xref: /openbmc/linux/mm/slab.c (revision 66a28915)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/slab.c
4  * Written by Mark Hemment, 1996/97.
5  * (markhe@nextd.demon.co.uk)
6  *
7  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8  *
9  * Major cleanup, different bufctl logic, per-cpu arrays
10  *	(c) 2000 Manfred Spraul
11  *
12  * Cleanup, make the head arrays unconditional, preparation for NUMA
13  * 	(c) 2002 Manfred Spraul
14  *
15  * An implementation of the Slab Allocator as described in outline in;
16  *	UNIX Internals: The New Frontiers by Uresh Vahalia
17  *	Pub: Prentice Hall	ISBN 0-13-101908-2
18  * or with a little more detail in;
19  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
20  *	Jeff Bonwick (Sun Microsystems).
21  *	Presented at: USENIX Summer 1994 Technical Conference
22  *
23  * The memory is organized in caches, one cache for each object type.
24  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25  * Each cache consists out of many slabs (they are small (usually one
26  * page long) and always contiguous), and each slab contains multiple
27  * initialized objects.
28  *
29  * This means, that your constructor is used only for newly allocated
30  * slabs and you must pass objects with the same initializations to
31  * kmem_cache_free.
32  *
33  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34  * normal). If you need a special memory type, then must create a new
35  * cache for that memory type.
36  *
37  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38  *   full slabs with 0 free objects
39  *   partial slabs
40  *   empty slabs with no allocated objects
41  *
42  * If partial slabs exist, then new allocations come from these slabs,
43  * otherwise from empty slabs or new slabs are allocated.
44  *
45  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47  *
48  * Each cache has a short per-cpu head array, most allocs
49  * and frees go into that array, and if that array overflows, then 1/2
50  * of the entries in the array are given back into the global cache.
51  * The head array is strictly LIFO and should improve the cache hit rates.
52  * On SMP, it additionally reduces the spinlock operations.
53  *
54  * The c_cpuarray may not be read with enabled local interrupts -
55  * it's changed with a smp_call_function().
56  *
57  * SMP synchronization:
58  *  constructors and destructors are called without any locking.
59  *  Several members in struct kmem_cache and struct slab never change, they
60  *	are accessed without any locking.
61  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
62  *  	and local interrupts are disabled so slab code is preempt-safe.
63  *  The non-constant members are protected with a per-cache irq spinlock.
64  *
65  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66  * in 2000 - many ideas in the current implementation are derived from
67  * his patch.
68  *
69  * Further notes from the original documentation:
70  *
71  * 11 April '97.  Started multi-threading - markhe
72  *	The global cache-chain is protected by the mutex 'slab_mutex'.
73  *	The sem is only needed when accessing/extending the cache-chain, which
74  *	can never happen inside an interrupt (kmem_cache_create(),
75  *	kmem_cache_shrink() and kmem_cache_reap()).
76  *
77  *	At present, each engine can be growing a cache.  This should be blocked.
78  *
79  * 15 March 2005. NUMA slab allocator.
80  *	Shai Fultheim <shai@scalex86.org>.
81  *	Shobhit Dayal <shobhit@calsoftinc.com>
82  *	Alok N Kataria <alokk@calsoftinc.com>
83  *	Christoph Lameter <christoph@lameter.com>
84  *
85  *	Modified the slab allocator to be node aware on NUMA systems.
86  *	Each node has its own list of partial, free and full slabs.
87  *	All object allocations for a node occur from node specific slab lists.
88  */
89 
90 #include	<linux/slab.h>
91 #include	<linux/mm.h>
92 #include	<linux/poison.h>
93 #include	<linux/swap.h>
94 #include	<linux/cache.h>
95 #include	<linux/interrupt.h>
96 #include	<linux/init.h>
97 #include	<linux/compiler.h>
98 #include	<linux/cpuset.h>
99 #include	<linux/proc_fs.h>
100 #include	<linux/seq_file.h>
101 #include	<linux/notifier.h>
102 #include	<linux/kallsyms.h>
103 #include	<linux/cpu.h>
104 #include	<linux/sysctl.h>
105 #include	<linux/module.h>
106 #include	<linux/rcupdate.h>
107 #include	<linux/string.h>
108 #include	<linux/uaccess.h>
109 #include	<linux/nodemask.h>
110 #include	<linux/kmemleak.h>
111 #include	<linux/mempolicy.h>
112 #include	<linux/mutex.h>
113 #include	<linux/fault-inject.h>
114 #include	<linux/rtmutex.h>
115 #include	<linux/reciprocal_div.h>
116 #include	<linux/debugobjects.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 #include	<linux/sched/task_stack.h>
120 
121 #include	<net/sock.h>
122 
123 #include	<asm/cacheflush.h>
124 #include	<asm/tlbflush.h>
125 #include	<asm/page.h>
126 
127 #include <trace/events/kmem.h>
128 
129 #include	"internal.h"
130 
131 #include	"slab.h"
132 
133 /*
134  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135  *		  0 for faster, smaller code (especially in the critical paths).
136  *
137  * STATS	- 1 to collect stats for /proc/slabinfo.
138  *		  0 for faster, smaller code (especially in the critical paths).
139  *
140  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141  */
142 
143 #ifdef CONFIG_DEBUG_SLAB
144 #define	DEBUG		1
145 #define	STATS		1
146 #define	FORCED_DEBUG	1
147 #else
148 #define	DEBUG		0
149 #define	STATS		0
150 #define	FORCED_DEBUG	0
151 #endif
152 
153 /* Shouldn't this be in a header file somewhere? */
154 #define	BYTES_PER_WORD		sizeof(void *)
155 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160 
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169 
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171 
172 /*
173  * struct array_cache
174  *
175  * Purpose:
176  * - LIFO ordering, to hand out cache-warm objects from _alloc
177  * - reduce the number of linked list operations
178  * - reduce spinlock operations
179  *
180  * The limit is stored in the per-cpu structure to reduce the data cache
181  * footprint.
182  *
183  */
184 struct array_cache {
185 	unsigned int avail;
186 	unsigned int limit;
187 	unsigned int batchcount;
188 	unsigned int touched;
189 	void *entry[];	/*
190 			 * Must have this definition in here for the proper
191 			 * alignment of array_cache. Also simplifies accessing
192 			 * the entries.
193 			 */
194 };
195 
196 struct alien_cache {
197 	spinlock_t lock;
198 	struct array_cache ac;
199 };
200 
201 /*
202  * Need this for bootstrapping a per node allocator.
203  */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define	CACHE_CACHE 0
207 #define	SIZE_NODE (MAX_NUMNODES)
208 
209 static int drain_freelist(struct kmem_cache *cache,
210 			struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 			int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216 
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 						void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 				struct kmem_cache_node *n, struct page *page,
221 				void **list);
222 static int slab_early_init = 1;
223 
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 	INIT_LIST_HEAD(&parent->slabs_full);
229 	INIT_LIST_HEAD(&parent->slabs_partial);
230 	INIT_LIST_HEAD(&parent->slabs_free);
231 	parent->total_slabs = 0;
232 	parent->free_slabs = 0;
233 	parent->shared = NULL;
234 	parent->alien = NULL;
235 	parent->colour_next = 0;
236 	spin_lock_init(&parent->list_lock);
237 	parent->free_objects = 0;
238 	parent->free_touched = 0;
239 }
240 
241 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
242 	do {								\
243 		INIT_LIST_HEAD(listp);					\
244 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 	} while (0)
246 
247 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
248 	do {								\
249 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
250 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
252 	} while (0)
253 
254 #define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
258 
259 #define BATCHREFILL_LIMIT	16
260 /*
261  * Optimization question: fewer reaps means less probability for unnessary
262  * cpucache drain/refill cycles.
263  *
264  * OTOH the cpuarrays can contain lots of objects,
265  * which could lock up otherwise freeable slabs.
266  */
267 #define REAPTIMEOUT_AC		(2*HZ)
268 #define REAPTIMEOUT_NODE	(4*HZ)
269 
270 #if STATS
271 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
272 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
273 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
274 #define	STATS_INC_GROWN(x)	((x)->grown++)
275 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
276 #define	STATS_SET_HIGH(x)						\
277 	do {								\
278 		if ((x)->num_active > (x)->high_mark)			\
279 			(x)->high_mark = (x)->num_active;		\
280 	} while (0)
281 #define	STATS_INC_ERR(x)	((x)->errors++)
282 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
285 #define	STATS_SET_FREEABLE(x, i)					\
286 	do {								\
287 		if ((x)->max_freeable < i)				\
288 			(x)->max_freeable = i;				\
289 	} while (0)
290 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
294 #else
295 #define	STATS_INC_ACTIVE(x)	do { } while (0)
296 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
297 #define	STATS_INC_ALLOCED(x)	do { } while (0)
298 #define	STATS_INC_GROWN(x)	do { } while (0)
299 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
300 #define	STATS_SET_HIGH(x)	do { } while (0)
301 #define	STATS_INC_ERR(x)	do { } while (0)
302 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303 #define	STATS_INC_NODEFREES(x)	do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
305 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
307 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
308 #define STATS_INC_FREEHIT(x)	do { } while (0)
309 #define STATS_INC_FREEMISS(x)	do { } while (0)
310 #endif
311 
312 #if DEBUG
313 
314 /*
315  * memory layout of objects:
316  * 0		: objp
317  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318  * 		the end of an object is aligned with the end of the real
319  * 		allocation. Catches writes behind the end of the allocation.
320  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321  * 		redzone word.
322  * cachep->obj_offset: The real object.
323  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324  * cachep->size - 1* BYTES_PER_WORD: last caller address
325  *					[BYTES_PER_WORD long]
326  */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 	return cachep->obj_offset;
330 }
331 
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 	return (unsigned long long*) (objp + obj_offset(cachep) -
336 				      sizeof(unsigned long long));
337 }
338 
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 	if (cachep->flags & SLAB_STORE_USER)
343 		return (unsigned long long *)(objp + cachep->size -
344 					      sizeof(unsigned long long) -
345 					      REDZONE_ALIGN);
346 	return (unsigned long long *) (objp + cachep->size -
347 				       sizeof(unsigned long long));
348 }
349 
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355 
356 #else
357 
358 #define obj_offset(x)			0
359 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
362 
363 #endif
364 
365 /*
366  * Do not go above this order unless 0 objects fit into the slab or
367  * overridden on the command line.
368  */
369 #define	SLAB_MAX_ORDER_HI	1
370 #define	SLAB_MAX_ORDER_LO	0
371 static int slab_max_order = SLAB_MAX_ORDER_LO;
372 static bool slab_max_order_set __initdata;
373 
374 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
375 				 unsigned int idx)
376 {
377 	return page->s_mem + cache->size * idx;
378 }
379 
380 #define BOOT_CPUCACHE_ENTRIES	1
381 /* internal cache of cache description objs */
382 static struct kmem_cache kmem_cache_boot = {
383 	.batchcount = 1,
384 	.limit = BOOT_CPUCACHE_ENTRIES,
385 	.shared = 1,
386 	.size = sizeof(struct kmem_cache),
387 	.name = "kmem_cache",
388 };
389 
390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
391 
392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
393 {
394 	return this_cpu_ptr(cachep->cpu_cache);
395 }
396 
397 /*
398  * Calculate the number of objects and left-over bytes for a given buffer size.
399  */
400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
401 		slab_flags_t flags, size_t *left_over)
402 {
403 	unsigned int num;
404 	size_t slab_size = PAGE_SIZE << gfporder;
405 
406 	/*
407 	 * The slab management structure can be either off the slab or
408 	 * on it. For the latter case, the memory allocated for a
409 	 * slab is used for:
410 	 *
411 	 * - @buffer_size bytes for each object
412 	 * - One freelist_idx_t for each object
413 	 *
414 	 * We don't need to consider alignment of freelist because
415 	 * freelist will be at the end of slab page. The objects will be
416 	 * at the correct alignment.
417 	 *
418 	 * If the slab management structure is off the slab, then the
419 	 * alignment will already be calculated into the size. Because
420 	 * the slabs are all pages aligned, the objects will be at the
421 	 * correct alignment when allocated.
422 	 */
423 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
424 		num = slab_size / buffer_size;
425 		*left_over = slab_size % buffer_size;
426 	} else {
427 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
428 		*left_over = slab_size %
429 			(buffer_size + sizeof(freelist_idx_t));
430 	}
431 
432 	return num;
433 }
434 
435 #if DEBUG
436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
437 
438 static void __slab_error(const char *function, struct kmem_cache *cachep,
439 			char *msg)
440 {
441 	pr_err("slab error in %s(): cache `%s': %s\n",
442 	       function, cachep->name, msg);
443 	dump_stack();
444 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
445 }
446 #endif
447 
448 /*
449  * By default on NUMA we use alien caches to stage the freeing of
450  * objects allocated from other nodes. This causes massive memory
451  * inefficiencies when using fake NUMA setup to split memory into a
452  * large number of small nodes, so it can be disabled on the command
453  * line
454   */
455 
456 static int use_alien_caches __read_mostly = 1;
457 static int __init noaliencache_setup(char *s)
458 {
459 	use_alien_caches = 0;
460 	return 1;
461 }
462 __setup("noaliencache", noaliencache_setup);
463 
464 static int __init slab_max_order_setup(char *str)
465 {
466 	get_option(&str, &slab_max_order);
467 	slab_max_order = slab_max_order < 0 ? 0 :
468 				min(slab_max_order, MAX_ORDER - 1);
469 	slab_max_order_set = true;
470 
471 	return 1;
472 }
473 __setup("slab_max_order=", slab_max_order_setup);
474 
475 #ifdef CONFIG_NUMA
476 /*
477  * Special reaping functions for NUMA systems called from cache_reap().
478  * These take care of doing round robin flushing of alien caches (containing
479  * objects freed on different nodes from which they were allocated) and the
480  * flushing of remote pcps by calling drain_node_pages.
481  */
482 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
483 
484 static void init_reap_node(int cpu)
485 {
486 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
487 						    node_online_map);
488 }
489 
490 static void next_reap_node(void)
491 {
492 	int node = __this_cpu_read(slab_reap_node);
493 
494 	node = next_node_in(node, node_online_map);
495 	__this_cpu_write(slab_reap_node, node);
496 }
497 
498 #else
499 #define init_reap_node(cpu) do { } while (0)
500 #define next_reap_node(void) do { } while (0)
501 #endif
502 
503 /*
504  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
505  * via the workqueue/eventd.
506  * Add the CPU number into the expiration time to minimize the possibility of
507  * the CPUs getting into lockstep and contending for the global cache chain
508  * lock.
509  */
510 static void start_cpu_timer(int cpu)
511 {
512 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
513 
514 	if (reap_work->work.func == NULL) {
515 		init_reap_node(cpu);
516 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
517 		schedule_delayed_work_on(cpu, reap_work,
518 					__round_jiffies_relative(HZ, cpu));
519 	}
520 }
521 
522 static void init_arraycache(struct array_cache *ac, int limit, int batch)
523 {
524 	if (ac) {
525 		ac->avail = 0;
526 		ac->limit = limit;
527 		ac->batchcount = batch;
528 		ac->touched = 0;
529 	}
530 }
531 
532 static struct array_cache *alloc_arraycache(int node, int entries,
533 					    int batchcount, gfp_t gfp)
534 {
535 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
536 	struct array_cache *ac = NULL;
537 
538 	ac = kmalloc_node(memsize, gfp, node);
539 	/*
540 	 * The array_cache structures contain pointers to free object.
541 	 * However, when such objects are allocated or transferred to another
542 	 * cache the pointers are not cleared and they could be counted as
543 	 * valid references during a kmemleak scan. Therefore, kmemleak must
544 	 * not scan such objects.
