1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/cpu.h> 104 #include <linux/sysctl.h> 105 #include <linux/module.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 #ifdef CONFIG_DEBUG_SLAB_LEAK 366 367 static inline bool is_store_user_clean(struct kmem_cache *cachep) 368 { 369 return atomic_read(&cachep->store_user_clean) == 1; 370 } 371 372 static inline void set_store_user_clean(struct kmem_cache *cachep) 373 { 374 atomic_set(&cachep->store_user_clean, 1); 375 } 376 377 static inline void set_store_user_dirty(struct kmem_cache *cachep) 378 { 379 if (is_store_user_clean(cachep)) 380 atomic_set(&cachep->store_user_clean, 0); 381 } 382 383 #else 384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 385 386 #endif 387 388 /* 389 * Do not go above this order unless 0 objects fit into the slab or 390 * overridden on the command line. 391 */ 392 #define SLAB_MAX_ORDER_HI 1 393 #define SLAB_MAX_ORDER_LO 0 394 static int slab_max_order = SLAB_MAX_ORDER_LO; 395 static bool slab_max_order_set __initdata; 396 397 static inline struct kmem_cache *virt_to_cache(const void *obj) 398 { 399 struct page *page = virt_to_head_page(obj); 400 return page->slab_cache; 401 } 402 403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 404 unsigned int idx) 405 { 406 return page->s_mem + cache->size * idx; 407 } 408 409 /* 410 * We want to avoid an expensive divide : (offset / cache->size) 411 * Using the fact that size is a constant for a particular cache, 412 * we can replace (offset / cache->size) by 413 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 414 */ 415 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 416 const struct page *page, void *obj) 417 { 418 u32 offset = (obj - page->s_mem); 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 420 } 421 422 #define BOOT_CPUCACHE_ENTRIES 1 423 /* internal cache of cache description objs */ 424 static struct kmem_cache kmem_cache_boot = { 425 .batchcount = 1, 426 .limit = BOOT_CPUCACHE_ENTRIES, 427 .shared = 1, 428 .size = sizeof(struct kmem_cache), 429 .name = "kmem_cache", 430 }; 431 432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 433 434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 435 { 436 return this_cpu_ptr(cachep->cpu_cache); 437 } 438 439 /* 440 * Calculate the number of objects and left-over bytes for a given buffer size. 441 */ 442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 443 slab_flags_t flags, size_t *left_over) 444 { 445 unsigned int num; 446 size_t slab_size = PAGE_SIZE << gfporder; 447 448 /* 449 * The slab management structure can be either off the slab or 450 * on it. For the latter case, the memory allocated for a 451 * slab is used for: 452 * 453 * - @buffer_size bytes for each object 454 * - One freelist_idx_t for each object 455 * 456 * We don't need to consider alignment of freelist because 457 * freelist will be at the end of slab page. The objects will be 458 * at the correct alignment. 459 * 460 * If the slab management structure is off the slab, then the 461 * alignment will already be calculated into the size. Because 462 * the slabs are all pages aligned, the objects will be at the 463 * correct alignment when allocated. 464 */ 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 466 num = slab_size / buffer_size; 467 *left_over = slab_size % buffer_size; 468 } else { 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 470 *left_over = slab_size % 471 (buffer_size + sizeof(freelist_idx_t)); 472 } 473 474 return num; 475 } 476 477 #if DEBUG 478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 479 480 static void __slab_error(const char *function, struct kmem_cache *cachep, 481 char *msg) 482 { 483 pr_err("slab error in %s(): cache `%s': %s\n", 484 function, cachep->name, msg); 485 dump_stack(); 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 487 } 488 #endif 489 490 /* 491 * By default on NUMA we use alien caches to stage the freeing of 492 * objects allocated from other nodes. This causes massive memory 493 * inefficiencies when using fake NUMA setup to split memory into a 494 * large number of small nodes, so it can be disabled on the command 495 * line 496 */ 497 498 static int use_alien_caches __read_mostly = 1; 499 static int __init noaliencache_setup(char *s) 500 { 501 use_alien_caches = 0; 502 return 1; 503 } 504 __setup("noaliencache", noaliencache_setup); 505 506 static int __init slab_max_order_setup(char *str) 507 { 508 get_option(&str, &slab_max_order); 509 slab_max_order = slab_max_order < 0 ? 0 : 510 min(slab_max_order, MAX_ORDER - 1); 511 slab_max_order_set = true; 512 513 return 1; 514 } 515 __setup("slab_max_order=", slab_max_order_setup); 516 517 #ifdef CONFIG_NUMA 518 /* 519 * Special reaping functions for NUMA systems called from cache_reap(). 520 * These take care of doing round robin flushing of alien caches (containing 521 * objects freed on different nodes from which they were allocated) and the 522 * flushing of remote pcps by calling drain_node_pages. 523 */ 524 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 525 526 static void init_reap_node(int cpu) 527 { 528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 529 node_online_map); 530 } 531 532 static void next_reap_node(void) 533 { 534 int node = __this_cpu_read(slab_reap_node); 535 536 node = next_node_in(node, node_online_map); 537 __this_cpu_write(slab_reap_node, node); 538 } 539 540 #else 541 #define init_reap_node(cpu) do { } while (0) 542 #define next_reap_node(void) do { } while (0) 543 #endif 544 545 /* 546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 547 * via the workqueue/eventd. 548 * Add the CPU number into the expiration time to minimize the possibility of 549 * the CPUs getting into lockstep and contending for the global cache chain 550 * lock. 551 */ 552 static void start_cpu_timer(int cpu) 553 { 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 555 556 if (reap_work->work.func == NULL) { 557 init_reap_node(cpu); 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 559 schedule_delayed_work_on(cpu, reap_work, 560 __round_jiffies_relative(HZ, cpu)); 561 } 562 } 563 564 static void init_arraycache(struct array_cache *ac, int limit, int batch) 565 { 566 /* 567 * The array_cache structures contain pointers to free object. 568 * However, when such objects are allocated or transferred to another 569 * cache the pointers are not cleared and they could be counted as 570 * valid references during a kmemleak scan. Therefore, kmemleak must 571 * not scan such objects. 572 */ 573 kmemleak_no_scan(ac); 574 if (ac) { 575 ac->avail = 0; 576 ac->limit = limit; 577 ac->batchcount = batch; 578 ac->touched = 0; 579 } 580 } 581 582 static struct array_cache *alloc_arraycache(int node, int entries, 583 int batchcount, gfp_t gfp) 584 { 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 586 struct array_cache *ac = NULL; 587 588 ac = kmalloc_node(memsize, gfp, node); 589 init_arraycache(ac, entries, batchcount); 590 return ac; 591 } 592 593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 594 struct page *page, void *objp) 595 { 596 struct kmem_cache_node *n; 597 int page_node; 598 LIST_HEAD(list); 599 600 page_node = page_to_nid(page); 601 n = get_node(cachep, page_node); 602 603 spin_lock(&n->list_lock); 604 free_block(cachep, &objp, 1, page_node, &list); 605 spin_unlock(&n->list_lock); 606 607 slabs_destroy(cachep, &list); 608 } 609 610 /* 611 * Transfer objects in one arraycache to another. 612 * Locking must be handled by the caller. 613 * 614 * Return the number of entries transferred. 615 */ 616 static int transfer_objects(struct array_cache *to, 617 struct array_cache *from, unsigned int max) 618 { 619 /* Figure out how many entries to transfer */ 620 int nr = min3(from->avail, max, to->limit - to->avail); 621 622 if (!nr) 623 return 0; 624 625 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 626 sizeof(void *) *nr); 627 628 from->avail -= nr; 629 to->avail += nr; 630 return nr; 631 } 632 633 #ifndef CONFIG_NUMA 634 635 #define drain_alien_cache(cachep, alien) do { } while (0) 636 #define reap_alien(cachep, n) do { } while (0) 637 638 static inline struct alien_cache **alloc_alien_cache(int node, 639 int limit, gfp_t gfp) 640 { 641 return NULL; 642 } 643 644 static inline void free_alien_cache(struct alien_cache **ac_ptr) 645 { 646 } 647 648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 649 { 650 return 0; 651 } 652 653 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 654 gfp_t flags) 655 { 656 return NULL; 657 } 658 659 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 660 gfp_t flags, int nodeid) 661 { 662 return NULL; 663 } 664 665 static inline gfp_t gfp_exact_node(gfp_t flags) 666 { 667 return flags & ~__GFP_NOFAIL; 668 } 669 670 #else /* CONFIG_NUMA */ 671 672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 674 675 static struct alien_cache *__alloc_alien_cache(int node, int entries, 676 int batch, gfp_t gfp) 677 { 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 679 struct alien_cache *alc = NULL; 680 681 alc = kmalloc_node(memsize, gfp, node); 682 init_arraycache(&alc->ac, entries, batch); 683 spin_lock_init(&alc->lock); 684 return alc; 685 } 686 687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 688 { 689 struct alien_cache **alc_ptr; 690 size_t memsize = sizeof(void *) * nr_node_ids; 691 int i; 692 693 if (limit > 1) 694 limit = 12; 695 alc_ptr = kzalloc_node(memsize, gfp, node); 696 if (!alc_ptr) 697 return NULL; 698 699 for_each_node(i) { 700 if (i == node || !node_online(i)) 701 continue; 702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 703 if (!alc_ptr[i]) { 704 for (i--; i >= 0; i--) 705 kfree(alc_ptr[i]); 706 kfree(alc_ptr); 707 return NULL; 708 } 709 } 710 return alc_ptr; 711 } 712 713 static void free_alien_cache(struct alien_cache **alc_ptr) 714 { 715 int i; 716 717 if (!alc_ptr) 718 return; 719 for_each_node(i) 720 kfree(alc_ptr[i]); 721 kfree(alc_ptr); 722 } 723 724 static void __drain_alien_cache(struct kmem_cache *cachep, 725 struct array_cache *ac, int node, 726 struct list_head *list) 727 { 728 struct kmem_cache_node *n = get_node(cachep, node); 729 730 if (ac->avail) { 731 spin_lock(&n->list_lock); 732 /* 733 * Stuff objects into the remote nodes shared array first. 734 * That way we could avoid the overhead of putting the objects 735 * into the free lists and getting them back later. 736 */ 737 if (n->shared) 738 transfer_objects(n->shared, ac, ac->limit); 739 740 free_block(cachep, ac->entry, ac->avail, node, list); 741 ac->avail = 0; 742 spin_unlock(&n->list_lock); 743 } 744 } 745 746 /* 747 * Called from cache_reap() to regularly drain alien caches round robin. 748 */ 749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 750 { 751 int node = __this_cpu_read(slab_reap_node); 752 753 if (n->alien) { 754 struct alien_cache *alc = n->alien[node]; 755 struct array_cache *ac; 756 757 if (alc) { 758 ac = &alc->ac; 759 if (ac->avail && spin_trylock_irq(&alc->lock)) { 760 LIST_HEAD(list); 761 762 __drain_alien_cache(cachep, ac, node, &list); 763 spin_unlock_irq(&alc->lock); 764 slabs_destroy(cachep, &list); 765 } 766 } 767 } 768 } 769 770 static void drain_alien_cache(struct kmem_cache *cachep, 771 struct alien_cache **alien) 772 { 773 int i = 0; 774 struct alien_cache *alc; 775 struct array_cache *ac; 776 unsigned long flags; 777 778 for_each_online_node(i) { 779 alc = alien[i]; 780 if (alc) { 781 LIST_HEAD(list); 782 783 ac = &alc->ac; 784 spin_lock_irqsave(&alc->lock, flags); 785 __drain_alien_cache(cachep, ac, i, &list); 786 spin_unlock_irqrestore(&alc->lock, flags); 787 slabs_destroy(cachep, &list); 788 } 789 } 790 } 791 792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 793 int node, int page_node) 794 { 795 struct kmem_cache_node *n; 796 struct alien_cache *alien = NULL; 797 struct array_cache *ac; 798 LIST_HEAD(list); 799 800 n = get_node(cachep, node); 801 STATS_INC_NODEFREES(cachep); 802 if (n->alien && n->alien[page_node]) { 803 alien = n->alien[page_node]; 804 ac = &alien->ac; 805 spin_lock(&alien->lock); 806 if (unlikely(ac->avail == ac->limit)) { 807 STATS_INC_ACOVERFLOW(cachep); 808 __drain_alien_cache(cachep, ac, page_node, &list); 809 } 810 ac->entry[ac->avail++] = objp; 811 spin_unlock(&alien->lock); 812 slabs_destroy(cachep, &list); 813 } else { 814 n = get_node(cachep, page_node); 815 spin_lock(&n->list_lock); 816 free_block(cachep, &objp, 1, page_node, &list); 817 spin_unlock(&n->list_lock); 818 slabs_destroy(cachep, &list); 819 } 820 return 1; 821 } 822 823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 824 { 825 int page_node = page_to_nid(virt_to_page(objp)); 826 int node = numa_mem_id(); 827 /* 828 * Make sure we are not freeing a object from another node to the array 829 * cache on this cpu. 830 */ 831 if (likely(node == page_node)) 832 return 0; 833 834 return __cache_free_alien(cachep, objp, node, page_node); 835 } 836 837 /* 838 * Construct gfp mask to allocate from a specific node but do not reclaim or 839 * warn about failures. 840 */ 841 static inline gfp_t gfp_exact_node(gfp_t flags) 842 { 843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 844 } 845 #endif 846 847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 848 { 849 struct kmem_cache_node *n; 850 851 /* 852 * Set up the kmem_cache_node for cpu before we can 853 * begin anything. Make sure some other cpu on this 854 * node has not already allocated this 855 */ 856 n = get_node(cachep, node); 857 if (n) { 858 spin_lock_irq(&n->list_lock); 859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 860 cachep->num; 861 spin_unlock_irq(&n->list_lock); 862 863 return 0; 864 } 865 866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 867 if (!n) 868 return -ENOMEM; 869 870 kmem_cache_node_init(n); 871 n->next_reap = jiffies + REAPTIMEOUT_NODE + 872 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 873 874 n->free_limit = 875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 876 877 /* 878 * The kmem_cache_nodes don't come and go as CPUs 879 * come and go. slab_mutex is sufficient 880 * protection here. 881 */ 882 cachep->node[node] = n; 883 884 return 0; 885 } 886 887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 888 /* 889 * Allocates and initializes node for a node on each slab cache, used for 890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 891 * will be allocated off-node since memory is not yet online for the new node. 892 * When hotplugging memory or a cpu, existing node are not replaced if 893 * already in use. 894 * 895 * Must hold slab_mutex. 