xref: /openbmc/linux/mm/slab.c (revision 62e7ca52)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * true if a page was allocated from pfmemalloc reserves for network-based
173  * swap
174  */
175 static bool pfmemalloc_active __read_mostly;
176 
177 /*
178  * struct array_cache
179  *
180  * Purpose:
181  * - LIFO ordering, to hand out cache-warm objects from _alloc
182  * - reduce the number of linked list operations
183  * - reduce spinlock operations
184  *
185  * The limit is stored in the per-cpu structure to reduce the data cache
186  * footprint.
187  *
188  */
189 struct array_cache {
190 	unsigned int avail;
191 	unsigned int limit;
192 	unsigned int batchcount;
193 	unsigned int touched;
194 	void *entry[];	/*
195 			 * Must have this definition in here for the proper
196 			 * alignment of array_cache. Also simplifies accessing
197 			 * the entries.
198 			 *
199 			 * Entries should not be directly dereferenced as
200 			 * entries belonging to slabs marked pfmemalloc will
201 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 			 */
203 };
204 
205 struct alien_cache {
206 	spinlock_t lock;
207 	struct array_cache ac;
208 };
209 
210 #define SLAB_OBJ_PFMEMALLOC	1
211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215 
216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 	return;
220 }
221 
222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226 
227 /*
228  * bootstrap: The caches do not work without cpuarrays anymore, but the
229  * cpuarrays are allocated from the generic caches...
230  */
231 #define BOOT_CPUCACHE_ENTRIES	1
232 struct arraycache_init {
233 	struct array_cache cache;
234 	void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236 
237 /*
238  * Need this for bootstrapping a per node allocator.
239  */
240 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define	CACHE_CACHE 0
243 #define	SIZE_AC MAX_NUMNODES
244 #define	SIZE_NODE (2 * MAX_NUMNODES)
245 
246 static int drain_freelist(struct kmem_cache *cache,
247 			struct kmem_cache_node *n, int tofree);
248 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
249 			int node, struct list_head *list);
250 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
251 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252 static void cache_reap(struct work_struct *unused);
253 
254 static int slab_early_init = 1;
255 
256 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
258 
259 static void kmem_cache_node_init(struct kmem_cache_node *parent)
260 {
261 	INIT_LIST_HEAD(&parent->slabs_full);
262 	INIT_LIST_HEAD(&parent->slabs_partial);
263 	INIT_LIST_HEAD(&parent->slabs_free);
264 	parent->shared = NULL;
265 	parent->alien = NULL;
266 	parent->colour_next = 0;
267 	spin_lock_init(&parent->list_lock);
268 	parent->free_objects = 0;
269 	parent->free_touched = 0;
270 }
271 
272 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
273 	do {								\
274 		INIT_LIST_HEAD(listp);					\
275 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
276 	} while (0)
277 
278 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
279 	do {								\
280 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
281 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
282 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
283 	} while (0)
284 
285 #define CFLGS_OFF_SLAB		(0x80000000UL)
286 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
287 
288 #define BATCHREFILL_LIMIT	16
289 /*
290  * Optimization question: fewer reaps means less probability for unnessary
291  * cpucache drain/refill cycles.
292  *
293  * OTOH the cpuarrays can contain lots of objects,
294  * which could lock up otherwise freeable slabs.
295  */
296 #define REAPTIMEOUT_AC		(2*HZ)
297 #define REAPTIMEOUT_NODE	(4*HZ)
298 
299 #if STATS
300 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
301 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
302 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
303 #define	STATS_INC_GROWN(x)	((x)->grown++)
304 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
305 #define	STATS_SET_HIGH(x)						\
306 	do {								\
307 		if ((x)->num_active > (x)->high_mark)			\
308 			(x)->high_mark = (x)->num_active;		\
309 	} while (0)
310 #define	STATS_INC_ERR(x)	((x)->errors++)
311 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
312 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
313 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
314 #define	STATS_SET_FREEABLE(x, i)					\
315 	do {								\
316 		if ((x)->max_freeable < i)				\
317 			(x)->max_freeable = i;				\
318 	} while (0)
319 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
320 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
321 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
322 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
323 #else
324 #define	STATS_INC_ACTIVE(x)	do { } while (0)
325 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
326 #define	STATS_INC_ALLOCED(x)	do { } while (0)
327 #define	STATS_INC_GROWN(x)	do { } while (0)
328 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
329 #define	STATS_SET_HIGH(x)	do { } while (0)
330 #define	STATS_INC_ERR(x)	do { } while (0)
331 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
332 #define	STATS_INC_NODEFREES(x)	do { } while (0)
333 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
334 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
335 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
336 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
337 #define STATS_INC_FREEHIT(x)	do { } while (0)
338 #define STATS_INC_FREEMISS(x)	do { } while (0)
339 #endif
340 
341 #if DEBUG
342 
343 /*
344  * memory layout of objects:
345  * 0		: objp
346  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
347  * 		the end of an object is aligned with the end of the real
348  * 		allocation. Catches writes behind the end of the allocation.
349  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
350  * 		redzone word.
351  * cachep->obj_offset: The real object.
352  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
353  * cachep->size - 1* BYTES_PER_WORD: last caller address
354  *					[BYTES_PER_WORD long]
355  */
356 static int obj_offset(struct kmem_cache *cachep)
357 {
358 	return cachep->obj_offset;
359 }
360 
361 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
362 {
363 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364 	return (unsigned long long*) (objp + obj_offset(cachep) -
365 				      sizeof(unsigned long long));
366 }
367 
368 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
369 {
370 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
371 	if (cachep->flags & SLAB_STORE_USER)
372 		return (unsigned long long *)(objp + cachep->size -
373 					      sizeof(unsigned long long) -
374 					      REDZONE_ALIGN);
375 	return (unsigned long long *) (objp + cachep->size -
376 				       sizeof(unsigned long long));
377 }
378 
379 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
380 {
381 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
383 }
384 
385 #else
386 
387 #define obj_offset(x)			0
388 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
389 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
390 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
391 
392 #endif
393 
394 #define OBJECT_FREE (0)
395 #define OBJECT_ACTIVE (1)
396 
397 #ifdef CONFIG_DEBUG_SLAB_LEAK
398 
399 static void set_obj_status(struct page *page, int idx, int val)
400 {
401 	int freelist_size;
402 	char *status;
403 	struct kmem_cache *cachep = page->slab_cache;
404 
405 	freelist_size = cachep->num * sizeof(freelist_idx_t);
406 	status = (char *)page->freelist + freelist_size;
407 	status[idx] = val;
408 }
409 
410 static inline unsigned int get_obj_status(struct page *page, int idx)
411 {
412 	int freelist_size;
413 	char *status;
414 	struct kmem_cache *cachep = page->slab_cache;
415 
416 	freelist_size = cachep->num * sizeof(freelist_idx_t);
417 	status = (char *)page->freelist + freelist_size;
418 
419 	return status[idx];
420 }
421 
422 #else
423 static inline void set_obj_status(struct page *page, int idx, int val) {}
424 
425 #endif
426 
427 /*
428  * Do not go above this order unless 0 objects fit into the slab or
429  * overridden on the command line.
430  */
431 #define	SLAB_MAX_ORDER_HI	1
432 #define	SLAB_MAX_ORDER_LO	0
433 static int slab_max_order = SLAB_MAX_ORDER_LO;
434 static bool slab_max_order_set __initdata;
435 
436 static inline struct kmem_cache *virt_to_cache(const void *obj)
437 {
438 	struct page *page = virt_to_head_page(obj);
439 	return page->slab_cache;
440 }
441 
442 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
443 				 unsigned int idx)
444 {
445 	return page->s_mem + cache->size * idx;
446 }
447 
448 /*
449  * We want to avoid an expensive divide : (offset / cache->size)
450  *   Using the fact that size is a constant for a particular cache,
451  *   we can replace (offset / cache->size) by
452  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
453  */
454 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455 					const struct page *page, void *obj)
456 {
457 	u32 offset = (obj - page->s_mem);
458 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459 }
460 
461 static struct arraycache_init initarray_generic =
462     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
463 
464 /* internal cache of cache description objs */
465 static struct kmem_cache kmem_cache_boot = {
466 	.batchcount = 1,
467 	.limit = BOOT_CPUCACHE_ENTRIES,
468 	.shared = 1,
469 	.size = sizeof(struct kmem_cache),
470 	.name = "kmem_cache",
471 };
472 
473 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
474 
475 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
476 {
477 	return cachep->array[smp_processor_id()];
478 }
479 
480 static size_t calculate_freelist_size(int nr_objs, size_t align)
481 {
482 	size_t freelist_size;
483 
484 	freelist_size = nr_objs * sizeof(freelist_idx_t);
485 	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
486 		freelist_size += nr_objs * sizeof(char);
487 
488 	if (align)
489 		freelist_size = ALIGN(freelist_size, align);
490 
491 	return freelist_size;
492 }
493 
494 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
495 				size_t idx_size, size_t align)
496 {
497 	int nr_objs;
498 	size_t remained_size;
499 	size_t freelist_size;
500 	int extra_space = 0;
501 
502 	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
503 		extra_space = sizeof(char);
504 	/*
505 	 * Ignore padding for the initial guess. The padding
506 	 * is at most @align-1 bytes, and @buffer_size is at
507 	 * least @align. In the worst case, this result will
508 	 * be one greater than the number of objects that fit
509 	 * into the memory allocation when taking the padding
510 	 * into account.
511 	 */
512 	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
513 
514 	/*
515 	 * This calculated number will be either the right
516 	 * amount, or one greater than what we want.
517 	 */
518 	remained_size = slab_size - nr_objs * buffer_size;
519 	freelist_size = calculate_freelist_size(nr_objs, align);
520 	if (remained_size < freelist_size)
521 		nr_objs--;
522 
523 	return nr_objs;
524 }
525 
526 /*
527  * Calculate the number of objects and left-over bytes for a given buffer size.
528  */
529 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
530 			   size_t align, int flags, size_t *left_over,
531 			   unsigned int *num)
532 {
533 	int nr_objs;
534 	size_t mgmt_size;
535 	size_t slab_size = PAGE_SIZE << gfporder;
536 
537 	/*
538 	 * The slab management structure can be either off the slab or
539 	 * on it. For the latter case, the memory allocated for a
540 	 * slab is used for:
541 	 *
542 	 * - One unsigned int for each object
543 	 * - Padding to respect alignment of @align
544 	 * - @buffer_size bytes for each object
545 	 *
546 	 * If the slab management structure is off the slab, then the
547 	 * alignment will already be calculated into the size. Because
548 	 * the slabs are all pages aligned, the objects will be at the
549 	 * correct alignment when allocated.
550 	 */
551 	if (flags & CFLGS_OFF_SLAB) {
552 		mgmt_size = 0;
553 		nr_objs = slab_size / buffer_size;
554 
555 	} else {
556 		nr_objs = calculate_nr_objs(slab_size, buffer_size,
557 					sizeof(freelist_idx_t), align);
558 		mgmt_size = calculate_freelist_size(nr_objs, align);
559 	}
560 	*num = nr_objs;
561 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
562 }
563 
564 #if DEBUG
565 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
566 
567 static void __slab_error(const char *function, struct kmem_cache *cachep,
568 			char *msg)
569 {
570 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
571 	       function, cachep->name, msg);
572 	dump_stack();
573 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
574 }
575 #endif
576 
577 /*
578  * By default on NUMA we use alien caches to stage the freeing of
579  * objects allocated from other nodes. This causes massive memory
580  * inefficiencies when using fake NUMA setup to split memory into a
581  * large number of small nodes, so it can be disabled on the command
582  * line
583   */
584 
585 static int use_alien_caches __read_mostly = 1;
586 static int __init noaliencache_setup(char *s)
587 {
588 	use_alien_caches = 0;
589 	return 1;
590 }
591 __setup("noaliencache", noaliencache_setup);
592 
593 static int __init slab_max_order_setup(char *str)
594 {
595 	get_option(&str, &slab_max_order);
596 	slab_max_order = slab_max_order < 0 ? 0 :
597 				min(slab_max_order, MAX_ORDER - 1);
598 	slab_max_order_set = true;
599 
600 	return 1;
601 }
602 __setup("slab_max_order=", slab_max_order_setup);
603 
604 #ifdef CONFIG_NUMA
605 /*
606  * Special reaping functions for NUMA systems called from cache_reap().
607  * These take care of doing round robin flushing of alien caches (containing
608  * objects freed on different nodes from which they were allocated) and the
609  * flushing of remote pcps by calling drain_node_pages.
610  */
611 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
612 
613 static void init_reap_node(int cpu)
614 {
615 	int node;
616 
617 	node = next_node(cpu_to_mem(cpu), node_online_map);
618 	if (node == MAX_NUMNODES)
619 		node = first_node(node_online_map);
620 
621 	per_cpu(slab_reap_node, cpu) = node;
622 }
623 
624 static void next_reap_node(void)
625 {
626 	int node = __this_cpu_read(slab_reap_node);
627 
628 	node = next_node(node, node_online_map);
629 	if (unlikely(node >= MAX_NUMNODES))
630 		node = first_node(node_online_map);
631 	__this_cpu_write(slab_reap_node, node);
632 }
633 
634 #else
635 #define init_reap_node(cpu) do { } while (0)
636 #define next_reap_node(void) do { } while (0)
637 #endif
638 
639 /*
640  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
641  * via the workqueue/eventd.
642  * Add the CPU number into the expiration time to minimize the possibility of
643  * the CPUs getting into lockstep and contending for the global cache chain
644  * lock.
645  */
646 static void start_cpu_timer(int cpu)
647 {
648 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
649 
650 	/*
651 	 * When this gets called from do_initcalls via cpucache_init(),
652 	 * init_workqueues() has already run, so keventd will be setup
653 	 * at that time.
654 	 */
655 	if (keventd_up() && reap_work->work.func == NULL) {
656 		init_reap_node(cpu);
657 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
658 		schedule_delayed_work_on(cpu, reap_work,
659 					__round_jiffies_relative(HZ, cpu));
660 	}
661 }
662 
663 static void init_arraycache(struct array_cache *ac, int limit, int batch)
664 {
665 	/*
666 	 * The array_cache structures contain pointers to free object.
667 	 * However, when such objects are allocated or transferred to another
668 	 * cache the pointers are not cleared and they could be counted as
669 	 * valid references during a kmemleak scan. Therefore, kmemleak must
670 	 * not scan such objects.
671 	 */
672 	kmemleak_no_scan(ac);
673 	if (ac) {
674 		ac->avail = 0;
675 		ac->limit = limit;
676 		ac->batchcount = batch;
677 		ac->touched = 0;
678 	}
679 }
680 
681 static struct array_cache *alloc_arraycache(int node, int entries,
682 					    int batchcount, gfp_t gfp)
683 {
684 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
685 	struct array_cache *ac = NULL;
686 
687 	ac = kmalloc_node(memsize, gfp, node);
688 	init_arraycache(ac, entries, batchcount);
689 	return ac;
690 }
691 
692 static inline bool is_slab_pfmemalloc(struct page *page)
693 {
694 	return PageSlabPfmemalloc(page);
695 }
696 
697 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
698 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
699 						struct array_cache *ac)
700 {
701 	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
702 	struct page *page;
703 	unsigned long flags;
704 
705 	if (!pfmemalloc_active)
706 		return;
707 
708 	spin_lock_irqsave(&n->list_lock, flags);
709 	list_for_each_entry(page, &n->slabs_full, lru)
710 		if (is_slab_pfmemalloc(page))
711 			goto out;
712 
713 	list_for_each_entry(page, &n->slabs_partial, lru)
714 		if (is_slab_pfmemalloc(page))
715 			goto out;
716 
717 	list_for_each_entry(page, &n->slabs_free, lru)
718 		if (is_slab_pfmemalloc(page))
719 			goto out;
720 
721 	pfmemalloc_active = false;
722 out:
723 	spin_unlock_irqrestore(&n->list_lock, flags);
724 }
725 
726 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
727 						gfp_t flags, bool force_refill)
728 {
729 	int i;
730 	void *objp = ac->entry[--ac->avail];
731 
732 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
733 	if (unlikely(is_obj_pfmemalloc(objp))) {
734 		struct kmem_cache_node *n;
735 
736 		if (gfp_pfmemalloc_allowed(flags)) {
737 			clear_obj_pfmemalloc(&objp);
738 			return objp;
739 		}
740 
741 		/* The caller cannot use PFMEMALLOC objects, find another one */
742 		for (i = 0; i < ac->avail; i++) {
743 			/* If a !PFMEMALLOC object is found, swap them */
744 			if (!is_obj_pfmemalloc(ac->entry[i])) {
745 				objp = ac->entry[i];
746 				ac->entry[i] = ac->entry[ac->avail];
747 				ac->entry[ac->avail] = objp;
748 				return objp;
749 			}
750 		}
751 
752 		/*
753 		 * If there are empty slabs on the slabs_free list and we are
754 		 * being forced to refill the cache, mark this one !pfmemalloc.
