xref: /openbmc/linux/mm/slab.c (revision 5d0e4d78)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 #include	<linux/sched/task_stack.h>
120 
121 #include	<net/sock.h>
122 
123 #include	<asm/cacheflush.h>
124 #include	<asm/tlbflush.h>
125 #include	<asm/page.h>
126 
127 #include <trace/events/kmem.h>
128 
129 #include	"internal.h"
130 
131 #include	"slab.h"
132 
133 /*
134  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135  *		  0 for faster, smaller code (especially in the critical paths).
136  *
137  * STATS	- 1 to collect stats for /proc/slabinfo.
138  *		  0 for faster, smaller code (especially in the critical paths).
139  *
140  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141  */
142 
143 #ifdef CONFIG_DEBUG_SLAB
144 #define	DEBUG		1
145 #define	STATS		1
146 #define	FORCED_DEBUG	1
147 #else
148 #define	DEBUG		0
149 #define	STATS		0
150 #define	FORCED_DEBUG	0
151 #endif
152 
153 /* Shouldn't this be in a header file somewhere? */
154 #define	BYTES_PER_WORD		sizeof(void *)
155 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160 
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169 
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171 
172 /*
173  * struct array_cache
174  *
175  * Purpose:
176  * - LIFO ordering, to hand out cache-warm objects from _alloc
177  * - reduce the number of linked list operations
178  * - reduce spinlock operations
179  *
180  * The limit is stored in the per-cpu structure to reduce the data cache
181  * footprint.
182  *
183  */
184 struct array_cache {
185 	unsigned int avail;
186 	unsigned int limit;
187 	unsigned int batchcount;
188 	unsigned int touched;
189 	void *entry[];	/*
190 			 * Must have this definition in here for the proper
191 			 * alignment of array_cache. Also simplifies accessing
192 			 * the entries.
193 			 */
194 };
195 
196 struct alien_cache {
197 	spinlock_t lock;
198 	struct array_cache ac;
199 };
200 
201 /*
202  * Need this for bootstrapping a per node allocator.
203  */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define	CACHE_CACHE 0
207 #define	SIZE_NODE (MAX_NUMNODES)
208 
209 static int drain_freelist(struct kmem_cache *cache,
210 			struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 			int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216 
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 						void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 				struct kmem_cache_node *n, struct page *page,
221 				void **list);
222 static int slab_early_init = 1;
223 
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 	INIT_LIST_HEAD(&parent->slabs_full);
229 	INIT_LIST_HEAD(&parent->slabs_partial);
230 	INIT_LIST_HEAD(&parent->slabs_free);
231 	parent->total_slabs = 0;
232 	parent->free_slabs = 0;
233 	parent->shared = NULL;
234 	parent->alien = NULL;
235 	parent->colour_next = 0;
236 	spin_lock_init(&parent->list_lock);
237 	parent->free_objects = 0;
238 	parent->free_touched = 0;
239 }
240 
241 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
242 	do {								\
243 		INIT_LIST_HEAD(listp);					\
244 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 	} while (0)
246 
247 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
248 	do {								\
249 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
250 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
252 	} while (0)
253 
254 #define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
255 #define CFLGS_OFF_SLAB		(0x80000000UL)
256 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
258 
259 #define BATCHREFILL_LIMIT	16
260 /*
261  * Optimization question: fewer reaps means less probability for unnessary
262  * cpucache drain/refill cycles.
263  *
264  * OTOH the cpuarrays can contain lots of objects,
265  * which could lock up otherwise freeable slabs.
266  */
267 #define REAPTIMEOUT_AC		(2*HZ)
268 #define REAPTIMEOUT_NODE	(4*HZ)
269 
270 #if STATS
271 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
272 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
273 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
274 #define	STATS_INC_GROWN(x)	((x)->grown++)
275 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
276 #define	STATS_SET_HIGH(x)						\
277 	do {								\
278 		if ((x)->num_active > (x)->high_mark)			\
279 			(x)->high_mark = (x)->num_active;		\
280 	} while (0)
281 #define	STATS_INC_ERR(x)	((x)->errors++)
282 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
285 #define	STATS_SET_FREEABLE(x, i)					\
286 	do {								\
287 		if ((x)->max_freeable < i)				\
288 			(x)->max_freeable = i;				\
289 	} while (0)
290 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
294 #else
295 #define	STATS_INC_ACTIVE(x)	do { } while (0)
296 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
297 #define	STATS_INC_ALLOCED(x)	do { } while (0)
298 #define	STATS_INC_GROWN(x)	do { } while (0)
299 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
300 #define	STATS_SET_HIGH(x)	do { } while (0)
301 #define	STATS_INC_ERR(x)	do { } while (0)
302 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303 #define	STATS_INC_NODEFREES(x)	do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
305 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
307 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
308 #define STATS_INC_FREEHIT(x)	do { } while (0)
309 #define STATS_INC_FREEMISS(x)	do { } while (0)
310 #endif
311 
312 #if DEBUG
313 
314 /*
315  * memory layout of objects:
316  * 0		: objp
317  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318  * 		the end of an object is aligned with the end of the real
319  * 		allocation. Catches writes behind the end of the allocation.
320  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321  * 		redzone word.
322  * cachep->obj_offset: The real object.
323  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324  * cachep->size - 1* BYTES_PER_WORD: last caller address
325  *					[BYTES_PER_WORD long]
326  */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 	return cachep->obj_offset;
330 }
331 
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 	return (unsigned long long*) (objp + obj_offset(cachep) -
336 				      sizeof(unsigned long long));
337 }
338 
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 	if (cachep->flags & SLAB_STORE_USER)
343 		return (unsigned long long *)(objp + cachep->size -
344 					      sizeof(unsigned long long) -
345 					      REDZONE_ALIGN);
346 	return (unsigned long long *) (objp + cachep->size -
347 				       sizeof(unsigned long long));
348 }
349 
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355 
356 #else
357 
358 #define obj_offset(x)			0
359 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
362 
363 #endif
364 
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366 
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 	return atomic_read(&cachep->store_user_clean) == 1;
370 }
371 
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 	atomic_set(&cachep->store_user_clean, 1);
375 }
376 
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 	if (is_store_user_clean(cachep))
380 		atomic_set(&cachep->store_user_clean, 0);
381 }
382 
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385 
386 #endif
387 
388 /*
389  * Do not go above this order unless 0 objects fit into the slab or
390  * overridden on the command line.
391  */
392 #define	SLAB_MAX_ORDER_HI	1
393 #define	SLAB_MAX_ORDER_LO	0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396 
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 	struct page *page = virt_to_head_page(obj);
400 	return page->slab_cache;
401 }
402 
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 				 unsigned int idx)
405 {
406 	return page->s_mem + cache->size * idx;
407 }
408 
409 /*
410  * We want to avoid an expensive divide : (offset / cache->size)
411  *   Using the fact that size is a constant for a particular cache,
412  *   we can replace (offset / cache->size) by
413  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
414  */
415 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 					const struct page *page, void *obj)
417 {
418 	u32 offset = (obj - page->s_mem);
419 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 }
421 
422 #define BOOT_CPUCACHE_ENTRIES	1
423 /* internal cache of cache description objs */
424 static struct kmem_cache kmem_cache_boot = {
425 	.batchcount = 1,
426 	.limit = BOOT_CPUCACHE_ENTRIES,
427 	.shared = 1,
428 	.size = sizeof(struct kmem_cache),
429 	.name = "kmem_cache",
430 };
431 
432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433 
434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435 {
436 	return this_cpu_ptr(cachep->cpu_cache);
437 }
438 
439 /*
440  * Calculate the number of objects and left-over bytes for a given buffer size.
441  */
442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 		unsigned long flags, size_t *left_over)
444 {
445 	unsigned int num;
446 	size_t slab_size = PAGE_SIZE << gfporder;
447 
448 	/*
449 	 * The slab management structure can be either off the slab or
450 	 * on it. For the latter case, the memory allocated for a
451 	 * slab is used for:
452 	 *
453 	 * - @buffer_size bytes for each object
454 	 * - One freelist_idx_t for each object
455 	 *
456 	 * We don't need to consider alignment of freelist because
457 	 * freelist will be at the end of slab page. The objects will be
458 	 * at the correct alignment.
459 	 *
460 	 * If the slab management structure is off the slab, then the
461 	 * alignment will already be calculated into the size. Because
462 	 * the slabs are all pages aligned, the objects will be at the
463 	 * correct alignment when allocated.
464 	 */
465 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 		num = slab_size / buffer_size;
467 		*left_over = slab_size % buffer_size;
468 	} else {
469 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 		*left_over = slab_size %
471 			(buffer_size + sizeof(freelist_idx_t));
472 	}
473 
474 	return num;
475 }
476 
477 #if DEBUG
478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479 
480 static void __slab_error(const char *function, struct kmem_cache *cachep,
481 			char *msg)
482 {
483 	pr_err("slab error in %s(): cache `%s': %s\n",
484 	       function, cachep->name, msg);
485 	dump_stack();
486 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487 }
488 #endif
489 
490 /*
491  * By default on NUMA we use alien caches to stage the freeing of
492  * objects allocated from other nodes. This causes massive memory
493  * inefficiencies when using fake NUMA setup to split memory into a
494  * large number of small nodes, so it can be disabled on the command
495  * line
496   */
497 
498 static int use_alien_caches __read_mostly = 1;
499 static int __init noaliencache_setup(char *s)
500 {
501 	use_alien_caches = 0;
502 	return 1;
503 }
504 __setup("noaliencache", noaliencache_setup);
505 
506 static int __init slab_max_order_setup(char *str)
507 {
508 	get_option(&str, &slab_max_order);
509 	slab_max_order = slab_max_order < 0 ? 0 :
510 				min(slab_max_order, MAX_ORDER - 1);
511 	slab_max_order_set = true;
512 
513 	return 1;
514 }
515 __setup("slab_max_order=", slab_max_order_setup);
516 
517 #ifdef CONFIG_NUMA
518 /*
519  * Special reaping functions for NUMA systems called from cache_reap().
520  * These take care of doing round robin flushing of alien caches (containing
521  * objects freed on different nodes from which they were allocated) and the
522  * flushing of remote pcps by calling drain_node_pages.
523  */
524 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525 
526 static void init_reap_node(int cpu)
527 {
528 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 						    node_online_map);
530 }
531 
532 static void next_reap_node(void)
533 {
534 	int node = __this_cpu_read(slab_reap_node);
535 
536 	node = next_node_in(node, node_online_map);
537 	__this_cpu_write(slab_reap_node, node);
538 }
539 
540 #else
541 #define init_reap_node(cpu) do { } while (0)
542 #define next_reap_node(void) do { } while (0)
543 #endif
544 
545 /*
546  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
547  * via the workqueue/eventd.
548  * Add the CPU number into the expiration time to minimize the possibility of
549  * the CPUs getting into lockstep and contending for the global cache chain
550  * lock.
551  */
552 static void start_cpu_timer(int cpu)
553 {
554 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555 
556 	if (reap_work->work.func == NULL) {
557 		init_reap_node(cpu);
558 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 		schedule_delayed_work_on(cpu, reap_work,
560 					__round_jiffies_relative(HZ, cpu));
561 	}
562 }
563 
564 static void init_arraycache(struct array_cache *ac, int limit, int batch)
565 {
566 	/*
567 	 * The array_cache structures contain pointers to free object.
568 	 * However, when such objects are allocated or transferred to another
569 	 * cache the pointers are not cleared and they could be counted as
570 	 * valid references during a kmemleak scan. Therefore, kmemleak must
571 	 * not scan such objects.
572 	 */
573 	kmemleak_no_scan(ac);
574 	if (ac) {
575 		ac->avail = 0;
576 		ac->limit = limit;
577 		ac->batchcount = batch;
578 		ac->touched = 0;
579 	}
580 }
581 
582 static struct array_cache *alloc_arraycache(int node, int entries,
583 					    int batchcount, gfp_t gfp)
584 {
585 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 	struct array_cache *ac = NULL;
587 
588 	ac = kmalloc_node(memsize, gfp, node);
589 	init_arraycache(ac, entries, batchcount);
590 	return ac;
591 }
592 
593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 					struct page *page, void *objp)
595 {
596 	struct kmem_cache_node *n;
597 	int page_node;
598 	LIST_HEAD(list);
599 
600 	page_node = page_to_nid(page);
601 	n = get_node(cachep, page_node);
602 
603 	spin_lock(&n->list_lock);
604 	free_block(cachep, &objp, 1, page_node, &list);
605 	spin_unlock(&n->list_lock);
606 
607 	slabs_destroy(cachep, &list);
608 }
609 
610 /*
611  * Transfer objects in one arraycache to another.
612  * Locking must be handled by the caller.
613  *
614  * Return the number of entries transferred.
615  */
616 static int transfer_objects(struct array_cache *to,
617 		struct array_cache *from, unsigned int max)
618 {
619 	/* Figure out how many entries to transfer */
620 	int nr = min3(from->avail, max, to->limit - to->avail);
621 
622 	if (!nr)
623 		return 0;
624 
625 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 			sizeof(void *) *nr);
627 
628 	from->avail -= nr;
629 	to->avail += nr;
630 	return nr;
631 }
632 
633 #ifndef CONFIG_NUMA
634 
635 #define drain_alien_cache(cachep, alien) do { } while (0)
636 #define reap_alien(cachep, n) do { } while (0)
637 
638 static inline struct alien_cache **alloc_alien_cache(int node,
639 						int limit, gfp_t gfp)
640 {
641 	return NULL;
642 }
643 
644 static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 {
646 }
647 
648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649 {
650 	return 0;
651 }
652 
653 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 		gfp_t flags)
655 {
656 	return NULL;
657 }
658 
659 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 		 gfp_t flags, int nodeid)
661 {
662 	return NULL;
663 }
664 
665 static inline gfp_t gfp_exact_node(gfp_t flags)
666 {
667 	return flags & ~__GFP_NOFAIL;
668 }
669 
670 #else	/* CONFIG_NUMA */
671 
672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674 
675 static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 						int batch, gfp_t gfp)
677 {
678 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 	struct alien_cache *alc = NULL;
680 
681 	alc = kmalloc_node(memsize, gfp, node);
682 	init_arraycache(&alc->ac, entries, batch);
683 	spin_lock_init(&alc->lock);
684 	return alc;
685 }
686 
687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688 {
689 	struct alien_cache **alc_ptr;
690 	size_t memsize = sizeof(void *) * nr_node_ids;
691 	int i;
692 
693 	if (limit > 1)
694 		limit = 12;
695 	alc_ptr = kzalloc_node(memsize, gfp, node);
696 	if (!alc_ptr)
697 		return NULL;
698 
699 	for_each_node(i) {
700 		if (i == node || !node_online(i))
701 			continue;
702 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 		if (!alc_ptr[i]) {
704 			for (i--; i >= 0; i--)
705 				kfree(alc_ptr[i]);
706 			kfree(alc_ptr);
707 			return NULL;
708 		}
709 	}
710 	return alc_ptr;
711 }
712 
713 static void free_alien_cache(struct alien_cache **alc_ptr)
714 {
715 	int i;
716 
717 	if (!alc_ptr)
718 		return;
719 	for_each_node(i)
720 	    kfree(alc_ptr[i]);
721 	kfree(alc_ptr);
722 }
723 
724 static void __drain_alien_cache(struct kmem_cache *cachep,
725 				struct array_cache *ac, int node,
726 				struct list_head *list)
727 {
728 	struct kmem_cache_node *n = get_node(cachep, node);
729 
730 	if (ac->avail) {
731 		spin_lock(&n->list_lock);
732 		/*
733 		 * Stuff objects into the remote nodes shared array first.
734 		 * That way we could avoid the overhead of putting the objects
735 		 * into the free lists and getting them back later.
736 		 */
737 		if (n->shared)
738 			transfer_objects(n->shared, ac, ac->limit);
739 
740 		free_block(cachep, ac->entry, ac->avail, node, list);
741 		ac->avail = 0;
742 		spin_unlock(&n->list_lock);
743 	}
744 }
745 
746 /*
747  * Called from cache_reap() to regularly drain alien caches round robin.