896 */ 897 static int init_cache_node_node(int node) 898 { 899 int ret; 900 struct kmem_cache *cachep; 901 902 list_for_each_entry(cachep, &slab_caches, list) { 903 ret = init_cache_node(cachep, node, GFP_KERNEL); 904 if (ret) 905 return ret; 906 } 907 908 return 0; 909 } 910 #endif 911 912 static int setup_kmem_cache_node(struct kmem_cache *cachep, 913 int node, gfp_t gfp, bool force_change) 914 { 915 int ret = -ENOMEM; 916 struct kmem_cache_node *n; 917 struct array_cache *old_shared = NULL; 918 struct array_cache *new_shared = NULL; 919 struct alien_cache **new_alien = NULL; 920 LIST_HEAD(list); 921 922 if (use_alien_caches) { 923 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 924 if (!new_alien) 925 goto fail; 926 } 927 928 if (cachep->shared) { 929 new_shared = alloc_arraycache(node, 930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 931 if (!new_shared) 932 goto fail; 933 } 934 935 ret = init_cache_node(cachep, node, gfp); 936 if (ret) 937 goto fail; 938 939 n = get_node(cachep, node); 940 spin_lock_irq(&n->list_lock); 941 if (n->shared && force_change) { 942 free_block(cachep, n->shared->entry, 943 n->shared->avail, node, &list); 944 n->shared->avail = 0; 945 } 946 947 if (!n->shared || force_change) { 948 old_shared = n->shared; 949 n->shared = new_shared; 950 new_shared = NULL; 951 } 952 953 if (!n->alien) { 954 n->alien = new_alien; 955 new_alien = NULL; 956 } 957 958 spin_unlock_irq(&n->list_lock); 959 slabs_destroy(cachep, &list); 960 961 /* 962 * To protect lockless access to n->shared during irq disabled context. 963 * If n->shared isn't NULL in irq disabled context, accessing to it is 964 * guaranteed to be valid until irq is re-enabled, because it will be 965 * freed after synchronize_sched(). 966 */ 967 if (old_shared && force_change) 968 synchronize_sched(); 969 970 fail: 971 kfree(old_shared); 972 kfree(new_shared); 973 free_alien_cache(new_alien); 974 975 return ret; 976 } 977 978 #ifdef CONFIG_SMP 979 980 static void cpuup_canceled(long cpu) 981 { 982 struct kmem_cache *cachep; 983 struct kmem_cache_node *n = NULL; 984 int node = cpu_to_mem(cpu); 985 const struct cpumask *mask = cpumask_of_node(node); 986 987 list_for_each_entry(cachep, &slab_caches, list) { 988 struct array_cache *nc; 989 struct array_cache *shared; 990 struct alien_cache **alien; 991 LIST_HEAD(list); 992 993 n = get_node(cachep, node); 994 if (!n) 995 continue; 996 997 spin_lock_irq(&n->list_lock); 998 999 /* Free limit for this kmem_cache_node */ 1000 n->free_limit -= cachep->batchcount; 1001 1002 /* cpu is dead; no one can alloc from it. */ 1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 1004 if (nc) { 1005 free_block(cachep, nc->entry, nc->avail, node, &list); 1006 nc->avail = 0; 1007 } 1008 1009 if (!cpumask_empty(mask)) { 1010 spin_unlock_irq(&n->list_lock); 1011 goto free_slab; 1012 } 1013 1014 shared = n->shared; 1015 if (shared) { 1016 free_block(cachep, shared->entry, 1017 shared->avail, node, &list); 1018 n->shared = NULL; 1019 } 1020 1021 alien = n->alien; 1022 n->alien = NULL; 1023 1024 spin_unlock_irq(&n->list_lock); 1025 1026 kfree(shared); 1027 if (alien) { 1028 drain_alien_cache(cachep, alien); 1029 free_alien_cache(alien); 1030 } 1031 1032 free_slab: 1033 slabs_destroy(cachep, &list); 1034 } 1035 /* 1036 * In the previous loop, all the objects were freed to 1037 * the respective cache's slabs, now we can go ahead and 1038 * shrink each nodelist to its limit. 1039 */ 1040 list_for_each_entry(cachep, &slab_caches, list) { 1041 n = get_node(cachep, node); 1042 if (!n) 1043 continue; 1044 drain_freelist(cachep, n, INT_MAX); 1045 } 1046 } 1047 1048 static int cpuup_prepare(long cpu) 1049 { 1050 struct kmem_cache *cachep; 1051 int node = cpu_to_mem(cpu); 1052 int err; 1053 1054 /* 1055 * We need to do this right in the beginning since 1056 * alloc_arraycache's are going to use this list. 1057 * kmalloc_node allows us to add the slab to the right 1058 * kmem_cache_node and not this cpu's kmem_cache_node 1059 */ 1060 err = init_cache_node_node(node); 1061 if (err < 0) 1062 goto bad; 1063 1064 /* 1065 * Now we can go ahead with allocating the shared arrays and 1066 * array caches 1067 */ 1068 list_for_each_entry(cachep, &slab_caches, list) { 1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1070 if (err) 1071 goto bad; 1072 } 1073 1074 return 0; 1075 bad: 1076 cpuup_canceled(cpu); 1077 return -ENOMEM; 1078 } 1079 1080 int slab_prepare_cpu(unsigned int cpu) 1081 { 1082 int err; 1083 1084 mutex_lock(&slab_mutex); 1085 err = cpuup_prepare(cpu); 1086 mutex_unlock(&slab_mutex); 1087 return err; 1088 } 1089 1090 /* 1091 * This is called for a failed online attempt and for a successful 1092 * offline. 1093 * 1094 * Even if all the cpus of a node are down, we don't free the 1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1096 * a kmalloc allocation from another cpu for memory from the node of 1097 * the cpu going down. The list3 structure is usually allocated from 1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1099 */ 1100 int slab_dead_cpu(unsigned int cpu) 1101 { 1102 mutex_lock(&slab_mutex); 1103 cpuup_canceled(cpu); 1104 mutex_unlock(&slab_mutex); 1105 return 0; 1106 } 1107 #endif 1108 1109 static int slab_online_cpu(unsigned int cpu) 1110 { 1111 start_cpu_timer(cpu); 1112 return 0; 1113 } 1114 1115 static int slab_offline_cpu(unsigned int cpu) 1116 { 1117 /* 1118 * Shutdown cache reaper. Note that the slab_mutex is held so 1119 * that if cache_reap() is invoked it cannot do anything 1120 * expensive but will only modify reap_work and reschedule the 1121 * timer. 1122 */ 1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1124 /* Now the cache_reaper is guaranteed to be not running. */ 1125 per_cpu(slab_reap_work, cpu).work.func = NULL; 1126 return 0; 1127 } 1128 1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1130 /* 1131 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1132 * Returns -EBUSY if all objects cannot be drained so that the node is not 1133 * removed. 1134 * 1135 * Must hold slab_mutex. 1136 */ 1137 static int __meminit drain_cache_node_node(int node) 1138 { 1139 struct kmem_cache *cachep; 1140 int ret = 0; 1141 1142 list_for_each_entry(cachep, &slab_caches, list) { 1143 struct kmem_cache_node *n; 1144 1145 n = get_node(cachep, node); 1146 if (!n) 1147 continue; 1148 1149 drain_freelist(cachep, n, INT_MAX); 1150 1151 if (!list_empty(&n->slabs_full) || 1152 !list_empty(&n->slabs_partial)) { 1153 ret = -EBUSY; 1154 break; 1155 } 1156 } 1157 return ret; 1158 } 1159 1160 static int __meminit slab_memory_callback(struct notifier_block *self, 1161 unsigned long action, void *arg) 1162 { 1163 struct memory_notify *mnb = arg; 1164 int ret = 0; 1165 int nid; 1166 1167 nid = mnb->status_change_nid; 1168 if (nid < 0) 1169 goto out; 1170 1171 switch (action) { 1172 case MEM_GOING_ONLINE: 1173 mutex_lock(&slab_mutex); 1174 ret = init_cache_node_node(nid); 1175 mutex_unlock(&slab_mutex); 1176 break; 1177 case MEM_GOING_OFFLINE: 1178 mutex_lock(&slab_mutex); 1179 ret = drain_cache_node_node(nid); 1180 mutex_unlock(&slab_mutex); 1181 break; 1182 case MEM_ONLINE: 1183 case MEM_OFFLINE: 1184 case MEM_CANCEL_ONLINE: 1185 case MEM_CANCEL_OFFLINE: 1186 break; 1187 } 1188 out: 1189 return notifier_from_errno(ret); 1190 } 1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1192 1193 /* 1194 * swap the static kmem_cache_node with kmalloced memory 1195 */ 1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1197 int nodeid) 1198 { 1199 struct kmem_cache_node *ptr; 1200 1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1202 BUG_ON(!ptr); 1203 1204 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1205 /* 1206 * Do not assume that spinlocks can be initialized via memcpy: 1207 */ 1208 spin_lock_init(&ptr->list_lock); 1209 1210 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1211 cachep->node[nodeid] = ptr; 1212 } 1213 1214 /* 1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1216 * size of kmem_cache_node. 1217 */ 1218 static void __init set_up_node(struct kmem_cache *cachep, int index) 1219 { 1220 int node; 1221 1222 for_each_online_node(node) { 1223 cachep->node[node] = &init_kmem_cache_node[index + node]; 1224 cachep->node[node]->next_reap = jiffies + 1225 REAPTIMEOUT_NODE + 1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1227 } 1228 } 1229 1230 /* 1231 * Initialisation. Called after the page allocator have been initialised and 1232 * before smp_init(). 1233 */ 1234 void __init kmem_cache_init(void) 1235 { 1236 int i; 1237 1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1239 sizeof(struct rcu_head)); 1240 kmem_cache = &kmem_cache_boot; 1241 1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1243 use_alien_caches = 0; 1244 1245 for (i = 0; i < NUM_INIT_LISTS; i++) 1246 kmem_cache_node_init(&init_kmem_cache_node[i]); 1247 1248 /* 1249 * Fragmentation resistance on low memory - only use bigger 1250 * page orders on machines with more than 32MB of memory if 1251 * not overridden on the command line. 1252 */ 1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1254 slab_max_order = SLAB_MAX_ORDER_HI; 1255 1256 /* Bootstrap is tricky, because several objects are allocated 1257 * from caches that do not exist yet: 1258 * 1) initialize the kmem_cache cache: it contains the struct 1259 * kmem_cache structures of all caches, except kmem_cache itself: 1260 * kmem_cache is statically allocated. 1261 * Initially an __init data area is used for the head array and the 1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1263 * array at the end of the bootstrap. 1264 * 2) Create the first kmalloc cache. 1265 * The struct kmem_cache for the new cache is allocated normally. 1266 * An __init data area is used for the head array. 1267 * 3) Create the remaining kmalloc caches, with minimally sized 1268 * head arrays. 1269 * 4) Replace the __init data head arrays for kmem_cache and the first 1270 * kmalloc cache with kmalloc allocated arrays. 1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1272 * the other cache's with kmalloc allocated memory. 1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1274 */ 1275 1276 /* 1) create the kmem_cache */ 1277 1278 /* 1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1280 */ 1281 create_boot_cache(kmem_cache, "kmem_cache", 1282 offsetof(struct kmem_cache, node) + 1283 nr_node_ids * sizeof(struct kmem_cache_node *), 1284 SLAB_HWCACHE_ALIGN); 1285 list_add(&kmem_cache->list, &slab_caches); 1286 slab_state = PARTIAL; 1287 1288 /* 1289 * Initialize the caches that provide memory for the kmem_cache_node 1290 * structures first. Without this, further allocations will bug. 1291 */ 1292 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache( 1293 kmalloc_info[INDEX_NODE].name, 1294 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1295 slab_state = PARTIAL_NODE; 1296 setup_kmalloc_cache_index_table(); 1297 1298 slab_early_init = 0; 1299 1300 /* 5) Replace the bootstrap kmem_cache_node */ 1301 { 1302 int nid; 1303 1304 for_each_online_node(nid) { 1305 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1306 1307 init_list(kmalloc_caches[INDEX_NODE], 1308 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1309 } 1310 } 1311 1312 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1313 } 1314 1315 void __init kmem_cache_init_late(void) 1316 { 1317 struct kmem_cache *cachep; 1318 1319 slab_state = UP; 1320 1321 /* 6) resize the head arrays to their final sizes */ 1322 mutex_lock(&slab_mutex); 1323 list_for_each_entry(cachep, &slab_caches, list) 1324 if (enable_cpucache(cachep, GFP_NOWAIT)) 1325 BUG(); 1326 mutex_unlock(&slab_mutex); 1327 1328 /* Done! */ 1329 slab_state = FULL; 1330 1331 #ifdef CONFIG_NUMA 1332 /* 1333 * Register a memory hotplug callback that initializes and frees 1334 * node. 1335 */ 1336 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1337 #endif 1338 1339 /* 1340 * The reap timers are started later, with a module init call: That part 1341 * of the kernel is not yet operational. 1342 */ 1343 } 1344 1345 static int __init cpucache_init(void) 1346 { 1347 int ret; 1348 1349 /* 1350 * Register the timers that return unneeded pages to the page allocator 1351 */ 1352 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1353 slab_online_cpu, slab_offline_cpu); 1354 WARN_ON(ret < 0); 1355 1356 /* Done! */ 1357 slab_state = FULL; 1358 return 0; 1359 } 1360 __initcall(cpucache_init); 1361 1362 static noinline void 1363 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1364 { 1365 #if DEBUG 1366 struct kmem_cache_node *n; 1367 unsigned long flags; 1368 int node; 1369 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1370 DEFAULT_RATELIMIT_BURST); 1371 1372 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1373 return; 1374 1375 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1376 nodeid, gfpflags, &gfpflags); 1377 pr_warn(" cache: %s, object size: %d, order: %d\n", 1378 cachep->name, cachep->size, cachep->gfporder); 1379 1380 for_each_kmem_cache_node(cachep, node, n) { 1381 unsigned long total_slabs, free_slabs, free_objs; 1382 1383 spin_lock_irqsave(&n->list_lock, flags); 1384 total_slabs = n->total_slabs; 1385 free_slabs = n->free_slabs; 1386 free_objs = n->free_objects; 1387 spin_unlock_irqrestore(&n->list_lock, flags); 1388 1389 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1390 node, total_slabs - free_slabs, total_slabs, 1391 (total_slabs * cachep->num) - free_objs, 1392 total_slabs * cachep->num); 1393 } 1394 #endif 1395 } 1396 1397 /* 1398 * Interface to system's page allocator. No need to hold the 1399 * kmem_cache_node ->list_lock. 1400 * 1401 * If we requested dmaable memory, we will get it. Even if we 1402 * did not request dmaable memory, we might get it, but that 1403 * would be relatively rare and ignorable. 