755 		 */
756 		n = get_node(cachep, numa_mem_id());
757 		if (!list_empty(&n->slabs_free) && force_refill) {
758 			struct page *page = virt_to_head_page(objp);
759 			ClearPageSlabPfmemalloc(page);
760 			clear_obj_pfmemalloc(&objp);
761 			recheck_pfmemalloc_active(cachep, ac);
762 			return objp;
763 		}
764 
765 		/* No !PFMEMALLOC objects available */
766 		ac->avail++;
767 		objp = NULL;
768 	}
769 
770 	return objp;
771 }
772 
773 static inline void *ac_get_obj(struct kmem_cache *cachep,
774 			struct array_cache *ac, gfp_t flags, bool force_refill)
775 {
776 	void *objp;
777 
778 	if (unlikely(sk_memalloc_socks()))
779 		objp = __ac_get_obj(cachep, ac, flags, force_refill);
780 	else
781 		objp = ac->entry[--ac->avail];
782 
783 	return objp;
784 }
785 
786 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
787 								void *objp)
788 {
789 	if (unlikely(pfmemalloc_active)) {
790 		/* Some pfmemalloc slabs exist, check if this is one */
791 		struct page *page = virt_to_head_page(objp);
792 		if (PageSlabPfmemalloc(page))
793 			set_obj_pfmemalloc(&objp);
794 	}
795 
796 	return objp;
797 }
798 
799 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
800 								void *objp)
801 {
802 	if (unlikely(sk_memalloc_socks()))
803 		objp = __ac_put_obj(cachep, ac, objp);
804 
805 	ac->entry[ac->avail++] = objp;
806 }
807 
808 /*
809  * Transfer objects in one arraycache to another.
810  * Locking must be handled by the caller.
811  *
812  * Return the number of entries transferred.
813  */
814 static int transfer_objects(struct array_cache *to,
815 		struct array_cache *from, unsigned int max)
816 {
817 	/* Figure out how many entries to transfer */
818 	int nr = min3(from->avail, max, to->limit - to->avail);
819 
820 	if (!nr)
821 		return 0;
822 
823 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
824 			sizeof(void *) *nr);
825 
826 	from->avail -= nr;
827 	to->avail += nr;
828 	return nr;
829 }
830 
831 #ifndef CONFIG_NUMA
832 
833 #define drain_alien_cache(cachep, alien) do { } while (0)
834 #define reap_alien(cachep, n) do { } while (0)
835 
836 static inline struct alien_cache **alloc_alien_cache(int node,
837 						int limit, gfp_t gfp)
838 {
839 	return NULL;
840 }
841 
842 static inline void free_alien_cache(struct alien_cache **ac_ptr)
843 {
844 }
845 
846 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
847 {
848 	return 0;
849 }
850 
851 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
852 		gfp_t flags)
853 {
854 	return NULL;
855 }
856 
857 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
858 		 gfp_t flags, int nodeid)
859 {
860 	return NULL;
861 }
862 
863 #else	/* CONFIG_NUMA */
864 
865 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
866 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
867 
868 static struct alien_cache *__alloc_alien_cache(int node, int entries,
869 						int batch, gfp_t gfp)
870 {
871 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
872 	struct alien_cache *alc = NULL;
873 
874 	alc = kmalloc_node(memsize, gfp, node);
875 	init_arraycache(&alc->ac, entries, batch);
876 	spin_lock_init(&alc->lock);
877 	return alc;
878 }
879 
880 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
881 {
882 	struct alien_cache **alc_ptr;
883 	size_t memsize = sizeof(void *) * nr_node_ids;
884 	int i;
885 
886 	if (limit > 1)
887 		limit = 12;
888 	alc_ptr = kzalloc_node(memsize, gfp, node);
889 	if (!alc_ptr)
890 		return NULL;
891 
892 	for_each_node(i) {
893 		if (i == node || !node_online(i))
894 			continue;
895 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
896 		if (!alc_ptr[i]) {
897 			for (i--; i >= 0; i--)
898 				kfree(alc_ptr[i]);
899 			kfree(alc_ptr);
900 			return NULL;
901 		}
902 	}
903 	return alc_ptr;
904 }
905 
906 static void free_alien_cache(struct alien_cache **alc_ptr)
907 {
908 	int i;
909 
910 	if (!alc_ptr)
911 		return;
912 	for_each_node(i)
913 	    kfree(alc_ptr[i]);
914 	kfree(alc_ptr);
915 }
916 
917 static void __drain_alien_cache(struct kmem_cache *cachep,
918 				struct array_cache *ac, int node,
919 				struct list_head *list)
920 {
921 	struct kmem_cache_node *n = get_node(cachep, node);
922 
923 	if (ac->avail) {
924 		spin_lock(&n->list_lock);
925 		/*
926 		 * Stuff objects into the remote nodes shared array first.
927 		 * That way we could avoid the overhead of putting the objects
928 		 * into the free lists and getting them back later.
929 		 */
930 		if (n->shared)
931 			transfer_objects(n->shared, ac, ac->limit);
932 
933 		free_block(cachep, ac->entry, ac->avail, node, list);
934 		ac->avail = 0;
935 		spin_unlock(&n->list_lock);
936 	}
937 }
938 
939 /*
940  * Called from cache_reap() to regularly drain alien caches round robin.
941  */
942 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
943 {
944 	int node = __this_cpu_read(slab_reap_node);
945 
946 	if (n->alien) {
947 		struct alien_cache *alc = n->alien[node];
948 		struct array_cache *ac;
949 
950 		if (alc) {
951 			ac = &alc->ac;
952 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
953 				LIST_HEAD(list);
954 
955 				__drain_alien_cache(cachep, ac, node, &list);
956 				spin_unlock_irq(&alc->lock);
957 				slabs_destroy(cachep, &list);
958 			}
959 		}
960 	}
961 }
962 
963 static void drain_alien_cache(struct kmem_cache *cachep,
964 				struct alien_cache **alien)
965 {
966 	int i = 0;
967 	struct alien_cache *alc;
968 	struct array_cache *ac;
969 	unsigned long flags;
970 
971 	for_each_online_node(i) {
972 		alc = alien[i];
973 		if (alc) {
974 			LIST_HEAD(list);
975 
976 			ac = &alc->ac;
977 			spin_lock_irqsave(&alc->lock, flags);
978 			__drain_alien_cache(cachep, ac, i, &list);
979 			spin_unlock_irqrestore(&alc->lock, flags);
980 			slabs_destroy(cachep, &list);
981 		}
982 	}
983 }
984 
985 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
986 {
987 	int nodeid = page_to_nid(virt_to_page(objp));
988 	struct kmem_cache_node *n;
989 	struct alien_cache *alien = NULL;
990 	struct array_cache *ac;
991 	int node;
992 	LIST_HEAD(list);
993 
994 	node = numa_mem_id();
995 
996 	/*
997 	 * Make sure we are not freeing a object from another node to the array
998 	 * cache on this cpu.
999 	 */
1000 	if (likely(nodeid == node))
1001 		return 0;
1002 
1003 	n = get_node(cachep, node);
1004 	STATS_INC_NODEFREES(cachep);
1005 	if (n->alien && n->alien[nodeid]) {
1006 		alien = n->alien[nodeid];
1007 		ac = &alien->ac;
1008 		spin_lock(&alien->lock);
1009 		if (unlikely(ac->avail == ac->limit)) {
1010 			STATS_INC_ACOVERFLOW(cachep);
1011 			__drain_alien_cache(cachep, ac, nodeid, &list);
1012 		}
1013 		ac_put_obj(cachep, ac, objp);
1014 		spin_unlock(&alien->lock);
1015 		slabs_destroy(cachep, &list);
1016 	} else {
1017 		n = get_node(cachep, nodeid);
1018 		spin_lock(&n->list_lock);
1019 		free_block(cachep, &objp, 1, nodeid, &list);
1020 		spin_unlock(&n->list_lock);
1021 		slabs_destroy(cachep, &list);
1022 	}
1023 	return 1;
1024 }
1025 #endif
1026 
1027 /*
1028  * Allocates and initializes node for a node on each slab cache, used for
1029  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1030  * will be allocated off-node since memory is not yet online for the new node.
1031  * When hotplugging memory or a cpu, existing node are not replaced if
1032  * already in use.
1033  *
1034  * Must hold slab_mutex.
1035  */
1036 static int init_cache_node_node(int node)
1037 {
1038 	struct kmem_cache *cachep;
1039 	struct kmem_cache_node *n;
1040 	const size_t memsize = sizeof(struct kmem_cache_node);
1041 
1042 	list_for_each_entry(cachep, &slab_caches, list) {
1043 		/*
1044 		 * Set up the kmem_cache_node for cpu before we can
1045 		 * begin anything. Make sure some other cpu on this
1046 		 * node has not already allocated this
1047 		 */
1048 		n = get_node(cachep, node);
1049 		if (!n) {
1050 			n = kmalloc_node(memsize, GFP_KERNEL, node);
1051 			if (!n)
1052 				return -ENOMEM;
1053 			kmem_cache_node_init(n);
1054 			n->next_reap = jiffies + REAPTIMEOUT_NODE +
1055 			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1056 
1057 			/*
1058 			 * The kmem_cache_nodes don't come and go as CPUs
1059 			 * come and go.  slab_mutex is sufficient
1060 			 * protection here.
1061 			 */
1062 			cachep->node[node] = n;
1063 		}
1064 
1065 		spin_lock_irq(&n->list_lock);
1066 		n->free_limit =
1067 			(1 + nr_cpus_node(node)) *
1068 			cachep->batchcount + cachep->num;
1069 		spin_unlock_irq(&n->list_lock);
1070 	}
1071 	return 0;
1072 }
1073 
1074 static inline int slabs_tofree(struct kmem_cache *cachep,
1075 						struct kmem_cache_node *n)
1076 {
1077 	return (n->free_objects + cachep->num - 1) / cachep->num;
1078 }
1079 
1080 static void cpuup_canceled(long cpu)
1081 {
1082 	struct kmem_cache *cachep;
1083 	struct kmem_cache_node *n = NULL;
1084 	int node = cpu_to_mem(cpu);
1085 	const struct cpumask *mask = cpumask_of_node(node);
1086 
1087 	list_for_each_entry(cachep, &slab_caches, list) {
1088 		struct array_cache *nc;
1089 		struct array_cache *shared;
1090 		struct alien_cache **alien;
1091 		LIST_HEAD(list);
1092 
1093 		/* cpu is dead; no one can alloc from it. */
1094 		nc = cachep->array[cpu];
1095 		cachep->array[cpu] = NULL;
1096 		n = get_node(cachep, node);
1097 
1098 		if (!n)
1099 			goto free_array_cache;
1100 
1101 		spin_lock_irq(&n->list_lock);
1102 
1103 		/* Free limit for this kmem_cache_node */
1104 		n->free_limit -= cachep->batchcount;
1105 		if (nc)
1106 			free_block(cachep, nc->entry, nc->avail, node, &list);
1107 
1108 		if (!cpumask_empty(mask)) {
1109 			spin_unlock_irq(&n->list_lock);
1110 			goto free_array_cache;
1111 		}
1112 
1113 		shared = n->shared;
1114 		if (shared) {
1115 			free_block(cachep, shared->entry,
1116 				   shared->avail, node, &list);
1117 			n->shared = NULL;
1118 		}
1119 
1120 		alien = n->alien;
1121 		n->alien = NULL;
1122 
1123 		spin_unlock_irq(&n->list_lock);
1124 
1125 		kfree(shared);
1126 		if (alien) {
1127 			drain_alien_cache(cachep, alien);
1128 			free_alien_cache(alien);
1129 		}
1130 free_array_cache:
1131 		slabs_destroy(cachep, &list);
1132 		kfree(nc);
1133 	}
1134 	/*
1135 	 * In the previous loop, all the objects were freed to
1136 	 * the respective cache's slabs,  now we can go ahead and
1137 	 * shrink each nodelist to its limit.
1138 	 */
1139 	list_for_each_entry(cachep, &slab_caches, list) {
1140 		n = get_node(cachep, node);
1141 		if (!n)
1142 			continue;
1143 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1144 	}
1145 }
1146 
1147 static int cpuup_prepare(long cpu)
1148 {
1149 	struct kmem_cache *cachep;
1150 	struct kmem_cache_node *n = NULL;
1151 	int node = cpu_to_mem(cpu);
1152 	int err;
1153 
1154 	/*
1155 	 * We need to do this right in the beginning since
1156 	 * alloc_arraycache's are going to use this list.
1157 	 * kmalloc_node allows us to add the slab to the right
1158 	 * kmem_cache_node and not this cpu's kmem_cache_node
1159 	 */
1160 	err = init_cache_node_node(node);
1161 	if (err < 0)
1162 		goto bad;
1163 
1164 	/*
1165 	 * Now we can go ahead with allocating the shared arrays and
1166 	 * array caches
1167 	 */
1168 	list_for_each_entry(cachep, &slab_caches, list) {
1169 		struct array_cache *nc;
1170 		struct array_cache *shared = NULL;
1171 		struct alien_cache **alien = NULL;
1172 
1173 		nc = alloc_arraycache(node, cachep->limit,
1174 					cachep->batchcount, GFP_KERNEL);
1175 		if (!nc)
1176 			goto bad;
1177 		if (cachep->shared) {
1178 			shared = alloc_arraycache(node,
1179 				cachep->shared * cachep->batchcount,
1180 				0xbaadf00d, GFP_KERNEL);
1181 			if (!shared) {
1182 				kfree(nc);
1183 				goto bad;
1184 			}
1185 		}
1186 		if (use_alien_caches) {
1187 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1188 			if (!alien) {
1189 				kfree(shared);
1190 				kfree(nc);
1191 				goto bad;
1192 			}
1193 		}
1194 		cachep->array[cpu] = nc;
1195 		n = get_node(cachep, node);
1196 		BUG_ON(!n);
1197 
1198 		spin_lock_irq(&n->list_lock);
1199 		if (!n->shared) {
1200 			/*
1201 			 * We are serialised from CPU_DEAD or
1202 			 * CPU_UP_CANCELLED by the cpucontrol lock
1203 			 */
1204 			n->shared = shared;
1205 			shared = NULL;
1206 		}
1207 #ifdef CONFIG_NUMA
1208 		if (!n->alien) {
1209 			n->alien = alien;
1210 			alien = NULL;
1211 		}
1212 #endif
1213 		spin_unlock_irq(&n->list_lock);
1214 		kfree(shared);
1215 		free_alien_cache(alien);
1216 	}
1217 
1218 	return 0;
1219 bad:
1220 	cpuup_canceled(cpu);
1221 	return -ENOMEM;
1222 }
1223 
1224 static int cpuup_callback(struct notifier_block *nfb,
1225 				    unsigned long action, void *hcpu)
1226 {
1227 	long cpu = (long)hcpu;
1228 	int err = 0;
1229 
1230 	switch (action) {
1231 	case CPU_UP_PREPARE:
1232 	case CPU_UP_PREPARE_FROZEN:
1233 		mutex_lock(&slab_mutex);
1234 		err = cpuup_prepare(cpu);
1235 		mutex_unlock(&slab_mutex);
1236 		break;
1237 	case CPU_ONLINE:
1238 	case CPU_ONLINE_FROZEN:
1239 		start_cpu_timer(cpu);
1240 		break;
1241 #ifdef CONFIG_HOTPLUG_CPU
1242   	case CPU_DOWN_PREPARE:
1243   	case CPU_DOWN_PREPARE_FROZEN:
1244 		/*
1245 		 * Shutdown cache reaper. Note that the slab_mutex is
1246 		 * held so that if cache_reap() is invoked it cannot do
1247 		 * anything expensive but will only modify reap_work
1248 		 * and reschedule the timer.
