1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/kfence.h> 104 #include <linux/cpu.h> 105 #include <linux/sysctl.h> 106 #include <linux/module.h> 107 #include <linux/rcupdate.h> 108 #include <linux/string.h> 109 #include <linux/uaccess.h> 110 #include <linux/nodemask.h> 111 #include <linux/kmemleak.h> 112 #include <linux/mempolicy.h> 113 #include <linux/mutex.h> 114 #include <linux/fault-inject.h> 115 #include <linux/rtmutex.h> 116 #include <linux/reciprocal_div.h> 117 #include <linux/debugobjects.h> 118 #include <linux/memory.h> 119 #include <linux/prefetch.h> 120 #include <linux/sched/task_stack.h> 121 122 #include <net/sock.h> 123 124 #include <asm/cacheflush.h> 125 #include <asm/tlbflush.h> 126 #include <asm/page.h> 127 128 #include <trace/events/kmem.h> 129 130 #include "internal.h" 131 132 #include "slab.h" 133 134 /* 135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 136 * 0 for faster, smaller code (especially in the critical paths). 137 * 138 * STATS - 1 to collect stats for /proc/slabinfo. 139 * 0 for faster, smaller code (especially in the critical paths). 140 * 141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 142 */ 143 144 #ifdef CONFIG_DEBUG_SLAB 145 #define DEBUG 1 146 #define STATS 1 147 #define FORCED_DEBUG 1 148 #else 149 #define DEBUG 0 150 #define STATS 0 151 #define FORCED_DEBUG 0 152 #endif 153 154 /* Shouldn't this be in a header file somewhere? */ 155 #define BYTES_PER_WORD sizeof(void *) 156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 157 158 #ifndef ARCH_KMALLOC_FLAGS 159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 160 #endif 161 162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 164 165 #if FREELIST_BYTE_INDEX 166 typedef unsigned char freelist_idx_t; 167 #else 168 typedef unsigned short freelist_idx_t; 169 #endif 170 171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 172 173 /* 174 * struct array_cache 175 * 176 * Purpose: 177 * - LIFO ordering, to hand out cache-warm objects from _alloc 178 * - reduce the number of linked list operations 179 * - reduce spinlock operations 180 * 181 * The limit is stored in the per-cpu structure to reduce the data cache 182 * footprint. 183 * 184 */ 185 struct array_cache { 186 unsigned int avail; 187 unsigned int limit; 188 unsigned int batchcount; 189 unsigned int touched; 190 void *entry[]; /* 191 * Must have this definition in here for the proper 192 * alignment of array_cache. Also simplifies accessing 193 * the entries. 194 */ 195 }; 196 197 struct alien_cache { 198 spinlock_t lock; 199 struct array_cache ac; 200 }; 201 202 /* 203 * Need this for bootstrapping a per node allocator. 204 */ 205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 207 #define CACHE_CACHE 0 208 #define SIZE_NODE (MAX_NUMNODES) 209 210 static int drain_freelist(struct kmem_cache *cache, 211 struct kmem_cache_node *n, int tofree); 212 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 213 int node, struct list_head *list); 214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 216 static void cache_reap(struct work_struct *unused); 217 218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 219 void **list); 220 static inline void fixup_slab_list(struct kmem_cache *cachep, 221 struct kmem_cache_node *n, struct slab *slab, 222 void **list); 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 raw_spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnecessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long *) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 /* 366 * Do not go above this order unless 0 objects fit into the slab or 367 * overridden on the command line. 368 */ 369 #define SLAB_MAX_ORDER_HI 1 370 #define SLAB_MAX_ORDER_LO 0 371 static int slab_max_order = SLAB_MAX_ORDER_LO; 372 static bool slab_max_order_set __initdata; 373 374 static inline void *index_to_obj(struct kmem_cache *cache, 375 const struct slab *slab, unsigned int idx) 376 { 377 return slab->s_mem + cache->size * idx; 378 } 379 380 #define BOOT_CPUCACHE_ENTRIES 1 381 /* internal cache of cache description objs */ 382 static struct kmem_cache kmem_cache_boot = { 383 .batchcount = 1, 384 .limit = BOOT_CPUCACHE_ENTRIES, 385 .shared = 1, 386 .size = sizeof(struct kmem_cache), 387 .name = "kmem_cache", 388 }; 389 390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 391 392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 393 { 394 return this_cpu_ptr(cachep->cpu_cache); 395 } 396 397 /* 398 * Calculate the number of objects and left-over bytes for a given buffer size. 399 */ 400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 401 slab_flags_t flags, size_t *left_over) 402 { 403 unsigned int num; 404 size_t slab_size = PAGE_SIZE << gfporder; 405 406 /* 407 * The slab management structure can be either off the slab or 408 * on it. For the latter case, the memory allocated for a 409 * slab is used for: 410 * 411 * - @buffer_size bytes for each object 412 * - One freelist_idx_t for each object 413 * 414 * We don't need to consider alignment of freelist because 415 * freelist will be at the end of slab page. The objects will be 416 * at the correct alignment. 417 * 418 * If the slab management structure is off the slab, then the 419 * alignment will already be calculated into the size. Because 420 * the slabs are all pages aligned, the objects will be at the 421 * correct alignment when allocated. 422 */ 423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 424 num = slab_size / buffer_size; 425 *left_over = slab_size % buffer_size; 426 } else { 427 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 428 *left_over = slab_size % 429 (buffer_size + sizeof(freelist_idx_t)); 430 } 431 432 return num; 433 } 434 435 #if DEBUG 436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 437 438 static void __slab_error(const char *function, struct kmem_cache *cachep, 439 char *msg) 440 { 441 pr_err("slab error in %s(): cache `%s': %s\n", 442 function, cachep->name, msg); 443 dump_stack(); 444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 445 } 446 #endif 447 448 /* 449 * By default on NUMA we use alien caches to stage the freeing of 450 * objects allocated from other nodes. This causes massive memory 451 * inefficiencies when using fake NUMA setup to split memory into a 452 * large number of small nodes, so it can be disabled on the command 453 * line 454 */ 455 456 static int use_alien_caches __read_mostly = 1; 457 static int __init noaliencache_setup(char *s) 458 { 459 use_alien_caches = 0; 460 return 1; 461 } 462 __setup("noaliencache", noaliencache_setup); 463 464 static int __init slab_max_order_setup(char *str) 465 { 466 get_option(&str, &slab_max_order); 467 slab_max_order = slab_max_order < 0 ? 0 : 468 min(slab_max_order, MAX_ORDER); 469 slab_max_order_set = true; 470 471 return 1; 472 } 473 __setup("slab_max_order=", slab_max_order_setup); 474 475 #ifdef CONFIG_NUMA 476 /* 477 * Special reaping functions for NUMA systems called from cache_reap(). 478 * These take care of doing round robin flushing of alien caches (containing 479 * objects freed on different nodes from which they were allocated) and the 480 * flushing of remote pcps by calling drain_node_pages. 481 */ 482 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 483 484 static void init_reap_node(int cpu) 485 { 486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 487 node_online_map); 488 } 489 490 static void next_reap_node(void) 491 { 492 int node = __this_cpu_read(slab_reap_node); 493 494 node = next_node_in(node, node_online_map); 495 __this_cpu_write(slab_reap_node, node); 496 } 497 498 #else 499 #define init_reap_node(cpu) do { } while (0) 500 #define next_reap_node(void) do { } while (0) 501 #endif 502 503 /* 504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 505 * via the workqueue/eventd. 506 * Add the CPU number into the expiration time to minimize the possibility of 507 * the CPUs getting into lockstep and contending for the global cache chain 508 * lock. 509 */ 510 static void start_cpu_timer(int cpu) 511 { 512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 513 514 if (reap_work->work.func == NULL) { 515 init_reap_node(cpu); 516 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 517 schedule_delayed_work_on(cpu, reap_work, 518 __round_jiffies_relative(HZ, cpu)); 519 } 520 } 521 522 static void init_arraycache(struct array_cache *ac, int limit, int batch) 523 { 524 if (ac) { 525 ac->avail = 0; 526 ac->limit = limit; 527 ac->batchcount = batch; 528 ac->touched = 0; 529 } 530 } 531 532 static struct array_cache *alloc_arraycache(int node, int entries, 533 int batchcount, gfp_t gfp) 534 { 535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 536 struct array_cache *ac = NULL; 537 538 ac = kmalloc_node(memsize, gfp, node); 539 /* 540 * The array_cache structures contain pointers to free object. 541 * However, when such objects are allocated or transferred to another 542 * cache the pointers are not cleared and they could be counted as 543 * valid references during a kmemleak scan. Therefore, kmemleak must 544 * not scan such objects. 545 */ 546 kmemleak_no_scan(ac); 547 init_arraycache(ac, entries, batchcount); 548 return ac; 549 } 550 551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 552 struct slab *slab, void *objp) 553 { 554 struct kmem_cache_node *n; 555 int slab_node; 556 LIST_HEAD(list); 557 558 slab_node = slab_nid(slab); 559 n = get_node(cachep, slab_node); 560 561 raw_spin_lock(&n->list_lock); 562 free_block(cachep, &objp, 1, slab_node, &list); 563 raw_spin_unlock(&n->list_lock); 564 565 slabs_destroy(cachep, &list); 566 } 567 568 /* 569 * Transfer objects in one arraycache to another. 570 * Locking must be handled by the caller. 571 * 572 * Return the number of entries transferred. 573 */ 574 static int transfer_objects(struct array_cache *to, 575 struct array_cache *from, unsigned int max) 576 { 577 /* Figure out how many entries to transfer */ 578 int nr = min3(from->avail, max, to->limit - to->avail); 579 580 if (!nr) 581 return 0; 582 583 memcpy(to->entry + to->avail, from->entry + from->avail - nr, 584 sizeof(void *) *nr); 585 586 from->avail -= nr; 587 to->avail += nr; 588 return nr; 589 } 590 591 /* &alien->lock must be held by alien callers. */ 592 static __always_inline void __free_one(struct array_cache *ac, void *objp) 593 { 594 /* Avoid trivial double-free. */ 595 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 596 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) 597 return; 598 ac->entry[ac->avail++] = objp; 599 } 600 601 #ifndef CONFIG_NUMA 602 603 #define drain_alien_cache(cachep, alien) do { } while (0) 604 #define reap_alien(cachep, n) do { } while (0) 605 606 static inline struct alien_cache **alloc_alien_cache(int node, 607 int limit, gfp_t gfp) 608 { 609 return NULL; 610 } 611 612 static inline void free_alien_cache(struct alien_cache **ac_ptr) 613 { 614 } 615 616 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 617 { 618 return 0; 619 } 620 621 static inline gfp_t gfp_exact_node(gfp_t flags) 622 { 623 return flags & ~__GFP_NOFAIL; 624 } 625 626 #else /* CONFIG_NUMA */ 627 628 static struct alien_cache *__alloc_alien_cache(int node, int entries, 629 int batch, gfp_t gfp) 630 { 631 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 632 struct alien_cache *alc = NULL; 633 634 alc = kmalloc_node(memsize, gfp, node); 635 if (alc) { 636 kmemleak_no_scan(alc); 637 init_arraycache(&alc->ac, entries, batch); 638 spin_lock_init(&alc->lock); 639 } 640 return alc; 641 } 642 643 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 644 { 645 struct alien_cache **alc_ptr; 646 int i; 647 648 if (limit > 1) 649 limit = 12; 650 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 651 if (!alc_ptr) 652 return NULL; 653 654 for_each_node(i) { 655 if (i == node || !node_online(i)) 656 continue; 657 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 658 if (!alc_ptr[i]) { 659 for (i--; i >= 0; i--) 660 kfree(alc_ptr[i]); 661 kfree(alc_ptr); 662 return NULL; 663 } 664 } 665 return alc_ptr; 666 } 667 668 static void free_alien_cache(struct alien_cache **alc_ptr) 669 { 670 int i; 671 672 if (!alc_ptr) 673 return; 674 for_each_node(i) 675 kfree(alc_ptr[i]); 676 kfree(alc_ptr); 677 } 678 679 static void __drain_alien_cache(struct kmem_cache *cachep, 680 struct array_cache *ac, int node, 681 struct list_head *list) 682 { 683 struct kmem_cache_node *n = get_node(cachep, node); 684 685 if (ac->avail) { 686 raw_spin_lock(&n->list_lock); 687 /* 688 * Stuff objects into the remote nodes shared array first. 689 * That way we could avoid the overhead of putting the objects 690 * into the free lists and getting them back later. 691 */ 692 if (n->shared) 693 transfer_objects(n->shared, ac, ac->limit); 694 695 free_block(cachep, ac->entry, ac->avail, node, list); 696 ac->avail = 0; 697 raw_spin_unlock(&n->list_lock); 698 } 699 } 700 701 /* 702 * Called from cache_reap() to regularly drain alien caches round robin. 