** 3620 * kmem_cache_alloc_node - Allocate an object on the specified node 3621 * @cachep: The cache to allocate from. 3622 * @flags: See kmalloc(). 3623 * @nodeid: node number of the target node. 3624 * 3625 * Identical to kmem_cache_alloc but it will allocate memory on the given 3626 * node, which can improve the performance for cpu bound structures. 3627 * 3628 * Fallback to other node is possible if __GFP_THISNODE is not set. 3629 */ 3630 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3631 { 3632 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3633 3634 kasan_slab_alloc(cachep, ret, flags); 3635 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3636 cachep->object_size, cachep->size, 3637 flags, nodeid); 3638 3639 return ret; 3640 } 3641 EXPORT_SYMBOL(kmem_cache_alloc_node); 3642 3643 #ifdef CONFIG_TRACING 3644 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3645 gfp_t flags, 3646 int nodeid, 3647 size_t size) 3648 { 3649 void *ret; 3650 3651 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3652 3653 kasan_kmalloc(cachep, ret, size, flags); 3654 trace_kmalloc_node(_RET_IP_, ret, 3655 size, cachep->size, 3656 flags, nodeid); 3657 return ret; 3658 } 3659 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3660 #endif 3661 3662 static __always_inline void * 3663 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3664 { 3665 struct kmem_cache *cachep; 3666 void *ret; 3667 3668 cachep = kmalloc_slab(size, flags); 3669 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3670 return cachep; 3671 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3672 kasan_kmalloc(cachep, ret, size, flags); 3673 3674 return ret; 3675 } 3676 3677 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3678 { 3679 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3680 } 3681 EXPORT_SYMBOL(__kmalloc_node); 3682 3683 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3684 int node, unsigned long caller) 3685 { 3686 return __do_kmalloc_node(size, flags, node, caller); 3687 } 3688 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3689 #endif /* CONFIG_NUMA */ 3690 3691 /** 3692 * __do_kmalloc - allocate memory 3693 * @size: how many bytes of memory are required. 3694 * @flags: the type of memory to allocate (see kmalloc). 3695 * @caller: function caller for debug tracking of the caller 3696 */ 3697 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3698 unsigned long caller) 3699 { 3700 struct kmem_cache *cachep; 3701 void *ret; 3702 3703 cachep = kmalloc_slab(size, flags); 3704 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3705 return cachep; 3706 ret = slab_alloc(cachep, flags, caller); 3707 3708 kasan_kmalloc(cachep, ret, size, flags); 3709 trace_kmalloc(caller, ret, 3710 size, cachep->size, flags); 3711 3712 return ret; 3713 } 3714 3715 void *__kmalloc(size_t size, gfp_t flags) 3716 { 3717 return __do_kmalloc(size, flags, _RET_IP_); 3718 } 3719 EXPORT_SYMBOL(__kmalloc); 3720 3721 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3722 { 3723 return __do_kmalloc(size, flags, caller); 3724 } 3725 EXPORT_SYMBOL(__kmalloc_track_caller); 3726 3727 /** 3728 * kmem_cache_free - Deallocate an object 3729 * @cachep: The cache the allocation was from. 3730 * @objp: The previously allocated object. 3731 * 3732 * Free an object which was previously allocated from this 3733 * cache. 