1249 		*/
1250 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1251 		/* Now the cache_reaper is guaranteed to be not running. */
1252 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1253   		break;
1254   	case CPU_DOWN_FAILED:
1255   	case CPU_DOWN_FAILED_FROZEN:
1256 		start_cpu_timer(cpu);
1257   		break;
1258 	case CPU_DEAD:
1259 	case CPU_DEAD_FROZEN:
1260 		/*
1261 		 * Even if all the cpus of a node are down, we don't free the
1262 		 * kmem_cache_node of any cache. This to avoid a race between
1263 		 * cpu_down, and a kmalloc allocation from another cpu for
1264 		 * memory from the node of the cpu going down.  The node
1265 		 * structure is usually allocated from kmem_cache_create() and
1266 		 * gets destroyed at kmem_cache_destroy().
1267 		 */
1268 		/* fall through */
1269 #endif
1270 	case CPU_UP_CANCELED:
1271 	case CPU_UP_CANCELED_FROZEN:
1272 		mutex_lock(&slab_mutex);
1273 		cpuup_canceled(cpu);
1274 		mutex_unlock(&slab_mutex);
1275 		break;
1276 	}
1277 	return notifier_from_errno(err);
1278 }
1279 
1280 static struct notifier_block cpucache_notifier = {
1281 	&cpuup_callback, NULL, 0
1282 };
1283 
1284 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1285 /*
1286  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1287  * Returns -EBUSY if all objects cannot be drained so that the node is not
1288  * removed.
1289  *
1290  * Must hold slab_mutex.
1291  */
1292 static int __meminit drain_cache_node_node(int node)
1293 {
1294 	struct kmem_cache *cachep;
1295 	int ret = 0;
1296 
1297 	list_for_each_entry(cachep, &slab_caches, list) {
1298 		struct kmem_cache_node *n;
1299 
1300 		n = get_node(cachep, node);
1301 		if (!n)
1302 			continue;
1303 
1304 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1305 
1306 		if (!list_empty(&n->slabs_full) ||
1307 		    !list_empty(&n->slabs_partial)) {
1308 			ret = -EBUSY;
1309 			break;
1310 		}
1311 	}
1312 	return ret;
1313 }
1314 
1315 static int __meminit slab_memory_callback(struct notifier_block *self,
1316 					unsigned long action, void *arg)
1317 {
1318 	struct memory_notify *mnb = arg;
1319 	int ret = 0;
1320 	int nid;
1321 
1322 	nid = mnb->status_change_nid;
1323 	if (nid < 0)
1324 		goto out;
1325 
1326 	switch (action) {
1327 	case MEM_GOING_ONLINE:
1328 		mutex_lock(&slab_mutex);
1329 		ret = init_cache_node_node(nid);
1330 		mutex_unlock(&slab_mutex);
1331 		break;
1332 	case MEM_GOING_OFFLINE:
1333 		mutex_lock(&slab_mutex);
1334 		ret = drain_cache_node_node(nid);
1335 		mutex_unlock(&slab_mutex);
1336 		break;
1337 	case MEM_ONLINE:
1338 	case MEM_OFFLINE:
1339 	case MEM_CANCEL_ONLINE:
1340 	case MEM_CANCEL_OFFLINE:
1341 		break;
1342 	}
1343 out:
1344 	return notifier_from_errno(ret);
1345 }
1346 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1347 
1348 /*
1349  * swap the static kmem_cache_node with kmalloced memory
1350  */
1351 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1352 				int nodeid)
1353 {
1354 	struct kmem_cache_node *ptr;
1355 
1356 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1357 	BUG_ON(!ptr);
1358 
1359 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1360 	/*
1361 	 * Do not assume that spinlocks can be initialized via memcpy:
1362 	 */
1363 	spin_lock_init(&ptr->list_lock);
1364 
1365 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1366 	cachep->node[nodeid] = ptr;
1367 }
1368 
1369 /*
1370  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1371  * size of kmem_cache_node.
1372  */
1373 static void __init set_up_node(struct kmem_cache *cachep, int index)
1374 {
1375 	int node;
1376 
1377 	for_each_online_node(node) {
1378 		cachep->node[node] = &init_kmem_cache_node[index + node];
1379 		cachep->node[node]->next_reap = jiffies +
1380 		    REAPTIMEOUT_NODE +
1381 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1382 	}
1383 }
1384 
1385 /*
1386  * The memory after the last cpu cache pointer is used for the
1387  * the node pointer.
1388  */
1389 static void setup_node_pointer(struct kmem_cache *cachep)
1390 {
1391 	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1392 }
1393 
1394 /*
1395  * Initialisation.  Called after the page allocator have been initialised and
1396  * before smp_init().
1397  */
1398 void __init kmem_cache_init(void)
1399 {
1400 	int i;
1401 
1402 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1403 					sizeof(struct rcu_head));
1404 	kmem_cache = &kmem_cache_boot;
1405 	setup_node_pointer(kmem_cache);
1406 
1407 	if (num_possible_nodes() == 1)
1408 		use_alien_caches = 0;
1409 
1410 	for (i = 0; i < NUM_INIT_LISTS; i++)
1411 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1412 
1413 	set_up_node(kmem_cache, CACHE_CACHE);
1414 
1415 	/*
1416 	 * Fragmentation resistance on low memory - only use bigger
1417 	 * page orders on machines with more than 32MB of memory if
1418 	 * not overridden on the command line.
1419 	 */
1420 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1421 		slab_max_order = SLAB_MAX_ORDER_HI;
1422 
1423 	/* Bootstrap is tricky, because several objects are allocated
1424 	 * from caches that do not exist yet:
1425 	 * 1) initialize the kmem_cache cache: it contains the struct
1426 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1427 	 *    kmem_cache is statically allocated.
1428 	 *    Initially an __init data area is used for the head array and the
1429 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1430 	 *    array at the end of the bootstrap.
1431 	 * 2) Create the first kmalloc cache.
1432 	 *    The struct kmem_cache for the new cache is allocated normally.
1433 	 *    An __init data area is used for the head array.
1434 	 * 3) Create the remaining kmalloc caches, with minimally sized
1435 	 *    head arrays.
1436 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1437 	 *    kmalloc cache with kmalloc allocated arrays.
1438 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1439 	 *    the other cache's with kmalloc allocated memory.
1440 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1441 	 */
1442 
1443 	/* 1) create the kmem_cache */
1444 
1445 	/*
1446 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1447 	 */
1448 	create_boot_cache(kmem_cache, "kmem_cache",
1449 		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1450 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1451 				  SLAB_HWCACHE_ALIGN);
1452 	list_add(&kmem_cache->list, &slab_caches);
1453 
1454 	/* 2+3) create the kmalloc caches */
1455 
1456 	/*
1457 	 * Initialize the caches that provide memory for the array cache and the
1458 	 * kmem_cache_node structures first.  Without this, further allocations will
1459 	 * bug.
1460 	 */
1461 
1462 	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1463 					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1464 
1465 	if (INDEX_AC != INDEX_NODE)
1466 		kmalloc_caches[INDEX_NODE] =
1467 			create_kmalloc_cache("kmalloc-node",
1468 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1469 
1470 	slab_early_init = 0;
1471 
1472 	/* 4) Replace the bootstrap head arrays */
1473 	{
1474 		struct array_cache *ptr;
1475 
1476 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1477 
1478 		memcpy(ptr, cpu_cache_get(kmem_cache),
1479 		       sizeof(struct arraycache_init));
1480 
1481 		kmem_cache->array[smp_processor_id()] = ptr;
1482 
1483 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1484 
1485 		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1486 		       != &initarray_generic.cache);
1487 		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1488 		       sizeof(struct arraycache_init));
1489 
1490 		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1491 	}
1492 	/* 5) Replace the bootstrap kmem_cache_node */
1493 	{
1494 		int nid;
1495 
1496 		for_each_online_node(nid) {
1497 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1498 
1499 			init_list(kmalloc_caches[INDEX_AC],
1500 				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1501 
1502 			if (INDEX_AC != INDEX_NODE) {
1503 				init_list(kmalloc_caches[INDEX_NODE],
1504 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1505 			}
1506 		}
1507 	}
1508 
1509 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1510 }
1511 
1512 void __init kmem_cache_init_late(void)
1513 {
1514 	struct kmem_cache *cachep;
1515 
1516 	slab_state = UP;
1517 
1518 	/* 6) resize the head arrays to their final sizes */
1519 	mutex_lock(&slab_mutex);
1520 	list_for_each_entry(cachep, &slab_caches, list)
1521 		if (enable_cpucache(cachep, GFP_NOWAIT))
1522 			BUG();
1523 	mutex_unlock(&slab_mutex);
1524 
1525 	/* Done! */
1526 	slab_state = FULL;
1527 
1528 	/*
1529 	 * Register a cpu startup notifier callback that initializes
1530 	 * cpu_cache_get for all new cpus
1531 	 */
1532 	register_cpu_notifier(&cpucache_notifier);
1533 
1534 #ifdef CONFIG_NUMA
1535 	/*
1536 	 * Register a memory hotplug callback that initializes and frees
1537 	 * node.
1538 	 */
1539 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1540 #endif
1541 
1542 	/*
1543 	 * The reap timers are started later, with a module init call: That part
1544 	 * of the kernel is not yet operational.
1545 	 */
1546 }
1547 
1548 static int __init cpucache_init(void)
1549 {
1550 	int cpu;
1551 
1552 	/*
1553 	 * Register the timers that return unneeded pages to the page allocator
1554 	 */
1555 	for_each_online_cpu(cpu)
1556 		start_cpu_timer(cpu);
1557 
1558 	/* Done! */
1559 	slab_state = FULL;
1560 	return 0;
1561 }
1562 __initcall(cpucache_init);
1563 
1564 static noinline void
1565 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1566 {
1567 #if DEBUG
1568 	struct kmem_cache_node *n;
1569 	struct page *page;
1570 	unsigned long flags;
1571 	int node;
1572 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1573 				      DEFAULT_RATELIMIT_BURST);
1574 
1575 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1576 		return;
1577 
1578 	printk(KERN_WARNING
1579 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1580 		nodeid, gfpflags);
1581 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1582 		cachep->name, cachep->size, cachep->gfporder);
1583 
1584 	for_each_kmem_cache_node(cachep, node, n) {
1585 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1586 		unsigned long active_slabs = 0, num_slabs = 0;
1587 
1588 		spin_lock_irqsave(&n->list_lock, flags);
1589 		list_for_each_entry(page, &n->slabs_full, lru) {
1590 			active_objs += cachep->num;
1591 			active_slabs++;
1592 		}
1593 		list_for_each_entry(page, &n->slabs_partial, lru) {
1594 			active_objs += page->active;
1595 			active_slabs++;
1596 		}
1597 		list_for_each_entry(page, &n->slabs_free, lru)
1598 			num_slabs++;
1599 
1600 		free_objects += n->free_objects;
1601 		spin_unlock_irqrestore(&n->list_lock, flags);
1602 
1603 		num_slabs += active_slabs;
1604 		num_objs = num_slabs * cachep->num;
1605 		printk(KERN_WARNING
1606 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1607 			node, active_slabs, num_slabs, active_objs, num_objs,
1608 			free_objects);
1609 	}
1610 #endif
1611 }
1612 
1613 /*
1614  * Interface to system's page allocator. No need to hold the
1615  * kmem_cache_node ->list_lock.
1616  *
1617  * If we requested dmaable memory, we will get it. Even if we
1618  * did not request dmaable memory, we might get it, but that
1619  * would be relatively rare and ignorable.
1620  */
1621 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1622 								int nodeid)
1623 {
1624 	struct page *page;
1625 	int nr_pages;
1626 
1627 	flags |= cachep->allocflags;
1628 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1629 		flags |= __GFP_RECLAIMABLE;
1630 
1631 	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1632 		return NULL;
1633 
1634 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1635 	if (!page) {
1636 		memcg_uncharge_slab(cachep, cachep->gfporder);
1637 		slab_out_of_memory(cachep, flags, nodeid);
1638 		return NULL;
1639 	}
1640 
1641 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1642 	if (unlikely(page->pfmemalloc))
1643 		pfmemalloc_active = true;
1644 
1645 	nr_pages = (1 << cachep->gfporder);
1646 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1647 		add_zone_page_state(page_zone(page),
1648 			NR_SLAB_RECLAIMABLE, nr_pages);
1649 	else
1650 		add_zone_page_state(page_zone(page),
1651 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1652 	__SetPageSlab(page);
1653 	if (page->pfmemalloc)
1654 		SetPageSlabPfmemalloc(page);
1655 
1656 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1657 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1658 
1659 		if (cachep->ctor)
1660 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1661 		else
1662 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1663 	}
1664 
1665 	return page;
1666 }
1667 
1668 /*
1669  * Interface to system's page release.