545 	 */
546 	kmemleak_no_scan(ac);
547 	init_arraycache(ac, entries, batchcount);
548 	return ac;
549 }
550 
551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
552 					struct page *page, void *objp)
553 {
554 	struct kmem_cache_node *n;
555 	int page_node;
556 	LIST_HEAD(list);
557 
558 	page_node = page_to_nid(page);
559 	n = get_node(cachep, page_node);
560 
561 	spin_lock(&n->list_lock);
562 	free_block(cachep, &objp, 1, page_node, &list);
563 	spin_unlock(&n->list_lock);
564 
565 	slabs_destroy(cachep, &list);
566 }
567 
568 /*
569  * Transfer objects in one arraycache to another.
570  * Locking must be handled by the caller.
571  *
572  * Return the number of entries transferred.
573  */
574 static int transfer_objects(struct array_cache *to,
575 		struct array_cache *from, unsigned int max)
576 {
577 	/* Figure out how many entries to transfer */
578 	int nr = min3(from->avail, max, to->limit - to->avail);
579 
580 	if (!nr)
581 		return 0;
582 
583 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
584 			sizeof(void *) *nr);
585 
586 	from->avail -= nr;
587 	to->avail += nr;
588 	return nr;
589 }
590 
591 /* &alien->lock must be held by alien callers. */
592 static __always_inline void __free_one(struct array_cache *ac, void *objp)
593 {
594 	/* Avoid trivial double-free. */
595 	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
596 	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
597 		return;
598 	ac->entry[ac->avail++] = objp;
599 }
600 
601 #ifndef CONFIG_NUMA
602 
603 #define drain_alien_cache(cachep, alien) do { } while (0)
604 #define reap_alien(cachep, n) do { } while (0)
605 
606 static inline struct alien_cache **alloc_alien_cache(int node,
607 						int limit, gfp_t gfp)
608 {
609 	return NULL;
610 }
611 
612 static inline void free_alien_cache(struct alien_cache **ac_ptr)
613 {
614 }
615 
616 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
617 {
618 	return 0;
619 }
620 
621 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
622 		gfp_t flags)
623 {
624 	return NULL;
625 }
626 
627 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
628 		 gfp_t flags, int nodeid)
629 {
630 	return NULL;
631 }
632 
633 static inline gfp_t gfp_exact_node(gfp_t flags)
634 {
635 	return flags & ~__GFP_NOFAIL;
636 }
637 
638 #else	/* CONFIG_NUMA */
639 
640 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
641 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
642 
643 static struct alien_cache *__alloc_alien_cache(int node, int entries,
644 						int batch, gfp_t gfp)
645 {
646 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
647 	struct alien_cache *alc = NULL;
648 
649 	alc = kmalloc_node(memsize, gfp, node);
650 	if (alc) {
651 		kmemleak_no_scan(alc);
652 		init_arraycache(&alc->ac, entries, batch);
653 		spin_lock_init(&alc->lock);
654 	}
655 	return alc;
656 }
657 
658 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
659 {
660 	struct alien_cache **alc_ptr;
661 	int i;
662 
663 	if (limit > 1)
664 		limit = 12;
665 	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
666 	if (!alc_ptr)
667 		return NULL;
668 
669 	for_each_node(i) {
670 		if (i == node || !node_online(i))
671 			continue;
672 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
673 		if (!alc_ptr[i]) {
674 			for (i--; i >= 0; i--)
675 				kfree(alc_ptr[i]);
676 			kfree(alc_ptr);
677 			return NULL;
678 		}
679 	}
680 	return alc_ptr;
681 }
682 
683 static void free_alien_cache(struct alien_cache **alc_ptr)
684 {
685 	int i;
686 
687 	if (!alc_ptr)
688 		return;
689 	for_each_node(i)
690 	    kfree(alc_ptr[i]);
691 	kfree(alc_ptr);
692 }
693 
694 static void __drain_alien_cache(struct kmem_cache *cachep,
695 				struct array_cache *ac, int node,
696 				struct list_head *list)
697 {
698 	struct kmem_cache_node *n = get_node(cachep, node);
699 
700 	if (ac->avail) {
701 		spin_lock(&n->list_lock);
702 		/*
703 		 * Stuff objects into the remote nodes shared array first.
704 		 * That way we could avoid the overhead of putting the objects
705 		 * into the free lists and getting them back later.
706 		 */
707 		if (n->shared)
708 			transfer_objects(n->shared, ac, ac->limit);
709 
710 		free_block(cachep, ac->entry, ac->avail, node, list);
711 		ac->avail = 0;
712 		spin_unlock(&n->list_lock);
713 	}
714 }
715 
716 /*
717  * Called from cache_reap() to regularly drain alien caches round robin.
718  */
719 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
720 {
721 	int node = __this_cpu_read(slab_reap_node);
722 
723 	if (n->alien) {
724 		struct alien_cache *alc = n->alien[node];
725 		struct array_cache *ac;
726 
727 		if (alc) {
728 			ac = &alc->ac;
729 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
730 				LIST_HEAD(list);
731 
732 				__drain_alien_cache(cachep, ac, node, &list);
733 				spin_unlock_irq(&alc->lock);
734 				slabs_destroy(cachep, &list);
735 			}
736 		}
737 	}
738 }
739 
740 static void drain_alien_cache(struct kmem_cache *cachep,
741 				struct alien_cache **alien)
742 {
743 	int i = 0;
744 	struct alien_cache *alc;
745 	struct array_cache *ac;
746 	unsigned long flags;
747 
748 	for_each_online_node(i) {
749 		alc = alien[i];
750 		if (alc) {
751 			LIST_HEAD(list);
752 
753 			ac = &alc->ac;
754 			spin_lock_irqsave(&alc->lock, flags);
755 			__drain_alien_cache(cachep, ac, i, &list);
756 			spin_unlock_irqrestore(&alc->lock, flags);
757 			slabs_destroy(cachep, &list);
758 		}
759 	}
760 }
761 
762 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
763 				int node, int page_node)
764 {
765 	struct kmem_cache_node *n;
766 	struct alien_cache *alien = NULL;
767 	struct array_cache *ac;
768 	LIST_HEAD(list);
769 
770 	n = get_node(cachep, node);
771 	STATS_INC_NODEFREES(cachep);
772 	if (n->alien && n->alien[page_node]) {
773 		alien = n->alien[page_node];
774 		ac = &alien->ac;
775 		spin_lock(&alien->lock);
776 		if (unlikely(ac->avail == ac->limit)) {
777 			STATS_INC_ACOVERFLOW(cachep);
778 			__drain_alien_cache(cachep, ac, page_node, &list);
779 		}
780 		__free_one(ac, objp);
781 		spin_unlock(&alien->lock);
782 		slabs_destroy(cachep, &list);
783 	} else {
784 		n = get_node(cachep, page_node);
785 		spin_lock(&n->list_lock);
786 		free_block(cachep, &objp, 1, page_node, &list);
787 		spin_unlock(&n->list_lock);
788 		slabs_destroy(cachep, &list);
789 	}
790 	return 1;
791 }
792 
793 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
794 {
795 	int page_node = page_to_nid(virt_to_page(objp));
796 	int node = numa_mem_id();
797 	/*
798 	 * Make sure we are not freeing a object from another node to the array
799 	 * cache on this cpu.
800 	 */
801 	if (likely(node == page_node))
802 		return 0;
803 
804 	return __cache_free_alien(cachep, objp, node, page_node);
805 }
806 
807 /*
808  * Construct gfp mask to allocate from a specific node but do not reclaim or
809  * warn about failures.
810  */
811 static inline gfp_t gfp_exact_node(gfp_t flags)
812 {
813 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
814 }
815 #endif
816 
817 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
818 {
819 	struct kmem_cache_node *n;
820 
821 	/*
822 	 * Set up the kmem_cache_node for cpu before we can
823 	 * begin anything. Make sure some other cpu on this
824 	 * node has not already allocated this
825 	 */
826 	n = get_node(cachep, node);
827 	if (n) {
828 		spin_lock_irq(&n->list_lock);
829 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
830 				cachep->num;
831 		spin_unlock_irq(&n->list_lock);
832 
833 		return 0;
834 	}
835 
836 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
837 	if (!n)
838 		return -ENOMEM;
839 
840 	kmem_cache_node_init(n);
841 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
842 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
843 
844 	n->free_limit =
845 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
846 
847 	/*
848 	 * The kmem_cache_nodes don't come and go as CPUs
849 	 * come and go.  slab_mutex is sufficient
850 	 * protection here.
851 	 */
852 	cachep->node[node] = n;
853 
854 	return 0;
855 }
856 
857 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
858 /*
859  * Allocates and initializes node for a node on each slab cache, used for
860  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
861  * will be allocated off-node since memory is not yet online for the new node.
862  * When hotplugging memory or a cpu, existing node are not replaced if
863  * already in use.
864  *
865  * Must hold slab_mutex.
866  */
867 static int init_cache_node_node(int node)
868 {
869 	int ret;
870 	struct kmem_cache *cachep;
871 
872 	list_for_each_entry(cachep, &slab_caches, list) {
873 		ret = init_cache_node(cachep, node, GFP_KERNEL);
874 		if (ret)
875 			return ret;
876 	}
877 
878 	return 0;
879 }
880 #endif
881 
882 static int setup_kmem_cache_node(struct kmem_cache *cachep,
883 				int node, gfp_t gfp, bool force_change)
884 {
885 	int ret = -ENOMEM;
886 	struct kmem_cache_node *n;
887 	struct array_cache *old_shared = NULL;
888 	struct array_cache *new_shared = NULL;
889 	struct alien_cache **new_alien = NULL;
890 	LIST_HEAD(list);
891 
892 	if (use_alien_caches) {
893 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
894 		if (!new_alien)
895 			goto fail;
896 	}
897 
898 	if (cachep->shared) {
899 		new_shared = alloc_arraycache(node,
900 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
901 		if (!new_shared)
902 			goto fail;
903 	}
904 
905 	ret = init_cache_node(cachep, node, gfp);
906 	if (ret)
907 		goto fail;
908 
909 	n = get_node(cachep, node);
910 	spin_lock_irq(&n->list_lock);
911 	if (n->shared && force_change) {
912 		free_block(cachep, n->shared->entry,
913 				n->shared->avail, node, &list);
914 		n->shared->avail = 0;
915 	}
916 
917 	if (!n->shared || force_change) {
918 		old_shared = n->shared;
919 		n->shared = new_shared;
920 		new_shared = NULL;
921 	}
922 
923 	if (!n->alien) {
924 		n->alien = new_alien;
925 		new_alien = NULL;
926 	}
927 
928 	spin_unlock_irq(&n->list_lock);
929 	slabs_destroy(cachep, &list);
930 
931 	/*
932 	 * To protect lockless access to n->shared during irq disabled context.
933 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
934 	 * guaranteed to be valid until irq is re-enabled, because it will be
935 	 * freed after synchronize_rcu().
936 	 */
937 	if (old_shared && force_change)
938 		synchronize_rcu();
939 
940 fail:
941 	kfree(old_shared);
942 	kfree(new_shared);
943 	free_alien_cache(new_alien);
944 
945 	return ret;
946 }
947 
948 #ifdef CONFIG_SMP
949 
950 static void cpuup_canceled(long cpu)
951 {
952 	struct kmem_cache *cachep;
953 	struct kmem_cache_node *n = NULL;
954 	int node = cpu_to_mem(cpu);
955 	const struct cpumask *mask = cpumask_of_node(node);
956 
957 	list_for_each_entry(cachep, &slab_caches, list) {
958 		struct array_cache *nc;
959 		struct array_cache *shared;
960 		struct alien_cache **alien;
961 		LIST_HEAD(list);
962 
963 		n = get_node(cachep, node);
964 		if (!n)
965 			continue;
966 
967 		spin_lock_irq(&n->list_lock);
968 
969 		/* Free limit for this kmem_cache_node */
970 		n->free_limit -= cachep->batchcount;
971 
972 		/* cpu is dead; no one can alloc from it. */
973 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
974 		free_block(cachep, nc->entry, nc->avail, node, &list);
975 		nc->avail = 0;
976 
977 		if (!cpumask_empty(mask)) {
978 			spin_unlock_irq(&n->list_lock);
979 			goto free_slab;
980 		}
981 
982 		shared = n->shared;
983 		if (shared) {
984 			free_block(cachep, shared->entry,
985 				   shared->avail, node, &list);
986 			n->shared = NULL;
987 		}
988 
989 		alien = n->alien;
990 		n->alien = NULL;
991 
992 		spin_unlock_irq(&n->list_lock);
993 
994 		kfree(shared);
995 		if (alien) {
996 			drain_alien_cache(cachep, alien);
997 			free_alien_cache(alien);
998 		}
999 
1000 free_slab:
1001 		slabs_destroy(cachep, &list);
1002 	}
1003 	/*
1004 	 * In the previous loop, all the objects were freed to
1005 	 * the respective cache's slabs,  now we can go ahead and
1006 	 * shrink each nodelist to its limit.
1007 	 */
1008 	list_for_each_entry(cachep, &slab_caches, list) {
1009 		n = get_node(cachep, node);
1010 		if (!n)
1011 			continue;
1012 		drain_freelist(cachep, n, INT_MAX);
1013 	}
1014 }
1015 
1016 static int cpuup_prepare(long cpu)
1017 {
1018 	struct kmem_cache *cachep;
1019 	int node = cpu_to_mem(cpu);
1020 	int err;
1021 
1022 	/*
1023 	 * We need to do this right in the beginning since
1024 	 * alloc_arraycache's are going to use this list.
1025 	 * kmalloc_node allows us to add the slab to the right
1026 	 * kmem_cache_node and not this cpu's kmem_cache_node
1027 	 */
1028 	err = init_cache_node_node(node);
1029 	if (err < 0)
1030 		goto bad;
1031 
1032 	/*
1033 	 * Now we can go ahead with allocating the shared arrays and
1034 	 * array caches
1035 	 */
1036 	list_for_each_entry(cachep, &slab_caches, list) {
1037 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1038 		if (err)
1039 			goto bad;
1040 	}
1041 
1042 	return 0;
1043 bad:
1044 	cpuup_canceled(cpu);
1045 	return -ENOMEM;
1046 }
1047 
1048 int slab_prepare_cpu(unsigned int cpu)
1049 {
1050 	int err;
1051 
1052 	mutex_lock(&slab_mutex);
1053 	err = cpuup_prepare(cpu);
1054 	mutex_unlock(&slab_mutex);
1055 	return err;
1056 }
1057 
1058 /*
1059  * This is called for a failed online attempt and for a successful
1060  * offline.
1061  *
1062  * Even if all the cpus of a node are down, we don't free the
1063  * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
1064  * a kmalloc allocation from another cpu for memory from the node of
1065  * the cpu going down.  The kmem_cache_node structure is usually allocated from
1066  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1067  */
1068 int slab_dead_cpu(unsigned int cpu)
1069 {
1070 	mutex_lock(&slab_mutex);
1071 	cpuup_canceled(cpu);
1072 	mutex_unlock(&slab_mutex);
1073 	return 0;
1074 }
1075 #endif
1076 
1077 static int slab_online_cpu(unsigned int cpu)
1078 {
1079 	start_cpu_timer(cpu);
1080 	return 0;
1081 }
1082 
1083 static int slab_offline_cpu(unsigned int cpu)
1084 {
1085 	/*
1086 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1087 	 * that if cache_reap() is invoked it cannot do anything
1088 	 * expensive but will only modify reap_work and reschedule the
1089 	 * timer.
1090 	 */
1091 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1092 	/* Now the cache_reaper is guaranteed to be not running. */
1093 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1094 	return 0;
1095 }
1096 
1097 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1098 /*
1099  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1100  * Returns -EBUSY if all objects cannot be drained so that the node is not
1101  * removed.
1102  *
1103  * Must hold slab_mutex.