3734 */ 3735 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3736 { 3737 unsigned long flags; 3738 cachep = cache_from_obj(cachep, objp); 3739 if (!cachep) 3740 return; 3741 3742 local_irq_save(flags); 3743 debug_check_no_locks_freed(objp, cachep->object_size); 3744 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3745 debug_check_no_obj_freed(objp, cachep->object_size); 3746 __cache_free(cachep, objp, _RET_IP_); 3747 local_irq_restore(flags); 3748 3749 trace_kmem_cache_free(_RET_IP_, objp); 3750 } 3751 EXPORT_SYMBOL(kmem_cache_free); 3752 3753 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3754 { 3755 struct kmem_cache *s; 3756 size_t i; 3757 3758 local_irq_disable(); 3759 for (i = 0; i < size; i++) { 3760 void *objp = p[i]; 3761 3762 if (!orig_s) /* called via kfree_bulk */ 3763 s = virt_to_cache(objp); 3764 else 3765 s = cache_from_obj(orig_s, objp); 3766 3767 debug_check_no_locks_freed(objp, s->object_size); 3768 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3769 debug_check_no_obj_freed(objp, s->object_size); 3770 3771 __cache_free(s, objp, _RET_IP_); 3772 } 3773 local_irq_enable(); 3774 3775 /* FIXME: add tracing */ 3776 } 3777 EXPORT_SYMBOL(kmem_cache_free_bulk); 3778 3779 /** 3780 * kfree - free previously allocated memory 3781 * @objp: pointer returned by kmalloc. 3782 * 3783 * If @objp is NULL, no operation is performed. 3784 * 3785 * Don't free memory not originally allocated by kmalloc() 3786 * or you will run into trouble. 3787 */ 3788 void kfree(const void *objp) 3789 { 3790 struct kmem_cache *c; 3791 unsigned long flags; 3792 3793 trace_kfree(_RET_IP_, objp); 3794 3795 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3796 return; 3797 local_irq_save(flags); 3798 kfree_debugcheck(objp); 3799 c = virt_to_cache(objp); 3800 debug_check_no_locks_freed(objp, c->object_size); 3801 3802 debug_check_no_obj_freed(objp, c->object_size); 3803 __cache_free(c, (void *)objp, _RET_IP_); 3804 local_irq_restore(flags); 3805 } 3806 EXPORT_SYMBOL(kfree); 3807 3808 /* 3809 * This initializes kmem_cache_node or resizes various caches for all nodes. 3810 */ 3811 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3812 { 3813 int ret; 3814 int node; 3815 struct kmem_cache_node *n; 3816 3817 for_each_online_node(node) { 3818 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3819 if (ret) 3820 goto fail; 3821 3822 } 3823 3824 return 0; 3825 3826 fail: 3827 if (!cachep->list.next) { 3828 /* Cache is not active yet. Roll back what we did */ 3829 node--; 3830 while (node >= 0) { 3831 n = get_node(cachep, node); 3832 if (n) { 3833 kfree(n->shared); 3834 free_alien_cache(n->alien); 3835 kfree(n); 3836 cachep->node[node] = NULL; 3837 } 3838 node--; 3839 } 3840 } 3841 return -ENOMEM; 3842 } 3843 3844 /* Always called with the slab_mutex held */ 3845 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3846 int batchcount, int shared, gfp_t gfp) 3847 { 3848 struct array_cache __percpu *cpu_cache, *prev; 3849 int cpu; 3850 3851 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3852 if (!cpu_cache) 3853 return -ENOMEM; 3854 3855 prev = cachep->cpu_cache; 3856 cachep->cpu_cache = cpu_cache; 3857 /* 3858 * Without a previous cpu_cache there's no need to synchronize remote 3859 * cpus, so skip the IPIs. 3860 */ 3861 if (prev) 3862 kick_all_cpus_sync(); 3863 3864 check_irq_on(); 3865 cachep->batchcount = batchcount; 3866 cachep->limit = limit; 3867 cachep->shared = shared; 3868 3869 if (!prev) 3870 goto setup_node; 3871 3872 for_each_online_cpu(cpu) { 3873 LIST_HEAD(list); 3874 int node; 3875 struct kmem_cache_node *n; 3876 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3877 3878 node = cpu_to_mem(cpu); 3879 n = get_node(cachep, node); 3880 spin_lock_irq(&n->list_lock); 3881 free_block(cachep, ac->entry, ac->avail, node, &list); 3882 spin_unlock_irq(&n->list_lock); 3883 slabs_destroy(cachep, &list); 3884 } 3885 free_percpu(prev); 3886 3887 setup_node: 3888 return setup_kmem_cache_nodes(cachep, gfp); 3889 } 3890 3891 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3892 int batchcount, int shared, gfp_t gfp) 3893 { 3894 int ret; 3895 struct kmem_cache *c; 3896 3897 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3898 3899 if (slab_state < FULL) 3900 return ret; 3901 3902 if ((ret < 0) || !is_root_cache(cachep)) 3903 return ret; 3904 3905 lockdep_assert_held(&slab_mutex); 3906 for_each_memcg_cache(c, cachep) { 3907 /* return value determined by the root cache only */ 3908 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3909 } 3910 3911 return ret; 3912 } 3913 3914 /* Called with slab_mutex held always */ 3915 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3916 { 3917 int err; 3918 int limit = 0; 3919 int shared = 0; 3920 int batchcount = 0; 3921 3922 err = cache_random_seq_create(cachep, cachep->num, gfp); 3923 if (err) 3924 goto end; 3925 3926 if (!is_root_cache(cachep)) { 3927 struct kmem_cache *root = memcg_root_cache(cachep); 3928 limit = root->limit; 3929 shared = root->shared; 3930 batchcount = root->batchcount; 3931 } 3932 3933 if (limit && shared && batchcount) 3934 goto skip_setup; 3935 /* 3936 * The head array serves three purposes: 3937 * - create a LIFO ordering, i.e. return objects that are cache-warm 3938 * - reduce the number of spinlock operations. 3939 * - reduce the number of linked list operations on the slab and 3940 * bufctl chains: array operations are cheaper. 3941 * The numbers are guessed, we should auto-tune as described by 3942 * Bonwick. 3943 */ 3944 if (cachep->size > 131072) 3945 limit = 1; 3946 else if (cachep->size > PAGE_SIZE) 3947 limit = 8; 3948 else if (cachep->size > 1024) 3949 limit = 24; 3950 else if (cachep->size > 256) 3951 limit = 54; 3952 else 3953 limit = 120; 3954 3955 /* 3956 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3957 * allocation behaviour: Most allocs on one cpu, most free operations 3958 * on another cpu. For these cases, an efficient object passing between 3959 * cpus is necessary. This is provided by a shared array. The array 3960 * replaces Bonwick's magazine layer. 3961 * On uniprocessor, it's functionally equivalent (but less efficient) 3962 * to a larger limit. Thus disabled by default. 3963 */ 3964 shared = 0; 3965 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3966 shared = 8; 3967 3968 #if DEBUG 3969 /* 3970 * With debugging enabled, large batchcount lead to excessively long 3971 * periods with disabled local interrupts. Limit the batchcount 3972 */ 3973 if (limit > 32) 3974 limit = 32; 3975 #endif 3976 batchcount = (limit + 1) / 2; 3977 skip_setup: 3978 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3979 end: 3980 if (err) 3981 pr_err("enable_cpucache failed for %s, error %d\n", 3982 cachep->name, -err); 3983 return err; 3984 } 3985 3986 /* 3987 * Drain an array if it contains any elements taking the node lock only if 3988 * necessary. Note that the node listlock also protects the array_cache 3989 * if drain_array() is used on the shared array. 3990 */ 3991 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3992 struct array_cache *ac, int node) 3993 { 3994 LIST_HEAD(list); 3995 3996 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3997 check_mutex_acquired(); 3998 3999 if (!ac || !ac->avail) 4000 return; 4001 4002 if (ac->touched) { 4003 ac->touched = 0; 4004 return; 4005 } 4006 4007 spin_lock_irq(&n->list_lock); 4008 drain_array_locked(cachep, ac, node, false, &list); 4009 spin_unlock_irq(&n->list_lock); 4010 4011 slabs_destroy(cachep, &list); 4012 } 4013 4014 /** 4015 * cache_reap - Reclaim memory from caches. 4016 * @w: work descriptor 4017 * 4018 * Called from workqueue/eventd every few seconds. 4019 * Purpose: 4020 * - clear the per-cpu caches for this CPU. 4021 * - return freeable pages to the main free memory pool. 4022 * 4023 * If we cannot acquire the cache chain mutex then just give up - we'll try 4024 * again on the next iteration. 