1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'slab_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 120 #include <net/sock.h> 121 122 #include <asm/cacheflush.h> 123 #include <asm/tlbflush.h> 124 #include <asm/page.h> 125 126 #include <trace/events/kmem.h> 127 128 #include "internal.h" 129 130 #include "slab.h" 131 132 /* 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 134 * 0 for faster, smaller code (especially in the critical paths). 135 * 136 * STATS - 1 to collect stats for /proc/slabinfo. 137 * 0 for faster, smaller code (especially in the critical paths). 138 * 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 140 */ 141 142 #ifdef CONFIG_DEBUG_SLAB 143 #define DEBUG 1 144 #define STATS 1 145 #define FORCED_DEBUG 1 146 #else 147 #define DEBUG 0 148 #define STATS 0 149 #define FORCED_DEBUG 0 150 #endif 151 152 /* Shouldn't this be in a header file somewhere? */ 153 #define BYTES_PER_WORD sizeof(void *) 154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 155 156 #ifndef ARCH_KMALLOC_FLAGS 157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 158 #endif 159 160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 162 163 #if FREELIST_BYTE_INDEX 164 typedef unsigned char freelist_idx_t; 165 #else 166 typedef unsigned short freelist_idx_t; 167 #endif 168 169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 170 171 /* 172 * true if a page was allocated from pfmemalloc reserves for network-based 173 * swap 174 */ 175 static bool pfmemalloc_active __read_mostly; 176 177 /* 178 * struct array_cache 179 * 180 * Purpose: 181 * - LIFO ordering, to hand out cache-warm objects from _alloc 182 * - reduce the number of linked list operations 183 * - reduce spinlock operations 184 * 185 * The limit is stored in the per-cpu structure to reduce the data cache 186 * footprint. 187 * 188 */ 189 struct array_cache { 190 unsigned int avail; 191 unsigned int limit; 192 unsigned int batchcount; 193 unsigned int touched; 194 void *entry[]; /* 195 * Must have this definition in here for the proper 196 * alignment of array_cache. Also simplifies accessing 197 * the entries. 198 * 199 * Entries should not be directly dereferenced as 200 * entries belonging to slabs marked pfmemalloc will 201 * have the lower bits set SLAB_OBJ_PFMEMALLOC 202 */ 203 }; 204 205 struct alien_cache { 206 spinlock_t lock; 207 struct array_cache ac; 208 }; 209 210 #define SLAB_OBJ_PFMEMALLOC 1 211 static inline bool is_obj_pfmemalloc(void *objp) 212 { 213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC; 214 } 215 216 static inline void set_obj_pfmemalloc(void **objp) 217 { 218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC); 219 return; 220 } 221 222 static inline void clear_obj_pfmemalloc(void **objp) 223 { 224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC); 225 } 226 227 /* 228 * bootstrap: The caches do not work without cpuarrays anymore, but the 229 * cpuarrays are allocated from the generic caches... 230 */ 231 #define BOOT_CPUCACHE_ENTRIES 1 232 struct arraycache_init { 233 struct array_cache cache; 234 void *entries[BOOT_CPUCACHE_ENTRIES]; 235 }; 236 237 /* 238 * Need this for bootstrapping a per node allocator. 239 */ 240 #define NUM_INIT_LISTS (3 * MAX_NUMNODES) 241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 242 #define CACHE_CACHE 0 243 #define SIZE_AC MAX_NUMNODES 244 #define SIZE_NODE (2 * MAX_NUMNODES) 245 246 static int drain_freelist(struct kmem_cache *cache, 247 struct kmem_cache_node *n, int tofree); 248 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 249 int node, struct list_head *list); 250 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 251 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 252 static void cache_reap(struct work_struct *unused); 253 254 static int slab_early_init = 1; 255 256 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init)) 257 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 258 259 static void kmem_cache_node_init(struct kmem_cache_node *parent) 260 { 261 INIT_LIST_HEAD(&parent->slabs_full); 262 INIT_LIST_HEAD(&parent->slabs_partial); 263 INIT_LIST_HEAD(&parent->slabs_free); 264 parent->shared = NULL; 265 parent->alien = NULL; 266 parent->colour_next = 0; 267 spin_lock_init(&parent->list_lock); 268 parent->free_objects = 0; 269 parent->free_touched = 0; 270 } 271 272 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 273 do { \ 274 INIT_LIST_HEAD(listp); \ 275 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 276 } while (0) 277 278 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 279 do { \ 280 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 281 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 282 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 283 } while (0) 284 285 #define CFLGS_OFF_SLAB (0x80000000UL) 286 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 287 288 #define BATCHREFILL_LIMIT 16 289 /* 290 * Optimization question: fewer reaps means less probability for unnessary 291 * cpucache drain/refill cycles. 292 * 293 * OTOH the cpuarrays can contain lots of objects, 294 * which could lock up otherwise freeable slabs. 295 */ 296 #define REAPTIMEOUT_AC (2*HZ) 297 #define REAPTIMEOUT_NODE (4*HZ) 298 299 #if STATS 300 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 301 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 302 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 303 #define STATS_INC_GROWN(x) ((x)->grown++) 304 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 305 #define STATS_SET_HIGH(x) \ 306 do { \ 307 if ((x)->num_active > (x)->high_mark) \ 308 (x)->high_mark = (x)->num_active; \ 309 } while (0) 310 #define STATS_INC_ERR(x) ((x)->errors++) 311 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 312 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 313 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 314 #define STATS_SET_FREEABLE(x, i) \ 315 do { \ 316 if ((x)->max_freeable < i) \ 317 (x)->max_freeable = i; \ 318 } while (0) 319 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 320 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 321 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 322 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 323 #else 324 #define STATS_INC_ACTIVE(x) do { } while (0) 325 #define STATS_DEC_ACTIVE(x) do { } while (0) 326 #define STATS_INC_ALLOCED(x) do { } while (0) 327 #define STATS_INC_GROWN(x) do { } while (0) 328 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 329 #define STATS_SET_HIGH(x) do { } while (0) 330 #define STATS_INC_ERR(x) do { } while (0) 331 #define STATS_INC_NODEALLOCS(x) do { } while (0) 332 #define STATS_INC_NODEFREES(x) do { } while (0) 333 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 334 #define STATS_SET_FREEABLE(x, i) do { } while (0) 335 #define STATS_INC_ALLOCHIT(x) do { } while (0) 336 #define STATS_INC_ALLOCMISS(x) do { } while (0) 337 #define STATS_INC_FREEHIT(x) do { } while (0) 338 #define STATS_INC_FREEMISS(x) do { } while (0) 339 #endif 340 341 #if DEBUG 342 343 /* 344 * memory layout of objects: 345 * 0 : objp 346 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 347 * the end of an object is aligned with the end of the real 348 * allocation. Catches writes behind the end of the allocation. 349 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 350 * redzone word. 351 * cachep->obj_offset: The real object. 352 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 353 * cachep->size - 1* BYTES_PER_WORD: last caller address 354 * [BYTES_PER_WORD long] 355 */ 356 static int obj_offset(struct kmem_cache *cachep) 357 { 358 return cachep->obj_offset; 359 } 360 361 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 362 { 363 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 364 return (unsigned long long*) (objp + obj_offset(cachep) - 365 sizeof(unsigned long long)); 366 } 367 368 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 369 { 370 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 371 if (cachep->flags & SLAB_STORE_USER) 372 return (unsigned long long *)(objp + cachep->size - 373 sizeof(unsigned long long) - 374 REDZONE_ALIGN); 375 return (unsigned long long *) (objp + cachep->size - 376 sizeof(unsigned long long)); 377 } 378 379 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 380 { 381 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 382 return (void **)(objp + cachep->size - BYTES_PER_WORD); 383 } 384 385 #else 386 387 #define obj_offset(x) 0 388 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 389 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 390 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 391 392 #endif 393 394 #define OBJECT_FREE (0) 395 #define OBJECT_ACTIVE (1) 396 397 #ifdef CONFIG_DEBUG_SLAB_LEAK 398 399 static void set_obj_status(struct page *page, int idx, int val) 400 { 401 int freelist_size; 402 char *status; 403 struct kmem_cache *cachep = page->slab_cache; 404 405 freelist_size = cachep->num * sizeof(freelist_idx_t); 406 status = (char *)page->freelist + freelist_size; 407 status[idx] = val; 408 } 409 410 static inline unsigned int get_obj_status(struct page *page, int idx) 411 { 412 int freelist_size; 413 char *status; 414 struct kmem_cache *cachep = page->slab_cache; 415 416 freelist_size = cachep->num * sizeof(freelist_idx_t); 417 status = (char *)page->freelist + freelist_size; 418 419 return status[idx]; 420 } 421 422 #else 423 static inline void set_obj_status(struct page *page, int idx, int val) {} 424 425 #endif 426 427 /* 428 * Do not go above this order unless 0 objects fit into the slab or 429 * overridden on the command line. 430 */ 431 #define SLAB_MAX_ORDER_HI 1 432 #define SLAB_MAX_ORDER_LO 0 433 static int slab_max_order = SLAB_MAX_ORDER_LO; 434 static bool slab_max_order_set __initdata; 435 436 static inline struct kmem_cache *virt_to_cache(const void *obj) 437 { 438 struct page *page = virt_to_head_page(obj); 439 return page->slab_cache; 440 } 441 442 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 443 unsigned int idx) 444 { 445 return page->s_mem + cache->size * idx; 446 } 447 448 /* 449 * We want to avoid an expensive divide : (offset / cache->size) 450 * Using the fact that size is a constant for a particular cache, 451 * we can replace (offset / cache->size) by 452 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 453 */ 454 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 455 const struct page *page, void *obj) 456 { 457 u32 offset = (obj - page->s_mem); 458 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 459 } 460 461 static struct arraycache_init initarray_generic = 462 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 463 464 /* internal cache of cache description objs */ 465 static struct kmem_cache kmem_cache_boot = { 466 .batchcount = 1, 467 .limit = BOOT_CPUCACHE_ENTRIES, 468 .shared = 1, 469 .size = sizeof(struct kmem_cache), 470 .name = "kmem_cache", 471 }; 472 473 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 474 475 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 476 { 477 return cachep->array[smp_processor_id()]; 478 } 479 480 static size_t calculate_freelist_size(int nr_objs, size_t align) 481 { 482 size_t freelist_size; 483 484 freelist_size = nr_objs * sizeof(freelist_idx_t); 485 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) 486 freelist_size += nr_objs * sizeof(char); 487 488 if (align) 489 freelist_size = ALIGN(freelist_size, align); 490 491 return freelist_size; 492 } 493 494 static int calculate_nr_objs(size_t slab_size, size_t buffer_size, 495 size_t idx_size, size_t align) 496 { 497 int nr_objs; 498 size_t remained_size; 499 size_t freelist_size; 500 int extra_space = 0; 501 502 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) 503 extra_space = sizeof(char); 504 /* 505 * Ignore padding for the initial guess. The padding 506 * is at most @align-1 bytes, and @buffer_size is at 507 * least @align. In the worst case, this result will 508 * be one greater than the number of objects that fit 509 * into the memory allocation when taking the padding 510 * into account. 511 */ 512 nr_objs = slab_size / (buffer_size + idx_size + extra_space); 513 514 /* 515 * This calculated number will be either the right 516 * amount, or one greater than what we want. 517 */ 518 remained_size = slab_size - nr_objs * buffer_size; 519 freelist_size = calculate_freelist_size(nr_objs, align); 520 if (remained_size < freelist_size) 521 nr_objs--; 522 523 return nr_objs; 524 } 525 526 /* 527 * Calculate the number of objects and left-over bytes for a given buffer size. 528 */ 529 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 530 size_t align, int flags, size_t *left_over, 531 unsigned int *num) 532 { 533 int nr_objs; 534 size_t mgmt_size; 535 size_t slab_size = PAGE_SIZE << gfporder; 536 537 /* 538 * The slab management structure can be either off the slab or 539 * on it. For the latter case, the memory allocated for a 540 * slab is used for: 541 * 542 * - One unsigned int for each object 543 * - Padding to respect alignment of @align 544 * - @buffer_size bytes for each object 545 * 546 * If the slab management structure is off the slab, then the 547 * alignment will already be calculated into the size. Because 548 * the slabs are all pages aligned, the objects will be at the 549 * correct alignment when allocated. 550 */ 551 if (flags & CFLGS_OFF_SLAB) { 552 mgmt_size = 0; 553 nr_objs = slab_size / buffer_size; 554 555 } else { 556 nr_objs = calculate_nr_objs(slab_size, buffer_size, 557 sizeof(freelist_idx_t), align); 558 mgmt_size = calculate_freelist_size(nr_objs, align); 559 } 560 *num = nr_objs; 561 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 562 } 563 564 #if DEBUG 565 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 566 567 static void __slab_error(const char *function, struct kmem_cache *cachep, 568 char *msg) 569 { 570 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 571 function, cachep->name, msg); 572 dump_stack(); 573 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 574 } 575 #endif 576 577 /* 578 * By default on NUMA we use alien caches to stage the freeing of 579 * objects allocated from other nodes. This causes massive memory 580 * inefficiencies when using fake NUMA setup to split memory into a 581 * large number of small nodes, so it can be disabled on the command 582 * line 583 */ 584 585 static int use_alien_caches __read_mostly = 1; 586 static int __init noaliencache_setup(char *s) 587 { 588 use_alien_caches = 0; 589 return 1; 590 } 591 __setup("noaliencache", noaliencache_setup); 592 593 static int __init slab_max_order_setup(char *str) 594 { 595 get_option(&str, &slab_max_order); 596 slab_max_order = slab_max_order < 0 ? 