703 */ 704 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 705 { 706 int node = __this_cpu_read(slab_reap_node); 707 708 if (n->alien) { 709 struct alien_cache *alc = n->alien[node]; 710 struct array_cache *ac; 711 712 if (alc) { 713 ac = &alc->ac; 714 if (ac->avail && spin_trylock_irq(&alc->lock)) { 715 LIST_HEAD(list); 716 717 __drain_alien_cache(cachep, ac, node, &list); 718 spin_unlock_irq(&alc->lock); 719 slabs_destroy(cachep, &list); 720 } 721 } 722 } 723 } 724 725 static void drain_alien_cache(struct kmem_cache *cachep, 726 struct alien_cache **alien) 727 { 728 int i = 0; 729 struct alien_cache *alc; 730 struct array_cache *ac; 731 unsigned long flags; 732 733 for_each_online_node(i) { 734 alc = alien[i]; 735 if (alc) { 736 LIST_HEAD(list); 737 738 ac = &alc->ac; 739 spin_lock_irqsave(&alc->lock, flags); 740 __drain_alien_cache(cachep, ac, i, &list); 741 spin_unlock_irqrestore(&alc->lock, flags); 742 slabs_destroy(cachep, &list); 743 } 744 } 745 } 746 747 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 748 int node, int slab_node) 749 { 750 struct kmem_cache_node *n; 751 struct alien_cache *alien = NULL; 752 struct array_cache *ac; 753 LIST_HEAD(list); 754 755 n = get_node(cachep, node); 756 STATS_INC_NODEFREES(cachep); 757 if (n->alien && n->alien[slab_node]) { 758 alien = n->alien[slab_node]; 759 ac = &alien->ac; 760 spin_lock(&alien->lock); 761 if (unlikely(ac->avail == ac->limit)) { 762 STATS_INC_ACOVERFLOW(cachep); 763 __drain_alien_cache(cachep, ac, slab_node, &list); 764 } 765 __free_one(ac, objp); 766 spin_unlock(&alien->lock); 767 slabs_destroy(cachep, &list); 768 } else { 769 n = get_node(cachep, slab_node); 770 raw_spin_lock(&n->list_lock); 771 free_block(cachep, &objp, 1, slab_node, &list); 772 raw_spin_unlock(&n->list_lock); 773 slabs_destroy(cachep, &list); 774 } 775 return 1; 776 } 777 778 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 779 { 780 int slab_node = slab_nid(virt_to_slab(objp)); 781 int node = numa_mem_id(); 782 /* 783 * Make sure we are not freeing an object from another node to the array 784 * cache on this cpu. 785 */ 786 if (likely(node == slab_node)) 787 return 0; 788 789 return __cache_free_alien(cachep, objp, node, slab_node); 790 } 791 792 /* 793 * Construct gfp mask to allocate from a specific node but do not reclaim or 794 * warn about failures. 795 */ 796 static inline gfp_t gfp_exact_node(gfp_t flags) 797 { 798 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 799 } 800 #endif 801 802 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 803 { 804 struct kmem_cache_node *n; 805 806 /* 807 * Set up the kmem_cache_node for cpu before we can 808 * begin anything. Make sure some other cpu on this 809 * node has not already allocated this 810 */ 811 n = get_node(cachep, node); 812 if (n) { 813 raw_spin_lock_irq(&n->list_lock); 814 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 815 cachep->num; 816 raw_spin_unlock_irq(&n->list_lock); 817 818 return 0; 819 } 820 821 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 822 if (!n) 823 return -ENOMEM; 824 825 kmem_cache_node_init(n); 826 n->next_reap = jiffies + REAPTIMEOUT_NODE + 827 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 828 829 n->free_limit = 830 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 831 832 /* 833 * The kmem_cache_nodes don't come and go as CPUs 834 * come and go. slab_mutex provides sufficient 835 * protection here. 836 */ 837 cachep->node[node] = n; 838 839 return 0; 840 } 841 842 #if defined(CONFIG_NUMA) || defined(CONFIG_SMP) 843 /* 844 * Allocates and initializes node for a node on each slab cache, used for 845 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 846 * will be allocated off-node since memory is not yet online for the new node. 847 * When hotplugging memory or a cpu, existing nodes are not replaced if 848 * already in use. 849 * 850 * Must hold slab_mutex. 851 */ 852 static int init_cache_node_node(int node) 853 { 854 int ret; 855 struct kmem_cache *cachep; 856 857 list_for_each_entry(cachep, &slab_caches, list) { 858 ret = init_cache_node(cachep, node, GFP_KERNEL); 859 if (ret) 860 return ret; 861 } 862 863 return 0; 864 } 865 #endif 866 867 static int setup_kmem_cache_node(struct kmem_cache *cachep, 868 int node, gfp_t gfp, bool force_change) 869 { 870 int ret = -ENOMEM; 871 struct kmem_cache_node *n; 872 struct array_cache *old_shared = NULL; 873 struct array_cache *new_shared = NULL; 874 struct alien_cache **new_alien = NULL; 875 LIST_HEAD(list); 876 877 if (use_alien_caches) { 878 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 879 if (!new_alien) 880 goto fail; 881 } 882 883 if (cachep->shared) { 884 new_shared = alloc_arraycache(node, 885 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 886 if (!new_shared) 887 goto fail; 888 } 889 890 ret = init_cache_node(cachep, node, gfp); 891 if (ret) 892 goto fail; 893 894 n = get_node(cachep, node); 895 raw_spin_lock_irq(&n->list_lock); 896 if (n->shared && force_change) { 897 free_block(cachep, n->shared->entry, 898 n->shared->avail, node, &list); 899 n->shared->avail = 0; 900 } 901 902 if (!n->shared || force_change) { 903 old_shared = n->shared; 904 n->shared = new_shared; 905 new_shared = NULL; 906 } 907 908 if (!n->alien) { 909 n->alien = new_alien; 910 new_alien = NULL; 911 } 912 913 raw_spin_unlock_irq(&n->list_lock); 914 slabs_destroy(cachep, &list); 915 916 /* 917 * To protect lockless access to n->shared during irq disabled context. 918 * If n->shared isn't NULL in irq disabled context, accessing to it is 919 * guaranteed to be valid until irq is re-enabled, because it will be 920 * freed after synchronize_rcu(). 921 */ 922 if (old_shared && force_change) 923 synchronize_rcu(); 924 925 fail: 926 kfree(old_shared); 927 kfree(new_shared); 928 free_alien_cache(new_alien); 929 930 return ret; 931 } 932 933 #ifdef CONFIG_SMP 934 935 static void cpuup_canceled(long cpu) 936 { 937 struct kmem_cache *cachep; 938 struct kmem_cache_node *n = NULL; 939 int node = cpu_to_mem(cpu); 940 const struct cpumask *mask = cpumask_of_node(node); 941 942 list_for_each_entry(cachep, &slab_caches, list) { 943 struct array_cache *nc; 944 struct array_cache *shared; 945 struct alien_cache **alien; 946 LIST_HEAD(list); 947 948 n = get_node(cachep, node); 949 if (!n) 950 continue; 951 952 raw_spin_lock_irq(&n->list_lock); 953 954 /* Free limit for this kmem_cache_node */ 955 n->free_limit -= cachep->batchcount; 956 957 /* cpu is dead; no one can alloc from it. */ 958 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 959 free_block(cachep, nc->entry, nc->avail, node, &list); 960 nc->avail = 0; 961 962 if (!cpumask_empty(mask)) { 963 raw_spin_unlock_irq(&n->list_lock); 964 goto free_slab; 965 } 966 967 shared = n->shared; 968 if (shared) { 969 free_block(cachep, shared->entry, 970 shared->avail, node, &list); 971 n->shared = NULL; 972 } 973 974 alien = n->alien; 975 n->alien = NULL; 976 977 raw_spin_unlock_irq(&n->list_lock); 978 979 kfree(shared); 980 if (alien) { 981 drain_alien_cache(cachep, alien); 982 free_alien_cache(alien); 983 } 984 985 free_slab: 986 slabs_destroy(cachep, &list); 987 } 988 /* 989 * In the previous loop, all the objects were freed to 990 * the respective cache's slabs, now we can go ahead and 991 * shrink each nodelist to its limit. 992 */ 993 list_for_each_entry(cachep, &slab_caches, list) { 994 n = get_node(cachep, node); 995 if (!n) 996 continue; 997 drain_freelist(cachep, n, INT_MAX); 998 } 999 } 1000 1001 static int cpuup_prepare(long cpu) 1002 { 1003 struct kmem_cache *cachep; 1004 int node = cpu_to_mem(cpu); 1005 int err; 1006 1007 /* 1008 * We need to do this right in the beginning since 1009 * alloc_arraycache's are going to use this list. 1010 * kmalloc_node allows us to add the slab to the right 1011 * kmem_cache_node and not this cpu's kmem_cache_node 1012 */ 1013 err = init_cache_node_node(node); 1014 if (err < 0) 1015 goto bad; 1016 1017 /* 1018 * Now we can go ahead with allocating the shared arrays and 1019 * array caches 1020 */ 1021 list_for_each_entry(cachep, &slab_caches, list) { 1022 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1023 if (err) 1024 goto bad; 1025 } 1026 1027 return 0; 1028 bad: 1029 cpuup_canceled(cpu); 1030 return -ENOMEM; 1031 } 1032 1033 int slab_prepare_cpu(unsigned int cpu) 1034 { 1035 int err; 1036 1037 mutex_lock(&slab_mutex); 1038 err = cpuup_prepare(cpu); 1039 mutex_unlock(&slab_mutex); 1040 return err; 1041 } 1042 1043 /* 1044 * This is called for a failed online attempt and for a successful 1045 * offline. 1046 * 1047 * Even if all the cpus of a node are down, we don't free the 1048 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and 1049 * a kmalloc allocation from another cpu for memory from the node of 1050 * the cpu going down. The kmem_cache_node structure is usually allocated from 1051 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1052 */ 1053 int slab_dead_cpu(unsigned int cpu) 1054 { 1055 mutex_lock(&slab_mutex); 1056 cpuup_canceled(cpu); 1057 mutex_unlock(&slab_mutex); 1058 return 0; 1059 } 1060 #endif 1061 1062 static int slab_online_cpu(unsigned int cpu) 1063 { 1064 start_cpu_timer(cpu); 1065 return 0; 1066 } 1067 1068 static int slab_offline_cpu(unsigned int cpu) 1069 { 1070 /* 1071 * Shutdown cache reaper. Note that the slab_mutex is held so 1072 * that if cache_reap() is invoked it cannot do anything 1073 * expensive but will only modify reap_work and reschedule the 1074 * timer. 1075 */ 1076 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1077 /* Now the cache_reaper is guaranteed to be not running. */ 1078 per_cpu(slab_reap_work, cpu).work.func = NULL; 1079 return 0; 1080 } 1081 1082 #if defined(CONFIG_NUMA) 1083 /* 1084 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1085 * Returns -EBUSY if all objects cannot be drained so that the node is not 1086 * removed. 1087 * 1088 * Must hold slab_mutex. 1089 */ 1090 static int __meminit drain_cache_node_node(int node) 1091 { 1092 struct kmem_cache *cachep; 1093 int ret = 0; 1094 1095 list_for_each_entry(cachep, &slab_caches, list) { 1096 struct kmem_cache_node *n; 1097 1098 n = get_node(cachep, node); 1099 if (!n) 1100 continue; 1101 1102 drain_freelist(cachep, n, INT_MAX); 1103 1104 if (!list_empty(&n->slabs_full) || 1105 !list_empty(&n->slabs_partial)) { 1106 ret = -EBUSY; 1107 break; 1108 } 1109 } 1110 return ret; 1111 } 1112 1113 static int __meminit slab_memory_callback(struct notifier_block *self, 1114 unsigned long action, void *arg) 1115 { 1116 struct memory_notify *mnb = arg; 1117 int ret = 0; 1118 int nid; 1119 1120 nid = mnb->status_change_nid; 1121 if (nid < 0) 1122 goto out; 1123 1124 switch (action) { 1125 case MEM_GOING_ONLINE: 1126 mutex_lock(&slab_mutex); 1127 ret = init_cache_node_node(nid); 1128 mutex_unlock(&slab_mutex); 1129 break; 1130 case MEM_GOING_OFFLINE: 1131 mutex_lock(&slab_mutex); 1132 ret = drain_cache_node_node(nid); 1133 mutex_unlock(&slab_mutex); 1134 break; 1135 case MEM_ONLINE: 1136 case MEM_OFFLINE: 1137 case MEM_CANCEL_ONLINE: 1138 case MEM_CANCEL_OFFLINE: 1139 break; 1140 } 1141 out: 1142 return notifier_from_errno(ret); 1143 } 1144 #endif /* CONFIG_NUMA */ 1145 1146 /* 1147 * swap the static kmem_cache_node with kmalloced memory 1148 */ 1149 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1150 int nodeid) 1151 { 1152 struct kmem_cache_node *ptr; 1153 1154 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1155 BUG_ON(!ptr); 1156 1157 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1158 /* 1159 * Do not assume that spinlocks can be initialized via memcpy: 1160 */ 1161 raw_spin_lock_init(&ptr->list_lock); 1162 1163 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1164 cachep->node[nodeid] = ptr; 1165 } 1166 1167 /* 1168 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1169 * size of kmem_cache_node. 1170 */ 1171 static void __init set_up_node(struct kmem_cache *cachep, int index) 1172 { 1173 int node; 1174 1175 for_each_online_node(node) { 1176 cachep->node[node] = &init_kmem_cache_node[index + node]; 1177 cachep->node[node]->next_reap = jiffies + 1178 REAPTIMEOUT_NODE + 1179 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1180 } 1181 } 1182 1183 /* 1184 * Initialisation. Called after the page allocator have been initialised and 1185 * before smp_init(). 1186 */ 1187 void __init kmem_cache_init(void) 1188 { 1189 int i; 1190 1191 kmem_cache = &kmem_cache_boot; 1192 1193 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1194 use_alien_caches = 0; 1195 1196 for (i = 0; i < NUM_INIT_LISTS; i++) 1197 kmem_cache_node_init(&init_kmem_cache_node[i]); 1198 1199 /* 1200 * Fragmentation resistance on low memory - only use bigger 1201 * page orders on machines with more than 32MB of memory if 1202 * not overridden on the command line. 1203 */ 1204 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1205 slab_max_order = SLAB_MAX_ORDER_HI; 1206 1207 /* Bootstrap is tricky, because several objects are allocated 1208 * from caches that do not exist yet: 1209 * 1) initialize the kmem_cache cache: it contains the struct 1210 * kmem_cache structures of all caches, except kmem_cache itself: 1211 * kmem_cache is statically allocated. 1212 * Initially an __init data area is used for the head array and the 1213 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1214 * array at the end of the bootstrap. 1215 * 2) Create the first kmalloc cache. 1216 * The struct kmem_cache for the new cache is allocated normally. 1217 * An __init data area is used for the head array. 