1670  */
1671 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1672 {
1673 	const unsigned long nr_freed = (1 << cachep->gfporder);
1674 
1675 	kmemcheck_free_shadow(page, cachep->gfporder);
1676 
1677 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1678 		sub_zone_page_state(page_zone(page),
1679 				NR_SLAB_RECLAIMABLE, nr_freed);
1680 	else
1681 		sub_zone_page_state(page_zone(page),
1682 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1683 
1684 	BUG_ON(!PageSlab(page));
1685 	__ClearPageSlabPfmemalloc(page);
1686 	__ClearPageSlab(page);
1687 	page_mapcount_reset(page);
1688 	page->mapping = NULL;
1689 
1690 	if (current->reclaim_state)
1691 		current->reclaim_state->reclaimed_slab += nr_freed;
1692 	__free_pages(page, cachep->gfporder);
1693 	memcg_uncharge_slab(cachep, cachep->gfporder);
1694 }
1695 
1696 static void kmem_rcu_free(struct rcu_head *head)
1697 {
1698 	struct kmem_cache *cachep;
1699 	struct page *page;
1700 
1701 	page = container_of(head, struct page, rcu_head);
1702 	cachep = page->slab_cache;
1703 
1704 	kmem_freepages(cachep, page);
1705 }
1706 
1707 #if DEBUG
1708 
1709 #ifdef CONFIG_DEBUG_PAGEALLOC
1710 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1711 			    unsigned long caller)
1712 {
1713 	int size = cachep->object_size;
1714 
1715 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1716 
1717 	if (size < 5 * sizeof(unsigned long))
1718 		return;
1719 
1720 	*addr++ = 0x12345678;
1721 	*addr++ = caller;
1722 	*addr++ = smp_processor_id();
1723 	size -= 3 * sizeof(unsigned long);
1724 	{
1725 		unsigned long *sptr = &caller;
1726 		unsigned long svalue;
1727 
1728 		while (!kstack_end(sptr)) {
1729 			svalue = *sptr++;
1730 			if (kernel_text_address(svalue)) {
1731 				*addr++ = svalue;
1732 				size -= sizeof(unsigned long);
1733 				if (size <= sizeof(unsigned long))
1734 					break;
1735 			}
1736 		}
1737 
1738 	}
1739 	*addr++ = 0x87654321;
1740 }
1741 #endif
1742 
1743 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1744 {
1745 	int size = cachep->object_size;
1746 	addr = &((char *)addr)[obj_offset(cachep)];
1747 
1748 	memset(addr, val, size);
1749 	*(unsigned char *)(addr + size - 1) = POISON_END;
1750 }
1751 
1752 static void dump_line(char *data, int offset, int limit)
1753 {
1754 	int i;
1755 	unsigned char error = 0;
1756 	int bad_count = 0;
1757 
1758 	printk(KERN_ERR "%03x: ", offset);
1759 	for (i = 0; i < limit; i++) {
1760 		if (data[offset + i] != POISON_FREE) {
1761 			error = data[offset + i];
1762 			bad_count++;
1763 		}
1764 	}
1765 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1766 			&data[offset], limit, 1);
1767 
1768 	if (bad_count == 1) {
1769 		error ^= POISON_FREE;
1770 		if (!(error & (error - 1))) {
1771 			printk(KERN_ERR "Single bit error detected. Probably "
1772 					"bad RAM.\n");
1773 #ifdef CONFIG_X86
1774 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1775 					"test tool.\n");
1776 #else
1777 			printk(KERN_ERR "Run a memory test tool.\n");
1778 #endif
1779 		}
1780 	}
1781 }
1782 #endif
1783 
1784 #if DEBUG
1785 
1786 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1787 {
1788 	int i, size;
1789 	char *realobj;
1790 
1791 	if (cachep->flags & SLAB_RED_ZONE) {
1792 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1793 			*dbg_redzone1(cachep, objp),
1794 			*dbg_redzone2(cachep, objp));
1795 	}
1796 
1797 	if (cachep->flags & SLAB_STORE_USER) {
1798 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1799 		       *dbg_userword(cachep, objp),
1800 		       *dbg_userword(cachep, objp));
1801 	}
1802 	realobj = (char *)objp + obj_offset(cachep);
1803 	size = cachep->object_size;
1804 	for (i = 0; i < size && lines; i += 16, lines--) {
1805 		int limit;
1806 		limit = 16;
1807 		if (i + limit > size)
1808 			limit = size - i;
1809 		dump_line(realobj, i, limit);
1810 	}
1811 }
1812 
1813 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1814 {
1815 	char *realobj;
1816 	int size, i;
1817 	int lines = 0;
1818 
1819 	realobj = (char *)objp + obj_offset(cachep);
1820 	size = cachep->object_size;
1821 
1822 	for (i = 0; i < size; i++) {
1823 		char exp = POISON_FREE;
1824 		if (i == size - 1)
1825 			exp = POISON_END;
1826 		if (realobj[i] != exp) {
1827 			int limit;
1828 			/* Mismatch ! */
1829 			/* Print header */
1830 			if (lines == 0) {
1831 				printk(KERN_ERR
1832 					"Slab corruption (%s): %s start=%p, len=%d\n",
1833 					print_tainted(), cachep->name, realobj, size);
1834 				print_objinfo(cachep, objp, 0);
1835 			}
1836 			/* Hexdump the affected line */
1837 			i = (i / 16) * 16;
1838 			limit = 16;
1839 			if (i + limit > size)
1840 				limit = size - i;
1841 			dump_line(realobj, i, limit);
1842 			i += 16;
1843 			lines++;
1844 			/* Limit to 5 lines */
1845 			if (lines > 5)
1846 				break;
1847 		}
1848 	}
1849 	if (lines != 0) {
1850 		/* Print some data about the neighboring objects, if they
1851 		 * exist:
1852 		 */
1853 		struct page *page = virt_to_head_page(objp);
1854 		unsigned int objnr;
1855 
1856 		objnr = obj_to_index(cachep, page, objp);
1857 		if (objnr) {
1858 			objp = index_to_obj(cachep, page, objnr - 1);
1859 			realobj = (char *)objp + obj_offset(cachep);
1860 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1861 			       realobj, size);
1862 			print_objinfo(cachep, objp, 2);
1863 		}
1864 		if (objnr + 1 < cachep->num) {
1865 			objp = index_to_obj(cachep, page, objnr + 1);
1866 			realobj = (char *)objp + obj_offset(cachep);
1867 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1868 			       realobj, size);
1869 			print_objinfo(cachep, objp, 2);
1870 		}
1871 	}
1872 }
1873 #endif
1874 
1875 #if DEBUG
1876 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1877 						struct page *page)
1878 {
1879 	int i;
1880 	for (i = 0; i < cachep->num; i++) {
1881 		void *objp = index_to_obj(cachep, page, i);
1882 
1883 		if (cachep->flags & SLAB_POISON) {
1884 #ifdef CONFIG_DEBUG_PAGEALLOC
1885 			if (cachep->size % PAGE_SIZE == 0 &&
1886 					OFF_SLAB(cachep))
1887 				kernel_map_pages(virt_to_page(objp),
1888 					cachep->size / PAGE_SIZE, 1);
1889 			else
1890 				check_poison_obj(cachep, objp);
1891 #else
1892 			check_poison_obj(cachep, objp);
1893 #endif
1894 		}
1895 		if (cachep->flags & SLAB_RED_ZONE) {
1896 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1897 				slab_error(cachep, "start of a freed object "
1898 					   "was overwritten");
1899 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1900 				slab_error(cachep, "end of a freed object "
1901 					   "was overwritten");
1902 		}
1903 	}
1904 }
1905 #else
1906 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1907 						struct page *page)
1908 {
1909 }
1910 #endif
1911 
1912 /**
1913  * slab_destroy - destroy and release all objects in a slab
1914  * @cachep: cache pointer being destroyed
1915  * @page: page pointer being destroyed
1916  *
1917  * Destroy all the objs in a slab page, and release the mem back to the system.
1918  * Before calling the slab page must have been unlinked from the cache. The
1919  * kmem_cache_node ->list_lock is not held/needed.
1920  */
1921 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1922 {
1923 	void *freelist;
1924 
1925 	freelist = page->freelist;
1926 	slab_destroy_debugcheck(cachep, page);
1927 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1928 		struct rcu_head *head;
1929 
1930 		/*
1931 		 * RCU free overloads the RCU head over the LRU.
1932 		 * slab_page has been overloeaded over the LRU,
1933 		 * however it is not used from now on so that
1934 		 * we can use it safely.
1935 		 */
1936 		head = (void *)&page->rcu_head;
1937 		call_rcu(head, kmem_rcu_free);
1938 
1939 	} else {
1940 		kmem_freepages(cachep, page);
1941 	}
1942 
1943 	/*
1944 	 * From now on, we don't use freelist
1945 	 * although actual page can be freed in rcu context
1946 	 */
1947 	if (OFF_SLAB(cachep))
1948 		kmem_cache_free(cachep->freelist_cache, freelist);
1949 }
1950 
1951 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1952 {
1953 	struct page *page, *n;
1954 
1955 	list_for_each_entry_safe(page, n, list, lru) {
1956 		list_del(&page->lru);
1957 		slab_destroy(cachep, page);
1958 	}
1959 }
1960 
1961 /**
1962  * calculate_slab_order - calculate size (page order) of slabs
1963  * @cachep: pointer to the cache that is being created
1964  * @size: size of objects to be created in this cache.
1965  * @align: required alignment for the objects.
1966  * @flags: slab allocation flags
1967  *
1968  * Also calculates the number of objects per slab.
1969  *
1970  * This could be made much more intelligent.  For now, try to avoid using
1971  * high order pages for slabs.  When the gfp() functions are more friendly
1972  * towards high-order requests, this should be changed.
1973  */
1974 static size_t calculate_slab_order(struct kmem_cache *cachep,
1975 			size_t size, size_t align, unsigned long flags)
1976 {
1977 	unsigned long offslab_limit;
1978 	size_t left_over = 0;
1979 	int gfporder;
1980 
1981 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1982 		unsigned int num;
1983 		size_t remainder;
1984 
1985 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1986 		if (!num)
1987 			continue;
1988 
1989 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1990 		if (num > SLAB_OBJ_MAX_NUM)
1991 			break;
1992 
1993 		if (flags & CFLGS_OFF_SLAB) {
1994 			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1995 			/*
1996 			 * Max number of objs-per-slab for caches which
1997 			 * use off-slab slabs. Needed to avoid a possible
1998 			 * looping condition in cache_grow().
1999 			 */
2000 			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
2001 				freelist_size_per_obj += sizeof(char);
2002 			offslab_limit = size;
2003 			offslab_limit /= freelist_size_per_obj;
2004 
2005  			if (num > offslab_limit)
2006 				break;
2007 		}
2008 
2009 		/* Found something acceptable - save it away */
2010 		cachep->num = num;
2011 		cachep->gfporder = gfporder;
2012 		left_over = remainder;
2013 
2014 		/*
2015 		 * A VFS-reclaimable slab tends to have most allocations
2016 		 * as GFP_NOFS and we really don't want to have to be allocating
2017 		 * higher-order pages when we are unable to shrink dcache.
2018 		 */
2019 		if (flags & SLAB_RECLAIM_ACCOUNT)
2020 			break;
2021 
2022 		/*
2023 		 * Large number of objects is good, but very large slabs are
2024 		 * currently bad for the gfp()s.
2025 		 */
2026 		if (gfporder >= slab_max_order)
2027 			break;
2028 
2029 		/*
2030 		 * Acceptable internal fragmentation?
2031 		 */
2032 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2033 			break;
2034 	}
2035 	return left_over;
2036 }
2037 
2038 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2039 {
2040 	if (slab_state >= FULL)
2041 		return enable_cpucache(cachep, gfp);
2042 
2043 	if (slab_state == DOWN) {
2044 		/*
2045 		 * Note: Creation of first cache (kmem_cache).
2046 		 * The setup_node is taken care
2047 		 * of by the caller of __kmem_cache_create
2048 		 */
2049 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2050 		slab_state = PARTIAL;
2051 	} else if (slab_state == PARTIAL) {
2052 		/*
2053 		 * Note: the second kmem_cache_create must create the cache
2054 		 * that's used by kmalloc(24), otherwise the creation of
2055 		 * further caches will BUG().
2056 		 */
2057 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2058 
2059 		/*
2060 		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2061 		 * the second cache, then we need to set up all its node/,
2062 		 * otherwise the creation of further caches will BUG().
2063 		 */
2064 		set_up_node(cachep, SIZE_AC);
2065 		if (INDEX_AC == INDEX_NODE)
2066 			slab_state = PARTIAL_NODE;
2067 		else
2068 			slab_state = PARTIAL_ARRAYCACHE;
2069 	} else {
2070 		/* Remaining boot caches */
2071 		cachep->array[smp_processor_id()] =
2072 			kmalloc(sizeof(struct arraycache_init), gfp);
2073 
2074 		if (slab_state == PARTIAL_ARRAYCACHE) {
2075 			set_up_node(cachep, SIZE_NODE);
2076 			slab_state = PARTIAL_NODE;
2077 		} else {
2078 			int node;
2079 			for_each_online_node(node) {
2080 				cachep->node[node] =
2081 				    kmalloc_node(sizeof(struct kmem_cache_node),
2082 						gfp, node);
2083 				BUG_ON(!cachep->node[node]);
2084 				kmem_cache_node_init(cachep->node[node]);
2085 			}
2086 		}
2087 	}
2088 	cachep->node[numa_mem_id()]->next_reap =
2089 			jiffies + REAPTIMEOUT_NODE +
2090 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2091 
2092 	cpu_cache_get(cachep)->avail = 0;
2093 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2094 	cpu_cache_get(cachep)->batchcount = 1;
2095 	cpu_cache_get(cachep)->touched = 0;
2096 	cachep->batchcount = 1;
2097 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2098 	return 0;
2099 }
2100 
2101 /**
2102  * __kmem_cache_create - Create a cache.
2103  * @cachep: cache management descriptor
2104  * @flags: SLAB flags
2105  *
2106  * Returns a ptr to the cache on success, NULL on failure.
2107  * Cannot be called within a int, but can be interrupted.
2108  * The @ctor is run when new pages are allocated by the cache.
2109  *
2110  * The flags are
2111  *
2112  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2113  * to catch references to uninitialised memory.
2114  *
2115  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2116  * for buffer overruns.
2117  *
2118  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2119  * cacheline.  This can be beneficial if you're counting cycles as closely
2120  * as davem.
2121  */
2122 int
2123 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2124 {
2125 	size_t left_over, freelist_size, ralign;
2126 	gfp_t gfp;
2127 	int err;
2128 	size_t size = cachep->size;
2129 
2130 #if DEBUG
2131 #if FORCED_DEBUG
2132 	/*
2133 	 * Enable redzoning and last user accounting, except for caches with
2134 	 * large objects, if the increased size would increase the object size
2135 	 * above the next power of two: caches with object sizes just above a
2136 	 * power of two have a significant amount of internal fragmentation.
2137 	 */
2138 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2139 						2 * sizeof(unsigned long long)))
2140 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2141 	if (!(flags & SLAB_DESTROY_BY_RCU))
2142 		flags |= SLAB_POISON;
2143 #endif
2144 	if (flags & SLAB_DESTROY_BY_RCU)
2145 		BUG_ON(flags & SLAB_POISON);
2146 #endif
2147 
2148 	/*
2149 	 * Check that size is in terms of words.  This is needed to avoid
2150 	 * unaligned accesses for some archs when redzoning is used, and makes
2151 	 * sure any on-slab bufctl's are also correctly aligned.
2152 	 */
2153 	if (size & (BYTES_PER_WORD - 1)) {
2154 		size += (BYTES_PER_WORD - 1);
2155 		size &= ~(BYTES_PER_WORD - 1);
2156 	}
2157 
2158 	/*
2159 	 * Redzoning and user store require word alignment or possibly larger.
2160 	 * Note this will be overridden by architecture or caller mandated
2161 	 * alignment if either is greater than BYTES_PER_WORD.
2162 	 */
2163 	if (flags & SLAB_STORE_USER)
2164 		ralign = BYTES_PER_WORD;
2165 
2166 	if (flags & SLAB_RED_ZONE) {
2167 		ralign = REDZONE_ALIGN;
2168 		/* If redzoning, ensure that the second redzone is suitably
2169 		 * aligned, by adjusting the object size accordingly. */
2170 		size += REDZONE_ALIGN - 1;
2171 		size &= ~(REDZONE_ALIGN - 1);
2172 	}
2173 
2174 	/* 3) caller mandated alignment */
2175 	if (ralign < cachep->align) {
2176 		ralign = cachep->align;
2177 	}
2178 	/* disable debug if necessary */
2179 	if (ralign > __alignof__(unsigned long long))
2180 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2181 	/*
2182 	 * 4) Store it.
2183 	 */
2184 	cachep->align = ralign;
2185 
2186 	if (slab_is_available())
2187 		gfp = GFP_KERNEL;
2188 	else
2189 		gfp = GFP_NOWAIT;
2190 
2191 	setup_node_pointer(cachep);
2192 #if DEBUG
2193 
2194 	/*
2195 	 * Both debugging options require word-alignment which is calculated
2196 	 * into align above.
2197 	 */
2198 	if (flags & SLAB_RED_ZONE) {
2199 		/* add space for red zone words */
2200 		cachep->obj_offset += sizeof(unsigned long long);
2201 		size += 2 * sizeof(unsigned long long);
2202 	}
2203 	if (flags & SLAB_STORE_USER) {
2204 		/* user store requires one word storage behind the end of
2205 		 * the real object. But if the second red zone needs to be
2206 		 * aligned to 64 bits, we must allow that much space.
2207 		 */
2208 		if (flags & SLAB_RED_ZONE)
2209 			size += REDZONE_ALIGN;
2210 		else
2211 			size += BYTES_PER_WORD;
2212 	}
2213 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2214 	if (size >= kmalloc_size(INDEX_NODE + 1)
2215 	    && cachep->object_size > cache_line_size()
2216 	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
2217 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2218 		size = PAGE_SIZE;
2219 	}
2220 #endif
2221 #endif
2222 
2223 	/*
2224 	 * Determine if the slab management is 'on' or 'off' slab.
2225 	 * (bootstrapping cannot cope with offslab caches so don't do
2226 	 * it too early on. Always use on-slab management when
2227 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2228 	 */
2229 	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2230 	    !(flags & SLAB_NOLEAKTRACE))
2231 		/*
2232 		 * Size is large, assume best to place the slab management obj
2233 		 * off-slab (should allow better packing of objs).