748  */
749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750 {
751 	int node = __this_cpu_read(slab_reap_node);
752 
753 	if (n->alien) {
754 		struct alien_cache *alc = n->alien[node];
755 		struct array_cache *ac;
756 
757 		if (alc) {
758 			ac = &alc->ac;
759 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 				LIST_HEAD(list);
761 
762 				__drain_alien_cache(cachep, ac, node, &list);
763 				spin_unlock_irq(&alc->lock);
764 				slabs_destroy(cachep, &list);
765 			}
766 		}
767 	}
768 }
769 
770 static void drain_alien_cache(struct kmem_cache *cachep,
771 				struct alien_cache **alien)
772 {
773 	int i = 0;
774 	struct alien_cache *alc;
775 	struct array_cache *ac;
776 	unsigned long flags;
777 
778 	for_each_online_node(i) {
779 		alc = alien[i];
780 		if (alc) {
781 			LIST_HEAD(list);
782 
783 			ac = &alc->ac;
784 			spin_lock_irqsave(&alc->lock, flags);
785 			__drain_alien_cache(cachep, ac, i, &list);
786 			spin_unlock_irqrestore(&alc->lock, flags);
787 			slabs_destroy(cachep, &list);
788 		}
789 	}
790 }
791 
792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 				int node, int page_node)
794 {
795 	struct kmem_cache_node *n;
796 	struct alien_cache *alien = NULL;
797 	struct array_cache *ac;
798 	LIST_HEAD(list);
799 
800 	n = get_node(cachep, node);
801 	STATS_INC_NODEFREES(cachep);
802 	if (n->alien && n->alien[page_node]) {
803 		alien = n->alien[page_node];
804 		ac = &alien->ac;
805 		spin_lock(&alien->lock);
806 		if (unlikely(ac->avail == ac->limit)) {
807 			STATS_INC_ACOVERFLOW(cachep);
808 			__drain_alien_cache(cachep, ac, page_node, &list);
809 		}
810 		ac->entry[ac->avail++] = objp;
811 		spin_unlock(&alien->lock);
812 		slabs_destroy(cachep, &list);
813 	} else {
814 		n = get_node(cachep, page_node);
815 		spin_lock(&n->list_lock);
816 		free_block(cachep, &objp, 1, page_node, &list);
817 		spin_unlock(&n->list_lock);
818 		slabs_destroy(cachep, &list);
819 	}
820 	return 1;
821 }
822 
823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824 {
825 	int page_node = page_to_nid(virt_to_page(objp));
826 	int node = numa_mem_id();
827 	/*
828 	 * Make sure we are not freeing a object from another node to the array
829 	 * cache on this cpu.
830 	 */
831 	if (likely(node == page_node))
832 		return 0;
833 
834 	return __cache_free_alien(cachep, objp, node, page_node);
835 }
836 
837 /*
838  * Construct gfp mask to allocate from a specific node but do not reclaim or
839  * warn about failures.
840  */
841 static inline gfp_t gfp_exact_node(gfp_t flags)
842 {
843 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
844 }
845 #endif
846 
847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848 {
849 	struct kmem_cache_node *n;
850 
851 	/*
852 	 * Set up the kmem_cache_node for cpu before we can
853 	 * begin anything. Make sure some other cpu on this
854 	 * node has not already allocated this
855 	 */
856 	n = get_node(cachep, node);
857 	if (n) {
858 		spin_lock_irq(&n->list_lock);
859 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 				cachep->num;
861 		spin_unlock_irq(&n->list_lock);
862 
863 		return 0;
864 	}
865 
866 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 	if (!n)
868 		return -ENOMEM;
869 
870 	kmem_cache_node_init(n);
871 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873 
874 	n->free_limit =
875 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876 
877 	/*
878 	 * The kmem_cache_nodes don't come and go as CPUs
879 	 * come and go.  slab_mutex is sufficient
880 	 * protection here.
881 	 */
882 	cachep->node[node] = n;
883 
884 	return 0;
885 }
886 
887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888 /*
889  * Allocates and initializes node for a node on each slab cache, used for
890  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
891  * will be allocated off-node since memory is not yet online for the new node.
892  * When hotplugging memory or a cpu, existing node are not replaced if
893  * already in use.
894  *
895  * Must hold slab_mutex.
896  */
897 static int init_cache_node_node(int node)
898 {
899 	int ret;
900 	struct kmem_cache *cachep;
901 
902 	list_for_each_entry(cachep, &slab_caches, list) {
903 		ret = init_cache_node(cachep, node, GFP_KERNEL);
904 		if (ret)
905 			return ret;
906 	}
907 
908 	return 0;
909 }
910 #endif
911 
912 static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 				int node, gfp_t gfp, bool force_change)
914 {
915 	int ret = -ENOMEM;
916 	struct kmem_cache_node *n;
917 	struct array_cache *old_shared = NULL;
918 	struct array_cache *new_shared = NULL;
919 	struct alien_cache **new_alien = NULL;
920 	LIST_HEAD(list);
921 
922 	if (use_alien_caches) {
923 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 		if (!new_alien)
925 			goto fail;
926 	}
927 
928 	if (cachep->shared) {
929 		new_shared = alloc_arraycache(node,
930 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 		if (!new_shared)
932 			goto fail;
933 	}
934 
935 	ret = init_cache_node(cachep, node, gfp);
936 	if (ret)
937 		goto fail;
938 
939 	n = get_node(cachep, node);
940 	spin_lock_irq(&n->list_lock);
941 	if (n->shared && force_change) {
942 		free_block(cachep, n->shared->entry,
943 				n->shared->avail, node, &list);
944 		n->shared->avail = 0;
945 	}
946 
947 	if (!n->shared || force_change) {
948 		old_shared = n->shared;
949 		n->shared = new_shared;
950 		new_shared = NULL;
951 	}
952 
953 	if (!n->alien) {
954 		n->alien = new_alien;
955 		new_alien = NULL;
956 	}
957 
958 	spin_unlock_irq(&n->list_lock);
959 	slabs_destroy(cachep, &list);
960 
961 	/*
962 	 * To protect lockless access to n->shared during irq disabled context.
963 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 	 * guaranteed to be valid until irq is re-enabled, because it will be
965 	 * freed after synchronize_sched().
966 	 */
967 	if (old_shared && force_change)
968 		synchronize_sched();
969 
970 fail:
971 	kfree(old_shared);
972 	kfree(new_shared);
973 	free_alien_cache(new_alien);
974 
975 	return ret;
976 }
977 
978 #ifdef CONFIG_SMP
979 
980 static void cpuup_canceled(long cpu)
981 {
982 	struct kmem_cache *cachep;
983 	struct kmem_cache_node *n = NULL;
984 	int node = cpu_to_mem(cpu);
985 	const struct cpumask *mask = cpumask_of_node(node);
986 
987 	list_for_each_entry(cachep, &slab_caches, list) {
988 		struct array_cache *nc;
989 		struct array_cache *shared;
990 		struct alien_cache **alien;
991 		LIST_HEAD(list);
992 
993 		n = get_node(cachep, node);
994 		if (!n)
995 			continue;
996 
997 		spin_lock_irq(&n->list_lock);
998 
999 		/* Free limit for this kmem_cache_node */
1000 		n->free_limit -= cachep->batchcount;
1001 
1002 		/* cpu is dead; no one can alloc from it. */
1003 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 		if (nc) {
1005 			free_block(cachep, nc->entry, nc->avail, node, &list);
1006 			nc->avail = 0;
1007 		}
1008 
1009 		if (!cpumask_empty(mask)) {
1010 			spin_unlock_irq(&n->list_lock);
1011 			goto free_slab;
1012 		}
1013 
1014 		shared = n->shared;
1015 		if (shared) {
1016 			free_block(cachep, shared->entry,
1017 				   shared->avail, node, &list);
1018 			n->shared = NULL;
1019 		}
1020 
1021 		alien = n->alien;
1022 		n->alien = NULL;
1023 
1024 		spin_unlock_irq(&n->list_lock);
1025 
1026 		kfree(shared);
1027 		if (alien) {
1028 			drain_alien_cache(cachep, alien);
1029 			free_alien_cache(alien);
1030 		}
1031 
1032 free_slab:
1033 		slabs_destroy(cachep, &list);
1034 	}
1035 	/*
1036 	 * In the previous loop, all the objects were freed to
1037 	 * the respective cache's slabs,  now we can go ahead and
1038 	 * shrink each nodelist to its limit.
1039 	 */
1040 	list_for_each_entry(cachep, &slab_caches, list) {
1041 		n = get_node(cachep, node);
1042 		if (!n)
1043 			continue;
1044 		drain_freelist(cachep, n, INT_MAX);
1045 	}
1046 }
1047 
1048 static int cpuup_prepare(long cpu)
1049 {
1050 	struct kmem_cache *cachep;
1051 	int node = cpu_to_mem(cpu);
1052 	int err;
1053 
1054 	/*
1055 	 * We need to do this right in the beginning since
1056 	 * alloc_arraycache's are going to use this list.
1057 	 * kmalloc_node allows us to add the slab to the right
1058 	 * kmem_cache_node and not this cpu's kmem_cache_node
1059 	 */
1060 	err = init_cache_node_node(node);
1061 	if (err < 0)
1062 		goto bad;
1063 
1064 	/*
1065 	 * Now we can go ahead with allocating the shared arrays and
1066 	 * array caches
1067 	 */
1068 	list_for_each_entry(cachep, &slab_caches, list) {
1069 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 		if (err)
1071 			goto bad;
1072 	}
1073 
1074 	return 0;
1075 bad:
1076 	cpuup_canceled(cpu);
1077 	return -ENOMEM;
1078 }
1079 
1080 int slab_prepare_cpu(unsigned int cpu)
1081 {
1082 	int err;
1083 
1084 	mutex_lock(&slab_mutex);
1085 	err = cpuup_prepare(cpu);
1086 	mutex_unlock(&slab_mutex);
1087 	return err;
1088 }
1089 
1090 /*
1091  * This is called for a failed online attempt and for a successful
1092  * offline.
1093  *
1094  * Even if all the cpus of a node are down, we don't free the
1095  * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096  * a kmalloc allocation from another cpu for memory from the node of
1097  * the cpu going down.  The list3 structure is usually allocated from
1098  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099  */
1100 int slab_dead_cpu(unsigned int cpu)
1101 {
1102 	mutex_lock(&slab_mutex);
1103 	cpuup_canceled(cpu);
1104 	mutex_unlock(&slab_mutex);
1105 	return 0;
1106 }
1107 #endif
1108 
1109 static int slab_online_cpu(unsigned int cpu)
1110 {
1111 	start_cpu_timer(cpu);
1112 	return 0;
1113 }
1114 
1115 static int slab_offline_cpu(unsigned int cpu)
1116 {
1117 	/*
1118 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 	 * that if cache_reap() is invoked it cannot do anything
1120 	 * expensive but will only modify reap_work and reschedule the
1121 	 * timer.
1122 	 */
1123 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 	/* Now the cache_reaper is guaranteed to be not running. */
1125 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 	return 0;
1127 }
1128 
1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130 /*
1131  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132  * Returns -EBUSY if all objects cannot be drained so that the node is not
1133  * removed.
1134  *
1135  * Must hold slab_mutex.
1136  */
1137 static int __meminit drain_cache_node_node(int node)
1138 {
1139 	struct kmem_cache *cachep;
1140 	int ret = 0;
1141 
1142 	list_for_each_entry(cachep, &slab_caches, list) {
1143 		struct kmem_cache_node *n;
1144 
1145 		n = get_node(cachep, node);
1146 		if (!n)
1147 			continue;
1148 
1149 		drain_freelist(cachep, n, INT_MAX);
1150 
1151 		if (!list_empty(&n->slabs_full) ||
1152 		    !list_empty(&n->slabs_partial)) {
1153 			ret = -EBUSY;
1154 			break;
1155 		}
1156 	}
1157 	return ret;
1158 }
1159 
1160 static int __meminit slab_memory_callback(struct notifier_block *self,
1161 					unsigned long action, void *arg)
1162 {
1163 	struct memory_notify *mnb = arg;
1164 	int ret = 0;
1165 	int nid;
1166 
1167 	nid = mnb->status_change_nid;
1168 	if (nid < 0)
1169 		goto out;
1170 
1171 	switch (action) {
1172 	case MEM_GOING_ONLINE:
1173 		mutex_lock(&slab_mutex);
1174 		ret = init_cache_node_node(nid);
1175 		mutex_unlock(&slab_mutex);
1176 		break;
1177 	case MEM_GOING_OFFLINE:
1178 		mutex_lock(&slab_mutex);
1179 		ret = drain_cache_node_node(nid);
1180 		mutex_unlock(&slab_mutex);
1181 		break;
1182 	case MEM_ONLINE:
1183 	case MEM_OFFLINE:
1184 	case MEM_CANCEL_ONLINE:
1185 	case MEM_CANCEL_OFFLINE:
1186 		break;
1187 	}
1188 out:
1189 	return notifier_from_errno(ret);
1190 }
1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192 
1193 /*
1194  * swap the static kmem_cache_node with kmalloced memory
1195  */
1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197 				int nodeid)
1198 {
1199 	struct kmem_cache_node *ptr;
1200 
1201 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 	BUG_ON(!ptr);
1203 
1204 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 	/*
1206 	 * Do not assume that spinlocks can be initialized via memcpy:
1207 	 */
1208 	spin_lock_init(&ptr->list_lock);
1209 
1210 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211 	cachep->node[nodeid] = ptr;
1212 }
1213 
1214 /*
1215  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216  * size of kmem_cache_node.
1217  */
1218 static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 {
1220 	int node;
1221 
1222 	for_each_online_node(node) {
1223 		cachep->node[node] = &init_kmem_cache_node[index + node];
1224 		cachep->node[node]->next_reap = jiffies +
1225 		    REAPTIMEOUT_NODE +
1226 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 	}
1228 }
1229 
1230 /*
1231  * Initialisation.  Called after the page allocator have been initialised and
1232  * before smp_init().
1233  */
1234 void __init kmem_cache_init(void)
1235 {
1236 	int i;
1237 
1238 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 					sizeof(struct rcu_head));
1240 	kmem_cache = &kmem_cache_boot;
1241 
1242 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 		use_alien_caches = 0;
1244 
1245 	for (i = 0; i < NUM_INIT_LISTS; i++)
1246 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1247 
1248 	/*
1249 	 * Fragmentation resistance on low memory - only use bigger
1250 	 * page orders on machines with more than 32MB of memory if
1251 	 * not overridden on the command line.
1252 	 */
1253 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254 		slab_max_order = SLAB_MAX_ORDER_HI;
1255 
1256 	/* Bootstrap is tricky, because several objects are allocated
1257 	 * from caches that do not exist yet:
1258 	 * 1) initialize the kmem_cache cache: it contains the struct
1259 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1260 	 *    kmem_cache is statically allocated.
1261 	 *    Initially an __init data area is used for the head array and the
1262 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1263 	 *    array at the end of the bootstrap.
1264 	 * 2) Create the first kmalloc cache.
1265 	 *    The struct kmem_cache for the new cache is allocated normally.
1266 	 *    An __init data area is used for the head array.
1267 	 * 3) Create the remaining kmalloc caches, with minimally sized
1268 	 *    head arrays.
1269 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1270 	 *    kmalloc cache with kmalloc allocated arrays.
1271 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272 	 *    the other cache's with kmalloc allocated memory.
1273 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274 	 */
1275 
1276 	/* 1) create the kmem_cache */
1277 
1278 	/*
1279 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280 	 */
1281 	create_boot_cache(kmem_cache, "kmem_cache",
1282 		offsetof(struct kmem_cache, node) +
1283 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1284 				  SLAB_HWCACHE_ALIGN);
1285 	list_add(&kmem_cache->list, &slab_caches);
1286 	slab_state = PARTIAL;
1287 
1288 	/*
1289 	 * Initialize the caches that provide memory for the  kmem_cache_node
1290 	 * structures first.  Without this, further allocations will bug.