1404 */ 1405 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1406 int nodeid) 1407 { 1408 struct page *page; 1409 int nr_pages; 1410 1411 flags |= cachep->allocflags; 1412 1413 page = __alloc_pages_node(nodeid, flags, cachep->gfporder); 1414 if (!page) { 1415 slab_out_of_memory(cachep, flags, nodeid); 1416 return NULL; 1417 } 1418 1419 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1420 __free_pages(page, cachep->gfporder); 1421 return NULL; 1422 } 1423 1424 nr_pages = (1 << cachep->gfporder); 1425 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1426 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages); 1427 else 1428 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages); 1429 1430 __SetPageSlab(page); 1431 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1432 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1433 SetPageSlabPfmemalloc(page); 1434 1435 return page; 1436 } 1437 1438 /* 1439 * Interface to system's page release. 1440 */ 1441 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1442 { 1443 int order = cachep->gfporder; 1444 unsigned long nr_freed = (1 << order); 1445 1446 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1447 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed); 1448 else 1449 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed); 1450 1451 BUG_ON(!PageSlab(page)); 1452 __ClearPageSlabPfmemalloc(page); 1453 __ClearPageSlab(page); 1454 page_mapcount_reset(page); 1455 page->mapping = NULL; 1456 1457 if (current->reclaim_state) 1458 current->reclaim_state->reclaimed_slab += nr_freed; 1459 memcg_uncharge_slab(page, order, cachep); 1460 __free_pages(page, order); 1461 } 1462 1463 static void kmem_rcu_free(struct rcu_head *head) 1464 { 1465 struct kmem_cache *cachep; 1466 struct page *page; 1467 1468 page = container_of(head, struct page, rcu_head); 1469 cachep = page->slab_cache; 1470 1471 kmem_freepages(cachep, page); 1472 } 1473 1474 #if DEBUG 1475 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1476 { 1477 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1478 (cachep->size % PAGE_SIZE) == 0) 1479 return true; 1480 1481 return false; 1482 } 1483 1484 #ifdef CONFIG_DEBUG_PAGEALLOC 1485 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1486 unsigned long caller) 1487 { 1488 int size = cachep->object_size; 1489 1490 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1491 1492 if (size < 5 * sizeof(unsigned long)) 1493 return; 1494 1495 *addr++ = 0x12345678; 1496 *addr++ = caller; 1497 *addr++ = smp_processor_id(); 1498 size -= 3 * sizeof(unsigned long); 1499 { 1500 unsigned long *sptr = &caller; 1501 unsigned long svalue; 1502 1503 while (!kstack_end(sptr)) { 1504 svalue = *sptr++; 1505 if (kernel_text_address(svalue)) { 1506 *addr++ = svalue; 1507 size -= sizeof(unsigned long); 1508 if (size <= sizeof(unsigned long)) 1509 break; 1510 } 1511 } 1512 1513 } 1514 *addr++ = 0x87654321; 1515 } 1516 1517 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1518 int map, unsigned long caller) 1519 { 1520 if (!is_debug_pagealloc_cache(cachep)) 1521 return; 1522 1523 if (caller) 1524 store_stackinfo(cachep, objp, caller); 1525 1526 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1527 } 1528 1529 #else 1530 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1531 int map, unsigned long caller) {} 1532 1533 #endif 1534 1535 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1536 { 1537 int size = cachep->object_size; 1538 addr = &((char *)addr)[obj_offset(cachep)]; 1539 1540 memset(addr, val, size); 1541 *(unsigned char *)(addr + size - 1) = POISON_END; 1542 } 1543 1544 static void dump_line(char *data, int offset, int limit) 1545 { 1546 int i; 1547 unsigned char error = 0; 1548 int bad_count = 0; 1549 1550 pr_err("%03x: ", offset); 1551 for (i = 0; i < limit; i++) { 1552 if (data[offset + i] != POISON_FREE) { 1553 error = data[offset + i]; 1554 bad_count++; 1555 } 1556 } 1557 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1558 &data[offset], limit, 1); 1559 1560 if (bad_count == 1) { 1561 error ^= POISON_FREE; 1562 if (!(error & (error - 1))) { 1563 pr_err("Single bit error detected. Probably bad RAM.\n"); 1564 #ifdef CONFIG_X86 1565 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1566 #else 1567 pr_err("Run a memory test tool.\n"); 1568 #endif 1569 } 1570 } 1571 } 1572 #endif 1573 1574 #if DEBUG 1575 1576 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1577 { 1578 int i, size; 1579 char *realobj; 1580 1581 if (cachep->flags & SLAB_RED_ZONE) { 1582 pr_err("Redzone: 0x%llx/0x%llx\n", 1583 *dbg_redzone1(cachep, objp), 1584 *dbg_redzone2(cachep, objp)); 1585 } 1586 1587 if (cachep->flags & SLAB_STORE_USER) { 1588 pr_err("Last user: [<%p>](%pSR)\n", 1589 *dbg_userword(cachep, objp), 1590 *dbg_userword(cachep, objp)); 1591 } 1592 realobj = (char *)objp + obj_offset(cachep); 1593 size = cachep->object_size; 1594 for (i = 0; i < size && lines; i += 16, lines--) { 1595 int limit; 1596 limit = 16; 1597 if (i + limit > size) 1598 limit = size - i; 1599 dump_line(realobj, i, limit); 1600 } 1601 } 1602 1603 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1604 { 1605 char *realobj; 1606 int size, i; 1607 int lines = 0; 1608 1609 if (is_debug_pagealloc_cache(cachep)) 1610 return; 1611 1612 realobj = (char *)objp + obj_offset(cachep); 1613 size = cachep->object_size; 1614 1615 for (i = 0; i < size; i++) { 1616 char exp = POISON_FREE; 1617 if (i == size - 1) 1618 exp = POISON_END; 1619 if (realobj[i] != exp) { 1620 int limit; 1621 /* Mismatch ! */ 1622 /* Print header */ 1623 if (lines == 0) { 1624 pr_err("Slab corruption (%s): %s start=%p, len=%d\n", 1625 print_tainted(), cachep->name, 1626 realobj, size); 1627 print_objinfo(cachep, objp, 0); 1628 } 1629 /* Hexdump the affected line */ 1630 i = (i / 16) * 16; 1631 limit = 16; 1632 if (i + limit > size) 1633 limit = size - i; 1634 dump_line(realobj, i, limit); 1635 i += 16; 1636 lines++; 1637 /* Limit to 5 lines */ 1638 if (lines > 5) 1639 break; 1640 } 1641 } 1642 if (lines != 0) { 1643 /* Print some data about the neighboring objects, if they 1644 * exist: 1645 */ 1646 struct page *page = virt_to_head_page(objp); 1647 unsigned int objnr; 1648 1649 objnr = obj_to_index(cachep, page, objp); 1650 if (objnr) { 1651 objp = index_to_obj(cachep, page, objnr - 1); 1652 realobj = (char *)objp + obj_offset(cachep); 1653 pr_err("Prev obj: start=%p, len=%d\n", realobj, size); 1654 print_objinfo(cachep, objp, 2); 1655 } 1656 if (objnr + 1 < cachep->num) { 1657 objp = index_to_obj(cachep, page, objnr + 1); 1658 realobj = (char *)objp + obj_offset(cachep); 1659 pr_err("Next obj: start=%p, len=%d\n", realobj, size); 1660 print_objinfo(cachep, objp, 2); 1661 } 1662 } 1663 } 1664 #endif 1665 1666 #if DEBUG 1667 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1668 struct page *page) 1669 { 1670 int i; 1671 1672 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1673 poison_obj(cachep, page->freelist - obj_offset(cachep), 1674 POISON_FREE); 1675 } 1676 1677 for (i = 0; i < cachep->num; i++) { 1678 void *objp = index_to_obj(cachep, page, i); 1679 1680 if (cachep->flags & SLAB_POISON) { 1681 check_poison_obj(cachep, objp); 1682 slab_kernel_map(cachep, objp, 1, 0); 1683 } 1684 if (cachep->flags & SLAB_RED_ZONE) { 1685 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1686 slab_error(cachep, "start of a freed object was overwritten"); 1687 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1688 slab_error(cachep, "end of a freed object was overwritten"); 1689 } 1690 } 1691 } 1692 #else 1693 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1694 struct page *page) 1695 { 1696 } 1697 #endif 1698 1699 /** 1700 * slab_destroy - destroy and release all objects in a slab 1701 * @cachep: cache pointer being destroyed 1702 * @page: page pointer being destroyed 1703 * 1704 * Destroy all the objs in a slab page, and release the mem back to the system. 1705 * Before calling the slab page must have been unlinked from the cache. The 1706 * kmem_cache_node ->list_lock is not held/needed. 1707 */ 1708 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1709 { 1710 void *freelist; 1711 1712 freelist = page->freelist; 1713 slab_destroy_debugcheck(cachep, page); 1714 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1715 call_rcu(&page->rcu_head, kmem_rcu_free); 1716 else 1717 kmem_freepages(cachep, page); 1718 1719 /* 1720 * From now on, we don't use freelist 1721 * although actual page can be freed in rcu context 1722 */ 1723 if (OFF_SLAB(cachep)) 1724 kmem_cache_free(cachep->freelist_cache, freelist); 1725 } 1726 1727 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1728 { 1729 struct page *page, *n; 1730 1731 list_for_each_entry_safe(page, n, list, lru) { 1732 list_del(&page->lru); 1733 slab_destroy(cachep, page); 1734 } 1735 } 1736 1737 /** 1738 * calculate_slab_order - calculate size (page order) of slabs 1739 * @cachep: pointer to the cache that is being created 1740 * @size: size of objects to be created in this cache. 1741 * @flags: slab allocation flags 1742 * 1743 * Also calculates the number of objects per slab. 1744 * 1745 * This could be made much more intelligent. For now, try to avoid using 1746 * high order pages for slabs. When the gfp() functions are more friendly 1747 * towards high-order requests, this should be changed. 1748 */ 1749 static size_t calculate_slab_order(struct kmem_cache *cachep, 1750 size_t size, slab_flags_t flags) 1751 { 1752 size_t left_over = 0; 1753 int gfporder; 1754 1755 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1756 unsigned int num; 1757 size_t remainder; 1758 1759 num = cache_estimate(gfporder, size, flags, &remainder); 1760 if (!num) 1761 continue; 1762 1763 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1764 if (num > SLAB_OBJ_MAX_NUM) 1765 break; 1766 1767 if (flags & CFLGS_OFF_SLAB) { 1768 struct kmem_cache *freelist_cache; 1769 size_t freelist_size; 1770 1771 freelist_size = num * sizeof(freelist_idx_t); 1772 freelist_cache = kmalloc_slab(freelist_size, 0u); 1773 if (!freelist_cache) 1774 continue; 1775 1776 /* 1777 * Needed to avoid possible looping condition 1778 * in cache_grow_begin() 1779 */ 1780 if (OFF_SLAB(freelist_cache)) 1781 continue; 1782 1783 /* check if off slab has enough benefit */ 1784 if (freelist_cache->size > cachep->size / 2) 1785 continue; 1786 } 1787 1788 /* Found something acceptable - save it away */ 1789 cachep->num = num; 1790 cachep->gfporder = gfporder; 1791 left_over = remainder; 1792 1793 /* 1794 * A VFS-reclaimable slab tends to have most allocations 1795 * as GFP_NOFS and we really don't want to have to be allocating 1796 * higher-order pages when we are unable to shrink dcache. 1797 */ 1798 if (flags & SLAB_RECLAIM_ACCOUNT) 1799 break; 1800 1801 /* 1802 * Large number of objects is good, but very large slabs are 1803 * currently bad for the gfp()s. 1804 */ 1805 if (gfporder >= slab_max_order) 1806 break; 1807 1808 /* 1809 * Acceptable internal fragmentation? 1810 */ 1811 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1812 break; 1813 } 1814 return left_over; 1815 } 1816 1817 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1818 struct kmem_cache *cachep, int entries, int batchcount) 1819 { 1820 int cpu; 1821 size_t size; 1822 struct array_cache __percpu *cpu_cache; 1823 1824 size = sizeof(void *) * entries + sizeof(struct array_cache); 1825 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1826 1827 if (!cpu_cache) 1828 return NULL; 1829 1830 for_each_possible_cpu(cpu) { 1831 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1832 entries, batchcount); 1833 } 1834 1835 return cpu_cache; 1836 } 1837 1838 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1839 { 1840 if (slab_state >= FULL) 1841 return enable_cpucache(cachep, gfp); 1842 1843 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1844 if (!cachep->cpu_cache) 1845 return 1; 1846 1847 if (slab_state == DOWN) { 1848 /* Creation of first cache (kmem_cache). */ 1849 set_up_node(kmem_cache, CACHE_CACHE); 1850 } else if (slab_state == PARTIAL) { 1851 /* For kmem_cache_node */ 1852 set_up_node(cachep, SIZE_NODE); 1853 } else { 1854 int node; 1855 1856 for_each_online_node(node) { 1857 cachep->node[node] = kmalloc_node( 1858 sizeof(struct kmem_cache_node), gfp, node); 1859 BUG_ON(!cachep->node[node]); 1860 kmem_cache_node_init(cachep->node[node]); 1861 } 1862 } 1863 1864 cachep->node[numa_mem_id()]->next_reap = 1865 jiffies + REAPTIMEOUT_NODE + 1866 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1867 1868 cpu_cache_get(cachep)->avail = 0; 1869 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1870 cpu_cache_get(cachep)->batchcount = 1; 1871 cpu_cache_get(cachep)->touched = 0; 1872 cachep->batchcount = 1; 1873 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1874 return 0; 1875 } 1876 1877 slab_flags_t kmem_cache_flags(unsigned long object_size, 1878 slab_flags_t flags, const char *name, 1879 void (*ctor)(void *)) 1880 { 1881 return flags; 1882 } 1883 1884 struct kmem_cache * 1885 __kmem_cache_alias(const char *name, size_t size, size_t align, 1886 slab_flags_t flags, void (*ctor)(void *)) 1887 { 1888 struct kmem_cache *cachep; 1889 1890 cachep = find_mergeable(size, align, flags, name, ctor); 1891 if (cachep) { 1892 cachep->refcount++; 1893 1894 /* 1895 * Adjust the object sizes so that we clear 1896 * the complete object on kzalloc. 