2234 		 */
2235 		flags |= CFLGS_OFF_SLAB;
2236 
2237 	size = ALIGN(size, cachep->align);
2238 	/*
2239 	 * We should restrict the number of objects in a slab to implement
2240 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2241 	 */
2242 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2243 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2244 
2245 	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2246 
2247 	if (!cachep->num)
2248 		return -E2BIG;
2249 
2250 	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2251 
2252 	/*
2253 	 * If the slab has been placed off-slab, and we have enough space then
2254 	 * move it on-slab. This is at the expense of any extra colouring.
2255 	 */
2256 	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2257 		flags &= ~CFLGS_OFF_SLAB;
2258 		left_over -= freelist_size;
2259 	}
2260 
2261 	if (flags & CFLGS_OFF_SLAB) {
2262 		/* really off slab. No need for manual alignment */
2263 		freelist_size = calculate_freelist_size(cachep->num, 0);
2264 
2265 #ifdef CONFIG_PAGE_POISONING
2266 		/* If we're going to use the generic kernel_map_pages()
2267 		 * poisoning, then it's going to smash the contents of
2268 		 * the redzone and userword anyhow, so switch them off.
2269 		 */
2270 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2271 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2272 #endif
2273 	}
2274 
2275 	cachep->colour_off = cache_line_size();
2276 	/* Offset must be a multiple of the alignment. */
2277 	if (cachep->colour_off < cachep->align)
2278 		cachep->colour_off = cachep->align;
2279 	cachep->colour = left_over / cachep->colour_off;
2280 	cachep->freelist_size = freelist_size;
2281 	cachep->flags = flags;
2282 	cachep->allocflags = __GFP_COMP;
2283 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2284 		cachep->allocflags |= GFP_DMA;
2285 	cachep->size = size;
2286 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2287 
2288 	if (flags & CFLGS_OFF_SLAB) {
2289 		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2290 		/*
2291 		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2292 		 * But since we go off slab only for object size greater than
2293 		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2294 		 * in ascending order,this should not happen at all.
2295 		 * But leave a BUG_ON for some lucky dude.
2296 		 */
2297 		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2298 	}
2299 
2300 	err = setup_cpu_cache(cachep, gfp);
2301 	if (err) {
2302 		__kmem_cache_shutdown(cachep);
2303 		return err;
2304 	}
2305 
2306 	return 0;
2307 }
2308 
2309 #if DEBUG
2310 static void check_irq_off(void)
2311 {
2312 	BUG_ON(!irqs_disabled());
2313 }
2314 
2315 static void check_irq_on(void)
2316 {
2317 	BUG_ON(irqs_disabled());
2318 }
2319 
2320 static void check_spinlock_acquired(struct kmem_cache *cachep)
2321 {
2322 #ifdef CONFIG_SMP
2323 	check_irq_off();
2324 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2325 #endif
2326 }
2327 
2328 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2329 {
2330 #ifdef CONFIG_SMP
2331 	check_irq_off();
2332 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2333 #endif
2334 }
2335 
2336 #else
2337 #define check_irq_off()	do { } while(0)
2338 #define check_irq_on()	do { } while(0)
2339 #define check_spinlock_acquired(x) do { } while(0)
2340 #define check_spinlock_acquired_node(x, y) do { } while(0)
2341 #endif
2342 
2343 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2344 			struct array_cache *ac,
2345 			int force, int node);
2346 
2347 static void do_drain(void *arg)
2348 {
2349 	struct kmem_cache *cachep = arg;
2350 	struct array_cache *ac;
2351 	int node = numa_mem_id();
2352 	struct kmem_cache_node *n;
2353 	LIST_HEAD(list);
2354 
2355 	check_irq_off();
2356 	ac = cpu_cache_get(cachep);
2357 	n = get_node(cachep, node);
2358 	spin_lock(&n->list_lock);
2359 	free_block(cachep, ac->entry, ac->avail, node, &list);
2360 	spin_unlock(&n->list_lock);
2361 	slabs_destroy(cachep, &list);
2362 	ac->avail = 0;
2363 }
2364 
2365 static void drain_cpu_caches(struct kmem_cache *cachep)
2366 {
2367 	struct kmem_cache_node *n;
2368 	int node;
2369 
2370 	on_each_cpu(do_drain, cachep, 1);
2371 	check_irq_on();
2372 	for_each_kmem_cache_node(cachep, node, n)
2373 		if (n->alien)
2374 			drain_alien_cache(cachep, n->alien);
2375 
2376 	for_each_kmem_cache_node(cachep, node, n)
2377 		drain_array(cachep, n, n->shared, 1, node);
2378 }
2379 
2380 /*
2381  * Remove slabs from the list of free slabs.
2382  * Specify the number of slabs to drain in tofree.
2383  *
2384  * Returns the actual number of slabs released.
2385  */
2386 static int drain_freelist(struct kmem_cache *cache,
2387 			struct kmem_cache_node *n, int tofree)
2388 {
2389 	struct list_head *p;
2390 	int nr_freed;
2391 	struct page *page;
2392 
2393 	nr_freed = 0;
2394 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2395 
2396 		spin_lock_irq(&n->list_lock);
2397 		p = n->slabs_free.prev;
2398 		if (p == &n->slabs_free) {
2399 			spin_unlock_irq(&n->list_lock);
2400 			goto out;
2401 		}
2402 
2403 		page = list_entry(p, struct page, lru);
2404 #if DEBUG
2405 		BUG_ON(page->active);
2406 #endif
2407 		list_del(&page->lru);
2408 		/*
2409 		 * Safe to drop the lock. The slab is no longer linked
2410 		 * to the cache.
2411 		 */
2412 		n->free_objects -= cache->num;
2413 		spin_unlock_irq(&n->list_lock);
2414 		slab_destroy(cache, page);
2415 		nr_freed++;
2416 	}
2417 out:
2418 	return nr_freed;
2419 }
2420 
2421 int __kmem_cache_shrink(struct kmem_cache *cachep)
2422 {
2423 	int ret = 0;
2424 	int node;
2425 	struct kmem_cache_node *n;
2426 
2427 	drain_cpu_caches(cachep);
2428 
2429 	check_irq_on();
2430 	for_each_kmem_cache_node(cachep, node, n) {
2431 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2432 
2433 		ret += !list_empty(&n->slabs_full) ||
2434 			!list_empty(&n->slabs_partial);
2435 	}
2436 	return (ret ? 1 : 0);
2437 }
2438 
2439 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2440 {
2441 	int i;
2442 	struct kmem_cache_node *n;
2443 	int rc = __kmem_cache_shrink(cachep);
2444 
2445 	if (rc)
2446 		return rc;
2447 
2448 	for_each_online_cpu(i)
2449 	    kfree(cachep->array[i]);
2450 
2451 	/* NUMA: free the node structures */
2452 	for_each_kmem_cache_node(cachep, i, n) {
2453 		kfree(n->shared);
2454 		free_alien_cache(n->alien);
2455 		kfree(n);
2456 		cachep->node[i] = NULL;
2457 	}
2458 	return 0;
2459 }
2460 
2461 /*
2462  * Get the memory for a slab management obj.
2463  *
2464  * For a slab cache when the slab descriptor is off-slab, the
2465  * slab descriptor can't come from the same cache which is being created,
2466  * Because if it is the case, that means we defer the creation of
2467  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2468  * And we eventually call down to __kmem_cache_create(), which
2469  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2470  * This is a "chicken-and-egg" problem.
2471  *
2472  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2473  * which are all initialized during kmem_cache_init().
2474  */
2475 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2476 				   struct page *page, int colour_off,
2477 				   gfp_t local_flags, int nodeid)
2478 {
2479 	void *freelist;
2480 	void *addr = page_address(page);
2481 
2482 	if (OFF_SLAB(cachep)) {
2483 		/* Slab management obj is off-slab. */
2484 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2485 					      local_flags, nodeid);
2486 		if (!freelist)
2487 			return NULL;
2488 	} else {
2489 		freelist = addr + colour_off;
2490 		colour_off += cachep->freelist_size;
2491 	}
2492 	page->active = 0;
2493 	page->s_mem = addr + colour_off;
2494 	return freelist;
2495 }
2496 
2497 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2498 {
2499 	return ((freelist_idx_t *)page->freelist)[idx];
2500 }
2501 
2502 static inline void set_free_obj(struct page *page,
2503 					unsigned int idx, freelist_idx_t val)
2504 {
2505 	((freelist_idx_t *)(page->freelist))[idx] = val;
2506 }
2507 
2508 static void cache_init_objs(struct kmem_cache *cachep,
2509 			    struct page *page)
2510 {
2511 	int i;
2512 
2513 	for (i = 0; i < cachep->num; i++) {
2514 		void *objp = index_to_obj(cachep, page, i);
2515 #if DEBUG
2516 		/* need to poison the objs? */
2517 		if (cachep->flags & SLAB_POISON)
2518 			poison_obj(cachep, objp, POISON_FREE);
2519 		if (cachep->flags & SLAB_STORE_USER)
2520 			*dbg_userword(cachep, objp) = NULL;
2521 
2522 		if (cachep->flags & SLAB_RED_ZONE) {
2523 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2524 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2525 		}
2526 		/*
2527 		 * Constructors are not allowed to allocate memory from the same
2528 		 * cache which they are a constructor for.  Otherwise, deadlock.
2529 		 * They must also be threaded.
2530 		 */
2531 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2532 			cachep->ctor(objp + obj_offset(cachep));
2533 
2534 		if (cachep->flags & SLAB_RED_ZONE) {
2535 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2536 				slab_error(cachep, "constructor overwrote the"
2537 					   " end of an object");
2538 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2539 				slab_error(cachep, "constructor overwrote the"
2540 					   " start of an object");
2541 		}
2542 		if ((cachep->size % PAGE_SIZE) == 0 &&
2543 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2544 			kernel_map_pages(virt_to_page(objp),
2545 					 cachep->size / PAGE_SIZE, 0);
2546 #else
2547 		if (cachep->ctor)
2548 			cachep->ctor(objp);
2549 #endif
2550 		set_obj_status(page, i, OBJECT_FREE);
2551 		set_free_obj(page, i, i);
2552 	}
2553 }
2554 
2555 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2556 {
2557 	if (CONFIG_ZONE_DMA_FLAG) {
2558 		if (flags & GFP_DMA)
2559 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2560 		else
2561 			BUG_ON(cachep->allocflags & GFP_DMA);
2562 	}
2563 }
2564 
2565 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2566 				int nodeid)
2567 {
2568 	void *objp;
2569 
2570 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2571 	page->active++;
2572 #if DEBUG
2573 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2574 #endif
2575 
2576 	return objp;
2577 }
2578 
2579 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2580 				void *objp, int nodeid)
2581 {
2582 	unsigned int objnr = obj_to_index(cachep, page, objp);
2583 #if DEBUG
2584 	unsigned int i;
2585 
2586 	/* Verify that the slab belongs to the intended node */
2587 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2588 
2589 	/* Verify double free bug */
2590 	for (i = page->active; i < cachep->num; i++) {
2591 		if (get_free_obj(page, i) == objnr) {
2592 			printk(KERN_ERR "slab: double free detected in cache "
2593 					"'%s', objp %p\n", cachep->name, objp);
2594 			BUG();
2595 		}
2596 	}
2597 #endif
2598 	page->active--;
2599 	set_free_obj(page, page->active, objnr);
2600 }
2601 
2602 /*
2603  * Map pages beginning at addr to the given cache and slab. This is required
2604  * for the slab allocator to be able to lookup the cache and slab of a
2605  * virtual address for kfree, ksize, and slab debugging.
2606  */
2607 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2608 			   void *freelist)
2609 {
2610 	page->slab_cache = cache;
2611 	page->freelist = freelist;
2612 }
2613 
2614 /*
2615  * Grow (by 1) the number of slabs within a cache.  This is called by
2616  * kmem_cache_alloc() when there are no active objs left in a cache.
2617  */
2618 static int cache_grow(struct kmem_cache *cachep,
2619 		gfp_t flags, int nodeid, struct page *page)
2620 {
2621 	void *freelist;
2622 	size_t offset;
2623 	gfp_t local_flags;
2624 	struct kmem_cache_node *n;
2625 
2626 	/*
2627 	 * Be lazy and only check for valid flags here,  keeping it out of the
2628 	 * critical path in kmem_cache_alloc().
2629 	 */
2630 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2631 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2632 
2633 	/* Take the node list lock to change the colour_next on this node */
2634 	check_irq_off();
2635 	n = get_node(cachep, nodeid);
2636 	spin_lock(&n->list_lock);
2637 
2638 	/* Get colour for the slab, and cal the next value. */
2639 	offset = n->colour_next;
2640 	n->colour_next++;
2641 	if (n->colour_next >= cachep->colour)
2642 		n->colour_next = 0;
2643 	spin_unlock(&n->list_lock);
2644 
2645 	offset *= cachep->colour_off;
2646 
2647 	if (local_flags & __GFP_WAIT)
2648 		local_irq_enable();
2649 
2650 	/*
2651 	 * The test for missing atomic flag is performed here, rather than
2652 	 * the more obvious place, simply to reduce the critical path length
2653 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2654 	 * will eventually be caught here (where it matters).
2655 	 */
2656 	kmem_flagcheck(cachep, flags);
2657 
2658 	/*
2659 	 * Get mem for the objs.  Attempt to allocate a physical page from
2660 	 * 'nodeid'.
2661 	 */
2662 	if (!page)
2663 		page = kmem_getpages(cachep, local_flags, nodeid);
2664 	if (!page)
2665 		goto failed;
2666 
2667 	/* Get slab management. */
2668 	freelist = alloc_slabmgmt(cachep, page, offset,
2669 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2670 	if (!freelist)
2671 		goto opps1;
2672 
2673 	slab_map_pages(cachep, page, freelist);
2674 
2675 	cache_init_objs(cachep, page);
2676 
2677 	if (local_flags & __GFP_WAIT)
2678 		local_irq_disable();
2679 	check_irq_off();
2680 	spin_lock(&n->list_lock);
2681 
2682 	/* Make slab active. */
2683 	list_add_tail(&page->lru, &(n->slabs_free));
2684 	STATS_INC_GROWN(cachep);
2685 	n->free_objects += cachep->num;
2686 	spin_unlock(&n->list_lock);
2687 	return 1;
2688 opps1:
2689 	kmem_freepages(cachep, page);
2690 failed:
2691 	if (local_flags & __GFP_WAIT)
2692 		local_irq_disable();
2693 	return 0;
2694 }
2695 
2696 #if DEBUG
2697 
2698 /*
2699  * Perform extra freeing checks:
2700  * - detect bad pointers.
2701  * - POISON/RED_ZONE checking
2702  */
2703 static void kfree_debugcheck(const void *objp)
2704 {
2705 	if (!virt_addr_valid(objp)) {
2706 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2707 		       (unsigned long)objp);
2708 		BUG();
2709 	}
2710 }
2711 
2712 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2713 {
2714 	unsigned long long redzone1, redzone2;
2715 
2716 	redzone1 = *dbg_redzone1(cache, obj);
2717 	redzone2 = *dbg_redzone2(cache, obj);
2718 
2719 	/*
2720 	 * Redzone is ok.