1291 	 */
1292 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1293 				kmalloc_info[INDEX_NODE].name,
1294 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1295 	slab_state = PARTIAL_NODE;
1296 	setup_kmalloc_cache_index_table();
1297 
1298 	slab_early_init = 0;
1299 
1300 	/* 5) Replace the bootstrap kmem_cache_node */
1301 	{
1302 		int nid;
1303 
1304 		for_each_online_node(nid) {
1305 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306 
1307 			init_list(kmalloc_caches[INDEX_NODE],
1308 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309 		}
1310 	}
1311 
1312 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313 }
1314 
1315 void __init kmem_cache_init_late(void)
1316 {
1317 	struct kmem_cache *cachep;
1318 
1319 	slab_state = UP;
1320 
1321 	/* 6) resize the head arrays to their final sizes */
1322 	mutex_lock(&slab_mutex);
1323 	list_for_each_entry(cachep, &slab_caches, list)
1324 		if (enable_cpucache(cachep, GFP_NOWAIT))
1325 			BUG();
1326 	mutex_unlock(&slab_mutex);
1327 
1328 	/* Done! */
1329 	slab_state = FULL;
1330 
1331 #ifdef CONFIG_NUMA
1332 	/*
1333 	 * Register a memory hotplug callback that initializes and frees
1334 	 * node.
1335 	 */
1336 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337 #endif
1338 
1339 	/*
1340 	 * The reap timers are started later, with a module init call: That part
1341 	 * of the kernel is not yet operational.
1342 	 */
1343 }
1344 
1345 static int __init cpucache_init(void)
1346 {
1347 	int ret;
1348 
1349 	/*
1350 	 * Register the timers that return unneeded pages to the page allocator
1351 	 */
1352 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353 				slab_online_cpu, slab_offline_cpu);
1354 	WARN_ON(ret < 0);
1355 
1356 	/* Done! */
1357 	slab_state = FULL;
1358 	return 0;
1359 }
1360 __initcall(cpucache_init);
1361 
1362 static noinline void
1363 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1364 {
1365 #if DEBUG
1366 	struct kmem_cache_node *n;
1367 	unsigned long flags;
1368 	int node;
1369 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1370 				      DEFAULT_RATELIMIT_BURST);
1371 
1372 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1373 		return;
1374 
1375 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1376 		nodeid, gfpflags, &gfpflags);
1377 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1378 		cachep->name, cachep->size, cachep->gfporder);
1379 
1380 	for_each_kmem_cache_node(cachep, node, n) {
1381 		unsigned long total_slabs, free_slabs, free_objs;
1382 
1383 		spin_lock_irqsave(&n->list_lock, flags);
1384 		total_slabs = n->total_slabs;
1385 		free_slabs = n->free_slabs;
1386 		free_objs = n->free_objects;
1387 		spin_unlock_irqrestore(&n->list_lock, flags);
1388 
1389 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1390 			node, total_slabs - free_slabs, total_slabs,
1391 			(total_slabs * cachep->num) - free_objs,
1392 			total_slabs * cachep->num);
1393 	}
1394 #endif
1395 }
1396 
1397 /*
1398  * Interface to system's page allocator. No need to hold the
1399  * kmem_cache_node ->list_lock.
1400  *
1401  * If we requested dmaable memory, we will get it. Even if we
1402  * did not request dmaable memory, we might get it, but that
1403  * would be relatively rare and ignorable.
1404  */
1405 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1406 								int nodeid)
1407 {
1408 	struct page *page;
1409 	int nr_pages;
1410 
1411 	flags |= cachep->allocflags;
1412 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1413 		flags |= __GFP_RECLAIMABLE;
1414 
1415 	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1416 	if (!page) {
1417 		slab_out_of_memory(cachep, flags, nodeid);
1418 		return NULL;
1419 	}
1420 
1421 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1422 		__free_pages(page, cachep->gfporder);
1423 		return NULL;
1424 	}
1425 
1426 	nr_pages = (1 << cachep->gfporder);
1427 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1428 		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1429 	else
1430 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1431 
1432 	__SetPageSlab(page);
1433 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1434 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1435 		SetPageSlabPfmemalloc(page);
1436 
1437 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1438 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1439 
1440 		if (cachep->ctor)
1441 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1442 		else
1443 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1444 	}
1445 
1446 	return page;
1447 }
1448 
1449 /*
1450  * Interface to system's page release.
1451  */
1452 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1453 {
1454 	int order = cachep->gfporder;
1455 	unsigned long nr_freed = (1 << order);
1456 
1457 	kmemcheck_free_shadow(page, order);
1458 
1459 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1460 		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1461 	else
1462 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1463 
1464 	BUG_ON(!PageSlab(page));
1465 	__ClearPageSlabPfmemalloc(page);
1466 	__ClearPageSlab(page);
1467 	page_mapcount_reset(page);
1468 	page->mapping = NULL;
1469 
1470 	if (current->reclaim_state)
1471 		current->reclaim_state->reclaimed_slab += nr_freed;
1472 	memcg_uncharge_slab(page, order, cachep);
1473 	__free_pages(page, order);
1474 }
1475 
1476 static void kmem_rcu_free(struct rcu_head *head)
1477 {
1478 	struct kmem_cache *cachep;
1479 	struct page *page;
1480 
1481 	page = container_of(head, struct page, rcu_head);
1482 	cachep = page->slab_cache;
1483 
1484 	kmem_freepages(cachep, page);
1485 }
1486 
1487 #if DEBUG
1488 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1489 {
1490 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1491 		(cachep->size % PAGE_SIZE) == 0)
1492 		return true;
1493 
1494 	return false;
1495 }
1496 
1497 #ifdef CONFIG_DEBUG_PAGEALLOC
1498 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1499 			    unsigned long caller)
1500 {
1501 	int size = cachep->object_size;
1502 
1503 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1504 
1505 	if (size < 5 * sizeof(unsigned long))
1506 		return;
1507 
1508 	*addr++ = 0x12345678;
1509 	*addr++ = caller;
1510 	*addr++ = smp_processor_id();
1511 	size -= 3 * sizeof(unsigned long);
1512 	{
1513 		unsigned long *sptr = &caller;
1514 		unsigned long svalue;
1515 
1516 		while (!kstack_end(sptr)) {
1517 			svalue = *sptr++;
1518 			if (kernel_text_address(svalue)) {
1519 				*addr++ = svalue;
1520 				size -= sizeof(unsigned long);
1521 				if (size <= sizeof(unsigned long))
1522 					break;
1523 			}
1524 		}
1525 
1526 	}
1527 	*addr++ = 0x87654321;
1528 }
1529 
1530 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1531 				int map, unsigned long caller)
1532 {
1533 	if (!is_debug_pagealloc_cache(cachep))
1534 		return;
1535 
1536 	if (caller)
1537 		store_stackinfo(cachep, objp, caller);
1538 
1539 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1540 }
1541 
1542 #else
1543 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1544 				int map, unsigned long caller) {}
1545 
1546 #endif
1547 
1548 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1549 {
1550 	int size = cachep->object_size;
1551 	addr = &((char *)addr)[obj_offset(cachep)];
1552 
1553 	memset(addr, val, size);
1554 	*(unsigned char *)(addr + size - 1) = POISON_END;
1555 }
1556 
1557 static void dump_line(char *data, int offset, int limit)
1558 {
1559 	int i;
1560 	unsigned char error = 0;
1561 	int bad_count = 0;
1562 
1563 	pr_err("%03x: ", offset);
1564 	for (i = 0; i < limit; i++) {
1565 		if (data[offset + i] != POISON_FREE) {
1566 			error = data[offset + i];
1567 			bad_count++;
1568 		}
1569 	}
1570 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1571 			&data[offset], limit, 1);
1572 
1573 	if (bad_count == 1) {
1574 		error ^= POISON_FREE;
1575 		if (!(error & (error - 1))) {
1576 			pr_err("Single bit error detected. Probably bad RAM.\n");
1577 #ifdef CONFIG_X86
1578 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1579 #else
1580 			pr_err("Run a memory test tool.\n");
1581 #endif
1582 		}
1583 	}
1584 }
1585 #endif
1586 
1587 #if DEBUG
1588 
1589 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1590 {
1591 	int i, size;
1592 	char *realobj;
1593 
1594 	if (cachep->flags & SLAB_RED_ZONE) {
1595 		pr_err("Redzone: 0x%llx/0x%llx\n",
1596 		       *dbg_redzone1(cachep, objp),
1597 		       *dbg_redzone2(cachep, objp));
1598 	}
1599 
1600 	if (cachep->flags & SLAB_STORE_USER) {
1601 		pr_err("Last user: [<%p>](%pSR)\n",
1602 		       *dbg_userword(cachep, objp),
1603 		       *dbg_userword(cachep, objp));
1604 	}
1605 	realobj = (char *)objp + obj_offset(cachep);
1606 	size = cachep->object_size;
1607 	for (i = 0; i < size && lines; i += 16, lines--) {
1608 		int limit;
1609 		limit = 16;
1610 		if (i + limit > size)
1611 			limit = size - i;
1612 		dump_line(realobj, i, limit);
1613 	}
1614 }
1615 
1616 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1617 {
1618 	char *realobj;
1619 	int size, i;
1620 	int lines = 0;
1621 
1622 	if (is_debug_pagealloc_cache(cachep))
1623 		return;
1624 
1625 	realobj = (char *)objp + obj_offset(cachep);
1626 	size = cachep->object_size;
1627 
1628 	for (i = 0; i < size; i++) {
1629 		char exp = POISON_FREE;
1630 		if (i == size - 1)
1631 			exp = POISON_END;
1632 		if (realobj[i] != exp) {
1633 			int limit;
1634 			/* Mismatch ! */
1635 			/* Print header */
1636 			if (lines == 0) {
1637 				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1638 				       print_tainted(), cachep->name,
1639 				       realobj, size);
1640 				print_objinfo(cachep, objp, 0);
1641 			}
1642 			/* Hexdump the affected line */
1643 			i = (i / 16) * 16;
1644 			limit = 16;
1645 			if (i + limit > size)
1646 				limit = size - i;
1647 			dump_line(realobj, i, limit);
1648 			i += 16;
1649 			lines++;
1650 			/* Limit to 5 lines */
1651 			if (lines > 5)
1652 				break;
1653 		}
1654 	}
1655 	if (lines != 0) {
1656 		/* Print some data about the neighboring objects, if they
1657 		 * exist:
1658 		 */
1659 		struct page *page = virt_to_head_page(objp);
1660 		unsigned int objnr;
1661 
1662 		objnr = obj_to_index(cachep, page, objp);
1663 		if (objnr) {
1664 			objp = index_to_obj(cachep, page, objnr - 1);
1665 			realobj = (char *)objp + obj_offset(cachep);
1666 			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1667 			print_objinfo(cachep, objp, 2);
1668 		}
1669 		if (objnr + 1 < cachep->num) {
1670 			objp = index_to_obj(cachep, page, objnr + 1);
1671 			realobj = (char *)objp + obj_offset(cachep);
1672 			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1673 			print_objinfo(cachep, objp, 2);
1674 		}
1675 	}
1676 }
1677 #endif
1678 
1679 #if DEBUG
1680 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1681 						struct page *page)
1682 {
1683 	int i;
1684 
1685 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1686 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1687 			POISON_FREE);
1688 	}
1689 
1690 	for (i = 0; i < cachep->num; i++) {
1691 		void *objp = index_to_obj(cachep, page, i);
1692 
1693 		if (cachep->flags & SLAB_POISON) {
1694 			check_poison_obj(cachep, objp);
1695 			slab_kernel_map(cachep, objp, 1, 0);
1696 		}
1697 		if (cachep->flags & SLAB_RED_ZONE) {
1698 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1699 				slab_error(cachep, "start of a freed object was overwritten");
1700 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1701 				slab_error(cachep, "end of a freed object was overwritten");
1702 		}
1703 	}
1704 }
1705 #else
1706 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1707 						struct page *page)
1708 {
1709 }
1710 #endif
1711 
1712 /**
1713  * slab_destroy - destroy and release all objects in a slab
1714  * @cachep: cache pointer being destroyed
1715  * @page: page pointer being destroyed
1716  *
1717  * Destroy all the objs in a slab page, and release the mem back to the system.
1718  * Before calling the slab page must have been unlinked from the cache. The
1719  * kmem_cache_node ->list_lock is not held/needed.
1720  */
1721 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1722 {
1723 	void *freelist;
1724 
1725 	freelist = page->freelist;
1726 	slab_destroy_debugcheck(cachep, page);
1727 	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1728 		call_rcu(&page->rcu_head, kmem_rcu_free);
1729 	else
1730 		kmem_freepages(cachep, page);
1731 
1732 	/*
1733 	 * From now on, we don't use freelist
1734 	 * although actual page can be freed in rcu context
1735 	 */
1736 	if (OFF_SLAB(cachep))
1737 		kmem_cache_free(cachep->freelist_cache, freelist);
1738 }
1739 
1740 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1741 {
1742 	struct page *page, *n;
1743 
1744 	list_for_each_entry_safe(page, n, list, lru) {
1745 		list_del(&page->lru);
1746 		slab_destroy(cachep, page);
1747 	}
1748 }
1749 
1750 /**
1751  * calculate_slab_order - calculate size (page order) of slabs
1752  * @cachep: pointer to the cache that is being created
1753  * @size: size of objects to be created in this cache.
1754  * @flags: slab allocation flags
1755  *
1756  * Also calculates the number of objects per slab.
1757  *
1758  * This could be made much more intelligent.  For now, try to avoid using
1759  * high order pages for slabs.  When the gfp() functions are more friendly
1760  * towards high-order requests, this should be changed.
1761  */
1762 static size_t calculate_slab_order(struct kmem_cache *cachep,
1763 				size_t size, unsigned long flags)
1764 {
1765 	size_t left_over = 0;
1766 	int gfporder;
1767 
1768 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1769 		unsigned int num;
1770 		size_t remainder;
1771 
1772 		num = cache_estimate(gfporder, size, flags, &remainder);
1773 		if (!num)
1774 			continue;
1775 
1776 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1777 		if (num > SLAB_OBJ_MAX_NUM)
1778 			break;
1779 
1780 		if (flags & CFLGS_OFF_SLAB) {
1781 			struct kmem_cache *freelist_cache;
1782 			size_t freelist_size;
1783 
1784 			freelist_size = num * sizeof(freelist_idx_t);
1785 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1786 			if (!freelist_cache)
1787 				continue;
1788 
1789 			/*
1790 			 * Needed to avoid possible looping condition
1791 			 * in cache_grow_begin()
1792 			 */
1793 			if (OFF_SLAB(freelist_cache))
1794 				continue;
1795 
1796 			/* check if off slab has enough benefit */
1797 			if (freelist_cache->size > cachep->size / 2)
1798 				continue;
1799 		}
1800 
1801 		/* Found something acceptable - save it away */
1802 		cachep->num = num;
1803 		cachep->gfporder = gfporder;
1804 		left_over = remainder;
1805 
1806 		/*
1807 		 * A VFS-reclaimable slab tends to have most allocations
1808 		 * as GFP_NOFS and we really don't want to have to be allocating
1809 		 * higher-order pages when we are unable to shrink dcache.
1810 		 */
1811 		if (flags & SLAB_RECLAIM_ACCOUNT)
1812 			break;
1813 
1814 		/*
1815 		 * Large number of objects is good, but very large slabs are
1816 		 * currently bad for the gfp()s.
1817 		 */
1818 		if (gfporder >= slab_max_order)
1819 			break;
1820 
1821 		/*
1822 		 * Acceptable internal fragmentation?