1218 * 3) Create the remaining kmalloc caches, with minimally sized 1219 * head arrays. 1220 * 4) Replace the __init data head arrays for kmem_cache and the first 1221 * kmalloc cache with kmalloc allocated arrays. 1222 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1223 * the other cache's with kmalloc allocated memory. 1224 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1225 */ 1226 1227 /* 1) create the kmem_cache */ 1228 1229 /* 1230 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1231 */ 1232 create_boot_cache(kmem_cache, "kmem_cache", 1233 offsetof(struct kmem_cache, node) + 1234 nr_node_ids * sizeof(struct kmem_cache_node *), 1235 SLAB_HWCACHE_ALIGN, 0, 0); 1236 list_add(&kmem_cache->list, &slab_caches); 1237 slab_state = PARTIAL; 1238 1239 /* 1240 * Initialize the caches that provide memory for the kmem_cache_node 1241 * structures first. Without this, further allocations will bug. 1242 */ 1243 new_kmalloc_cache(INDEX_NODE, KMALLOC_NORMAL, ARCH_KMALLOC_FLAGS); 1244 slab_state = PARTIAL_NODE; 1245 setup_kmalloc_cache_index_table(); 1246 1247 /* 5) Replace the bootstrap kmem_cache_node */ 1248 { 1249 int nid; 1250 1251 for_each_online_node(nid) { 1252 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1253 1254 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1255 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1256 } 1257 } 1258 1259 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1260 } 1261 1262 void __init kmem_cache_init_late(void) 1263 { 1264 struct kmem_cache *cachep; 1265 1266 /* 6) resize the head arrays to their final sizes */ 1267 mutex_lock(&slab_mutex); 1268 list_for_each_entry(cachep, &slab_caches, list) 1269 if (enable_cpucache(cachep, GFP_NOWAIT)) 1270 BUG(); 1271 mutex_unlock(&slab_mutex); 1272 1273 /* Done! */ 1274 slab_state = FULL; 1275 1276 #ifdef CONFIG_NUMA 1277 /* 1278 * Register a memory hotplug callback that initializes and frees 1279 * node. 1280 */ 1281 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1282 #endif 1283 1284 /* 1285 * The reap timers are started later, with a module init call: That part 1286 * of the kernel is not yet operational. 1287 */ 1288 } 1289 1290 static int __init cpucache_init(void) 1291 { 1292 int ret; 1293 1294 /* 1295 * Register the timers that return unneeded pages to the page allocator 1296 */ 1297 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1298 slab_online_cpu, slab_offline_cpu); 1299 WARN_ON(ret < 0); 1300 1301 return 0; 1302 } 1303 __initcall(cpucache_init); 1304 1305 static noinline void 1306 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1307 { 1308 #if DEBUG 1309 struct kmem_cache_node *n; 1310 unsigned long flags; 1311 int node; 1312 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1313 DEFAULT_RATELIMIT_BURST); 1314 1315 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1316 return; 1317 1318 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1319 nodeid, gfpflags, &gfpflags); 1320 pr_warn(" cache: %s, object size: %d, order: %d\n", 1321 cachep->name, cachep->size, cachep->gfporder); 1322 1323 for_each_kmem_cache_node(cachep, node, n) { 1324 unsigned long total_slabs, free_slabs, free_objs; 1325 1326 raw_spin_lock_irqsave(&n->list_lock, flags); 1327 total_slabs = n->total_slabs; 1328 free_slabs = n->free_slabs; 1329 free_objs = n->free_objects; 1330 raw_spin_unlock_irqrestore(&n->list_lock, flags); 1331 1332 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1333 node, total_slabs - free_slabs, total_slabs, 1334 (total_slabs * cachep->num) - free_objs, 1335 total_slabs * cachep->num); 1336 } 1337 #endif 1338 } 1339 1340 /* 1341 * Interface to system's page allocator. No need to hold the 1342 * kmem_cache_node ->list_lock. 1343 * 1344 * If we requested dmaable memory, we will get it. Even if we 1345 * did not request dmaable memory, we might get it, but that 1346 * would be relatively rare and ignorable. 1347 */ 1348 static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1349 int nodeid) 1350 { 1351 struct folio *folio; 1352 struct slab *slab; 1353 1354 flags |= cachep->allocflags; 1355 1356 folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder); 1357 if (!folio) { 1358 slab_out_of_memory(cachep, flags, nodeid); 1359 return NULL; 1360 } 1361 1362 slab = folio_slab(folio); 1363 1364 account_slab(slab, cachep->gfporder, cachep, flags); 1365 __folio_set_slab(folio); 1366 /* Make the flag visible before any changes to folio->mapping */ 1367 smp_wmb(); 1368 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1369 if (sk_memalloc_socks() && folio_is_pfmemalloc(folio)) 1370 slab_set_pfmemalloc(slab); 1371 1372 return slab; 1373 } 1374 1375 /* 1376 * Interface to system's page release. 1377 */ 1378 static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab) 1379 { 1380 int order = cachep->gfporder; 1381 struct folio *folio = slab_folio(slab); 1382 1383 BUG_ON(!folio_test_slab(folio)); 1384 __slab_clear_pfmemalloc(slab); 1385 page_mapcount_reset(&folio->page); 1386 folio->mapping = NULL; 1387 /* Make the mapping reset visible before clearing the flag */ 1388 smp_wmb(); 1389 __folio_clear_slab(folio); 1390 1391 mm_account_reclaimed_pages(1 << order); 1392 unaccount_slab(slab, order, cachep); 1393 __free_pages(&folio->page, order); 1394 } 1395 1396 static void kmem_rcu_free(struct rcu_head *head) 1397 { 1398 struct kmem_cache *cachep; 1399 struct slab *slab; 1400 1401 slab = container_of(head, struct slab, rcu_head); 1402 cachep = slab->slab_cache; 1403 1404 kmem_freepages(cachep, slab); 1405 } 1406 1407 #if DEBUG 1408 static inline bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1409 { 1410 return debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && 1411 ((cachep->size % PAGE_SIZE) == 0); 1412 } 1413 1414 #ifdef CONFIG_DEBUG_PAGEALLOC 1415 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1416 { 1417 if (!is_debug_pagealloc_cache(cachep)) 1418 return; 1419 1420 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1421 } 1422 1423 #else 1424 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1425 int map) {} 1426 1427 #endif 1428 1429 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1430 { 1431 int size = cachep->object_size; 1432 addr = &((char *)addr)[obj_offset(cachep)]; 1433 1434 memset(addr, val, size); 1435 *(unsigned char *)(addr + size - 1) = POISON_END; 1436 } 1437 1438 static void dump_line(char *data, int offset, int limit) 1439 { 1440 int i; 1441 unsigned char error = 0; 1442 int bad_count = 0; 1443 1444 pr_err("%03x: ", offset); 1445 for (i = 0; i < limit; i++) { 1446 if (data[offset + i] != POISON_FREE) { 1447 error = data[offset + i]; 1448 bad_count++; 1449 } 1450 } 1451 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1452 &data[offset], limit, 1); 1453 1454 if (bad_count == 1) { 1455 error ^= POISON_FREE; 1456 if (!(error & (error - 1))) { 1457 pr_err("Single bit error detected. Probably bad RAM.\n"); 1458 #ifdef CONFIG_X86 1459 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1460 #else 1461 pr_err("Run a memory test tool.\n"); 1462 #endif 1463 } 1464 } 1465 } 1466 #endif 1467 1468 #if DEBUG 1469 1470 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1471 { 1472 int i, size; 1473 char *realobj; 1474 1475 if (cachep->flags & SLAB_RED_ZONE) { 1476 pr_err("Redzone: 0x%llx/0x%llx\n", 1477 *dbg_redzone1(cachep, objp), 1478 *dbg_redzone2(cachep, objp)); 1479 } 1480 1481 if (cachep->flags & SLAB_STORE_USER) 1482 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1483 realobj = (char *)objp + obj_offset(cachep); 1484 size = cachep->object_size; 1485 for (i = 0; i < size && lines; i += 16, lines--) { 1486 int limit; 1487 limit = 16; 1488 if (i + limit > size) 1489 limit = size - i; 1490 dump_line(realobj, i, limit); 1491 } 1492 } 1493 1494 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1495 { 1496 char *realobj; 1497 int size, i; 1498 int lines = 0; 1499 1500 if (is_debug_pagealloc_cache(cachep)) 1501 return; 1502 1503 realobj = (char *)objp + obj_offset(cachep); 1504 size = cachep->object_size; 1505 1506 for (i = 0; i < size; i++) { 1507 char exp = POISON_FREE; 1508 if (i == size - 1) 1509 exp = POISON_END; 1510 if (realobj[i] != exp) { 1511 int limit; 1512 /* Mismatch ! */ 1513 /* Print header */ 1514 if (lines == 0) { 1515 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1516 print_tainted(), cachep->name, 1517 realobj, size); 1518 print_objinfo(cachep, objp, 0); 1519 } 1520 /* Hexdump the affected line */ 1521 i = (i / 16) * 16; 1522 limit = 16; 1523 if (i + limit > size) 1524 limit = size - i; 1525 dump_line(realobj, i, limit); 1526 i += 16; 1527 lines++; 1528 /* Limit to 5 lines */ 1529 if (lines > 5) 1530 break; 1531 } 1532 } 1533 if (lines != 0) { 1534 /* Print some data about the neighboring objects, if they 1535 * exist: 1536 */ 1537 struct slab *slab = virt_to_slab(objp); 1538 unsigned int objnr; 1539 1540 objnr = obj_to_index(cachep, slab, objp); 1541 if (objnr) { 1542 objp = index_to_obj(cachep, slab, objnr - 1); 1543 realobj = (char *)objp + obj_offset(cachep); 1544 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1545 print_objinfo(cachep, objp, 2); 1546 } 1547 if (objnr + 1 < cachep->num) { 1548 objp = index_to_obj(cachep, slab, objnr + 1); 1549 realobj = (char *)objp + obj_offset(cachep); 1550 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1551 print_objinfo(cachep, objp, 2); 1552 } 1553 } 1554 } 1555 #endif 1556 1557 #if DEBUG 1558 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1559 struct slab *slab) 1560 { 1561 int i; 1562 1563 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1564 poison_obj(cachep, slab->freelist - obj_offset(cachep), 1565 POISON_FREE); 1566 } 1567 1568 for (i = 0; i < cachep->num; i++) { 1569 void *objp = index_to_obj(cachep, slab, i); 1570 1571 if (cachep->flags & SLAB_POISON) { 1572 check_poison_obj(cachep, objp); 1573 slab_kernel_map(cachep, objp, 1); 1574 } 1575 if (cachep->flags & SLAB_RED_ZONE) { 1576 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1577 slab_error(cachep, "start of a freed object was overwritten"); 1578 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1579 slab_error(cachep, "end of a freed object was overwritten"); 1580 } 1581 } 1582 } 1583 #else 1584 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1585 struct slab *slab) 1586 { 1587 } 1588 #endif 1589 1590 /** 1591 * slab_destroy - destroy and release all objects in a slab 1592 * @cachep: cache pointer being destroyed 1593 * @slab: slab being destroyed 1594 * 1595 * Destroy all the objs in a slab, and release the mem back to the system. 1596 * Before calling the slab must have been unlinked from the cache. The 1597 * kmem_cache_node ->list_lock is not held/needed. 1598 */ 1599 static void slab_destroy(struct kmem_cache *cachep, struct slab *slab) 1600 { 1601 void *freelist; 1602 1603 freelist = slab->freelist; 1604 slab_destroy_debugcheck(cachep, slab); 1605 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1606 call_rcu(&slab->rcu_head, kmem_rcu_free); 1607 else 1608 kmem_freepages(cachep, slab); 1609 1610 /* 1611 * From now on, we don't use freelist 1612 * although actual page can be freed in rcu context 1613 */ 1614 if (OFF_SLAB(cachep)) 1615 kfree(freelist); 1616 } 1617 1618 /* 1619 * Update the size of the caches before calling slabs_destroy as it may 1620 * recursively call kfree. 1621 */ 1622 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1623 { 1624 struct slab *slab, *n; 1625 1626 list_for_each_entry_safe(slab, n, list, slab_list) { 1627 list_del(&slab->slab_list); 1628 slab_destroy(cachep, slab); 1629 } 1630 } 1631 1632 /** 1633 * calculate_slab_order - calculate size (page order) of slabs 1634 * @cachep: pointer to the cache that is being created 1635 * @size: size of objects to be created in this cache. 1636 * @flags: slab allocation flags 1637 * 1638 * Also calculates the number of objects per slab. 1639 * 1640 * This could be made much more intelligent. For now, try to avoid using 1641 * high order pages for slabs. When the gfp() functions are more friendly 1642 * towards high-order requests, this should be changed. 1643 * 1644 * Return: number of left-over bytes in a slab 1645 */ 1646 static size_t calculate_slab_order(struct kmem_cache *cachep, 1647 size_t size, slab_flags_t flags) 1648 { 1649 size_t left_over = 0; 1650 int gfporder; 1651 1652 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1653 unsigned int num; 1654 size_t remainder; 1655 1656 num = cache_estimate(gfporder, size, flags, &remainder); 1657 if (!num) 1658 continue; 1659 1660 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1661 if (num > SLAB_OBJ_MAX_NUM) 1662 break; 1663 1664 if (flags & CFLGS_OFF_SLAB) { 1665 struct kmem_cache *freelist_cache; 1666 size_t freelist_size; 1667 size_t freelist_cache_size; 1668 1669 freelist_size = num * sizeof(freelist_idx_t); 1670 if (freelist_size > KMALLOC_MAX_CACHE_SIZE) { 1671 freelist_cache_size = PAGE_SIZE << get_order(freelist_size); 1672 } else { 1673 freelist_cache = kmalloc_slab(freelist_size, 0u); 1674 if (!freelist_cache) 1675 continue; 1676 freelist_cache_size = freelist_cache->size; 1677 1678 /* 1679 * Needed to avoid possible looping condition 1680 * in cache_grow_begin() 1681 */ 1682 if (OFF_SLAB(freelist_cache)) 1683 continue; 1684 } 1685 1686 /* check if off slab has enough benefit */ 1687 if (freelist_cache_size > cachep->size / 2) 1688 continue; 1689 } 1690 1691 /* Found something acceptable - save it away */ 1692 cachep->num = num; 1693 cachep->gfporder = gfporder; 1694 left_over = remainder; 1695 1696 /* 1697 * A VFS-reclaimable slab tends to have most allocations 1698 * as GFP_NOFS and we really don't want to have to be allocating 1699 * higher-order pages when we are unable to shrink dcache. 