2721 	 */
2722 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2723 		return;
2724 
2725 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2726 		slab_error(cache, "double free detected");
2727 	else
2728 		slab_error(cache, "memory outside object was overwritten");
2729 
2730 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2731 			obj, redzone1, redzone2);
2732 }
2733 
2734 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2735 				   unsigned long caller)
2736 {
2737 	unsigned int objnr;
2738 	struct page *page;
2739 
2740 	BUG_ON(virt_to_cache(objp) != cachep);
2741 
2742 	objp -= obj_offset(cachep);
2743 	kfree_debugcheck(objp);
2744 	page = virt_to_head_page(objp);
2745 
2746 	if (cachep->flags & SLAB_RED_ZONE) {
2747 		verify_redzone_free(cachep, objp);
2748 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2749 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2750 	}
2751 	if (cachep->flags & SLAB_STORE_USER)
2752 		*dbg_userword(cachep, objp) = (void *)caller;
2753 
2754 	objnr = obj_to_index(cachep, page, objp);
2755 
2756 	BUG_ON(objnr >= cachep->num);
2757 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2758 
2759 	set_obj_status(page, objnr, OBJECT_FREE);
2760 	if (cachep->flags & SLAB_POISON) {
2761 #ifdef CONFIG_DEBUG_PAGEALLOC
2762 		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2763 			store_stackinfo(cachep, objp, caller);
2764 			kernel_map_pages(virt_to_page(objp),
2765 					 cachep->size / PAGE_SIZE, 0);
2766 		} else {
2767 			poison_obj(cachep, objp, POISON_FREE);
2768 		}
2769 #else
2770 		poison_obj(cachep, objp, POISON_FREE);
2771 #endif
2772 	}
2773 	return objp;
2774 }
2775 
2776 #else
2777 #define kfree_debugcheck(x) do { } while(0)
2778 #define cache_free_debugcheck(x,objp,z) (objp)
2779 #endif
2780 
2781 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2782 							bool force_refill)
2783 {
2784 	int batchcount;
2785 	struct kmem_cache_node *n;
2786 	struct array_cache *ac;
2787 	int node;
2788 
2789 	check_irq_off();
2790 	node = numa_mem_id();
2791 	if (unlikely(force_refill))
2792 		goto force_grow;
2793 retry:
2794 	ac = cpu_cache_get(cachep);
2795 	batchcount = ac->batchcount;
2796 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2797 		/*
2798 		 * If there was little recent activity on this cache, then
2799 		 * perform only a partial refill.  Otherwise we could generate
2800 		 * refill bouncing.
2801 		 */
2802 		batchcount = BATCHREFILL_LIMIT;
2803 	}
2804 	n = get_node(cachep, node);
2805 
2806 	BUG_ON(ac->avail > 0 || !n);
2807 	spin_lock(&n->list_lock);
2808 
2809 	/* See if we can refill from the shared array */
2810 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2811 		n->shared->touched = 1;
2812 		goto alloc_done;
2813 	}
2814 
2815 	while (batchcount > 0) {
2816 		struct list_head *entry;
2817 		struct page *page;
2818 		/* Get slab alloc is to come from. */
2819 		entry = n->slabs_partial.next;
2820 		if (entry == &n->slabs_partial) {
2821 			n->free_touched = 1;
2822 			entry = n->slabs_free.next;
2823 			if (entry == &n->slabs_free)
2824 				goto must_grow;
2825 		}
2826 
2827 		page = list_entry(entry, struct page, lru);
2828 		check_spinlock_acquired(cachep);
2829 
2830 		/*
2831 		 * The slab was either on partial or free list so
2832 		 * there must be at least one object available for
2833 		 * allocation.
2834 		 */
2835 		BUG_ON(page->active >= cachep->num);
2836 
2837 		while (page->active < cachep->num && batchcount--) {
2838 			STATS_INC_ALLOCED(cachep);
2839 			STATS_INC_ACTIVE(cachep);
2840 			STATS_SET_HIGH(cachep);
2841 
2842 			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2843 									node));
2844 		}
2845 
2846 		/* move slabp to correct slabp list: */
2847 		list_del(&page->lru);
2848 		if (page->active == cachep->num)
2849 			list_add(&page->lru, &n->slabs_full);
2850 		else
2851 			list_add(&page->lru, &n->slabs_partial);
2852 	}
2853 
2854 must_grow:
2855 	n->free_objects -= ac->avail;
2856 alloc_done:
2857 	spin_unlock(&n->list_lock);
2858 
2859 	if (unlikely(!ac->avail)) {
2860 		int x;
2861 force_grow:
2862 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2863 
2864 		/* cache_grow can reenable interrupts, then ac could change. */
2865 		ac = cpu_cache_get(cachep);
2866 		node = numa_mem_id();
2867 
2868 		/* no objects in sight? abort */
2869 		if (!x && (ac->avail == 0 || force_refill))
2870 			return NULL;
2871 
2872 		if (!ac->avail)		/* objects refilled by interrupt? */
2873 			goto retry;
2874 	}
2875 	ac->touched = 1;
2876 
2877 	return ac_get_obj(cachep, ac, flags, force_refill);
2878 }
2879 
2880 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2881 						gfp_t flags)
2882 {
2883 	might_sleep_if(flags & __GFP_WAIT);
2884 #if DEBUG
2885 	kmem_flagcheck(cachep, flags);
2886 #endif
2887 }
2888 
2889 #if DEBUG
2890 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2891 				gfp_t flags, void *objp, unsigned long caller)
2892 {
2893 	struct page *page;
2894 
2895 	if (!objp)
2896 		return objp;
2897 	if (cachep->flags & SLAB_POISON) {
2898 #ifdef CONFIG_DEBUG_PAGEALLOC
2899 		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2900 			kernel_map_pages(virt_to_page(objp),
2901 					 cachep->size / PAGE_SIZE, 1);
2902 		else
2903 			check_poison_obj(cachep, objp);
2904 #else
2905 		check_poison_obj(cachep, objp);
2906 #endif
2907 		poison_obj(cachep, objp, POISON_INUSE);
2908 	}
2909 	if (cachep->flags & SLAB_STORE_USER)
2910 		*dbg_userword(cachep, objp) = (void *)caller;
2911 
2912 	if (cachep->flags & SLAB_RED_ZONE) {
2913 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2914 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2915 			slab_error(cachep, "double free, or memory outside"
2916 						" object was overwritten");
2917 			printk(KERN_ERR
2918 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2919 				objp, *dbg_redzone1(cachep, objp),
2920 				*dbg_redzone2(cachep, objp));
2921 		}
2922 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2923 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2924 	}
2925 
2926 	page = virt_to_head_page(objp);
2927 	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2928 	objp += obj_offset(cachep);
2929 	if (cachep->ctor && cachep->flags & SLAB_POISON)
2930 		cachep->ctor(objp);
2931 	if (ARCH_SLAB_MINALIGN &&
2932 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2933 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2934 		       objp, (int)ARCH_SLAB_MINALIGN);
2935 	}
2936 	return objp;
2937 }
2938 #else
2939 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2940 #endif
2941 
2942 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2943 {
2944 	if (unlikely(cachep == kmem_cache))
2945 		return false;
2946 
2947 	return should_failslab(cachep->object_size, flags, cachep->flags);
2948 }
2949 
2950 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2951 {
2952 	void *objp;
2953 	struct array_cache *ac;
2954 	bool force_refill = false;
2955 
2956 	check_irq_off();
2957 
2958 	ac = cpu_cache_get(cachep);
2959 	if (likely(ac->avail)) {
2960 		ac->touched = 1;
2961 		objp = ac_get_obj(cachep, ac, flags, false);
2962 
2963 		/*
2964 		 * Allow for the possibility all avail objects are not allowed
2965 		 * by the current flags
2966 		 */
2967 		if (objp) {
2968 			STATS_INC_ALLOCHIT(cachep);
2969 			goto out;
2970 		}
2971 		force_refill = true;
2972 	}
2973 
2974 	STATS_INC_ALLOCMISS(cachep);
2975 	objp = cache_alloc_refill(cachep, flags, force_refill);
2976 	/*
2977 	 * the 'ac' may be updated by cache_alloc_refill(),
2978 	 * and kmemleak_erase() requires its correct value.
2979 	 */
2980 	ac = cpu_cache_get(cachep);
2981 
2982 out:
2983 	/*
2984 	 * To avoid a false negative, if an object that is in one of the
2985 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2986 	 * treat the array pointers as a reference to the object.
2987 	 */
2988 	if (objp)
2989 		kmemleak_erase(&ac->entry[ac->avail]);
2990 	return objp;
2991 }
2992 
2993 #ifdef CONFIG_NUMA
2994 /*
2995  * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
2996  *
2997  * If we are in_interrupt, then process context, including cpusets and
2998  * mempolicy, may not apply and should not be used for allocation policy.
2999  */
3000 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3001 {
3002 	int nid_alloc, nid_here;
3003 
3004 	if (in_interrupt() || (flags & __GFP_THISNODE))
3005 		return NULL;
3006 	nid_alloc = nid_here = numa_mem_id();
3007 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3008 		nid_alloc = cpuset_slab_spread_node();
3009 	else if (current->mempolicy)
3010 		nid_alloc = mempolicy_slab_node();
3011 	if (nid_alloc != nid_here)
3012 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3013 	return NULL;
3014 }
3015 
3016 /*
3017  * Fallback function if there was no memory available and no objects on a
3018  * certain node and fall back is permitted. First we scan all the
3019  * available node for available objects. If that fails then we
3020  * perform an allocation without specifying a node. This allows the page
3021  * allocator to do its reclaim / fallback magic. We then insert the
3022  * slab into the proper nodelist and then allocate from it.
3023  */
3024 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3025 {
3026 	struct zonelist *zonelist;
3027 	gfp_t local_flags;
3028 	struct zoneref *z;
3029 	struct zone *zone;
3030 	enum zone_type high_zoneidx = gfp_zone(flags);
3031 	void *obj = NULL;
3032 	int nid;
3033 	unsigned int cpuset_mems_cookie;
3034 
3035 	if (flags & __GFP_THISNODE)
3036 		return NULL;
3037 
3038 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3039 
3040 retry_cpuset:
3041 	cpuset_mems_cookie = read_mems_allowed_begin();
3042 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3043 
3044 retry:
3045 	/*
3046 	 * Look through allowed nodes for objects available
3047 	 * from existing per node queues.
3048 	 */
3049 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3050 		nid = zone_to_nid(zone);
3051 
3052 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3053 			get_node(cache, nid) &&
3054 			get_node(cache, nid)->free_objects) {
3055 				obj = ____cache_alloc_node(cache,
3056 					flags | GFP_THISNODE, nid);
3057 				if (obj)
3058 					break;
3059 		}
3060 	}
3061 
3062 	if (!obj) {
3063 		/*
3064 		 * This allocation will be performed within the constraints
3065 		 * of the current cpuset / memory policy requirements.
3066 		 * We may trigger various forms of reclaim on the allowed
3067 		 * set and go into memory reserves if necessary.
3068 		 */
3069 		struct page *page;
3070 
3071 		if (local_flags & __GFP_WAIT)
3072 			local_irq_enable();
3073 		kmem_flagcheck(cache, flags);
3074 		page = kmem_getpages(cache, local_flags, numa_mem_id());
3075 		if (local_flags & __GFP_WAIT)
3076 			local_irq_disable();
3077 		if (page) {
3078 			/*
3079 			 * Insert into the appropriate per node queues
3080 			 */
3081 			nid = page_to_nid(page);
3082 			if (cache_grow(cache, flags, nid, page)) {
3083 				obj = ____cache_alloc_node(cache,
3084 					flags | GFP_THISNODE, nid);
3085 				if (!obj)
3086 					/*
3087 					 * Another processor may allocate the
3088 					 * objects in the slab since we are
3089 					 * not holding any locks.
3090 					 */
3091 					goto retry;
3092 			} else {
3093 				/* cache_grow already freed obj */
3094 				obj = NULL;
3095 			}
3096 		}
3097 	}
3098 
3099 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3100 		goto retry_cpuset;
3101 	return obj;
3102 }
3103 
3104 /*
3105  * A interface to enable slab creation on nodeid
3106  */
3107 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3108 				int nodeid)
3109 {
3110 	struct list_head *entry;
3111 	struct page *page;
3112 	struct kmem_cache_node *n;
3113 	void *obj;
3114 	int x;
3115 
3116 	VM_BUG_ON(nodeid > num_online_nodes());
3117 	n = get_node(cachep, nodeid);
3118 	BUG_ON(!n);
3119 
3120 retry:
3121 	check_irq_off();
3122 	spin_lock(&n->list_lock);
3123 	entry = n->slabs_partial.next;
3124 	if (entry == &n->slabs_partial) {
3125 		n->free_touched = 1;
3126 		entry = n->slabs_free.next;
3127 		if (entry == &n->slabs_free)
3128 			goto must_grow;
3129 	}
3130 
3131 	page = list_entry(entry, struct page, lru);
3132 	check_spinlock_acquired_node(cachep, nodeid);
3133 
3134 	STATS_INC_NODEALLOCS(cachep);
3135 	STATS_INC_ACTIVE(cachep);
3136 	STATS_SET_HIGH(cachep);
3137 
3138 	BUG_ON(page->active == cachep->num);
3139 
3140 	obj = slab_get_obj(cachep, page, nodeid);
3141 	n->free_objects--;
3142 	/* move slabp to correct slabp list: */
3143 	list_del(&page->lru);
3144 
3145 	if (page->active == cachep->num)
3146 		list_add(&page->lru, &n->slabs_full);
3147 	else
3148 		list_add(&page->lru, &n->slabs_partial);
3149 
3150 	spin_unlock(&n->list_lock);
3151 	goto done;
3152 
3153 must_grow:
3154 	spin_unlock(&n->list_lock);
3155 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3156 	if (x)
3157 		goto retry;
3158 
3159 	return fallback_alloc(cachep, flags);
3160 
3161 done:
3162 	return obj;
3163 }
3164 
3165 static __always_inline void *
3166 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3167 		   unsigned long caller)
3168 {
3169 	unsigned long save_flags;
3170 	void *ptr;
3171 	int slab_node = numa_mem_id();
3172 
3173 	flags &= gfp_allowed_mask;
3174 
3175 	lockdep_trace_alloc(flags);
3176 
3177 	if (slab_should_failslab(cachep, flags))
3178 		return NULL;
3179 
3180 	cachep = memcg_kmem_get_cache(cachep, flags);
3181 
3182 	cache_alloc_debugcheck_before(cachep, flags);
3183 	local_irq_save(save_flags);
3184 
3185 	if (nodeid == NUMA_NO_NODE)
3186 		nodeid = slab_node;
3187 
3188 	if (unlikely(!get_node(cachep, nodeid))) {
3189 		/* Node not bootstrapped yet */
3190 		ptr = fallback_alloc(cachep, flags);
3191 		goto out;
3192 	}
3193 
3194 	if (nodeid == slab_node) {
3195 		/*
3196 		 * Use the locally cached objects if possible.
3197 		 * However ____cache_alloc does not allow fallback
3198 		 * to other nodes. It may fail while we still have
3199 		 * objects on other nodes available.
3200 		 */
3201 		ptr = ____cache_alloc(cachep, flags);
3202 		if (ptr)
3203 			goto out;
3204 	}
3205 	/* ___cache_alloc_node can fall back to other nodes */
3206 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3207   out:
3208 	local_irq_restore(save_flags);
3209 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3210 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3211 				 flags);
3212 
3213 	if (likely(ptr)) {
3214 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3215 		if (unlikely(flags & __GFP_ZERO))
3216 			memset(ptr, 0, cachep->object_size);
3217 	}
3218 
3219 	return ptr;
3220 }
3221 
3222 static __always_inline void *
3223 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3224 {
3225 	void *objp;
3226 
3227 	if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3228 		objp = alternate_node_alloc(cache, flags);
3229 		if (objp)
3230 			goto out;
3231 	}
3232 	objp = ____cache_alloc(cache, flags);
3233 
3234 	/*
3235 	 * We may just have run out of memory on the local node.