1823 		 */
1824 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1825 			break;
1826 	}
1827 	return left_over;
1828 }
1829 
1830 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1831 		struct kmem_cache *cachep, int entries, int batchcount)
1832 {
1833 	int cpu;
1834 	size_t size;
1835 	struct array_cache __percpu *cpu_cache;
1836 
1837 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1838 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1839 
1840 	if (!cpu_cache)
1841 		return NULL;
1842 
1843 	for_each_possible_cpu(cpu) {
1844 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1845 				entries, batchcount);
1846 	}
1847 
1848 	return cpu_cache;
1849 }
1850 
1851 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1852 {
1853 	if (slab_state >= FULL)
1854 		return enable_cpucache(cachep, gfp);
1855 
1856 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1857 	if (!cachep->cpu_cache)
1858 		return 1;
1859 
1860 	if (slab_state == DOWN) {
1861 		/* Creation of first cache (kmem_cache). */
1862 		set_up_node(kmem_cache, CACHE_CACHE);
1863 	} else if (slab_state == PARTIAL) {
1864 		/* For kmem_cache_node */
1865 		set_up_node(cachep, SIZE_NODE);
1866 	} else {
1867 		int node;
1868 
1869 		for_each_online_node(node) {
1870 			cachep->node[node] = kmalloc_node(
1871 				sizeof(struct kmem_cache_node), gfp, node);
1872 			BUG_ON(!cachep->node[node]);
1873 			kmem_cache_node_init(cachep->node[node]);
1874 		}
1875 	}
1876 
1877 	cachep->node[numa_mem_id()]->next_reap =
1878 			jiffies + REAPTIMEOUT_NODE +
1879 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1880 
1881 	cpu_cache_get(cachep)->avail = 0;
1882 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1883 	cpu_cache_get(cachep)->batchcount = 1;
1884 	cpu_cache_get(cachep)->touched = 0;
1885 	cachep->batchcount = 1;
1886 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1887 	return 0;
1888 }
1889 
1890 unsigned long kmem_cache_flags(unsigned long object_size,
1891 	unsigned long flags, const char *name,
1892 	void (*ctor)(void *))
1893 {
1894 	return flags;
1895 }
1896 
1897 struct kmem_cache *
1898 __kmem_cache_alias(const char *name, size_t size, size_t align,
1899 		   unsigned long flags, void (*ctor)(void *))
1900 {
1901 	struct kmem_cache *cachep;
1902 
1903 	cachep = find_mergeable(size, align, flags, name, ctor);
1904 	if (cachep) {
1905 		cachep->refcount++;
1906 
1907 		/*
1908 		 * Adjust the object sizes so that we clear
1909 		 * the complete object on kzalloc.
1910 		 */
1911 		cachep->object_size = max_t(int, cachep->object_size, size);
1912 	}
1913 	return cachep;
1914 }
1915 
1916 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1917 			size_t size, unsigned long flags)
1918 {
1919 	size_t left;
1920 
1921 	cachep->num = 0;
1922 
1923 	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1924 		return false;
1925 
1926 	left = calculate_slab_order(cachep, size,
1927 			flags | CFLGS_OBJFREELIST_SLAB);
1928 	if (!cachep->num)
1929 		return false;
1930 
1931 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1932 		return false;
1933 
1934 	cachep->colour = left / cachep->colour_off;
1935 
1936 	return true;
1937 }
1938 
1939 static bool set_off_slab_cache(struct kmem_cache *cachep,
1940 			size_t size, unsigned long flags)
1941 {
1942 	size_t left;
1943 
1944 	cachep->num = 0;
1945 
1946 	/*
1947 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1948 	 * to avoid recursive calls into kmemleak.
1949 	 */
1950 	if (flags & SLAB_NOLEAKTRACE)
1951 		return false;
1952 
1953 	/*
1954 	 * Size is large, assume best to place the slab management obj
1955 	 * off-slab (should allow better packing of objs).
1956 	 */
1957 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1958 	if (!cachep->num)
1959 		return false;
1960 
1961 	/*
1962 	 * If the slab has been placed off-slab, and we have enough space then
1963 	 * move it on-slab. This is at the expense of any extra colouring.
1964 	 */
1965 	if (left >= cachep->num * sizeof(freelist_idx_t))
1966 		return false;
1967 
1968 	cachep->colour = left / cachep->colour_off;
1969 
1970 	return true;
1971 }
1972 
1973 static bool set_on_slab_cache(struct kmem_cache *cachep,
1974 			size_t size, unsigned long flags)
1975 {
1976 	size_t left;
1977 
1978 	cachep->num = 0;
1979 
1980 	left = calculate_slab_order(cachep, size, flags);
1981 	if (!cachep->num)
1982 		return false;
1983 
1984 	cachep->colour = left / cachep->colour_off;
1985 
1986 	return true;
1987 }
1988 
1989 /**
1990  * __kmem_cache_create - Create a cache.
1991  * @cachep: cache management descriptor
1992  * @flags: SLAB flags
1993  *
1994  * Returns a ptr to the cache on success, NULL on failure.
1995  * Cannot be called within a int, but can be interrupted.
1996  * The @ctor is run when new pages are allocated by the cache.
1997  *
1998  * The flags are
1999  *
2000  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2001  * to catch references to uninitialised memory.
2002  *
2003  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2004  * for buffer overruns.
2005  *
2006  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2007  * cacheline.  This can be beneficial if you're counting cycles as closely
2008  * as davem.
2009  */
2010 int
2011 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2012 {
2013 	size_t ralign = BYTES_PER_WORD;
2014 	gfp_t gfp;
2015 	int err;
2016 	size_t size = cachep->size;
2017 
2018 #if DEBUG
2019 #if FORCED_DEBUG
2020 	/*
2021 	 * Enable redzoning and last user accounting, except for caches with
2022 	 * large objects, if the increased size would increase the object size
2023 	 * above the next power of two: caches with object sizes just above a
2024 	 * power of two have a significant amount of internal fragmentation.
2025 	 */
2026 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2027 						2 * sizeof(unsigned long long)))
2028 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2029 	if (!(flags & SLAB_TYPESAFE_BY_RCU))
2030 		flags |= SLAB_POISON;
2031 #endif
2032 #endif
2033 
2034 	/*
2035 	 * Check that size is in terms of words.  This is needed to avoid
2036 	 * unaligned accesses for some archs when redzoning is used, and makes
2037 	 * sure any on-slab bufctl's are also correctly aligned.
2038 	 */
2039 	size = ALIGN(size, BYTES_PER_WORD);
2040 
2041 	if (flags & SLAB_RED_ZONE) {
2042 		ralign = REDZONE_ALIGN;
2043 		/* If redzoning, ensure that the second redzone is suitably
2044 		 * aligned, by adjusting the object size accordingly. */
2045 		size = ALIGN(size, REDZONE_ALIGN);
2046 	}
2047 
2048 	/* 3) caller mandated alignment */
2049 	if (ralign < cachep->align) {
2050 		ralign = cachep->align;
2051 	}
2052 	/* disable debug if necessary */
2053 	if (ralign > __alignof__(unsigned long long))
2054 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2055 	/*
2056 	 * 4) Store it.
2057 	 */
2058 	cachep->align = ralign;
2059 	cachep->colour_off = cache_line_size();
2060 	/* Offset must be a multiple of the alignment. */
2061 	if (cachep->colour_off < cachep->align)
2062 		cachep->colour_off = cachep->align;
2063 
2064 	if (slab_is_available())
2065 		gfp = GFP_KERNEL;
2066 	else
2067 		gfp = GFP_NOWAIT;
2068 
2069 #if DEBUG
2070 
2071 	/*
2072 	 * Both debugging options require word-alignment which is calculated
2073 	 * into align above.
2074 	 */
2075 	if (flags & SLAB_RED_ZONE) {
2076 		/* add space for red zone words */
2077 		cachep->obj_offset += sizeof(unsigned long long);
2078 		size += 2 * sizeof(unsigned long long);
2079 	}
2080 	if (flags & SLAB_STORE_USER) {
2081 		/* user store requires one word storage behind the end of
2082 		 * the real object. But if the second red zone needs to be
2083 		 * aligned to 64 bits, we must allow that much space.
2084 		 */
2085 		if (flags & SLAB_RED_ZONE)
2086 			size += REDZONE_ALIGN;
2087 		else
2088 			size += BYTES_PER_WORD;
2089 	}
2090 #endif
2091 
2092 	kasan_cache_create(cachep, &size, &flags);
2093 
2094 	size = ALIGN(size, cachep->align);
2095 	/*
2096 	 * We should restrict the number of objects in a slab to implement
2097 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2098 	 */
2099 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2100 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2101 
2102 #if DEBUG
2103 	/*
2104 	 * To activate debug pagealloc, off-slab management is necessary
2105 	 * requirement. In early phase of initialization, small sized slab
2106 	 * doesn't get initialized so it would not be possible. So, we need
2107 	 * to check size >= 256. It guarantees that all necessary small
2108 	 * sized slab is initialized in current slab initialization sequence.
2109 	 */
2110 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2111 		size >= 256 && cachep->object_size > cache_line_size()) {
2112 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2113 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2114 
2115 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2116 				flags |= CFLGS_OFF_SLAB;
2117 				cachep->obj_offset += tmp_size - size;
2118 				size = tmp_size;
2119 				goto done;
2120 			}
2121 		}
2122 	}
2123 #endif
2124 
2125 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2126 		flags |= CFLGS_OBJFREELIST_SLAB;
2127 		goto done;
2128 	}
2129 
2130 	if (set_off_slab_cache(cachep, size, flags)) {
2131 		flags |= CFLGS_OFF_SLAB;
2132 		goto done;
2133 	}
2134 
2135 	if (set_on_slab_cache(cachep, size, flags))
2136 		goto done;
2137 
2138 	return -E2BIG;
2139 
2140 done:
2141 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2142 	cachep->flags = flags;
2143 	cachep->allocflags = __GFP_COMP;
2144 	if (flags & SLAB_CACHE_DMA)
2145 		cachep->allocflags |= GFP_DMA;
2146 	cachep->size = size;
2147 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2148 
2149 #if DEBUG
2150 	/*
2151 	 * If we're going to use the generic kernel_map_pages()
2152 	 * poisoning, then it's going to smash the contents of
2153 	 * the redzone and userword anyhow, so switch them off.
2154 	 */
2155 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2156 		(cachep->flags & SLAB_POISON) &&
2157 		is_debug_pagealloc_cache(cachep))
2158 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2159 #endif
2160 
2161 	if (OFF_SLAB(cachep)) {
2162 		cachep->freelist_cache =
2163 			kmalloc_slab(cachep->freelist_size, 0u);
2164 	}
2165 
2166 	err = setup_cpu_cache(cachep, gfp);
2167 	if (err) {
2168 		__kmem_cache_release(cachep);
2169 		return err;
2170 	}
2171 
2172 	return 0;
2173 }
2174 
2175 #if DEBUG
2176 static void check_irq_off(void)
2177 {
2178 	BUG_ON(!irqs_disabled());
2179 }
2180 
2181 static void check_irq_on(void)
2182 {
2183 	BUG_ON(irqs_disabled());
2184 }
2185 
2186 static void check_mutex_acquired(void)
2187 {
2188 	BUG_ON(!mutex_is_locked(&slab_mutex));
2189 }
2190 
2191 static void check_spinlock_acquired(struct kmem_cache *cachep)
2192 {
2193 #ifdef CONFIG_SMP
2194 	check_irq_off();
2195 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2196 #endif
2197 }
2198 
2199 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2200 {
2201 #ifdef CONFIG_SMP
2202 	check_irq_off();
2203 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2204 #endif
2205 }
2206 
2207 #else
2208 #define check_irq_off()	do { } while(0)
2209 #define check_irq_on()	do { } while(0)
2210 #define check_mutex_acquired()	do { } while(0)
2211 #define check_spinlock_acquired(x) do { } while(0)
2212 #define check_spinlock_acquired_node(x, y) do { } while(0)
2213 #endif
2214 
2215 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2216 				int node, bool free_all, struct list_head *list)
2217 {
2218 	int tofree;
2219 
2220 	if (!ac || !ac->avail)
2221 		return;
2222 
2223 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2224 	if (tofree > ac->avail)
2225 		tofree = (ac->avail + 1) / 2;
2226 
2227 	free_block(cachep, ac->entry, tofree, node, list);
2228 	ac->avail -= tofree;
2229 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2230 }
2231 
2232 static void do_drain(void *arg)
2233 {
2234 	struct kmem_cache *cachep = arg;
2235 	struct array_cache *ac;
2236 	int node = numa_mem_id();
2237 	struct kmem_cache_node *n;
2238 	LIST_HEAD(list);
2239 
2240 	check_irq_off();
2241 	ac = cpu_cache_get(cachep);
2242 	n = get_node(cachep, node);
2243 	spin_lock(&n->list_lock);
2244 	free_block(cachep, ac->entry, ac->avail, node, &list);
2245 	spin_unlock(&n->list_lock);
2246 	slabs_destroy(cachep, &list);
2247 	ac->avail = 0;
2248 }
2249 
2250 static void drain_cpu_caches(struct kmem_cache *cachep)
2251 {
2252 	struct kmem_cache_node *n;
2253 	int node;
2254 	LIST_HEAD(list);
2255 
2256 	on_each_cpu(do_drain, cachep, 1);
2257 	check_irq_on();
2258 	for_each_kmem_cache_node(cachep, node, n)
2259 		if (n->alien)
2260 			drain_alien_cache(cachep, n->alien);
2261 
2262 	for_each_kmem_cache_node(cachep, node, n) {
2263 		spin_lock_irq(&n->list_lock);
2264 		drain_array_locked(cachep, n->shared, node, true, &list);
2265 		spin_unlock_irq(&n->list_lock);
2266 
2267 		slabs_destroy(cachep, &list);
2268 	}
2269 }
2270 
2271 /*
2272  * Remove slabs from the list of free slabs.
2273  * Specify the number of slabs to drain in tofree.
2274  *
2275  * Returns the actual number of slabs released.
2276  */
2277 static int drain_freelist(struct kmem_cache *cache,
2278 			struct kmem_cache_node *n, int tofree)
2279 {
2280 	struct list_head *p;
2281 	int nr_freed;
2282 	struct page *page;
2283 
2284 	nr_freed = 0;
2285 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2286 
2287 		spin_lock_irq(&n->list_lock);
2288 		p = n->slabs_free.prev;
2289 		if (p == &n->slabs_free) {
2290 			spin_unlock_irq(&n->list_lock);
2291 			goto out;
2292 		}
2293 
2294 		page = list_entry(p, struct page, lru);
2295 		list_del(&page->lru);
2296 		n->free_slabs--;
2297 		n->total_slabs--;
2298 		/*
2299 		 * Safe to drop the lock. The slab is no longer linked
2300 		 * to the cache.
2301 		 */
2302 		n->free_objects -= cache->num;
2303 		spin_unlock_irq(&n->list_lock);
2304 		slab_destroy(cache, page);
2305 		nr_freed++;
2306 	}
2307 out:
2308 	return nr_freed;
2309 }
2310 
2311 int __kmem_cache_shrink(struct kmem_cache *cachep)
2312 {
2313 	int ret = 0;
2314 	int node;
2315 	struct kmem_cache_node *n;
2316 
2317 	drain_cpu_caches(cachep);
2318 
2319 	check_irq_on();
2320 	for_each_kmem_cache_node(cachep, node, n) {
2321 		drain_freelist(cachep, n, INT_MAX);
2322 
2323 		ret += !list_empty(&n->slabs_full) ||
2324 			!list_empty(&n->slabs_partial);
2325 	}
2326 	return (ret ? 1 : 0);
2327 }
2328 
2329 #ifdef CONFIG_MEMCG
2330 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2331 {
2332 	__kmem_cache_shrink(cachep);
2333 }
2334 #endif
2335 
2336 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2337 {
2338 	return __kmem_cache_shrink(cachep);
2339 }
2340 
2341 void __kmem_cache_release(struct kmem_cache *cachep)
2342 {
2343 	int i;
2344 	struct kmem_cache_node *n;
2345 
2346 	cache_random_seq_destroy(cachep);
2347 
2348 	free_percpu(cachep->cpu_cache);
2349 
2350 	/* NUMA: free the node structures */
2351 	for_each_kmem_cache_node(cachep, i, n) {
2352 		kfree(n->shared);
2353 		free_alien_cache(n->alien);
2354 		kfree(n);
2355 		cachep->node[i] = NULL;
2356 	}
2357 }
2358 
2359 /*
2360  * Get the memory for a slab management obj.
2361  *
2362  * For a slab cache when the slab descriptor is off-slab, the
2363  * slab descriptor can't come from the same cache which is being created,
2364  * Because if it is the case, that means we defer the creation of
2365  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2366  * And we eventually call down to __kmem_cache_create(), which
2367  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2368  * This is a "chicken-and-egg" problem.