1700 */ 1701 if (flags & SLAB_RECLAIM_ACCOUNT) 1702 break; 1703 1704 /* 1705 * Large number of objects is good, but very large slabs are 1706 * currently bad for the gfp()s. 1707 */ 1708 if (gfporder >= slab_max_order) 1709 break; 1710 1711 /* 1712 * Acceptable internal fragmentation? 1713 */ 1714 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1715 break; 1716 } 1717 return left_over; 1718 } 1719 1720 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1721 struct kmem_cache *cachep, int entries, int batchcount) 1722 { 1723 int cpu; 1724 size_t size; 1725 struct array_cache __percpu *cpu_cache; 1726 1727 size = sizeof(void *) * entries + sizeof(struct array_cache); 1728 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1729 1730 if (!cpu_cache) 1731 return NULL; 1732 1733 for_each_possible_cpu(cpu) { 1734 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1735 entries, batchcount); 1736 } 1737 1738 return cpu_cache; 1739 } 1740 1741 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1742 { 1743 if (slab_state >= FULL) 1744 return enable_cpucache(cachep, gfp); 1745 1746 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1747 if (!cachep->cpu_cache) 1748 return 1; 1749 1750 if (slab_state == DOWN) { 1751 /* Creation of first cache (kmem_cache). */ 1752 set_up_node(kmem_cache, CACHE_CACHE); 1753 } else if (slab_state == PARTIAL) { 1754 /* For kmem_cache_node */ 1755 set_up_node(cachep, SIZE_NODE); 1756 } else { 1757 int node; 1758 1759 for_each_online_node(node) { 1760 cachep->node[node] = kmalloc_node( 1761 sizeof(struct kmem_cache_node), gfp, node); 1762 BUG_ON(!cachep->node[node]); 1763 kmem_cache_node_init(cachep->node[node]); 1764 } 1765 } 1766 1767 cachep->node[numa_mem_id()]->next_reap = 1768 jiffies + REAPTIMEOUT_NODE + 1769 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1770 1771 cpu_cache_get(cachep)->avail = 0; 1772 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1773 cpu_cache_get(cachep)->batchcount = 1; 1774 cpu_cache_get(cachep)->touched = 0; 1775 cachep->batchcount = 1; 1776 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1777 return 0; 1778 } 1779 1780 slab_flags_t kmem_cache_flags(unsigned int object_size, 1781 slab_flags_t flags, const char *name) 1782 { 1783 return flags; 1784 } 1785 1786 struct kmem_cache * 1787 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1788 slab_flags_t flags, void (*ctor)(void *)) 1789 { 1790 struct kmem_cache *cachep; 1791 1792 cachep = find_mergeable(size, align, flags, name, ctor); 1793 if (cachep) { 1794 cachep->refcount++; 1795 1796 /* 1797 * Adjust the object sizes so that we clear 1798 * the complete object on kzalloc. 1799 */ 1800 cachep->object_size = max_t(int, cachep->object_size, size); 1801 } 1802 return cachep; 1803 } 1804 1805 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1806 size_t size, slab_flags_t flags) 1807 { 1808 size_t left; 1809 1810 cachep->num = 0; 1811 1812 /* 1813 * If slab auto-initialization on free is enabled, store the freelist 1814 * off-slab, so that its contents don't end up in one of the allocated 1815 * objects. 1816 */ 1817 if (unlikely(slab_want_init_on_free(cachep))) 1818 return false; 1819 1820 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1821 return false; 1822 1823 left = calculate_slab_order(cachep, size, 1824 flags | CFLGS_OBJFREELIST_SLAB); 1825 if (!cachep->num) 1826 return false; 1827 1828 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1829 return false; 1830 1831 cachep->colour = left / cachep->colour_off; 1832 1833 return true; 1834 } 1835 1836 static bool set_off_slab_cache(struct kmem_cache *cachep, 1837 size_t size, slab_flags_t flags) 1838 { 1839 size_t left; 1840 1841 cachep->num = 0; 1842 1843 /* 1844 * Always use on-slab management when SLAB_NOLEAKTRACE 1845 * to avoid recursive calls into kmemleak. 1846 */ 1847 if (flags & SLAB_NOLEAKTRACE) 1848 return false; 1849 1850 /* 1851 * Size is large, assume best to place the slab management obj 1852 * off-slab (should allow better packing of objs). 1853 */ 1854 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1855 if (!cachep->num) 1856 return false; 1857 1858 /* 1859 * If the slab has been placed off-slab, and we have enough space then 1860 * move it on-slab. This is at the expense of any extra colouring. 1861 */ 1862 if (left >= cachep->num * sizeof(freelist_idx_t)) 1863 return false; 1864 1865 cachep->colour = left / cachep->colour_off; 1866 1867 return true; 1868 } 1869 1870 static bool set_on_slab_cache(struct kmem_cache *cachep, 1871 size_t size, slab_flags_t flags) 1872 { 1873 size_t left; 1874 1875 cachep->num = 0; 1876 1877 left = calculate_slab_order(cachep, size, flags); 1878 if (!cachep->num) 1879 return false; 1880 1881 cachep->colour = left / cachep->colour_off; 1882 1883 return true; 1884 } 1885 1886 /** 1887 * __kmem_cache_create - Create a cache. 1888 * @cachep: cache management descriptor 1889 * @flags: SLAB flags 1890 * 1891 * Returns a ptr to the cache on success, NULL on failure. 1892 * Cannot be called within an int, but can be interrupted. 1893 * The @ctor is run when new pages are allocated by the cache. 1894 * 1895 * The flags are 1896 * 1897 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1898 * to catch references to uninitialised memory. 1899 * 1900 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1901 * for buffer overruns. 1902 * 1903 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1904 * cacheline. This can be beneficial if you're counting cycles as closely 1905 * as davem. 1906 * 1907 * Return: a pointer to the created cache or %NULL in case of error 1908 */ 1909 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1910 { 1911 size_t ralign = BYTES_PER_WORD; 1912 gfp_t gfp; 1913 int err; 1914 unsigned int size = cachep->size; 1915 1916 #if DEBUG 1917 #if FORCED_DEBUG 1918 /* 1919 * Enable redzoning and last user accounting, except for caches with 1920 * large objects, if the increased size would increase the object size 1921 * above the next power of two: caches with object sizes just above a 1922 * power of two have a significant amount of internal fragmentation. 1923 */ 1924 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1925 2 * sizeof(unsigned long long))) 1926 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1927 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1928 flags |= SLAB_POISON; 1929 #endif 1930 #endif 1931 1932 /* 1933 * Check that size is in terms of words. This is needed to avoid 1934 * unaligned accesses for some archs when redzoning is used, and makes 1935 * sure any on-slab bufctl's are also correctly aligned. 1936 */ 1937 size = ALIGN(size, BYTES_PER_WORD); 1938 1939 if (flags & SLAB_RED_ZONE) { 1940 ralign = REDZONE_ALIGN; 1941 /* If redzoning, ensure that the second redzone is suitably 1942 * aligned, by adjusting the object size accordingly. */ 1943 size = ALIGN(size, REDZONE_ALIGN); 1944 } 1945 1946 /* 3) caller mandated alignment */ 1947 if (ralign < cachep->align) { 1948 ralign = cachep->align; 1949 } 1950 /* disable debug if necessary */ 1951 if (ralign > __alignof__(unsigned long long)) 1952 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1953 /* 1954 * 4) Store it. 1955 */ 1956 cachep->align = ralign; 1957 cachep->colour_off = cache_line_size(); 1958 /* Offset must be a multiple of the alignment. */ 1959 if (cachep->colour_off < cachep->align) 1960 cachep->colour_off = cachep->align; 1961 1962 if (slab_is_available()) 1963 gfp = GFP_KERNEL; 1964 else 1965 gfp = GFP_NOWAIT; 1966 1967 #if DEBUG 1968 1969 /* 1970 * Both debugging options require word-alignment which is calculated 1971 * into align above. 1972 */ 1973 if (flags & SLAB_RED_ZONE) { 1974 /* add space for red zone words */ 1975 cachep->obj_offset += sizeof(unsigned long long); 1976 size += 2 * sizeof(unsigned long long); 1977 } 1978 if (flags & SLAB_STORE_USER) { 1979 /* user store requires one word storage behind the end of 1980 * the real object. But if the second red zone needs to be 1981 * aligned to 64 bits, we must allow that much space. 1982 */ 1983 if (flags & SLAB_RED_ZONE) 1984 size += REDZONE_ALIGN; 1985 else 1986 size += BYTES_PER_WORD; 1987 } 1988 #endif 1989 1990 kasan_cache_create(cachep, &size, &flags); 1991 1992 size = ALIGN(size, cachep->align); 1993 /* 1994 * We should restrict the number of objects in a slab to implement 1995 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 1996 */ 1997 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 1998 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 1999 2000 #if DEBUG 2001 /* 2002 * To activate debug pagealloc, off-slab management is necessary 2003 * requirement. In early phase of initialization, small sized slab 2004 * doesn't get initialized so it would not be possible. So, we need 2005 * to check size >= 256. It guarantees that all necessary small 2006 * sized slab is initialized in current slab initialization sequence. 2007 */ 2008 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && 2009 size >= 256 && cachep->object_size > cache_line_size()) { 2010 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2011 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2012 2013 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2014 flags |= CFLGS_OFF_SLAB; 2015 cachep->obj_offset += tmp_size - size; 2016 size = tmp_size; 2017 goto done; 2018 } 2019 } 2020 } 2021 #endif 2022 2023 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2024 flags |= CFLGS_OBJFREELIST_SLAB; 2025 goto done; 2026 } 2027 2028 if (set_off_slab_cache(cachep, size, flags)) { 2029 flags |= CFLGS_OFF_SLAB; 2030 goto done; 2031 } 2032 2033 if (set_on_slab_cache(cachep, size, flags)) 2034 goto done; 2035 2036 return -E2BIG; 2037 2038 done: 2039 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2040 cachep->flags = flags; 2041 cachep->allocflags = __GFP_COMP; 2042 if (flags & SLAB_CACHE_DMA) 2043 cachep->allocflags |= GFP_DMA; 2044 if (flags & SLAB_CACHE_DMA32) 2045 cachep->allocflags |= GFP_DMA32; 2046 if (flags & SLAB_RECLAIM_ACCOUNT) 2047 cachep->allocflags |= __GFP_RECLAIMABLE; 2048 cachep->size = size; 2049 cachep->reciprocal_buffer_size = reciprocal_value(size); 2050 2051 #if DEBUG 2052 /* 2053 * If we're going to use the generic kernel_map_pages() 2054 * poisoning, then it's going to smash the contents of 2055 * the redzone and userword anyhow, so switch them off. 2056 */ 2057 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2058 (cachep->flags & SLAB_POISON) && 2059 is_debug_pagealloc_cache(cachep)) 2060 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2061 #endif 2062 2063 err = setup_cpu_cache(cachep, gfp); 2064 if (err) { 2065 __kmem_cache_release(cachep); 2066 return err; 2067 } 2068 2069 return 0; 2070 } 2071 2072 #if DEBUG 2073 static void check_irq_off(void) 2074 { 2075 BUG_ON(!irqs_disabled()); 2076 } 2077 2078 static void check_irq_on(void) 2079 { 2080 BUG_ON(irqs_disabled()); 2081 } 2082 2083 static void check_mutex_acquired(void) 2084 { 2085 BUG_ON(!mutex_is_locked(&slab_mutex)); 2086 } 2087 2088 static void check_spinlock_acquired(struct kmem_cache *cachep) 2089 { 2090 #ifdef CONFIG_SMP 2091 check_irq_off(); 2092 assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2093 #endif 2094 } 2095 2096 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2097 { 2098 #ifdef CONFIG_SMP 2099 check_irq_off(); 2100 assert_raw_spin_locked(&get_node(cachep, node)->list_lock); 2101 #endif 2102 } 2103 2104 #else 2105 #define check_irq_off() do { } while(0) 2106 #define check_irq_on() do { } while(0) 2107 #define check_mutex_acquired() do { } while(0) 2108 #define check_spinlock_acquired(x) do { } while(0) 2109 #define check_spinlock_acquired_node(x, y) do { } while(0) 2110 #endif 2111 2112 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2113 int node, bool free_all, struct list_head *list) 2114 { 2115 int tofree; 2116 2117 if (!ac || !ac->avail) 2118 return; 2119 2120 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2121 if (tofree > ac->avail) 2122 tofree = (ac->avail + 1) / 2; 2123 2124 free_block(cachep, ac->entry, tofree, node, list); 2125 ac->avail -= tofree; 2126 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2127 } 2128 2129 static void do_drain(void *arg) 2130 { 2131 struct kmem_cache *cachep = arg; 2132 struct array_cache *ac; 2133 int node = numa_mem_id(); 2134 struct kmem_cache_node *n; 2135 LIST_HEAD(list); 2136 2137 check_irq_off(); 2138 ac = cpu_cache_get(cachep); 2139 n = get_node(cachep, node); 2140 raw_spin_lock(&n->list_lock); 2141 free_block(cachep, ac->entry, ac->avail, node, &list); 2142 raw_spin_unlock(&n->list_lock); 2143 ac->avail = 0; 2144 slabs_destroy(cachep, &list); 2145 } 2146 2147 static void drain_cpu_caches(struct kmem_cache *cachep) 2148 { 2149 struct kmem_cache_node *n; 2150 int node; 2151 LIST_HEAD(list); 2152 2153 on_each_cpu(do_drain, cachep, 1); 2154 check_irq_on(); 2155 for_each_kmem_cache_node(cachep, node, n) 2156 if (n->alien) 2157 drain_alien_cache(cachep, n->alien); 2158 2159 for_each_kmem_cache_node(cachep, node, n) { 2160 raw_spin_lock_irq(&n->list_lock); 2161 drain_array_locked(cachep, n->shared, node, true, &list); 2162 raw_spin_unlock_irq(&n->list_lock); 2163 2164 slabs_destroy(cachep, &list); 2165 } 2166 } 2167 2168 /* 2169 * Remove slabs from the list of free slabs. 