3236 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3237 	 */
3238 	if (!objp)
3239 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3240 
3241   out:
3242 	return objp;
3243 }
3244 #else
3245 
3246 static __always_inline void *
3247 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3248 {
3249 	return ____cache_alloc(cachep, flags);
3250 }
3251 
3252 #endif /* CONFIG_NUMA */
3253 
3254 static __always_inline void *
3255 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3256 {
3257 	unsigned long save_flags;
3258 	void *objp;
3259 
3260 	flags &= gfp_allowed_mask;
3261 
3262 	lockdep_trace_alloc(flags);
3263 
3264 	if (slab_should_failslab(cachep, flags))
3265 		return NULL;
3266 
3267 	cachep = memcg_kmem_get_cache(cachep, flags);
3268 
3269 	cache_alloc_debugcheck_before(cachep, flags);
3270 	local_irq_save(save_flags);
3271 	objp = __do_cache_alloc(cachep, flags);
3272 	local_irq_restore(save_flags);
3273 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3274 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3275 				 flags);
3276 	prefetchw(objp);
3277 
3278 	if (likely(objp)) {
3279 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3280 		if (unlikely(flags & __GFP_ZERO))
3281 			memset(objp, 0, cachep->object_size);
3282 	}
3283 
3284 	return objp;
3285 }
3286 
3287 /*
3288  * Caller needs to acquire correct kmem_cache_node's list_lock
3289  * @list: List of detached free slabs should be freed by caller
3290  */
3291 static void free_block(struct kmem_cache *cachep, void **objpp,
3292 			int nr_objects, int node, struct list_head *list)
3293 {
3294 	int i;
3295 	struct kmem_cache_node *n = get_node(cachep, node);
3296 
3297 	for (i = 0; i < nr_objects; i++) {
3298 		void *objp;
3299 		struct page *page;
3300 
3301 		clear_obj_pfmemalloc(&objpp[i]);
3302 		objp = objpp[i];
3303 
3304 		page = virt_to_head_page(objp);
3305 		list_del(&page->lru);
3306 		check_spinlock_acquired_node(cachep, node);
3307 		slab_put_obj(cachep, page, objp, node);
3308 		STATS_DEC_ACTIVE(cachep);
3309 		n->free_objects++;
3310 
3311 		/* fixup slab chains */
3312 		if (page->active == 0) {
3313 			if (n->free_objects > n->free_limit) {
3314 				n->free_objects -= cachep->num;
3315 				list_add_tail(&page->lru, list);
3316 			} else {
3317 				list_add(&page->lru, &n->slabs_free);
3318 			}
3319 		} else {
3320 			/* Unconditionally move a slab to the end of the
3321 			 * partial list on free - maximum time for the
3322 			 * other objects to be freed, too.
3323 			 */
3324 			list_add_tail(&page->lru, &n->slabs_partial);
3325 		}
3326 	}
3327 }
3328 
3329 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3330 {
3331 	int batchcount;
3332 	struct kmem_cache_node *n;
3333 	int node = numa_mem_id();
3334 	LIST_HEAD(list);
3335 
3336 	batchcount = ac->batchcount;
3337 #if DEBUG
3338 	BUG_ON(!batchcount || batchcount > ac->avail);
3339 #endif
3340 	check_irq_off();
3341 	n = get_node(cachep, node);
3342 	spin_lock(&n->list_lock);
3343 	if (n->shared) {
3344 		struct array_cache *shared_array = n->shared;
3345 		int max = shared_array->limit - shared_array->avail;
3346 		if (max) {
3347 			if (batchcount > max)
3348 				batchcount = max;
3349 			memcpy(&(shared_array->entry[shared_array->avail]),
3350 			       ac->entry, sizeof(void *) * batchcount);
3351 			shared_array->avail += batchcount;
3352 			goto free_done;
3353 		}
3354 	}
3355 
3356 	free_block(cachep, ac->entry, batchcount, node, &list);
3357 free_done:
3358 #if STATS
3359 	{
3360 		int i = 0;
3361 		struct list_head *p;
3362 
3363 		p = n->slabs_free.next;
3364 		while (p != &(n->slabs_free)) {
3365 			struct page *page;
3366 
3367 			page = list_entry(p, struct page, lru);
3368 			BUG_ON(page->active);
3369 
3370 			i++;
3371 			p = p->next;
3372 		}
3373 		STATS_SET_FREEABLE(cachep, i);
3374 	}
3375 #endif
3376 	spin_unlock(&n->list_lock);
3377 	slabs_destroy(cachep, &list);
3378 	ac->avail -= batchcount;
3379 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3380 }
3381 
3382 /*
3383  * Release an obj back to its cache. If the obj has a constructed state, it must
3384  * be in this state _before_ it is released.  Called with disabled ints.
3385  */
3386 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3387 				unsigned long caller)
3388 {
3389 	struct array_cache *ac = cpu_cache_get(cachep);
3390 
3391 	check_irq_off();
3392 	kmemleak_free_recursive(objp, cachep->flags);
3393 	objp = cache_free_debugcheck(cachep, objp, caller);
3394 
3395 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3396 
3397 	/*
3398 	 * Skip calling cache_free_alien() when the platform is not numa.
3399 	 * This will avoid cache misses that happen while accessing slabp (which
3400 	 * is per page memory  reference) to get nodeid. Instead use a global
3401 	 * variable to skip the call, which is mostly likely to be present in
3402 	 * the cache.
3403 	 */
3404 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3405 		return;
3406 
3407 	if (likely(ac->avail < ac->limit)) {
3408 		STATS_INC_FREEHIT(cachep);
3409 	} else {
3410 		STATS_INC_FREEMISS(cachep);
3411 		cache_flusharray(cachep, ac);
3412 	}
3413 
3414 	ac_put_obj(cachep, ac, objp);
3415 }
3416 
3417 /**
3418  * kmem_cache_alloc - Allocate an object
3419  * @cachep: The cache to allocate from.
3420  * @flags: See kmalloc().
3421  *
3422  * Allocate an object from this cache.  The flags are only relevant
3423  * if the cache has no available objects.
3424  */
3425 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3426 {
3427 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3428 
3429 	trace_kmem_cache_alloc(_RET_IP_, ret,
3430 			       cachep->object_size, cachep->size, flags);
3431 
3432 	return ret;
3433 }
3434 EXPORT_SYMBOL(kmem_cache_alloc);
3435 
3436 #ifdef CONFIG_TRACING
3437 void *
3438 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3439 {
3440 	void *ret;
3441 
3442 	ret = slab_alloc(cachep, flags, _RET_IP_);
3443 
3444 	trace_kmalloc(_RET_IP_, ret,
3445 		      size, cachep->size, flags);
3446 	return ret;
3447 }
3448 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3449 #endif
3450 
3451 #ifdef CONFIG_NUMA
3452 /**
3453  * kmem_cache_alloc_node - Allocate an object on the specified node
3454  * @cachep: The cache to allocate from.
3455  * @flags: See kmalloc().
3456  * @nodeid: node number of the target node.
3457  *
3458  * Identical to kmem_cache_alloc but it will allocate memory on the given
3459  * node, which can improve the performance for cpu bound structures.
3460  *
3461  * Fallback to other node is possible if __GFP_THISNODE is not set.
3462  */
3463 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3464 {
3465 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3466 
3467 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3468 				    cachep->object_size, cachep->size,
3469 				    flags, nodeid);
3470 
3471 	return ret;
3472 }
3473 EXPORT_SYMBOL(kmem_cache_alloc_node);
3474 
3475 #ifdef CONFIG_TRACING
3476 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3477 				  gfp_t flags,
3478 				  int nodeid,
3479 				  size_t size)
3480 {
3481 	void *ret;
3482 
3483 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3484 
3485 	trace_kmalloc_node(_RET_IP_, ret,
3486 			   size, cachep->size,
3487 			   flags, nodeid);
3488 	return ret;
3489 }
3490 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3491 #endif
3492 
3493 static __always_inline void *
3494 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3495 {
3496 	struct kmem_cache *cachep;
3497 
3498 	cachep = kmalloc_slab(size, flags);
3499 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3500 		return cachep;
3501 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3502 }
3503 
3504 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3505 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3506 {
3507 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3508 }
3509 EXPORT_SYMBOL(__kmalloc_node);
3510 
3511 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3512 		int node, unsigned long caller)
3513 {
3514 	return __do_kmalloc_node(size, flags, node, caller);
3515 }
3516 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3517 #else
3518 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3519 {
3520 	return __do_kmalloc_node(size, flags, node, 0);
3521 }
3522 EXPORT_SYMBOL(__kmalloc_node);
3523 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3524 #endif /* CONFIG_NUMA */
3525 
3526 /**
3527  * __do_kmalloc - allocate memory
3528  * @size: how many bytes of memory are required.
3529  * @flags: the type of memory to allocate (see kmalloc).
3530  * @caller: function caller for debug tracking of the caller
3531  */
3532 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3533 					  unsigned long caller)
3534 {
3535 	struct kmem_cache *cachep;
3536 	void *ret;
3537 
3538 	cachep = kmalloc_slab(size, flags);
3539 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3540 		return cachep;
3541 	ret = slab_alloc(cachep, flags, caller);
3542 
3543 	trace_kmalloc(caller, ret,
3544 		      size, cachep->size, flags);
3545 
3546 	return ret;
3547 }
3548 
3549 
3550 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3551 void *__kmalloc(size_t size, gfp_t flags)
3552 {
3553 	return __do_kmalloc(size, flags, _RET_IP_);
3554 }
3555 EXPORT_SYMBOL(__kmalloc);
3556 
3557 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3558 {
3559 	return __do_kmalloc(size, flags, caller);
3560 }
3561 EXPORT_SYMBOL(__kmalloc_track_caller);
3562 
3563 #else
3564 void *__kmalloc(size_t size, gfp_t flags)
3565 {
3566 	return __do_kmalloc(size, flags, 0);
3567 }
3568 EXPORT_SYMBOL(__kmalloc);
3569 #endif
3570 
3571 /**
3572  * kmem_cache_free - Deallocate an object
3573  * @cachep: The cache the allocation was from.
3574  * @objp: The previously allocated object.
3575  *
3576  * Free an object which was previously allocated from this
3577  * cache.
3578  */
3579 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3580 {
3581 	unsigned long flags;
3582 	cachep = cache_from_obj(cachep, objp);
3583 	if (!cachep)
3584 		return;
3585 
3586 	local_irq_save(flags);
3587 	debug_check_no_locks_freed(objp, cachep->object_size);
3588 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3589 		debug_check_no_obj_freed(objp, cachep->object_size);
3590 	__cache_free(cachep, objp, _RET_IP_);
3591 	local_irq_restore(flags);
3592 
3593 	trace_kmem_cache_free(_RET_IP_, objp);
3594 }
3595 EXPORT_SYMBOL(kmem_cache_free);
3596 
3597 /**
3598  * kfree - free previously allocated memory
3599  * @objp: pointer returned by kmalloc.
3600  *
3601  * If @objp is NULL, no operation is performed.
3602  *
3603  * Don't free memory not originally allocated by kmalloc()
3604  * or you will run into trouble.
3605  */
3606 void kfree(const void *objp)
3607 {
3608 	struct kmem_cache *c;
3609 	unsigned long flags;
3610 
3611 	trace_kfree(_RET_IP_, objp);
3612 
3613 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3614 		return;
3615 	local_irq_save(flags);
3616 	kfree_debugcheck(objp);
3617 	c = virt_to_cache(objp);
3618 	debug_check_no_locks_freed(objp, c->object_size);
3619 
3620 	debug_check_no_obj_freed(objp, c->object_size);
3621 	__cache_free(c, (void *)objp, _RET_IP_);
3622 	local_irq_restore(flags);
3623 }
3624 EXPORT_SYMBOL(kfree);
3625 
3626 /*
3627  * This initializes kmem_cache_node or resizes various caches for all nodes.
3628  */
3629 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3630 {
3631 	int node;
3632 	struct kmem_cache_node *n;
3633 	struct array_cache *new_shared;
3634 	struct alien_cache **new_alien = NULL;
3635 
3636 	for_each_online_node(node) {
3637 
3638                 if (use_alien_caches) {
3639                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3640                         if (!new_alien)
3641                                 goto fail;
3642                 }
3643 
3644 		new_shared = NULL;
3645 		if (cachep->shared) {
3646 			new_shared = alloc_arraycache(node,
3647 				cachep->shared*cachep->batchcount,
3648 					0xbaadf00d, gfp);
3649 			if (!new_shared) {
3650 				free_alien_cache(new_alien);
3651 				goto fail;
3652 			}
3653 		}
3654 
3655 		n = get_node(cachep, node);
3656 		if (n) {
3657 			struct array_cache *shared = n->shared;
3658 			LIST_HEAD(list);
3659 
3660 			spin_lock_irq(&n->list_lock);
3661 
3662 			if (shared)
3663 				free_block(cachep, shared->entry,
3664 						shared->avail, node, &list);
3665 
3666 			n->shared = new_shared;
3667 			if (!n->alien) {
3668 				n->alien = new_alien;
3669 				new_alien = NULL;
3670 			}
3671 			n->free_limit = (1 + nr_cpus_node(node)) *
3672 					cachep->batchcount + cachep->num;
3673 			spin_unlock_irq(&n->list_lock);
3674 			slabs_destroy(cachep, &list);
3675 			kfree(shared);
3676 			free_alien_cache(new_alien);
3677 			continue;
3678 		}
3679 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3680 		if (!n) {
3681 			free_alien_cache(new_alien);
3682 			kfree(new_shared);
3683 			goto fail;
3684 		}
3685 
3686 		kmem_cache_node_init(n);
3687 		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3688 				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3689 		n->shared = new_shared;
3690 		n->alien = new_alien;
3691 		n->free_limit = (1 + nr_cpus_node(node)) *
3692 					cachep->batchcount + cachep->num;
3693 		cachep->node[node] = n;
3694 	}
3695 	return 0;
3696 
3697 fail:
3698 	if (!cachep->list.next) {
3699 		/* Cache is not active yet. Roll back what we did */
3700 		node--;
3701 		while (node >= 0) {
3702 			n = get_node(cachep, node);
3703 			if (n) {
3704 				kfree(n->shared);
3705 				free_alien_cache(n->alien);
3706 				kfree(n);
3707 				cachep->node[node] = NULL;
3708 			}
3709 			node--;
3710 		}
3711 	}
3712 	return -ENOMEM;
3713 }
3714 
3715 struct ccupdate_struct {
3716 	struct kmem_cache *cachep;
3717 	struct array_cache *new[0];
3718 };
3719 
3720 static void do_ccupdate_local(void *info)
3721 {
3722 	struct ccupdate_struct *new = info;
3723 	struct array_cache *old;
3724 
3725 	check_irq_off();
3726 	old = cpu_cache_get(new->cachep);
3727 
3728 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3729 	new->new[smp_processor_id()] = old;
3730 }
3731 
3732 /* Always called with the slab_mutex held */
3733 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3734 				int batchcount, int shared, gfp_t gfp)
3735 {
3736 	struct ccupdate_struct *new;
3737 	int i;
3738 
3739 	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3740 		      gfp);
3741 	if (!new)
3742 		return -ENOMEM;
3743 
3744 	for_each_online_cpu(i) {
3745 		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3746 						batchcount, gfp);
3747 		if (!new->new[i]) {
3748 			for (i--; i >= 0; i--)
3749 				kfree(new->new[i]);
3750 			kfree(new);
3751 			return -ENOMEM;
3752 		}
3753 	}
3754 	new->cachep = cachep;
3755 
3756 	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3757 
3758 	check_irq_on();
3759 	cachep->batchcount = batchcount;
3760 	cachep->limit = limit;
3761 	cachep->shared = shared;
3762 
3763 	for_each_online_cpu(i) {
3764 		LIST_HEAD(list);
3765 		struct array_cache *ccold = new->new[i];
3766 		int node;
3767 		struct kmem_cache_node *n;
3768 
3769 		if (!ccold)
3770 			continue;
3771 
3772 		node = cpu_to_mem(i);
3773 		n = get_node(cachep, node);
3774 		spin_lock_irq(&n->list_lock);
3775 		free_block(cachep, ccold->entry, ccold->avail, node, &list);
3776 		spin_unlock_irq(&n->list_lock);
3777 		slabs_destroy(cachep, &list);
3778 		kfree(ccold);
3779 	}
3780 	kfree(new);
3781 	return alloc_kmem_cache_node(cachep, gfp);
3782 }
3783 
3784 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3785 				int batchcount, int shared, gfp_t gfp)
3786 {
3787 	int ret;
3788 	struct kmem_cache *c = NULL;
3789 	int i = 0;
3790 
3791 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3792 
3793 	if (slab_state < FULL)
3794 		return ret;
3795 
3796 	if ((ret < 0) || !is_root_cache(cachep))
3797 		return ret;
3798 
3799 	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3800 	for_each_memcg_cache_index(i) {
3801 		c = cache_from_memcg_idx(cachep, i);
3802 		if (c)
3803 			/* return value determined by the parent cache only */
3804 			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3805 	}
3806 
3807 	return ret;
3808 }
3809 
3810 /* Called with slab_mutex held always */
3811 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3812 {
3813 	int err;
3814 	int limit = 0;
3815 	int shared = 0;
3816 	int batchcount = 0;
3817 
3818 	if (!is_root_cache(cachep)) {
3819 		struct kmem_cache *root = memcg_root_cache(cachep);
3820 		limit = root->limit;
3821 		shared = root->shared;
3822 		batchcount = root->batchcount;
3823 	}
3824 
3825 	if (limit && shared && batchcount)
3826 		goto skip_setup;
3827 	/*
3828 	 * The head array serves three purposes:
3829 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3830 	 * - reduce the number of spinlock operations.