0 : 597 min(slab_max_order, MAX_ORDER - 1); 598 slab_max_order_set = true; 599 600 return 1; 601 } 602 __setup("slab_max_order=", slab_max_order_setup); 603 604 #ifdef CONFIG_NUMA 605 /* 606 * Special reaping functions for NUMA systems called from cache_reap(). 607 * These take care of doing round robin flushing of alien caches (containing 608 * objects freed on different nodes from which they were allocated) and the 609 * flushing of remote pcps by calling drain_node_pages. 610 */ 611 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 612 613 static void init_reap_node(int cpu) 614 { 615 int node; 616 617 node = next_node(cpu_to_mem(cpu), node_online_map); 618 if (node == MAX_NUMNODES) 619 node = first_node(node_online_map); 620 621 per_cpu(slab_reap_node, cpu) = node; 622 } 623 624 static void next_reap_node(void) 625 { 626 int node = __this_cpu_read(slab_reap_node); 627 628 node = next_node(node, node_online_map); 629 if (unlikely(node >= MAX_NUMNODES)) 630 node = first_node(node_online_map); 631 __this_cpu_write(slab_reap_node, node); 632 } 633 634 #else 635 #define init_reap_node(cpu) do { } while (0) 636 #define next_reap_node(void) do { } while (0) 637 #endif 638 639 /* 640 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 641 * via the workqueue/eventd. 642 * Add the CPU number into the expiration time to minimize the possibility of 643 * the CPUs getting into lockstep and contending for the global cache chain 644 * lock. 645 */ 646 static void start_cpu_timer(int cpu) 647 { 648 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 649 650 /* 651 * When this gets called from do_initcalls via cpucache_init(), 652 * init_workqueues() has already run, so keventd will be setup 653 * at that time. 654 */ 655 if (keventd_up() && reap_work->work.func == NULL) { 656 init_reap_node(cpu); 657 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 658 schedule_delayed_work_on(cpu, reap_work, 659 __round_jiffies_relative(HZ, cpu)); 660 } 661 } 662 663 static void init_arraycache(struct array_cache *ac, int limit, int batch) 664 { 665 /* 666 * The array_cache structures contain pointers to free object. 667 * However, when such objects are allocated or transferred to another 668 * cache the pointers are not cleared and they could be counted as 669 * valid references during a kmemleak scan. Therefore, kmemleak must 670 * not scan such objects. 671 */ 672 kmemleak_no_scan(ac); 673 if (ac) { 674 ac->avail = 0; 675 ac->limit = limit; 676 ac->batchcount = batch; 677 ac->touched = 0; 678 } 679 } 680 681 static struct array_cache *alloc_arraycache(int node, int entries, 682 int batchcount, gfp_t gfp) 683 { 684 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 685 struct array_cache *ac = NULL; 686 687 ac = kmalloc_node(memsize, gfp, node); 688 init_arraycache(ac, entries, batchcount); 689 return ac; 690 } 691 692 static inline bool is_slab_pfmemalloc(struct page *page) 693 { 694 return PageSlabPfmemalloc(page); 695 } 696 697 /* Clears pfmemalloc_active if no slabs have pfmalloc set */ 698 static void recheck_pfmemalloc_active(struct kmem_cache *cachep, 699 struct array_cache *ac) 700 { 701 struct kmem_cache_node *n = get_node(cachep, numa_mem_id()); 702 struct page *page; 703 unsigned long flags; 704 705 if (!pfmemalloc_active) 706 return; 707 708 spin_lock_irqsave(&n->list_lock, flags); 709 list_for_each_entry(page, &n->slabs_full, lru) 710 if (is_slab_pfmemalloc(page)) 711 goto out; 712 713 list_for_each_entry(page, &n->slabs_partial, lru) 714 if (is_slab_pfmemalloc(page)) 715 goto out; 716 717 list_for_each_entry(page, &n->slabs_free, lru) 718 if (is_slab_pfmemalloc(page)) 719 goto out; 720 721 pfmemalloc_active = false; 722 out: 723 spin_unlock_irqrestore(&n->list_lock, flags); 724 } 725 726 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, 727 gfp_t flags, bool force_refill) 728 { 729 int i; 730 void *objp = ac->entry[--ac->avail]; 731 732 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ 733 if (unlikely(is_obj_pfmemalloc(objp))) { 734 struct kmem_cache_node *n; 735 736 if (gfp_pfmemalloc_allowed(flags)) { 737 clear_obj_pfmemalloc(&objp); 738 return objp; 739 } 740 741 /* The caller cannot use PFMEMALLOC objects, find another one */ 742 for (i = 0; i < ac->avail; i++) { 743 /* If a !PFMEMALLOC object is found, swap them */ 744 if (!is_obj_pfmemalloc(ac->entry[i])) { 745 objp = ac->entry[i]; 746 ac->entry[i] = ac->entry[ac->avail]; 747 ac->entry[ac->avail] = objp; 748 return objp; 749 } 750 } 751 752 /* 753 * If there are empty slabs on the slabs_free list and we are 754 * being forced to refill the cache, mark this one !pfmemalloc. 755 */ 756 n = get_node(cachep, numa_mem_id()); 757 if (!list_empty(&n->slabs_free) && force_refill) { 758 struct page *page = virt_to_head_page(objp); 759 ClearPageSlabPfmemalloc(page); 760 clear_obj_pfmemalloc(&objp); 761 recheck_pfmemalloc_active(cachep, ac); 762 return objp; 763 } 764 765 /* No !PFMEMALLOC objects available */ 766 ac->avail++; 767 objp = NULL; 768 } 769 770 return objp; 771 } 772 773 static inline void *ac_get_obj(struct kmem_cache *cachep, 774 struct array_cache *ac, gfp_t flags, bool force_refill) 775 { 776 void *objp; 777 778 if (unlikely(sk_memalloc_socks())) 779 objp = __ac_get_obj(cachep, ac, flags, force_refill); 780 else 781 objp = ac->entry[--ac->avail]; 782 783 return objp; 784 } 785 786 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, 787 void *objp) 788 { 789 if (unlikely(pfmemalloc_active)) { 790 /* Some pfmemalloc slabs exist, check if this is one */ 791 struct page *page = virt_to_head_page(objp); 792 if (PageSlabPfmemalloc(page)) 793 set_obj_pfmemalloc(&objp); 794 } 795 796 return objp; 797 } 798 799 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, 800 void *objp) 801 { 802 if (unlikely(sk_memalloc_socks())) 803 objp = __ac_put_obj(cachep, ac, objp); 804 805 ac->entry[ac->avail++] = objp; 806 } 807 808 /* 809 * Transfer objects in one arraycache to another. 810 * Locking must be handled by the caller. 811 * 812 * Return the number of entries transferred. 813 */ 814 static int transfer_objects(struct array_cache *to, 815 struct array_cache *from, unsigned int max) 816 { 817 /* Figure out how many entries to transfer */ 818 int nr = min3(from->avail, max, to->limit - to->avail); 819 820 if (!nr) 821 return 0; 822 823 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 824 sizeof(void *) *nr); 825 826 from->avail -= nr; 827 to->avail += nr; 828 return nr; 829 } 830 831 #ifndef CONFIG_NUMA 832 833 #define drain_alien_cache(cachep, alien) do { } while (0) 834 #define reap_alien(cachep, n) do { } while (0) 835 836 static inline struct alien_cache **alloc_alien_cache(int node, 837 int limit, gfp_t gfp) 838 { 839 return NULL; 840 } 841 842 static inline void free_alien_cache(struct alien_cache **ac_ptr) 843 { 844 } 845 846 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 847 { 848 return 0; 849 } 850 851 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 852 gfp_t flags) 853 { 854 return NULL; 855 } 856 857 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 858 gfp_t flags, int nodeid) 859 { 860 return NULL; 861 } 862 863 #else /* CONFIG_NUMA */ 864 865 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 866 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 867 868 static struct alien_cache *__alloc_alien_cache(int node, int entries, 869 int batch, gfp_t gfp) 870 { 871 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 872 struct alien_cache *alc = NULL; 873 874 alc = kmalloc_node(memsize, gfp, node); 875 init_arraycache(&alc->ac, entries, batch); 876 spin_lock_init(&alc->lock); 877 return alc; 878 } 879 880 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 881 { 882 struct alien_cache **alc_ptr; 883 size_t memsize = sizeof(void *) * nr_node_ids; 884 int i; 885 886 if (limit > 1) 887 limit = 12; 888 alc_ptr = kzalloc_node(memsize, gfp, node); 889 if (!alc_ptr) 890 return NULL; 891 892 for_each_node(i) { 893 if (i == node || !node_online(i)) 894 continue; 895 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 896 if (!alc_ptr[i]) { 897 for (i--; i >= 0; i--) 898 kfree(alc_ptr[i]); 899 kfree(alc_ptr); 900 return NULL; 901 } 902 } 903 return alc_ptr; 904 } 905 906 static void free_alien_cache(struct alien_cache **alc_ptr) 907 { 908 int i; 909 910 if (!alc_ptr) 911 return; 912 for_each_node(i) 913 kfree(alc_ptr[i]); 914 kfree(alc_ptr); 915 } 916 917 static void __drain_alien_cache(struct kmem_cache *cachep, 918 struct array_cache *ac, int node, 919 struct list_head *list) 920 { 921 struct kmem_cache_node *n = get_node(cachep, node); 922 923 if (ac->avail) { 924 spin_lock(&n->list_lock); 925 /* 926 * Stuff objects into the remote nodes shared array first. 927 * That way we could avoid the overhead of putting the objects 928 * into the free lists and getting them back later. 929 */ 930 if (n->shared) 931 transfer_objects(n->shared, ac, ac->limit); 932 933 free_block(cachep, ac->entry, ac->avail, node, list); 934 ac->avail = 0; 935 spin_unlock(&n->list_lock); 936 } 937 } 938 939 /* 940 * Called from cache_reap() to regularly drain alien caches round robin. 941 */ 942 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 943 { 944 int node = __this_cpu_read(slab_reap_node); 945 946 if (n->alien) { 947 struct alien_cache *alc = n->alien[node]; 948 struct array_cache *ac; 949 950 if (alc) { 951 ac = &alc->ac; 952 if (ac->avail && spin_trylock_irq(&alc->lock)) { 953 LIST_HEAD(list); 954 955 __drain_alien_cache(cachep, ac, node, &list); 956 spin_unlock_irq(&alc->lock); 957 slabs_destroy(cachep, &list); 958 } 959 } 960 } 961 } 962 963 static void drain_alien_cache(struct kmem_cache *cachep, 964 struct alien_cache **alien) 965 { 966 int i = 0; 967 struct alien_cache *alc; 968 struct array_cache *ac; 969 unsigned long flags; 970 971 for_each_online_node(i) { 972 alc = alien[i]; 973 if (alc) { 974 LIST_HEAD(list); 975 976 ac = &alc->ac; 977 spin_lock_irqsave(&alc->lock, flags); 978 __drain_alien_cache(cachep, ac, i, &list); 979 spin_unlock_irqrestore(&alc->lock, flags); 980 slabs_destroy(cachep, &list); 981 } 982 } 983 } 984 985 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 986 { 987 int nodeid = page_to_nid(virt_to_page(objp)); 988 struct kmem_cache_node *n; 989 struct alien_cache *alien = NULL; 990 struct array_cache *ac; 991 int node; 992 LIST_HEAD(list); 993 994 node = numa_mem_id(); 995 996 /* 997 * Make sure we are not freeing a object from another node to the array 998 * cache on this cpu. 999 */ 1000 if (likely(nodeid == node)) 1001 return 0; 1002 1003 n = get_node(cachep, node); 1004 STATS_INC_NODEFREES(cachep); 1005 if (n->alien && n->alien[nodeid]) { 1006 alien = n->alien[nodeid]; 1007 ac = &alien->ac; 1008 spin_lock(&alien->lock); 1009 if (unlikely(ac->avail == ac->limit)) { 1010 STATS_INC_ACOVERFLOW(cachep); 1011 __drain_alien_cache(cachep, ac, nodeid, &list); 1012 } 1013 ac_put_obj(cachep, ac, objp); 1014 spin_unlock(&alien->lock); 1015 slabs_destroy(cachep, &list); 1016 } else { 1017 n = get_node(cachep, nodeid); 1018 spin_lock(&n->list_lock); 1019 free_block(cachep, &objp, 1, nodeid, &list); 1020 spin_unlock(&n->list_lock); 1021 slabs_destroy(cachep, &list); 1022 } 1023 return 1; 1024 } 1025 #endif 1026 1027 /* 1028 * Allocates and initializes node for a node on each slab cache, used for 1029 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 1030 * will be allocated off-node since memory is not yet online for the new node. 1031 * When hotplugging memory or a cpu, existing node are not replaced if 1032 * already in use. 1033 * 1034 * Must hold slab_mutex. 1035 */ 1036 static int init_cache_node_node(int node) 1037 { 1038 struct kmem_cache *cachep; 1039 struct kmem_cache_node *n; 1040 const size_t memsize = sizeof(struct kmem_cache_node); 1041 1042 list_for_each_entry(cachep, &slab_caches, list) { 1043 /* 1044 * Set up the kmem_cache_node for cpu before we can 1045 * begin anything. Make sure some other cpu on this 1046 * node has not already allocated this 1047 */ 1048 n = get_node(cachep, node); 1049 if (!n) { 1050 n = kmalloc_node(memsize, GFP_KERNEL, node); 1051 if (!n) 1052 return -ENOMEM; 1053 kmem_cache_node_init(n); 1054 n->next_reap = jiffies + REAPTIMEOUT_NODE + 1055 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1056 1057 /* 1058 * The kmem_cache_nodes don't come and go as CPUs 1059 * come and go. slab_mutex is sufficient 1060 * protection here. 1061 */ 1062 cachep->node[node] = n; 1063 } 1064 1065 spin_lock_irq(&n->list_lock); 1066 n->free_limit = 1067 (1 + nr_cpus_node(node)) * 1068 cachep->batchcount + cachep->num; 1069 spin_unlock_irq(&n->list_lock); 1070 } 1071 return 0; 1072 } 1073 1074 static inline int slabs_tofree(struct kmem_cache *cachep, 1075 struct kmem_cache_node *n) 1076 { 1077 return (n->free_objects + cachep->num - 1) / cachep->num; 1078 } 1079 1080 static void cpuup_canceled(long cpu) 1081 { 1082 struct kmem_cache *cachep; 1083 struct kmem_cache_node *n = NULL; 1084 int node = cpu_to_mem(cpu); 1085 const struct cpumask *mask = cpumask_of_node(node); 1086 1087 list_for_each_entry(cachep, &slab_caches, list) { 1088 struct array_cache *nc; 1089 struct array_cache *shared; 1090 struct alien_cache **alien; 1091 LIST_HEAD(list); 1092 1093 /* cpu is dead; no one can alloc from it. */ 1094 nc = cachep->array[cpu]; 1095 cachep->array[cpu] = NULL; 1096 n = get_node(cachep, node); 1097 1098 if (!n) 1099 goto free_array_cache; 1100 1101 spin_lock_irq(&n->list_lock); 1102 1103 /* Free limit for this kmem_cache_node */ 1104 n->free_limit -= cachep->batchcount; 1105 if (nc) 1106 free_block(cachep, nc->entry, nc->avail, node, &list); 1107 1108 if (!cpumask_empty(mask)) { 1109 spin_unlock_irq(&n->list_lock); 1110 goto free_array_cache; 1111 } 1112 1113 shared = n->shared; 1114 if (shared) { 1115 free_block(cachep, shared->entry, 1116 shared->avail, node, &list); 1117 n->shared = NULL; 1118 } 1119 1120 alien = n->alien; 1121 n->alien = NULL; 1122 1123 spin_unlock_irq(&n->list_lock); 1124 1125 kfree(shared); 1126 if (alien) { 1127 drain_alien_cache(cachep, alien); 1128 free_alien_cache(alien); 1129 } 1130 free_array_cache: 1131 slabs_destroy(cachep, &list); 1132 kfree(nc); 1133 } 1134 /* 1135 * In the previous loop, all the objects were freed to 1136 * the respective cache's slabs, now we can go ahead and 1137 * shrink each nodelist to its limit. 