2170 * Specify the number of slabs to drain in tofree. 2171 * 2172 * Returns the actual number of slabs released. 2173 */ 2174 static int drain_freelist(struct kmem_cache *cache, 2175 struct kmem_cache_node *n, int tofree) 2176 { 2177 struct list_head *p; 2178 int nr_freed; 2179 struct slab *slab; 2180 2181 nr_freed = 0; 2182 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2183 2184 raw_spin_lock_irq(&n->list_lock); 2185 p = n->slabs_free.prev; 2186 if (p == &n->slabs_free) { 2187 raw_spin_unlock_irq(&n->list_lock); 2188 goto out; 2189 } 2190 2191 slab = list_entry(p, struct slab, slab_list); 2192 list_del(&slab->slab_list); 2193 n->free_slabs--; 2194 n->total_slabs--; 2195 /* 2196 * Safe to drop the lock. The slab is no longer linked 2197 * to the cache. 2198 */ 2199 n->free_objects -= cache->num; 2200 raw_spin_unlock_irq(&n->list_lock); 2201 slab_destroy(cache, slab); 2202 nr_freed++; 2203 2204 cond_resched(); 2205 } 2206 out: 2207 return nr_freed; 2208 } 2209 2210 bool __kmem_cache_empty(struct kmem_cache *s) 2211 { 2212 int node; 2213 struct kmem_cache_node *n; 2214 2215 for_each_kmem_cache_node(s, node, n) 2216 if (!list_empty(&n->slabs_full) || 2217 !list_empty(&n->slabs_partial)) 2218 return false; 2219 return true; 2220 } 2221 2222 int __kmem_cache_shrink(struct kmem_cache *cachep) 2223 { 2224 int ret = 0; 2225 int node; 2226 struct kmem_cache_node *n; 2227 2228 drain_cpu_caches(cachep); 2229 2230 check_irq_on(); 2231 for_each_kmem_cache_node(cachep, node, n) { 2232 drain_freelist(cachep, n, INT_MAX); 2233 2234 ret += !list_empty(&n->slabs_full) || 2235 !list_empty(&n->slabs_partial); 2236 } 2237 return (ret ? 1 : 0); 2238 } 2239 2240 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2241 { 2242 return __kmem_cache_shrink(cachep); 2243 } 2244 2245 void __kmem_cache_release(struct kmem_cache *cachep) 2246 { 2247 int i; 2248 struct kmem_cache_node *n; 2249 2250 cache_random_seq_destroy(cachep); 2251 2252 free_percpu(cachep->cpu_cache); 2253 2254 /* NUMA: free the node structures */ 2255 for_each_kmem_cache_node(cachep, i, n) { 2256 kfree(n->shared); 2257 free_alien_cache(n->alien); 2258 kfree(n); 2259 cachep->node[i] = NULL; 2260 } 2261 } 2262 2263 /* 2264 * Get the memory for a slab management obj. 2265 * 2266 * For a slab cache when the slab descriptor is off-slab, the 2267 * slab descriptor can't come from the same cache which is being created, 2268 * Because if it is the case, that means we defer the creation of 2269 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2270 * And we eventually call down to __kmem_cache_create(), which 2271 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one. 2272 * This is a "chicken-and-egg" problem. 2273 * 2274 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2275 * which are all initialized during kmem_cache_init(). 2276 */ 2277 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2278 struct slab *slab, int colour_off, 2279 gfp_t local_flags, int nodeid) 2280 { 2281 void *freelist; 2282 void *addr = slab_address(slab); 2283 2284 slab->s_mem = addr + colour_off; 2285 slab->active = 0; 2286 2287 if (OBJFREELIST_SLAB(cachep)) 2288 freelist = NULL; 2289 else if (OFF_SLAB(cachep)) { 2290 /* Slab management obj is off-slab. */ 2291 freelist = kmalloc_node(cachep->freelist_size, 2292 local_flags, nodeid); 2293 } else { 2294 /* We will use last bytes at the slab for freelist */ 2295 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2296 cachep->freelist_size; 2297 } 2298 2299 return freelist; 2300 } 2301 2302 static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx) 2303 { 2304 return ((freelist_idx_t *) slab->freelist)[idx]; 2305 } 2306 2307 static inline void set_free_obj(struct slab *slab, 2308 unsigned int idx, freelist_idx_t val) 2309 { 2310 ((freelist_idx_t *)(slab->freelist))[idx] = val; 2311 } 2312 2313 static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab) 2314 { 2315 #if DEBUG 2316 int i; 2317 2318 for (i = 0; i < cachep->num; i++) { 2319 void *objp = index_to_obj(cachep, slab, i); 2320 2321 if (cachep->flags & SLAB_STORE_USER) 2322 *dbg_userword(cachep, objp) = NULL; 2323 2324 if (cachep->flags & SLAB_RED_ZONE) { 2325 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2326 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2327 } 2328 /* 2329 * Constructors are not allowed to allocate memory from the same 2330 * cache which they are a constructor for. Otherwise, deadlock. 2331 * They must also be threaded. 2332 */ 2333 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2334 kasan_unpoison_object_data(cachep, 2335 objp + obj_offset(cachep)); 2336 cachep->ctor(objp + obj_offset(cachep)); 2337 kasan_poison_object_data( 2338 cachep, objp + obj_offset(cachep)); 2339 } 2340 2341 if (cachep->flags & SLAB_RED_ZONE) { 2342 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2343 slab_error(cachep, "constructor overwrote the end of an object"); 2344 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2345 slab_error(cachep, "constructor overwrote the start of an object"); 2346 } 2347 /* need to poison the objs? */ 2348 if (cachep->flags & SLAB_POISON) { 2349 poison_obj(cachep, objp, POISON_FREE); 2350 slab_kernel_map(cachep, objp, 0); 2351 } 2352 } 2353 #endif 2354 } 2355 2356 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2357 /* Hold information during a freelist initialization */ 2358 union freelist_init_state { 2359 struct { 2360 unsigned int pos; 2361 unsigned int *list; 2362 unsigned int count; 2363 }; 2364 struct rnd_state rnd_state; 2365 }; 2366 2367 /* 2368 * Initialize the state based on the randomization method available. 2369 * return true if the pre-computed list is available, false otherwise. 2370 */ 2371 static bool freelist_state_initialize(union freelist_init_state *state, 2372 struct kmem_cache *cachep, 2373 unsigned int count) 2374 { 2375 bool ret; 2376 unsigned int rand; 2377 2378 /* Use best entropy available to define a random shift */ 2379 rand = get_random_u32(); 2380 2381 /* Use a random state if the pre-computed list is not available */ 2382 if (!cachep->random_seq) { 2383 prandom_seed_state(&state->rnd_state, rand); 2384 ret = false; 2385 } else { 2386 state->list = cachep->random_seq; 2387 state->count = count; 2388 state->pos = rand % count; 2389 ret = true; 2390 } 2391 return ret; 2392 } 2393 2394 /* Get the next entry on the list and randomize it using a random shift */ 2395 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2396 { 2397 if (state->pos >= state->count) 2398 state->pos = 0; 2399 return state->list[state->pos++]; 2400 } 2401 2402 /* Swap two freelist entries */ 2403 static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b) 2404 { 2405 swap(((freelist_idx_t *) slab->freelist)[a], 2406 ((freelist_idx_t *) slab->freelist)[b]); 2407 } 2408 2409 /* 2410 * Shuffle the freelist initialization state based on pre-computed lists. 2411 * return true if the list was successfully shuffled, false otherwise. 2412 */ 2413 static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab) 2414 { 2415 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2416 union freelist_init_state state; 2417 bool precomputed; 2418 2419 if (count < 2) 2420 return false; 2421 2422 precomputed = freelist_state_initialize(&state, cachep, count); 2423 2424 /* Take a random entry as the objfreelist */ 2425 if (OBJFREELIST_SLAB(cachep)) { 2426 if (!precomputed) 2427 objfreelist = count - 1; 2428 else 2429 objfreelist = next_random_slot(&state); 2430 slab->freelist = index_to_obj(cachep, slab, objfreelist) + 2431 obj_offset(cachep); 2432 count--; 2433 } 2434 2435 /* 2436 * On early boot, generate the list dynamically. 2437 * Later use a pre-computed list for speed. 2438 */ 2439 if (!precomputed) { 2440 for (i = 0; i < count; i++) 2441 set_free_obj(slab, i, i); 2442 2443 /* Fisher-Yates shuffle */ 2444 for (i = count - 1; i > 0; i--) { 2445 rand = prandom_u32_state(&state.rnd_state); 2446 rand %= (i + 1); 2447 swap_free_obj(slab, i, rand); 2448 } 2449 } else { 2450 for (i = 0; i < count; i++) 2451 set_free_obj(slab, i, next_random_slot(&state)); 2452 } 2453 2454 if (OBJFREELIST_SLAB(cachep)) 2455 set_free_obj(slab, cachep->num - 1, objfreelist); 2456 2457 return true; 2458 } 2459 #else 2460 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2461 struct slab *slab) 2462 { 2463 return false; 2464 } 2465 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2466 2467 static void cache_init_objs(struct kmem_cache *cachep, 2468 struct slab *slab) 2469 { 2470 int i; 2471 void *objp; 2472 bool shuffled; 2473 2474 cache_init_objs_debug(cachep, slab); 2475 2476 /* Try to randomize the freelist if enabled */ 2477 shuffled = shuffle_freelist(cachep, slab); 2478 2479 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2480 slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) + 2481 obj_offset(cachep); 2482 } 2483 2484 for (i = 0; i < cachep->num; i++) { 2485 objp = index_to_obj(cachep, slab, i); 2486 objp = kasan_init_slab_obj(cachep, objp); 2487 2488 /* constructor could break poison info */ 2489 if (DEBUG == 0 && cachep->ctor) { 2490 kasan_unpoison_object_data(cachep, objp); 2491 cachep->ctor(objp); 2492 kasan_poison_object_data(cachep, objp); 2493 } 2494 2495 if (!shuffled) 2496 set_free_obj(slab, i, i); 2497 } 2498 } 2499 2500 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab) 2501 { 2502 void *objp; 2503 2504 objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active)); 2505 slab->active++; 2506 2507 return objp; 2508 } 2509 2510 static void slab_put_obj(struct kmem_cache *cachep, 2511 struct slab *slab, void *objp) 2512 { 2513 unsigned int objnr = obj_to_index(cachep, slab, objp); 2514 #if DEBUG 2515 unsigned int i; 2516 2517 /* Verify double free bug */ 2518 for (i = slab->active; i < cachep->num; i++) { 2519 if (get_free_obj(slab, i) == objnr) { 2520 pr_err("slab: double free detected in cache '%s', objp %px\n", 2521 cachep->name, objp); 2522 BUG(); 2523 } 2524 } 2525 #endif 2526 slab->active--; 2527 if (!slab->freelist) 2528 slab->freelist = objp + obj_offset(cachep); 2529 2530 set_free_obj(slab, slab->active, objnr); 2531 } 2532 2533 /* 2534 * Grow (by 1) the number of slabs within a cache. This is called by 2535 * kmem_cache_alloc() when there are no active objs left in a cache. 2536 */ 2537 static struct slab *cache_grow_begin(struct kmem_cache *cachep, 2538 gfp_t flags, int nodeid) 2539 { 2540 void *freelist; 2541 size_t offset; 2542 gfp_t local_flags; 2543 int slab_node; 2544 struct kmem_cache_node *n; 2545 struct slab *slab; 2546 2547 /* 2548 * Be lazy and only check for valid flags here, keeping it out of the 2549 * critical path in kmem_cache_alloc(). 2550 */ 2551 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2552 flags = kmalloc_fix_flags(flags); 2553 2554 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2555 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2556 2557 check_irq_off(); 2558 if (gfpflags_allow_blocking(local_flags)) 2559 local_irq_enable(); 2560 2561 /* 2562 * Get mem for the objs. Attempt to allocate a physical page from 2563 * 'nodeid'. 2564 */ 2565 slab = kmem_getpages(cachep, local_flags, nodeid); 2566 if (!slab) 2567 goto failed; 2568 2569 slab_node = slab_nid(slab); 2570 n = get_node(cachep, slab_node); 2571 2572 /* Get colour for the slab, and cal the next value. */ 2573 n->colour_next++; 2574 if (n->colour_next >= cachep->colour) 2575 n->colour_next = 0; 2576 2577 offset = n->colour_next; 2578 if (offset >= cachep->colour) 2579 offset = 0; 2580 2581 offset *= cachep->colour_off; 2582 2583 /* 2584 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2585 * page_address() in the latter returns a non-tagged pointer, 2586 * as it should be for slab pages. 2587 */ 2588 kasan_poison_slab(slab); 2589 2590 /* Get slab management. */ 2591 freelist = alloc_slabmgmt(cachep, slab, offset, 2592 local_flags & ~GFP_CONSTRAINT_MASK, slab_node); 2593 if (OFF_SLAB(cachep) && !freelist) 2594 goto opps1; 2595 2596 slab->slab_cache = cachep; 2597 slab->freelist = freelist; 2598 2599 cache_init_objs(cachep, slab); 2600 2601 if (gfpflags_allow_blocking(local_flags)) 2602 local_irq_disable(); 2603 2604 return slab; 2605 2606 opps1: 2607 kmem_freepages(cachep, slab); 2608 failed: 2609 if (gfpflags_allow_blocking(local_flags)) 2610 local_irq_disable(); 2611 return NULL; 2612 } 2613 2614 static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab) 2615 { 2616 struct kmem_cache_node *n; 2617 void *list = NULL; 2618 2619 check_irq_off(); 2620 2621 if (!slab) 2622 return; 2623 2624 INIT_LIST_HEAD(&slab->slab_list); 2625 n = get_node(cachep, slab_nid(slab)); 2626 2627 raw_spin_lock(&n->list_lock); 2628 n->total_slabs++; 2629 if (!slab->active) { 2630 list_add_tail(&slab->slab_list, &n->slabs_free); 2631 n->free_slabs++; 2632 } else 2633 fixup_slab_list(cachep, n, slab, &list); 2634 2635 STATS_INC_GROWN(cachep); 2636 n->free_objects += cachep->num - slab->active; 2637 raw_spin_unlock(&n->list_lock); 2638 2639 fixup_objfreelist_debug(cachep, &list); 2640 } 2641 2642 #if DEBUG 2643 2644 /* 2645 * Perform extra freeing checks: 2646 * - detect bad pointers. 