1104  */
1105 static int __meminit drain_cache_node_node(int node)
1106 {
1107 	struct kmem_cache *cachep;
1108 	int ret = 0;
1109 
1110 	list_for_each_entry(cachep, &slab_caches, list) {
1111 		struct kmem_cache_node *n;
1112 
1113 		n = get_node(cachep, node);
1114 		if (!n)
1115 			continue;
1116 
1117 		drain_freelist(cachep, n, INT_MAX);
1118 
1119 		if (!list_empty(&n->slabs_full) ||
1120 		    !list_empty(&n->slabs_partial)) {
1121 			ret = -EBUSY;
1122 			break;
1123 		}
1124 	}
1125 	return ret;
1126 }
1127 
1128 static int __meminit slab_memory_callback(struct notifier_block *self,
1129 					unsigned long action, void *arg)
1130 {
1131 	struct memory_notify *mnb = arg;
1132 	int ret = 0;
1133 	int nid;
1134 
1135 	nid = mnb->status_change_nid;
1136 	if (nid < 0)
1137 		goto out;
1138 
1139 	switch (action) {
1140 	case MEM_GOING_ONLINE:
1141 		mutex_lock(&slab_mutex);
1142 		ret = init_cache_node_node(nid);
1143 		mutex_unlock(&slab_mutex);
1144 		break;
1145 	case MEM_GOING_OFFLINE:
1146 		mutex_lock(&slab_mutex);
1147 		ret = drain_cache_node_node(nid);
1148 		mutex_unlock(&slab_mutex);
1149 		break;
1150 	case MEM_ONLINE:
1151 	case MEM_OFFLINE:
1152 	case MEM_CANCEL_ONLINE:
1153 	case MEM_CANCEL_OFFLINE:
1154 		break;
1155 	}
1156 out:
1157 	return notifier_from_errno(ret);
1158 }
1159 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1160 
1161 /*
1162  * swap the static kmem_cache_node with kmalloced memory
1163  */
1164 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1165 				int nodeid)
1166 {
1167 	struct kmem_cache_node *ptr;
1168 
1169 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1170 	BUG_ON(!ptr);
1171 
1172 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1173 	/*
1174 	 * Do not assume that spinlocks can be initialized via memcpy:
1175 	 */
1176 	spin_lock_init(&ptr->list_lock);
1177 
1178 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1179 	cachep->node[nodeid] = ptr;
1180 }
1181 
1182 /*
1183  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1184  * size of kmem_cache_node.
1185  */
1186 static void __init set_up_node(struct kmem_cache *cachep, int index)
1187 {
1188 	int node;
1189 
1190 	for_each_online_node(node) {
1191 		cachep->node[node] = &init_kmem_cache_node[index + node];
1192 		cachep->node[node]->next_reap = jiffies +
1193 		    REAPTIMEOUT_NODE +
1194 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1195 	}
1196 }
1197 
1198 /*
1199  * Initialisation.  Called after the page allocator have been initialised and
1200  * before smp_init().
1201  */
1202 void __init kmem_cache_init(void)
1203 {
1204 	int i;
1205 
1206 	kmem_cache = &kmem_cache_boot;
1207 
1208 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1209 		use_alien_caches = 0;
1210 
1211 	for (i = 0; i < NUM_INIT_LISTS; i++)
1212 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1213 
1214 	/*
1215 	 * Fragmentation resistance on low memory - only use bigger
1216 	 * page orders on machines with more than 32MB of memory if
1217 	 * not overridden on the command line.
1218 	 */
1219 	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1220 		slab_max_order = SLAB_MAX_ORDER_HI;
1221 
1222 	/* Bootstrap is tricky, because several objects are allocated
1223 	 * from caches that do not exist yet:
1224 	 * 1) initialize the kmem_cache cache: it contains the struct
1225 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1226 	 *    kmem_cache is statically allocated.
1227 	 *    Initially an __init data area is used for the head array and the
1228 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1229 	 *    array at the end of the bootstrap.
1230 	 * 2) Create the first kmalloc cache.
1231 	 *    The struct kmem_cache for the new cache is allocated normally.
1232 	 *    An __init data area is used for the head array.
1233 	 * 3) Create the remaining kmalloc caches, with minimally sized
1234 	 *    head arrays.
1235 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1236 	 *    kmalloc cache with kmalloc allocated arrays.
1237 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1238 	 *    the other cache's with kmalloc allocated memory.
1239 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1240 	 */
1241 
1242 	/* 1) create the kmem_cache */
1243 
1244 	/*
1245 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1246 	 */
1247 	create_boot_cache(kmem_cache, "kmem_cache",
1248 		offsetof(struct kmem_cache, node) +
1249 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1250 				  SLAB_HWCACHE_ALIGN, 0, 0);
1251 	list_add(&kmem_cache->list, &slab_caches);
1252 	slab_state = PARTIAL;
1253 
1254 	/*
1255 	 * Initialize the caches that provide memory for the  kmem_cache_node
1256 	 * structures first.  Without this, further allocations will bug.
1257 	 */
1258 	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1259 				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1260 				kmalloc_info[INDEX_NODE].size,
1261 				ARCH_KMALLOC_FLAGS, 0,
1262 				kmalloc_info[INDEX_NODE].size);
1263 	slab_state = PARTIAL_NODE;
1264 	setup_kmalloc_cache_index_table();
1265 
1266 	slab_early_init = 0;
1267 
1268 	/* 5) Replace the bootstrap kmem_cache_node */
1269 	{
1270 		int nid;
1271 
1272 		for_each_online_node(nid) {
1273 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1274 
1275 			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1276 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1277 		}
1278 	}
1279 
1280 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1281 }
1282 
1283 void __init kmem_cache_init_late(void)
1284 {
1285 	struct kmem_cache *cachep;
1286 
1287 	/* 6) resize the head arrays to their final sizes */
1288 	mutex_lock(&slab_mutex);
1289 	list_for_each_entry(cachep, &slab_caches, list)
1290 		if (enable_cpucache(cachep, GFP_NOWAIT))
1291 			BUG();
1292 	mutex_unlock(&slab_mutex);
1293 
1294 	/* Done! */
1295 	slab_state = FULL;
1296 
1297 #ifdef CONFIG_NUMA
1298 	/*
1299 	 * Register a memory hotplug callback that initializes and frees
1300 	 * node.
1301 	 */
1302 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1303 #endif
1304 
1305 	/*
1306 	 * The reap timers are started later, with a module init call: That part
1307 	 * of the kernel is not yet operational.
1308 	 */
1309 }
1310 
1311 static int __init cpucache_init(void)
1312 {
1313 	int ret;
1314 
1315 	/*
1316 	 * Register the timers that return unneeded pages to the page allocator
1317 	 */
1318 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1319 				slab_online_cpu, slab_offline_cpu);
1320 	WARN_ON(ret < 0);
1321 
1322 	return 0;
1323 }
1324 __initcall(cpucache_init);
1325 
1326 static noinline void
1327 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1328 {
1329 #if DEBUG
1330 	struct kmem_cache_node *n;
1331 	unsigned long flags;
1332 	int node;
1333 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1334 				      DEFAULT_RATELIMIT_BURST);
1335 
1336 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1337 		return;
1338 
1339 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1340 		nodeid, gfpflags, &gfpflags);
1341 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1342 		cachep->name, cachep->size, cachep->gfporder);
1343 
1344 	for_each_kmem_cache_node(cachep, node, n) {
1345 		unsigned long total_slabs, free_slabs, free_objs;
1346 
1347 		spin_lock_irqsave(&n->list_lock, flags);
1348 		total_slabs = n->total_slabs;
1349 		free_slabs = n->free_slabs;
1350 		free_objs = n->free_objects;
1351 		spin_unlock_irqrestore(&n->list_lock, flags);
1352 
1353 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1354 			node, total_slabs - free_slabs, total_slabs,
1355 			(total_slabs * cachep->num) - free_objs,
1356 			total_slabs * cachep->num);
1357 	}
1358 #endif
1359 }
1360 
1361 /*
1362  * Interface to system's page allocator. No need to hold the
1363  * kmem_cache_node ->list_lock.
1364  *
1365  * If we requested dmaable memory, we will get it. Even if we
1366  * did not request dmaable memory, we might get it, but that
1367  * would be relatively rare and ignorable.
1368  */
1369 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1370 								int nodeid)
1371 {
1372 	struct page *page;
1373 
1374 	flags |= cachep->allocflags;
1375 
1376 	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1377 	if (!page) {
1378 		slab_out_of_memory(cachep, flags, nodeid);
1379 		return NULL;
1380 	}
1381 
1382 	account_slab_page(page, cachep->gfporder, cachep);
1383 	__SetPageSlab(page);
1384 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1385 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1386 		SetPageSlabPfmemalloc(page);
1387 
1388 	return page;
1389 }
1390 
1391 /*
1392  * Interface to system's page release.
1393  */
1394 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1395 {
1396 	int order = cachep->gfporder;
1397 
1398 	BUG_ON(!PageSlab(page));
1399 	__ClearPageSlabPfmemalloc(page);
1400 	__ClearPageSlab(page);
1401 	page_mapcount_reset(page);
1402 	/* In union with page->mapping where page allocator expects NULL */
1403 	page->slab_cache = NULL;
1404 
1405 	if (current->reclaim_state)
1406 		current->reclaim_state->reclaimed_slab += 1 << order;
1407 	unaccount_slab_page(page, order, cachep);
1408 	__free_pages(page, order);
1409 }
1410 
1411 static void kmem_rcu_free(struct rcu_head *head)
1412 {
1413 	struct kmem_cache *cachep;
1414 	struct page *page;
1415 
1416 	page = container_of(head, struct page, rcu_head);
1417 	cachep = page->slab_cache;
1418 
1419 	kmem_freepages(cachep, page);
1420 }
1421 
1422 #if DEBUG
1423 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1424 {
1425 	if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1426 		(cachep->size % PAGE_SIZE) == 0)
1427 		return true;
1428 
1429 	return false;
1430 }
1431 
1432 #ifdef CONFIG_DEBUG_PAGEALLOC
1433 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1434 {
1435 	if (!is_debug_pagealloc_cache(cachep))
1436 		return;
1437 
1438 	__kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1439 }
1440 
1441 #else
1442 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1443 				int map) {}
1444 
1445 #endif
1446 
1447 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1448 {
1449 	int size = cachep->object_size;
1450 	addr = &((char *)addr)[obj_offset(cachep)];
1451 
1452 	memset(addr, val, size);
1453 	*(unsigned char *)(addr + size - 1) = POISON_END;
1454 }
1455 
1456 static void dump_line(char *data, int offset, int limit)
1457 {
1458 	int i;
1459 	unsigned char error = 0;
1460 	int bad_count = 0;
1461 
1462 	pr_err("%03x: ", offset);
1463 	for (i = 0; i < limit; i++) {
1464 		if (data[offset + i] != POISON_FREE) {
1465 			error = data[offset + i];
1466 			bad_count++;
1467 		}
1468 	}
1469 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1470 			&data[offset], limit, 1);
1471 
1472 	if (bad_count == 1) {
1473 		error ^= POISON_FREE;
1474 		if (!(error & (error - 1))) {
1475 			pr_err("Single bit error detected. Probably bad RAM.\n");
1476 #ifdef CONFIG_X86
1477 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1478 #else
1479 			pr_err("Run a memory test tool.\n");
1480 #endif
1481 		}
1482 	}
1483 }
1484 #endif
1485 
1486 #if DEBUG
1487 
1488 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1489 {
1490 	int i, size;
1491 	char *realobj;
1492 
1493 	if (cachep->flags & SLAB_RED_ZONE) {
1494 		pr_err("Redzone: 0x%llx/0x%llx\n",
1495 		       *dbg_redzone1(cachep, objp),
1496 		       *dbg_redzone2(cachep, objp));
1497 	}
1498 
1499 	if (cachep->flags & SLAB_STORE_USER)
1500 		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1501 	realobj = (char *)objp + obj_offset(cachep);
1502 	size = cachep->object_size;
1503 	for (i = 0; i < size && lines; i += 16, lines--) {
1504 		int limit;
1505 		limit = 16;
1506 		if (i + limit > size)
1507 			limit = size - i;
1508 		dump_line(realobj, i, limit);
1509 	}
1510 }
1511 
1512 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1513 {
1514 	char *realobj;
1515 	int size, i;
1516 	int lines = 0;
1517 
1518 	if (is_debug_pagealloc_cache(cachep))
1519 		return;
1520 
1521 	realobj = (char *)objp + obj_offset(cachep);
1522 	size = cachep->object_size;
1523 
1524 	for (i = 0; i < size; i++) {
1525 		char exp = POISON_FREE;
1526 		if (i == size - 1)
1527 			exp = POISON_END;
1528 		if (realobj[i] != exp) {
1529 			int limit;
1530 			/* Mismatch ! */
1531 			/* Print header */
1532 			if (lines == 0) {
1533 				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1534 				       print_tainted(), cachep->name,
1535 				       realobj, size);
1536 				print_objinfo(cachep, objp, 0);
1537 			}
1538 			/* Hexdump the affected line */
1539 			i = (i / 16) * 16;
1540 			limit = 16;
1541 			if (i + limit > size)
1542 				limit = size - i;
1543 			dump_line(realobj, i, limit);
1544 			i += 16;
1545 			lines++;
1546 			/* Limit to 5 lines */
1547 			if (lines > 5)
1548 				break;
1549 		}
1550 	}
1551 	if (lines != 0) {
1552 		/* Print some data about the neighboring objects, if they
1553 		 * exist:
1554 		 */
1555 		struct page *page = virt_to_head_page(objp);
1556 		unsigned int objnr;
1557 
1558 		objnr = obj_to_index(cachep, page, objp);
1559 		if (objnr) {
1560 			objp = index_to_obj(cachep, page, objnr - 1);
1561 			realobj = (char *)objp + obj_offset(cachep);
1562 			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1563 			print_objinfo(cachep, objp, 2);
1564 		}
1565 		if (objnr + 1 < cachep->num) {
1566 			objp = index_to_obj(cachep, page, objnr + 1);
1567 			realobj = (char *)objp + obj_offset(cachep);
1568 			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1569 			print_objinfo(cachep, objp, 2);
1570 		}
1571 	}
1572 }
1573 #endif
1574 
1575 #if DEBUG
1576 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1577 						struct page *page)
1578 {
1579 	int i;
1580 
1581 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1582 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1583 			POISON_FREE);
1584 	}
1585 
1586 	for (i = 0; i < cachep->num; i++) {
1587 		void *objp = index_to_obj(cachep, page, i);
1588 
1589 		if (cachep->flags & SLAB_POISON) {
1590 			check_poison_obj(cachep, objp);
1591 			slab_kernel_map(cachep, objp, 1);
1592 		}
1593 		if (cachep->flags & SLAB_RED_ZONE) {
1594 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1595 				slab_error(cachep, "start of a freed object was overwritten");
1596 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1597 				slab_error(cachep, "end of a freed object was overwritten");
1598 		}
1599 	}
1600 }
1601 #else
1602 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1603 						struct page *page)
1604 {
1605 }
1606 #endif
1607 
1608 /**
1609  * slab_destroy - destroy and release all objects in a slab
1610  * @cachep: cache pointer being destroyed
1611  * @page: page pointer being destroyed
1612  *
1613  * Destroy all the objs in a slab page, and release the mem back to the system.
1614  * Before calling the slab page must have been unlinked from the cache. The
1615  * kmem_cache_node ->list_lock is not held/needed.
1616  */
1617 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1618 {
1619 	void *freelist;
1620 
1621 	freelist = page->freelist;
1622 	slab_destroy_debugcheck(cachep, page);
1623 	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1624 		call_rcu(&page->rcu_head, kmem_rcu_free);
1625 	else
1626 		kmem_freepages(cachep, page);
1627 
1628 	/*
1629 	 * From now on, we don't use freelist
1630 	 * although actual page can be freed in rcu context
1631 	 */
1632 	if (OFF_SLAB(cachep))
1633 		kmem_cache_free(cachep->freelist_cache, freelist);
1634 }
1635 
1636 /*
1637  * Update the size of the caches before calling slabs_destroy as it may
1638  * recursively call kfree.