1138 */ 1139 list_for_each_entry(cachep, &slab_caches, list) { 1140 n = get_node(cachep, node); 1141 if (!n) 1142 continue; 1143 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 1144 } 1145 } 1146 1147 static int cpuup_prepare(long cpu) 1148 { 1149 struct kmem_cache *cachep; 1150 struct kmem_cache_node *n = NULL; 1151 int node = cpu_to_mem(cpu); 1152 int err; 1153 1154 /* 1155 * We need to do this right in the beginning since 1156 * alloc_arraycache's are going to use this list. 1157 * kmalloc_node allows us to add the slab to the right 1158 * kmem_cache_node and not this cpu's kmem_cache_node 1159 */ 1160 err = init_cache_node_node(node); 1161 if (err < 0) 1162 goto bad; 1163 1164 /* 1165 * Now we can go ahead with allocating the shared arrays and 1166 * array caches 1167 */ 1168 list_for_each_entry(cachep, &slab_caches, list) { 1169 struct array_cache *nc; 1170 struct array_cache *shared = NULL; 1171 struct alien_cache **alien = NULL; 1172 1173 nc = alloc_arraycache(node, cachep->limit, 1174 cachep->batchcount, GFP_KERNEL); 1175 if (!nc) 1176 goto bad; 1177 if (cachep->shared) { 1178 shared = alloc_arraycache(node, 1179 cachep->shared * cachep->batchcount, 1180 0xbaadf00d, GFP_KERNEL); 1181 if (!shared) { 1182 kfree(nc); 1183 goto bad; 1184 } 1185 } 1186 if (use_alien_caches) { 1187 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); 1188 if (!alien) { 1189 kfree(shared); 1190 kfree(nc); 1191 goto bad; 1192 } 1193 } 1194 cachep->array[cpu] = nc; 1195 n = get_node(cachep, node); 1196 BUG_ON(!n); 1197 1198 spin_lock_irq(&n->list_lock); 1199 if (!n->shared) { 1200 /* 1201 * We are serialised from CPU_DEAD or 1202 * CPU_UP_CANCELLED by the cpucontrol lock 1203 */ 1204 n->shared = shared; 1205 shared = NULL; 1206 } 1207 #ifdef CONFIG_NUMA 1208 if (!n->alien) { 1209 n->alien = alien; 1210 alien = NULL; 1211 } 1212 #endif 1213 spin_unlock_irq(&n->list_lock); 1214 kfree(shared); 1215 free_alien_cache(alien); 1216 } 1217 1218 return 0; 1219 bad: 1220 cpuup_canceled(cpu); 1221 return -ENOMEM; 1222 } 1223 1224 static int cpuup_callback(struct notifier_block *nfb, 1225 unsigned long action, void *hcpu) 1226 { 1227 long cpu = (long)hcpu; 1228 int err = 0; 1229 1230 switch (action) { 1231 case CPU_UP_PREPARE: 1232 case CPU_UP_PREPARE_FROZEN: 1233 mutex_lock(&slab_mutex); 1234 err = cpuup_prepare(cpu); 1235 mutex_unlock(&slab_mutex); 1236 break; 1237 case CPU_ONLINE: 1238 case CPU_ONLINE_FROZEN: 1239 start_cpu_timer(cpu); 1240 break; 1241 #ifdef CONFIG_HOTPLUG_CPU 1242 case CPU_DOWN_PREPARE: 1243 case CPU_DOWN_PREPARE_FROZEN: 1244 /* 1245 * Shutdown cache reaper. Note that the slab_mutex is 1246 * held so that if cache_reap() is invoked it cannot do 1247 * anything expensive but will only modify reap_work 1248 * and reschedule the timer. 1249 */ 1250 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1251 /* Now the cache_reaper is guaranteed to be not running. */ 1252 per_cpu(slab_reap_work, cpu).work.func = NULL; 1253 break; 1254 case CPU_DOWN_FAILED: 1255 case CPU_DOWN_FAILED_FROZEN: 1256 start_cpu_timer(cpu); 1257 break; 1258 case CPU_DEAD: 1259 case CPU_DEAD_FROZEN: 1260 /* 1261 * Even if all the cpus of a node are down, we don't free the 1262 * kmem_cache_node of any cache. This to avoid a race between 1263 * cpu_down, and a kmalloc allocation from another cpu for 1264 * memory from the node of the cpu going down. The node 1265 * structure is usually allocated from kmem_cache_create() and 1266 * gets destroyed at kmem_cache_destroy(). 1267 */ 1268 /* fall through */ 1269 #endif 1270 case CPU_UP_CANCELED: 1271 case CPU_UP_CANCELED_FROZEN: 1272 mutex_lock(&slab_mutex); 1273 cpuup_canceled(cpu); 1274 mutex_unlock(&slab_mutex); 1275 break; 1276 } 1277 return notifier_from_errno(err); 1278 } 1279 1280 static struct notifier_block cpucache_notifier = { 1281 &cpuup_callback, NULL, 0 1282 }; 1283 1284 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1285 /* 1286 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1287 * Returns -EBUSY if all objects cannot be drained so that the node is not 1288 * removed. 1289 * 1290 * Must hold slab_mutex. 1291 */ 1292 static int __meminit drain_cache_node_node(int node) 1293 { 1294 struct kmem_cache *cachep; 1295 int ret = 0; 1296 1297 list_for_each_entry(cachep, &slab_caches, list) { 1298 struct kmem_cache_node *n; 1299 1300 n = get_node(cachep, node); 1301 if (!n) 1302 continue; 1303 1304 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 1305 1306 if (!list_empty(&n->slabs_full) || 1307 !list_empty(&n->slabs_partial)) { 1308 ret = -EBUSY; 1309 break; 1310 } 1311 } 1312 return ret; 1313 } 1314 1315 static int __meminit slab_memory_callback(struct notifier_block *self, 1316 unsigned long action, void *arg) 1317 { 1318 struct memory_notify *mnb = arg; 1319 int ret = 0; 1320 int nid; 1321 1322 nid = mnb->status_change_nid; 1323 if (nid < 0) 1324 goto out; 1325 1326 switch (action) { 1327 case MEM_GOING_ONLINE: 1328 mutex_lock(&slab_mutex); 1329 ret = init_cache_node_node(nid); 1330 mutex_unlock(&slab_mutex); 1331 break; 1332 case MEM_GOING_OFFLINE: 1333 mutex_lock(&slab_mutex); 1334 ret = drain_cache_node_node(nid); 1335 mutex_unlock(&slab_mutex); 1336 break; 1337 case MEM_ONLINE: 1338 case MEM_OFFLINE: 1339 case MEM_CANCEL_ONLINE: 1340 case MEM_CANCEL_OFFLINE: 1341 break; 1342 } 1343 out: 1344 return notifier_from_errno(ret); 1345 } 1346 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1347 1348 /* 1349 * swap the static kmem_cache_node with kmalloced memory 1350 */ 1351 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1352 int nodeid) 1353 { 1354 struct kmem_cache_node *ptr; 1355 1356 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1357 BUG_ON(!ptr); 1358 1359 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1360 /* 1361 * Do not assume that spinlocks can be initialized via memcpy: 1362 */ 1363 spin_lock_init(&ptr->list_lock); 1364 1365 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1366 cachep->node[nodeid] = ptr; 1367 } 1368 1369 /* 1370 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1371 * size of kmem_cache_node. 1372 */ 1373 static void __init set_up_node(struct kmem_cache *cachep, int index) 1374 { 1375 int node; 1376 1377 for_each_online_node(node) { 1378 cachep->node[node] = &init_kmem_cache_node[index + node]; 1379 cachep->node[node]->next_reap = jiffies + 1380 REAPTIMEOUT_NODE + 1381 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1382 } 1383 } 1384 1385 /* 1386 * The memory after the last cpu cache pointer is used for the 1387 * the node pointer. 1388 */ 1389 static void setup_node_pointer(struct kmem_cache *cachep) 1390 { 1391 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids]; 1392 } 1393 1394 /* 1395 * Initialisation. Called after the page allocator have been initialised and 1396 * before smp_init(). 1397 */ 1398 void __init kmem_cache_init(void) 1399 { 1400 int i; 1401 1402 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1403 sizeof(struct rcu_head)); 1404 kmem_cache = &kmem_cache_boot; 1405 setup_node_pointer(kmem_cache); 1406 1407 if (num_possible_nodes() == 1) 1408 use_alien_caches = 0; 1409 1410 for (i = 0; i < NUM_INIT_LISTS; i++) 1411 kmem_cache_node_init(&init_kmem_cache_node[i]); 1412 1413 set_up_node(kmem_cache, CACHE_CACHE); 1414 1415 /* 1416 * Fragmentation resistance on low memory - only use bigger 1417 * page orders on machines with more than 32MB of memory if 1418 * not overridden on the command line. 1419 */ 1420 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1421 slab_max_order = SLAB_MAX_ORDER_HI; 1422 1423 /* Bootstrap is tricky, because several objects are allocated 1424 * from caches that do not exist yet: 1425 * 1) initialize the kmem_cache cache: it contains the struct 1426 * kmem_cache structures of all caches, except kmem_cache itself: 1427 * kmem_cache is statically allocated. 1428 * Initially an __init data area is used for the head array and the 1429 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1430 * array at the end of the bootstrap. 1431 * 2) Create the first kmalloc cache. 1432 * The struct kmem_cache for the new cache is allocated normally. 1433 * An __init data area is used for the head array. 1434 * 3) Create the remaining kmalloc caches, with minimally sized 1435 * head arrays. 1436 * 4) Replace the __init data head arrays for kmem_cache and the first 1437 * kmalloc cache with kmalloc allocated arrays. 1438 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1439 * the other cache's with kmalloc allocated memory. 1440 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1441 */ 1442 1443 /* 1) create the kmem_cache */ 1444 1445 /* 1446 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1447 */ 1448 create_boot_cache(kmem_cache, "kmem_cache", 1449 offsetof(struct kmem_cache, array[nr_cpu_ids]) + 1450 nr_node_ids * sizeof(struct kmem_cache_node *), 1451 SLAB_HWCACHE_ALIGN); 1452 list_add(&kmem_cache->list, &slab_caches); 1453 1454 /* 2+3) create the kmalloc caches */ 1455 1456 /* 1457 * Initialize the caches that provide memory for the array cache and the 1458 * kmem_cache_node structures first. Without this, further allocations will 1459 * bug. 1460 */ 1461 1462 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac", 1463 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS); 1464 1465 if (INDEX_AC != INDEX_NODE) 1466 kmalloc_caches[INDEX_NODE] = 1467 create_kmalloc_cache("kmalloc-node", 1468 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1469 1470 slab_early_init = 0; 1471 1472 /* 4) Replace the bootstrap head arrays */ 1473 { 1474 struct array_cache *ptr; 1475 1476 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1477 1478 memcpy(ptr, cpu_cache_get(kmem_cache), 1479 sizeof(struct arraycache_init)); 1480 1481 kmem_cache->array[smp_processor_id()] = ptr; 1482 1483 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1484 1485 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC]) 1486 != &initarray_generic.cache); 1487 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]), 1488 sizeof(struct arraycache_init)); 1489 1490 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr; 1491 } 1492 /* 5) Replace the bootstrap kmem_cache_node */ 1493 { 1494 int nid; 1495 1496 for_each_online_node(nid) { 1497 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1498 1499 init_list(kmalloc_caches[INDEX_AC], 1500 &init_kmem_cache_node[SIZE_AC + nid], nid); 1501 1502 if (INDEX_AC != INDEX_NODE) { 1503 init_list(kmalloc_caches[INDEX_NODE], 1504 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1505 } 1506 } 1507 } 1508 1509 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1510 } 1511 1512 void __init kmem_cache_init_late(void) 1513 { 1514 struct kmem_cache *cachep; 1515 1516 slab_state = UP; 1517 1518 /* 6) resize the head arrays to their final sizes */ 1519 mutex_lock(&slab_mutex); 1520 list_for_each_entry(cachep, &slab_caches, list) 1521 if (enable_cpucache(cachep, GFP_NOWAIT)) 1522 BUG(); 1523 mutex_unlock(&slab_mutex); 1524 1525 /* Done! */ 1526 slab_state = FULL; 1527 1528 /* 1529 * Register a cpu startup notifier callback that initializes 1530 * cpu_cache_get for all new cpus 1531 */ 1532 register_cpu_notifier(&cpucache_notifier); 1533 1534 #ifdef CONFIG_NUMA 1535 /* 1536 * Register a memory hotplug callback that initializes and frees 1537 * node. 1538 */ 1539 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1540 #endif 1541 1542 /* 1543 * The reap timers are started later, with a module init call: That part 1544 * of the kernel is not yet operational. 1545 */ 1546 } 1547 1548 static int __init cpucache_init(void) 1549 { 1550 int cpu; 1551 1552 /* 1553 * Register the timers that return unneeded pages to the page allocator 1554 */ 1555 for_each_online_cpu(cpu) 1556 start_cpu_timer(cpu); 1557 1558 /* Done! */ 1559 slab_state = FULL; 1560 return 0; 1561 } 1562 __initcall(cpucache_init); 1563 1564 static noinline void 1565 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1566 { 1567 #if DEBUG 1568 struct kmem_cache_node *n; 1569 struct page *page; 1570 unsigned long flags; 1571 int node; 1572 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1573 DEFAULT_RATELIMIT_BURST); 1574 1575 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1576 return; 1577 1578 printk(KERN_WARNING 1579 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1580 nodeid, gfpflags); 1581 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n", 1582 cachep->name, cachep->size, cachep->gfporder); 1583 1584 for_each_kmem_cache_node(cachep, node, n) { 1585 unsigned long active_objs = 0, num_objs = 0, free_objects = 0; 1586 unsigned long active_slabs = 0, num_slabs = 0; 1587 1588 spin_lock_irqsave(&n->list_lock, flags); 1589 list_for_each_entry(page, &n->slabs_full, lru) { 1590 active_objs += cachep->num; 1591 active_slabs++; 1592 } 1593 list_for_each_entry(page, &n->slabs_partial, lru) { 1594 active_objs += page->active; 1595 active_slabs++; 1596 } 1597 list_for_each_entry(page, &n->slabs_free, lru) 1598 num_slabs++; 1599 1600 free_objects += n->free_objects; 1601 spin_unlock_irqrestore(&n->list_lock, flags); 1602 1603 num_slabs += active_slabs; 1604 num_objs = num_slabs * cachep->num; 1605 printk(KERN_WARNING 1606 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", 1607 node, active_slabs, num_slabs, active_objs, num_objs, 1608 free_objects); 1609 } 1610 #endif 1611 } 1612 1613 /* 1614 * Interface to system's page allocator. No need to hold the 1615 * kmem_cache_node ->list_lock. 1616 * 1617 * If we requested dmaable memory, we will get it. Even if we 1618 * did not request dmaable memory, we might get it, but that 1619 * would be relatively rare and ignorable. 1620 */ 1621 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1622 int nodeid) 1623 { 1624 struct page *page; 1625 int nr_pages; 1626 1627 flags |= cachep->allocflags; 1628 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1629 flags |= __GFP_RECLAIMABLE; 1630 1631 if (memcg_charge_slab(cachep, flags, cachep->gfporder)) 1632 return NULL; 1633 1634 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1635 if (!page) { 1636 memcg_uncharge_slab(cachep, cachep->gfporder); 1637 slab_out_of_memory(cachep, flags, nodeid); 1638 return NULL; 1639 } 1640 1641 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1642 if (unlikely(page->pfmemalloc)) 1643 pfmemalloc_active = true; 1644 1645 nr_pages = (1 << cachep->gfporder); 1646 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1647 add_zone_page_state(page_zone(page), 1648 NR_SLAB_RECLAIMABLE, nr_pages); 1649 else 1650 add_zone_page_state(page_zone(page), 1651 NR_SLAB_UNRECLAIMABLE, nr_pages); 1652 __SetPageSlab(page); 1653 if (page->pfmemalloc) 1654 SetPageSlabPfmemalloc(page); 1655 1656 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1657 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1658 1659 if (cachep->ctor) 1660 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1661 else 1662 kmemcheck_mark_unallocated_pages(page, nr_pages); 1663 } 1664 1665 return page; 1666 } 1667 1668 /* 1669 * Interface to system's page release. 