1897 */ 1898 cachep->object_size = max_t(int, cachep->object_size, size); 1899 } 1900 return cachep; 1901 } 1902 1903 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1904 size_t size, slab_flags_t flags) 1905 { 1906 size_t left; 1907 1908 cachep->num = 0; 1909 1910 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1911 return false; 1912 1913 left = calculate_slab_order(cachep, size, 1914 flags | CFLGS_OBJFREELIST_SLAB); 1915 if (!cachep->num) 1916 return false; 1917 1918 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1919 return false; 1920 1921 cachep->colour = left / cachep->colour_off; 1922 1923 return true; 1924 } 1925 1926 static bool set_off_slab_cache(struct kmem_cache *cachep, 1927 size_t size, slab_flags_t flags) 1928 { 1929 size_t left; 1930 1931 cachep->num = 0; 1932 1933 /* 1934 * Always use on-slab management when SLAB_NOLEAKTRACE 1935 * to avoid recursive calls into kmemleak. 1936 */ 1937 if (flags & SLAB_NOLEAKTRACE) 1938 return false; 1939 1940 /* 1941 * Size is large, assume best to place the slab management obj 1942 * off-slab (should allow better packing of objs). 1943 */ 1944 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1945 if (!cachep->num) 1946 return false; 1947 1948 /* 1949 * If the slab has been placed off-slab, and we have enough space then 1950 * move it on-slab. This is at the expense of any extra colouring. 1951 */ 1952 if (left >= cachep->num * sizeof(freelist_idx_t)) 1953 return false; 1954 1955 cachep->colour = left / cachep->colour_off; 1956 1957 return true; 1958 } 1959 1960 static bool set_on_slab_cache(struct kmem_cache *cachep, 1961 size_t size, slab_flags_t flags) 1962 { 1963 size_t left; 1964 1965 cachep->num = 0; 1966 1967 left = calculate_slab_order(cachep, size, flags); 1968 if (!cachep->num) 1969 return false; 1970 1971 cachep->colour = left / cachep->colour_off; 1972 1973 return true; 1974 } 1975 1976 /** 1977 * __kmem_cache_create - Create a cache. 1978 * @cachep: cache management descriptor 1979 * @flags: SLAB flags 1980 * 1981 * Returns a ptr to the cache on success, NULL on failure. 1982 * Cannot be called within a int, but can be interrupted. 1983 * The @ctor is run when new pages are allocated by the cache. 1984 * 1985 * The flags are 1986 * 1987 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1988 * to catch references to uninitialised memory. 1989 * 1990 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1991 * for buffer overruns. 1992 * 1993 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1994 * cacheline. This can be beneficial if you're counting cycles as closely 1995 * as davem. 1996 */ 1997 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1998 { 1999 size_t ralign = BYTES_PER_WORD; 2000 gfp_t gfp; 2001 int err; 2002 size_t size = cachep->size; 2003 2004 #if DEBUG 2005 #if FORCED_DEBUG 2006 /* 2007 * Enable redzoning and last user accounting, except for caches with 2008 * large objects, if the increased size would increase the object size 2009 * above the next power of two: caches with object sizes just above a 2010 * power of two have a significant amount of internal fragmentation. 2011 */ 2012 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2013 2 * sizeof(unsigned long long))) 2014 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2015 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 2016 flags |= SLAB_POISON; 2017 #endif 2018 #endif 2019 2020 /* 2021 * Check that size is in terms of words. This is needed to avoid 2022 * unaligned accesses for some archs when redzoning is used, and makes 2023 * sure any on-slab bufctl's are also correctly aligned. 2024 */ 2025 size = ALIGN(size, BYTES_PER_WORD); 2026 2027 if (flags & SLAB_RED_ZONE) { 2028 ralign = REDZONE_ALIGN; 2029 /* If redzoning, ensure that the second redzone is suitably 2030 * aligned, by adjusting the object size accordingly. */ 2031 size = ALIGN(size, REDZONE_ALIGN); 2032 } 2033 2034 /* 3) caller mandated alignment */ 2035 if (ralign < cachep->align) { 2036 ralign = cachep->align; 2037 } 2038 /* disable debug if necessary */ 2039 if (ralign > __alignof__(unsigned long long)) 2040 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2041 /* 2042 * 4) Store it. 2043 */ 2044 cachep->align = ralign; 2045 cachep->colour_off = cache_line_size(); 2046 /* Offset must be a multiple of the alignment. */ 2047 if (cachep->colour_off < cachep->align) 2048 cachep->colour_off = cachep->align; 2049 2050 if (slab_is_available()) 2051 gfp = GFP_KERNEL; 2052 else 2053 gfp = GFP_NOWAIT; 2054 2055 #if DEBUG 2056 2057 /* 2058 * Both debugging options require word-alignment which is calculated 2059 * into align above. 2060 */ 2061 if (flags & SLAB_RED_ZONE) { 2062 /* add space for red zone words */ 2063 cachep->obj_offset += sizeof(unsigned long long); 2064 size += 2 * sizeof(unsigned long long); 2065 } 2066 if (flags & SLAB_STORE_USER) { 2067 /* user store requires one word storage behind the end of 2068 * the real object. But if the second red zone needs to be 2069 * aligned to 64 bits, we must allow that much space. 2070 */ 2071 if (flags & SLAB_RED_ZONE) 2072 size += REDZONE_ALIGN; 2073 else 2074 size += BYTES_PER_WORD; 2075 } 2076 #endif 2077 2078 kasan_cache_create(cachep, &size, &flags); 2079 2080 size = ALIGN(size, cachep->align); 2081 /* 2082 * We should restrict the number of objects in a slab to implement 2083 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2084 */ 2085 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2086 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2087 2088 #if DEBUG 2089 /* 2090 * To activate debug pagealloc, off-slab management is necessary 2091 * requirement. In early phase of initialization, small sized slab 2092 * doesn't get initialized so it would not be possible. So, we need 2093 * to check size >= 256. It guarantees that all necessary small 2094 * sized slab is initialized in current slab initialization sequence. 2095 */ 2096 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2097 size >= 256 && cachep->object_size > cache_line_size()) { 2098 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2099 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2100 2101 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2102 flags |= CFLGS_OFF_SLAB; 2103 cachep->obj_offset += tmp_size - size; 2104 size = tmp_size; 2105 goto done; 2106 } 2107 } 2108 } 2109 #endif 2110 2111 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2112 flags |= CFLGS_OBJFREELIST_SLAB; 2113 goto done; 2114 } 2115 2116 if (set_off_slab_cache(cachep, size, flags)) { 2117 flags |= CFLGS_OFF_SLAB; 2118 goto done; 2119 } 2120 2121 if (set_on_slab_cache(cachep, size, flags)) 2122 goto done; 2123 2124 return -E2BIG; 2125 2126 done: 2127 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2128 cachep->flags = flags; 2129 cachep->allocflags = __GFP_COMP; 2130 if (flags & SLAB_CACHE_DMA) 2131 cachep->allocflags |= GFP_DMA; 2132 if (flags & SLAB_RECLAIM_ACCOUNT) 2133 cachep->allocflags |= __GFP_RECLAIMABLE; 2134 cachep->size = size; 2135 cachep->reciprocal_buffer_size = reciprocal_value(size); 2136 2137 #if DEBUG 2138 /* 2139 * If we're going to use the generic kernel_map_pages() 2140 * poisoning, then it's going to smash the contents of 2141 * the redzone and userword anyhow, so switch them off. 2142 */ 2143 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2144 (cachep->flags & SLAB_POISON) && 2145 is_debug_pagealloc_cache(cachep)) 2146 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2147 #endif 2148 2149 if (OFF_SLAB(cachep)) { 2150 cachep->freelist_cache = 2151 kmalloc_slab(cachep->freelist_size, 0u); 2152 } 2153 2154 err = setup_cpu_cache(cachep, gfp); 2155 if (err) { 2156 __kmem_cache_release(cachep); 2157 return err; 2158 } 2159 2160 return 0; 2161 } 2162 2163 #if DEBUG 2164 static void check_irq_off(void) 2165 { 2166 BUG_ON(!irqs_disabled()); 2167 } 2168 2169 static void check_irq_on(void) 2170 { 2171 BUG_ON(irqs_disabled()); 2172 } 2173 2174 static void check_mutex_acquired(void) 2175 { 2176 BUG_ON(!mutex_is_locked(&slab_mutex)); 2177 } 2178 2179 static void check_spinlock_acquired(struct kmem_cache *cachep) 2180 { 2181 #ifdef CONFIG_SMP 2182 check_irq_off(); 2183 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2184 #endif 2185 } 2186 2187 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2188 { 2189 #ifdef CONFIG_SMP 2190 check_irq_off(); 2191 assert_spin_locked(&get_node(cachep, node)->list_lock); 2192 #endif 2193 } 2194 2195 #else 2196 #define check_irq_off() do { } while(0) 2197 #define check_irq_on() do { } while(0) 2198 #define check_mutex_acquired() do { } while(0) 2199 #define check_spinlock_acquired(x) do { } while(0) 2200 #define check_spinlock_acquired_node(x, y) do { } while(0) 2201 #endif 2202 2203 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2204 int node, bool free_all, struct list_head *list) 2205 { 2206 int tofree; 2207 2208 if (!ac || !ac->avail) 2209 return; 2210 2211 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2212 if (tofree > ac->avail) 2213 tofree = (ac->avail + 1) / 2; 2214 2215 free_block(cachep, ac->entry, tofree, node, list); 2216 ac->avail -= tofree; 2217 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2218 } 2219 2220 static void do_drain(void *arg) 2221 { 2222 struct kmem_cache *cachep = arg; 2223 struct array_cache *ac; 2224 int node = numa_mem_id(); 2225 struct kmem_cache_node *n; 2226 LIST_HEAD(list); 2227 2228 check_irq_off(); 2229 ac = cpu_cache_get(cachep); 2230 n = get_node(cachep, node); 2231 spin_lock(&n->list_lock); 2232 free_block(cachep, ac->entry, ac->avail, node, &list); 2233 spin_unlock(&n->list_lock); 2234 slabs_destroy(cachep, &list); 2235 ac->avail = 0; 2236 } 2237 2238 static void drain_cpu_caches(struct kmem_cache *cachep) 2239 { 2240 struct kmem_cache_node *n; 2241 int node; 2242 LIST_HEAD(list); 2243 2244 on_each_cpu(do_drain, cachep, 1); 2245 check_irq_on(); 2246 for_each_kmem_cache_node(cachep, node, n) 2247 if (n->alien) 2248 drain_alien_cache(cachep, n->alien); 2249 2250 for_each_kmem_cache_node(cachep, node, n) { 2251 spin_lock_irq(&n->list_lock); 2252 drain_array_locked(cachep, n->shared, node, true, &list); 2253 spin_unlock_irq(&n->list_lock); 2254 2255 slabs_destroy(cachep, &list); 2256 } 2257 } 2258 2259 /* 2260 * Remove slabs from the list of free slabs. 2261 * Specify the number of slabs to drain in tofree. 2262 * 2263 * Returns the actual number of slabs released. 2264 */ 2265 static int drain_freelist(struct kmem_cache *cache, 2266 struct kmem_cache_node *n, int tofree) 2267 { 2268 struct list_head *p; 2269 int nr_freed; 2270 struct page *page; 2271 2272 nr_freed = 0; 2273 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2274 2275 spin_lock_irq(&n->list_lock); 2276 p = n->slabs_free.prev; 2277 if (p == &n->slabs_free) { 2278 spin_unlock_irq(&n->list_lock); 2279 goto out; 2280 } 2281 2282 page = list_entry(p, struct page, lru); 2283 list_del(&page->lru); 2284 n->free_slabs--; 2285 n->total_slabs--; 2286 /* 2287 * Safe to drop the lock. The slab is no longer linked 2288 * to the cache. 2289 */ 2290 n->free_objects -= cache->num; 2291 spin_unlock_irq(&n->list_lock); 2292 slab_destroy(cache, page); 2293 nr_freed++; 2294 } 2295 out: 2296 return nr_freed; 2297 } 2298 2299 int __kmem_cache_shrink(struct kmem_cache *cachep) 2300 { 2301 int ret = 0; 2302 int node; 2303 struct kmem_cache_node *n; 2304 2305 drain_cpu_caches(cachep); 2306 2307 check_irq_on(); 2308 for_each_kmem_cache_node(cachep, node, n) { 2309 drain_freelist(cachep, n, INT_MAX); 2310 2311 ret += !list_empty(&n->slabs_full) || 2312 !list_empty(&n->slabs_partial); 2313 } 2314 return (ret ? 1 : 0); 2315 } 2316 2317 #ifdef CONFIG_MEMCG 2318 void __kmemcg_cache_deactivate(struct kmem_cache *cachep) 2319 { 2320 __kmem_cache_shrink(cachep); 2321 } 2322 #endif 2323 2324 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2325 { 2326 return __kmem_cache_shrink(cachep); 2327 } 2328 2329 void __kmem_cache_release(struct kmem_cache *cachep) 2330 { 2331 int i; 2332 struct kmem_cache_node *n; 2333 2334 cache_random_seq_destroy(cachep); 2335 2336 free_percpu(cachep->cpu_cache); 2337 2338 /* NUMA: free the node structures */ 2339 for_each_kmem_cache_node(cachep, i, n) { 2340 kfree(n->shared); 2341 free_alien_cache(n->alien); 2342 kfree(n); 2343 cachep->node[i] = NULL; 2344 } 2345 } 2346 2347 /* 2348 * Get the memory for a slab management obj. 2349 * 2350 * For a slab cache when the slab descriptor is off-slab, the 2351 * slab descriptor can't come from the same cache which is being created, 2352 * Because if it is the case, that means we defer the creation of 2353 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2354 * And we eventually call down to __kmem_cache_create(), which 2355 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2356 * This is a "chicken-and-egg" problem. 2357 * 2358 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2359 * which are all initialized during kmem_cache_init(). 2360 */ 2361 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2362 struct page *page, int colour_off, 2363 gfp_t local_flags, int nodeid) 2364 { 2365 void *freelist; 2366 void *addr = page_address(page); 2367 2368 page->s_mem = addr + colour_off; 2369 page->active = 0; 2370 2371 if (OBJFREELIST_SLAB(cachep)) 2372 freelist = NULL; 2373 else if (OFF_SLAB(cachep)) { 2374 /* Slab management obj is off-slab. */ 2375 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2376 local_flags, nodeid); 2377 if (!freelist) 2378 return NULL; 2379 } else { 2380 /* We will use last bytes at the slab for freelist */ 2381 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2382 cachep->freelist_size; 2383 } 2384 2385 return freelist; 2386 } 2387 2388 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2389 { 2390 return ((freelist_idx_t *)page->freelist)[idx]; 2391 } 2392 2393 static inline void set_free_obj(struct page *page, 2394 unsigned int idx, freelist_idx_t val) 2395 { 2396 ((freelist_idx_t *)(page->freelist))[idx] = val; 2397 } 2398 2399 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2400 { 2401 #if DEBUG 2402 int i; 2403 2404 for (i = 0; i < cachep->num; i++) { 2405 void *objp = index_to_obj(cachep, page, i); 2406 2407 if (cachep->flags & SLAB_STORE_USER) 2408 *dbg_userword(cachep, objp) = NULL; 2409 2410 if (cachep->flags & SLAB_RED_ZONE) { 2411 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2412 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2413 } 2414 /* 2415 * Constructors are not allowed to allocate memory from the same 2416 * cache which they are a constructor for. Otherwise, deadlock. 