1639  */
1640 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1641 {
1642 	struct page *page, *n;
1643 
1644 	list_for_each_entry_safe(page, n, list, slab_list) {
1645 		list_del(&page->slab_list);
1646 		slab_destroy(cachep, page);
1647 	}
1648 }
1649 
1650 /**
1651  * calculate_slab_order - calculate size (page order) of slabs
1652  * @cachep: pointer to the cache that is being created
1653  * @size: size of objects to be created in this cache.
1654  * @flags: slab allocation flags
1655  *
1656  * Also calculates the number of objects per slab.
1657  *
1658  * This could be made much more intelligent.  For now, try to avoid using
1659  * high order pages for slabs.  When the gfp() functions are more friendly
1660  * towards high-order requests, this should be changed.
1661  *
1662  * Return: number of left-over bytes in a slab
1663  */
1664 static size_t calculate_slab_order(struct kmem_cache *cachep,
1665 				size_t size, slab_flags_t flags)
1666 {
1667 	size_t left_over = 0;
1668 	int gfporder;
1669 
1670 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1671 		unsigned int num;
1672 		size_t remainder;
1673 
1674 		num = cache_estimate(gfporder, size, flags, &remainder);
1675 		if (!num)
1676 			continue;
1677 
1678 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1679 		if (num > SLAB_OBJ_MAX_NUM)
1680 			break;
1681 
1682 		if (flags & CFLGS_OFF_SLAB) {
1683 			struct kmem_cache *freelist_cache;
1684 			size_t freelist_size;
1685 
1686 			freelist_size = num * sizeof(freelist_idx_t);
1687 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1688 			if (!freelist_cache)
1689 				continue;
1690 
1691 			/*
1692 			 * Needed to avoid possible looping condition
1693 			 * in cache_grow_begin()
1694 			 */
1695 			if (OFF_SLAB(freelist_cache))
1696 				continue;
1697 
1698 			/* check if off slab has enough benefit */
1699 			if (freelist_cache->size > cachep->size / 2)
1700 				continue;
1701 		}
1702 
1703 		/* Found something acceptable - save it away */
1704 		cachep->num = num;
1705 		cachep->gfporder = gfporder;
1706 		left_over = remainder;
1707 
1708 		/*
1709 		 * A VFS-reclaimable slab tends to have most allocations
1710 		 * as GFP_NOFS and we really don't want to have to be allocating
1711 		 * higher-order pages when we are unable to shrink dcache.
1712 		 */
1713 		if (flags & SLAB_RECLAIM_ACCOUNT)
1714 			break;
1715 
1716 		/*
1717 		 * Large number of objects is good, but very large slabs are
1718 		 * currently bad for the gfp()s.
1719 		 */
1720 		if (gfporder >= slab_max_order)
1721 			break;
1722 
1723 		/*
1724 		 * Acceptable internal fragmentation?
1725 		 */
1726 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1727 			break;
1728 	}
1729 	return left_over;
1730 }
1731 
1732 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1733 		struct kmem_cache *cachep, int entries, int batchcount)
1734 {
1735 	int cpu;
1736 	size_t size;
1737 	struct array_cache __percpu *cpu_cache;
1738 
1739 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1740 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1741 
1742 	if (!cpu_cache)
1743 		return NULL;
1744 
1745 	for_each_possible_cpu(cpu) {
1746 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1747 				entries, batchcount);
1748 	}
1749 
1750 	return cpu_cache;
1751 }
1752 
1753 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1754 {
1755 	if (slab_state >= FULL)
1756 		return enable_cpucache(cachep, gfp);
1757 
1758 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1759 	if (!cachep->cpu_cache)
1760 		return 1;
1761 
1762 	if (slab_state == DOWN) {
1763 		/* Creation of first cache (kmem_cache). */
1764 		set_up_node(kmem_cache, CACHE_CACHE);
1765 	} else if (slab_state == PARTIAL) {
1766 		/* For kmem_cache_node */
1767 		set_up_node(cachep, SIZE_NODE);
1768 	} else {
1769 		int node;
1770 
1771 		for_each_online_node(node) {
1772 			cachep->node[node] = kmalloc_node(
1773 				sizeof(struct kmem_cache_node), gfp, node);
1774 			BUG_ON(!cachep->node[node]);
1775 			kmem_cache_node_init(cachep->node[node]);
1776 		}
1777 	}
1778 
1779 	cachep->node[numa_mem_id()]->next_reap =
1780 			jiffies + REAPTIMEOUT_NODE +
1781 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1782 
1783 	cpu_cache_get(cachep)->avail = 0;
1784 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1785 	cpu_cache_get(cachep)->batchcount = 1;
1786 	cpu_cache_get(cachep)->touched = 0;
1787 	cachep->batchcount = 1;
1788 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1789 	return 0;
1790 }
1791 
1792 slab_flags_t kmem_cache_flags(unsigned int object_size,
1793 	slab_flags_t flags, const char *name,
1794 	void (*ctor)(void *))
1795 {
1796 	return flags;
1797 }
1798 
1799 struct kmem_cache *
1800 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1801 		   slab_flags_t flags, void (*ctor)(void *))
1802 {
1803 	struct kmem_cache *cachep;
1804 
1805 	cachep = find_mergeable(size, align, flags, name, ctor);
1806 	if (cachep) {
1807 		cachep->refcount++;
1808 
1809 		/*
1810 		 * Adjust the object sizes so that we clear
1811 		 * the complete object on kzalloc.
1812 		 */
1813 		cachep->object_size = max_t(int, cachep->object_size, size);
1814 	}
1815 	return cachep;
1816 }
1817 
1818 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1819 			size_t size, slab_flags_t flags)
1820 {
1821 	size_t left;
1822 
1823 	cachep->num = 0;
1824 
1825 	/*
1826 	 * If slab auto-initialization on free is enabled, store the freelist
1827 	 * off-slab, so that its contents don't end up in one of the allocated
1828 	 * objects.
1829 	 */
1830 	if (unlikely(slab_want_init_on_free(cachep)))
1831 		return false;
1832 
1833 	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1834 		return false;
1835 
1836 	left = calculate_slab_order(cachep, size,
1837 			flags | CFLGS_OBJFREELIST_SLAB);
1838 	if (!cachep->num)
1839 		return false;
1840 
1841 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842 		return false;
1843 
1844 	cachep->colour = left / cachep->colour_off;
1845 
1846 	return true;
1847 }
1848 
1849 static bool set_off_slab_cache(struct kmem_cache *cachep,
1850 			size_t size, slab_flags_t flags)
1851 {
1852 	size_t left;
1853 
1854 	cachep->num = 0;
1855 
1856 	/*
1857 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1858 	 * to avoid recursive calls into kmemleak.
1859 	 */
1860 	if (flags & SLAB_NOLEAKTRACE)
1861 		return false;
1862 
1863 	/*
1864 	 * Size is large, assume best to place the slab management obj
1865 	 * off-slab (should allow better packing of objs).
1866 	 */
1867 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868 	if (!cachep->num)
1869 		return false;
1870 
1871 	/*
1872 	 * If the slab has been placed off-slab, and we have enough space then
1873 	 * move it on-slab. This is at the expense of any extra colouring.
1874 	 */
1875 	if (left >= cachep->num * sizeof(freelist_idx_t))
1876 		return false;
1877 
1878 	cachep->colour = left / cachep->colour_off;
1879 
1880 	return true;
1881 }
1882 
1883 static bool set_on_slab_cache(struct kmem_cache *cachep,
1884 			size_t size, slab_flags_t flags)
1885 {
1886 	size_t left;
1887 
1888 	cachep->num = 0;
1889 
1890 	left = calculate_slab_order(cachep, size, flags);
1891 	if (!cachep->num)
1892 		return false;
1893 
1894 	cachep->colour = left / cachep->colour_off;
1895 
1896 	return true;
1897 }
1898 
1899 /**
1900  * __kmem_cache_create - Create a cache.
1901  * @cachep: cache management descriptor
1902  * @flags: SLAB flags
1903  *
1904  * Returns a ptr to the cache on success, NULL on failure.
1905  * Cannot be called within a int, but can be interrupted.
1906  * The @ctor is run when new pages are allocated by the cache.
1907  *
1908  * The flags are
1909  *
1910  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911  * to catch references to uninitialised memory.
1912  *
1913  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914  * for buffer overruns.
1915  *
1916  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917  * cacheline.  This can be beneficial if you're counting cycles as closely
1918  * as davem.
1919  *
1920  * Return: a pointer to the created cache or %NULL in case of error
1921  */
1922 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1923 {
1924 	size_t ralign = BYTES_PER_WORD;
1925 	gfp_t gfp;
1926 	int err;
1927 	unsigned int size = cachep->size;
1928 
1929 #if DEBUG
1930 #if FORCED_DEBUG
1931 	/*
1932 	 * Enable redzoning and last user accounting, except for caches with
1933 	 * large objects, if the increased size would increase the object size
1934 	 * above the next power of two: caches with object sizes just above a
1935 	 * power of two have a significant amount of internal fragmentation.
1936 	 */
1937 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938 						2 * sizeof(unsigned long long)))
1939 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1940 	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1941 		flags |= SLAB_POISON;
1942 #endif
1943 #endif
1944 
1945 	/*
1946 	 * Check that size is in terms of words.  This is needed to avoid
1947 	 * unaligned accesses for some archs when redzoning is used, and makes
1948 	 * sure any on-slab bufctl's are also correctly aligned.
1949 	 */
1950 	size = ALIGN(size, BYTES_PER_WORD);
1951 
1952 	if (flags & SLAB_RED_ZONE) {
1953 		ralign = REDZONE_ALIGN;
1954 		/* If redzoning, ensure that the second redzone is suitably
1955 		 * aligned, by adjusting the object size accordingly. */
1956 		size = ALIGN(size, REDZONE_ALIGN);
1957 	}
1958 
1959 	/* 3) caller mandated alignment */
1960 	if (ralign < cachep->align) {
1961 		ralign = cachep->align;
1962 	}
1963 	/* disable debug if necessary */
1964 	if (ralign > __alignof__(unsigned long long))
1965 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1966 	/*
1967 	 * 4) Store it.
1968 	 */
1969 	cachep->align = ralign;
1970 	cachep->colour_off = cache_line_size();
1971 	/* Offset must be a multiple of the alignment. */
1972 	if (cachep->colour_off < cachep->align)
1973 		cachep->colour_off = cachep->align;
1974 
1975 	if (slab_is_available())
1976 		gfp = GFP_KERNEL;
1977 	else
1978 		gfp = GFP_NOWAIT;
1979 
1980 #if DEBUG
1981 
1982 	/*
1983 	 * Both debugging options require word-alignment which is calculated
1984 	 * into align above.
1985 	 */
1986 	if (flags & SLAB_RED_ZONE) {
1987 		/* add space for red zone words */
1988 		cachep->obj_offset += sizeof(unsigned long long);
1989 		size += 2 * sizeof(unsigned long long);
1990 	}
1991 	if (flags & SLAB_STORE_USER) {
1992 		/* user store requires one word storage behind the end of
1993 		 * the real object. But if the second red zone needs to be
1994 		 * aligned to 64 bits, we must allow that much space.
1995 		 */
1996 		if (flags & SLAB_RED_ZONE)
1997 			size += REDZONE_ALIGN;
1998 		else
1999 			size += BYTES_PER_WORD;
2000 	}
2001 #endif
2002 
2003 	kasan_cache_create(cachep, &size, &flags);
2004 
2005 	size = ALIGN(size, cachep->align);
2006 	/*
2007 	 * We should restrict the number of objects in a slab to implement
2008 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2009 	 */
2010 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2012 
2013 #if DEBUG
2014 	/*
2015 	 * To activate debug pagealloc, off-slab management is necessary
2016 	 * requirement. In early phase of initialization, small sized slab
2017 	 * doesn't get initialized so it would not be possible. So, we need
2018 	 * to check size >= 256. It guarantees that all necessary small
2019 	 * sized slab is initialized in current slab initialization sequence.
2020 	 */
2021 	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2022 		size >= 256 && cachep->object_size > cache_line_size()) {
2023 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2025 
2026 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027 				flags |= CFLGS_OFF_SLAB;
2028 				cachep->obj_offset += tmp_size - size;
2029 				size = tmp_size;
2030 				goto done;
2031 			}
2032 		}
2033 	}
2034 #endif
2035 
2036 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037 		flags |= CFLGS_OBJFREELIST_SLAB;
2038 		goto done;
2039 	}
2040 
2041 	if (set_off_slab_cache(cachep, size, flags)) {
2042 		flags |= CFLGS_OFF_SLAB;
2043 		goto done;
2044 	}
2045 
2046 	if (set_on_slab_cache(cachep, size, flags))
2047 		goto done;
2048 
2049 	return -E2BIG;
2050 
2051 done:
2052 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2053 	cachep->flags = flags;
2054 	cachep->allocflags = __GFP_COMP;
2055 	if (flags & SLAB_CACHE_DMA)
2056 		cachep->allocflags |= GFP_DMA;
2057 	if (flags & SLAB_CACHE_DMA32)
2058 		cachep->allocflags |= GFP_DMA32;
2059 	if (flags & SLAB_RECLAIM_ACCOUNT)
2060 		cachep->allocflags |= __GFP_RECLAIMABLE;
2061 	cachep->size = size;
2062 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2063 
2064 #if DEBUG
2065 	/*
2066 	 * If we're going to use the generic kernel_map_pages()
2067 	 * poisoning, then it's going to smash the contents of
2068 	 * the redzone and userword anyhow, so switch them off.
2069 	 */
2070 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071 		(cachep->flags & SLAB_POISON) &&
2072 		is_debug_pagealloc_cache(cachep))
2073 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074 #endif
2075 
2076 	if (OFF_SLAB(cachep)) {
2077 		cachep->freelist_cache =
2078 			kmalloc_slab(cachep->freelist_size, 0u);
2079 	}
2080 
2081 	err = setup_cpu_cache(cachep, gfp);
2082 	if (err) {
2083 		__kmem_cache_release(cachep);
2084 		return err;
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 #if DEBUG
2091 static void check_irq_off(void)
2092 {
2093 	BUG_ON(!irqs_disabled());
2094 }
2095 
2096 static void check_irq_on(void)
2097 {
2098 	BUG_ON(irqs_disabled());
2099 }
2100 
2101 static void check_mutex_acquired(void)
2102 {
2103 	BUG_ON(!mutex_is_locked(&slab_mutex));
2104 }
2105 
2106 static void check_spinlock_acquired(struct kmem_cache *cachep)
2107 {
2108 #ifdef CONFIG_SMP
2109 	check_irq_off();
2110 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2111 #endif
2112 }
2113 
2114 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2115 {
2116 #ifdef CONFIG_SMP
2117 	check_irq_off();
2118 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2119 #endif
2120 }
2121 
2122 #else
2123 #define check_irq_off()	do { } while(0)
2124 #define check_irq_on()	do { } while(0)
2125 #define check_mutex_acquired()	do { } while(0)
2126 #define check_spinlock_acquired(x) do { } while(0)
2127 #define check_spinlock_acquired_node(x, y) do { } while(0)
2128 #endif
2129 
2130 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131 				int node, bool free_all, struct list_head *list)
2132 {
2133 	int tofree;
2134 
2135 	if (!ac || !ac->avail)
2136 		return;
2137 
2138 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139 	if (tofree > ac->avail)
2140 		tofree = (ac->avail + 1) / 2;
2141 
2142 	free_block(cachep, ac->entry, tofree, node, list);
2143 	ac->avail -= tofree;
2144 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2145 }
2146 
2147 static void do_drain(void *arg)
2148 {
2149 	struct kmem_cache *cachep = arg;
2150 	struct array_cache *ac;
2151 	int node = numa_mem_id();
2152 	struct kmem_cache_node *n;
2153 	LIST_HEAD(list);
2154 
2155 	check_irq_off();
2156 	ac = cpu_cache_get(cachep);
2157 	n = get_node(cachep, node);
2158 	spin_lock(&n->list_lock);
2159 	free_block(cachep, ac->entry, ac->avail, node, &list);
2160 	spin_unlock(&n->list_lock);
2161 	ac->avail = 0;
2162 	slabs_destroy(cachep, &list);
2163 }
2164 
2165 static void drain_cpu_caches(struct kmem_cache *cachep)
2166 {
2167 	struct kmem_cache_node *n;
2168 	int node;
2169 	LIST_HEAD(list);
2170 
2171 	on_each_cpu(do_drain, cachep, 1);
2172 	check_irq_on();
2173 	for_each_kmem_cache_node(cachep, node, n)
2174 		if (n->alien)
2175 			drain_alien_cache(cachep, n->alien);
2176 
2177 	for_each_kmem_cache_node(cachep, node, n) {
2178 		spin_lock_irq(&n->list_lock);
2179 		drain_array_locked(cachep, n->shared, node, true, &list);
2180 		spin_unlock_irq(&n->list_lock);
2181 
2182 		slabs_destroy(cachep, &list);
2183 	}
2184 }
2185 
2186 /*
2187  * Remove slabs from the list of free slabs.