1670 */ 1671 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1672 { 1673 const unsigned long nr_freed = (1 << cachep->gfporder); 1674 1675 kmemcheck_free_shadow(page, cachep->gfporder); 1676 1677 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1678 sub_zone_page_state(page_zone(page), 1679 NR_SLAB_RECLAIMABLE, nr_freed); 1680 else 1681 sub_zone_page_state(page_zone(page), 1682 NR_SLAB_UNRECLAIMABLE, nr_freed); 1683 1684 BUG_ON(!PageSlab(page)); 1685 __ClearPageSlabPfmemalloc(page); 1686 __ClearPageSlab(page); 1687 page_mapcount_reset(page); 1688 page->mapping = NULL; 1689 1690 if (current->reclaim_state) 1691 current->reclaim_state->reclaimed_slab += nr_freed; 1692 __free_pages(page, cachep->gfporder); 1693 memcg_uncharge_slab(cachep, cachep->gfporder); 1694 } 1695 1696 static void kmem_rcu_free(struct rcu_head *head) 1697 { 1698 struct kmem_cache *cachep; 1699 struct page *page; 1700 1701 page = container_of(head, struct page, rcu_head); 1702 cachep = page->slab_cache; 1703 1704 kmem_freepages(cachep, page); 1705 } 1706 1707 #if DEBUG 1708 1709 #ifdef CONFIG_DEBUG_PAGEALLOC 1710 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1711 unsigned long caller) 1712 { 1713 int size = cachep->object_size; 1714 1715 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1716 1717 if (size < 5 * sizeof(unsigned long)) 1718 return; 1719 1720 *addr++ = 0x12345678; 1721 *addr++ = caller; 1722 *addr++ = smp_processor_id(); 1723 size -= 3 * sizeof(unsigned long); 1724 { 1725 unsigned long *sptr = &caller; 1726 unsigned long svalue; 1727 1728 while (!kstack_end(sptr)) { 1729 svalue = *sptr++; 1730 if (kernel_text_address(svalue)) { 1731 *addr++ = svalue; 1732 size -= sizeof(unsigned long); 1733 if (size <= sizeof(unsigned long)) 1734 break; 1735 } 1736 } 1737 1738 } 1739 *addr++ = 0x87654321; 1740 } 1741 #endif 1742 1743 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1744 { 1745 int size = cachep->object_size; 1746 addr = &((char *)addr)[obj_offset(cachep)]; 1747 1748 memset(addr, val, size); 1749 *(unsigned char *)(addr + size - 1) = POISON_END; 1750 } 1751 1752 static void dump_line(char *data, int offset, int limit) 1753 { 1754 int i; 1755 unsigned char error = 0; 1756 int bad_count = 0; 1757 1758 printk(KERN_ERR "%03x: ", offset); 1759 for (i = 0; i < limit; i++) { 1760 if (data[offset + i] != POISON_FREE) { 1761 error = data[offset + i]; 1762 bad_count++; 1763 } 1764 } 1765 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1766 &data[offset], limit, 1); 1767 1768 if (bad_count == 1) { 1769 error ^= POISON_FREE; 1770 if (!(error & (error - 1))) { 1771 printk(KERN_ERR "Single bit error detected. Probably " 1772 "bad RAM.\n"); 1773 #ifdef CONFIG_X86 1774 printk(KERN_ERR "Run memtest86+ or a similar memory " 1775 "test tool.\n"); 1776 #else 1777 printk(KERN_ERR "Run a memory test tool.\n"); 1778 #endif 1779 } 1780 } 1781 } 1782 #endif 1783 1784 #if DEBUG 1785 1786 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1787 { 1788 int i, size; 1789 char *realobj; 1790 1791 if (cachep->flags & SLAB_RED_ZONE) { 1792 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 1793 *dbg_redzone1(cachep, objp), 1794 *dbg_redzone2(cachep, objp)); 1795 } 1796 1797 if (cachep->flags & SLAB_STORE_USER) { 1798 printk(KERN_ERR "Last user: [<%p>](%pSR)\n", 1799 *dbg_userword(cachep, objp), 1800 *dbg_userword(cachep, objp)); 1801 } 1802 realobj = (char *)objp + obj_offset(cachep); 1803 size = cachep->object_size; 1804 for (i = 0; i < size && lines; i += 16, lines--) { 1805 int limit; 1806 limit = 16; 1807 if (i + limit > size) 1808 limit = size - i; 1809 dump_line(realobj, i, limit); 1810 } 1811 } 1812 1813 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1814 { 1815 char *realobj; 1816 int size, i; 1817 int lines = 0; 1818 1819 realobj = (char *)objp + obj_offset(cachep); 1820 size = cachep->object_size; 1821 1822 for (i = 0; i < size; i++) { 1823 char exp = POISON_FREE; 1824 if (i == size - 1) 1825 exp = POISON_END; 1826 if (realobj[i] != exp) { 1827 int limit; 1828 /* Mismatch ! */ 1829 /* Print header */ 1830 if (lines == 0) { 1831 printk(KERN_ERR 1832 "Slab corruption (%s): %s start=%p, len=%d\n", 1833 print_tainted(), cachep->name, realobj, size); 1834 print_objinfo(cachep, objp, 0); 1835 } 1836 /* Hexdump the affected line */ 1837 i = (i / 16) * 16; 1838 limit = 16; 1839 if (i + limit > size) 1840 limit = size - i; 1841 dump_line(realobj, i, limit); 1842 i += 16; 1843 lines++; 1844 /* Limit to 5 lines */ 1845 if (lines > 5) 1846 break; 1847 } 1848 } 1849 if (lines != 0) { 1850 /* Print some data about the neighboring objects, if they 1851 * exist: 1852 */ 1853 struct page *page = virt_to_head_page(objp); 1854 unsigned int objnr; 1855 1856 objnr = obj_to_index(cachep, page, objp); 1857 if (objnr) { 1858 objp = index_to_obj(cachep, page, objnr - 1); 1859 realobj = (char *)objp + obj_offset(cachep); 1860 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1861 realobj, size); 1862 print_objinfo(cachep, objp, 2); 1863 } 1864 if (objnr + 1 < cachep->num) { 1865 objp = index_to_obj(cachep, page, objnr + 1); 1866 realobj = (char *)objp + obj_offset(cachep); 1867 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1868 realobj, size); 1869 print_objinfo(cachep, objp, 2); 1870 } 1871 } 1872 } 1873 #endif 1874 1875 #if DEBUG 1876 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1877 struct page *page) 1878 { 1879 int i; 1880 for (i = 0; i < cachep->num; i++) { 1881 void *objp = index_to_obj(cachep, page, i); 1882 1883 if (cachep->flags & SLAB_POISON) { 1884 #ifdef CONFIG_DEBUG_PAGEALLOC 1885 if (cachep->size % PAGE_SIZE == 0 && 1886 OFF_SLAB(cachep)) 1887 kernel_map_pages(virt_to_page(objp), 1888 cachep->size / PAGE_SIZE, 1); 1889 else 1890 check_poison_obj(cachep, objp); 1891 #else 1892 check_poison_obj(cachep, objp); 1893 #endif 1894 } 1895 if (cachep->flags & SLAB_RED_ZONE) { 1896 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1897 slab_error(cachep, "start of a freed object " 1898 "was overwritten"); 1899 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1900 slab_error(cachep, "end of a freed object " 1901 "was overwritten"); 1902 } 1903 } 1904 } 1905 #else 1906 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1907 struct page *page) 1908 { 1909 } 1910 #endif 1911 1912 /** 1913 * slab_destroy - destroy and release all objects in a slab 1914 * @cachep: cache pointer being destroyed 1915 * @page: page pointer being destroyed 1916 * 1917 * Destroy all the objs in a slab page, and release the mem back to the system. 1918 * Before calling the slab page must have been unlinked from the cache. The 1919 * kmem_cache_node ->list_lock is not held/needed. 1920 */ 1921 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1922 { 1923 void *freelist; 1924 1925 freelist = page->freelist; 1926 slab_destroy_debugcheck(cachep, page); 1927 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 1928 struct rcu_head *head; 1929 1930 /* 1931 * RCU free overloads the RCU head over the LRU. 1932 * slab_page has been overloeaded over the LRU, 1933 * however it is not used from now on so that 1934 * we can use it safely. 1935 */ 1936 head = (void *)&page->rcu_head; 1937 call_rcu(head, kmem_rcu_free); 1938 1939 } else { 1940 kmem_freepages(cachep, page); 1941 } 1942 1943 /* 1944 * From now on, we don't use freelist 1945 * although actual page can be freed in rcu context 1946 */ 1947 if (OFF_SLAB(cachep)) 1948 kmem_cache_free(cachep->freelist_cache, freelist); 1949 } 1950 1951 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1952 { 1953 struct page *page, *n; 1954 1955 list_for_each_entry_safe(page, n, list, lru) { 1956 list_del(&page->lru); 1957 slab_destroy(cachep, page); 1958 } 1959 } 1960 1961 /** 1962 * calculate_slab_order - calculate size (page order) of slabs 1963 * @cachep: pointer to the cache that is being created 1964 * @size: size of objects to be created in this cache. 1965 * @align: required alignment for the objects. 1966 * @flags: slab allocation flags 1967 * 1968 * Also calculates the number of objects per slab. 1969 * 1970 * This could be made much more intelligent. For now, try to avoid using 1971 * high order pages for slabs. When the gfp() functions are more friendly 1972 * towards high-order requests, this should be changed. 1973 */ 1974 static size_t calculate_slab_order(struct kmem_cache *cachep, 1975 size_t size, size_t align, unsigned long flags) 1976 { 1977 unsigned long offslab_limit; 1978 size_t left_over = 0; 1979 int gfporder; 1980 1981 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1982 unsigned int num; 1983 size_t remainder; 1984 1985 cache_estimate(gfporder, size, align, flags, &remainder, &num); 1986 if (!num) 1987 continue; 1988 1989 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1990 if (num > SLAB_OBJ_MAX_NUM) 1991 break; 1992 1993 if (flags & CFLGS_OFF_SLAB) { 1994 size_t freelist_size_per_obj = sizeof(freelist_idx_t); 1995 /* 1996 * Max number of objs-per-slab for caches which 1997 * use off-slab slabs. Needed to avoid a possible 1998 * looping condition in cache_grow(). 1999 */ 2000 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) 2001 freelist_size_per_obj += sizeof(char); 2002 offslab_limit = size; 2003 offslab_limit /= freelist_size_per_obj; 2004 2005 if (num > offslab_limit) 2006 break; 2007 } 2008 2009 /* Found something acceptable - save it away */ 2010 cachep->num = num; 2011 cachep->gfporder = gfporder; 2012 left_over = remainder; 2013 2014 /* 2015 * A VFS-reclaimable slab tends to have most allocations 2016 * as GFP_NOFS and we really don't want to have to be allocating 2017 * higher-order pages when we are unable to shrink dcache. 2018 */ 2019 if (flags & SLAB_RECLAIM_ACCOUNT) 2020 break; 2021 2022 /* 2023 * Large number of objects is good, but very large slabs are 2024 * currently bad for the gfp()s. 2025 */ 2026 if (gfporder >= slab_max_order) 2027 break; 2028 2029 /* 2030 * Acceptable internal fragmentation? 2031 */ 2032 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 2033 break; 2034 } 2035 return left_over; 2036 } 2037 2038 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 2039 { 2040 if (slab_state >= FULL) 2041 return enable_cpucache(cachep, gfp); 2042 2043 if (slab_state == DOWN) { 2044 /* 2045 * Note: Creation of first cache (kmem_cache). 2046 * The setup_node is taken care 2047 * of by the caller of __kmem_cache_create 2048 */ 2049 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2050 slab_state = PARTIAL; 2051 } else if (slab_state == PARTIAL) { 2052 /* 2053 * Note: the second kmem_cache_create must create the cache 2054 * that's used by kmalloc(24), otherwise the creation of 2055 * further caches will BUG(). 2056 */ 2057 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2058 2059 /* 2060 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is 2061 * the second cache, then we need to set up all its node/, 2062 * otherwise the creation of further caches will BUG(). 2063 */ 2064 set_up_node(cachep, SIZE_AC); 2065 if (INDEX_AC == INDEX_NODE) 2066 slab_state = PARTIAL_NODE; 2067 else 2068 slab_state = PARTIAL_ARRAYCACHE; 2069 } else { 2070 /* Remaining boot caches */ 2071 cachep->array[smp_processor_id()] = 2072 kmalloc(sizeof(struct arraycache_init), gfp); 2073 2074 if (slab_state == PARTIAL_ARRAYCACHE) { 2075 set_up_node(cachep, SIZE_NODE); 2076 slab_state = PARTIAL_NODE; 2077 } else { 2078 int node; 2079 for_each_online_node(node) { 2080 cachep->node[node] = 2081 kmalloc_node(sizeof(struct kmem_cache_node), 2082 gfp, node); 2083 BUG_ON(!cachep->node[node]); 2084 kmem_cache_node_init(cachep->node[node]); 2085 } 2086 } 2087 } 2088 cachep->node[numa_mem_id()]->next_reap = 2089 jiffies + REAPTIMEOUT_NODE + 2090 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 2091 2092 cpu_cache_get(cachep)->avail = 0; 2093 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2094 cpu_cache_get(cachep)->batchcount = 1; 2095 cpu_cache_get(cachep)->touched = 0; 2096 cachep->batchcount = 1; 2097 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2098 return 0; 2099 } 2100 2101 /** 2102 * __kmem_cache_create - Create a cache. 2103 * @cachep: cache management descriptor 2104 * @flags: SLAB flags 2105 * 2106 * Returns a ptr to the cache on success, NULL on failure. 2107 * Cannot be called within a int, but can be interrupted. 2108 * The @ctor is run when new pages are allocated by the cache. 2109 * 2110 * The flags are 2111 * 2112 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2113 * to catch references to uninitialised memory. 2114 * 2115 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2116 * for buffer overruns. 2117 * 2118 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2119 * cacheline. This can be beneficial if you're counting cycles as closely 2120 * as davem. 2121 */ 2122 int 2123 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2124 { 2125 size_t left_over, freelist_size, ralign; 2126 gfp_t gfp; 2127 int err; 2128 size_t size = cachep->size; 2129 2130 #if DEBUG 2131 #if FORCED_DEBUG 2132 /* 2133 * Enable redzoning and last user accounting, except for caches with 2134 * large objects, if the increased size would increase the object size 2135 * above the next power of two: caches with object sizes just above a 2136 * power of two have a significant amount of internal fragmentation. 2137 */ 2138 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2139 2 * sizeof(unsigned long long))) 2140 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2141 if (!(flags & SLAB_DESTROY_BY_RCU)) 2142 flags |= SLAB_POISON; 2143 #endif 2144 if (flags & SLAB_DESTROY_BY_RCU) 2145 BUG_ON(flags & SLAB_POISON); 2146 #endif 2147 2148 /* 2149 * Check that size is in terms of words. This is needed to avoid 2150 * unaligned accesses for some archs when redzoning is used, and makes 2151 * sure any on-slab bufctl's are also correctly aligned. 2152 */ 2153 if (size & (BYTES_PER_WORD - 1)) { 2154 size += (BYTES_PER_WORD - 1); 2155 size &= ~(BYTES_PER_WORD - 1); 2156 } 2157 2158 /* 2159 * Redzoning and user store require word alignment or possibly larger. 2160 * Note this will be overridden by architecture or caller mandated 2161 * alignment if either is greater than BYTES_PER_WORD. 2162 */ 2163 if (flags & SLAB_STORE_USER) 2164 ralign = BYTES_PER_WORD; 2165 2166 if (flags & SLAB_RED_ZONE) { 2167 ralign = REDZONE_ALIGN; 2168 /* If redzoning, ensure that the second redzone is suitably 2169 * aligned, by adjusting the object size accordingly. */ 2170 size += REDZONE_ALIGN - 1; 2171 size &= ~(REDZONE_ALIGN - 1); 2172 } 2173 2174 /* 3) caller mandated alignment */ 2175 if (ralign < cachep->align) { 2176 ralign = cachep->align; 2177 } 2178 /* disable debug if necessary */ 2179 if (ralign > __alignof__(unsigned long long)) 2180 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2181 /* 2182 * 4) Store it. 2183 */ 2184 cachep->align = ralign; 2185 2186 if (slab_is_available()) 2187 gfp = GFP_KERNEL; 2188 else 2189 gfp = GFP_NOWAIT; 2190 2191 setup_node_pointer(cachep); 2192 #if DEBUG 2193 2194 /* 2195 * Both debugging options require word-alignment which is calculated 2196 * into align above. 