2417 * They must also be threaded. 2418 */ 2419 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2420 kasan_unpoison_object_data(cachep, 2421 objp + obj_offset(cachep)); 2422 cachep->ctor(objp + obj_offset(cachep)); 2423 kasan_poison_object_data( 2424 cachep, objp + obj_offset(cachep)); 2425 } 2426 2427 if (cachep->flags & SLAB_RED_ZONE) { 2428 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2429 slab_error(cachep, "constructor overwrote the end of an object"); 2430 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2431 slab_error(cachep, "constructor overwrote the start of an object"); 2432 } 2433 /* need to poison the objs? */ 2434 if (cachep->flags & SLAB_POISON) { 2435 poison_obj(cachep, objp, POISON_FREE); 2436 slab_kernel_map(cachep, objp, 0, 0); 2437 } 2438 } 2439 #endif 2440 } 2441 2442 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2443 /* Hold information during a freelist initialization */ 2444 union freelist_init_state { 2445 struct { 2446 unsigned int pos; 2447 unsigned int *list; 2448 unsigned int count; 2449 }; 2450 struct rnd_state rnd_state; 2451 }; 2452 2453 /* 2454 * Initialize the state based on the randomization methode available. 2455 * return true if the pre-computed list is available, false otherwize. 2456 */ 2457 static bool freelist_state_initialize(union freelist_init_state *state, 2458 struct kmem_cache *cachep, 2459 unsigned int count) 2460 { 2461 bool ret; 2462 unsigned int rand; 2463 2464 /* Use best entropy available to define a random shift */ 2465 rand = get_random_int(); 2466 2467 /* Use a random state if the pre-computed list is not available */ 2468 if (!cachep->random_seq) { 2469 prandom_seed_state(&state->rnd_state, rand); 2470 ret = false; 2471 } else { 2472 state->list = cachep->random_seq; 2473 state->count = count; 2474 state->pos = rand % count; 2475 ret = true; 2476 } 2477 return ret; 2478 } 2479 2480 /* Get the next entry on the list and randomize it using a random shift */ 2481 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2482 { 2483 if (state->pos >= state->count) 2484 state->pos = 0; 2485 return state->list[state->pos++]; 2486 } 2487 2488 /* Swap two freelist entries */ 2489 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2490 { 2491 swap(((freelist_idx_t *)page->freelist)[a], 2492 ((freelist_idx_t *)page->freelist)[b]); 2493 } 2494 2495 /* 2496 * Shuffle the freelist initialization state based on pre-computed lists. 2497 * return true if the list was successfully shuffled, false otherwise. 2498 */ 2499 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2500 { 2501 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2502 union freelist_init_state state; 2503 bool precomputed; 2504 2505 if (count < 2) 2506 return false; 2507 2508 precomputed = freelist_state_initialize(&state, cachep, count); 2509 2510 /* Take a random entry as the objfreelist */ 2511 if (OBJFREELIST_SLAB(cachep)) { 2512 if (!precomputed) 2513 objfreelist = count - 1; 2514 else 2515 objfreelist = next_random_slot(&state); 2516 page->freelist = index_to_obj(cachep, page, objfreelist) + 2517 obj_offset(cachep); 2518 count--; 2519 } 2520 2521 /* 2522 * On early boot, generate the list dynamically. 2523 * Later use a pre-computed list for speed. 2524 */ 2525 if (!precomputed) { 2526 for (i = 0; i < count; i++) 2527 set_free_obj(page, i, i); 2528 2529 /* Fisher-Yates shuffle */ 2530 for (i = count - 1; i > 0; i--) { 2531 rand = prandom_u32_state(&state.rnd_state); 2532 rand %= (i + 1); 2533 swap_free_obj(page, i, rand); 2534 } 2535 } else { 2536 for (i = 0; i < count; i++) 2537 set_free_obj(page, i, next_random_slot(&state)); 2538 } 2539 2540 if (OBJFREELIST_SLAB(cachep)) 2541 set_free_obj(page, cachep->num - 1, objfreelist); 2542 2543 return true; 2544 } 2545 #else 2546 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2547 struct page *page) 2548 { 2549 return false; 2550 } 2551 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2552 2553 static void cache_init_objs(struct kmem_cache *cachep, 2554 struct page *page) 2555 { 2556 int i; 2557 void *objp; 2558 bool shuffled; 2559 2560 cache_init_objs_debug(cachep, page); 2561 2562 /* Try to randomize the freelist if enabled */ 2563 shuffled = shuffle_freelist(cachep, page); 2564 2565 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2566 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2567 obj_offset(cachep); 2568 } 2569 2570 for (i = 0; i < cachep->num; i++) { 2571 objp = index_to_obj(cachep, page, i); 2572 kasan_init_slab_obj(cachep, objp); 2573 2574 /* constructor could break poison info */ 2575 if (DEBUG == 0 && cachep->ctor) { 2576 kasan_unpoison_object_data(cachep, objp); 2577 cachep->ctor(objp); 2578 kasan_poison_object_data(cachep, objp); 2579 } 2580 2581 if (!shuffled) 2582 set_free_obj(page, i, i); 2583 } 2584 } 2585 2586 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2587 { 2588 void *objp; 2589 2590 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2591 page->active++; 2592 2593 #if DEBUG 2594 if (cachep->flags & SLAB_STORE_USER) 2595 set_store_user_dirty(cachep); 2596 #endif 2597 2598 return objp; 2599 } 2600 2601 static void slab_put_obj(struct kmem_cache *cachep, 2602 struct page *page, void *objp) 2603 { 2604 unsigned int objnr = obj_to_index(cachep, page, objp); 2605 #if DEBUG 2606 unsigned int i; 2607 2608 /* Verify double free bug */ 2609 for (i = page->active; i < cachep->num; i++) { 2610 if (get_free_obj(page, i) == objnr) { 2611 pr_err("slab: double free detected in cache '%s', objp %p\n", 2612 cachep->name, objp); 2613 BUG(); 2614 } 2615 } 2616 #endif 2617 page->active--; 2618 if (!page->freelist) 2619 page->freelist = objp + obj_offset(cachep); 2620 2621 set_free_obj(page, page->active, objnr); 2622 } 2623 2624 /* 2625 * Map pages beginning at addr to the given cache and slab. This is required 2626 * for the slab allocator to be able to lookup the cache and slab of a 2627 * virtual address for kfree, ksize, and slab debugging. 2628 */ 2629 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2630 void *freelist) 2631 { 2632 page->slab_cache = cache; 2633 page->freelist = freelist; 2634 } 2635 2636 /* 2637 * Grow (by 1) the number of slabs within a cache. This is called by 2638 * kmem_cache_alloc() when there are no active objs left in a cache. 2639 */ 2640 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2641 gfp_t flags, int nodeid) 2642 { 2643 void *freelist; 2644 size_t offset; 2645 gfp_t local_flags; 2646 int page_node; 2647 struct kmem_cache_node *n; 2648 struct page *page; 2649 2650 /* 2651 * Be lazy and only check for valid flags here, keeping it out of the 2652 * critical path in kmem_cache_alloc(). 2653 */ 2654 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2655 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2656 flags &= ~GFP_SLAB_BUG_MASK; 2657 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2658 invalid_mask, &invalid_mask, flags, &flags); 2659 dump_stack(); 2660 } 2661 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2662 2663 check_irq_off(); 2664 if (gfpflags_allow_blocking(local_flags)) 2665 local_irq_enable(); 2666 2667 /* 2668 * Get mem for the objs. Attempt to allocate a physical page from 2669 * 'nodeid'. 2670 */ 2671 page = kmem_getpages(cachep, local_flags, nodeid); 2672 if (!page) 2673 goto failed; 2674 2675 page_node = page_to_nid(page); 2676 n = get_node(cachep, page_node); 2677 2678 /* Get colour for the slab, and cal the next value. */ 2679 n->colour_next++; 2680 if (n->colour_next >= cachep->colour) 2681 n->colour_next = 0; 2682 2683 offset = n->colour_next; 2684 if (offset >= cachep->colour) 2685 offset = 0; 2686 2687 offset *= cachep->colour_off; 2688 2689 /* Get slab management. */ 2690 freelist = alloc_slabmgmt(cachep, page, offset, 2691 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2692 if (OFF_SLAB(cachep) && !freelist) 2693 goto opps1; 2694 2695 slab_map_pages(cachep, page, freelist); 2696 2697 kasan_poison_slab(page); 2698 cache_init_objs(cachep, page); 2699 2700 if (gfpflags_allow_blocking(local_flags)) 2701 local_irq_disable(); 2702 2703 return page; 2704 2705 opps1: 2706 kmem_freepages(cachep, page); 2707 failed: 2708 if (gfpflags_allow_blocking(local_flags)) 2709 local_irq_disable(); 2710 return NULL; 2711 } 2712 2713 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2714 { 2715 struct kmem_cache_node *n; 2716 void *list = NULL; 2717 2718 check_irq_off(); 2719 2720 if (!page) 2721 return; 2722 2723 INIT_LIST_HEAD(&page->lru); 2724 n = get_node(cachep, page_to_nid(page)); 2725 2726 spin_lock(&n->list_lock); 2727 n->total_slabs++; 2728 if (!page->active) { 2729 list_add_tail(&page->lru, &(n->slabs_free)); 2730 n->free_slabs++; 2731 } else 2732 fixup_slab_list(cachep, n, page, &list); 2733 2734 STATS_INC_GROWN(cachep); 2735 n->free_objects += cachep->num - page->active; 2736 spin_unlock(&n->list_lock); 2737 2738 fixup_objfreelist_debug(cachep, &list); 2739 } 2740 2741 #if DEBUG 2742 2743 /* 2744 * Perform extra freeing checks: 2745 * - detect bad pointers. 2746 * - POISON/RED_ZONE checking 2747 */ 2748 static void kfree_debugcheck(const void *objp) 2749 { 2750 if (!virt_addr_valid(objp)) { 2751 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2752 (unsigned long)objp); 2753 BUG(); 2754 } 2755 } 2756 2757 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2758 { 2759 unsigned long long redzone1, redzone2; 2760 2761 redzone1 = *dbg_redzone1(cache, obj); 2762 redzone2 = *dbg_redzone2(cache, obj); 2763 2764 /* 2765 * Redzone is ok. 2766 */ 2767 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2768 return; 2769 2770 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2771 slab_error(cache, "double free detected"); 2772 else 2773 slab_error(cache, "memory outside object was overwritten"); 2774 2775 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2776 obj, redzone1, redzone2); 2777 } 2778 2779 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2780 unsigned long caller) 2781 { 2782 unsigned int objnr; 2783 struct page *page; 2784 2785 BUG_ON(virt_to_cache(objp) != cachep); 2786 2787 objp -= obj_offset(cachep); 2788 kfree_debugcheck(objp); 2789 page = virt_to_head_page(objp); 2790 2791 if (cachep->flags & SLAB_RED_ZONE) { 2792 verify_redzone_free(cachep, objp); 2793 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2794 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2795 } 2796 if (cachep->flags & SLAB_STORE_USER) { 2797 set_store_user_dirty(cachep); 2798 *dbg_userword(cachep, objp) = (void *)caller; 2799 } 2800 2801 objnr = obj_to_index(cachep, page, objp); 2802 2803 BUG_ON(objnr >= cachep->num); 2804 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2805 2806 if (cachep->flags & SLAB_POISON) { 2807 poison_obj(cachep, objp, POISON_FREE); 2808 slab_kernel_map(cachep, objp, 0, caller); 2809 } 2810 return objp; 2811 } 2812 2813 #else 2814 #define kfree_debugcheck(x) do { } while(0) 2815 #define cache_free_debugcheck(x,objp,z) (objp) 2816 #endif 2817 2818 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2819 void **list) 2820 { 2821 #if DEBUG 2822 void *next = *list; 2823 void *objp; 2824 2825 while (next) { 2826 objp = next - obj_offset(cachep); 2827 next = *(void **)next; 2828 poison_obj(cachep, objp, POISON_FREE); 2829 } 2830 #endif 2831 } 2832 2833 static inline void fixup_slab_list(struct kmem_cache *cachep, 2834 struct kmem_cache_node *n, struct page *page, 2835 void **list) 2836 { 2837 /* move slabp to correct slabp list: */ 2838 list_del(&page->lru); 2839 if (page->active == cachep->num) { 2840 list_add(&page->lru, &n->slabs_full); 2841 if (OBJFREELIST_SLAB(cachep)) { 2842 #if DEBUG 2843 /* Poisoning will be done without holding the lock */ 2844 if (cachep->flags & SLAB_POISON) { 2845 void **objp = page->freelist; 2846 2847 *objp = *list; 2848 *list = objp; 2849 } 2850 #endif 2851 page->freelist = NULL; 2852 } 2853 } else 2854 list_add(&page->lru, &n->slabs_partial); 2855 } 2856 2857 /* Try to find non-pfmemalloc slab if needed */ 2858 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2859 struct page *page, bool pfmemalloc) 2860 { 2861 if (!page) 2862 return NULL; 2863 2864 if (pfmemalloc) 2865 return page; 2866 2867 if (!PageSlabPfmemalloc(page)) 2868 return page; 2869 2870 /* No need to keep pfmemalloc slab if we have enough free objects */ 2871 if (n->free_objects > n->free_limit) { 2872 ClearPageSlabPfmemalloc(page); 2873 return page; 2874 } 2875 2876 /* Move pfmemalloc slab to the end of list to speed up next search */ 2877 list_del(&page->lru); 2878 if (!page->active) { 2879 list_add_tail(&page->lru, &n->slabs_free); 2880 n->free_slabs++; 2881 } else 2882 list_add_tail(&page->lru, &n->slabs_partial); 2883 2884 list_for_each_entry(page, &n->slabs_partial, lru) { 2885 if (!PageSlabPfmemalloc(page)) 2886 return page; 2887 } 2888 2889 n->free_touched = 1; 2890 list_for_each_entry(page, &n->slabs_free, lru) { 2891 if (!PageSlabPfmemalloc(page)) { 2892 n->free_slabs--; 2893 return page; 2894 } 2895 } 2896 2897 return NULL; 2898 } 2899 2900 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2901 { 2902 struct page *page; 2903 2904 assert_spin_locked(&n->list_lock); 2905 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru); 2906 if (!page) { 2907 n->free_touched = 1; 2908 page = list_first_entry_or_null(&n->slabs_free, struct page, 2909 lru); 2910 if (page) 2911 n->free_slabs--; 2912 } 2913 2914 if (sk_memalloc_socks()) 2915 page = get_valid_first_slab(n, page, pfmemalloc); 2916 2917 return page; 2918 } 2919 2920 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2921 struct kmem_cache_node *n, gfp_t flags) 2922 { 2923 struct page *page; 2924 void *obj; 2925 void *list = NULL; 2926 2927 if (!gfp_pfmemalloc_allowed(flags)) 2928 return NULL; 2929 2930 spin_lock(&n->list_lock); 2931 page = get_first_slab(n, true); 2932 if (!page) { 2933 spin_unlock(&n->list_lock); 2934 return NULL; 2935 } 2936 2937 obj = slab_get_obj(cachep, page); 2938 n->free_objects--; 2939 2940 fixup_slab_list(cachep, n, page, &list); 2941 2942 spin_unlock(&n->list_lock); 2943 fixup_objfreelist_debug(cachep, &list); 2944 2945 return obj; 2946 } 2947 2948 /* 2949 * Slab list should be fixed up by fixup_slab_list() for existing slab 2950 * or cache_grow_end() for new slab 2951 */ 2952 static __always_inline int alloc_block(struct kmem_cache *cachep, 2953 struct array_cache *ac, struct page *page, int batchcount) 2954 { 2955 /* 2956 * There must be at least one object available for 2957 * allocation. 