4025 */ 4026 static void cache_reap(struct work_struct *w) 4027 { 4028 struct kmem_cache *searchp; 4029 struct kmem_cache_node *n; 4030 int node = numa_mem_id(); 4031 struct delayed_work *work = to_delayed_work(w); 4032 4033 if (!mutex_trylock(&slab_mutex)) 4034 /* Give up. Setup the next iteration. */ 4035 goto out; 4036 4037 list_for_each_entry(searchp, &slab_caches, list) { 4038 check_irq_on(); 4039 4040 /* 4041 * We only take the node lock if absolutely necessary and we 4042 * have established with reasonable certainty that 4043 * we can do some work if the lock was obtained. 4044 */ 4045 n = get_node(searchp, node); 4046 4047 reap_alien(searchp, n); 4048 4049 drain_array(searchp, n, cpu_cache_get(searchp), node); 4050 4051 /* 4052 * These are racy checks but it does not matter 4053 * if we skip one check or scan twice. 4054 */ 4055 if (time_after(n->next_reap, jiffies)) 4056 goto next; 4057 4058 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4059 4060 drain_array(searchp, n, n->shared, node); 4061 4062 if (n->free_touched) 4063 n->free_touched = 0; 4064 else { 4065 int freed; 4066 4067 freed = drain_freelist(searchp, n, (n->free_limit + 4068 5 * searchp->num - 1) / (5 * searchp->num)); 4069 STATS_ADD_REAPED(searchp, freed); 4070 } 4071 next: 4072 cond_resched(); 4073 } 4074 check_irq_on(); 4075 mutex_unlock(&slab_mutex); 4076 next_reap_node(); 4077 out: 4078 /* Set up the next iteration */ 4079 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 4080 } 4081 4082 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4083 { 4084 unsigned long active_objs, num_objs, active_slabs; 4085 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4086 unsigned long free_slabs = 0; 4087 int node; 4088 struct kmem_cache_node *n; 4089 4090 for_each_kmem_cache_node(cachep, node, n) { 4091 check_irq_on(); 4092 spin_lock_irq(&n->list_lock); 4093 4094 total_slabs += n->total_slabs; 4095 free_slabs += n->free_slabs; 4096 free_objs += n->free_objects; 4097 4098 if (n->shared) 4099 shared_avail += n->shared->avail; 4100 4101 spin_unlock_irq(&n->list_lock); 4102 } 4103 num_objs = total_slabs * cachep->num; 4104 active_slabs = total_slabs - free_slabs; 4105 active_objs = num_objs - free_objs; 4106 4107 sinfo->active_objs = active_objs; 4108 sinfo->num_objs = num_objs; 4109 sinfo->active_slabs = active_slabs; 4110 sinfo->num_slabs = total_slabs; 4111 sinfo->shared_avail = shared_avail; 4112 sinfo->limit = cachep->limit; 4113 sinfo->batchcount = cachep->batchcount; 4114 sinfo->shared = cachep->shared; 4115 sinfo->objects_per_slab = cachep->num; 4116 sinfo->cache_order = cachep->gfporder; 4117 } 4118 4119 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4120 { 4121 #if STATS 4122 { /* node stats */ 4123 unsigned long high = cachep->high_mark; 4124 unsigned long allocs = cachep->num_allocations; 4125 unsigned long grown = cachep->grown; 4126 unsigned long reaped = cachep->reaped; 4127 unsigned long errors = cachep->errors; 4128 unsigned long max_freeable = cachep->max_freeable; 4129 unsigned long node_allocs = cachep->node_allocs; 4130 unsigned long node_frees = cachep->node_frees; 4131 unsigned long overflows = cachep->node_overflow; 4132 4133 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4134 allocs, high, grown, 4135 reaped, errors, max_freeable, node_allocs, 4136 node_frees, overflows); 4137 } 4138 /* cpu stats */ 4139 { 4140 unsigned long allochit = atomic_read(&cachep->allochit); 4141 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4142 unsigned long freehit = atomic_read(&cachep->freehit); 4143 unsigned long freemiss = atomic_read(&cachep->freemiss); 4144 4145 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4146 allochit, allocmiss, freehit, freemiss); 4147 } 4148 #endif 4149 } 4150 4151 #define MAX_SLABINFO_WRITE 128 4152 /** 4153 * slabinfo_write - Tuning for the slab allocator 4154 * @file: unused 4155 * @buffer: user buffer 4156 * @count: data length 4157 * @ppos: unused 4158 */ 4159 