2188  * Specify the number of slabs to drain in tofree.
2189  *
2190  * Returns the actual number of slabs released.
2191  */
2192 static int drain_freelist(struct kmem_cache *cache,
2193 			struct kmem_cache_node *n, int tofree)
2194 {
2195 	struct list_head *p;
2196 	int nr_freed;
2197 	struct page *page;
2198 
2199 	nr_freed = 0;
2200 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2201 
2202 		spin_lock_irq(&n->list_lock);
2203 		p = n->slabs_free.prev;
2204 		if (p == &n->slabs_free) {
2205 			spin_unlock_irq(&n->list_lock);
2206 			goto out;
2207 		}
2208 
2209 		page = list_entry(p, struct page, slab_list);
2210 		list_del(&page->slab_list);
2211 		n->free_slabs--;
2212 		n->total_slabs--;
2213 		/*
2214 		 * Safe to drop the lock. The slab is no longer linked
2215 		 * to the cache.
2216 		 */
2217 		n->free_objects -= cache->num;
2218 		spin_unlock_irq(&n->list_lock);
2219 		slab_destroy(cache, page);
2220 		nr_freed++;
2221 	}
2222 out:
2223 	return nr_freed;
2224 }
2225 
2226 bool __kmem_cache_empty(struct kmem_cache *s)
2227 {
2228 	int node;
2229 	struct kmem_cache_node *n;
2230 
2231 	for_each_kmem_cache_node(s, node, n)
2232 		if (!list_empty(&n->slabs_full) ||
2233 		    !list_empty(&n->slabs_partial))
2234 			return false;
2235 	return true;
2236 }
2237 
2238 int __kmem_cache_shrink(struct kmem_cache *cachep)
2239 {
2240 	int ret = 0;
2241 	int node;
2242 	struct kmem_cache_node *n;
2243 
2244 	drain_cpu_caches(cachep);
2245 
2246 	check_irq_on();
2247 	for_each_kmem_cache_node(cachep, node, n) {
2248 		drain_freelist(cachep, n, INT_MAX);
2249 
2250 		ret += !list_empty(&n->slabs_full) ||
2251 			!list_empty(&n->slabs_partial);
2252 	}
2253 	return (ret ? 1 : 0);
2254 }
2255 
2256 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2257 {
2258 	return __kmem_cache_shrink(cachep);
2259 }
2260 
2261 void __kmem_cache_release(struct kmem_cache *cachep)
2262 {
2263 	int i;
2264 	struct kmem_cache_node *n;
2265 
2266 	cache_random_seq_destroy(cachep);
2267 
2268 	free_percpu(cachep->cpu_cache);
2269 
2270 	/* NUMA: free the node structures */
2271 	for_each_kmem_cache_node(cachep, i, n) {
2272 		kfree(n->shared);
2273 		free_alien_cache(n->alien);
2274 		kfree(n);
2275 		cachep->node[i] = NULL;
2276 	}
2277 }
2278 
2279 /*
2280  * Get the memory for a slab management obj.
2281  *
2282  * For a slab cache when the slab descriptor is off-slab, the
2283  * slab descriptor can't come from the same cache which is being created,
2284  * Because if it is the case, that means we defer the creation of
2285  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2286  * And we eventually call down to __kmem_cache_create(), which
2287  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2288  * This is a "chicken-and-egg" problem.
2289  *
2290  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2291  * which are all initialized during kmem_cache_init().
2292  */
2293 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2294 				   struct page *page, int colour_off,
2295 				   gfp_t local_flags, int nodeid)
2296 {
2297 	void *freelist;
2298 	void *addr = page_address(page);
2299 
2300 	page->s_mem = addr + colour_off;
2301 	page->active = 0;
2302 
2303 	if (OBJFREELIST_SLAB(cachep))
2304 		freelist = NULL;
2305 	else if (OFF_SLAB(cachep)) {
2306 		/* Slab management obj is off-slab. */
2307 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2308 					      local_flags, nodeid);
2309 	} else {
2310 		/* We will use last bytes at the slab for freelist */
2311 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2312 				cachep->freelist_size;
2313 	}
2314 
2315 	return freelist;
2316 }
2317 
2318 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2319 {
2320 	return ((freelist_idx_t *)page->freelist)[idx];
2321 }
2322 
2323 static inline void set_free_obj(struct page *page,
2324 					unsigned int idx, freelist_idx_t val)
2325 {
2326 	((freelist_idx_t *)(page->freelist))[idx] = val;
2327 }
2328 
2329 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2330 {
2331 #if DEBUG
2332 	int i;
2333 
2334 	for (i = 0; i < cachep->num; i++) {
2335 		void *objp = index_to_obj(cachep, page, i);
2336 
2337 		if (cachep->flags & SLAB_STORE_USER)
2338 			*dbg_userword(cachep, objp) = NULL;
2339 
2340 		if (cachep->flags & SLAB_RED_ZONE) {
2341 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2342 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2343 		}
2344 		/*
2345 		 * Constructors are not allowed to allocate memory from the same
2346 		 * cache which they are a constructor for.  Otherwise, deadlock.
2347 		 * They must also be threaded.
2348 		 */
2349 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2350 			kasan_unpoison_object_data(cachep,
2351 						   objp + obj_offset(cachep));
2352 			cachep->ctor(objp + obj_offset(cachep));
2353 			kasan_poison_object_data(
2354 				cachep, objp + obj_offset(cachep));
2355 		}
2356 
2357 		if (cachep->flags & SLAB_RED_ZONE) {
2358 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2359 				slab_error(cachep, "constructor overwrote the end of an object");
2360 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2361 				slab_error(cachep, "constructor overwrote the start of an object");
2362 		}
2363 		/* need to poison the objs? */
2364 		if (cachep->flags & SLAB_POISON) {
2365 			poison_obj(cachep, objp, POISON_FREE);
2366 			slab_kernel_map(cachep, objp, 0);
2367 		}
2368 	}
2369 #endif
2370 }
2371 
2372 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2373 /* Hold information during a freelist initialization */
2374 union freelist_init_state {
2375 	struct {
2376 		unsigned int pos;
2377 		unsigned int *list;
2378 		unsigned int count;
2379 	};
2380 	struct rnd_state rnd_state;
2381 };
2382 
2383 /*
2384  * Initialize the state based on the randomization methode available.
2385  * return true if the pre-computed list is available, false otherwize.
2386  */
2387 static bool freelist_state_initialize(union freelist_init_state *state,
2388 				struct kmem_cache *cachep,
2389 				unsigned int count)
2390 {
2391 	bool ret;
2392 	unsigned int rand;
2393 
2394 	/* Use best entropy available to define a random shift */
2395 	rand = get_random_int();
2396 
2397 	/* Use a random state if the pre-computed list is not available */
2398 	if (!cachep->random_seq) {
2399 		prandom_seed_state(&state->rnd_state, rand);
2400 		ret = false;
2401 	} else {
2402 		state->list = cachep->random_seq;
2403 		state->count = count;
2404 		state->pos = rand % count;
2405 		ret = true;
2406 	}
2407 	return ret;
2408 }
2409 
2410 /* Get the next entry on the list and randomize it using a random shift */
2411 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2412 {
2413 	if (state->pos >= state->count)
2414 		state->pos = 0;
2415 	return state->list[state->pos++];
2416 }
2417 
2418 /* Swap two freelist entries */
2419 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2420 {
2421 	swap(((freelist_idx_t *)page->freelist)[a],
2422 		((freelist_idx_t *)page->freelist)[b]);
2423 }
2424 
2425 /*
2426  * Shuffle the freelist initialization state based on pre-computed lists.
2427  * return true if the list was successfully shuffled, false otherwise.
2428  */
2429 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2430 {
2431 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2432 	union freelist_init_state state;
2433 	bool precomputed;
2434 
2435 	if (count < 2)
2436 		return false;
2437 
2438 	precomputed = freelist_state_initialize(&state, cachep, count);
2439 
2440 	/* Take a random entry as the objfreelist */
2441 	if (OBJFREELIST_SLAB(cachep)) {
2442 		if (!precomputed)
2443 			objfreelist = count - 1;
2444 		else
2445 			objfreelist = next_random_slot(&state);
2446 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2447 						obj_offset(cachep);
2448 		count--;
2449 	}
2450 
2451 	/*
2452 	 * On early boot, generate the list dynamically.
2453 	 * Later use a pre-computed list for speed.
2454 	 */
2455 	if (!precomputed) {
2456 		for (i = 0; i < count; i++)
2457 			set_free_obj(page, i, i);
2458 
2459 		/* Fisher-Yates shuffle */
2460 		for (i = count - 1; i > 0; i--) {
2461 			rand = prandom_u32_state(&state.rnd_state);
2462 			rand %= (i + 1);
2463 			swap_free_obj(page, i, rand);
2464 		}
2465 	} else {
2466 		for (i = 0; i < count; i++)
2467 			set_free_obj(page, i, next_random_slot(&state));
2468 	}
2469 
2470 	if (OBJFREELIST_SLAB(cachep))
2471 		set_free_obj(page, cachep->num - 1, objfreelist);
2472 
2473 	return true;
2474 }
2475 #else
2476 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2477 				struct page *page)
2478 {
2479 	return false;
2480 }
2481 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2482 
2483 static void cache_init_objs(struct kmem_cache *cachep,
2484 			    struct page *page)
2485 {
2486 	int i;
2487 	void *objp;
2488 	bool shuffled;
2489 
2490 	cache_init_objs_debug(cachep, page);
2491 
2492 	/* Try to randomize the freelist if enabled */
2493 	shuffled = shuffle_freelist(cachep, page);
2494 
2495 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2496 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2497 						obj_offset(cachep);
2498 	}
2499 
2500 	for (i = 0; i < cachep->num; i++) {
2501 		objp = index_to_obj(cachep, page, i);
2502 		objp = kasan_init_slab_obj(cachep, objp);
2503 
2504 		/* constructor could break poison info */
2505 		if (DEBUG == 0 && cachep->ctor) {
2506 			kasan_unpoison_object_data(cachep, objp);
2507 			cachep->ctor(objp);
2508 			kasan_poison_object_data(cachep, objp);
2509 		}
2510 
2511 		if (!shuffled)
2512 			set_free_obj(page, i, i);
2513 	}
2514 }
2515 
2516 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2517 {
2518 	void *objp;
2519 
2520 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2521 	page->active++;
2522 
2523 	return objp;
2524 }
2525 
2526 static void slab_put_obj(struct kmem_cache *cachep,
2527 			struct page *page, void *objp)
2528 {
2529 	unsigned int objnr = obj_to_index(cachep, page, objp);
2530 #if DEBUG
2531 	unsigned int i;
2532 
2533 	/* Verify double free bug */
2534 	for (i = page->active; i < cachep->num; i++) {
2535 		if (get_free_obj(page, i) == objnr) {
2536 			pr_err("slab: double free detected in cache '%s', objp %px\n",
2537 			       cachep->name, objp);
2538 			BUG();
2539 		}
2540 	}
2541 #endif
2542 	page->active--;
2543 	if (!page->freelist)
2544 		page->freelist = objp + obj_offset(cachep);
2545 
2546 	set_free_obj(page, page->active, objnr);
2547 }
2548 
2549 /*
2550  * Map pages beginning at addr to the given cache and slab. This is required
2551  * for the slab allocator to be able to lookup the cache and slab of a
2552  * virtual address for kfree, ksize, and slab debugging.
2553  */
2554 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2555 			   void *freelist)
2556 {
2557 	page->slab_cache = cache;
2558 	page->freelist = freelist;
2559 }
2560 
2561 /*
2562  * Grow (by 1) the number of slabs within a cache.  This is called by
2563  * kmem_cache_alloc() when there are no active objs left in a cache.
2564  */
2565 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2566 				gfp_t flags, int nodeid)
2567 {
2568 	void *freelist;
2569 	size_t offset;
2570 	gfp_t local_flags;
2571 	int page_node;
2572 	struct kmem_cache_node *n;
2573 	struct page *page;
2574 
2575 	/*
2576 	 * Be lazy and only check for valid flags here,  keeping it out of the
2577 	 * critical path in kmem_cache_alloc().
2578 	 */
2579 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2580 		flags = kmalloc_fix_flags(flags);
2581 
2582 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2583 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2584 
2585 	check_irq_off();
2586 	if (gfpflags_allow_blocking(local_flags))
2587 		local_irq_enable();
2588 
2589 	/*
2590 	 * Get mem for the objs.  Attempt to allocate a physical page from
2591 	 * 'nodeid'.
2592 	 */
2593 	page = kmem_getpages(cachep, local_flags, nodeid);
2594 	if (!page)
2595 		goto failed;
2596 
2597 	page_node = page_to_nid(page);
2598 	n = get_node(cachep, page_node);
2599 
2600 	/* Get colour for the slab, and cal the next value. */
2601 	n->colour_next++;
2602 	if (n->colour_next >= cachep->colour)
2603 		n->colour_next = 0;
2604 
2605 	offset = n->colour_next;
2606 	if (offset >= cachep->colour)
2607 		offset = 0;
2608 
2609 	offset *= cachep->colour_off;
2610 
2611 	/*
2612 	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2613 	 * page_address() in the latter returns a non-tagged pointer,
2614 	 * as it should be for slab pages.
2615 	 */
2616 	kasan_poison_slab(page);
2617 
2618 	/* Get slab management. */
2619 	freelist = alloc_slabmgmt(cachep, page, offset,
2620 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2621 	if (OFF_SLAB(cachep) && !freelist)
2622 		goto opps1;
2623 
2624 	slab_map_pages(cachep, page, freelist);
2625 
2626 	cache_init_objs(cachep, page);
2627 
2628 	if (gfpflags_allow_blocking(local_flags))
2629 		local_irq_disable();
2630 
2631 	return page;
2632 
2633 opps1:
2634 	kmem_freepages(cachep, page);
2635 failed:
2636 	if (gfpflags_allow_blocking(local_flags))
2637 		local_irq_disable();
2638 	return NULL;
2639 }
2640 
2641 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2642 {
2643 	struct kmem_cache_node *n;
2644 	void *list = NULL;
2645 
2646 	check_irq_off();
2647 
2648 	if (!page)
2649 		return;
2650 
2651 	INIT_LIST_HEAD(&page->slab_list);
2652 	n = get_node(cachep, page_to_nid(page));
2653 
2654 	spin_lock(&n->list_lock);
2655 	n->total_slabs++;
2656 	if (!page->active) {
2657 		list_add_tail(&page->slab_list, &n->slabs_free);
2658 		n->free_slabs++;
2659 	} else
2660 		fixup_slab_list(cachep, n, page, &list);
2661 
2662 	STATS_INC_GROWN(cachep);
2663 	n->free_objects += cachep->num - page->active;
2664 	spin_unlock(&n->list_lock);
2665 
2666 	fixup_objfreelist_debug(cachep, &list);
2667 }
2668 
2669 #if DEBUG
2670 
2671 /*
2672  * Perform extra freeing checks:
2673  * - detect bad pointers.