2958 */ 2959 BUG_ON(page->active >= cachep->num); 2960 2961 while (page->active < cachep->num && batchcount--) { 2962 STATS_INC_ALLOCED(cachep); 2963 STATS_INC_ACTIVE(cachep); 2964 STATS_SET_HIGH(cachep); 2965 2966 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2967 } 2968 2969 return batchcount; 2970 } 2971 2972 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2973 { 2974 int batchcount; 2975 struct kmem_cache_node *n; 2976 struct array_cache *ac, *shared; 2977 int node; 2978 void *list = NULL; 2979 struct page *page; 2980 2981 check_irq_off(); 2982 node = numa_mem_id(); 2983 2984 ac = cpu_cache_get(cachep); 2985 batchcount = ac->batchcount; 2986 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2987 /* 2988 * If there was little recent activity on this cache, then 2989 * perform only a partial refill. Otherwise we could generate 2990 * refill bouncing. 2991 */ 2992 batchcount = BATCHREFILL_LIMIT; 2993 } 2994 n = get_node(cachep, node); 2995 2996 BUG_ON(ac->avail > 0 || !n); 2997 shared = READ_ONCE(n->shared); 2998 if (!n->free_objects && (!shared || !shared->avail)) 2999 goto direct_grow; 3000 3001 spin_lock(&n->list_lock); 3002 shared = READ_ONCE(n->shared); 3003 3004 /* See if we can refill from the shared array */ 3005 if (shared && transfer_objects(ac, shared, batchcount)) { 3006 shared->touched = 1; 3007 goto alloc_done; 3008 } 3009 3010 while (batchcount > 0) { 3011 /* Get slab alloc is to come from. */ 3012 page = get_first_slab(n, false); 3013 if (!page) 3014 goto must_grow; 3015 3016 check_spinlock_acquired(cachep); 3017 3018 batchcount = alloc_block(cachep, ac, page, batchcount); 3019 fixup_slab_list(cachep, n, page, &list); 3020 } 3021 3022 must_grow: 3023 n->free_objects -= ac->avail; 3024 alloc_done: 3025 spin_unlock(&n->list_lock); 3026 fixup_objfreelist_debug(cachep, &list); 3027 3028 direct_grow: 3029 if (unlikely(!ac->avail)) { 3030 /* Check if we can use obj in pfmemalloc slab */ 3031 if (sk_memalloc_socks()) { 3032 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 3033 3034 if (obj) 3035 return obj; 3036 } 3037 3038 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 3039 3040 /* 3041 * cache_grow_begin() can reenable interrupts, 3042 * then ac could change. 3043 */ 3044 ac = cpu_cache_get(cachep); 3045 if (!ac->avail && page) 3046 alloc_block(cachep, ac, page, batchcount); 3047 cache_grow_end(cachep, page); 3048 3049 if (!ac->avail) 3050 return NULL; 3051 } 3052 ac->touched = 1; 3053 3054 return ac->entry[--ac->avail]; 3055 } 3056 3057 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3058 gfp_t flags) 3059 { 3060 might_sleep_if(gfpflags_allow_blocking(flags)); 3061 } 3062 3063 #if DEBUG 3064 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3065 gfp_t flags, void *objp, unsigned long caller) 3066 { 3067 if (!objp) 3068 return objp; 3069 if (cachep->flags & SLAB_POISON) { 3070 check_poison_obj(cachep, objp); 3071 slab_kernel_map(cachep, objp, 1, 0); 3072 poison_obj(cachep, objp, POISON_INUSE); 3073 } 3074 if (cachep->flags & SLAB_STORE_USER) 3075 *dbg_userword(cachep, objp) = (void *)caller; 3076 3077 if (cachep->flags & SLAB_RED_ZONE) { 3078 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3079 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3080 slab_error(cachep, "double free, or memory outside object was overwritten"); 3081 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3082 objp, *dbg_redzone1(cachep, objp), 3083 *dbg_redzone2(cachep, objp)); 3084 } 3085 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3086 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3087 } 3088 3089 objp += obj_offset(cachep); 3090 if (cachep->ctor && cachep->flags & SLAB_POISON) 3091 cachep->ctor(objp); 3092 if (ARCH_SLAB_MINALIGN && 3093 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3094 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3095 objp, (int)ARCH_SLAB_MINALIGN); 3096 } 3097 return objp; 3098 } 3099 #else 3100 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3101 #endif 3102 3103 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3104 { 3105 void *objp; 3106 struct array_cache *ac; 3107 3108 check_irq_off(); 3109 3110 ac = cpu_cache_get(cachep); 3111 if (likely(ac->avail)) { 3112 ac->touched = 1; 3113 objp = ac->entry[--ac->avail]; 3114 3115 STATS_INC_ALLOCHIT(cachep); 3116 goto out; 3117 } 3118 3119 STATS_INC_ALLOCMISS(cachep); 3120 objp = cache_alloc_refill(cachep, flags); 3121 /* 3122 * the 'ac' may be updated by cache_alloc_refill(), 3123 * and kmemleak_erase() requires its correct value. 3124 */ 3125 ac = cpu_cache_get(cachep); 3126 3127 out: 3128 /* 3129 * To avoid a false negative, if an object that is in one of the 3130 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3131 * treat the array pointers as a reference to the object. 3132 */ 3133 if (objp) 3134 kmemleak_erase(&ac->entry[ac->avail]); 3135 return objp; 3136 } 3137 3138 #ifdef CONFIG_NUMA 3139 /* 3140 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3141 * 3142 * If we are in_interrupt, then process context, including cpusets and 3143 * mempolicy, may not apply and should not be used for allocation policy. 3144 */ 3145 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3146 { 3147 int nid_alloc, nid_here; 3148 3149 if (in_interrupt() || (flags & __GFP_THISNODE)) 3150 return NULL; 3151 nid_alloc = nid_here = numa_mem_id(); 3152 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3153 nid_alloc = cpuset_slab_spread_node(); 3154 else if (current->mempolicy) 3155 nid_alloc = mempolicy_slab_node(); 3156 if (nid_alloc != nid_here) 3157 return ____cache_alloc_node(cachep, flags, nid_alloc); 3158 return NULL; 3159 } 3160 3161 /* 3162 * Fallback function if there was no memory available and no objects on a 3163 * certain node and fall back is permitted. First we scan all the 3164 * available node for available objects. If that fails then we 3165 * perform an allocation without specifying a node. This allows the page 3166 * allocator to do its reclaim / fallback magic. We then insert the 3167 * slab into the proper nodelist and then allocate from it. 3168 */ 3169 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3170 { 3171 struct zonelist *zonelist; 3172 struct zoneref *z; 3173 struct zone *zone; 3174 enum zone_type high_zoneidx = gfp_zone(flags); 3175 void *obj = NULL; 3176 struct page *page; 3177 int nid; 3178 unsigned int cpuset_mems_cookie; 3179 3180 if (flags & __GFP_THISNODE) 3181 return NULL; 3182 3183 retry_cpuset: 3184 cpuset_mems_cookie = read_mems_allowed_begin(); 3185 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3186 3187 retry: 3188 /* 3189 * Look through allowed nodes for objects available 3190 * from existing per node queues. 3191 */ 3192 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3193 nid = zone_to_nid(zone); 3194 3195 if (cpuset_zone_allowed(zone, flags) && 3196 get_node(cache, nid) && 3197 get_node(cache, nid)->free_objects) { 3198 obj = ____cache_alloc_node(cache, 3199 gfp_exact_node(flags), nid); 3200 if (obj) 3201 break; 3202 } 3203 } 3204 3205 if (!obj) { 3206 /* 3207 * This allocation will be performed within the constraints 3208 * of the current cpuset / memory policy requirements. 3209 * We may trigger various forms of reclaim on the allowed 3210 * set and go into memory reserves if necessary. 3211 */ 3212 page = cache_grow_begin(cache, flags, numa_mem_id()); 3213 cache_grow_end(cache, page); 3214 if (page) { 3215 nid = page_to_nid(page); 3216 obj = ____cache_alloc_node(cache, 3217 gfp_exact_node(flags), nid); 3218 3219 /* 3220 * Another processor may allocate the objects in 3221 * the slab since we are not holding any locks. 3222 */ 3223 if (!obj) 3224 goto retry; 3225 } 3226 } 3227 3228 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3229 goto retry_cpuset; 3230 return obj; 3231 } 3232 3233 /* 3234 * A interface to enable slab creation on nodeid 3235 */ 3236 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3237 int nodeid) 3238 { 3239 struct page *page; 3240 struct kmem_cache_node *n; 3241 void *obj = NULL; 3242 void *list = NULL; 3243 3244 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3245 n = get_node(cachep, nodeid); 3246 BUG_ON(!n); 3247 3248 check_irq_off(); 3249 spin_lock(&n->list_lock); 3250 page = get_first_slab(n, false); 3251 if (!page) 3252 goto must_grow; 3253 3254 check_spinlock_acquired_node(cachep, nodeid); 3255 3256 STATS_INC_NODEALLOCS(cachep); 3257 STATS_INC_ACTIVE(cachep); 3258 STATS_SET_HIGH(cachep); 3259 3260 BUG_ON(page->active == cachep->num); 3261 3262 obj = slab_get_obj(cachep, page); 3263 n->free_objects--; 3264 3265 fixup_slab_list(cachep, n, page, &list); 3266 3267 spin_unlock(&n->list_lock); 3268 fixup_objfreelist_debug(cachep, &list); 3269 return obj; 3270 3271 must_grow: 3272 spin_unlock(&n->list_lock); 3273 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3274 if (page) { 3275 /* This slab isn't counted yet so don't update free_objects */ 3276 obj = slab_get_obj(cachep, page); 3277 } 3278 cache_grow_end(cachep, page); 3279 3280 return obj ? obj : fallback_alloc(cachep, flags); 3281 } 3282 3283 static __always_inline void * 3284 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3285 unsigned long caller) 3286 { 3287 unsigned long save_flags; 3288 void *ptr; 3289 int slab_node = numa_mem_id(); 3290 3291 flags &= gfp_allowed_mask; 3292 cachep = slab_pre_alloc_hook(cachep, flags); 3293 if (unlikely(!cachep)) 3294 return NULL; 3295 3296 cache_alloc_debugcheck_before(cachep, flags); 3297 local_irq_save(save_flags); 3298 3299 if (nodeid == NUMA_NO_NODE) 3300 nodeid = slab_node; 3301 3302 if (unlikely(!get_node(cachep, nodeid))) { 3303 /* Node not bootstrapped yet */ 3304 ptr = fallback_alloc(cachep, flags); 3305 goto out; 3306 } 3307 3308 if (nodeid == slab_node) { 3309 /* 3310 * Use the locally cached objects if possible. 3311 * However ____cache_alloc does not allow fallback 3312 * to other nodes. It may fail while we still have 3313 * objects on other nodes available. 3314 */ 3315 ptr = ____cache_alloc(cachep, flags); 3316 if (ptr) 3317 goto out; 3318 } 3319 /* ___cache_alloc_node can fall back to other nodes */ 3320 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3321 out: 3322 local_irq_restore(save_flags); 3323 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3324 3325 if (unlikely(flags & __GFP_ZERO) && ptr) 3326 memset(ptr, 0, cachep->object_size); 3327 3328 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3329 return ptr; 3330 } 3331 3332 static __always_inline void * 3333 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3334 { 3335 void *objp; 3336 3337 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3338 objp = alternate_node_alloc(cache, flags); 3339 if (objp) 3340 goto out; 3341 } 3342 objp = ____cache_alloc(cache, flags); 3343 3344 /* 3345 * We may just have run out of memory on the local node. 3346 * ____cache_alloc_node() knows how to locate memory on other nodes 3347 */ 3348 if (!objp) 3349 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3350 3351 out: 3352 return objp; 3353 } 3354 #else 3355 3356 static __always_inline void * 3357 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3358 { 3359 return ____cache_alloc(cachep, flags); 3360 } 3361 3362 #endif /* CONFIG_NUMA */ 3363 3364 static __always_inline void * 3365 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3366 { 3367 unsigned long save_flags; 3368 void *objp; 3369 3370 flags &= gfp_allowed_mask; 3371 cachep = slab_pre_alloc_hook(cachep, flags); 3372 if (unlikely(!cachep)) 3373 return NULL; 3374 3375 cache_alloc_debugcheck_before(cachep, flags); 3376 local_irq_save(save_flags); 3377 objp = __do_cache_alloc(cachep, flags); 3378 local_irq_restore(save_flags); 3379 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3380 prefetchw(objp); 3381 3382 if (unlikely(flags & __GFP_ZERO) && objp) 3383 memset(objp, 0, cachep->object_size); 3384 3385 slab_post_alloc_hook(cachep, flags, 1, &objp); 3386 return objp; 3387 } 3388 3389 /* 3390 * Caller needs to acquire correct kmem_cache_node's list_lock 3391 * @list: List of detached free slabs should be freed by caller 3392 */ 3393 static void free_block(struct kmem_cache *cachep, void **objpp, 3394 int nr_objects, int node, struct list_head *list) 3395 { 3396 int i; 3397 struct kmem_cache_node *n = get_node(cachep, node); 3398 struct page *page; 3399 3400 n->free_objects += nr_objects; 3401 3402 for (i = 0; i < nr_objects; i++) { 3403 void *objp; 3404 struct page *page; 3405 3406 objp = objpp[i]; 3407 3408 page = virt_to_head_page(objp); 3409 list_del(&page->lru); 3410 check_spinlock_acquired_node(cachep, node); 3411 slab_put_obj(cachep, page, objp); 3412 STATS_DEC_ACTIVE(cachep); 3413 3414 /* fixup slab chains */ 3415 if (page->active == 0) { 3416 list_add(&page->lru, &n->slabs_free); 3417 n->free_slabs++; 3418 } else { 3419 /* Unconditionally move a slab to the end of the 3420 * partial list on free - maximum time for the 3421 * other objects to be freed, too. 3422 */ 3423 list_add_tail(&page->lru, &n->slabs_partial); 3424 } 3425 } 3426 3427 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3428 n->free_objects -= cachep->num; 3429 3430 page = list_last_entry(&n->slabs_free, struct page, lru); 3431 