2647 * - POISON/RED_ZONE checking 2648 */ 2649 static void kfree_debugcheck(const void *objp) 2650 { 2651 if (!virt_addr_valid(objp)) { 2652 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2653 (unsigned long)objp); 2654 BUG(); 2655 } 2656 } 2657 2658 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2659 { 2660 unsigned long long redzone1, redzone2; 2661 2662 redzone1 = *dbg_redzone1(cache, obj); 2663 redzone2 = *dbg_redzone2(cache, obj); 2664 2665 /* 2666 * Redzone is ok. 2667 */ 2668 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2669 return; 2670 2671 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2672 slab_error(cache, "double free detected"); 2673 else 2674 slab_error(cache, "memory outside object was overwritten"); 2675 2676 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2677 obj, redzone1, redzone2); 2678 } 2679 2680 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2681 unsigned long caller) 2682 { 2683 unsigned int objnr; 2684 struct slab *slab; 2685 2686 BUG_ON(virt_to_cache(objp) != cachep); 2687 2688 objp -= obj_offset(cachep); 2689 kfree_debugcheck(objp); 2690 slab = virt_to_slab(objp); 2691 2692 if (cachep->flags & SLAB_RED_ZONE) { 2693 verify_redzone_free(cachep, objp); 2694 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2695 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2696 } 2697 if (cachep->flags & SLAB_STORE_USER) 2698 *dbg_userword(cachep, objp) = (void *)caller; 2699 2700 objnr = obj_to_index(cachep, slab, objp); 2701 2702 BUG_ON(objnr >= cachep->num); 2703 BUG_ON(objp != index_to_obj(cachep, slab, objnr)); 2704 2705 if (cachep->flags & SLAB_POISON) { 2706 poison_obj(cachep, objp, POISON_FREE); 2707 slab_kernel_map(cachep, objp, 0); 2708 } 2709 return objp; 2710 } 2711 2712 #else 2713 #define kfree_debugcheck(x) do { } while(0) 2714 #define cache_free_debugcheck(x, objp, z) (objp) 2715 #endif 2716 2717 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2718 void **list) 2719 { 2720 #if DEBUG 2721 void *next = *list; 2722 void *objp; 2723 2724 while (next) { 2725 objp = next - obj_offset(cachep); 2726 next = *(void **)next; 2727 poison_obj(cachep, objp, POISON_FREE); 2728 } 2729 #endif 2730 } 2731 2732 static inline void fixup_slab_list(struct kmem_cache *cachep, 2733 struct kmem_cache_node *n, struct slab *slab, 2734 void **list) 2735 { 2736 /* move slabp to correct slabp list: */ 2737 list_del(&slab->slab_list); 2738 if (slab->active == cachep->num) { 2739 list_add(&slab->slab_list, &n->slabs_full); 2740 if (OBJFREELIST_SLAB(cachep)) { 2741 #if DEBUG 2742 /* Poisoning will be done without holding the lock */ 2743 if (cachep->flags & SLAB_POISON) { 2744 void **objp = slab->freelist; 2745 2746 *objp = *list; 2747 *list = objp; 2748 } 2749 #endif 2750 slab->freelist = NULL; 2751 } 2752 } else 2753 list_add(&slab->slab_list, &n->slabs_partial); 2754 } 2755 2756 /* Try to find non-pfmemalloc slab if needed */ 2757 static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n, 2758 struct slab *slab, bool pfmemalloc) 2759 { 2760 if (!slab) 2761 return NULL; 2762 2763 if (pfmemalloc) 2764 return slab; 2765 2766 if (!slab_test_pfmemalloc(slab)) 2767 return slab; 2768 2769 /* No need to keep pfmemalloc slab if we have enough free objects */ 2770 if (n->free_objects > n->free_limit) { 2771 slab_clear_pfmemalloc(slab); 2772 return slab; 2773 } 2774 2775 /* Move pfmemalloc slab to the end of list to speed up next search */ 2776 list_del(&slab->slab_list); 2777 if (!slab->active) { 2778 list_add_tail(&slab->slab_list, &n->slabs_free); 2779 n->free_slabs++; 2780 } else 2781 list_add_tail(&slab->slab_list, &n->slabs_partial); 2782 2783 list_for_each_entry(slab, &n->slabs_partial, slab_list) { 2784 if (!slab_test_pfmemalloc(slab)) 2785 return slab; 2786 } 2787 2788 n->free_touched = 1; 2789 list_for_each_entry(slab, &n->slabs_free, slab_list) { 2790 if (!slab_test_pfmemalloc(slab)) { 2791 n->free_slabs--; 2792 return slab; 2793 } 2794 } 2795 2796 return NULL; 2797 } 2798 2799 static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2800 { 2801 struct slab *slab; 2802 2803 assert_raw_spin_locked(&n->list_lock); 2804 slab = list_first_entry_or_null(&n->slabs_partial, struct slab, 2805 slab_list); 2806 if (!slab) { 2807 n->free_touched = 1; 2808 slab = list_first_entry_or_null(&n->slabs_free, struct slab, 2809 slab_list); 2810 if (slab) 2811 n->free_slabs--; 2812 } 2813 2814 if (sk_memalloc_socks()) 2815 slab = get_valid_first_slab(n, slab, pfmemalloc); 2816 2817 return slab; 2818 } 2819 2820 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2821 struct kmem_cache_node *n, gfp_t flags) 2822 { 2823 struct slab *slab; 2824 void *obj; 2825 void *list = NULL; 2826 2827 if (!gfp_pfmemalloc_allowed(flags)) 2828 return NULL; 2829 2830 raw_spin_lock(&n->list_lock); 2831 slab = get_first_slab(n, true); 2832 if (!slab) { 2833 raw_spin_unlock(&n->list_lock); 2834 return NULL; 2835 } 2836 2837 obj = slab_get_obj(cachep, slab); 2838 n->free_objects--; 2839 2840 fixup_slab_list(cachep, n, slab, &list); 2841 2842 raw_spin_unlock(&n->list_lock); 2843 fixup_objfreelist_debug(cachep, &list); 2844 2845 return obj; 2846 } 2847 2848 /* 2849 * Slab list should be fixed up by fixup_slab_list() for existing slab 2850 * or cache_grow_end() for new slab 2851 */ 2852 static __always_inline int alloc_block(struct kmem_cache *cachep, 2853 struct array_cache *ac, struct slab *slab, int batchcount) 2854 { 2855 /* 2856 * There must be at least one object available for 2857 * allocation. 2858 */ 2859 BUG_ON(slab->active >= cachep->num); 2860 2861 while (slab->active < cachep->num && batchcount--) { 2862 STATS_INC_ALLOCED(cachep); 2863 STATS_INC_ACTIVE(cachep); 2864 STATS_SET_HIGH(cachep); 2865 2866 ac->entry[ac->avail++] = slab_get_obj(cachep, slab); 2867 } 2868 2869 return batchcount; 2870 } 2871 2872 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2873 { 2874 int batchcount; 2875 struct kmem_cache_node *n; 2876 struct array_cache *ac, *shared; 2877 int node; 2878 void *list = NULL; 2879 struct slab *slab; 2880 2881 check_irq_off(); 2882 node = numa_mem_id(); 2883 2884 ac = cpu_cache_get(cachep); 2885 batchcount = ac->batchcount; 2886 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2887 /* 2888 * If there was little recent activity on this cache, then 2889 * perform only a partial refill. Otherwise we could generate 2890 * refill bouncing. 2891 */ 2892 batchcount = BATCHREFILL_LIMIT; 2893 } 2894 n = get_node(cachep, node); 2895 2896 BUG_ON(ac->avail > 0 || !n); 2897 shared = READ_ONCE(n->shared); 2898 if (!n->free_objects && (!shared || !shared->avail)) 2899 goto direct_grow; 2900 2901 raw_spin_lock(&n->list_lock); 2902 shared = READ_ONCE(n->shared); 2903 2904 /* See if we can refill from the shared array */ 2905 if (shared && transfer_objects(ac, shared, batchcount)) { 2906 shared->touched = 1; 2907 goto alloc_done; 2908 } 2909 2910 while (batchcount > 0) { 2911 /* Get slab alloc is to come from. */ 2912 slab = get_first_slab(n, false); 2913 if (!slab) 2914 goto must_grow; 2915 2916 check_spinlock_acquired(cachep); 2917 2918 batchcount = alloc_block(cachep, ac, slab, batchcount); 2919 fixup_slab_list(cachep, n, slab, &list); 2920 } 2921 2922 must_grow: 2923 n->free_objects -= ac->avail; 2924 alloc_done: 2925 raw_spin_unlock(&n->list_lock); 2926 fixup_objfreelist_debug(cachep, &list); 2927 2928 direct_grow: 2929 if (unlikely(!ac->avail)) { 2930 /* Check if we can use obj in pfmemalloc slab */ 2931 if (sk_memalloc_socks()) { 2932 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2933 2934 if (obj) 2935 return obj; 2936 } 2937 2938 slab = cache_grow_begin(cachep, gfp_exact_node(flags), node); 2939 2940 /* 2941 * cache_grow_begin() can reenable interrupts, 2942 * then ac could change. 2943 */ 2944 ac = cpu_cache_get(cachep); 2945 if (!ac->avail && slab) 2946 alloc_block(cachep, ac, slab, batchcount); 2947 cache_grow_end(cachep, slab); 2948 2949 if (!ac->avail) 2950 return NULL; 2951 } 2952 ac->touched = 1; 2953 2954 return ac->entry[--ac->avail]; 2955 } 2956 2957 #if DEBUG 2958 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2959 gfp_t flags, void *objp, unsigned long caller) 2960 { 2961 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2962 if (!objp || is_kfence_address(objp)) 2963 return objp; 2964 if (cachep->flags & SLAB_POISON) { 2965 check_poison_obj(cachep, objp); 2966 slab_kernel_map(cachep, objp, 1); 2967 poison_obj(cachep, objp, POISON_INUSE); 2968 } 2969 if (cachep->flags & SLAB_STORE_USER) 2970 *dbg_userword(cachep, objp) = (void *)caller; 2971 2972 if (cachep->flags & SLAB_RED_ZONE) { 2973 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 2974 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 2975 slab_error(cachep, "double free, or memory outside object was overwritten"); 2976 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2977 objp, *dbg_redzone1(cachep, objp), 2978 *dbg_redzone2(cachep, objp)); 2979 } 2980 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2981 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2982 } 2983 2984 objp += obj_offset(cachep); 2985 if (cachep->ctor && cachep->flags & SLAB_POISON) 2986 cachep->ctor(objp); 2987 if ((unsigned long)objp & (arch_slab_minalign() - 1)) { 2988 pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp, 2989 arch_slab_minalign()); 2990 } 2991 return objp; 2992 } 2993 #else 2994 #define cache_alloc_debugcheck_after(a, b, objp, d) (objp) 2995 #endif 2996 2997 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 2998 { 2999 void *objp; 3000 struct array_cache *ac; 3001 3002 check_irq_off(); 3003 3004 ac = cpu_cache_get(cachep); 3005 if (likely(ac->avail)) { 3006 ac->touched = 1; 3007 objp = ac->entry[--ac->avail]; 3008 3009 STATS_INC_ALLOCHIT(cachep); 3010 goto out; 3011 } 3012 3013 STATS_INC_ALLOCMISS(cachep); 3014 objp = cache_alloc_refill(cachep, flags); 3015 /* 3016 * the 'ac' may be updated by cache_alloc_refill(), 3017 * and kmemleak_erase() requires its correct value. 3018 */ 3019 ac = cpu_cache_get(cachep); 3020 3021 out: 3022 /* 3023 * To avoid a false negative, if an object that is in one of the 3024 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3025 * treat the array pointers as a reference to the object. 3026 */ 3027 if (objp) 3028 kmemleak_erase(&ac->entry[ac->avail]); 3029 return objp; 3030 } 3031 3032 #ifdef CONFIG_NUMA 3033 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 3034 3035 /* 3036 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3037 * 3038 * If we are in_interrupt, then process context, including cpusets and 3039 * mempolicy, may not apply and should not be used for allocation policy. 3040 */ 3041 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3042 { 3043 int nid_alloc, nid_here; 3044 3045 if (in_interrupt() || (flags & __GFP_THISNODE)) 3046 return NULL; 3047 nid_alloc = nid_here = numa_mem_id(); 3048 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3049 nid_alloc = cpuset_slab_spread_node(); 3050 else if (current->mempolicy) 3051 nid_alloc = mempolicy_slab_node(); 3052 if (nid_alloc != nid_here) 3053 return ____cache_alloc_node(cachep, flags, nid_alloc); 3054 return NULL; 3055 } 3056 3057 /* 3058 * Fallback function if there was no memory available and no objects on a 3059 * certain node and fall back is permitted. First we scan all the 3060 * available node for available objects. If that fails then we 3061 * perform an allocation without specifying a node. This allows the page 3062 * allocator to do its reclaim / fallback magic. We then insert the 3063 * slab into the proper nodelist and then allocate from it. 3064 */ 3065 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3066 { 3067 struct zonelist *zonelist; 3068 struct zoneref *z; 3069 struct zone *zone; 3070 enum zone_type highest_zoneidx = gfp_zone(flags); 3071 void *obj = NULL; 3072 struct slab *slab; 3073 int nid; 3074 unsigned int cpuset_mems_cookie; 3075 3076 if (flags & __GFP_THISNODE) 3077 return NULL; 3078 3079 retry_cpuset: 3080 cpuset_mems_cookie = read_mems_allowed_begin(); 3081 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3082 3083 retry: 3084 /* 3085 * Look through allowed nodes for objects available 3086 * from existing per node queues. 3087 */ 3088 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 3089 nid = zone_to_nid(zone); 3090 3091 if (cpuset_zone_allowed(zone, flags) && 3092 get_node(cache, nid) && 3093 get_node(cache, nid)->free_objects) { 3094 obj = ____cache_alloc_node(cache, 3095 gfp_exact_node(flags), nid); 3096 if (obj) 3097 break; 3098 } 3099 } 3100 3101 if (!obj) { 3102 /* 3103 * This allocation will be performed within the constraints 3104 * of the current cpuset / memory policy requirements. 3105 * We may trigger various forms of reclaim on the allowed 3106 * set and go into memory reserves if necessary. 