2674  * - POISON/RED_ZONE checking
2675  */
2676 static void kfree_debugcheck(const void *objp)
2677 {
2678 	if (!virt_addr_valid(objp)) {
2679 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2680 		       (unsigned long)objp);
2681 		BUG();
2682 	}
2683 }
2684 
2685 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2686 {
2687 	unsigned long long redzone1, redzone2;
2688 
2689 	redzone1 = *dbg_redzone1(cache, obj);
2690 	redzone2 = *dbg_redzone2(cache, obj);
2691 
2692 	/*
2693 	 * Redzone is ok.
2694 	 */
2695 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2696 		return;
2697 
2698 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2699 		slab_error(cache, "double free detected");
2700 	else
2701 		slab_error(cache, "memory outside object was overwritten");
2702 
2703 	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2704 	       obj, redzone1, redzone2);
2705 }
2706 
2707 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2708 				   unsigned long caller)
2709 {
2710 	unsigned int objnr;
2711 	struct page *page;
2712 
2713 	BUG_ON(virt_to_cache(objp) != cachep);
2714 
2715 	objp -= obj_offset(cachep);
2716 	kfree_debugcheck(objp);
2717 	page = virt_to_head_page(objp);
2718 
2719 	if (cachep->flags & SLAB_RED_ZONE) {
2720 		verify_redzone_free(cachep, objp);
2721 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2722 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2723 	}
2724 	if (cachep->flags & SLAB_STORE_USER)
2725 		*dbg_userword(cachep, objp) = (void *)caller;
2726 
2727 	objnr = obj_to_index(cachep, page, objp);
2728 
2729 	BUG_ON(objnr >= cachep->num);
2730 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2731 
2732 	if (cachep->flags & SLAB_POISON) {
2733 		poison_obj(cachep, objp, POISON_FREE);
2734 		slab_kernel_map(cachep, objp, 0);
2735 	}
2736 	return objp;
2737 }
2738 
2739 #else
2740 #define kfree_debugcheck(x) do { } while(0)
2741 #define cache_free_debugcheck(x,objp,z) (objp)
2742 #endif
2743 
2744 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2745 						void **list)
2746 {
2747 #if DEBUG
2748 	void *next = *list;
2749 	void *objp;
2750 
2751 	while (next) {
2752 		objp = next - obj_offset(cachep);
2753 		next = *(void **)next;
2754 		poison_obj(cachep, objp, POISON_FREE);
2755 	}
2756 #endif
2757 }
2758 
2759 static inline void fixup_slab_list(struct kmem_cache *cachep,
2760 				struct kmem_cache_node *n, struct page *page,
2761 				void **list)
2762 {
2763 	/* move slabp to correct slabp list: */
2764 	list_del(&page->slab_list);
2765 	if (page->active == cachep->num) {
2766 		list_add(&page->slab_list, &n->slabs_full);
2767 		if (OBJFREELIST_SLAB(cachep)) {
2768 #if DEBUG
2769 			/* Poisoning will be done without holding the lock */
2770 			if (cachep->flags & SLAB_POISON) {
2771 				void **objp = page->freelist;
2772 
2773 				*objp = *list;
2774 				*list = objp;
2775 			}
2776 #endif
2777 			page->freelist = NULL;
2778 		}
2779 	} else
2780 		list_add(&page->slab_list, &n->slabs_partial);
2781 }
2782 
2783 /* Try to find non-pfmemalloc slab if needed */
2784 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2785 					struct page *page, bool pfmemalloc)
2786 {
2787 	if (!page)
2788 		return NULL;
2789 
2790 	if (pfmemalloc)
2791 		return page;
2792 
2793 	if (!PageSlabPfmemalloc(page))
2794 		return page;
2795 
2796 	/* No need to keep pfmemalloc slab if we have enough free objects */
2797 	if (n->free_objects > n->free_limit) {
2798 		ClearPageSlabPfmemalloc(page);
2799 		return page;
2800 	}
2801 
2802 	/* Move pfmemalloc slab to the end of list to speed up next search */
2803 	list_del(&page->slab_list);
2804 	if (!page->active) {
2805 		list_add_tail(&page->slab_list, &n->slabs_free);
2806 		n->free_slabs++;
2807 	} else
2808 		list_add_tail(&page->slab_list, &n->slabs_partial);
2809 
2810 	list_for_each_entry(page, &n->slabs_partial, slab_list) {
2811 		if (!PageSlabPfmemalloc(page))
2812 			return page;
2813 	}
2814 
2815 	n->free_touched = 1;
2816 	list_for_each_entry(page, &n->slabs_free, slab_list) {
2817 		if (!PageSlabPfmemalloc(page)) {
2818 			n->free_slabs--;
2819 			return page;
2820 		}
2821 	}
2822 
2823 	return NULL;
2824 }
2825 
2826 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2827 {
2828 	struct page *page;
2829 
2830 	assert_spin_locked(&n->list_lock);
2831 	page = list_first_entry_or_null(&n->slabs_partial, struct page,
2832 					slab_list);
2833 	if (!page) {
2834 		n->free_touched = 1;
2835 		page = list_first_entry_or_null(&n->slabs_free, struct page,
2836 						slab_list);
2837 		if (page)
2838 			n->free_slabs--;
2839 	}
2840 
2841 	if (sk_memalloc_socks())
2842 		page = get_valid_first_slab(n, page, pfmemalloc);
2843 
2844 	return page;
2845 }
2846 
2847 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2848 				struct kmem_cache_node *n, gfp_t flags)
2849 {
2850 	struct page *page;
2851 	void *obj;
2852 	void *list = NULL;
2853 
2854 	if (!gfp_pfmemalloc_allowed(flags))
2855 		return NULL;
2856 
2857 	spin_lock(&n->list_lock);
2858 	page = get_first_slab(n, true);
2859 	if (!page) {
2860 		spin_unlock(&n->list_lock);
2861 		return NULL;
2862 	}
2863 
2864 	obj = slab_get_obj(cachep, page);
2865 	n->free_objects--;
2866 
2867 	fixup_slab_list(cachep, n, page, &list);
2868 
2869 	spin_unlock(&n->list_lock);
2870 	fixup_objfreelist_debug(cachep, &list);
2871 
2872 	return obj;
2873 }
2874 
2875 /*
2876  * Slab list should be fixed up by fixup_slab_list() for existing slab
2877  * or cache_grow_end() for new slab
2878  */
2879 static __always_inline int alloc_block(struct kmem_cache *cachep,
2880 		struct array_cache *ac, struct page *page, int batchcount)
2881 {
2882 	/*
2883 	 * There must be at least one object available for
2884 	 * allocation.
2885 	 */
2886 	BUG_ON(page->active >= cachep->num);
2887 
2888 	while (page->active < cachep->num && batchcount--) {
2889 		STATS_INC_ALLOCED(cachep);
2890 		STATS_INC_ACTIVE(cachep);
2891 		STATS_SET_HIGH(cachep);
2892 
2893 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2894 	}
2895 
2896 	return batchcount;
2897 }
2898 
2899 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2900 {
2901 	int batchcount;
2902 	struct kmem_cache_node *n;
2903 	struct array_cache *ac, *shared;
2904 	int node;
2905 	void *list = NULL;
2906 	struct page *page;
2907 
2908 	check_irq_off();
2909 	node = numa_mem_id();
2910 
2911 	ac = cpu_cache_get(cachep);
2912 	batchcount = ac->batchcount;
2913 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2914 		/*
2915 		 * If there was little recent activity on this cache, then
2916 		 * perform only a partial refill.  Otherwise we could generate
2917 		 * refill bouncing.
2918 		 */
2919 		batchcount = BATCHREFILL_LIMIT;
2920 	}
2921 	n = get_node(cachep, node);
2922 
2923 	BUG_ON(ac->avail > 0 || !n);
2924 	shared = READ_ONCE(n->shared);
2925 	if (!n->free_objects && (!shared || !shared->avail))
2926 		goto direct_grow;
2927 
2928 	spin_lock(&n->list_lock);
2929 	shared = READ_ONCE(n->shared);
2930 
2931 	/* See if we can refill from the shared array */
2932 	if (shared && transfer_objects(ac, shared, batchcount)) {
2933 		shared->touched = 1;
2934 		goto alloc_done;
2935 	}
2936 
2937 	while (batchcount > 0) {
2938 		/* Get slab alloc is to come from. */
2939 		page = get_first_slab(n, false);
2940 		if (!page)
2941 			goto must_grow;
2942 
2943 		check_spinlock_acquired(cachep);
2944 
2945 		batchcount = alloc_block(cachep, ac, page, batchcount);
2946 		fixup_slab_list(cachep, n, page, &list);
2947 	}
2948 
2949 must_grow:
2950 	n->free_objects -= ac->avail;
2951 alloc_done:
2952 	spin_unlock(&n->list_lock);
2953 	fixup_objfreelist_debug(cachep, &list);
2954 
2955 direct_grow:
2956 	if (unlikely(!ac->avail)) {
2957 		/* Check if we can use obj in pfmemalloc slab */
2958 		if (sk_memalloc_socks()) {
2959 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2960 
2961 			if (obj)
2962 				return obj;
2963 		}
2964 
2965 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2966 
2967 		/*
2968 		 * cache_grow_begin() can reenable interrupts,
2969 		 * then ac could change.
2970 		 */
2971 		ac = cpu_cache_get(cachep);
2972 		if (!ac->avail && page)
2973 			alloc_block(cachep, ac, page, batchcount);
2974 		cache_grow_end(cachep, page);
2975 
2976 		if (!ac->avail)
2977 			return NULL;
2978 	}
2979 	ac->touched = 1;
2980 
2981 	return ac->entry[--ac->avail];
2982 }
2983 
2984 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2985 						gfp_t flags)
2986 {
2987 	might_sleep_if(gfpflags_allow_blocking(flags));
2988 }
2989 
2990 #if DEBUG
2991 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2992 				gfp_t flags, void *objp, unsigned long caller)
2993 {
2994 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2995 	if (!objp)
2996 		return objp;
2997 	if (cachep->flags & SLAB_POISON) {
2998 		check_poison_obj(cachep, objp);
2999 		slab_kernel_map(cachep, objp, 1);
3000 		poison_obj(cachep, objp, POISON_INUSE);
3001 	}
3002 	if (cachep->flags & SLAB_STORE_USER)
3003 		*dbg_userword(cachep, objp) = (void *)caller;
3004 
3005 	if (cachep->flags & SLAB_RED_ZONE) {
3006 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3007 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3008 			slab_error(cachep, "double free, or memory outside object was overwritten");
3009 			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3010 			       objp, *dbg_redzone1(cachep, objp),
3011 			       *dbg_redzone2(cachep, objp));
3012 		}
3013 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3014 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3015 	}
3016 
3017 	objp += obj_offset(cachep);
3018 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3019 		cachep->ctor(objp);
3020 	if (ARCH_SLAB_MINALIGN &&
3021 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3022 		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3023 		       objp, (int)ARCH_SLAB_MINALIGN);
3024 	}
3025 	return objp;
3026 }
3027 #else
3028 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3029 #endif
3030 
3031 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3032 {
3033 	void *objp;
3034 	struct array_cache *ac;
3035 
3036 	check_irq_off();
3037 
3038 	ac = cpu_cache_get(cachep);
3039 	if (likely(ac->avail)) {
3040 		ac->touched = 1;
3041 		objp = ac->entry[--ac->avail];
3042 
3043 		STATS_INC_ALLOCHIT(cachep);
3044 		goto out;
3045 	}
3046 
3047 	STATS_INC_ALLOCMISS(cachep);
3048 	objp = cache_alloc_refill(cachep, flags);
3049 	/*
3050 	 * the 'ac' may be updated by cache_alloc_refill(),
3051 	 * and kmemleak_erase() requires its correct value.
3052 	 */
3053 	ac = cpu_cache_get(cachep);
3054 
3055 out:
3056 	/*
3057 	 * To avoid a false negative, if an object that is in one of the
3058 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3059 	 * treat the array pointers as a reference to the object.
3060 	 */
3061 	if (objp)
3062 		kmemleak_erase(&ac->entry[ac->avail]);
3063 	return objp;
3064 }
3065 
3066 #ifdef CONFIG_NUMA
3067 /*
3068  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3069  *
3070  * If we are in_interrupt, then process context, including cpusets and
3071  * mempolicy, may not apply and should not be used for allocation policy.
3072  */
3073 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3074 {
3075 	int nid_alloc, nid_here;
3076 
3077 	if (in_interrupt() || (flags & __GFP_THISNODE))
3078 		return NULL;
3079 	nid_alloc = nid_here = numa_mem_id();
3080 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3081 		nid_alloc = cpuset_slab_spread_node();
3082 	else if (current->mempolicy)
3083 		nid_alloc = mempolicy_slab_node();
3084 	if (nid_alloc != nid_here)
3085 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3086 	return NULL;
3087 }
3088 
3089 /*
3090  * Fallback function if there was no memory available and no objects on a
3091  * certain node and fall back is permitted. First we scan all the
3092  * available node for available objects. If that fails then we
3093  * perform an allocation without specifying a node. This allows the page
3094  * allocator to do its reclaim / fallback magic. We then insert the
3095  * slab into the proper nodelist and then allocate from it.
3096  */
3097 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3098 {
3099 	struct zonelist *zonelist;
3100 	struct zoneref *z;
3101 	struct zone *zone;
3102 	enum zone_type highest_zoneidx = gfp_zone(flags);
3103 	void *obj = NULL;
3104 	struct page *page;
3105 	int nid;
3106 	unsigned int cpuset_mems_cookie;
3107 
3108 	if (flags & __GFP_THISNODE)
3109 		return NULL;
3110 
3111 retry_cpuset:
3112 	cpuset_mems_cookie = read_mems_allowed_begin();
3113 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3114 
3115 retry:
3116 	/*
3117 	 * Look through allowed nodes for objects available
3118 	 * from existing per node queues.
3119 	 */
3120 	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3121 		nid = zone_to_nid(zone);
3122 
3123 		if (cpuset_zone_allowed(zone, flags) &&
3124 			get_node(cache, nid) &&
3125 			get_node(cache, nid)->free_objects) {
3126 				obj = ____cache_alloc_node(cache,
3127 					gfp_exact_node(flags), nid);
3128 				if (obj)
3129 					break;
3130 		}
3131 	}
3132 
3133 	if (!obj) {
3134 		/*
3135 		 * This allocation will be performed within the constraints
3136 		 * of the current cpuset / memory policy requirements.
3137 		 * We may trigger various forms of reclaim on the allowed
3138 		 * set and go into memory reserves if necessary.
3139 		 */
3140 		page = cache_grow_begin(cache, flags, numa_mem_id());
3141 		cache_grow_end(cache, page);
3142 		if (page) {
3143 			nid = page_to_nid(page);
3144 			obj = ____cache_alloc_node(cache,
3145 				gfp_exact_node(flags), nid);
3146 
3147 			/*
3148 			 * Another processor may allocate the objects in
3149 			 * the slab since we are not holding any locks.