list_move(&page->lru, list); 3432 n->free_slabs--; 3433 n->total_slabs--; 3434 } 3435 } 3436 3437 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3438 { 3439 int batchcount; 3440 struct kmem_cache_node *n; 3441 int node = numa_mem_id(); 3442 LIST_HEAD(list); 3443 3444 batchcount = ac->batchcount; 3445 3446 check_irq_off(); 3447 n = get_node(cachep, node); 3448 spin_lock(&n->list_lock); 3449 if (n->shared) { 3450 struct array_cache *shared_array = n->shared; 3451 int max = shared_array->limit - shared_array->avail; 3452 if (max) { 3453 if (batchcount > max) 3454 batchcount = max; 3455 memcpy(&(shared_array->entry[shared_array->avail]), 3456 ac->entry, sizeof(void *) * batchcount); 3457 shared_array->avail += batchcount; 3458 goto free_done; 3459 } 3460 } 3461 3462 free_block(cachep, ac->entry, batchcount, node, &list); 3463 free_done: 3464 #if STATS 3465 { 3466 int i = 0; 3467 struct page *page; 3468 3469 list_for_each_entry(page, &n->slabs_free, lru) { 3470 BUG_ON(page->active); 3471 3472 i++; 3473 } 3474 STATS_SET_FREEABLE(cachep, i); 3475 } 3476 #endif 3477 spin_unlock(&n->list_lock); 3478 slabs_destroy(cachep, &list); 3479 ac->avail -= batchcount; 3480 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3481 } 3482 3483 /* 3484 * Release an obj back to its cache. If the obj has a constructed state, it must 3485 * be in this state _before_ it is released. Called with disabled ints. 3486 */ 3487 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3488 unsigned long caller) 3489 { 3490 /* Put the object into the quarantine, don't touch it for now. */ 3491 if (kasan_slab_free(cachep, objp)) 3492 return; 3493 3494 ___cache_free(cachep, objp, caller); 3495 } 3496 3497 void ___cache_free(struct kmem_cache *cachep, void *objp, 3498 unsigned long caller) 3499 { 3500 struct array_cache *ac = cpu_cache_get(cachep); 3501 3502 check_irq_off(); 3503 kmemleak_free_recursive(objp, cachep->flags); 3504 objp = cache_free_debugcheck(cachep, objp, caller); 3505 3506 /* 3507 * Skip calling cache_free_alien() when the platform is not numa. 3508 * This will avoid cache misses that happen while accessing slabp (which 3509 * is per page memory reference) to get nodeid. Instead use a global 3510 * variable to skip the call, which is mostly likely to be present in 3511 * the cache. 3512 */ 3513 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3514 return; 3515 3516 if (ac->avail < ac->limit) { 3517 STATS_INC_FREEHIT(cachep); 3518 } else { 3519 STATS_INC_FREEMISS(cachep); 3520 cache_flusharray(cachep, ac); 3521 } 3522 3523 if (sk_memalloc_socks()) { 3524 struct page *page = virt_to_head_page(objp); 3525 3526 if (unlikely(PageSlabPfmemalloc(page))) { 3527 cache_free_pfmemalloc(cachep, page, objp); 3528 return; 3529 } 3530 } 3531 3532 ac->entry[ac->avail++] = objp; 3533 } 3534 3535 /** 3536 * kmem_cache_alloc - Allocate an object 3537 * @cachep: The cache to allocate from. 3538 * @flags: See kmalloc(). 3539 * 3540 * Allocate an object from this cache. The flags are only relevant 3541 * if the cache has no available objects. 3542 */ 3543 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3544 { 3545 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3546 3547 kasan_slab_alloc(cachep, ret, flags); 3548 trace_kmem_cache_alloc(_RET_IP_, ret, 3549 cachep->object_size, cachep->size, flags); 3550 3551 return ret; 3552 } 3553 EXPORT_SYMBOL(kmem_cache_alloc); 3554 3555 static __always_inline void 3556 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3557 size_t size, void **p, unsigned long caller) 3558 { 3559 size_t i; 3560 3561 for (i = 0; i < size; i++) 3562 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3563 } 3564 3565 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3566 void **p) 3567 { 3568 size_t i; 3569 3570 s = slab_pre_alloc_hook(s, flags); 3571 if (!s) 3572 return 0; 3573 3574 cache_alloc_debugcheck_before(s, flags); 3575 3576 local_irq_disable(); 3577 for (i = 0; i < size; i++) { 3578 void *objp = __do_cache_alloc(s, flags); 3579 3580 if (unlikely(!objp)) 3581 goto error; 3582 p[i] = objp; 3583 } 3584 local_irq_enable(); 3585 3586 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3587 3588 /* Clear memory outside IRQ disabled section */ 3589 if (unlikely(flags & __GFP_ZERO)) 3590 for (i = 0; i < size; i++) 3591 memset(p[i], 0, s->object_size); 3592 3593 slab_post_alloc_hook(s, flags, size, p); 3594 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3595 return size; 3596 error: 3597 local_irq_enable(); 3598 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3599 slab_post_alloc_hook(s, flags, i, p); 3600 __kmem_cache_free_bulk(s, i, p); 3601 return 0; 3602 } 3603 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3604 3605 #ifdef CONFIG_TRACING 3606 void * 3607 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3608 { 3609 void *ret; 3610 3611 ret = slab_alloc(cachep, flags, _RET_IP_); 3612 3613 kasan_kmalloc(cachep, ret, size, flags); 3614 trace_kmalloc(_RET_IP_, ret, 3615 size, cachep->size, flags); 3616 return ret; 3617 } 3618 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3619 #endif 3620 3621 #ifdef CONFIG_NUMA 3622 /** 3623 * kmem_cache_alloc_node - Allocate an object on the specified node 3624 * @cachep: The cache to allocate from. 3625 * @flags: See kmalloc(). 3626 * @nodeid: node number of the target node. 3627 * 3628 * Identical to kmem_cache_alloc but it will allocate memory on the given 3629 * node, which can improve the performance for cpu bound structures. 3630 * 3631 * Fallback to other node is possible if __GFP_THISNODE is not set. 3632 */ 3633 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3634 { 3635 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3636 3637 kasan_slab_alloc(cachep, ret, flags); 3638 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3639 cachep->object_size, cachep->size, 3640 flags, nodeid); 3641 3642 return ret; 3643 } 3644 EXPORT_SYMBOL(kmem_cache_alloc_node); 3645 3646 #ifdef CONFIG_TRACING 3647 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3648 gfp_t flags, 3649 int nodeid, 3650 size_t size) 3651 { 3652 void *ret; 3653 3654 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3655 3656 kasan_kmalloc(cachep, ret, size, flags); 3657 trace_kmalloc_node(_RET_IP_, ret, 3658 size, cachep->size, 3659 flags, nodeid); 3660 return ret; 3661 } 3662 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3663 #endif 3664 3665 static __always_inline void * 3666 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3667 { 3668 struct kmem_cache *cachep; 3669 void *ret; 3670 3671 cachep = kmalloc_slab(size, flags); 3672 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3673 return cachep; 3674 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3675 kasan_kmalloc(cachep, ret, size, flags); 3676 3677 return ret; 3678 } 3679 3680 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3681 { 3682 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3683 } 3684 EXPORT_SYMBOL(__kmalloc_node); 3685 3686 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3687 int node, unsigned long caller) 3688 { 3689 return __do_kmalloc_node(size, flags, node, caller); 3690 } 3691 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3692 #endif /* CONFIG_NUMA */ 3693 3694 /** 3695 * __do_kmalloc - allocate memory 3696 * @size: how many bytes of memory are required. 3697 * @flags: the type of memory to allocate (see kmalloc). 3698 * @caller: function caller for debug tracking of the caller 3699 */ 3700 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3701 unsigned long caller) 3702 { 3703 struct kmem_cache *cachep; 3704 void *ret; 3705 3706 cachep = kmalloc_slab(size, flags); 3707 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3708 return cachep; 3709 ret = slab_alloc(cachep, flags, caller); 3710 3711 kasan_kmalloc(cachep, ret, size, flags); 3712 trace_kmalloc(caller, ret, 3713 size, cachep->size, flags); 3714 3715 return ret; 3716 } 3717 3718 void *__kmalloc(size_t size, gfp_t flags) 3719 { 3720 return __do_kmalloc(size, flags, _RET_IP_); 3721 } 3722 EXPORT_SYMBOL(__kmalloc); 3723 3724 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3725 { 3726 return __do_kmalloc(size, flags, caller); 3727 } 3728 EXPORT_SYMBOL(__kmalloc_track_caller); 3729 3730 /** 3731 * kmem_cache_free - Deallocate an object 3732 * @cachep: The cache the allocation was from. 3733 * @objp: The previously allocated object. 3734 * 3735 * Free an object which was previously allocated from this 3736 * cache. 3737 */ 3738 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3739 { 3740 unsigned long flags; 3741 cachep = cache_from_obj(cachep, objp); 3742 if (!cachep) 3743 return; 3744 3745 local_irq_save(flags); 3746 debug_check_no_locks_freed(objp, cachep->object_size); 3747 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3748 debug_check_no_obj_freed(objp, cachep->object_size); 3749 __cache_free(cachep, objp, _RET_IP_); 3750 local_irq_restore(flags); 3751 3752 trace_kmem_cache_free(_RET_IP_, objp); 3753 } 3754 EXPORT_SYMBOL(kmem_cache_free); 3755 3756 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3757 { 3758 struct kmem_cache *s; 3759 size_t i; 3760 3761 local_irq_disable(); 3762 for (i = 0; i < size; i++) { 3763 void *objp = p[i]; 3764 3765 if (!orig_s) /* called via kfree_bulk */ 3766 s = virt_to_cache(objp); 3767 else 3768 s = cache_from_obj(orig_s, objp); 3769 3770 debug_check_no_locks_freed(objp, s->object_size); 3771 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3772 debug_check_no_obj_freed(objp, s->object_size); 3773 3774 __cache_free(s, objp, _RET_IP_); 3775 } 3776 local_irq_enable(); 3777 3778 /* FIXME: add tracing */ 3779 } 3780 EXPORT_SYMBOL(kmem_cache_free_bulk); 3781 3782 /** 3783 * kfree - free previously allocated memory 3784 * @objp: pointer returned by kmalloc. 3785 * 3786 * If @objp is NULL, no operation is performed. 3787 * 3788 * Don't free memory not originally allocated by kmalloc() 3789 * or you will run into trouble. 3790 */ 3791 void kfree(const void *objp) 3792 { 3793 struct kmem_cache *c; 3794 unsigned long flags; 3795 3796 trace_kfree(_RET_IP_, objp); 3797 3798 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3799 return; 3800 local_irq_save(flags); 3801 kfree_debugcheck(objp); 3802 c = virt_to_cache(objp); 3803 debug_check_no_locks_freed(objp, c->object_size); 3804 3805 debug_check_no_obj_freed(objp, c->object_size); 3806 __cache_free(c, (void *)objp, _RET_IP_); 3807 local_irq_restore(flags); 3808 } 3809 EXPORT_SYMBOL(kfree); 3810 3811 /* 3812 * This initializes kmem_cache_node or resizes various caches for all nodes. 3813 */ 3814 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3815 { 3816 int ret; 3817 int node; 3818 struct kmem_cache_node *n; 3819 3820 for_each_online_node(node) { 3821 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3822 if (ret) 3823 goto fail; 3824 3825 } 3826 3827 return 0; 3828 3829 fail: 3830 if (!cachep->list.next) { 3831 /* Cache is not active yet. Roll back what we did */ 3832 node--; 3833 while (node >= 0) { 3834 n = get_node(cachep, node); 3835 if (n) { 3836 kfree(n->shared); 3837 free_alien_cache(n->alien); 3838 kfree(n); 3839 cachep->node[node] = NULL; 3840 } 3841 node--; 3842 } 3843 } 3844 return -ENOMEM; 3845 } 3846 3847 /* Always called with the slab_mutex held */ 3848 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3849 int batchcount, int shared, gfp_t gfp) 3850 { 3851 struct array_cache __percpu *cpu_cache, *prev; 3852 int cpu; 3853 3854 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3855 if (!cpu_cache) 3856 return -ENOMEM; 3857 3858 prev = cachep->cpu_cache; 3859 cachep->cpu_cache = cpu_cache; 3860 /* 3861 * Without a previous cpu_cache there's no need to synchronize remote 3862 * cpus, so skip the IPIs. 3863 */ 3864 if (prev) 3865 kick_all_cpus_sync(); 3866 3867 check_irq_on(); 3868 cachep->batchcount = batchcount; 3869 cachep->limit = limit; 3870 cachep->shared = shared; 3871 3872 if (!prev) 3873 goto setup_node; 3874 3875 for_each_online_cpu(cpu) { 3876 LIST_HEAD(list); 3877 int node; 3878 struct kmem_cache_node *n; 3879 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3880 3881 node = cpu_to_mem(cpu); 3882 n = get_node(cachep, node); 3883 spin_lock_irq(&n->list_lock); 3884 free_block(cachep, ac->entry, ac->avail, node, &list); 3885 spin_unlock_irq(&n->list_lock); 3886 slabs_destroy(cachep, &list); 3887 } 3888 free_percpu(prev); 3889 3890 setup_node: 3891 return setup_kmem_cache_nodes(cachep, gfp); 3892 } 3893 3894 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3895 int batchcount, int shared, gfp_t gfp) 3896 { 3897 int ret; 3898 struct kmem_cache *c; 3899 3900 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3901 3902 if (slab_state < FULL) 3903 return ret; 3904 3905 if ((ret < 0) || !is_root_cache(cachep)) 3906 return ret; 3907 3908 lockdep_assert_held(&slab_mutex); 3909 for_each_memcg_cache(c, cachep) { 3910 /* return value determined by the root cache only */ 3911 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3912 } 3913 3914 return ret; 3915 } 3916 3917 /* Called with slab_mutex held always */ 3918 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3919 { 3920 int err; 3921 int limit = 0; 3922 int shared = 0; 3923 int batchcount = 0; 3924 3925 err = cache_random_seq_create(cachep, cachep->num, gfp); 3926 if (err) 3927 goto end; 3928 3929 if (!is_root_cache(cachep)) { 3930 struct kmem_cache *root = memcg_root_cache(cachep); 3931 limit = root->limit; 3932 shared = root->shared; 3933 batchcount = root->batchcount; 3934 } 3935 3936 if (limit && shared && batchcount) 3937 goto skip_setup; 3938 /* 3939 * The head array serves three purposes: 3940 * - create a LIFO ordering, i.e. return objects that are cache-warm 3941 * - reduce the number of spinlock operations. 3942 * - reduce the number of linked list operations on the slab and 3943 * bufctl chains: array operations are cheaper. 3944 * The numbers are guessed, we should auto-tune as described by 3945 * Bonwick. 