3107 */ 3108 slab = cache_grow_begin(cache, flags, numa_mem_id()); 3109 cache_grow_end(cache, slab); 3110 if (slab) { 3111 nid = slab_nid(slab); 3112 obj = ____cache_alloc_node(cache, 3113 gfp_exact_node(flags), nid); 3114 3115 /* 3116 * Another processor may allocate the objects in 3117 * the slab since we are not holding any locks. 3118 */ 3119 if (!obj) 3120 goto retry; 3121 } 3122 } 3123 3124 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3125 goto retry_cpuset; 3126 return obj; 3127 } 3128 3129 /* 3130 * An interface to enable slab creation on nodeid 3131 */ 3132 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3133 int nodeid) 3134 { 3135 struct slab *slab; 3136 struct kmem_cache_node *n; 3137 void *obj = NULL; 3138 void *list = NULL; 3139 3140 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3141 n = get_node(cachep, nodeid); 3142 BUG_ON(!n); 3143 3144 check_irq_off(); 3145 raw_spin_lock(&n->list_lock); 3146 slab = get_first_slab(n, false); 3147 if (!slab) 3148 goto must_grow; 3149 3150 check_spinlock_acquired_node(cachep, nodeid); 3151 3152 STATS_INC_NODEALLOCS(cachep); 3153 STATS_INC_ACTIVE(cachep); 3154 STATS_SET_HIGH(cachep); 3155 3156 BUG_ON(slab->active == cachep->num); 3157 3158 obj = slab_get_obj(cachep, slab); 3159 n->free_objects--; 3160 3161 fixup_slab_list(cachep, n, slab, &list); 3162 3163 raw_spin_unlock(&n->list_lock); 3164 fixup_objfreelist_debug(cachep, &list); 3165 return obj; 3166 3167 must_grow: 3168 raw_spin_unlock(&n->list_lock); 3169 slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3170 if (slab) { 3171 /* This slab isn't counted yet so don't update free_objects */ 3172 obj = slab_get_obj(cachep, slab); 3173 } 3174 cache_grow_end(cachep, slab); 3175 3176 return obj ? obj : fallback_alloc(cachep, flags); 3177 } 3178 3179 static __always_inline void * 3180 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3181 { 3182 void *objp = NULL; 3183 int slab_node = numa_mem_id(); 3184 3185 if (nodeid == NUMA_NO_NODE) { 3186 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3187 objp = alternate_node_alloc(cachep, flags); 3188 if (objp) 3189 goto out; 3190 } 3191 /* 3192 * Use the locally cached objects if possible. 3193 * However ____cache_alloc does not allow fallback 3194 * to other nodes. It may fail while we still have 3195 * objects on other nodes available. 3196 */ 3197 objp = ____cache_alloc(cachep, flags); 3198 nodeid = slab_node; 3199 } else if (nodeid == slab_node) { 3200 objp = ____cache_alloc(cachep, flags); 3201 } else if (!get_node(cachep, nodeid)) { 3202 /* Node not bootstrapped yet */ 3203 objp = fallback_alloc(cachep, flags); 3204 goto out; 3205 } 3206 3207 /* 3208 * We may just have run out of memory on the local node. 3209 * ____cache_alloc_node() knows how to locate memory on other nodes 3210 */ 3211 if (!objp) 3212 objp = ____cache_alloc_node(cachep, flags, nodeid); 3213 out: 3214 return objp; 3215 } 3216 #else 3217 3218 static __always_inline void * 3219 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused) 3220 { 3221 return ____cache_alloc(cachep, flags); 3222 } 3223 3224 #endif /* CONFIG_NUMA */ 3225 3226 static __always_inline void * 3227 slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, 3228 int nodeid, size_t orig_size, unsigned long caller) 3229 { 3230 unsigned long save_flags; 3231 void *objp; 3232 struct obj_cgroup *objcg = NULL; 3233 bool init = false; 3234 3235 flags &= gfp_allowed_mask; 3236 cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags); 3237 if (unlikely(!cachep)) 3238 return NULL; 3239 3240 objp = kfence_alloc(cachep, orig_size, flags); 3241 if (unlikely(objp)) 3242 goto out; 3243 3244 local_irq_save(save_flags); 3245 objp = __do_cache_alloc(cachep, flags, nodeid); 3246 local_irq_restore(save_flags); 3247 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3248 prefetchw(objp); 3249 init = slab_want_init_on_alloc(flags, cachep); 3250 3251 out: 3252 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init, 3253 cachep->object_size); 3254 return objp; 3255 } 3256 3257 static __always_inline void * 3258 slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, 3259 size_t orig_size, unsigned long caller) 3260 { 3261 return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size, 3262 caller); 3263 } 3264 3265 /* 3266 * Caller needs to acquire correct kmem_cache_node's list_lock 3267 * @list: List of detached free slabs should be freed by caller 3268 */ 3269 static void free_block(struct kmem_cache *cachep, void **objpp, 3270 int nr_objects, int node, struct list_head *list) 3271 { 3272 int i; 3273 struct kmem_cache_node *n = get_node(cachep, node); 3274 struct slab *slab; 3275 3276 n->free_objects += nr_objects; 3277 3278 for (i = 0; i < nr_objects; i++) { 3279 void *objp; 3280 struct slab *slab; 3281 3282 objp = objpp[i]; 3283 3284 slab = virt_to_slab(objp); 3285 list_del(&slab->slab_list); 3286 check_spinlock_acquired_node(cachep, node); 3287 slab_put_obj(cachep, slab, objp); 3288 STATS_DEC_ACTIVE(cachep); 3289 3290 /* fixup slab chains */ 3291 if (slab->active == 0) { 3292 list_add(&slab->slab_list, &n->slabs_free); 3293 n->free_slabs++; 3294 } else { 3295 /* Unconditionally move a slab to the end of the 3296 * partial list on free - maximum time for the 3297 * other objects to be freed, too. 3298 */ 3299 list_add_tail(&slab->slab_list, &n->slabs_partial); 3300 } 3301 } 3302 3303 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3304 n->free_objects -= cachep->num; 3305 3306 slab = list_last_entry(&n->slabs_free, struct slab, slab_list); 3307 list_move(&slab->slab_list, list); 3308 n->free_slabs--; 3309 n->total_slabs--; 3310 } 3311 } 3312 3313 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3314 { 3315 int batchcount; 3316 struct kmem_cache_node *n; 3317 int node = numa_mem_id(); 3318 LIST_HEAD(list); 3319 3320 batchcount = ac->batchcount; 3321 3322 check_irq_off(); 3323 n = get_node(cachep, node); 3324 raw_spin_lock(&n->list_lock); 3325 if (n->shared) { 3326 struct array_cache *shared_array = n->shared; 3327 int max = shared_array->limit - shared_array->avail; 3328 if (max) { 3329 if (batchcount > max) 3330 batchcount = max; 3331 memcpy(&(shared_array->entry[shared_array->avail]), 3332 ac->entry, sizeof(void *) * batchcount); 3333 shared_array->avail += batchcount; 3334 goto free_done; 3335 } 3336 } 3337 3338 free_block(cachep, ac->entry, batchcount, node, &list); 3339 free_done: 3340 #if STATS 3341 { 3342 int i = 0; 3343 struct slab *slab; 3344 3345 list_for_each_entry(slab, &n->slabs_free, slab_list) { 3346 BUG_ON(slab->active); 3347 3348 i++; 3349 } 3350 STATS_SET_FREEABLE(cachep, i); 3351 } 3352 #endif 3353 raw_spin_unlock(&n->list_lock); 3354 ac->avail -= batchcount; 3355 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3356 slabs_destroy(cachep, &list); 3357 } 3358 3359 /* 3360 * Release an obj back to its cache. If the obj has a constructed state, it must 3361 * be in this state _before_ it is released. Called with disabled ints. 3362 */ 3363 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3364 unsigned long caller) 3365 { 3366 bool init; 3367 3368 memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1); 3369 3370 if (is_kfence_address(objp)) { 3371 kmemleak_free_recursive(objp, cachep->flags); 3372 __kfence_free(objp); 3373 return; 3374 } 3375 3376 /* 3377 * As memory initialization might be integrated into KASAN, 3378 * kasan_slab_free and initialization memset must be 3379 * kept together to avoid discrepancies in behavior. 3380 */ 3381 init = slab_want_init_on_free(cachep); 3382 if (init && !kasan_has_integrated_init()) 3383 memset(objp, 0, cachep->object_size); 3384 /* KASAN might put objp into memory quarantine, delaying its reuse. */ 3385 if (kasan_slab_free(cachep, objp, init)) 3386 return; 3387 3388 /* Use KCSAN to help debug racy use-after-free. */ 3389 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 3390 __kcsan_check_access(objp, cachep->object_size, 3391 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 3392 3393 ___cache_free(cachep, objp, caller); 3394 } 3395 3396 void ___cache_free(struct kmem_cache *cachep, void *objp, 3397 unsigned long caller) 3398 { 3399 struct array_cache *ac = cpu_cache_get(cachep); 3400 3401 check_irq_off(); 3402 kmemleak_free_recursive(objp, cachep->flags); 3403 objp = cache_free_debugcheck(cachep, objp, caller); 3404 3405 /* 3406 * Skip calling cache_free_alien() when the platform is not numa. 3407 * This will avoid cache misses that happen while accessing slabp (which 3408 * is per page memory reference) to get nodeid. Instead use a global 3409 * variable to skip the call, which is mostly likely to be present in 3410 * the cache. 3411 */ 3412 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3413 return; 3414 3415 if (ac->avail < ac->limit) { 3416 STATS_INC_FREEHIT(cachep); 3417 } else { 3418 STATS_INC_FREEMISS(cachep); 3419 cache_flusharray(cachep, ac); 3420 } 3421 3422 if (sk_memalloc_socks()) { 3423 struct slab *slab = virt_to_slab(objp); 3424 3425 if (unlikely(slab_test_pfmemalloc(slab))) { 3426 cache_free_pfmemalloc(cachep, slab, objp); 3427 return; 3428 } 3429 } 3430 3431 __free_one(ac, objp); 3432 } 3433 3434 static __always_inline 3435 void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3436 gfp_t flags) 3437 { 3438 void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_); 3439 3440 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE); 3441 3442 return ret; 3443 } 3444 3445 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3446 { 3447 return __kmem_cache_alloc_lru(cachep, NULL, flags); 3448 } 3449 EXPORT_SYMBOL(kmem_cache_alloc); 3450 3451 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3452 gfp_t flags) 3453 { 3454 return __kmem_cache_alloc_lru(cachep, lru, flags); 3455 } 3456 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3457 3458 static __always_inline void 3459 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3460 size_t size, void **p, unsigned long caller) 3461 { 3462 size_t i; 3463 3464 for (i = 0; i < size; i++) 3465 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3466 } 3467 3468 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3469 void **p) 3470 { 3471 struct obj_cgroup *objcg = NULL; 3472 unsigned long irqflags; 3473 size_t i; 3474 3475 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3476 if (!s) 3477 return 0; 3478 3479 local_irq_save(irqflags); 3480 for (i = 0; i < size; i++) { 3481 void *objp = kfence_alloc(s, s->object_size, flags) ?: 3482 __do_cache_alloc(s, flags, NUMA_NO_NODE); 3483 3484 if (unlikely(!objp)) 3485 goto error; 3486 p[i] = objp; 3487 } 3488 local_irq_restore(irqflags); 3489 3490 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3491 3492 /* 3493 * memcg and kmem_cache debug support and memory initialization. 3494 * Done outside of the IRQ disabled section. 3495 */ 3496 slab_post_alloc_hook(s, objcg, flags, size, p, 3497 slab_want_init_on_alloc(flags, s), s->object_size); 3498 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3499 return size; 3500 error: 3501 local_irq_restore(irqflags); 3502 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3503 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 3504 kmem_cache_free_bulk(s, i, p); 3505 return 0; 3506 } 3507 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3508 3509 /** 3510 * kmem_cache_alloc_node - Allocate an object on the specified node 3511 * @cachep: The cache to allocate from. 3512 * @flags: See kmalloc(). 3513 * @nodeid: node number of the target node. 3514 * 3515 * Identical to kmem_cache_alloc but it will allocate memory on the given 3516 * node, which can improve the performance for cpu bound structures. 3517 * 3518 * Fallback to other node is possible if __GFP_THISNODE is not set. 3519 * 3520 * Return: pointer to the new object or %NULL in case of error 3521 */ 3522 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3523 { 3524 void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_); 3525 3526 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid); 3527 3528 return ret; 3529 } 3530 EXPORT_SYMBOL(kmem_cache_alloc_node); 3531 3532 void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3533 int nodeid, size_t orig_size, 3534 unsigned long caller) 3535 { 3536 return slab_alloc_node(cachep, NULL, flags, nodeid, 3537 orig_size, caller); 3538 } 3539 3540 #ifdef CONFIG_PRINTK 3541 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 3542 { 3543 struct kmem_cache *cachep; 3544 unsigned int objnr; 3545 void *objp; 3546 3547 kpp->kp_ptr = object; 3548 kpp->kp_slab = slab; 3549 cachep = slab->slab_cache; 3550 kpp->kp_slab_cache = cachep; 3551 objp = object - obj_offset(cachep); 3552 kpp->kp_data_offset = obj_offset(cachep); 3553 slab = virt_to_slab(objp); 3554 objnr = obj_to_index(cachep, slab, objp); 3555 objp = index_to_obj(cachep, slab, objnr); 3556 kpp->kp_objp = objp; 3557 if (DEBUG && cachep->flags & SLAB_STORE_USER) 3558 kpp->kp_ret = *dbg_userword(cachep, objp); 3559 } 3560 #endif 3561 3562 static __always_inline 3563 void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp, 3564 unsigned long caller) 3565 { 3566 unsigned long flags; 3567 3568 local_irq_save(flags); 3569 debug_check_no_locks_freed(objp, cachep->object_size); 3570 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3571 debug_check_no_obj_freed(objp, cachep->object_size); 3572 __cache_free(cachep, objp, caller); 3573 local_irq_restore(flags); 3574 } 3575 3576 void __kmem_cache_free(struct kmem_cache *cachep, void *objp, 3577 unsigned long caller) 3578 { 3579 __do_kmem_cache_free(cachep, objp, caller); 3580 } 3581 3582 /** 3583 * kmem_cache_free - Deallocate an object 3584 * @cachep: The cache the allocation was from. 3585 * @objp: The previously allocated object. 