3831 	 * - reduce the number of linked list operations on the slab and
3832 	 *   bufctl chains: array operations are cheaper.
3833 	 * The numbers are guessed, we should auto-tune as described by
3834 	 * Bonwick.
3835 	 */
3836 	if (cachep->size > 131072)
3837 		limit = 1;
3838 	else if (cachep->size > PAGE_SIZE)
3839 		limit = 8;
3840 	else if (cachep->size > 1024)
3841 		limit = 24;
3842 	else if (cachep->size > 256)
3843 		limit = 54;
3844 	else
3845 		limit = 120;
3846 
3847 	/*
3848 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3849 	 * allocation behaviour: Most allocs on one cpu, most free operations
3850 	 * on another cpu. For these cases, an efficient object passing between
3851 	 * cpus is necessary. This is provided by a shared array. The array
3852 	 * replaces Bonwick's magazine layer.
3853 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3854 	 * to a larger limit. Thus disabled by default.
3855 	 */
3856 	shared = 0;
3857 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3858 		shared = 8;
3859 
3860 #if DEBUG
3861 	/*
3862 	 * With debugging enabled, large batchcount lead to excessively long
3863 	 * periods with disabled local interrupts. Limit the batchcount
3864 	 */
3865 	if (limit > 32)
3866 		limit = 32;
3867 #endif
3868 	batchcount = (limit + 1) / 2;
3869 skip_setup:
3870 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3871 	if (err)
3872 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3873 		       cachep->name, -err);
3874 	return err;
3875 }
3876 
3877 /*
3878  * Drain an array if it contains any elements taking the node lock only if
3879  * necessary. Note that the node listlock also protects the array_cache
3880  * if drain_array() is used on the shared array.
3881  */
3882 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3883 			 struct array_cache *ac, int force, int node)
3884 {
3885 	LIST_HEAD(list);
3886 	int tofree;
3887 
3888 	if (!ac || !ac->avail)
3889 		return;
3890 	if (ac->touched && !force) {
3891 		ac->touched = 0;
3892 	} else {
3893 		spin_lock_irq(&n->list_lock);
3894 		if (ac->avail) {
3895 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3896 			if (tofree > ac->avail)
3897 				tofree = (ac->avail + 1) / 2;
3898 			free_block(cachep, ac->entry, tofree, node, &list);
3899 			ac->avail -= tofree;
3900 			memmove(ac->entry, &(ac->entry[tofree]),
3901 				sizeof(void *) * ac->avail);
3902 		}
3903 		spin_unlock_irq(&n->list_lock);
3904 		slabs_destroy(cachep, &list);
3905 	}
3906 }
3907 
3908 /**
3909  * cache_reap - Reclaim memory from caches.
3910  * @w: work descriptor
3911  *
3912  * Called from workqueue/eventd every few seconds.
3913  * Purpose:
3914  * - clear the per-cpu caches for this CPU.
3915  * - return freeable pages to the main free memory pool.
3916  *
3917  * If we cannot acquire the cache chain mutex then just give up - we'll try
3918  * again on the next iteration.
3919  */
3920 static void cache_reap(struct work_struct *w)
3921 {
3922 	struct kmem_cache *searchp;
3923 	struct kmem_cache_node *n;
3924 	int node = numa_mem_id();
3925 	struct delayed_work *work = to_delayed_work(w);
3926 
3927 	if (!mutex_trylock(&slab_mutex))
3928 		/* Give up. Setup the next iteration. */
3929 		goto out;
3930 
3931 	list_for_each_entry(searchp, &slab_caches, list) {
3932 		check_irq_on();
3933 
3934 		/*
3935 		 * We only take the node lock if absolutely necessary and we
3936 		 * have established with reasonable certainty that
3937 		 * we can do some work if the lock was obtained.
3938 		 */
3939 		n = get_node(searchp, node);
3940 
3941 		reap_alien(searchp, n);
3942 
3943 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3944 
3945 		/*
3946 		 * These are racy checks but it does not matter
3947 		 * if we skip one check or scan twice.
3948 		 */
3949 		if (time_after(n->next_reap, jiffies))
3950 			goto next;
3951 
3952 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3953 
3954 		drain_array(searchp, n, n->shared, 0, node);
3955 
3956 		if (n->free_touched)
3957 			n->free_touched = 0;
3958 		else {
3959 			int freed;
3960 
3961 			freed = drain_freelist(searchp, n, (n->free_limit +
3962 				5 * searchp->num - 1) / (5 * searchp->num));
3963 			STATS_ADD_REAPED(searchp, freed);
3964 		}
3965 next:
3966 		cond_resched();
3967 	}
3968 	check_irq_on();
3969 	mutex_unlock(&slab_mutex);
3970 	next_reap_node();
3971 out:
3972 	/* Set up the next iteration */
3973 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3974 }
3975 
3976 #ifdef CONFIG_SLABINFO
3977 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3978 {
3979 	struct page *page;
3980 	unsigned long active_objs;
3981 	unsigned long num_objs;
3982 	unsigned long active_slabs = 0;
3983 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3984 	const char *name;
3985 	char *error = NULL;
3986 	int node;
3987 	struct kmem_cache_node *n;
3988 
3989 	active_objs = 0;
3990 	num_slabs = 0;
3991 	for_each_kmem_cache_node(cachep, node, n) {
3992 
3993 		check_irq_on();
3994 		spin_lock_irq(&n->list_lock);
3995 
3996 		list_for_each_entry(page, &n->slabs_full, lru) {
3997 			if (page->active != cachep->num && !error)
3998 				error = "slabs_full accounting error";
3999 			active_objs += cachep->num;
4000 			active_slabs++;
4001 		}
4002 		list_for_each_entry(page, &n->slabs_partial, lru) {
4003 			if (page->active == cachep->num && !error)
4004 				error = "slabs_partial accounting error";
4005 			if (!page->active && !error)
4006 				error = "slabs_partial accounting error";
4007 			active_objs += page->active;
4008 			active_slabs++;
4009 		}
4010 		list_for_each_entry(page, &n->slabs_free, lru) {
4011 			if (page->active && !error)
4012 				error = "slabs_free accounting error";
4013 			num_slabs++;
4014 		}
4015 		free_objects += n->free_objects;
4016 		if (n->shared)
4017 			shared_avail += n->shared->avail;
4018 
4019 		spin_unlock_irq(&n->list_lock);
4020 	}
4021 	num_slabs += active_slabs;
4022 	num_objs = num_slabs * cachep->num;
4023 	if (num_objs - active_objs != free_objects && !error)
4024 		error = "free_objects accounting error";
4025 
4026 	name = cachep->name;
4027 	if (error)
4028 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4029 
4030 	sinfo->active_objs = active_objs;
4031 	sinfo->num_objs = num_objs;
4032 	sinfo->active_slabs = active_slabs;
4033 	sinfo->num_slabs = num_slabs;
4034 	sinfo->shared_avail = shared_avail;
4035 	sinfo->limit = cachep->limit;
4036 	sinfo->batchcount = cachep->batchcount;
4037 	sinfo->shared = cachep->shared;
4038 	sinfo->objects_per_slab = cachep->num;
4039 	sinfo->cache_order = cachep->gfporder;
4040 }
4041 
4042 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4043 {
4044 #if STATS
4045 	{			/* node stats */
4046 		unsigned long high = cachep->high_mark;
4047 		unsigned long allocs = cachep->num_allocations;
4048 		unsigned long grown = cachep->grown;
4049 		unsigned long reaped = cachep->reaped;
4050 		unsigned long errors = cachep->errors;
4051 		unsigned long max_freeable = cachep->max_freeable;
4052 		unsigned long node_allocs = cachep->node_allocs;
4053 		unsigned long node_frees = cachep->node_frees;
4054 		unsigned long overflows = cachep->node_overflow;
4055 
4056 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4057 			   "%4lu %4lu %4lu %4lu %4lu",
4058 			   allocs, high, grown,
4059 			   reaped, errors, max_freeable, node_allocs,
4060 			   node_frees, overflows);
4061 	}
4062 	/* cpu stats */
4063 	{
4064 		unsigned long allochit = atomic_read(&cachep->allochit);
4065 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4066 		unsigned long freehit = atomic_read(&cachep->freehit);
4067 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4068 
4069 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4070 			   allochit, allocmiss, freehit, freemiss);
4071 	}
4072 #endif
4073 }
4074 
4075 #define MAX_SLABINFO_WRITE 128
4076 /**
4077  * slabinfo_write - Tuning for the slab allocator
4078  * @file: unused
4079  * @buffer: user buffer
4080  * @count: data length
4081  * @ppos: unused
4082  */
4083 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4084 		       size_t count, loff_t *ppos)
4085 {
4086 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4087 	int limit, batchcount, shared, res;
4088 	struct kmem_cache *cachep;
4089 
4090 	if (count > MAX_SLABINFO_WRITE)
4091 		return -EINVAL;
4092 	if (copy_from_user(&kbuf, buffer, count))
4093 		return -EFAULT;
4094 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4095 
4096 	tmp = strchr(kbuf, ' ');
4097 	if (!tmp)
4098 		return -EINVAL;
4099 	*tmp = '\0';
4100 	tmp++;
4101 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4102 		return -EINVAL;
4103 
4104 	/* Find the cache in the chain of caches. */
4105 	mutex_lock(&slab_mutex);
4106 	res = -EINVAL;
4107 	list_for_each_entry(cachep, &slab_caches, list) {
4108 		if (!strcmp(cachep->name, kbuf)) {
4109 			if (limit < 1 || batchcount < 1 ||
4110 					batchcount > limit || shared < 0) {
4111 				res = 0;
4112 			} else {
4113 				res = do_tune_cpucache(cachep, limit,
4114 						       batchcount, shared,
4115 						       GFP_KERNEL);
4116 			}
4117 			break;
4118 		}
4119 	}
4120 	mutex_unlock(&slab_mutex);
4121 	if (res >= 0)
4122 		res = count;
4123 	return res;
4124 }
4125 
4126 #ifdef CONFIG_DEBUG_SLAB_LEAK
4127 
4128 static void *leaks_start(struct seq_file *m, loff_t *pos)
4129 {
4130 	mutex_lock(&slab_mutex);
4131 	return seq_list_start(&slab_caches, *pos);
4132 }
4133 
4134 static inline int add_caller(unsigned long *n, unsigned long v)
4135 {
4136 	unsigned long *p;
4137 	int l;
4138 	if (!v)
4139 		return 1;
4140 	l = n[1];
4141 	p = n + 2;
4142 	while (l) {
4143 		int i = l/2;
4144 		unsigned long *q = p + 2 * i;
4145 		if (*q == v) {
4146 			q[1]++;
4147 			return 1;
4148 		}
4149 		if (*q > v) {
4150 			l = i;
4151 		} else {
4152 			p = q + 2;
4153 			l -= i + 1;
4154 		}
4155 	}
4156 	if (++n[1] == n[0])
4157 		return 0;
4158 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4159 	p[0] = v;
4160 	p[1] = 1;
4161 	return 1;
4162 }
4163 
4164 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4165 						struct page *page)
4166 {
4167 	void *p;
4168 	int i;
4169 
4170 	if (n[0] == n[1])
4171 		return;
4172 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4173 		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4174 			continue;
4175 
4176 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4177 			return;
4178 	}
4179 }
4180 
4181 static void show_symbol(struct seq_file *m, unsigned long address)
4182 {
4183 #ifdef CONFIG_KALLSYMS
4184 	unsigned long offset, size;
4185 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4186 
4187 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4188 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4189 		if (modname[0])
4190 			seq_printf(m, " [%s]", modname);
4191 		return;
4192 	}
4193 #endif
4194 	seq_printf(m, "%p", (void *)address);
4195 }
4196 
4197 static int leaks_show(struct seq_file *m, void *p)
4198 {
4199 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4200 	struct page *page;
4201 	struct kmem_cache_node *n;
4202 	const char *name;
4203 	unsigned long *x = m->private;
4204 	int node;
4205 	int i;
4206 
4207 	if (!(cachep->flags & SLAB_STORE_USER))
4208 		return 0;
4209 	if (!(cachep->flags & SLAB_RED_ZONE))
4210 		return 0;
4211 
4212 	/* OK, we can do it */
4213 
4214 	x[1] = 0;
4215 
4216 	for_each_kmem_cache_node(cachep, node, n) {
4217 
4218 		check_irq_on();
4219 		spin_lock_irq(&n->list_lock);
4220 
4221 		list_for_each_entry(page, &n->slabs_full, lru)
4222 			handle_slab(x, cachep, page);
4223 		list_for_each_entry(page, &n->slabs_partial, lru)
4224 			handle_slab(x, cachep, page);
4225 		spin_unlock_irq(&n->list_lock);
4226 	}
4227 	name = cachep->name;
4228 	if (x[0] == x[1]) {
4229 		/* Increase the buffer size */
4230 		mutex_unlock(&slab_mutex);
4231 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4232 		if (!m->private) {
4233 			/* Too bad, we are really out */
4234 			m->private = x;
4235 			mutex_lock(&slab_mutex);
4236 			return -ENOMEM;
4237 		}
4238 		*(unsigned long *)m->private = x[0] * 2;
4239 		kfree(x);
4240 		mutex_lock(&slab_mutex);
4241 		/* Now make sure this entry will be retried */
4242 		m->count = m->size;
4243 		return 0;
4244 	}
4245 	for (i = 0; i < x[1]; i++) {
4246 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4247 		show_symbol(m, x[2*i+2]);
4248 		seq_putc(m, '\n');
4249 	}
4250 
4251 	return 0;
4252 }
4253 
4254 static const struct seq_operations slabstats_op = {
4255 	.start = leaks_start,
4256 	.next = slab_next,
4257 	.stop = slab_stop,
4258 	.show = leaks_show,
4259 };
4260 
4261 static int slabstats_open(struct inode *inode, struct file *file)
4262 {
4263 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4264 	int ret = -ENOMEM;
4265 	if (n) {
4266 		ret = seq_open(file, &slabstats_op);
4267 		if (!ret) {
4268 			struct seq_file *m = file->private_data;
4269 			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4270 			m->private = n;
4271 			n = NULL;
4272 		}
4273 		kfree(n);
4274 	}
4275 	return ret;
4276 }
4277 
4278 static const struct file_operations proc_slabstats_operations = {
4279 	.open		= slabstats_open,
4280 	.read		= seq_read,
4281 	.llseek		= seq_lseek,
4282 	.release	= seq_release_private,
4283 };
4284 #endif
4285 
4286 static int __init slab_proc_init(void)
4287 {
4288 #ifdef CONFIG_DEBUG_SLAB_LEAK
4289 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4290 #endif
4291 	return 0;
4292 }
4293 module_init(slab_proc_init);
4294 #endif
4295 
4296 /**
4297  * ksize - get the actual amount of memory allocated for a given object
4298  * @objp: Pointer to the object
4299  *
4300  * kmalloc may internally round up allocations and return more memory
4301  * than requested. ksize() can be used to determine the actual amount of
4302  * memory allocated. The caller may use this additional memory, even though
4303  * a smaller amount of memory was initially specified with the kmalloc call.
4304  * The caller must guarantee that objp points to a valid object previously
4305  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4306  * must not be freed during the duration of the call.
4307  */
4308 size_t ksize(const void *objp)
4309 {
4310 	BUG_ON(!objp);
4311 	if (unlikely(objp == ZERO_SIZE_PTR))
4312 		return 0;
4313 
4314 	return virt_to_cache(objp)->object_size;
4315 }
4316 EXPORT_SYMBOL(ksize);
4317