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4160 size_t count, loff_t *ppos) 4161 { 4162 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4163 int limit, batchcount, shared, res; 4164 struct kmem_cache *cachep; 4165 4166 if (count > MAX_SLABINFO_WRITE) 4167 return -EINVAL; 4168 if (copy_from_user(&kbuf, buffer, count)) 4169 return -EFAULT; 4170 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4171 4172 tmp = strchr(kbuf, ' '); 4173 if (!tmp) 4174 return -EINVAL; 4175 *tmp = '\0'; 4176 tmp++; 4177 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4178 return -EINVAL; 4179 4180 /* Find the cache in the chain of caches. */ 4181 mutex_lock(&slab_mutex); 4182 res = -EINVAL; 4183 list_for_each_entry(cachep, &slab_caches, list) { 4184 if (!strcmp(cachep->name, kbuf)) { 4185 if (limit < 1 || batchcount < 1 || 4186 batchcount > limit || shared < 0) { 4187 res = 0; 4188 } else { 4189 res = do_tune_cpucache(cachep, limit, 4190 batchcount, shared, 4191 GFP_KERNEL); 4192 } 4193 break; 4194 } 4195 } 4196 mutex_unlock(&slab_mutex); 4197 if (res >= 0) 4198 res = count; 4199 return res; 4200 } 4201 4202 #ifdef CONFIG_DEBUG_SLAB_LEAK 4203 4204 static inline int add_caller(unsigned long *n, unsigned long v) 4205 { 4206 unsigned long *p; 4207 int l; 4208 if (!v) 4209 return 1; 4210 l = n[1]; 4211 p = n + 2; 4212 while (l) { 4213 int i = l/2; 4214 unsigned long *q = p + 2 * i; 4215 if (*q == v) { 4216 q[1]++; 4217 return 1; 4218 } 4219 if (*q > v) { 4220 l = i; 4221 } else { 4222 p = q + 2; 4223 l -= i + 1; 4224 } 4225 } 4226 if (++n[1] == n[0]) 4227 return 0; 4228 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4229 p[0] = v; 4230 p[1] = 1; 4231 return 1; 4232 } 4233 4234 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4235 struct page *page) 4236 { 4237 void *p; 4238 int i, j; 4239 unsigned long v; 4240 4241 if (n[0] == n[1]) 4242 return; 4243 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4244 bool active = true; 4245 4246 for (j = page->active; j < c->num; j++) { 4247 if (get_free_obj(page, j) == i) { 4248 active = false; 4249 break; 4250 } 4251 } 4252 4253 if (!active) 4254 continue; 4255 4256 /* 4257 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4258 * mapping is established when actual object allocation and 4259 * we could mistakenly access the unmapped object in the cpu 4260 * cache. 4261 */ 4262 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4263 continue; 4264 4265 if (!add_caller(n, v)) 4266 return; 4267 } 4268 } 4269 4270 static void show_symbol(struct seq_file *m, unsigned long address) 4271 { 4272 #ifdef CONFIG_KALLSYMS 4273 unsigned long offset, size; 4274 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4275 4276 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4277 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4278 if (modname[0]) 4279 seq_printf(m, " [%s]", modname); 4280 return; 4281 } 4282 #endif 4283 seq_printf(m, "%px", (void *)address); 4284 } 4285 4286 static int leaks_show(struct seq_file *m, void *p) 4287 { 4288 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4289 struct page *page; 4290 struct kmem_cache_node *n; 4291 const char *name; 4292 unsigned long *x = m->private; 4293 int node; 4294 int i; 4295 4296 if (!(cachep->flags & SLAB_STORE_USER)) 4297 return 0; 4298 if (!(cachep->flags & SLAB_RED_ZONE)) 4299 return 0; 4300 4301 /* 4302 * Set store_user_clean and start to grab stored user information 4303 * for all objects on this cache. If some alloc/free requests comes 4304 * during the processing, information would be wrong so restart 4305 * whole processing. 