3586 * 3587 * Free an object which was previously allocated from this 3588 * cache. 3589 */ 3590 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3591 { 3592 cachep = cache_from_obj(cachep, objp); 3593 if (!cachep) 3594 return; 3595 3596 trace_kmem_cache_free(_RET_IP_, objp, cachep); 3597 __do_kmem_cache_free(cachep, objp, _RET_IP_); 3598 } 3599 EXPORT_SYMBOL(kmem_cache_free); 3600 3601 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3602 { 3603 unsigned long flags; 3604 3605 local_irq_save(flags); 3606 for (int i = 0; i < size; i++) { 3607 void *objp = p[i]; 3608 struct kmem_cache *s; 3609 3610 if (!orig_s) { 3611 struct folio *folio = virt_to_folio(objp); 3612 3613 /* called via kfree_bulk */ 3614 if (!folio_test_slab(folio)) { 3615 local_irq_restore(flags); 3616 free_large_kmalloc(folio, objp); 3617 local_irq_save(flags); 3618 continue; 3619 } 3620 s = folio_slab(folio)->slab_cache; 3621 } else { 3622 s = cache_from_obj(orig_s, objp); 3623 } 3624 3625 if (!s) 3626 continue; 3627 3628 debug_check_no_locks_freed(objp, s->object_size); 3629 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3630 debug_check_no_obj_freed(objp, s->object_size); 3631 3632 __cache_free(s, objp, _RET_IP_); 3633 } 3634 local_irq_restore(flags); 3635 3636 /* FIXME: add tracing */ 3637 } 3638 EXPORT_SYMBOL(kmem_cache_free_bulk); 3639 3640 /* 3641 * This initializes kmem_cache_node or resizes various caches for all nodes. 3642 */ 3643 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3644 { 3645 int ret; 3646 int node; 3647 struct kmem_cache_node *n; 3648 3649 for_each_online_node(node) { 3650 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3651 if (ret) 3652 goto fail; 3653 3654 } 3655 3656 return 0; 3657 3658 fail: 3659 if (!cachep->list.next) { 3660 /* Cache is not active yet. Roll back what we did */ 3661 node--; 3662 while (node >= 0) { 3663 n = get_node(cachep, node); 3664 if (n) { 3665 kfree(n->shared); 3666 free_alien_cache(n->alien); 3667 kfree(n); 3668 cachep->node[node] = NULL; 3669 } 3670 node--; 3671 } 3672 } 3673 return -ENOMEM; 3674 } 3675 3676 /* Always called with the slab_mutex held */ 3677 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3678 int batchcount, int shared, gfp_t gfp) 3679 { 3680 struct array_cache __percpu *cpu_cache, *prev; 3681 int cpu; 3682 3683 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3684 if (!cpu_cache) 3685 return -ENOMEM; 3686 3687 prev = cachep->cpu_cache; 3688 cachep->cpu_cache = cpu_cache; 3689 /* 3690 * Without a previous cpu_cache there's no need to synchronize remote 3691 * cpus, so skip the IPIs. 3692 */ 3693 if (prev) 3694 kick_all_cpus_sync(); 3695 3696 check_irq_on(); 3697 cachep->batchcount = batchcount; 3698 cachep->limit = limit; 3699 cachep->shared = shared; 3700 3701 if (!prev) 3702 goto setup_node; 3703 3704 for_each_online_cpu(cpu) { 3705 LIST_HEAD(list); 3706 int node; 3707 struct kmem_cache_node *n; 3708 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3709 3710 node = cpu_to_mem(cpu); 3711 n = get_node(cachep, node); 3712 raw_spin_lock_irq(&n->list_lock); 3713 free_block(cachep, ac->entry, ac->avail, node, &list); 3714 raw_spin_unlock_irq(&n->list_lock); 3715 slabs_destroy(cachep, &list); 3716 } 3717 free_percpu(prev); 3718 3719 setup_node: 3720 return setup_kmem_cache_nodes(cachep, gfp); 3721 } 3722 3723 /* Called with slab_mutex held always */ 3724 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3725 { 3726 int err; 3727 int limit = 0; 3728 int shared = 0; 3729 int batchcount = 0; 3730 3731 err = cache_random_seq_create(cachep, cachep->num, gfp); 3732 if (err) 3733 goto end; 3734 3735 /* 3736 * The head array serves three purposes: 3737 * - create a LIFO ordering, i.e. return objects that are cache-warm 3738 * - reduce the number of spinlock operations. 3739 * - reduce the number of linked list operations on the slab and 3740 * bufctl chains: array operations are cheaper. 3741 * The numbers are guessed, we should auto-tune as described by 3742 * Bonwick. 3743 */ 3744 if (cachep->size > 131072) 3745 limit = 1; 3746 else if (cachep->size > PAGE_SIZE) 3747 limit = 8; 3748 else if (cachep->size > 1024) 3749 limit = 24; 3750 else if (cachep->size > 256) 3751 limit = 54; 3752 else 3753 limit = 120; 3754 3755 /* 3756 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3757 * allocation behaviour: Most allocs on one cpu, most free operations 3758 * on another cpu. For these cases, an efficient object passing between 3759 * cpus is necessary. This is provided by a shared array. The array 3760 * replaces Bonwick's magazine layer. 3761 * On uniprocessor, it's functionally equivalent (but less efficient) 3762 * to a larger limit. Thus disabled by default. 3763 */ 3764 shared = 0; 3765 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3766 shared = 8; 3767 3768 #if DEBUG 3769 /* 3770 * With debugging enabled, large batchcount lead to excessively long 3771 * periods with disabled local interrupts. Limit the batchcount 3772 */ 3773 if (limit > 32) 3774 limit = 32; 3775 #endif 3776 batchcount = (limit + 1) / 2; 3777 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3778 end: 3779 if (err) 3780 pr_err("enable_cpucache failed for %s, error %d\n", 3781 cachep->name, -err); 3782 return err; 3783 } 3784 3785 /* 3786 * Drain an array if it contains any elements taking the node lock only if 3787 * necessary. Note that the node listlock also protects the array_cache 3788 * if drain_array() is used on the shared array. 3789 */ 3790 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3791 struct array_cache *ac, int node) 3792 { 3793 LIST_HEAD(list); 3794 3795 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3796 check_mutex_acquired(); 3797 3798 if (!ac || !ac->avail) 3799 return; 3800 3801 if (ac->touched) { 3802 ac->touched = 0; 3803 return; 3804 } 3805 3806 raw_spin_lock_irq(&n->list_lock); 3807 drain_array_locked(cachep, ac, node, false, &list); 3808 raw_spin_unlock_irq(&n->list_lock); 3809 3810 slabs_destroy(cachep, &list); 3811 } 3812 3813 /** 3814 * cache_reap - Reclaim memory from caches. 3815 * @w: work descriptor 3816 * 3817 * Called from workqueue/eventd every few seconds. 3818 * Purpose: 3819 * - clear the per-cpu caches for this CPU. 3820 * - return freeable pages to the main free memory pool. 3821 * 3822 * If we cannot acquire the cache chain mutex then just give up - we'll try 3823 * again on the next iteration. 3824 */ 3825 static void cache_reap(struct work_struct *w) 3826 { 3827 struct kmem_cache *searchp; 3828 struct kmem_cache_node *n; 3829 int node = numa_mem_id(); 3830 struct delayed_work *work = to_delayed_work(w); 3831 3832 if (!mutex_trylock(&slab_mutex)) 3833 /* Give up. Setup the next iteration. */ 3834 goto out; 3835 3836 list_for_each_entry(searchp, &slab_caches, list) { 3837 check_irq_on(); 3838 3839 /* 3840 * We only take the node lock if absolutely necessary and we 3841 * have established with reasonable certainty that 3842 * we can do some work if the lock was obtained. 3843 */ 3844 n = get_node(searchp, node); 3845 3846 reap_alien(searchp, n); 3847 3848 drain_array(searchp, n, cpu_cache_get(searchp), node); 3849 3850 /* 3851 * These are racy checks but it does not matter 3852 * if we skip one check or scan twice. 3853 */ 3854 if (time_after(n->next_reap, jiffies)) 3855 goto next; 3856 3857 n->next_reap = jiffies + REAPTIMEOUT_NODE; 3858 3859 drain_array(searchp, n, n->shared, node); 3860 3861 if (n->free_touched) 3862 n->free_touched = 0; 3863 else { 3864 int freed; 3865 3866 freed = drain_freelist(searchp, n, (n->free_limit + 3867 5 * searchp->num - 1) / (5 * searchp->num)); 3868 STATS_ADD_REAPED(searchp, freed); 3869 } 3870 next: 3871 cond_resched(); 3872 } 3873 check_irq_on(); 3874 mutex_unlock(&slab_mutex); 3875 next_reap_node(); 3876 out: 3877 /* Set up the next iteration */ 3878 schedule_delayed_work_on(smp_processor_id(), work, 3879 round_jiffies_relative(REAPTIMEOUT_AC)); 3880 } 3881 3882 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 3883 { 3884 unsigned long active_objs, num_objs, active_slabs; 3885 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 3886 unsigned long free_slabs = 0; 3887 int node; 3888 struct kmem_cache_node *n; 3889 3890 for_each_kmem_cache_node(cachep, node, n) { 3891 check_irq_on(); 3892 raw_spin_lock_irq(&n->list_lock); 3893 3894 total_slabs += n->total_slabs; 3895 free_slabs += n->free_slabs; 3896 free_objs += n->free_objects; 3897 3898 if (n->shared) 3899 shared_avail += n->shared->avail; 3900 3901 raw_spin_unlock_irq(&n->list_lock); 3902 } 3903 num_objs = total_slabs * cachep->num; 3904 active_slabs = total_slabs - free_slabs; 3905 active_objs = num_objs - free_objs; 3906 3907 sinfo->active_objs = active_objs; 3908 sinfo->num_objs = num_objs; 3909 sinfo->active_slabs = active_slabs; 3910 sinfo->num_slabs = total_slabs; 3911 sinfo->shared_avail = shared_avail; 3912 sinfo->limit = cachep->limit; 3913 sinfo->batchcount = cachep->batchcount; 3914 sinfo->shared = cachep->shared; 3915 sinfo->objects_per_slab = cachep->num; 3916 sinfo->cache_order = cachep->gfporder; 3917 } 3918 3919 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 3920 { 3921 #if STATS 3922 { /* node stats */ 3923 unsigned long high = cachep->high_mark; 3924 unsigned long allocs = cachep->num_allocations; 3925 unsigned long grown = cachep->grown; 3926 unsigned long reaped = cachep->reaped; 3927 unsigned long errors = cachep->errors; 3928 unsigned long max_freeable = cachep->max_freeable; 3929 unsigned long node_allocs = cachep->node_allocs; 3930 unsigned long node_frees = cachep->node_frees; 3931 unsigned long overflows = cachep->node_overflow; 3932 3933 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 3934 allocs, high, grown, 3935 reaped, errors, max_freeable, node_allocs, 3936 node_frees, overflows); 3937 } 3938 /* cpu stats */ 3939 { 3940 unsigned long allochit = atomic_read(&cachep->allochit); 3941 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 3942 unsigned long freehit = atomic_read(&cachep->freehit); 3943 unsigned long freemiss = atomic_read(&cachep->freemiss); 3944 3945 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 3946 allochit, allocmiss, freehit, freemiss); 3947 } 3948 #endif 3949 } 3950 3951 #define MAX_SLABINFO_WRITE 128 3952 /** 3953 * slabinfo_write - Tuning for the slab allocator 3954 * @file: unused 3955 * @buffer: user buffer 3956 * @count: data length 3957 * @ppos: unused 3958 * 3959 * Return: %0 on success, negative error code otherwise. 3960 */ 3961 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 3962 size_t count, loff_t *ppos) 3963 { 3964 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 3965 int limit, batchcount, shared, res; 3966 struct kmem_cache *cachep; 3967 3968 if (count > MAX_SLABINFO_WRITE) 3969 return -EINVAL; 3970 if (copy_from_user(&kbuf, buffer, count)) 3971 return -EFAULT; 3972 kbuf[MAX_SLABINFO_WRITE] = '\0'; 3973 3974 tmp = strchr(kbuf, ' '); 3975 if (!tmp) 3976 return -EINVAL; 3977 *tmp = '\0'; 3978 tmp++; 3979 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 3980 return -EINVAL; 3981 3982 /* Find the cache in the chain of caches. */ 3983 mutex_lock(&slab_mutex); 3984 res = -EINVAL; 3985 list_for_each_entry(cachep, &slab_caches, list) { 3986 if (!strcmp(cachep->name, kbuf)) { 3987 if (limit < 1 || batchcount < 1 || 3988 batchcount > limit || shared < 0) { 3989 res = 0; 3990 } else { 3991 res = do_tune_cpucache(cachep, limit, 3992 batchcount, shared, 3993 GFP_KERNEL); 3994 } 3995 break; 3996 } 3997 } 3998 mutex_unlock(&slab_mutex); 3999 if (res >= 0) 4000 res = count; 4001 return res; 4002 } 4003 4004 #ifdef CONFIG_HARDENED_USERCOPY 4005 /* 4006 * Rejects incorrectly sized objects and objects that are to be copied 4007 * to/from userspace but do not fall entirely within the containing slab 4008 * cache's usercopy region. 4009 * 4010 * Returns NULL if check passes, otherwise const char * to name of cache 4011 * to indicate an error. 4012 */ 4013 void __check_heap_object(const void *ptr, unsigned long n, 4014 const struct slab *slab, bool to_user) 4015 { 4016 struct kmem_cache *cachep; 4017 unsigned int objnr; 4018 unsigned long offset; 4019 4020 ptr = kasan_reset_tag(ptr); 4021 4022 /* Find and validate object. */ 4023 cachep = slab->slab_cache; 4024 objnr = obj_to_index(cachep, slab, (void *)ptr); 4025 BUG_ON(objnr >= cachep->num); 4026 4027 /* Find offset within object. */ 4028 if (is_kfence_address(ptr)) 4029 offset = ptr - kfence_object_start(ptr); 4030 else 4031 offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep); 4032 4033 /* Allow address range falling entirely within usercopy region. */ 4034 if (offset >= cachep->useroffset && 4035 offset - cachep->useroffset <= cachep->usersize && 4036 n <= cachep->useroffset - offset + cachep->usersize) 4037 return; 4038 4039 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4040 } 4041 #endif /* CONFIG_HARDENED_USERCOPY */ 4042