3150 			 */
3151 			if (!obj)
3152 				goto retry;
3153 		}
3154 	}
3155 
3156 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3157 		goto retry_cpuset;
3158 	return obj;
3159 }
3160 
3161 /*
3162  * A interface to enable slab creation on nodeid
3163  */
3164 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3165 				int nodeid)
3166 {
3167 	struct page *page;
3168 	struct kmem_cache_node *n;
3169 	void *obj = NULL;
3170 	void *list = NULL;
3171 
3172 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3173 	n = get_node(cachep, nodeid);
3174 	BUG_ON(!n);
3175 
3176 	check_irq_off();
3177 	spin_lock(&n->list_lock);
3178 	page = get_first_slab(n, false);
3179 	if (!page)
3180 		goto must_grow;
3181 
3182 	check_spinlock_acquired_node(cachep, nodeid);
3183 
3184 	STATS_INC_NODEALLOCS(cachep);
3185 	STATS_INC_ACTIVE(cachep);
3186 	STATS_SET_HIGH(cachep);
3187 
3188 	BUG_ON(page->active == cachep->num);
3189 
3190 	obj = slab_get_obj(cachep, page);
3191 	n->free_objects--;
3192 
3193 	fixup_slab_list(cachep, n, page, &list);
3194 
3195 	spin_unlock(&n->list_lock);
3196 	fixup_objfreelist_debug(cachep, &list);
3197 	return obj;
3198 
3199 must_grow:
3200 	spin_unlock(&n->list_lock);
3201 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3202 	if (page) {
3203 		/* This slab isn't counted yet so don't update free_objects */
3204 		obj = slab_get_obj(cachep, page);
3205 	}
3206 	cache_grow_end(cachep, page);
3207 
3208 	return obj ? obj : fallback_alloc(cachep, flags);
3209 }
3210 
3211 static __always_inline void *
3212 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3213 		   unsigned long caller)
3214 {
3215 	unsigned long save_flags;
3216 	void *ptr;
3217 	int slab_node = numa_mem_id();
3218 	struct obj_cgroup *objcg = NULL;
3219 
3220 	flags &= gfp_allowed_mask;
3221 	cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3222 	if (unlikely(!cachep))
3223 		return NULL;
3224 
3225 	cache_alloc_debugcheck_before(cachep, flags);
3226 	local_irq_save(save_flags);
3227 
3228 	if (nodeid == NUMA_NO_NODE)
3229 		nodeid = slab_node;
3230 
3231 	if (unlikely(!get_node(cachep, nodeid))) {
3232 		/* Node not bootstrapped yet */
3233 		ptr = fallback_alloc(cachep, flags);
3234 		goto out;
3235 	}
3236 
3237 	if (nodeid == slab_node) {
3238 		/*
3239 		 * Use the locally cached objects if possible.
3240 		 * However ____cache_alloc does not allow fallback
3241 		 * to other nodes. It may fail while we still have
3242 		 * objects on other nodes available.
3243 		 */
3244 		ptr = ____cache_alloc(cachep, flags);
3245 		if (ptr)
3246 			goto out;
3247 	}
3248 	/* ___cache_alloc_node can fall back to other nodes */
3249 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3250   out:
3251 	local_irq_restore(save_flags);
3252 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3253 
3254 	if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr)
3255 		memset(ptr, 0, cachep->object_size);
3256 
3257 	slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr);
3258 	return ptr;
3259 }
3260 
3261 static __always_inline void *
3262 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3263 {
3264 	void *objp;
3265 
3266 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3267 		objp = alternate_node_alloc(cache, flags);
3268 		if (objp)
3269 			goto out;
3270 	}
3271 	objp = ____cache_alloc(cache, flags);
3272 
3273 	/*
3274 	 * We may just have run out of memory on the local node.
3275 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3276 	 */
3277 	if (!objp)
3278 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3279 
3280   out:
3281 	return objp;
3282 }
3283 #else
3284 
3285 static __always_inline void *
3286 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3287 {
3288 	return ____cache_alloc(cachep, flags);
3289 }
3290 
3291 #endif /* CONFIG_NUMA */
3292 
3293 static __always_inline void *
3294 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3295 {
3296 	unsigned long save_flags;
3297 	void *objp;
3298 	struct obj_cgroup *objcg = NULL;
3299 
3300 	flags &= gfp_allowed_mask;
3301 	cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3302 	if (unlikely(!cachep))
3303 		return NULL;
3304 
3305 	cache_alloc_debugcheck_before(cachep, flags);
3306 	local_irq_save(save_flags);
3307 	objp = __do_cache_alloc(cachep, flags);
3308 	local_irq_restore(save_flags);
3309 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3310 	prefetchw(objp);
3311 
3312 	if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp)
3313 		memset(objp, 0, cachep->object_size);
3314 
3315 	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp);
3316 	return objp;
3317 }
3318 
3319 /*
3320  * Caller needs to acquire correct kmem_cache_node's list_lock
3321  * @list: List of detached free slabs should be freed by caller
3322  */
3323 static void free_block(struct kmem_cache *cachep, void **objpp,
3324 			int nr_objects, int node, struct list_head *list)
3325 {
3326 	int i;
3327 	struct kmem_cache_node *n = get_node(cachep, node);
3328 	struct page *page;
3329 
3330 	n->free_objects += nr_objects;
3331 
3332 	for (i = 0; i < nr_objects; i++) {
3333 		void *objp;
3334 		struct page *page;
3335 
3336 		objp = objpp[i];
3337 
3338 		page = virt_to_head_page(objp);
3339 		list_del(&page->slab_list);
3340 		check_spinlock_acquired_node(cachep, node);
3341 		slab_put_obj(cachep, page, objp);
3342 		STATS_DEC_ACTIVE(cachep);
3343 
3344 		/* fixup slab chains */
3345 		if (page->active == 0) {
3346 			list_add(&page->slab_list, &n->slabs_free);
3347 			n->free_slabs++;
3348 		} else {
3349 			/* Unconditionally move a slab to the end of the
3350 			 * partial list on free - maximum time for the
3351 			 * other objects to be freed, too.
3352 			 */
3353 			list_add_tail(&page->slab_list, &n->slabs_partial);
3354 		}
3355 	}
3356 
3357 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3358 		n->free_objects -= cachep->num;
3359 
3360 		page = list_last_entry(&n->slabs_free, struct page, slab_list);
3361 		list_move(&page->slab_list, list);
3362 		n->free_slabs--;
3363 		n->total_slabs--;
3364 	}
3365 }
3366 
3367 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3368 {
3369 	int batchcount;
3370 	struct kmem_cache_node *n;
3371 	int node = numa_mem_id();
3372 	LIST_HEAD(list);
3373 
3374 	batchcount = ac->batchcount;
3375 
3376 	check_irq_off();
3377 	n = get_node(cachep, node);
3378 	spin_lock(&n->list_lock);
3379 	if (n->shared) {
3380 		struct array_cache *shared_array = n->shared;
3381 		int max = shared_array->limit - shared_array->avail;
3382 		if (max) {
3383 			if (batchcount > max)
3384 				batchcount = max;
3385 			memcpy(&(shared_array->entry[shared_array->avail]),
3386 			       ac->entry, sizeof(void *) * batchcount);
3387 			shared_array->avail += batchcount;
3388 			goto free_done;
3389 		}
3390 	}
3391 
3392 	free_block(cachep, ac->entry, batchcount, node, &list);
3393 free_done:
3394 #if STATS
3395 	{
3396 		int i = 0;
3397 		struct page *page;
3398 
3399 		list_for_each_entry(page, &n->slabs_free, slab_list) {
3400 			BUG_ON(page->active);
3401 
3402 			i++;
3403 		}
3404 		STATS_SET_FREEABLE(cachep, i);
3405 	}
3406 #endif
3407 	spin_unlock(&n->list_lock);
3408 	ac->avail -= batchcount;
3409 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3410 	slabs_destroy(cachep, &list);
3411 }
3412 
3413 /*
3414  * Release an obj back to its cache. If the obj has a constructed state, it must
3415  * be in this state _before_ it is released.  Called with disabled ints.
3416  */
3417 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3418 					 unsigned long caller)
3419 {
3420 	if (unlikely(slab_want_init_on_free(cachep)))
3421 		memset(objp, 0, cachep->object_size);
3422 
3423 	/* Put the object into the quarantine, don't touch it for now. */
3424 	if (kasan_slab_free(cachep, objp, _RET_IP_))
3425 		return;
3426 
3427 	/* Use KCSAN to help debug racy use-after-free. */
3428 	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3429 		__kcsan_check_access(objp, cachep->object_size,
3430 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3431 
3432 	___cache_free(cachep, objp, caller);
3433 }
3434 
3435 void ___cache_free(struct kmem_cache *cachep, void *objp,
3436 		unsigned long caller)
3437 {
3438 	struct array_cache *ac = cpu_cache_get(cachep);
3439 
3440 	check_irq_off();
3441 	kmemleak_free_recursive(objp, cachep->flags);
3442 	objp = cache_free_debugcheck(cachep, objp, caller);
3443 	memcg_slab_free_hook(cachep, &objp, 1);
3444 
3445 	/*
3446 	 * Skip calling cache_free_alien() when the platform is not numa.
3447 	 * This will avoid cache misses that happen while accessing slabp (which
3448 	 * is per page memory  reference) to get nodeid. Instead use a global
3449 	 * variable to skip the call, which is mostly likely to be present in
3450 	 * the cache.
3451 	 */
3452 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3453 		return;
3454 
3455 	if (ac->avail < ac->limit) {
3456 		STATS_INC_FREEHIT(cachep);
3457 	} else {
3458 		STATS_INC_FREEMISS(cachep);
3459 		cache_flusharray(cachep, ac);
3460 	}
3461 
3462 	if (sk_memalloc_socks()) {
3463 		struct page *page = virt_to_head_page(objp);
3464 
3465 		if (unlikely(PageSlabPfmemalloc(page))) {
3466 			cache_free_pfmemalloc(cachep, page, objp);
3467 			return;
3468 		}
3469 	}
3470 
3471 	__free_one(ac, objp);
3472 }
3473 
3474 /**
3475  * kmem_cache_alloc - Allocate an object
3476  * @cachep: The cache to allocate from.
3477  * @flags: See kmalloc().
3478  *
3479  * Allocate an object from this cache.  The flags are only relevant
3480  * if the cache has no available objects.
3481  *
3482  * Return: pointer to the new object or %NULL in case of error
3483  */
3484 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3485 {
3486 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3487 
3488 	trace_kmem_cache_alloc(_RET_IP_, ret,
3489 			       cachep->object_size, cachep->size, flags);
3490 
3491 	return ret;
3492 }
3493 EXPORT_SYMBOL(kmem_cache_alloc);
3494 
3495 static __always_inline void
3496 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3497 				  size_t size, void **p, unsigned long caller)
3498 {
3499 	size_t i;
3500 
3501 	for (i = 0; i < size; i++)
3502 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3503 }
3504 
3505 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3506 			  void **p)
3507 {
3508 	size_t i;
3509 	struct obj_cgroup *objcg = NULL;
3510 
3511 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3512 	if (!s)
3513 		return 0;
3514 
3515 	cache_alloc_debugcheck_before(s, flags);
3516 
3517 	local_irq_disable();
3518 	for (i = 0; i < size; i++) {
3519 		void *objp = __do_cache_alloc(s, flags);
3520 
3521 		if (unlikely(!objp))
3522 			goto error;
3523 		p[i] = objp;
3524 	}
3525 	local_irq_enable();
3526 
3527 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3528 
3529 	/* Clear memory outside IRQ disabled section */
3530 	if (unlikely(slab_want_init_on_alloc(flags, s)))
3531 		for (i = 0; i < size; i++)
3532 			memset(p[i], 0, s->object_size);
3533 
3534 	slab_post_alloc_hook(s, objcg, flags, size, p);
3535 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3536 	return size;
3537 error:
3538 	local_irq_enable();
3539 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3540 	slab_post_alloc_hook(s, objcg, flags, i, p);
3541 	__kmem_cache_free_bulk(s, i, p);
3542 	return 0;
3543 }
3544 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3545 
3546 #ifdef CONFIG_TRACING
3547 void *
3548 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3549 {
3550 	void *ret;
3551 
3552 	ret = slab_alloc(cachep, flags, _RET_IP_);
3553 
3554 	ret = kasan_kmalloc(cachep, ret, size, flags);
3555 	trace_kmalloc(_RET_IP_, ret,
3556 		      size, cachep->size, flags);
3557 	return ret;
3558 }
3559 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3560 #endif
3561 
3562 #ifdef CONFIG_NUMA
3563 /**
3564  * kmem_cache_alloc_node - Allocate an object on the specified node
3565  * @cachep: The cache to allocate from.
3566  * @flags: See kmalloc().
3567  * @nodeid: node number of the target node.
3568  *
3569  * Identical to kmem_cache_alloc but it will allocate memory on the given
3570  * node, which can improve the performance for cpu bound structures.
3571  *
3572  * Fallback to other node is possible if __GFP_THISNODE is not set.
3573  *
3574  * Return: pointer to the new object or %NULL in case of error
3575  */
3576 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3577 {
3578 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3579 
3580 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3581 				    cachep->object_size, cachep->size,
3582 				    flags, nodeid);
3583 
3584 	return ret;
3585 }
3586 EXPORT_SYMBOL(kmem_cache_alloc_node);
3587 
3588 #ifdef CONFIG_TRACING
3589 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3590 				  gfp_t flags,
3591 				  int nodeid,
3592 				  size_t size)
3593 {
3594 	void *ret;
3595 
3596 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3597 
3598 	ret = kasan_kmalloc(cachep, ret, size, flags);
3599 	trace_kmalloc_node(_RET_IP_, ret,
3600 			   size, cachep->size,
3601 			   flags, nodeid);
3602 	return ret;
3603 }
3604 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3605 #endif
3606 
3607 static __always_inline void *
3608 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3609 {
3610 	struct kmem_cache *cachep;
3611 	void *ret;
3612 
3613 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3614 		return NULL;
3615 	cachep = kmalloc_slab(size, flags);
3616 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3617 		return cachep;
3618 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3619 	ret = kasan_kmalloc(cachep, ret, size, flags);
3620 
3621 	return ret;
3622 }
3623 
3624 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3625 {
3626 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3627 }
3628 EXPORT_SYMBOL(__kmalloc_node);
3629 
3630 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3631 		int node, unsigned long caller)
3632 {
3633 	return __do_kmalloc_node(size, flags, node, caller);
3634 }
3635 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3636 #endif /* CONFIG_NUMA */
3637 
3638 /**
3639  * __do_kmalloc - allocate memory
3640  * @size: how many bytes of memory are required.
3641  * @flags: the type of memory to allocate (see kmalloc).
3642  * @caller: function caller for debug tracking of the caller
3643  *
3644  * Return: pointer to the allocated memory or %NULL in case of error
3645  */
3646 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3647 					  unsigned long caller)
3648 {
3649 	struct kmem_cache *cachep;
3650 	void *ret;
3651 
3652 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3653 		return NULL;
3654 	cachep = kmalloc_slab(size, flags);
3655 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3656 		return cachep;
3657 	ret = slab_alloc(cachep, flags, caller);
3658 
3659 	ret = kasan_kmalloc(cachep, ret, size, flags);
3660 	trace_kmalloc(caller, ret,
3661 		      size, cachep->size, flags);
3662 
3663 	return ret;
3664 }
3665 
3666 void *__kmalloc(size_t size, gfp_t flags)
3667 {
3668 	return __do_kmalloc(size, flags, _RET_IP_);
3669 }
3670 EXPORT_SYMBOL(__kmalloc);
3671 
3672 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3673 {
3674 	return __do_kmalloc(size, flags, caller);
3675 }
3676 EXPORT_SYMBOL(__kmalloc_track_caller);
3677 
3678 /**
3679  * kmem_cache_free - Deallocate an object
3680  * @cachep: The cache the allocation was from.
3681  * @objp: The previously allocated object.
3682  *
3683  * Free an object which was previously allocated from this
3684  * cache.