2369  *
2370  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2371  * which are all initialized during kmem_cache_init().
2372  */
2373 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2374 				   struct page *page, int colour_off,
2375 				   gfp_t local_flags, int nodeid)
2376 {
2377 	void *freelist;
2378 	void *addr = page_address(page);
2379 
2380 	page->s_mem = addr + colour_off;
2381 	page->active = 0;
2382 
2383 	if (OBJFREELIST_SLAB(cachep))
2384 		freelist = NULL;
2385 	else if (OFF_SLAB(cachep)) {
2386 		/* Slab management obj is off-slab. */
2387 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2388 					      local_flags, nodeid);
2389 		if (!freelist)
2390 			return NULL;
2391 	} else {
2392 		/* We will use last bytes at the slab for freelist */
2393 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2394 				cachep->freelist_size;
2395 	}
2396 
2397 	return freelist;
2398 }
2399 
2400 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2401 {
2402 	return ((freelist_idx_t *)page->freelist)[idx];
2403 }
2404 
2405 static inline void set_free_obj(struct page *page,
2406 					unsigned int idx, freelist_idx_t val)
2407 {
2408 	((freelist_idx_t *)(page->freelist))[idx] = val;
2409 }
2410 
2411 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2412 {
2413 #if DEBUG
2414 	int i;
2415 
2416 	for (i = 0; i < cachep->num; i++) {
2417 		void *objp = index_to_obj(cachep, page, i);
2418 
2419 		if (cachep->flags & SLAB_STORE_USER)
2420 			*dbg_userword(cachep, objp) = NULL;
2421 
2422 		if (cachep->flags & SLAB_RED_ZONE) {
2423 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2424 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2425 		}
2426 		/*
2427 		 * Constructors are not allowed to allocate memory from the same
2428 		 * cache which they are a constructor for.  Otherwise, deadlock.
2429 		 * They must also be threaded.
2430 		 */
2431 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2432 			kasan_unpoison_object_data(cachep,
2433 						   objp + obj_offset(cachep));
2434 			cachep->ctor(objp + obj_offset(cachep));
2435 			kasan_poison_object_data(
2436 				cachep, objp + obj_offset(cachep));
2437 		}
2438 
2439 		if (cachep->flags & SLAB_RED_ZONE) {
2440 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2441 				slab_error(cachep, "constructor overwrote the end of an object");
2442 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2443 				slab_error(cachep, "constructor overwrote the start of an object");
2444 		}
2445 		/* need to poison the objs? */
2446 		if (cachep->flags & SLAB_POISON) {
2447 			poison_obj(cachep, objp, POISON_FREE);
2448 			slab_kernel_map(cachep, objp, 0, 0);
2449 		}
2450 	}
2451 #endif
2452 }
2453 
2454 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2455 /* Hold information during a freelist initialization */
2456 union freelist_init_state {
2457 	struct {
2458 		unsigned int pos;
2459 		unsigned int *list;
2460 		unsigned int count;
2461 	};
2462 	struct rnd_state rnd_state;
2463 };
2464 
2465 /*
2466  * Initialize the state based on the randomization methode available.
2467  * return true if the pre-computed list is available, false otherwize.
2468  */
2469 static bool freelist_state_initialize(union freelist_init_state *state,
2470 				struct kmem_cache *cachep,
2471 				unsigned int count)
2472 {
2473 	bool ret;
2474 	unsigned int rand;
2475 
2476 	/* Use best entropy available to define a random shift */
2477 	rand = get_random_int();
2478 
2479 	/* Use a random state if the pre-computed list is not available */
2480 	if (!cachep->random_seq) {
2481 		prandom_seed_state(&state->rnd_state, rand);
2482 		ret = false;
2483 	} else {
2484 		state->list = cachep->random_seq;
2485 		state->count = count;
2486 		state->pos = rand % count;
2487 		ret = true;
2488 	}
2489 	return ret;
2490 }
2491 
2492 /* Get the next entry on the list and randomize it using a random shift */
2493 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2494 {
2495 	if (state->pos >= state->count)
2496 		state->pos = 0;
2497 	return state->list[state->pos++];
2498 }
2499 
2500 /* Swap two freelist entries */
2501 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2502 {
2503 	swap(((freelist_idx_t *)page->freelist)[a],
2504 		((freelist_idx_t *)page->freelist)[b]);
2505 }
2506 
2507 /*
2508  * Shuffle the freelist initialization state based on pre-computed lists.
2509  * return true if the list was successfully shuffled, false otherwise.
2510  */
2511 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2512 {
2513 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2514 	union freelist_init_state state;
2515 	bool precomputed;
2516 
2517 	if (count < 2)
2518 		return false;
2519 
2520 	precomputed = freelist_state_initialize(&state, cachep, count);
2521 
2522 	/* Take a random entry as the objfreelist */
2523 	if (OBJFREELIST_SLAB(cachep)) {
2524 		if (!precomputed)
2525 			objfreelist = count - 1;
2526 		else
2527 			objfreelist = next_random_slot(&state);
2528 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2529 						obj_offset(cachep);
2530 		count--;
2531 	}
2532 
2533 	/*
2534 	 * On early boot, generate the list dynamically.
2535 	 * Later use a pre-computed list for speed.
2536 	 */
2537 	if (!precomputed) {
2538 		for (i = 0; i < count; i++)
2539 			set_free_obj(page, i, i);
2540 
2541 		/* Fisher-Yates shuffle */
2542 		for (i = count - 1; i > 0; i--) {
2543 			rand = prandom_u32_state(&state.rnd_state);
2544 			rand %= (i + 1);
2545 			swap_free_obj(page, i, rand);
2546 		}
2547 	} else {
2548 		for (i = 0; i < count; i++)
2549 			set_free_obj(page, i, next_random_slot(&state));
2550 	}
2551 
2552 	if (OBJFREELIST_SLAB(cachep))
2553 		set_free_obj(page, cachep->num - 1, objfreelist);
2554 
2555 	return true;
2556 }
2557 #else
2558 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2559 				struct page *page)
2560 {
2561 	return false;
2562 }
2563 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2564 
2565 static void cache_init_objs(struct kmem_cache *cachep,
2566 			    struct page *page)
2567 {
2568 	int i;
2569 	void *objp;
2570 	bool shuffled;
2571 
2572 	cache_init_objs_debug(cachep, page);
2573 
2574 	/* Try to randomize the freelist if enabled */
2575 	shuffled = shuffle_freelist(cachep, page);
2576 
2577 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2578 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2579 						obj_offset(cachep);
2580 	}
2581 
2582 	for (i = 0; i < cachep->num; i++) {
2583 		objp = index_to_obj(cachep, page, i);
2584 		kasan_init_slab_obj(cachep, objp);
2585 
2586 		/* constructor could break poison info */
2587 		if (DEBUG == 0 && cachep->ctor) {
2588 			kasan_unpoison_object_data(cachep, objp);
2589 			cachep->ctor(objp);
2590 			kasan_poison_object_data(cachep, objp);
2591 		}
2592 
2593 		if (!shuffled)
2594 			set_free_obj(page, i, i);
2595 	}
2596 }
2597 
2598 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2599 {
2600 	void *objp;
2601 
2602 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2603 	page->active++;
2604 
2605 #if DEBUG
2606 	if (cachep->flags & SLAB_STORE_USER)
2607 		set_store_user_dirty(cachep);
2608 #endif
2609 
2610 	return objp;
2611 }
2612 
2613 static void slab_put_obj(struct kmem_cache *cachep,
2614 			struct page *page, void *objp)
2615 {
2616 	unsigned int objnr = obj_to_index(cachep, page, objp);
2617 #if DEBUG
2618 	unsigned int i;
2619 
2620 	/* Verify double free bug */
2621 	for (i = page->active; i < cachep->num; i++) {
2622 		if (get_free_obj(page, i) == objnr) {
2623 			pr_err("slab: double free detected in cache '%s', objp %p\n",
2624 			       cachep->name, objp);
2625 			BUG();
2626 		}
2627 	}
2628 #endif
2629 	page->active--;
2630 	if (!page->freelist)
2631 		page->freelist = objp + obj_offset(cachep);
2632 
2633 	set_free_obj(page, page->active, objnr);
2634 }
2635 
2636 /*
2637  * Map pages beginning at addr to the given cache and slab. This is required
2638  * for the slab allocator to be able to lookup the cache and slab of a
2639  * virtual address for kfree, ksize, and slab debugging.
2640  */
2641 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2642 			   void *freelist)
2643 {
2644 	page->slab_cache = cache;
2645 	page->freelist = freelist;
2646 }
2647 
2648 /*
2649  * Grow (by 1) the number of slabs within a cache.  This is called by
2650  * kmem_cache_alloc() when there are no active objs left in a cache.
2651  */
2652 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2653 				gfp_t flags, int nodeid)
2654 {
2655 	void *freelist;
2656 	size_t offset;
2657 	gfp_t local_flags;
2658 	int page_node;
2659 	struct kmem_cache_node *n;
2660 	struct page *page;
2661 
2662 	/*
2663 	 * Be lazy and only check for valid flags here,  keeping it out of the
2664 	 * critical path in kmem_cache_alloc().
2665 	 */
2666 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2667 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2668 		flags &= ~GFP_SLAB_BUG_MASK;
2669 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2670 				invalid_mask, &invalid_mask, flags, &flags);
2671 		dump_stack();
2672 	}
2673 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2674 
2675 	check_irq_off();
2676 	if (gfpflags_allow_blocking(local_flags))
2677 		local_irq_enable();
2678 
2679 	/*
2680 	 * Get mem for the objs.  Attempt to allocate a physical page from
2681 	 * 'nodeid'.
2682 	 */
2683 	page = kmem_getpages(cachep, local_flags, nodeid);
2684 	if (!page)
2685 		goto failed;
2686 
2687 	page_node = page_to_nid(page);
2688 	n = get_node(cachep, page_node);
2689 
2690 	/* Get colour for the slab, and cal the next value. */
2691 	n->colour_next++;
2692 	if (n->colour_next >= cachep->colour)
2693 		n->colour_next = 0;
2694 
2695 	offset = n->colour_next;
2696 	if (offset >= cachep->colour)
2697 		offset = 0;
2698 
2699 	offset *= cachep->colour_off;
2700 
2701 	/* Get slab management. */
2702 	freelist = alloc_slabmgmt(cachep, page, offset,
2703 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2704 	if (OFF_SLAB(cachep) && !freelist)
2705 		goto opps1;
2706 
2707 	slab_map_pages(cachep, page, freelist);
2708 
2709 	kasan_poison_slab(page);
2710 	cache_init_objs(cachep, page);
2711 
2712 	if (gfpflags_allow_blocking(local_flags))
2713 		local_irq_disable();
2714 
2715 	return page;
2716 
2717 opps1:
2718 	kmem_freepages(cachep, page);
2719 failed:
2720 	if (gfpflags_allow_blocking(local_flags))
2721 		local_irq_disable();
2722 	return NULL;
2723 }
2724 
2725 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2726 {
2727 	struct kmem_cache_node *n;
2728 	void *list = NULL;
2729 
2730 	check_irq_off();
2731 
2732 	if (!page)
2733 		return;
2734 
2735 	INIT_LIST_HEAD(&page->lru);
2736 	n = get_node(cachep, page_to_nid(page));
2737 
2738 	spin_lock(&n->list_lock);
2739 	n->total_slabs++;
2740 	if (!page->active) {
2741 		list_add_tail(&page->lru, &(n->slabs_free));
2742 		n->free_slabs++;
2743 	} else
2744 		fixup_slab_list(cachep, n, page, &list);
2745 
2746 	STATS_INC_GROWN(cachep);
2747 	n->free_objects += cachep->num - page->active;
2748 	spin_unlock(&n->list_lock);
2749 
2750 	fixup_objfreelist_debug(cachep, &list);
2751 }
2752 
2753 #if DEBUG
2754 
2755 /*
2756  * Perform extra freeing checks:
2757  * - detect bad pointers.
2758  * - POISON/RED_ZONE checking
2759  */
2760 static void kfree_debugcheck(const void *objp)
2761 {
2762 	if (!virt_addr_valid(objp)) {
2763 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2764 		       (unsigned long)objp);
2765 		BUG();
2766 	}
2767 }
2768 
2769 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2770 {
2771 	unsigned long long redzone1, redzone2;
2772 
2773 	redzone1 = *dbg_redzone1(cache, obj);
2774 	redzone2 = *dbg_redzone2(cache, obj);
2775 
2776 	/*
2777 	 * Redzone is ok.
2778 	 */
2779 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2780 		return;
2781 
2782 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2783 		slab_error(cache, "double free detected");
2784 	else
2785 		slab_error(cache, "memory outside object was overwritten");
2786 
2787 	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2788 	       obj, redzone1, redzone2);
2789 }
2790 
2791 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2792 				   unsigned long caller)
2793 {
2794 	unsigned int objnr;
2795 	struct page *page;
2796 
2797 	BUG_ON(virt_to_cache(objp) != cachep);
2798 
2799 	objp -= obj_offset(cachep);
2800 	kfree_debugcheck(objp);
2801 	page = virt_to_head_page(objp);
2802 
2803 	if (cachep->flags & SLAB_RED_ZONE) {
2804 		verify_redzone_free(cachep, objp);
2805 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2806 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2807 	}
2808 	if (cachep->flags & SLAB_STORE_USER) {
2809 		set_store_user_dirty(cachep);
2810 		*dbg_userword(cachep, objp) = (void *)caller;
2811 	}
2812 
2813 	objnr = obj_to_index(cachep, page, objp);
2814 
2815 	BUG_ON(objnr >= cachep->num);
2816 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2817 
2818 	if (cachep->flags & SLAB_POISON) {
2819 		poison_obj(cachep, objp, POISON_FREE);
2820 		slab_kernel_map(cachep, objp, 0, caller);
2821 	}
2822 	return objp;
2823 }
2824 
2825 #else
2826 #define kfree_debugcheck(x) do { } while(0)
2827 #define cache_free_debugcheck(x,objp,z) (objp)
2828 #endif
2829 
2830 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2831 						void **list)
2832 {
2833 #if DEBUG
2834 	void *next = *list;
2835 	void *objp;
2836 
2837 	while (next) {
2838 		objp = next - obj_offset(cachep);
2839 		next = *(void **)next;
2840 		poison_obj(cachep, objp, POISON_FREE);
2841 	}
2842 #endif
2843 }
2844 
2845 static inline void fixup_slab_list(struct kmem_cache *cachep,
2846 				struct kmem_cache_node *n, struct page *page,
2847 				void **list)
2848 {
2849 	/* move slabp to correct slabp list: */
2850 	list_del(&page->lru);
2851 	if (page->active == cachep->num) {
2852 		list_add(&page->lru, &n->slabs_full);
2853 		if (OBJFREELIST_SLAB(cachep)) {
2854 #if DEBUG
2855 			/* Poisoning will be done without holding the lock */
2856 			if (cachep->flags & SLAB_POISON) {
2857 				void **objp = page->freelist;
2858 
2859 				*objp = *list;
2860 				*list = objp;
2861 			}
2862 #endif
2863 			page->freelist = NULL;
2864 		}
2865 	} else
2866 		list_add(&page->lru, &n->slabs_partial);
2867 }
2868 
2869 /* Try to find non-pfmemalloc slab if needed */
2870 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2871 					struct page *page, bool pfmemalloc)
2872 {
2873 	if (!page)
2874 		return NULL;
2875 
2876 	if (pfmemalloc)
2877 		return page;
2878 
2879 	if (!PageSlabPfmemalloc(page))
2880 		return page;
2881 
2882 	/* No need to keep pfmemalloc slab if we have enough free objects */
2883 	if (n->free_objects > n->free_limit) {
2884 		ClearPageSlabPfmemalloc(page);
2885 		return page;
2886 	}
2887 
2888 	/* Move pfmemalloc slab to the end of list to speed up next search */
2889 	list_del(&page->lru);
2890 	if (!page->active) {
2891 		list_add_tail(&page->lru, &n->slabs_free);
2892 		n->free_slabs++;
2893 	} else
2894 		list_add_tail(&page->lru, &n->slabs_partial);
2895 
2896 	list_for_each_entry(page, &n->slabs_partial, lru) {
2897 		if (!PageSlabPfmemalloc(page))
2898 			return page;
2899 	}
2900 
2901 	n->free_touched = 1;
2902 	list_for_each_entry(page, &n->slabs_free, lru) {
2903 		if (!PageSlabPfmemalloc(page)) {
2904 			n->free_slabs--;
2905 			return page;
2906 		}
2907 	}
2908 
2909 	return NULL;
2910 }
2911 
2912 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2913 {
2914 	struct page *page;
2915 
2916 	assert_spin_locked(&n->list_lock);
2917 	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2918 	if (!page) {
2919 		n->free_touched = 1;
2920 		page = list_first_entry_or_null(&n->slabs_free, struct page,
2921 						lru);
2922 		if (page)
2923 			n->free_slabs--;
2924 	}
2925 
2926 	if (sk_memalloc_socks())
2927 		page = get_valid_first_slab(n, page, pfmemalloc);
2928 
2929 	return page;
2930 }
2931 
2932 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2933 				struct kmem_cache_node *n, gfp_t flags)
2934 {
2935 	struct page *page;
2936 	void *obj;
2937 	void *list = NULL;
2938 
2939 	if (!gfp_pfmemalloc_allowed(flags))
2940 		return NULL;
2941 
2942 	spin_lock(&n->list_lock);
2943 	page = get_first_slab(n, true);
2944 	if (!page) {
2945 		spin_unlock(&n->list_lock);
2946 		return NULL;
2947 	}
2948 
2949 	obj = slab_get_obj(cachep, page);
2950 	n->free_objects--;
2951 
2952 	fixup_slab_list(cachep, n, page, &list);
2953 
2954 	spin_unlock(&n->list_lock);
2955 	fixup_objfreelist_debug(cachep, &list);
2956 
2957 	return obj;
2958 }
2959 
2960 /*
2961  * Slab list should be fixed up by fixup_slab_list() for existing slab
2962  * or cache_grow_end() for new slab
2963  */
2964 static __always_inline int alloc_block(struct kmem_cache *cachep,
2965 		struct array_cache *ac, struct page *page, int batchcount)
2966 {
2967 	/*
2968 	 * There must be at least one object available for
2969 	 * allocation.