2197 */ 2198 if (flags & SLAB_RED_ZONE) { 2199 /* add space for red zone words */ 2200 cachep->obj_offset += sizeof(unsigned long long); 2201 size += 2 * sizeof(unsigned long long); 2202 } 2203 if (flags & SLAB_STORE_USER) { 2204 /* user store requires one word storage behind the end of 2205 * the real object. But if the second red zone needs to be 2206 * aligned to 64 bits, we must allow that much space. 2207 */ 2208 if (flags & SLAB_RED_ZONE) 2209 size += REDZONE_ALIGN; 2210 else 2211 size += BYTES_PER_WORD; 2212 } 2213 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2214 if (size >= kmalloc_size(INDEX_NODE + 1) 2215 && cachep->object_size > cache_line_size() 2216 && ALIGN(size, cachep->align) < PAGE_SIZE) { 2217 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); 2218 size = PAGE_SIZE; 2219 } 2220 #endif 2221 #endif 2222 2223 /* 2224 * Determine if the slab management is 'on' or 'off' slab. 2225 * (bootstrapping cannot cope with offslab caches so don't do 2226 * it too early on. Always use on-slab management when 2227 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) 2228 */ 2229 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init && 2230 !(flags & SLAB_NOLEAKTRACE)) 2231 /* 2232 * Size is large, assume best to place the slab management obj 2233 * off-slab (should allow better packing of objs). 2234 */ 2235 flags |= CFLGS_OFF_SLAB; 2236 2237 size = ALIGN(size, cachep->align); 2238 /* 2239 * We should restrict the number of objects in a slab to implement 2240 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2241 */ 2242 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2243 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2244 2245 left_over = calculate_slab_order(cachep, size, cachep->align, flags); 2246 2247 if (!cachep->num) 2248 return -E2BIG; 2249 2250 freelist_size = calculate_freelist_size(cachep->num, cachep->align); 2251 2252 /* 2253 * If the slab has been placed off-slab, and we have enough space then 2254 * move it on-slab. This is at the expense of any extra colouring. 2255 */ 2256 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) { 2257 flags &= ~CFLGS_OFF_SLAB; 2258 left_over -= freelist_size; 2259 } 2260 2261 if (flags & CFLGS_OFF_SLAB) { 2262 /* really off slab. No need for manual alignment */ 2263 freelist_size = calculate_freelist_size(cachep->num, 0); 2264 2265 #ifdef CONFIG_PAGE_POISONING 2266 /* If we're going to use the generic kernel_map_pages() 2267 * poisoning, then it's going to smash the contents of 2268 * the redzone and userword anyhow, so switch them off. 2269 */ 2270 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) 2271 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2272 #endif 2273 } 2274 2275 cachep->colour_off = cache_line_size(); 2276 /* Offset must be a multiple of the alignment. */ 2277 if (cachep->colour_off < cachep->align) 2278 cachep->colour_off = cachep->align; 2279 cachep->colour = left_over / cachep->colour_off; 2280 cachep->freelist_size = freelist_size; 2281 cachep->flags = flags; 2282 cachep->allocflags = __GFP_COMP; 2283 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2284 cachep->allocflags |= GFP_DMA; 2285 cachep->size = size; 2286 cachep->reciprocal_buffer_size = reciprocal_value(size); 2287 2288 if (flags & CFLGS_OFF_SLAB) { 2289 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u); 2290 /* 2291 * This is a possibility for one of the kmalloc_{dma,}_caches. 2292 * But since we go off slab only for object size greater than 2293 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created 2294 * in ascending order,this should not happen at all. 2295 * But leave a BUG_ON for some lucky dude. 2296 */ 2297 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache)); 2298 } 2299 2300 err = setup_cpu_cache(cachep, gfp); 2301 if (err) { 2302 __kmem_cache_shutdown(cachep); 2303 return err; 2304 } 2305 2306 return 0; 2307 } 2308 2309 #if DEBUG 2310 static void check_irq_off(void) 2311 { 2312 BUG_ON(!irqs_disabled()); 2313 } 2314 2315 static void check_irq_on(void) 2316 { 2317 BUG_ON(irqs_disabled()); 2318 } 2319 2320 static void check_spinlock_acquired(struct kmem_cache *cachep) 2321 { 2322 #ifdef CONFIG_SMP 2323 check_irq_off(); 2324 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2325 #endif 2326 } 2327 2328 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2329 { 2330 #ifdef CONFIG_SMP 2331 check_irq_off(); 2332 assert_spin_locked(&get_node(cachep, node)->list_lock); 2333 #endif 2334 } 2335 2336 #else 2337 #define check_irq_off() do { } while(0) 2338 #define check_irq_on() do { } while(0) 2339 #define check_spinlock_acquired(x) do { } while(0) 2340 #define check_spinlock_acquired_node(x, y) do { } while(0) 2341 #endif 2342 2343 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 2344 struct array_cache *ac, 2345 int force, int node); 2346 2347 static void do_drain(void *arg) 2348 { 2349 struct kmem_cache *cachep = arg; 2350 struct array_cache *ac; 2351 int node = numa_mem_id(); 2352 struct kmem_cache_node *n; 2353 LIST_HEAD(list); 2354 2355 check_irq_off(); 2356 ac = cpu_cache_get(cachep); 2357 n = get_node(cachep, node); 2358 spin_lock(&n->list_lock); 2359 free_block(cachep, ac->entry, ac->avail, node, &list); 2360 spin_unlock(&n->list_lock); 2361 slabs_destroy(cachep, &list); 2362 ac->avail = 0; 2363 } 2364 2365 static void drain_cpu_caches(struct kmem_cache *cachep) 2366 { 2367 struct kmem_cache_node *n; 2368 int node; 2369 2370 on_each_cpu(do_drain, cachep, 1); 2371 check_irq_on(); 2372 for_each_kmem_cache_node(cachep, node, n) 2373 if (n->alien) 2374 drain_alien_cache(cachep, n->alien); 2375 2376 for_each_kmem_cache_node(cachep, node, n) 2377 drain_array(cachep, n, n->shared, 1, node); 2378 } 2379 2380 /* 2381 * Remove slabs from the list of free slabs. 2382 * Specify the number of slabs to drain in tofree. 2383 * 2384 * Returns the actual number of slabs released. 2385 */ 2386 static int drain_freelist(struct kmem_cache *cache, 2387 struct kmem_cache_node *n, int tofree) 2388 { 2389 struct list_head *p; 2390 int nr_freed; 2391 struct page *page; 2392 2393 nr_freed = 0; 2394 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2395 2396 spin_lock_irq(&n->list_lock); 2397 p = n->slabs_free.prev; 2398 if (p == &n->slabs_free) { 2399 spin_unlock_irq(&n->list_lock); 2400 goto out; 2401 } 2402 2403 page = list_entry(p, struct page, lru); 2404 #if DEBUG 2405 BUG_ON(page->active); 2406 #endif 2407 list_del(&page->lru); 2408 /* 2409 * Safe to drop the lock. The slab is no longer linked 2410 * to the cache. 2411 */ 2412 n->free_objects -= cache->num; 2413 spin_unlock_irq(&n->list_lock); 2414 slab_destroy(cache, page); 2415 nr_freed++; 2416 } 2417 out: 2418 return nr_freed; 2419 } 2420 2421 int __kmem_cache_shrink(struct kmem_cache *cachep) 2422 { 2423 int ret = 0; 2424 int node; 2425 struct kmem_cache_node *n; 2426 2427 drain_cpu_caches(cachep); 2428 2429 check_irq_on(); 2430 for_each_kmem_cache_node(cachep, node, n) { 2431 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 2432 2433 ret += !list_empty(&n->slabs_full) || 2434 !list_empty(&n->slabs_partial); 2435 } 2436 return (ret ? 1 : 0); 2437 } 2438 2439 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2440 { 2441 int i; 2442 struct kmem_cache_node *n; 2443 int rc = __kmem_cache_shrink(cachep); 2444 2445 if (rc) 2446 return rc; 2447 2448 for_each_online_cpu(i) 2449 kfree(cachep->array[i]); 2450 2451 /* NUMA: free the node structures */ 2452 for_each_kmem_cache_node(cachep, i, n) { 2453 kfree(n->shared); 2454 free_alien_cache(n->alien); 2455 kfree(n); 2456 cachep->node[i] = NULL; 2457 } 2458 return 0; 2459 } 2460 2461 /* 2462 * Get the memory for a slab management obj. 2463 * 2464 * For a slab cache when the slab descriptor is off-slab, the 2465 * slab descriptor can't come from the same cache which is being created, 2466 * Because if it is the case, that means we defer the creation of 2467 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2468 * And we eventually call down to __kmem_cache_create(), which 2469 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2470 * This is a "chicken-and-egg" problem. 2471 * 2472 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2473 * which are all initialized during kmem_cache_init(). 2474 */ 2475 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2476 struct page *page, int colour_off, 2477 gfp_t local_flags, int nodeid) 2478 { 2479 void *freelist; 2480 void *addr = page_address(page); 2481 2482 if (OFF_SLAB(cachep)) { 2483 /* Slab management obj is off-slab. */ 2484 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2485 local_flags, nodeid); 2486 if (!freelist) 2487 return NULL; 2488 } else { 2489 freelist = addr + colour_off; 2490 colour_off += cachep->freelist_size; 2491 } 2492 page->active = 0; 2493 page->s_mem = addr + colour_off; 2494 return freelist; 2495 } 2496 2497 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2498 { 2499 return ((freelist_idx_t *)page->freelist)[idx]; 2500 } 2501 2502 static inline void set_free_obj(struct page *page, 2503 unsigned int idx, freelist_idx_t val) 2504 { 2505 ((freelist_idx_t *)(page->freelist))[idx] = val; 2506 } 2507 2508 static void cache_init_objs(struct kmem_cache *cachep, 2509 struct page *page) 2510 { 2511 int i; 2512 2513 for (i = 0; i < cachep->num; i++) { 2514 void *objp = index_to_obj(cachep, page, i); 2515 #if DEBUG 2516 /* need to poison the objs? */ 2517 if (cachep->flags & SLAB_POISON) 2518 poison_obj(cachep, objp, POISON_FREE); 2519 if (cachep->flags & SLAB_STORE_USER) 2520 *dbg_userword(cachep, objp) = NULL; 2521 2522 if (cachep->flags & SLAB_RED_ZONE) { 2523 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2524 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2525 } 2526 /* 2527 * Constructors are not allowed to allocate memory from the same 2528 * cache which they are a constructor for. Otherwise, deadlock. 2529 * They must also be threaded. 2530 */ 2531 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2532 cachep->ctor(objp + obj_offset(cachep)); 2533 2534 if (cachep->flags & SLAB_RED_ZONE) { 2535 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2536 slab_error(cachep, "constructor overwrote the" 2537 " end of an object"); 2538 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2539 slab_error(cachep, "constructor overwrote the" 2540 " start of an object"); 2541 } 2542 if ((cachep->size % PAGE_SIZE) == 0 && 2543 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2544 kernel_map_pages(virt_to_page(objp), 2545 cachep->size / PAGE_SIZE, 0); 2546 #else 2547 if (cachep->ctor) 2548 cachep->ctor(objp); 2549 #endif 2550 set_obj_status(page, i, OBJECT_FREE); 2551 set_free_obj(page, i, i); 2552 } 2553 } 2554 2555 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2556 { 2557 if (CONFIG_ZONE_DMA_FLAG) { 2558 if (flags & GFP_DMA) 2559 BUG_ON(!(cachep->allocflags & GFP_DMA)); 2560 else 2561 BUG_ON(cachep->allocflags & GFP_DMA); 2562 } 2563 } 2564 2565 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page, 2566 int nodeid) 2567 { 2568 void *objp; 2569 2570 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2571 page->active++; 2572 #if DEBUG 2573 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); 2574 #endif 2575 2576 return objp; 2577 } 2578 2579 static void slab_put_obj(struct kmem_cache *cachep, struct page *page, 2580 void *objp, int nodeid) 2581 { 2582 unsigned int objnr = obj_to_index(cachep, page, objp); 2583 #if DEBUG 2584 unsigned int i; 2585 2586 /* Verify that the slab belongs to the intended node */ 2587 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); 2588 2589 /* Verify double free bug */ 2590 for (i = page->active; i < cachep->num; i++) { 2591 if (get_free_obj(page, i) == objnr) { 2592 printk(KERN_ERR "slab: double free detected in cache " 2593 "'%s', objp %p\n", cachep->name, objp); 2594 BUG(); 2595 } 2596 } 2597 #endif 2598 page->active--; 2599 set_free_obj(page, page->active, objnr); 2600 } 2601 2602 /* 2603 * Map pages beginning at addr to the given cache and slab. This is required 2604 * for the slab allocator to be able to lookup the cache and slab of a 2605 * virtual address for kfree, ksize, and slab debugging. 2606 */ 2607 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2608 void *freelist) 2609 { 2610 page->slab_cache = cache; 2611 page->freelist = freelist; 2612 } 2613 2614 /* 2615 * Grow (by 1) the number of slabs within a cache. This is called by 2616 * kmem_cache_alloc() when there are no active objs left in a cache. 2617 */ 2618 static int cache_grow(struct kmem_cache *cachep, 2619 gfp_t flags, int nodeid, struct page *page) 2620 { 2621 void *freelist; 2622 size_t offset; 2623 gfp_t local_flags; 2624 struct kmem_cache_node *n; 2625 2626 /* 2627 * Be lazy and only check for valid flags here, keeping it out of the 2628 * critical path in kmem_cache_alloc(). 2629 */ 2630 BUG_ON(flags & GFP_SLAB_BUG_MASK); 2631 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2632 2633 /* Take the node list lock to change the colour_next on this node */ 2634 check_irq_off(); 2635 n = get_node(cachep, nodeid); 2636 spin_lock(&n->list_lock); 2637 2638 /* Get colour for the slab, and cal the next value. */ 2639 offset = n->colour_next; 2640 n->colour_next++; 2641 if (n->colour_next >= cachep->colour) 2642 n->colour_next = 0; 2643 spin_unlock(&n->list_lock); 2644 2645 offset *= cachep->colour_off; 2646 2647 if (local_flags & __GFP_WAIT) 2648 local_irq_enable(); 2649 2650 /* 2651 * The test for missing atomic flag is performed here, rather than 2652 * the more obvious place, simply to reduce the critical path length 2653 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2654 * will eventually be caught here (where it matters). 2655 */ 2656 kmem_flagcheck(cachep, flags); 2657 2658 /* 2659 * Get mem for the objs. Attempt to allocate a physical page from 2660 * 'nodeid'. 2661 */ 2662 if (!page) 2663 page = kmem_getpages(cachep, local_flags, nodeid); 2664 if (!page) 2665 goto failed; 2666 2667 /* Get slab management. */ 2668 freelist = alloc_slabmgmt(cachep, page, offset, 2669 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2670 if (!freelist) 2671 goto opps1; 2672 2673 slab_map_pages(cachep, page, freelist); 2674 2675 cache_init_objs(cachep, page); 2676 2677 if (local_flags & __GFP_WAIT) 2678 local_irq_disable(); 2679 check_irq_off(); 2680 spin_lock(&n->list_lock); 2681 2682 /* Make slab active. */ 2683 list_add_tail(&page->lru, &(n->slabs_free)); 2684 STATS_INC_GROWN(cachep); 2685 n->free_objects += cachep->num; 2686 spin_unlock(&n->list_lock); 2687 return 1; 2688 opps1: 2689 kmem_freepages(cachep, page); 2690 failed: 2691 if (local_flags & __GFP_WAIT) 2692 local_irq_disable(); 2693 return 0; 2694 } 2695 2696 #if DEBUG 2697 2698 /* 2699 * Perform extra freeing checks: 2700 * - detect bad pointers. 