3946 */ 3947 if (cachep->size > 131072) 3948 limit = 1; 3949 else if (cachep->size > PAGE_SIZE) 3950 limit = 8; 3951 else if (cachep->size > 1024) 3952 limit = 24; 3953 else if (cachep->size > 256) 3954 limit = 54; 3955 else 3956 limit = 120; 3957 3958 /* 3959 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3960 * allocation behaviour: Most allocs on one cpu, most free operations 3961 * on another cpu. For these cases, an efficient object passing between 3962 * cpus is necessary. This is provided by a shared array. The array 3963 * replaces Bonwick's magazine layer. 3964 * On uniprocessor, it's functionally equivalent (but less efficient) 3965 * to a larger limit. Thus disabled by default. 3966 */ 3967 shared = 0; 3968 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3969 shared = 8; 3970 3971 #if DEBUG 3972 /* 3973 * With debugging enabled, large batchcount lead to excessively long 3974 * periods with disabled local interrupts. Limit the batchcount 3975 */ 3976 if (limit > 32) 3977 limit = 32; 3978 #endif 3979 batchcount = (limit + 1) / 2; 3980 skip_setup: 3981 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3982 end: 3983 if (err) 3984 pr_err("enable_cpucache failed for %s, error %d\n", 3985 cachep->name, -err); 3986 return err; 3987 } 3988 3989 /* 3990 * Drain an array if it contains any elements taking the node lock only if 3991 * necessary. Note that the node listlock also protects the array_cache 3992 * if drain_array() is used on the shared array. 3993 */ 3994 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3995 struct array_cache *ac, int node) 3996 { 3997 LIST_HEAD(list); 3998 3999 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 4000 check_mutex_acquired(); 4001 4002 if (!ac || !ac->avail) 4003 return; 4004 4005 if (ac->touched) { 4006 ac->touched = 0; 4007 return; 4008 } 4009 4010 spin_lock_irq(&n->list_lock); 4011 drain_array_locked(cachep, ac, node, false, &list); 4012 spin_unlock_irq(&n->list_lock); 4013 4014 slabs_destroy(cachep, &list); 4015 } 4016 4017 /** 4018 * cache_reap - Reclaim memory from caches. 4019 * @w: work descriptor 4020 * 4021 * Called from workqueue/eventd every few seconds. 4022 * Purpose: 4023 * - clear the per-cpu caches for this CPU. 4024 * - return freeable pages to the main free memory pool. 4025 * 4026 * If we cannot acquire the cache chain mutex then just give up - we'll try 4027 * again on the next iteration. 4028 */ 4029 static void cache_reap(struct work_struct *w) 4030 { 4031 struct kmem_cache *searchp; 4032 struct kmem_cache_node *n; 4033 int node = numa_mem_id(); 4034 struct delayed_work *work = to_delayed_work(w); 4035 4036 if (!mutex_trylock(&slab_mutex)) 4037 /* Give up. Setup the next iteration. */ 4038 goto out; 4039 4040 list_for_each_entry(searchp, &slab_caches, list) { 4041 check_irq_on(); 4042 4043 /* 4044 * We only take the node lock if absolutely necessary and we 4045 * have established with reasonable certainty that 4046 * we can do some work if the lock was obtained. 4047 */ 4048 n = get_node(searchp, node); 4049 4050 reap_alien(searchp, n); 4051 4052 drain_array(searchp, n, cpu_cache_get(searchp), node); 4053 4054 /* 4055 * These are racy checks but it does not matter 4056 * if we skip one check or scan twice. 4057 */ 4058 if (time_after(n->next_reap, jiffies)) 4059 goto next; 4060 4061 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4062 4063 drain_array(searchp, n, n->shared, node); 4064 4065 if (n->free_touched) 4066 n->free_touched = 0; 4067 else { 4068 int freed; 4069 4070 freed = drain_freelist(searchp, n, (n->free_limit + 4071 5 * searchp->num - 1) / (5 * searchp->num)); 4072 STATS_ADD_REAPED(searchp, freed); 4073 } 4074 next: 4075 cond_resched(); 4076 } 4077 check_irq_on(); 4078 mutex_unlock(&slab_mutex); 4079 next_reap_node(); 4080 out: 4081 /* Set up the next iteration */ 4082 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 4083 } 4084 4085 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4086 { 4087 unsigned long active_objs, num_objs, active_slabs; 4088 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4089 unsigned long free_slabs = 0; 4090 int node; 4091 struct kmem_cache_node *n; 4092 4093 for_each_kmem_cache_node(cachep, node, n) { 4094 check_irq_on(); 4095 spin_lock_irq(&n->list_lock); 4096 4097 total_slabs += n->total_slabs; 4098 free_slabs += n->free_slabs; 4099 free_objs += n->free_objects; 4100 4101 if (n->shared) 4102 shared_avail += n->shared->avail; 4103 4104 spin_unlock_irq(&n->list_lock); 4105 } 4106 num_objs = total_slabs * cachep->num; 4107 active_slabs = total_slabs - free_slabs; 4108 active_objs = num_objs - free_objs; 4109 4110 sinfo->active_objs = active_objs; 4111 sinfo->num_objs = num_objs; 4112 sinfo->active_slabs = active_slabs; 4113 sinfo->num_slabs = total_slabs; 4114 sinfo->shared_avail = shared_avail; 4115 sinfo->limit = cachep->limit; 4116 sinfo->batchcount = cachep->batchcount; 4117 sinfo->shared = cachep->shared; 4118 sinfo->objects_per_slab = cachep->num; 4119 sinfo->cache_order = cachep->gfporder; 4120 } 4121 4122 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4123 { 4124 #if STATS 4125 { /* node stats */ 4126 unsigned long high = cachep->high_mark; 4127 unsigned long allocs = cachep->num_allocations; 4128 unsigned long grown = cachep->grown; 4129 unsigned long reaped = cachep->reaped; 4130 unsigned long errors = cachep->errors; 4131 unsigned long max_freeable = cachep->max_freeable; 4132 unsigned long node_allocs = cachep->node_allocs; 4133 unsigned long node_frees = cachep->node_frees; 4134 unsigned long overflows = cachep->node_overflow; 4135 4136 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4137 allocs, high, grown, 4138 reaped, errors, max_freeable, node_allocs, 4139 node_frees, overflows); 4140 } 4141 /* cpu stats */ 4142 { 4143 unsigned long allochit = atomic_read(&cachep->allochit); 4144 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4145 unsigned long freehit = atomic_read(&cachep->freehit); 4146 unsigned long freemiss = atomic_read(&cachep->freemiss); 4147 4148 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4149 allochit, allocmiss, freehit, freemiss); 4150 } 4151 #endif 4152 } 4153 4154 #define MAX_SLABINFO_WRITE 128 4155 /** 4156 * slabinfo_write - Tuning for the slab allocator 4157 * @file: unused 4158 * @buffer: user buffer 4159 * @count: data length 4160 * @ppos: unused 4161 */ 4162 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4163 size_t count, loff_t *ppos) 4164 { 4165 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4166 int limit, batchcount, shared, res; 4167 struct kmem_cache *cachep; 4168 4169 if (count > MAX_SLABINFO_WRITE) 4170 return -EINVAL; 4171 if (copy_from_user(&kbuf, buffer, count)) 4172 return -EFAULT; 4173 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4174 4175 tmp = strchr(kbuf, ' '); 4176 if (!tmp) 4177 return -EINVAL; 4178 *tmp = '\0'; 4179 tmp++; 4180 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4181 return -EINVAL; 4182 4183 /* Find the cache in the chain of caches. */ 4184 mutex_lock(&slab_mutex); 4185 res = -EINVAL; 4186 list_for_each_entry(cachep, &slab_caches, list) { 4187 if (!strcmp(cachep->name, kbuf)) { 4188 if (limit < 1 || batchcount < 1 || 4189 batchcount > limit || shared < 0) { 4190 res = 0; 4191 } else { 4192 res = do_tune_cpucache(cachep, limit, 4193 batchcount, shared, 4194 GFP_KERNEL); 4195 } 4196 break; 4197 } 4198 } 4199 mutex_unlock(&slab_mutex); 4200 if (res >= 0) 4201 res = count; 4202 return res; 4203 } 4204 4205 #ifdef CONFIG_DEBUG_SLAB_LEAK 4206 4207 static inline int add_caller(unsigned long *n, unsigned long v) 4208 { 4209 unsigned long *p; 4210 int l; 4211 if (!v) 4212 return 1; 4213 l = n[1]; 4214 p = n + 2; 4215 while (l) { 4216 int i = l/2; 4217 unsigned long *q = p + 2 * i; 4218 if (*q == v) { 4219 q[1]++; 4220 return 1; 4221 } 4222 if (*q > v) { 4223 l = i; 4224 } else { 4225 p = q + 2; 4226 l -= i + 1; 4227 } 4228 } 4229 if (++n[1] == n[0]) 4230 return 0; 4231 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4232 p[0] = v; 4233 p[1] = 1; 4234 return 1; 4235 } 4236 4237 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4238 struct page *page) 4239 { 4240 void *p; 4241 int i, j; 4242 unsigned long v; 4243 4244 if (n[0] == n[1]) 4245 return; 4246 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4247 bool active = true; 4248 4249 for (j = page->active; j < c->num; j++) { 4250 if (get_free_obj(page, j) == i) { 4251 active = false; 4252 break; 4253 } 4254 } 4255 4256 if (!active) 4257 continue; 4258 4259 /* 4260 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4261 * mapping is established when actual object allocation and 4262 * we could mistakenly access the unmapped object in the cpu 4263 * cache. 4264 */ 4265 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4266 continue; 4267 4268 if (!add_caller(n, v)) 4269 return; 4270 } 4271 } 4272 4273 static void show_symbol(struct seq_file *m, unsigned long address) 4274 { 4275 #ifdef CONFIG_KALLSYMS 4276 unsigned long offset, size; 4277 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4278 4279 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4280 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4281 if (modname[0]) 4282 seq_printf(m, " [%s]", modname); 4283 return; 4284 } 4285 #endif 4286 seq_printf(m, "%p", (void *)address); 4287 } 4288 4289 static int leaks_show(struct seq_file *m, void *p) 4290 { 4291 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4292 struct page *page; 4293 struct kmem_cache_node *n; 4294 const char *name; 4295 unsigned long *x = m->private; 4296 int node; 4297 int i; 4298 4299 if (!(cachep->flags & SLAB_STORE_USER)) 4300 return 0; 4301 if (!(cachep->flags & SLAB_RED_ZONE)) 4302 return 0; 4303 4304 /* 4305 * Set store_user_clean and start to grab stored user information 4306 * for all objects on this cache. If some alloc/free requests comes 4307 * during the processing, information would be wrong so restart 4308 * whole processing. 4309 */ 4310 do { 4311 set_store_user_clean(cachep); 4312 drain_cpu_caches(cachep); 4313 4314 x[1] = 0; 4315 4316 for_each_kmem_cache_node(cachep, node, n) { 4317 4318 check_irq_on(); 4319 spin_lock_irq(&n->list_lock); 4320 4321 list_for_each_entry(page, &n->slabs_full, lru) 4322 handle_slab(x, cachep, page); 4323 list_for_each_entry(page, &n->slabs_partial, lru) 4324 handle_slab(x, cachep, page); 4325 spin_unlock_irq(&n->list_lock); 4326 } 4327 } while (!is_store_user_clean(cachep)); 4328 4329 name = cachep->name; 4330 if (x[0] == x[1]) { 4331 /* Increase the buffer size */ 4332 mutex_unlock(&slab_mutex); 4333 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4334 if (!m->private) { 4335 /* Too bad, we are really out */ 4336 m->private = x; 4337 mutex_lock(&slab_mutex); 4338 return -ENOMEM; 4339 } 4340 *(unsigned long *)m->private = x[0] * 2; 4341 kfree(x); 4342 mutex_lock(&slab_mutex); 4343 /* Now make sure this entry will be retried */ 4344 m->count = m->size; 4345 return 0; 4346 } 4347 for (i = 0; i < x[1]; i++) { 4348 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4349 show_symbol(m, x[2*i+2]); 4350 seq_putc(m, '\n'); 4351 } 4352 4353 return 0; 4354 } 4355 4356 static const struct seq_operations slabstats_op = { 4357 .start = slab_start, 4358 .next = slab_next, 4359 .stop = slab_stop, 4360 .show = leaks_show, 4361 }; 4362 4363 static int slabstats_open(struct inode *inode, struct file *file) 4364 { 4365 unsigned long *n; 4366 4367 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4368 if (!n) 4369 return -ENOMEM; 4370 4371 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4372 4373 return 0; 4374 } 4375 4376 static const struct file_operations proc_slabstats_operations = { 4377 .open = slabstats_open, 4378 .read = seq_read, 4379 .llseek = seq_lseek, 4380 .release = seq_release_private, 4381 }; 4382 #endif 4383 4384 static int __init slab_proc_init(void) 4385 { 4386 #ifdef CONFIG_DEBUG_SLAB_LEAK 4387 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4388 #endif 4389 return 0; 4390 } 4391 module_init(slab_proc_init); 4392 4393 #ifdef CONFIG_HARDENED_USERCOPY 4394 /* 4395 * Rejects objects that are incorrectly sized. 4396 * 4397 * Returns NULL if check passes, otherwise const char * to name of cache 4398 * to indicate an error. 4399 */ 4400 const char *__check_heap_object(const void *ptr, unsigned long n, 4401 struct page *page) 4402 { 4403 struct kmem_cache *cachep; 4404 unsigned int objnr; 4405 unsigned long offset; 4406 4407 /* Find and validate object. */ 4408 cachep = page->slab_cache; 4409 objnr = obj_to_index(cachep, page, (void *)ptr); 4410 BUG_ON(objnr >= cachep->num); 4411 4412 /* Find offset within object. */ 4413 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4414 4415 /* Allow address range falling entirely within object size. */ 4416 if (offset <= cachep->object_size && n <= cachep->object_size - offset) 4417 return NULL; 4418 4419 return cachep->name; 4420 } 4421 #endif /* CONFIG_HARDENED_USERCOPY */ 4422 4423 /** 4424 * ksize - get the actual amount of memory allocated for a given object 4425 * @objp: Pointer to the object 4426 * 4427 * kmalloc may internally round up allocations and return more memory 4428 * than requested. ksize() can be used to determine the actual amount of 4429 * memory allocated. The caller may use this additional memory, even though 4430 * a smaller amount of memory was initially specified with the kmalloc call. 4431 * The caller must guarantee that objp points to a valid object previously 4432 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4433 * must not be freed during the duration of the call. 4434 */ 4435 size_t ksize(const void *objp) 4436 { 4437 size_t size; 4438 4439 BUG_ON(!objp); 4440 if (unlikely(objp == ZERO_SIZE_PTR)) 4441 return 0; 4442 4443 size = virt_to_cache(objp)->object_size; 4444 /* We assume that ksize callers could use the whole allocated area, 4445 * so we need to unpoison this area. 4446 */ 4447 kasan_unpoison_shadow(objp, size); 4448 4449 return size; 4450 } 4451 EXPORT_SYMBOL(ksize); 4452