2970 	 */
2971 	BUG_ON(page->active >= cachep->num);
2972 
2973 	while (page->active < cachep->num && batchcount--) {
2974 		STATS_INC_ALLOCED(cachep);
2975 		STATS_INC_ACTIVE(cachep);
2976 		STATS_SET_HIGH(cachep);
2977 
2978 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2979 	}
2980 
2981 	return batchcount;
2982 }
2983 
2984 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2985 {
2986 	int batchcount;
2987 	struct kmem_cache_node *n;
2988 	struct array_cache *ac, *shared;
2989 	int node;
2990 	void *list = NULL;
2991 	struct page *page;
2992 
2993 	check_irq_off();
2994 	node = numa_mem_id();
2995 
2996 	ac = cpu_cache_get(cachep);
2997 	batchcount = ac->batchcount;
2998 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2999 		/*
3000 		 * If there was little recent activity on this cache, then
3001 		 * perform only a partial refill.  Otherwise we could generate
3002 		 * refill bouncing.
3003 		 */
3004 		batchcount = BATCHREFILL_LIMIT;
3005 	}
3006 	n = get_node(cachep, node);
3007 
3008 	BUG_ON(ac->avail > 0 || !n);
3009 	shared = READ_ONCE(n->shared);
3010 	if (!n->free_objects && (!shared || !shared->avail))
3011 		goto direct_grow;
3012 
3013 	spin_lock(&n->list_lock);
3014 	shared = READ_ONCE(n->shared);
3015 
3016 	/* See if we can refill from the shared array */
3017 	if (shared && transfer_objects(ac, shared, batchcount)) {
3018 		shared->touched = 1;
3019 		goto alloc_done;
3020 	}
3021 
3022 	while (batchcount > 0) {
3023 		/* Get slab alloc is to come from. */
3024 		page = get_first_slab(n, false);
3025 		if (!page)
3026 			goto must_grow;
3027 
3028 		check_spinlock_acquired(cachep);
3029 
3030 		batchcount = alloc_block(cachep, ac, page, batchcount);
3031 		fixup_slab_list(cachep, n, page, &list);
3032 	}
3033 
3034 must_grow:
3035 	n->free_objects -= ac->avail;
3036 alloc_done:
3037 	spin_unlock(&n->list_lock);
3038 	fixup_objfreelist_debug(cachep, &list);
3039 
3040 direct_grow:
3041 	if (unlikely(!ac->avail)) {
3042 		/* Check if we can use obj in pfmemalloc slab */
3043 		if (sk_memalloc_socks()) {
3044 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3045 
3046 			if (obj)
3047 				return obj;
3048 		}
3049 
3050 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3051 
3052 		/*
3053 		 * cache_grow_begin() can reenable interrupts,
3054 		 * then ac could change.
3055 		 */
3056 		ac = cpu_cache_get(cachep);
3057 		if (!ac->avail && page)
3058 			alloc_block(cachep, ac, page, batchcount);
3059 		cache_grow_end(cachep, page);
3060 
3061 		if (!ac->avail)
3062 			return NULL;
3063 	}
3064 	ac->touched = 1;
3065 
3066 	return ac->entry[--ac->avail];
3067 }
3068 
3069 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3070 						gfp_t flags)
3071 {
3072 	might_sleep_if(gfpflags_allow_blocking(flags));
3073 }
3074 
3075 #if DEBUG
3076 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3077 				gfp_t flags, void *objp, unsigned long caller)
3078 {
3079 	if (!objp)
3080 		return objp;
3081 	if (cachep->flags & SLAB_POISON) {
3082 		check_poison_obj(cachep, objp);
3083 		slab_kernel_map(cachep, objp, 1, 0);
3084 		poison_obj(cachep, objp, POISON_INUSE);
3085 	}
3086 	if (cachep->flags & SLAB_STORE_USER)
3087 		*dbg_userword(cachep, objp) = (void *)caller;
3088 
3089 	if (cachep->flags & SLAB_RED_ZONE) {
3090 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3091 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3092 			slab_error(cachep, "double free, or memory outside object was overwritten");
3093 			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3094 			       objp, *dbg_redzone1(cachep, objp),
3095 			       *dbg_redzone2(cachep, objp));
3096 		}
3097 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3098 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3099 	}
3100 
3101 	objp += obj_offset(cachep);
3102 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3103 		cachep->ctor(objp);
3104 	if (ARCH_SLAB_MINALIGN &&
3105 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3106 		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3107 		       objp, (int)ARCH_SLAB_MINALIGN);
3108 	}
3109 	return objp;
3110 }
3111 #else
3112 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3113 #endif
3114 
3115 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3116 {
3117 	void *objp;
3118 	struct array_cache *ac;
3119 
3120 	check_irq_off();
3121 
3122 	ac = cpu_cache_get(cachep);
3123 	if (likely(ac->avail)) {
3124 		ac->touched = 1;
3125 		objp = ac->entry[--ac->avail];
3126 
3127 		STATS_INC_ALLOCHIT(cachep);
3128 		goto out;
3129 	}
3130 
3131 	STATS_INC_ALLOCMISS(cachep);
3132 	objp = cache_alloc_refill(cachep, flags);
3133 	/*
3134 	 * the 'ac' may be updated by cache_alloc_refill(),
3135 	 * and kmemleak_erase() requires its correct value.
3136 	 */
3137 	ac = cpu_cache_get(cachep);
3138 
3139 out:
3140 	/*
3141 	 * To avoid a false negative, if an object that is in one of the
3142 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3143 	 * treat the array pointers as a reference to the object.
3144 	 */
3145 	if (objp)
3146 		kmemleak_erase(&ac->entry[ac->avail]);
3147 	return objp;
3148 }
3149 
3150 #ifdef CONFIG_NUMA
3151 /*
3152  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3153  *
3154  * If we are in_interrupt, then process context, including cpusets and
3155  * mempolicy, may not apply and should not be used for allocation policy.
3156  */
3157 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3158 {
3159 	int nid_alloc, nid_here;
3160 
3161 	if (in_interrupt() || (flags & __GFP_THISNODE))
3162 		return NULL;
3163 	nid_alloc = nid_here = numa_mem_id();
3164 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3165 		nid_alloc = cpuset_slab_spread_node();
3166 	else if (current->mempolicy)
3167 		nid_alloc = mempolicy_slab_node();
3168 	if (nid_alloc != nid_here)
3169 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3170 	return NULL;
3171 }
3172 
3173 /*
3174  * Fallback function if there was no memory available and no objects on a
3175  * certain node and fall back is permitted. First we scan all the
3176  * available node for available objects. If that fails then we
3177  * perform an allocation without specifying a node. This allows the page
3178  * allocator to do its reclaim / fallback magic. We then insert the
3179  * slab into the proper nodelist and then allocate from it.
3180  */
3181 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3182 {
3183 	struct zonelist *zonelist;
3184 	struct zoneref *z;
3185 	struct zone *zone;
3186 	enum zone_type high_zoneidx = gfp_zone(flags);
3187 	void *obj = NULL;
3188 	struct page *page;
3189 	int nid;
3190 	unsigned int cpuset_mems_cookie;
3191 
3192 	if (flags & __GFP_THISNODE)
3193 		return NULL;
3194 
3195 retry_cpuset:
3196 	cpuset_mems_cookie = read_mems_allowed_begin();
3197 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3198 
3199 retry:
3200 	/*
3201 	 * Look through allowed nodes for objects available
3202 	 * from existing per node queues.
3203 	 */
3204 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3205 		nid = zone_to_nid(zone);
3206 
3207 		if (cpuset_zone_allowed(zone, flags) &&
3208 			get_node(cache, nid) &&
3209 			get_node(cache, nid)->free_objects) {
3210 				obj = ____cache_alloc_node(cache,
3211 					gfp_exact_node(flags), nid);
3212 				if (obj)
3213 					break;
3214 		}
3215 	}
3216 
3217 	if (!obj) {
3218 		/*
3219 		 * This allocation will be performed within the constraints
3220 		 * of the current cpuset / memory policy requirements.
3221 		 * We may trigger various forms of reclaim on the allowed
3222 		 * set and go into memory reserves if necessary.
3223 		 */
3224 		page = cache_grow_begin(cache, flags, numa_mem_id());
3225 		cache_grow_end(cache, page);
3226 		if (page) {
3227 			nid = page_to_nid(page);
3228 			obj = ____cache_alloc_node(cache,
3229 				gfp_exact_node(flags), nid);
3230 
3231 			/*
3232 			 * Another processor may allocate the objects in
3233 			 * the slab since we are not holding any locks.
3234 			 */
3235 			if (!obj)
3236 				goto retry;
3237 		}
3238 	}
3239 
3240 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3241 		goto retry_cpuset;
3242 	return obj;
3243 }
3244 
3245 /*
3246  * A interface to enable slab creation on nodeid
3247  */
3248 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3249 				int nodeid)
3250 {
3251 	struct page *page;
3252 	struct kmem_cache_node *n;
3253 	void *obj = NULL;
3254 	void *list = NULL;
3255 
3256 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3257 	n = get_node(cachep, nodeid);
3258 	BUG_ON(!n);
3259 
3260 	check_irq_off();
3261 	spin_lock(&n->list_lock);
3262 	page = get_first_slab(n, false);
3263 	if (!page)
3264 		goto must_grow;
3265 
3266 	check_spinlock_acquired_node(cachep, nodeid);
3267 
3268 	STATS_INC_NODEALLOCS(cachep);
3269 	STATS_INC_ACTIVE(cachep);
3270 	STATS_SET_HIGH(cachep);
3271 
3272 	BUG_ON(page->active == cachep->num);
3273 
3274 	obj = slab_get_obj(cachep, page);
3275 	n->free_objects--;
3276 
3277 	fixup_slab_list(cachep, n, page, &list);
3278 
3279 	spin_unlock(&n->list_lock);
3280 	fixup_objfreelist_debug(cachep, &list);
3281 	return obj;
3282 
3283 must_grow:
3284 	spin_unlock(&n->list_lock);
3285 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3286 	if (page) {
3287 		/* This slab isn't counted yet so don't update free_objects */
3288 		obj = slab_get_obj(cachep, page);
3289 	}
3290 	cache_grow_end(cachep, page);
3291 
3292 	return obj ? obj : fallback_alloc(cachep, flags);
3293 }
3294 
3295 static __always_inline void *
3296 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3297 		   unsigned long caller)
3298 {
3299 	unsigned long save_flags;
3300 	void *ptr;
3301 	int slab_node = numa_mem_id();
3302 
3303 	flags &= gfp_allowed_mask;
3304 	cachep = slab_pre_alloc_hook(cachep, flags);
3305 	if (unlikely(!cachep))
3306 		return NULL;
3307 
3308 	cache_alloc_debugcheck_before(cachep, flags);
3309 	local_irq_save(save_flags);
3310 
3311 	if (nodeid == NUMA_NO_NODE)
3312 		nodeid = slab_node;
3313 
3314 	if (unlikely(!get_node(cachep, nodeid))) {
3315 		/* Node not bootstrapped yet */
3316 		ptr = fallback_alloc(cachep, flags);
3317 		goto out;
3318 	}
3319 
3320 	if (nodeid == slab_node) {
3321 		/*
3322 		 * Use the locally cached objects if possible.
3323 		 * However ____cache_alloc does not allow fallback
3324 		 * to other nodes. It may fail while we still have
3325 		 * objects on other nodes available.
3326 		 */
3327 		ptr = ____cache_alloc(cachep, flags);
3328 		if (ptr)
3329 			goto out;
3330 	}
3331 	/* ___cache_alloc_node can fall back to other nodes */
3332 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3333   out:
3334 	local_irq_restore(save_flags);
3335 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3336 
3337 	if (unlikely(flags & __GFP_ZERO) && ptr)
3338 		memset(ptr, 0, cachep->object_size);
3339 
3340 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3341 	return ptr;
3342 }
3343 
3344 static __always_inline void *
3345 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3346 {
3347 	void *objp;
3348 
3349 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3350 		objp = alternate_node_alloc(cache, flags);
3351 		if (objp)
3352 			goto out;
3353 	}
3354 	objp = ____cache_alloc(cache, flags);
3355 
3356 	/*
3357 	 * We may just have run out of memory on the local node.
3358 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3359 	 */
3360 	if (!objp)
3361 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3362 
3363   out:
3364 	return objp;
3365 }
3366 #else
3367 
3368 static __always_inline void *
3369 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3370 {
3371 	return ____cache_alloc(cachep, flags);
3372 }
3373 
3374 #endif /* CONFIG_NUMA */
3375 
3376 static __always_inline void *
3377 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3378 {
3379 	unsigned long save_flags;
3380 	void *objp;
3381 
3382 	flags &= gfp_allowed_mask;
3383 	cachep = slab_pre_alloc_hook(cachep, flags);
3384 	if (unlikely(!cachep))
3385 		return NULL;
3386 
3387 	cache_alloc_debugcheck_before(cachep, flags);
3388 	local_irq_save(save_flags);
3389 	objp = __do_cache_alloc(cachep, flags);
3390 	local_irq_restore(save_flags);
3391 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3392 	prefetchw(objp);
3393 
3394 	if (unlikely(flags & __GFP_ZERO) && objp)
3395 		memset(objp, 0, cachep->object_size);
3396 
3397 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3398 	return objp;
3399 }
3400 
3401 /*
3402  * Caller needs to acquire correct kmem_cache_node's list_lock
3403  * @list: List of detached free slabs should be freed by caller
3404  */
3405 static void free_block(struct kmem_cache *cachep, void **objpp,
3406 			int nr_objects, int node, struct list_head *list)
3407 {
3408 	int i;
3409 	struct kmem_cache_node *n = get_node(cachep, node);
3410 	struct page *page;
3411 
3412 	n->free_objects += nr_objects;
3413 
3414 	for (i = 0; i < nr_objects; i++) {
3415 		void *objp;
3416 		struct page *page;
3417 
3418 		objp = objpp[i];
3419 
3420 		page = virt_to_head_page(objp);
3421 		list_del(&page->lru);
3422 		check_spinlock_acquired_node(cachep, node);
3423 		slab_put_obj(cachep, page, objp);
3424 		STATS_DEC_ACTIVE(cachep);
3425 
3426 		/* fixup slab chains */
3427 		if (page->active == 0) {
3428 			list_add(&page->lru, &n->slabs_free);
3429 			n->free_slabs++;
3430 		} else {
3431 			/* Unconditionally move a slab to the end of the
3432 			 * partial list on free - maximum time for the
3433 			 * other objects to be freed, too.