2701 * - POISON/RED_ZONE checking 2702 */ 2703 static void kfree_debugcheck(const void *objp) 2704 { 2705 if (!virt_addr_valid(objp)) { 2706 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2707 (unsigned long)objp); 2708 BUG(); 2709 } 2710 } 2711 2712 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2713 { 2714 unsigned long long redzone1, redzone2; 2715 2716 redzone1 = *dbg_redzone1(cache, obj); 2717 redzone2 = *dbg_redzone2(cache, obj); 2718 2719 /* 2720 * Redzone is ok. 2721 */ 2722 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2723 return; 2724 2725 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2726 slab_error(cache, "double free detected"); 2727 else 2728 slab_error(cache, "memory outside object was overwritten"); 2729 2730 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 2731 obj, redzone1, redzone2); 2732 } 2733 2734 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2735 unsigned long caller) 2736 { 2737 unsigned int objnr; 2738 struct page *page; 2739 2740 BUG_ON(virt_to_cache(objp) != cachep); 2741 2742 objp -= obj_offset(cachep); 2743 kfree_debugcheck(objp); 2744 page = virt_to_head_page(objp); 2745 2746 if (cachep->flags & SLAB_RED_ZONE) { 2747 verify_redzone_free(cachep, objp); 2748 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2749 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2750 } 2751 if (cachep->flags & SLAB_STORE_USER) 2752 *dbg_userword(cachep, objp) = (void *)caller; 2753 2754 objnr = obj_to_index(cachep, page, objp); 2755 2756 BUG_ON(objnr >= cachep->num); 2757 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2758 2759 set_obj_status(page, objnr, OBJECT_FREE); 2760 if (cachep->flags & SLAB_POISON) { 2761 #ifdef CONFIG_DEBUG_PAGEALLOC 2762 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 2763 store_stackinfo(cachep, objp, caller); 2764 kernel_map_pages(virt_to_page(objp), 2765 cachep->size / PAGE_SIZE, 0); 2766 } else { 2767 poison_obj(cachep, objp, POISON_FREE); 2768 } 2769 #else 2770 poison_obj(cachep, objp, POISON_FREE); 2771 #endif 2772 } 2773 return objp; 2774 } 2775 2776 #else 2777 #define kfree_debugcheck(x) do { } while(0) 2778 #define cache_free_debugcheck(x,objp,z) (objp) 2779 #endif 2780 2781 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, 2782 bool force_refill) 2783 { 2784 int batchcount; 2785 struct kmem_cache_node *n; 2786 struct array_cache *ac; 2787 int node; 2788 2789 check_irq_off(); 2790 node = numa_mem_id(); 2791 if (unlikely(force_refill)) 2792 goto force_grow; 2793 retry: 2794 ac = cpu_cache_get(cachep); 2795 batchcount = ac->batchcount; 2796 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2797 /* 2798 * If there was little recent activity on this cache, then 2799 * perform only a partial refill. Otherwise we could generate 2800 * refill bouncing. 2801 */ 2802 batchcount = BATCHREFILL_LIMIT; 2803 } 2804 n = get_node(cachep, node); 2805 2806 BUG_ON(ac->avail > 0 || !n); 2807 spin_lock(&n->list_lock); 2808 2809 /* See if we can refill from the shared array */ 2810 if (n->shared && transfer_objects(ac, n->shared, batchcount)) { 2811 n->shared->touched = 1; 2812 goto alloc_done; 2813 } 2814 2815 while (batchcount > 0) { 2816 struct list_head *entry; 2817 struct page *page; 2818 /* Get slab alloc is to come from. */ 2819 entry = n->slabs_partial.next; 2820 if (entry == &n->slabs_partial) { 2821 n->free_touched = 1; 2822 entry = n->slabs_free.next; 2823 if (entry == &n->slabs_free) 2824 goto must_grow; 2825 } 2826 2827 page = list_entry(entry, struct page, lru); 2828 check_spinlock_acquired(cachep); 2829 2830 /* 2831 * The slab was either on partial or free list so 2832 * there must be at least one object available for 2833 * allocation. 2834 */ 2835 BUG_ON(page->active >= cachep->num); 2836 2837 while (page->active < cachep->num && batchcount--) { 2838 STATS_INC_ALLOCED(cachep); 2839 STATS_INC_ACTIVE(cachep); 2840 STATS_SET_HIGH(cachep); 2841 2842 ac_put_obj(cachep, ac, slab_get_obj(cachep, page, 2843 node)); 2844 } 2845 2846 /* move slabp to correct slabp list: */ 2847 list_del(&page->lru); 2848 if (page->active == cachep->num) 2849 list_add(&page->lru, &n->slabs_full); 2850 else 2851 list_add(&page->lru, &n->slabs_partial); 2852 } 2853 2854 must_grow: 2855 n->free_objects -= ac->avail; 2856 alloc_done: 2857 spin_unlock(&n->list_lock); 2858 2859 if (unlikely(!ac->avail)) { 2860 int x; 2861 force_grow: 2862 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 2863 2864 /* cache_grow can reenable interrupts, then ac could change. */ 2865 ac = cpu_cache_get(cachep); 2866 node = numa_mem_id(); 2867 2868 /* no objects in sight? abort */ 2869 if (!x && (ac->avail == 0 || force_refill)) 2870 return NULL; 2871 2872 if (!ac->avail) /* objects refilled by interrupt? */ 2873 goto retry; 2874 } 2875 ac->touched = 1; 2876 2877 return ac_get_obj(cachep, ac, flags, force_refill); 2878 } 2879 2880 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 2881 gfp_t flags) 2882 { 2883 might_sleep_if(flags & __GFP_WAIT); 2884 #if DEBUG 2885 kmem_flagcheck(cachep, flags); 2886 #endif 2887 } 2888 2889 #if DEBUG 2890 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2891 gfp_t flags, void *objp, unsigned long caller) 2892 { 2893 struct page *page; 2894 2895 if (!objp) 2896 return objp; 2897 if (cachep->flags & SLAB_POISON) { 2898 #ifdef CONFIG_DEBUG_PAGEALLOC 2899 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 2900 kernel_map_pages(virt_to_page(objp), 2901 cachep->size / PAGE_SIZE, 1); 2902 else 2903 check_poison_obj(cachep, objp); 2904 #else 2905 check_poison_obj(cachep, objp); 2906 #endif 2907 poison_obj(cachep, objp, POISON_INUSE); 2908 } 2909 if (cachep->flags & SLAB_STORE_USER) 2910 *dbg_userword(cachep, objp) = (void *)caller; 2911 2912 if (cachep->flags & SLAB_RED_ZONE) { 2913 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 2914 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 2915 slab_error(cachep, "double free, or memory outside" 2916 " object was overwritten"); 2917 printk(KERN_ERR 2918 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2919 objp, *dbg_redzone1(cachep, objp), 2920 *dbg_redzone2(cachep, objp)); 2921 } 2922 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2923 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2924 } 2925 2926 page = virt_to_head_page(objp); 2927 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE); 2928 objp += obj_offset(cachep); 2929 if (cachep->ctor && cachep->flags & SLAB_POISON) 2930 cachep->ctor(objp); 2931 if (ARCH_SLAB_MINALIGN && 2932 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 2933 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 2934 objp, (int)ARCH_SLAB_MINALIGN); 2935 } 2936 return objp; 2937 } 2938 #else 2939 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 2940 #endif 2941 2942 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) 2943 { 2944 if (unlikely(cachep == kmem_cache)) 2945 return false; 2946 2947 return should_failslab(cachep->object_size, flags, cachep->flags); 2948 } 2949 2950 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 2951 { 2952 void *objp; 2953 struct array_cache *ac; 2954 bool force_refill = false; 2955 2956 check_irq_off(); 2957 2958 ac = cpu_cache_get(cachep); 2959 if (likely(ac->avail)) { 2960 ac->touched = 1; 2961 objp = ac_get_obj(cachep, ac, flags, false); 2962 2963 /* 2964 * Allow for the possibility all avail objects are not allowed 2965 * by the current flags 2966 */ 2967 if (objp) { 2968 STATS_INC_ALLOCHIT(cachep); 2969 goto out; 2970 } 2971 force_refill = true; 2972 } 2973 2974 STATS_INC_ALLOCMISS(cachep); 2975 objp = cache_alloc_refill(cachep, flags, force_refill); 2976 /* 2977 * the 'ac' may be updated by cache_alloc_refill(), 2978 * and kmemleak_erase() requires its correct value. 2979 */ 2980 ac = cpu_cache_get(cachep); 2981 2982 out: 2983 /* 2984 * To avoid a false negative, if an object that is in one of the 2985 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 2986 * treat the array pointers as a reference to the object. 2987 */ 2988 if (objp) 2989 kmemleak_erase(&ac->entry[ac->avail]); 2990 return objp; 2991 } 2992 2993 #ifdef CONFIG_NUMA 2994 /* 2995 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set. 2996 * 2997 * If we are in_interrupt, then process context, including cpusets and 2998 * mempolicy, may not apply and should not be used for allocation policy. 2999 */ 3000 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3001 { 3002 int nid_alloc, nid_here; 3003 3004 if (in_interrupt() || (flags & __GFP_THISNODE)) 3005 return NULL; 3006 nid_alloc = nid_here = numa_mem_id(); 3007 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3008 nid_alloc = cpuset_slab_spread_node(); 3009 else if (current->mempolicy) 3010 nid_alloc = mempolicy_slab_node(); 3011 if (nid_alloc != nid_here) 3012 return ____cache_alloc_node(cachep, flags, nid_alloc); 3013 return NULL; 3014 } 3015 3016 /* 3017 * Fallback function if there was no memory available and no objects on a 3018 * certain node and fall back is permitted. First we scan all the 3019 * available node for available objects. If that fails then we 3020 * perform an allocation without specifying a node. This allows the page 3021 * allocator to do its reclaim / fallback magic. We then insert the 3022 * slab into the proper nodelist and then allocate from it. 3023 */ 3024 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3025 { 3026 struct zonelist *zonelist; 3027 gfp_t local_flags; 3028 struct zoneref *z; 3029 struct zone *zone; 3030 enum zone_type high_zoneidx = gfp_zone(flags); 3031 void *obj = NULL; 3032 int nid; 3033 unsigned int cpuset_mems_cookie; 3034 3035 if (flags & __GFP_THISNODE) 3036 return NULL; 3037 3038 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3039 3040 retry_cpuset: 3041 cpuset_mems_cookie = read_mems_allowed_begin(); 3042 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3043 3044 retry: 3045 /* 3046 * Look through allowed nodes for objects available 3047 * from existing per node queues. 3048 */ 3049 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3050 nid = zone_to_nid(zone); 3051 3052 if (cpuset_zone_allowed_hardwall(zone, flags) && 3053 get_node(cache, nid) && 3054 get_node(cache, nid)->free_objects) { 3055 obj = ____cache_alloc_node(cache, 3056 flags | GFP_THISNODE, nid); 3057 if (obj) 3058 break; 3059 } 3060 } 3061 3062 if (!obj) { 3063 /* 3064 * This allocation will be performed within the constraints 3065 * of the current cpuset / memory policy requirements. 3066 * We may trigger various forms of reclaim on the allowed 3067 * set and go into memory reserves if necessary. 3068 */ 3069 struct page *page; 3070 3071 if (local_flags & __GFP_WAIT) 3072 local_irq_enable(); 3073 kmem_flagcheck(cache, flags); 3074 page = kmem_getpages(cache, local_flags, numa_mem_id()); 3075 if (local_flags & __GFP_WAIT) 3076 local_irq_disable(); 3077 if (page) { 3078 /* 3079 * Insert into the appropriate per node queues 3080 */ 3081 nid = page_to_nid(page); 3082 if (cache_grow(cache, flags, nid, page)) { 3083 obj = ____cache_alloc_node(cache, 3084 flags | GFP_THISNODE, nid); 3085 if (!obj) 3086 /* 3087 * Another processor may allocate the 3088 * objects in the slab since we are 3089 * not holding any locks. 3090 */ 3091 goto retry; 3092 } else { 3093 /* cache_grow already freed obj */ 3094 obj = NULL; 3095 } 3096 } 3097 } 3098 3099 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3100 goto retry_cpuset; 3101 return obj; 3102 } 3103 3104 /* 3105 * A interface to enable slab creation on nodeid 3106 */ 3107 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3108 int nodeid) 3109 { 3110 struct list_head *entry; 3111 struct page *page; 3112 struct kmem_cache_node *n; 3113 void *obj; 3114 int x; 3115 3116 VM_BUG_ON(nodeid > num_online_nodes()); 3117 n = get_node(cachep, nodeid); 3118 BUG_ON(!n); 3119 3120 retry: 3121 check_irq_off(); 3122 spin_lock(&n->list_lock); 3123 entry = n->slabs_partial.next; 3124 if (entry == &n->slabs_partial) { 3125 n->free_touched = 1; 3126 entry = n->slabs_free.next; 3127 if (entry == &n->slabs_free) 3128 goto must_grow; 3129 } 3130 3131 page = list_entry(entry, struct page, lru); 3132 check_spinlock_acquired_node(cachep, nodeid); 3133 3134 STATS_INC_NODEALLOCS(cachep); 3135 STATS_INC_ACTIVE(cachep); 3136 STATS_SET_HIGH(cachep); 3137 3138 BUG_ON(page->active == cachep->num); 3139 3140 obj = slab_get_obj(cachep, page, nodeid); 3141 n->free_objects--; 3142 /* move slabp to correct slabp list: */ 3143 list_del(&page->lru); 3144 3145 if (page->active == cachep->num) 3146 list_add(&page->lru, &n->slabs_full); 3147 else 3148 list_add(&page->lru, &n->slabs_partial); 3149 3150 spin_unlock(&n->list_lock); 3151 goto done; 3152 3153 must_grow: 3154 spin_unlock(&n->list_lock); 3155 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3156 if (x) 3157 goto retry; 3158 3159 return fallback_alloc(cachep, flags); 3160 3161 done: 3162 return obj; 3163 } 3164 3165 static __always_inline void * 3166 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3167 unsigned long caller) 3168 { 3169 unsigned long save_flags; 3170 void *ptr; 3171 int slab_node = numa_mem_id(); 3172 3173 flags &= gfp_allowed_mask; 3174 3175 lockdep_trace_alloc(flags); 3176 3177 if (slab_should_failslab(cachep, flags)) 3178 return NULL; 3179 3180 cachep = memcg_kmem_get_cache(cachep, flags); 3181 3182 cache_alloc_debugcheck_before(cachep, flags); 3183 local_irq_save(save_flags); 3184 3185 if (nodeid == NUMA_NO_NODE) 3186 nodeid = slab_node; 3187 3188 if (unlikely(!get_node(cachep, nodeid))) { 3189 /* Node not bootstrapped yet */ 3190 ptr = fallback_alloc(cachep, flags); 3191 goto out; 3192 } 3193 3194 if (nodeid == slab_node) { 3195 /* 3196 * Use the locally cached objects if possible. 3197 * However ____cache_alloc does not allow fallback 3198 * to other nodes. It may fail while we still have 3199 * objects on other nodes available. 