4306 */ 4307 do { 4308 set_store_user_clean(cachep); 4309 drain_cpu_caches(cachep); 4310 4311 x[1] = 0; 4312 4313 for_each_kmem_cache_node(cachep, node, n) { 4314 4315 check_irq_on(); 4316 spin_lock_irq(&n->list_lock); 4317 4318 list_for_each_entry(page, &n->slabs_full, lru) 4319 handle_slab(x, cachep, page); 4320 list_for_each_entry(page, &n->slabs_partial, lru) 4321 handle_slab(x, cachep, page); 4322 spin_unlock_irq(&n->list_lock); 4323 } 4324 } while (!is_store_user_clean(cachep)); 4325 4326 name = cachep->name; 4327 if (x[0] == x[1]) { 4328 /* Increase the buffer size */ 4329 mutex_unlock(&slab_mutex); 4330 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4331 if (!m->private) { 4332 /* Too bad, we are really out */ 4333 m->private = x; 4334 mutex_lock(&slab_mutex); 4335 return -ENOMEM; 4336 } 4337 *(unsigned long *)m->private = x[0] * 2; 4338 kfree(x); 4339 mutex_lock(&slab_mutex); 4340 /* Now make sure this entry will be retried */ 4341 m->count = m->size; 4342 return 0; 4343 } 4344 for (i = 0; i < x[1]; i++) { 4345 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4346 show_symbol(m, x[2*i+2]); 4347 seq_putc(m, '\n'); 4348 } 4349 4350 return 0; 4351 } 4352 4353 static const struct seq_operations slabstats_op = { 4354 .start = slab_start, 4355 .next = slab_next, 4356 .stop = slab_stop, 4357 .show = leaks_show, 4358 }; 4359 4360 static int slabstats_open(struct inode *inode, struct file *file) 4361 { 4362 unsigned long *n; 4363 4364 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4365 if (!n) 4366 return -ENOMEM; 4367 4368 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4369 4370 return 0; 4371 } 4372 4373 static const struct file_operations proc_slabstats_operations = { 4374 .open = slabstats_open, 4375 .read = seq_read, 4376 .llseek = seq_lseek, 4377 .release = seq_release_private, 4378 }; 4379 #endif 4380 4381 static int __init slab_proc_init(void) 4382 { 4383 #ifdef CONFIG_DEBUG_SLAB_LEAK 4384 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4385 #endif 4386 return 0; 4387 } 4388 module_init(slab_proc_init); 4389 4390 #ifdef CONFIG_HARDENED_USERCOPY 4391 /* 4392 * Rejects objects that are incorrectly sized. 4393 * 4394 * Returns NULL if check passes, otherwise const char * to name of cache 4395 * to indicate an error. 4396 */ 4397 const char *__check_heap_object(const void *ptr, unsigned long n, 4398 struct page *page) 4399 { 4400 struct kmem_cache *cachep; 4401 unsigned int objnr; 4402 unsigned long offset; 4403 4404 /* Find and validate object. */ 4405 cachep = page->slab_cache; 4406 objnr = obj_to_index(cachep, page, (void *)ptr); 4407 BUG_ON(objnr >= cachep->num); 4408 4409 /* Find offset within object. */ 4410 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4411 4412 /* Allow address range falling entirely within object size. */ 4413 if (offset <= cachep->object_size && n <= cachep->object_size - offset) 4414 return NULL; 4415 4416 return cachep->name; 4417 } 4418 #endif /* CONFIG_HARDENED_USERCOPY */ 4419 4420 /** 4421 * ksize - get the actual amount of memory allocated for a given object 4422 * @objp: Pointer to the object 4423 * 4424 * kmalloc may internally round up allocations and return more memory 4425 * than requested. ksize() can be used to determine the actual amount of 4426 * memory allocated. The caller may use this additional memory, even though 4427 * a smaller amount of memory was initially specified with the kmalloc call. 4428 * The caller must guarantee that objp points to a valid object previously 4429 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4430 * must not be freed during the duration of the call. 4431 */ 4432 size_t ksize(const void *objp) 4433 { 4434 size_t size; 4435 4436 BUG_ON(!objp); 4437 if (unlikely(objp == ZERO_SIZE_PTR)) 4438 return 0; 4439 4440 size = virt_to_cache(objp)->object_size; 4441 /* We assume that ksize callers could use the whole allocated area, 4442 * so we need to unpoison this area. 4443 */ 4444 kasan_unpoison_shadow(objp, size); 4445 4446 return size; 4447 } 4448 EXPORT_SYMBOL(ksize); 4449