3685  */
3686 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3687 {
3688 	unsigned long flags;
3689 	cachep = cache_from_obj(cachep, objp);
3690 	if (!cachep)
3691 		return;
3692 
3693 	local_irq_save(flags);
3694 	debug_check_no_locks_freed(objp, cachep->object_size);
3695 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3696 		debug_check_no_obj_freed(objp, cachep->object_size);
3697 	__cache_free(cachep, objp, _RET_IP_);
3698 	local_irq_restore(flags);
3699 
3700 	trace_kmem_cache_free(_RET_IP_, objp);
3701 }
3702 EXPORT_SYMBOL(kmem_cache_free);
3703 
3704 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3705 {
3706 	struct kmem_cache *s;
3707 	size_t i;
3708 
3709 	local_irq_disable();
3710 	for (i = 0; i < size; i++) {
3711 		void *objp = p[i];
3712 
3713 		if (!orig_s) /* called via kfree_bulk */
3714 			s = virt_to_cache(objp);
3715 		else
3716 			s = cache_from_obj(orig_s, objp);
3717 		if (!s)
3718 			continue;
3719 
3720 		debug_check_no_locks_freed(objp, s->object_size);
3721 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3722 			debug_check_no_obj_freed(objp, s->object_size);
3723 
3724 		__cache_free(s, objp, _RET_IP_);
3725 	}
3726 	local_irq_enable();
3727 
3728 	/* FIXME: add tracing */
3729 }
3730 EXPORT_SYMBOL(kmem_cache_free_bulk);
3731 
3732 /**
3733  * kfree - free previously allocated memory
3734  * @objp: pointer returned by kmalloc.
3735  *
3736  * If @objp is NULL, no operation is performed.
3737  *
3738  * Don't free memory not originally allocated by kmalloc()
3739  * or you will run into trouble.
3740  */
3741 void kfree(const void *objp)
3742 {
3743 	struct kmem_cache *c;
3744 	unsigned long flags;
3745 
3746 	trace_kfree(_RET_IP_, objp);
3747 
3748 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3749 		return;
3750 	local_irq_save(flags);
3751 	kfree_debugcheck(objp);
3752 	c = virt_to_cache(objp);
3753 	if (!c) {
3754 		local_irq_restore(flags);
3755 		return;
3756 	}
3757 	debug_check_no_locks_freed(objp, c->object_size);
3758 
3759 	debug_check_no_obj_freed(objp, c->object_size);
3760 	__cache_free(c, (void *)objp, _RET_IP_);
3761 	local_irq_restore(flags);
3762 }
3763 EXPORT_SYMBOL(kfree);
3764 
3765 /*
3766  * This initializes kmem_cache_node or resizes various caches for all nodes.
3767  */
3768 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3769 {
3770 	int ret;
3771 	int node;
3772 	struct kmem_cache_node *n;
3773 
3774 	for_each_online_node(node) {
3775 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3776 		if (ret)
3777 			goto fail;
3778 
3779 	}
3780 
3781 	return 0;
3782 
3783 fail:
3784 	if (!cachep->list.next) {
3785 		/* Cache is not active yet. Roll back what we did */
3786 		node--;
3787 		while (node >= 0) {
3788 			n = get_node(cachep, node);
3789 			if (n) {
3790 				kfree(n->shared);
3791 				free_alien_cache(n->alien);
3792 				kfree(n);
3793 				cachep->node[node] = NULL;
3794 			}
3795 			node--;
3796 		}
3797 	}
3798 	return -ENOMEM;
3799 }
3800 
3801 /* Always called with the slab_mutex held */
3802 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3803 			    int batchcount, int shared, gfp_t gfp)
3804 {
3805 	struct array_cache __percpu *cpu_cache, *prev;
3806 	int cpu;
3807 
3808 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3809 	if (!cpu_cache)
3810 		return -ENOMEM;
3811 
3812 	prev = cachep->cpu_cache;
3813 	cachep->cpu_cache = cpu_cache;
3814 	/*
3815 	 * Without a previous cpu_cache there's no need to synchronize remote
3816 	 * cpus, so skip the IPIs.
3817 	 */
3818 	if (prev)
3819 		kick_all_cpus_sync();
3820 
3821 	check_irq_on();
3822 	cachep->batchcount = batchcount;
3823 	cachep->limit = limit;
3824 	cachep->shared = shared;
3825 
3826 	if (!prev)
3827 		goto setup_node;
3828 
3829 	for_each_online_cpu(cpu) {
3830 		LIST_HEAD(list);
3831 		int node;
3832 		struct kmem_cache_node *n;
3833 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3834 
3835 		node = cpu_to_mem(cpu);
3836 		n = get_node(cachep, node);
3837 		spin_lock_irq(&n->list_lock);
3838 		free_block(cachep, ac->entry, ac->avail, node, &list);
3839 		spin_unlock_irq(&n->list_lock);
3840 		slabs_destroy(cachep, &list);
3841 	}
3842 	free_percpu(prev);
3843 
3844 setup_node:
3845 	return setup_kmem_cache_nodes(cachep, gfp);
3846 }
3847 
3848 /* Called with slab_mutex held always */
3849 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3850 {
3851 	int err;
3852 	int limit = 0;
3853 	int shared = 0;
3854 	int batchcount = 0;
3855 
3856 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3857 	if (err)
3858 		goto end;
3859 
3860 	if (limit && shared && batchcount)
3861 		goto skip_setup;
3862 	/*
3863 	 * The head array serves three purposes:
3864 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3865 	 * - reduce the number of spinlock operations.
3866 	 * - reduce the number of linked list operations on the slab and
3867 	 *   bufctl chains: array operations are cheaper.
3868 	 * The numbers are guessed, we should auto-tune as described by
3869 	 * Bonwick.
3870 	 */
3871 	if (cachep->size > 131072)
3872 		limit = 1;
3873 	else if (cachep->size > PAGE_SIZE)
3874 		limit = 8;
3875 	else if (cachep->size > 1024)
3876 		limit = 24;
3877 	else if (cachep->size > 256)
3878 		limit = 54;
3879 	else
3880 		limit = 120;
3881 
3882 	/*
3883 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3884 	 * allocation behaviour: Most allocs on one cpu, most free operations
3885 	 * on another cpu. For these cases, an efficient object passing between
3886 	 * cpus is necessary. This is provided by a shared array. The array
3887 	 * replaces Bonwick's magazine layer.
3888 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3889 	 * to a larger limit. Thus disabled by default.
3890 	 */
3891 	shared = 0;
3892 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3893 		shared = 8;
3894 
3895 #if DEBUG
3896 	/*
3897 	 * With debugging enabled, large batchcount lead to excessively long
3898 	 * periods with disabled local interrupts. Limit the batchcount
3899 	 */
3900 	if (limit > 32)
3901 		limit = 32;
3902 #endif
3903 	batchcount = (limit + 1) / 2;
3904 skip_setup:
3905 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3906 end:
3907 	if (err)
3908 		pr_err("enable_cpucache failed for %s, error %d\n",
3909 		       cachep->name, -err);
3910 	return err;
3911 }
3912 
3913 /*
3914  * Drain an array if it contains any elements taking the node lock only if
3915  * necessary. Note that the node listlock also protects the array_cache
3916  * if drain_array() is used on the shared array.
3917  */
3918 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3919 			 struct array_cache *ac, int node)
3920 {
3921 	LIST_HEAD(list);
3922 
3923 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3924 	check_mutex_acquired();
3925 
3926 	if (!ac || !ac->avail)
3927 		return;
3928 
3929 	if (ac->touched) {
3930 		ac->touched = 0;
3931 		return;
3932 	}
3933 
3934 	spin_lock_irq(&n->list_lock);
3935 	drain_array_locked(cachep, ac, node, false, &list);
3936 	spin_unlock_irq(&n->list_lock);
3937 
3938 	slabs_destroy(cachep, &list);
3939 }
3940 
3941 /**
3942  * cache_reap - Reclaim memory from caches.
3943  * @w: work descriptor
3944  *
3945  * Called from workqueue/eventd every few seconds.
3946  * Purpose:
3947  * - clear the per-cpu caches for this CPU.
3948  * - return freeable pages to the main free memory pool.
3949  *
3950  * If we cannot acquire the cache chain mutex then just give up - we'll try
3951  * again on the next iteration.
3952  */
3953 static void cache_reap(struct work_struct *w)
3954 {
3955 	struct kmem_cache *searchp;
3956 	struct kmem_cache_node *n;
3957 	int node = numa_mem_id();
3958 	struct delayed_work *work = to_delayed_work(w);
3959 
3960 	if (!mutex_trylock(&slab_mutex))
3961 		/* Give up. Setup the next iteration. */
3962 		goto out;
3963 
3964 	list_for_each_entry(searchp, &slab_caches, list) {
3965 		check_irq_on();
3966 
3967 		/*
3968 		 * We only take the node lock if absolutely necessary and we
3969 		 * have established with reasonable certainty that
3970 		 * we can do some work if the lock was obtained.
3971 		 */
3972 		n = get_node(searchp, node);
3973 
3974 		reap_alien(searchp, n);
3975 
3976 		drain_array(searchp, n, cpu_cache_get(searchp), node);
3977 
3978 		/*
3979 		 * These are racy checks but it does not matter
3980 		 * if we skip one check or scan twice.
3981 		 */
3982 		if (time_after(n->next_reap, jiffies))
3983 			goto next;
3984 
3985 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3986 
3987 		drain_array(searchp, n, n->shared, node);
3988 
3989 		if (n->free_touched)
3990 			n->free_touched = 0;
3991 		else {
3992 			int freed;
3993 
3994 			freed = drain_freelist(searchp, n, (n->free_limit +
3995 				5 * searchp->num - 1) / (5 * searchp->num));
3996 			STATS_ADD_REAPED(searchp, freed);
3997 		}
3998 next:
3999 		cond_resched();
4000 	}
4001 	check_irq_on();
4002 	mutex_unlock(&slab_mutex);
4003 	next_reap_node();
4004 out:
4005 	/* Set up the next iteration */
4006 	schedule_delayed_work_on(smp_processor_id(), work,
4007 				round_jiffies_relative(REAPTIMEOUT_AC));
4008 }
4009 
4010 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4011 {
4012 	unsigned long active_objs, num_objs, active_slabs;
4013 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4014 	unsigned long free_slabs = 0;
4015 	int node;
4016 	struct kmem_cache_node *n;
4017 
4018 	for_each_kmem_cache_node(cachep, node, n) {
4019 		check_irq_on();
4020 		spin_lock_irq(&n->list_lock);
4021 
4022 		total_slabs += n->total_slabs;
4023 		free_slabs += n->free_slabs;
4024 		free_objs += n->free_objects;
4025 
4026 		if (n->shared)
4027 			shared_avail += n->shared->avail;
4028 
4029 		spin_unlock_irq(&n->list_lock);
4030 	}
4031 	num_objs = total_slabs * cachep->num;
4032 	active_slabs = total_slabs - free_slabs;
4033 	active_objs = num_objs - free_objs;
4034 
4035 	sinfo->active_objs = active_objs;
4036 	sinfo->num_objs = num_objs;
4037 	sinfo->active_slabs = active_slabs;
4038 	sinfo->num_slabs = total_slabs;
4039 	sinfo->shared_avail = shared_avail;
4040 	sinfo->limit = cachep->limit;
4041 	sinfo->batchcount = cachep->batchcount;
4042 	sinfo->shared = cachep->shared;
4043 	sinfo->objects_per_slab = cachep->num;
4044 	sinfo->cache_order = cachep->gfporder;
4045 }
4046 
4047 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4048 {
4049 #if STATS
4050 	{			/* node stats */
4051 		unsigned long high = cachep->high_mark;
4052 		unsigned long allocs = cachep->num_allocations;
4053 		unsigned long grown = cachep->grown;
4054 		unsigned long reaped = cachep->reaped;
4055 		unsigned long errors = cachep->errors;
4056 		unsigned long max_freeable = cachep->max_freeable;
4057 		unsigned long node_allocs = cachep->node_allocs;
4058 		unsigned long node_frees = cachep->node_frees;
4059 		unsigned long overflows = cachep->node_overflow;
4060 
4061 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4062 			   allocs, high, grown,
4063 			   reaped, errors, max_freeable, node_allocs,
4064 			   node_frees, overflows);
4065 	}
4066 	/* cpu stats */
4067 	{
4068 		unsigned long allochit = atomic_read(&cachep->allochit);
4069 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4070 		unsigned long freehit = atomic_read(&cachep->freehit);
4071 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4072 
4073 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4074 			   allochit, allocmiss, freehit, freemiss);
4075 	}
4076 #endif
4077 }
4078 
4079 #define MAX_SLABINFO_WRITE 128
4080 /**
4081  * slabinfo_write - Tuning for the slab allocator
4082  * @file: unused
4083  * @buffer: user buffer
4084  * @count: data length
4085  * @ppos: unused
4086  *
4087  * Return: %0 on success, negative error code otherwise.
4088  */
4089 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4090 		       size_t count, loff_t *ppos)
4091 {
4092 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4093 	int limit, batchcount, shared, res;
4094 	struct kmem_cache *cachep;
4095 
4096 	if (count > MAX_SLABINFO_WRITE)
4097 		return -EINVAL;
4098 	if (copy_from_user(&kbuf, buffer, count))
4099 		return -EFAULT;
4100 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4101 
4102 	tmp = strchr(kbuf, ' ');
4103 	if (!tmp)
4104 		return -EINVAL;
4105 	*tmp = '\0';
4106 	tmp++;
4107 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4108 		return -EINVAL;
4109 
4110 	/* Find the cache in the chain of caches. */
4111 	mutex_lock(&slab_mutex);
4112 	res = -EINVAL;
4113 	list_for_each_entry(cachep, &slab_caches, list) {
4114 		if (!strcmp(cachep->name, kbuf)) {
4115 			if (limit < 1 || batchcount < 1 ||
4116 					batchcount > limit || shared < 0) {
4117 				res = 0;
4118 			} else {
4119 				res = do_tune_cpucache(cachep, limit,
4120 						       batchcount, shared,
4121 						       GFP_KERNEL);
4122 			}
4123 			break;
4124 		}
4125 	}
4126 	mutex_unlock(&slab_mutex);
4127 	if (res >= 0)
4128 		res = count;
4129 	return res;
4130 }
4131 
4132 #ifdef CONFIG_HARDENED_USERCOPY
4133 /*
4134  * Rejects incorrectly sized objects and objects that are to be copied
4135  * to/from userspace but do not fall entirely within the containing slab
4136  * cache's usercopy region.
4137  *
4138  * Returns NULL if check passes, otherwise const char * to name of cache
4139  * to indicate an error.
4140  */
4141 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4142 			 bool to_user)
4143 {
4144 	struct kmem_cache *cachep;
4145 	unsigned int objnr;
4146 	unsigned long offset;
4147 
4148 	ptr = kasan_reset_tag(ptr);
4149 
4150 	/* Find and validate object. */
4151 	cachep = page->slab_cache;
4152 	objnr = obj_to_index(cachep, page, (void *)ptr);
4153 	BUG_ON(objnr >= cachep->num);
4154 
4155 	/* Find offset within object. */
4156 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4157 
4158 	/* Allow address range falling entirely within usercopy region. */
4159 	if (offset >= cachep->useroffset &&
4160 	    offset - cachep->useroffset <= cachep->usersize &&
4161 	    n <= cachep->useroffset - offset + cachep->usersize)
4162 		return;
4163 
4164 	/*
4165 	 * If the copy is still within the allocated object, produce
4166 	 * a warning instead of rejecting the copy. This is intended
4167 	 * to be a temporary method to find any missing usercopy
4168 	 * whitelists.
4169 	 */
4170 	if (usercopy_fallback &&
4171 	    offset <= cachep->object_size &&
4172 	    n <= cachep->object_size - offset) {
4173 		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4174 		return;
4175 	}
4176 
4177 	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4178 }
4179 #endif /* CONFIG_HARDENED_USERCOPY */
4180 
4181 /**
4182  * __ksize -- Uninstrumented ksize.
4183  * @objp: pointer to the object
4184  *
4185  * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4186  * safety checks as ksize() with KASAN instrumentation enabled.
4187  *
4188  * Return: size of the actual memory used by @objp in bytes
4189  */
4190 size_t __ksize(const void *objp)
4191 {
4192 	struct kmem_cache *c;
4193 	size_t size;
4194 
4195 	BUG_ON(!objp);
4196 	if (unlikely(objp == ZERO_SIZE_PTR))
4197 		return 0;
4198 
4199 	c = virt_to_cache(objp);
4200 	size = c ? c->object_size : 0;
4201 
4202 	return size;
4203 }
4204 EXPORT_SYMBOL(__ksize);
4205