3200 */ 3201 ptr = ____cache_alloc(cachep, flags); 3202 if (ptr) 3203 goto out; 3204 } 3205 /* ___cache_alloc_node can fall back to other nodes */ 3206 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3207 out: 3208 local_irq_restore(save_flags); 3209 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3210 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags, 3211 flags); 3212 3213 if (likely(ptr)) { 3214 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size); 3215 if (unlikely(flags & __GFP_ZERO)) 3216 memset(ptr, 0, cachep->object_size); 3217 } 3218 3219 return ptr; 3220 } 3221 3222 static __always_inline void * 3223 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3224 { 3225 void *objp; 3226 3227 if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) { 3228 objp = alternate_node_alloc(cache, flags); 3229 if (objp) 3230 goto out; 3231 } 3232 objp = ____cache_alloc(cache, flags); 3233 3234 /* 3235 * We may just have run out of memory on the local node. 3236 * ____cache_alloc_node() knows how to locate memory on other nodes 3237 */ 3238 if (!objp) 3239 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3240 3241 out: 3242 return objp; 3243 } 3244 #else 3245 3246 static __always_inline void * 3247 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3248 { 3249 return ____cache_alloc(cachep, flags); 3250 } 3251 3252 #endif /* CONFIG_NUMA */ 3253 3254 static __always_inline void * 3255 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3256 { 3257 unsigned long save_flags; 3258 void *objp; 3259 3260 flags &= gfp_allowed_mask; 3261 3262 lockdep_trace_alloc(flags); 3263 3264 if (slab_should_failslab(cachep, flags)) 3265 return NULL; 3266 3267 cachep = memcg_kmem_get_cache(cachep, flags); 3268 3269 cache_alloc_debugcheck_before(cachep, flags); 3270 local_irq_save(save_flags); 3271 objp = __do_cache_alloc(cachep, flags); 3272 local_irq_restore(save_flags); 3273 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3274 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags, 3275 flags); 3276 prefetchw(objp); 3277 3278 if (likely(objp)) { 3279 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size); 3280 if (unlikely(flags & __GFP_ZERO)) 3281 memset(objp, 0, cachep->object_size); 3282 } 3283 3284 return objp; 3285 } 3286 3287 /* 3288 * Caller needs to acquire correct kmem_cache_node's list_lock 3289 * @list: List of detached free slabs should be freed by caller 3290 */ 3291 static void free_block(struct kmem_cache *cachep, void **objpp, 3292 int nr_objects, int node, struct list_head *list) 3293 { 3294 int i; 3295 struct kmem_cache_node *n = get_node(cachep, node); 3296 3297 for (i = 0; i < nr_objects; i++) { 3298 void *objp; 3299 struct page *page; 3300 3301 clear_obj_pfmemalloc(&objpp[i]); 3302 objp = objpp[i]; 3303 3304 page = virt_to_head_page(objp); 3305 list_del(&page->lru); 3306 check_spinlock_acquired_node(cachep, node); 3307 slab_put_obj(cachep, page, objp, node); 3308 STATS_DEC_ACTIVE(cachep); 3309 n->free_objects++; 3310 3311 /* fixup slab chains */ 3312 if (page->active == 0) { 3313 if (n->free_objects > n->free_limit) { 3314 n->free_objects -= cachep->num; 3315 list_add_tail(&page->lru, list); 3316 } else { 3317 list_add(&page->lru, &n->slabs_free); 3318 } 3319 } else { 3320 /* Unconditionally move a slab to the end of the 3321 * partial list on free - maximum time for the 3322 * other objects to be freed, too. 3323 */ 3324 list_add_tail(&page->lru, &n->slabs_partial); 3325 } 3326 } 3327 } 3328 3329 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3330 { 3331 int batchcount; 3332 struct kmem_cache_node *n; 3333 int node = numa_mem_id(); 3334 LIST_HEAD(list); 3335 3336 batchcount = ac->batchcount; 3337 #if DEBUG 3338 BUG_ON(!batchcount || batchcount > ac->avail); 3339 #endif 3340 check_irq_off(); 3341 n = get_node(cachep, node); 3342 spin_lock(&n->list_lock); 3343 if (n->shared) { 3344 struct array_cache *shared_array = n->shared; 3345 int max = shared_array->limit - shared_array->avail; 3346 if (max) { 3347 if (batchcount > max) 3348 batchcount = max; 3349 memcpy(&(shared_array->entry[shared_array->avail]), 3350 ac->entry, sizeof(void *) * batchcount); 3351 shared_array->avail += batchcount; 3352 goto free_done; 3353 } 3354 } 3355 3356 free_block(cachep, ac->entry, batchcount, node, &list); 3357 free_done: 3358 #if STATS 3359 { 3360 int i = 0; 3361 struct list_head *p; 3362 3363 p = n->slabs_free.next; 3364 while (p != &(n->slabs_free)) { 3365 struct page *page; 3366 3367 page = list_entry(p, struct page, lru); 3368 BUG_ON(page->active); 3369 3370 i++; 3371 p = p->next; 3372 } 3373 STATS_SET_FREEABLE(cachep, i); 3374 } 3375 #endif 3376 spin_unlock(&n->list_lock); 3377 slabs_destroy(cachep, &list); 3378 ac->avail -= batchcount; 3379 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3380 } 3381 3382 /* 3383 * Release an obj back to its cache. If the obj has a constructed state, it must 3384 * be in this state _before_ it is released. Called with disabled ints. 3385 */ 3386 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3387 unsigned long caller) 3388 { 3389 struct array_cache *ac = cpu_cache_get(cachep); 3390 3391 check_irq_off(); 3392 kmemleak_free_recursive(objp, cachep->flags); 3393 objp = cache_free_debugcheck(cachep, objp, caller); 3394 3395 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3396 3397 /* 3398 * Skip calling cache_free_alien() when the platform is not numa. 3399 * This will avoid cache misses that happen while accessing slabp (which 3400 * is per page memory reference) to get nodeid. Instead use a global 3401 * variable to skip the call, which is mostly likely to be present in 3402 * the cache. 3403 */ 3404 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3405 return; 3406 3407 if (likely(ac->avail < ac->limit)) { 3408 STATS_INC_FREEHIT(cachep); 3409 } else { 3410 STATS_INC_FREEMISS(cachep); 3411 cache_flusharray(cachep, ac); 3412 } 3413 3414 ac_put_obj(cachep, ac, objp); 3415 } 3416 3417 /** 3418 * kmem_cache_alloc - Allocate an object 3419 * @cachep: The cache to allocate from. 3420 * @flags: See kmalloc(). 3421 * 3422 * Allocate an object from this cache. The flags are only relevant 3423 * if the cache has no available objects. 3424 */ 3425 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3426 { 3427 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3428 3429 trace_kmem_cache_alloc(_RET_IP_, ret, 3430 cachep->object_size, cachep->size, flags); 3431 3432 return ret; 3433 } 3434 EXPORT_SYMBOL(kmem_cache_alloc); 3435 3436 #ifdef CONFIG_TRACING 3437 void * 3438 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3439 { 3440 void *ret; 3441 3442 ret = slab_alloc(cachep, flags, _RET_IP_); 3443 3444 trace_kmalloc(_RET_IP_, ret, 3445 size, cachep->size, flags); 3446 return ret; 3447 } 3448 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3449 #endif 3450 3451 #ifdef CONFIG_NUMA 3452 /** 3453 * kmem_cache_alloc_node - Allocate an object on the specified node 3454 * @cachep: The cache to allocate from. 3455 * @flags: See kmalloc(). 3456 * @nodeid: node number of the target node. 3457 * 3458 * Identical to kmem_cache_alloc but it will allocate memory on the given 3459 * node, which can improve the performance for cpu bound structures. 3460 * 3461 * Fallback to other node is possible if __GFP_THISNODE is not set. 3462 */ 3463 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3464 { 3465 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3466 3467 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3468 cachep->object_size, cachep->size, 3469 flags, nodeid); 3470 3471 return ret; 3472 } 3473 EXPORT_SYMBOL(kmem_cache_alloc_node); 3474 3475 #ifdef CONFIG_TRACING 3476 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3477 gfp_t flags, 3478 int nodeid, 3479 size_t size) 3480 { 3481 void *ret; 3482 3483 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3484 3485 trace_kmalloc_node(_RET_IP_, ret, 3486 size, cachep->size, 3487 flags, nodeid); 3488 return ret; 3489 } 3490 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3491 #endif 3492 3493 static __always_inline void * 3494 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3495 { 3496 struct kmem_cache *cachep; 3497 3498 cachep = kmalloc_slab(size, flags); 3499 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3500 return cachep; 3501 return kmem_cache_alloc_node_trace(cachep, flags, node, size); 3502 } 3503 3504 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3505 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3506 { 3507 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3508 } 3509 EXPORT_SYMBOL(__kmalloc_node); 3510 3511 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3512 int node, unsigned long caller) 3513 { 3514 return __do_kmalloc_node(size, flags, node, caller); 3515 } 3516 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3517 #else 3518 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3519 { 3520 return __do_kmalloc_node(size, flags, node, 0); 3521 } 3522 EXPORT_SYMBOL(__kmalloc_node); 3523 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ 3524 #endif /* CONFIG_NUMA */ 3525 3526 /** 3527 * __do_kmalloc - allocate memory 3528 * @size: how many bytes of memory are required. 3529 * @flags: the type of memory to allocate (see kmalloc). 3530 * @caller: function caller for debug tracking of the caller 3531 */ 3532 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3533 unsigned long caller) 3534 { 3535 struct kmem_cache *cachep; 3536 void *ret; 3537 3538 cachep = kmalloc_slab(size, flags); 3539 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3540 return cachep; 3541 ret = slab_alloc(cachep, flags, caller); 3542 3543 trace_kmalloc(caller, ret, 3544 size, cachep->size, flags); 3545 3546 return ret; 3547 } 3548 3549 3550 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3551 void *__kmalloc(size_t size, gfp_t flags) 3552 { 3553 return __do_kmalloc(size, flags, _RET_IP_); 3554 } 3555 EXPORT_SYMBOL(__kmalloc); 3556 3557 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3558 { 3559 return __do_kmalloc(size, flags, caller); 3560 } 3561 EXPORT_SYMBOL(__kmalloc_track_caller); 3562 3563 #else 3564 void *__kmalloc(size_t size, gfp_t flags) 3565 { 3566 return __do_kmalloc(size, flags, 0); 3567 } 3568 EXPORT_SYMBOL(__kmalloc); 3569 #endif 3570 3571 /** 3572 * kmem_cache_free - Deallocate an object 3573 * @cachep: The cache the allocation was from. 3574 * @objp: The previously allocated object. 3575 * 3576 * Free an object which was previously allocated from this 3577 * cache. 3578 */ 3579 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3580 { 3581 unsigned long flags; 3582 cachep = cache_from_obj(cachep, objp); 3583 if (!cachep) 3584 return; 3585 3586 local_irq_save(flags); 3587 debug_check_no_locks_freed(objp, cachep->object_size); 3588 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3589 debug_check_no_obj_freed(objp, cachep->object_size); 3590 __cache_free(cachep, objp, _RET_IP_); 3591 local_irq_restore(flags); 3592 3593 trace_kmem_cache_free(_RET_IP_, objp); 3594 } 3595 EXPORT_SYMBOL(kmem_cache_free); 3596 3597 /** 3598 * kfree - free previously allocated memory 3599 * @objp: pointer returned by kmalloc. 3600 * 3601 * If @objp is NULL, no operation is performed. 3602 * 3603 * Don't free memory not originally allocated by kmalloc() 3604 * or you will run into trouble. 3605 */ 3606 void kfree(const void *objp) 3607 { 3608 struct kmem_cache *c; 3609 unsigned long flags; 3610 3611 trace_kfree(_RET_IP_, objp); 3612 3613 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3614 return; 3615 local_irq_save(flags); 3616 kfree_debugcheck(objp); 3617 c = virt_to_cache(objp); 3618 debug_check_no_locks_freed(objp, c->object_size); 3619 3620 debug_check_no_obj_freed(objp, c->object_size); 3621 __cache_free(c, (void *)objp, _RET_IP_); 3622 local_irq_restore(flags); 3623 } 3624 EXPORT_SYMBOL(kfree); 3625 3626 /* 3627 * This initializes kmem_cache_node or resizes various caches for all nodes. 3628 */ 3629 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp) 3630 { 3631 int node; 3632 struct kmem_cache_node *n; 3633 struct array_cache *new_shared; 3634 struct alien_cache **new_alien = NULL; 3635 3636 for_each_online_node(node) { 3637 3638 if (use_alien_caches) { 3639 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 3640 if (!new_alien) 3641 goto fail; 3642 } 3643 3644 new_shared = NULL; 3645 if (cachep->shared) { 3646 new_shared = alloc_arraycache(node, 3647 cachep->shared*cachep->batchcount, 3648 0xbaadf00d, gfp); 3649 if (!new_shared) { 3650 free_alien_cache(new_alien); 3651 goto fail; 3652 } 3653 } 3654 3655 n = get_node(cachep, node); 3656 if (n) { 3657 struct array_cache *shared = n->shared; 3658 LIST_HEAD(list); 3659 3660 spin_lock_irq(&n->list_lock); 3661 3662 if (shared) 3663 free_block(cachep, shared->entry, 3664 shared->avail, node, &list); 3665 3666 n->shared = new_shared; 3667 if (!n->alien) { 3668 n->alien = new_alien; 3669 new_alien = NULL; 3670 } 3671 n->free_limit = (1 + nr_cpus_node(node)) * 3672 cachep->batchcount + cachep->num; 3673 spin_unlock_irq(&n->list_lock); 3674 slabs_destroy(cachep, &list); 3675 kfree(shared); 3676 free_alien_cache(new_alien); 3677 continue; 3678 } 3679 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 3680 if (!n) { 3681 free_alien_cache(new_alien); 3682 kfree(new_shared); 3683 goto fail; 3684 } 3685 3686 kmem_cache_node_init(n); 3687 n->next_reap = jiffies + REAPTIMEOUT_NODE + 3688 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 3689 n->shared = new_shared; 3690 n->alien = new_alien; 3691 n->free_limit = (1 + nr_cpus_node(node)) * 3692 cachep->batchcount + cachep->num; 3693 cachep->node[node] = n; 3694 } 3695 return 0; 3696 3697 fail: 3698 if (!cachep->list.next) { 3699 /* Cache is not active yet. Roll back what we did */ 3700 node--; 3701 while (node >= 0) { 3702 n = get_node(cachep, node); 3703 if (n) { 3704 kfree(n->shared); 3705 free_alien_cache(n->alien); 3706 kfree(n); 3707 cachep->node[node] = NULL; 3708 } 3709 node--; 3710 } 3711 } 3712 return -ENOMEM; 3713 } 3714 3715 struct ccupdate_struct { 3716 struct kmem_cache *cachep; 3717 struct array_cache *new[0]; 3718 }; 3719 3720 static void do_ccupdate_local(void *info) 3721 { 3722 struct ccupdate_struct *new = info; 3723 struct array_cache *old; 3724 3725 check_irq_off(); 3726 old = cpu_cache_get(new->cachep); 3727 3728 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 3729 new->new[smp_processor_id()] = old; 3730 } 3731 3732 /* Always called with the slab_mutex held */ 3733 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3734 int batchcount, int shared, gfp_t gfp) 3735 { 3736 struct ccupdate_struct *new; 3737 int i; 3738 3739 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *), 3740 gfp); 3741 if (!new) 3742 return -ENOMEM; 3743 3744 for_each_online_cpu(i) { 3745 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, 3746 batchcount, gfp); 3747 if (!new->new[i]) { 3748 for (i--; i >= 0; i--) 3749 kfree(new->new[i]); 3750 kfree(new); 3751 return -ENOMEM; 3752 } 3753 } 3754 new->cachep = cachep; 3755 3756 on_each_cpu(do_ccupdate_local, (void *)new, 1); 3757 3758 check_irq_on(); 3759 cachep->batchcount = batchcount; 3760 cachep->limit = limit; 3761 cachep->shared = shared; 3762 3763 for_each_online_cpu(i) { 3764 LIST_HEAD(list); 3765 struct array_cache *ccold = new->new[i]; 3766 int node; 3767 struct kmem_cache_node *n; 3768 3769 if (!ccold) 3770 continue; 3771 3772 node = cpu_to_mem(i); 3773 n = get_node(cachep, node); 3774 spin_lock_irq(&n->list_lock); 3775 free_block(cachep, ccold->entry, ccold->avail, node, &list); 3776 spin_unlock_irq(&n->list_lock); 3777 slabs_destroy(cachep, &list); 3778 kfree(ccold); 3779 } 3780 kfree(new); 3781 return alloc_kmem_cache_node(cachep, gfp); 3782 } 3783 3784 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3785 int batchcount, int shared, gfp_t gfp) 3786 { 3787 int ret; 3788 struct kmem_cache *c = NULL; 3789 int i = 0; 3790 3791 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3792 3793 if (slab_state < FULL) 3794 return ret; 3795 3796 if ((ret < 0) || !is_root_cache(cachep)) 3797 return ret; 3798 3799 VM_BUG_ON(!mutex_is_locked(&slab_mutex)); 3800 for_each_memcg_cache_index(i) { 3801 c = cache_from_memcg_idx(cachep, i); 3802 if (c) 3803 /* return value determined by the parent cache only */ 3804 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3805 } 3806 3807 return ret; 3808 } 3809 3810 /* Called with slab_mutex held always */ 3811 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3812 { 3813 int err; 3814 int limit = 0; 3815 int shared = 0; 3816 int batchcount = 0; 3817 3818 if (!is_root_cache(cachep)) { 3819 struct kmem_cache *root = memcg_root_cache(cachep); 3820 limit = root->limit; 3821 shared = root->shared; 3822 batchcount = root->batchcount; 3823 } 3824 3825 if (limit && shared && batchcount) 3826 goto skip_setup; 3827 /* 3828 * The head array serves three purposes: 3829 * - create a LIFO ordering, i.e. return objects that are cache-warm 3830 * - reduce the number of spinlock operations. 