3434 			 */
3435 			list_add_tail(&page->lru, &n->slabs_partial);
3436 		}
3437 	}
3438 
3439 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3440 		n->free_objects -= cachep->num;
3441 
3442 		page = list_last_entry(&n->slabs_free, struct page, lru);
3443 		list_move(&page->lru, list);
3444 		n->free_slabs--;
3445 		n->total_slabs--;
3446 	}
3447 }
3448 
3449 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3450 {
3451 	int batchcount;
3452 	struct kmem_cache_node *n;
3453 	int node = numa_mem_id();
3454 	LIST_HEAD(list);
3455 
3456 	batchcount = ac->batchcount;
3457 
3458 	check_irq_off();
3459 	n = get_node(cachep, node);
3460 	spin_lock(&n->list_lock);
3461 	if (n->shared) {
3462 		struct array_cache *shared_array = n->shared;
3463 		int max = shared_array->limit - shared_array->avail;
3464 		if (max) {
3465 			if (batchcount > max)
3466 				batchcount = max;
3467 			memcpy(&(shared_array->entry[shared_array->avail]),
3468 			       ac->entry, sizeof(void *) * batchcount);
3469 			shared_array->avail += batchcount;
3470 			goto free_done;
3471 		}
3472 	}
3473 
3474 	free_block(cachep, ac->entry, batchcount, node, &list);
3475 free_done:
3476 #if STATS
3477 	{
3478 		int i = 0;
3479 		struct page *page;
3480 
3481 		list_for_each_entry(page, &n->slabs_free, lru) {
3482 			BUG_ON(page->active);
3483 
3484 			i++;
3485 		}
3486 		STATS_SET_FREEABLE(cachep, i);
3487 	}
3488 #endif
3489 	spin_unlock(&n->list_lock);
3490 	slabs_destroy(cachep, &list);
3491 	ac->avail -= batchcount;
3492 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3493 }
3494 
3495 /*
3496  * Release an obj back to its cache. If the obj has a constructed state, it must
3497  * be in this state _before_ it is released.  Called with disabled ints.
3498  */
3499 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3500 				unsigned long caller)
3501 {
3502 	/* Put the object into the quarantine, don't touch it for now. */
3503 	if (kasan_slab_free(cachep, objp))
3504 		return;
3505 
3506 	___cache_free(cachep, objp, caller);
3507 }
3508 
3509 void ___cache_free(struct kmem_cache *cachep, void *objp,
3510 		unsigned long caller)
3511 {
3512 	struct array_cache *ac = cpu_cache_get(cachep);
3513 
3514 	check_irq_off();
3515 	kmemleak_free_recursive(objp, cachep->flags);
3516 	objp = cache_free_debugcheck(cachep, objp, caller);
3517 
3518 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3519 
3520 	/*
3521 	 * Skip calling cache_free_alien() when the platform is not numa.
3522 	 * This will avoid cache misses that happen while accessing slabp (which
3523 	 * is per page memory  reference) to get nodeid. Instead use a global
3524 	 * variable to skip the call, which is mostly likely to be present in
3525 	 * the cache.
3526 	 */
3527 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3528 		return;
3529 
3530 	if (ac->avail < ac->limit) {
3531 		STATS_INC_FREEHIT(cachep);
3532 	} else {
3533 		STATS_INC_FREEMISS(cachep);
3534 		cache_flusharray(cachep, ac);
3535 	}
3536 
3537 	if (sk_memalloc_socks()) {
3538 		struct page *page = virt_to_head_page(objp);
3539 
3540 		if (unlikely(PageSlabPfmemalloc(page))) {
3541 			cache_free_pfmemalloc(cachep, page, objp);
3542 			return;
3543 		}
3544 	}
3545 
3546 	ac->entry[ac->avail++] = objp;
3547 }
3548 
3549 /**
3550  * kmem_cache_alloc - Allocate an object
3551  * @cachep: The cache to allocate from.
3552  * @flags: See kmalloc().
3553  *
3554  * Allocate an object from this cache.  The flags are only relevant
3555  * if the cache has no available objects.
3556  */
3557 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3558 {
3559 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3560 
3561 	kasan_slab_alloc(cachep, ret, flags);
3562 	trace_kmem_cache_alloc(_RET_IP_, ret,
3563 			       cachep->object_size, cachep->size, flags);
3564 
3565 	return ret;
3566 }
3567 EXPORT_SYMBOL(kmem_cache_alloc);
3568 
3569 static __always_inline void
3570 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3571 				  size_t size, void **p, unsigned long caller)
3572 {
3573 	size_t i;
3574 
3575 	for (i = 0; i < size; i++)
3576 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3577 }
3578 
3579 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3580 			  void **p)
3581 {
3582 	size_t i;
3583 
3584 	s = slab_pre_alloc_hook(s, flags);
3585 	if (!s)
3586 		return 0;
3587 
3588 	cache_alloc_debugcheck_before(s, flags);
3589 
3590 	local_irq_disable();
3591 	for (i = 0; i < size; i++) {
3592 		void *objp = __do_cache_alloc(s, flags);
3593 
3594 		if (unlikely(!objp))
3595 			goto error;
3596 		p[i] = objp;
3597 	}
3598 	local_irq_enable();
3599 
3600 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3601 
3602 	/* Clear memory outside IRQ disabled section */
3603 	if (unlikely(flags & __GFP_ZERO))
3604 		for (i = 0; i < size; i++)
3605 			memset(p[i], 0, s->object_size);
3606 
3607 	slab_post_alloc_hook(s, flags, size, p);
3608 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3609 	return size;
3610 error:
3611 	local_irq_enable();
3612 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3613 	slab_post_alloc_hook(s, flags, i, p);
3614 	__kmem_cache_free_bulk(s, i, p);
3615 	return 0;
3616 }
3617 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3618 
3619 #ifdef CONFIG_TRACING
3620 void *
3621 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3622 {
3623 	void *ret;
3624 
3625 	ret = slab_alloc(cachep, flags, _RET_IP_);
3626 
3627 	kasan_kmalloc(cachep, ret, size, flags);
3628 	trace_kmalloc(_RET_IP_, ret,
3629 		      size, cachep->size, flags);
3630 	return ret;
3631 }
3632 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3633 #endif
3634 
3635 #ifdef CONFIG_NUMA
3636 /**
3637  * kmem_cache_alloc_node - Allocate an object on the specified node
3638  * @cachep: The cache to allocate from.
3639  * @flags: See kmalloc().
3640  * @nodeid: node number of the target node.
3641  *
3642  * Identical to kmem_cache_alloc but it will allocate memory on the given
3643  * node, which can improve the performance for cpu bound structures.
3644  *
3645  * Fallback to other node is possible if __GFP_THISNODE is not set.
3646  */
3647 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3648 {
3649 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3650 
3651 	kasan_slab_alloc(cachep, ret, flags);
3652 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3653 				    cachep->object_size, cachep->size,
3654 				    flags, nodeid);
3655 
3656 	return ret;
3657 }
3658 EXPORT_SYMBOL(kmem_cache_alloc_node);
3659 
3660 #ifdef CONFIG_TRACING
3661 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3662 				  gfp_t flags,
3663 				  int nodeid,
3664 				  size_t size)
3665 {
3666 	void *ret;
3667 
3668 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3669 
3670 	kasan_kmalloc(cachep, ret, size, flags);
3671 	trace_kmalloc_node(_RET_IP_, ret,
3672 			   size, cachep->size,
3673 			   flags, nodeid);
3674 	return ret;
3675 }
3676 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3677 #endif
3678 
3679 static __always_inline void *
3680 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3681 {
3682 	struct kmem_cache *cachep;
3683 	void *ret;
3684 
3685 	cachep = kmalloc_slab(size, flags);
3686 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3687 		return cachep;
3688 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3689 	kasan_kmalloc(cachep, ret, size, flags);
3690 
3691 	return ret;
3692 }
3693 
3694 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3695 {
3696 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3697 }
3698 EXPORT_SYMBOL(__kmalloc_node);
3699 
3700 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3701 		int node, unsigned long caller)
3702 {
3703 	return __do_kmalloc_node(size, flags, node, caller);
3704 }
3705 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3706 #endif /* CONFIG_NUMA */
3707 
3708 /**
3709  * __do_kmalloc - allocate memory
3710  * @size: how many bytes of memory are required.
3711  * @flags: the type of memory to allocate (see kmalloc).
3712  * @caller: function caller for debug tracking of the caller
3713  */
3714 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3715 					  unsigned long caller)
3716 {
3717 	struct kmem_cache *cachep;
3718 	void *ret;
3719 
3720 	cachep = kmalloc_slab(size, flags);
3721 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3722 		return cachep;
3723 	ret = slab_alloc(cachep, flags, caller);
3724 
3725 	kasan_kmalloc(cachep, ret, size, flags);
3726 	trace_kmalloc(caller, ret,
3727 		      size, cachep->size, flags);
3728 
3729 	return ret;
3730 }
3731 
3732 void *__kmalloc(size_t size, gfp_t flags)
3733 {
3734 	return __do_kmalloc(size, flags, _RET_IP_);
3735 }
3736 EXPORT_SYMBOL(__kmalloc);
3737 
3738 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3739 {
3740 	return __do_kmalloc(size, flags, caller);
3741 }
3742 EXPORT_SYMBOL(__kmalloc_track_caller);
3743 
3744 /**
3745  * kmem_cache_free - Deallocate an object
3746  * @cachep: The cache the allocation was from.
3747  * @objp: The previously allocated object.
3748  *
3749  * Free an object which was previously allocated from this
3750  * cache.
3751  */
3752 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3753 {
3754 	unsigned long flags;
3755 	cachep = cache_from_obj(cachep, objp);
3756 	if (!cachep)
3757 		return;
3758 
3759 	local_irq_save(flags);
3760 	debug_check_no_locks_freed(objp, cachep->object_size);
3761 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3762 		debug_check_no_obj_freed(objp, cachep->object_size);
3763 	__cache_free(cachep, objp, _RET_IP_);
3764 	local_irq_restore(flags);
3765 
3766 	trace_kmem_cache_free(_RET_IP_, objp);
3767 }
3768 EXPORT_SYMBOL(kmem_cache_free);
3769 
3770 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3771 {
3772 	struct kmem_cache *s;
3773 	size_t i;
3774 
3775 	local_irq_disable();
3776 	for (i = 0; i < size; i++) {
3777 		void *objp = p[i];
3778 
3779 		if (!orig_s) /* called via kfree_bulk */
3780 			s = virt_to_cache(objp);
3781 		else
3782 			s = cache_from_obj(orig_s, objp);
3783 
3784 		debug_check_no_locks_freed(objp, s->object_size);
3785 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3786 			debug_check_no_obj_freed(objp, s->object_size);
3787 
3788 		__cache_free(s, objp, _RET_IP_);
3789 	}
3790 	local_irq_enable();
3791 
3792 	/* FIXME: add tracing */
3793 }
3794 EXPORT_SYMBOL(kmem_cache_free_bulk);
3795 
3796 /**
3797  * kfree - free previously allocated memory
3798  * @objp: pointer returned by kmalloc.
3799  *
3800  * If @objp is NULL, no operation is performed.
3801  *
3802  * Don't free memory not originally allocated by kmalloc()
3803  * or you will run into trouble.
3804  */
3805 void kfree(const void *objp)
3806 {
3807 	struct kmem_cache *c;
3808 	unsigned long flags;
3809 
3810 	trace_kfree(_RET_IP_, objp);
3811 
3812 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3813 		return;
3814 	local_irq_save(flags);
3815 	kfree_debugcheck(objp);
3816 	c = virt_to_cache(objp);
3817 	debug_check_no_locks_freed(objp, c->object_size);
3818 
3819 	debug_check_no_obj_freed(objp, c->object_size);
3820 	__cache_free(c, (void *)objp, _RET_IP_);
3821 	local_irq_restore(flags);
3822 }
3823 EXPORT_SYMBOL(kfree);
3824 
3825 /*
3826  * This initializes kmem_cache_node or resizes various caches for all nodes.
3827  */
3828 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3829 {
3830 	int ret;
3831 	int node;
3832 	struct kmem_cache_node *n;
3833 
3834 	for_each_online_node(node) {
3835 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3836 		if (ret)
3837 			goto fail;
3838 
3839 	}
3840 
3841 	return 0;
3842 
3843 fail:
3844 	if (!cachep->list.next) {
3845 		/* Cache is not active yet. Roll back what we did */
3846 		node--;
3847 		while (node >= 0) {
3848 			n = get_node(cachep, node);
3849 			if (n) {
3850 				kfree(n->shared);
3851 				free_alien_cache(n->alien);
3852 				kfree(n);
3853 				cachep->node[node] = NULL;
3854 			}
3855 			node--;
3856 		}
3857 	}
3858 	return -ENOMEM;
3859 }
3860 
3861 /* Always called with the slab_mutex held */
3862 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3863 				int batchcount, int shared, gfp_t gfp)
3864 {
3865 	struct array_cache __percpu *cpu_cache, *prev;
3866 	int cpu;
3867 
3868 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3869 	if (!cpu_cache)
3870 		return -ENOMEM;
3871 
3872 	prev = cachep->cpu_cache;
3873 	cachep->cpu_cache = cpu_cache;
3874 	/*
3875 	 * Without a previous cpu_cache there's no need to synchronize remote
3876 	 * cpus, so skip the IPIs.
3877 	 */
3878 	if (prev)
3879 		kick_all_cpus_sync();
3880 
3881 	check_irq_on();
3882 	cachep->batchcount = batchcount;
3883 	cachep->limit = limit;
3884 	cachep->shared = shared;
3885 
3886 	if (!prev)
3887 		goto setup_node;
3888 
3889 	for_each_online_cpu(cpu) {
3890 		LIST_HEAD(list);
3891 		int node;
3892 		struct kmem_cache_node *n;
3893 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3894 
3895 		node = cpu_to_mem(cpu);
3896 		n = get_node(cachep, node);
3897 		spin_lock_irq(&n->list_lock);
3898 		free_block(cachep, ac->entry, ac->avail, node, &list);
3899 		spin_unlock_irq(&n->list_lock);
3900 		slabs_destroy(cachep, &list);
3901 	}
3902 	free_percpu(prev);
3903 
3904 setup_node:
3905 	return setup_kmem_cache_nodes(cachep, gfp);
3906 }
3907 
3908 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3909 				int batchcount, int shared, gfp_t gfp)
3910 {
3911 	int ret;
3912 	struct kmem_cache *c;
3913 
3914 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3915 
3916 	if (slab_state < FULL)
3917 		return ret;
3918 
3919 	if ((ret < 0) || !is_root_cache(cachep))
3920 		return ret;
3921 
3922 	lockdep_assert_held(&slab_mutex);
3923 	for_each_memcg_cache(c, cachep) {
3924 		/* return value determined by the root cache only */
3925 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3926 	}
3927 
3928 	return ret;
3929 }
3930 
3931 /* Called with slab_mutex held always */
3932 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3933 {
3934 	int err;
3935 	int limit = 0;
3936 	int shared = 0;
3937 	int batchcount = 0;
3938 
3939 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3940 	if (err)
3941 		goto end;
3942 
3943 	if (!is_root_cache(cachep)) {
3944 		struct kmem_cache *root = memcg_root_cache(cachep);
3945 		limit = root->limit;
3946 		shared = root->shared;
3947 		batchcount = root->batchcount;
3948 	}
3949 
3950 	if (limit && shared && batchcount)
3951 		goto skip_setup;
3952 	/*
3953 	 * The head array serves three purposes:
3954 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3955 	 * - reduce the number of spinlock operations.