3831 * - reduce the number of linked list operations on the slab and 3832 * bufctl chains: array operations are cheaper. 3833 * The numbers are guessed, we should auto-tune as described by 3834 * Bonwick. 3835 */ 3836 if (cachep->size > 131072) 3837 limit = 1; 3838 else if (cachep->size > PAGE_SIZE) 3839 limit = 8; 3840 else if (cachep->size > 1024) 3841 limit = 24; 3842 else if (cachep->size > 256) 3843 limit = 54; 3844 else 3845 limit = 120; 3846 3847 /* 3848 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3849 * allocation behaviour: Most allocs on one cpu, most free operations 3850 * on another cpu. For these cases, an efficient object passing between 3851 * cpus is necessary. This is provided by a shared array. The array 3852 * replaces Bonwick's magazine layer. 3853 * On uniprocessor, it's functionally equivalent (but less efficient) 3854 * to a larger limit. Thus disabled by default. 3855 */ 3856 shared = 0; 3857 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3858 shared = 8; 3859 3860 #if DEBUG 3861 /* 3862 * With debugging enabled, large batchcount lead to excessively long 3863 * periods with disabled local interrupts. Limit the batchcount 3864 */ 3865 if (limit > 32) 3866 limit = 32; 3867 #endif 3868 batchcount = (limit + 1) / 2; 3869 skip_setup: 3870 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3871 if (err) 3872 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 3873 cachep->name, -err); 3874 return err; 3875 } 3876 3877 /* 3878 * Drain an array if it contains any elements taking the node lock only if 3879 * necessary. Note that the node listlock also protects the array_cache 3880 * if drain_array() is used on the shared array. 3881 */ 3882 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3883 struct array_cache *ac, int force, int node) 3884 { 3885 LIST_HEAD(list); 3886 int tofree; 3887 3888 if (!ac || !ac->avail) 3889 return; 3890 if (ac->touched && !force) { 3891 ac->touched = 0; 3892 } else { 3893 spin_lock_irq(&n->list_lock); 3894 if (ac->avail) { 3895 tofree = force ? ac->avail : (ac->limit + 4) / 5; 3896 if (tofree > ac->avail) 3897 tofree = (ac->avail + 1) / 2; 3898 free_block(cachep, ac->entry, tofree, node, &list); 3899 ac->avail -= tofree; 3900 memmove(ac->entry, &(ac->entry[tofree]), 3901 sizeof(void *) * ac->avail); 3902 } 3903 spin_unlock_irq(&n->list_lock); 3904 slabs_destroy(cachep, &list); 3905 } 3906 } 3907 3908 /** 3909 * cache_reap - Reclaim memory from caches. 3910 * @w: work descriptor 3911 * 3912 * Called from workqueue/eventd every few seconds. 3913 * Purpose: 3914 * - clear the per-cpu caches for this CPU. 3915 * - return freeable pages to the main free memory pool. 3916 * 3917 * If we cannot acquire the cache chain mutex then just give up - we'll try 3918 * again on the next iteration. 3919 */ 3920 static void cache_reap(struct work_struct *w) 3921 { 3922 struct kmem_cache *searchp; 3923 struct kmem_cache_node *n; 3924 int node = numa_mem_id(); 3925 struct delayed_work *work = to_delayed_work(w); 3926 3927 if (!mutex_trylock(&slab_mutex)) 3928 /* Give up. Setup the next iteration. */ 3929 goto out; 3930 3931 list_for_each_entry(searchp, &slab_caches, list) { 3932 check_irq_on(); 3933 3934 /* 3935 * We only take the node lock if absolutely necessary and we 3936 * have established with reasonable certainty that 3937 * we can do some work if the lock was obtained. 3938 */ 3939 n = get_node(searchp, node); 3940 3941 reap_alien(searchp, n); 3942 3943 drain_array(searchp, n, cpu_cache_get(searchp), 0, node); 3944 3945 /* 3946 * These are racy checks but it does not matter 3947 * if we skip one check or scan twice. 3948 */ 3949 if (time_after(n->next_reap, jiffies)) 3950 goto next; 3951 3952 n->next_reap = jiffies + REAPTIMEOUT_NODE; 3953 3954 drain_array(searchp, n, n->shared, 0, node); 3955 3956 if (n->free_touched) 3957 n->free_touched = 0; 3958 else { 3959 int freed; 3960 3961 freed = drain_freelist(searchp, n, (n->free_limit + 3962 5 * searchp->num - 1) / (5 * searchp->num)); 3963 STATS_ADD_REAPED(searchp, freed); 3964 } 3965 next: 3966 cond_resched(); 3967 } 3968 check_irq_on(); 3969 mutex_unlock(&slab_mutex); 3970 next_reap_node(); 3971 out: 3972 /* Set up the next iteration */ 3973 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 3974 } 3975 3976 #ifdef CONFIG_SLABINFO 3977 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 3978 { 3979 struct page *page; 3980 unsigned long active_objs; 3981 unsigned long num_objs; 3982 unsigned long active_slabs = 0; 3983 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 3984 const char *name; 3985 char *error = NULL; 3986 int node; 3987 struct kmem_cache_node *n; 3988 3989 active_objs = 0; 3990 num_slabs = 0; 3991 for_each_kmem_cache_node(cachep, node, n) { 3992 3993 check_irq_on(); 3994 spin_lock_irq(&n->list_lock); 3995 3996 list_for_each_entry(page, &n->slabs_full, lru) { 3997 if (page->active != cachep->num && !error) 3998 error = "slabs_full accounting error"; 3999 active_objs += cachep->num; 4000 active_slabs++; 4001 } 4002 list_for_each_entry(page, &n->slabs_partial, lru) { 4003 if (page->active == cachep->num && !error) 4004 error = "slabs_partial accounting error"; 4005 if (!page->active && !error) 4006 error = "slabs_partial accounting error"; 4007 active_objs += page->active; 4008 active_slabs++; 4009 } 4010 list_for_each_entry(page, &n->slabs_free, lru) { 4011 if (page->active && !error) 4012 error = "slabs_free accounting error"; 4013 num_slabs++; 4014 } 4015 free_objects += n->free_objects; 4016 if (n->shared) 4017 shared_avail += n->shared->avail; 4018 4019 spin_unlock_irq(&n->list_lock); 4020 } 4021 num_slabs += active_slabs; 4022 num_objs = num_slabs * cachep->num; 4023 if (num_objs - active_objs != free_objects && !error) 4024 error = "free_objects accounting error"; 4025 4026 name = cachep->name; 4027 if (error) 4028 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 4029 4030 sinfo->active_objs = active_objs; 4031 sinfo->num_objs = num_objs; 4032 sinfo->active_slabs = active_slabs; 4033 sinfo->num_slabs = num_slabs; 4034 sinfo->shared_avail = shared_avail; 4035 sinfo->limit = cachep->limit; 4036 sinfo->batchcount = cachep->batchcount; 4037 sinfo->shared = cachep->shared; 4038 sinfo->objects_per_slab = cachep->num; 4039 sinfo->cache_order = cachep->gfporder; 4040 } 4041 4042 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4043 { 4044 #if STATS 4045 { /* node stats */ 4046 unsigned long high = cachep->high_mark; 4047 unsigned long allocs = cachep->num_allocations; 4048 unsigned long grown = cachep->grown; 4049 unsigned long reaped = cachep->reaped; 4050 unsigned long errors = cachep->errors; 4051 unsigned long max_freeable = cachep->max_freeable; 4052 unsigned long node_allocs = cachep->node_allocs; 4053 unsigned long node_frees = cachep->node_frees; 4054 unsigned long overflows = cachep->node_overflow; 4055 4056 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " 4057 "%4lu %4lu %4lu %4lu %4lu", 4058 allocs, high, grown, 4059 reaped, errors, max_freeable, node_allocs, 4060 node_frees, overflows); 4061 } 4062 /* cpu stats */ 4063 { 4064 unsigned long allochit = atomic_read(&cachep->allochit); 4065 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4066 unsigned long freehit = atomic_read(&cachep->freehit); 4067 unsigned long freemiss = atomic_read(&cachep->freemiss); 4068 4069 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4070 allochit, allocmiss, freehit, freemiss); 4071 } 4072 #endif 4073 } 4074 4075 #define MAX_SLABINFO_WRITE 128 4076 /** 4077 * slabinfo_write - Tuning for the slab allocator 4078 * @file: unused 4079 * @buffer: user buffer 4080 * @count: data length 4081 * @ppos: unused 4082 */ 4083 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4084 size_t count, loff_t *ppos) 4085 { 4086 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4087 int limit, batchcount, shared, res; 4088 struct kmem_cache *cachep; 4089 4090 if (count > MAX_SLABINFO_WRITE) 4091 return -EINVAL; 4092 if (copy_from_user(&kbuf, buffer, count)) 4093 return -EFAULT; 4094 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4095 4096 tmp = strchr(kbuf, ' '); 4097 if (!tmp) 4098 return -EINVAL; 4099 *tmp = '\0'; 4100 tmp++; 4101 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4102 return -EINVAL; 4103 4104 /* Find the cache in the chain of caches. */ 4105 mutex_lock(&slab_mutex); 4106 res = -EINVAL; 4107 list_for_each_entry(cachep, &slab_caches, list) { 4108 if (!strcmp(cachep->name, kbuf)) { 4109 if (limit < 1 || batchcount < 1 || 4110 batchcount > limit || shared < 0) { 4111 res = 0; 4112 } else { 4113 res = do_tune_cpucache(cachep, limit, 4114 batchcount, shared, 4115 GFP_KERNEL); 4116 } 4117 break; 4118 } 4119 } 4120 mutex_unlock(&slab_mutex); 4121 if (res >= 0) 4122 res = count; 4123 return res; 4124 } 4125 4126 #ifdef CONFIG_DEBUG_SLAB_LEAK 4127 4128 static void *leaks_start(struct seq_file *m, loff_t *pos) 4129 { 4130 mutex_lock(&slab_mutex); 4131 return seq_list_start(&slab_caches, *pos); 4132 } 4133 4134 static inline int add_caller(unsigned long *n, unsigned long v) 4135 { 4136 unsigned long *p; 4137 int l; 4138 if (!v) 4139 return 1; 4140 l = n[1]; 4141 p = n + 2; 4142 while (l) { 4143 int i = l/2; 4144 unsigned long *q = p + 2 * i; 4145 if (*q == v) { 4146 q[1]++; 4147 return 1; 4148 } 4149 if (*q > v) { 4150 l = i; 4151 } else { 4152 p = q + 2; 4153 l -= i + 1; 4154 } 4155 } 4156 if (++n[1] == n[0]) 4157 return 0; 4158 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4159 p[0] = v; 4160 p[1] = 1; 4161 return 1; 4162 } 4163 4164 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4165 struct page *page) 4166 { 4167 void *p; 4168 int i; 4169 4170 if (n[0] == n[1]) 4171 return; 4172 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4173 if (get_obj_status(page, i) != OBJECT_ACTIVE) 4174 continue; 4175 4176 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4177 return; 4178 } 4179 } 4180 4181 static void show_symbol(struct seq_file *m, unsigned long address) 4182 { 4183 #ifdef CONFIG_KALLSYMS 4184 unsigned long offset, size; 4185 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4186 4187 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4188 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4189 if (modname[0]) 4190 seq_printf(m, " [%s]", modname); 4191 return; 4192 } 4193 #endif 4194 seq_printf(m, "%p", (void *)address); 4195 } 4196 4197 static int leaks_show(struct seq_file *m, void *p) 4198 { 4199 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4200 struct page *page; 4201 struct kmem_cache_node *n; 4202 const char *name; 4203 unsigned long *x = m->private; 4204 int node; 4205 int i; 4206 4207 if (!(cachep->flags & SLAB_STORE_USER)) 4208 return 0; 4209 if (!(cachep->flags & SLAB_RED_ZONE)) 4210 return 0; 4211 4212 /* OK, we can do it */ 4213 4214 x[1] = 0; 4215 4216 for_each_kmem_cache_node(cachep, node, n) { 4217 4218 check_irq_on(); 4219 spin_lock_irq(&n->list_lock); 4220 4221 list_for_each_entry(page, &n->slabs_full, lru) 4222 handle_slab(x, cachep, page); 4223 list_for_each_entry(page, &n->slabs_partial, lru) 4224 handle_slab(x, cachep, page); 4225 spin_unlock_irq(&n->list_lock); 4226 } 4227 name = cachep->name; 4228 if (x[0] == x[1]) { 4229 /* Increase the buffer size */ 4230 mutex_unlock(&slab_mutex); 4231 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4232 if (!m->private) { 4233 /* Too bad, we are really out */ 4234 m->private = x; 4235 mutex_lock(&slab_mutex); 4236 return -ENOMEM; 4237 } 4238 *(unsigned long *)m->private = x[0] * 2; 4239 kfree(x); 4240 mutex_lock(&slab_mutex); 4241 /* Now make sure this entry will be retried */ 4242 m->count = m->size; 4243 return 0; 4244 } 4245 for (i = 0; i < x[1]; i++) { 4246 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4247 show_symbol(m, x[2*i+2]); 4248 seq_putc(m, '\n'); 4249 } 4250 4251 return 0; 4252 } 4253 4254 static const struct seq_operations slabstats_op = { 4255 .start = leaks_start, 4256 .next = slab_next, 4257 .stop = slab_stop, 4258 .show = leaks_show, 4259 }; 4260 4261 static int slabstats_open(struct inode *inode, struct file *file) 4262 { 4263 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); 4264 int ret = -ENOMEM; 4265 if (n) { 4266 ret = seq_open(file, &slabstats_op); 4267 if (!ret) { 4268 struct seq_file *m = file->private_data; 4269 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4270 m->private = n; 4271 n = NULL; 4272 } 4273 kfree(n); 4274 } 4275 return ret; 4276 } 4277 4278 static const struct file_operations proc_slabstats_operations = { 4279 .open = slabstats_open, 4280 .read = seq_read, 4281 .llseek = seq_lseek, 4282 .release = seq_release_private, 4283 }; 4284 #endif 4285 4286 static int __init slab_proc_init(void) 4287 { 4288 #ifdef CONFIG_DEBUG_SLAB_LEAK 4289 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4290 #endif 4291 return 0; 4292 } 4293 module_init(slab_proc_init); 4294 #endif 4295 4296 /** 4297 * ksize - get the actual amount of memory allocated for a given object 4298 * @objp: Pointer to the object 4299 * 4300 * kmalloc may internally round up allocations and return more memory 4301 * than requested. ksize() can be used to determine the actual amount of 4302 * memory allocated. The caller may use this additional memory, even though 4303 * a smaller amount of memory was initially specified with the kmalloc call. 4304 * The caller must guarantee that objp points to a valid object previously 4305 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4306 * must not be freed during the duration of the call. 4307 */ 4308 size_t ksize(const void *objp) 4309 { 4310 BUG_ON(!objp); 4311 if (unlikely(objp == ZERO_SIZE_PTR)) 4312 return 0; 4313 4314 return virt_to_cache(objp)->object_size; 4315 } 4316 EXPORT_SYMBOL(ksize); 4317