3956 	 * - reduce the number of linked list operations on the slab and
3957 	 *   bufctl chains: array operations are cheaper.
3958 	 * The numbers are guessed, we should auto-tune as described by
3959 	 * Bonwick.
3960 	 */
3961 	if (cachep->size > 131072)
3962 		limit = 1;
3963 	else if (cachep->size > PAGE_SIZE)
3964 		limit = 8;
3965 	else if (cachep->size > 1024)
3966 		limit = 24;
3967 	else if (cachep->size > 256)
3968 		limit = 54;
3969 	else
3970 		limit = 120;
3971 
3972 	/*
3973 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3974 	 * allocation behaviour: Most allocs on one cpu, most free operations
3975 	 * on another cpu. For these cases, an efficient object passing between
3976 	 * cpus is necessary. This is provided by a shared array. The array
3977 	 * replaces Bonwick's magazine layer.
3978 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3979 	 * to a larger limit. Thus disabled by default.
3980 	 */
3981 	shared = 0;
3982 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3983 		shared = 8;
3984 
3985 #if DEBUG
3986 	/*
3987 	 * With debugging enabled, large batchcount lead to excessively long
3988 	 * periods with disabled local interrupts. Limit the batchcount
3989 	 */
3990 	if (limit > 32)
3991 		limit = 32;
3992 #endif
3993 	batchcount = (limit + 1) / 2;
3994 skip_setup:
3995 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3996 end:
3997 	if (err)
3998 		pr_err("enable_cpucache failed for %s, error %d\n",
3999 		       cachep->name, -err);
4000 	return err;
4001 }
4002 
4003 /*
4004  * Drain an array if it contains any elements taking the node lock only if
4005  * necessary. Note that the node listlock also protects the array_cache
4006  * if drain_array() is used on the shared array.
4007  */
4008 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4009 			 struct array_cache *ac, int node)
4010 {
4011 	LIST_HEAD(list);
4012 
4013 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
4014 	check_mutex_acquired();
4015 
4016 	if (!ac || !ac->avail)
4017 		return;
4018 
4019 	if (ac->touched) {
4020 		ac->touched = 0;
4021 		return;
4022 	}
4023 
4024 	spin_lock_irq(&n->list_lock);
4025 	drain_array_locked(cachep, ac, node, false, &list);
4026 	spin_unlock_irq(&n->list_lock);
4027 
4028 	slabs_destroy(cachep, &list);
4029 }
4030 
4031 /**
4032  * cache_reap - Reclaim memory from caches.
4033  * @w: work descriptor
4034  *
4035  * Called from workqueue/eventd every few seconds.
4036  * Purpose:
4037  * - clear the per-cpu caches for this CPU.
4038  * - return freeable pages to the main free memory pool.
4039  *
4040  * If we cannot acquire the cache chain mutex then just give up - we'll try
4041  * again on the next iteration.
4042  */
4043 static void cache_reap(struct work_struct *w)
4044 {
4045 	struct kmem_cache *searchp;
4046 	struct kmem_cache_node *n;
4047 	int node = numa_mem_id();
4048 	struct delayed_work *work = to_delayed_work(w);
4049 
4050 	if (!mutex_trylock(&slab_mutex))
4051 		/* Give up. Setup the next iteration. */
4052 		goto out;
4053 
4054 	list_for_each_entry(searchp, &slab_caches, list) {
4055 		check_irq_on();
4056 
4057 		/*
4058 		 * We only take the node lock if absolutely necessary and we
4059 		 * have established with reasonable certainty that
4060 		 * we can do some work if the lock was obtained.
4061 		 */
4062 		n = get_node(searchp, node);
4063 
4064 		reap_alien(searchp, n);
4065 
4066 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4067 
4068 		/*
4069 		 * These are racy checks but it does not matter
4070 		 * if we skip one check or scan twice.
4071 		 */
4072 		if (time_after(n->next_reap, jiffies))
4073 			goto next;
4074 
4075 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4076 
4077 		drain_array(searchp, n, n->shared, node);
4078 
4079 		if (n->free_touched)
4080 			n->free_touched = 0;
4081 		else {
4082 			int freed;
4083 
4084 			freed = drain_freelist(searchp, n, (n->free_limit +
4085 				5 * searchp->num - 1) / (5 * searchp->num));
4086 			STATS_ADD_REAPED(searchp, freed);
4087 		}
4088 next:
4089 		cond_resched();
4090 	}
4091 	check_irq_on();
4092 	mutex_unlock(&slab_mutex);
4093 	next_reap_node();
4094 out:
4095 	/* Set up the next iteration */
4096 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4097 }
4098 
4099 #ifdef CONFIG_SLABINFO
4100 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4101 {
4102 	unsigned long active_objs, num_objs, active_slabs;
4103 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4104 	unsigned long free_slabs = 0;
4105 	int node;
4106 	struct kmem_cache_node *n;
4107 
4108 	for_each_kmem_cache_node(cachep, node, n) {
4109 		check_irq_on();
4110 		spin_lock_irq(&n->list_lock);
4111 
4112 		total_slabs += n->total_slabs;
4113 		free_slabs += n->free_slabs;
4114 		free_objs += n->free_objects;
4115 
4116 		if (n->shared)
4117 			shared_avail += n->shared->avail;
4118 
4119 		spin_unlock_irq(&n->list_lock);
4120 	}
4121 	num_objs = total_slabs * cachep->num;
4122 	active_slabs = total_slabs - free_slabs;
4123 	active_objs = num_objs - free_objs;
4124 
4125 	sinfo->active_objs = active_objs;
4126 	sinfo->num_objs = num_objs;
4127 	sinfo->active_slabs = active_slabs;
4128 	sinfo->num_slabs = total_slabs;
4129 	sinfo->shared_avail = shared_avail;
4130 	sinfo->limit = cachep->limit;
4131 	sinfo->batchcount = cachep->batchcount;
4132 	sinfo->shared = cachep->shared;
4133 	sinfo->objects_per_slab = cachep->num;
4134 	sinfo->cache_order = cachep->gfporder;
4135 }
4136 
4137 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4138 {
4139 #if STATS
4140 	{			/* node stats */
4141 		unsigned long high = cachep->high_mark;
4142 		unsigned long allocs = cachep->num_allocations;
4143 		unsigned long grown = cachep->grown;
4144 		unsigned long reaped = cachep->reaped;
4145 		unsigned long errors = cachep->errors;
4146 		unsigned long max_freeable = cachep->max_freeable;
4147 		unsigned long node_allocs = cachep->node_allocs;
4148 		unsigned long node_frees = cachep->node_frees;
4149 		unsigned long overflows = cachep->node_overflow;
4150 
4151 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4152 			   allocs, high, grown,
4153 			   reaped, errors, max_freeable, node_allocs,
4154 			   node_frees, overflows);
4155 	}
4156 	/* cpu stats */
4157 	{
4158 		unsigned long allochit = atomic_read(&cachep->allochit);
4159 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4160 		unsigned long freehit = atomic_read(&cachep->freehit);
4161 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4162 
4163 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4164 			   allochit, allocmiss, freehit, freemiss);
4165 	}
4166 #endif
4167 }
4168 
4169 #define MAX_SLABINFO_WRITE 128
4170 /**
4171  * slabinfo_write - Tuning for the slab allocator
4172  * @file: unused
4173  * @buffer: user buffer
4174  * @count: data length
4175  * @ppos: unused
4176  */
4177 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4178 		       size_t count, loff_t *ppos)
4179 {
4180 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4181 	int limit, batchcount, shared, res;
4182 	struct kmem_cache *cachep;
4183 
4184 	if (count > MAX_SLABINFO_WRITE)
4185 		return -EINVAL;
4186 	if (copy_from_user(&kbuf, buffer, count))
4187 		return -EFAULT;
4188 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4189 
4190 	tmp = strchr(kbuf, ' ');
4191 	if (!tmp)
4192 		return -EINVAL;
4193 	*tmp = '\0';
4194 	tmp++;
4195 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4196 		return -EINVAL;
4197 
4198 	/* Find the cache in the chain of caches. */
4199 	mutex_lock(&slab_mutex);
4200 	res = -EINVAL;
4201 	list_for_each_entry(cachep, &slab_caches, list) {
4202 		if (!strcmp(cachep->name, kbuf)) {
4203 			if (limit < 1 || batchcount < 1 ||
4204 					batchcount > limit || shared < 0) {
4205 				res = 0;
4206 			} else {
4207 				res = do_tune_cpucache(cachep, limit,
4208 						       batchcount, shared,
4209 						       GFP_KERNEL);
4210 			}
4211 			break;
4212 		}
4213 	}
4214 	mutex_unlock(&slab_mutex);
4215 	if (res >= 0)
4216 		res = count;
4217 	return res;
4218 }
4219 
4220 #ifdef CONFIG_DEBUG_SLAB_LEAK
4221 
4222 static inline int add_caller(unsigned long *n, unsigned long v)
4223 {
4224 	unsigned long *p;
4225 	int l;
4226 	if (!v)
4227 		return 1;
4228 	l = n[1];
4229 	p = n + 2;
4230 	while (l) {
4231 		int i = l/2;
4232 		unsigned long *q = p + 2 * i;
4233 		if (*q == v) {
4234 			q[1]++;
4235 			return 1;
4236 		}
4237 		if (*q > v) {
4238 			l = i;
4239 		} else {
4240 			p = q + 2;
4241 			l -= i + 1;
4242 		}
4243 	}
4244 	if (++n[1] == n[0])
4245 		return 0;
4246 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4247 	p[0] = v;
4248 	p[1] = 1;
4249 	return 1;
4250 }
4251 
4252 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4253 						struct page *page)
4254 {
4255 	void *p;
4256 	int i, j;
4257 	unsigned long v;
4258 
4259 	if (n[0] == n[1])
4260 		return;
4261 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4262 		bool active = true;
4263 
4264 		for (j = page->active; j < c->num; j++) {
4265 			if (get_free_obj(page, j) == i) {
4266 				active = false;
4267 				break;
4268 			}
4269 		}
4270 
4271 		if (!active)
4272 			continue;
4273 
4274 		/*
4275 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4276 		 * mapping is established when actual object allocation and
4277 		 * we could mistakenly access the unmapped object in the cpu
4278 		 * cache.
4279 		 */
4280 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4281 			continue;
4282 
4283 		if (!add_caller(n, v))
4284 			return;
4285 	}
4286 }
4287 
4288 static void show_symbol(struct seq_file *m, unsigned long address)
4289 {
4290 #ifdef CONFIG_KALLSYMS
4291 	unsigned long offset, size;
4292 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4293 
4294 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4295 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4296 		if (modname[0])
4297 			seq_printf(m, " [%s]", modname);
4298 		return;
4299 	}
4300 #endif
4301 	seq_printf(m, "%p", (void *)address);
4302 }
4303 
4304 static int leaks_show(struct seq_file *m, void *p)
4305 {
4306 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4307 	struct page *page;
4308 	struct kmem_cache_node *n;
4309 	const char *name;
4310 	unsigned long *x = m->private;
4311 	int node;
4312 	int i;
4313 
4314 	if (!(cachep->flags & SLAB_STORE_USER))
4315 		return 0;
4316 	if (!(cachep->flags & SLAB_RED_ZONE))
4317 		return 0;
4318 
4319 	/*
4320 	 * Set store_user_clean and start to grab stored user information
4321 	 * for all objects on this cache. If some alloc/free requests comes
4322 	 * during the processing, information would be wrong so restart
4323 	 * whole processing.
4324 	 */
4325 	do {
4326 		set_store_user_clean(cachep);
4327 		drain_cpu_caches(cachep);
4328 
4329 		x[1] = 0;
4330 
4331 		for_each_kmem_cache_node(cachep, node, n) {
4332 
4333 			check_irq_on();
4334 			spin_lock_irq(&n->list_lock);
4335 
4336 			list_for_each_entry(page, &n->slabs_full, lru)
4337 				handle_slab(x, cachep, page);
4338 			list_for_each_entry(page, &n->slabs_partial, lru)
4339 				handle_slab(x, cachep, page);
4340 			spin_unlock_irq(&n->list_lock);
4341 		}
4342 	} while (!is_store_user_clean(cachep));
4343 
4344 	name = cachep->name;
4345 	if (x[0] == x[1]) {
4346 		/* Increase the buffer size */
4347 		mutex_unlock(&slab_mutex);
4348 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4349 		if (!m->private) {
4350 			/* Too bad, we are really out */
4351 			m->private = x;
4352 			mutex_lock(&slab_mutex);
4353 			return -ENOMEM;
4354 		}
4355 		*(unsigned long *)m->private = x[0] * 2;
4356 		kfree(x);
4357 		mutex_lock(&slab_mutex);
4358 		/* Now make sure this entry will be retried */
4359 		m->count = m->size;
4360 		return 0;
4361 	}
4362 	for (i = 0; i < x[1]; i++) {
4363 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4364 		show_symbol(m, x[2*i+2]);
4365 		seq_putc(m, '\n');
4366 	}
4367 
4368 	return 0;
4369 }
4370 
4371 static const struct seq_operations slabstats_op = {
4372 	.start = slab_start,
4373 	.next = slab_next,
4374 	.stop = slab_stop,
4375 	.show = leaks_show,
4376 };
4377 
4378 static int slabstats_open(struct inode *inode, struct file *file)
4379 {
4380 	unsigned long *n;
4381 
4382 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4383 	if (!n)
4384 		return -ENOMEM;
4385 
4386 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4387 
4388 	return 0;
4389 }
4390 
4391 static const struct file_operations proc_slabstats_operations = {
4392 	.open		= slabstats_open,
4393 	.read		= seq_read,
4394 	.llseek		= seq_lseek,
4395 	.release	= seq_release_private,
4396 };
4397 #endif
4398 
4399 static int __init slab_proc_init(void)
4400 {
4401 #ifdef CONFIG_DEBUG_SLAB_LEAK
4402 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4403 #endif
4404 	return 0;
4405 }
4406 module_init(slab_proc_init);
4407 #endif
4408 
4409 #ifdef CONFIG_HARDENED_USERCOPY
4410 /*
4411  * Rejects objects that are incorrectly sized.
4412  *
4413  * Returns NULL if check passes, otherwise const char * to name of cache
4414  * to indicate an error.
4415  */
4416 const char *__check_heap_object(const void *ptr, unsigned long n,
4417 				struct page *page)
4418 {
4419 	struct kmem_cache *cachep;
4420 	unsigned int objnr;
4421 	unsigned long offset;
4422 
4423 	/* Find and validate object. */
4424 	cachep = page->slab_cache;
4425 	objnr = obj_to_index(cachep, page, (void *)ptr);
4426 	BUG_ON(objnr >= cachep->num);
4427 
4428 	/* Find offset within object. */
4429 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4430 
4431 	/* Allow address range falling entirely within object size. */
4432 	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4433 		return NULL;
4434 
4435 	return cachep->name;
4436 }
4437 #endif /* CONFIG_HARDENED_USERCOPY */
4438 
4439 /**
4440  * ksize - get the actual amount of memory allocated for a given object
4441  * @objp: Pointer to the object
4442  *
4443  * kmalloc may internally round up allocations and return more memory
4444  * than requested. ksize() can be used to determine the actual amount of
4445  * memory allocated. The caller may use this additional memory, even though
4446  * a smaller amount of memory was initially specified with the kmalloc call.
4447  * The caller must guarantee that objp points to a valid object previously
4448  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4449  * must not be freed during the duration of the call.
4450  */
4451 size_t ksize(const void *objp)
4452 {
4453 	size_t size;
4454 
4455 	BUG_ON(!objp);
4456 	if (unlikely(objp == ZERO_SIZE_PTR))
4457 		return 0;
4458 
4459 	size = virt_to_cache(objp)->object_size;
4460 	/* We assume that ksize callers could use the whole allocated area,
4461 	 * so we need to unpoison this area.
4462 	 */
4463 	kasan_unpoison_shadow(objp, size);
4464 
4465 	return size;
4466 }
4467 EXPORT_SYMBOL(ksize);
4468