1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'slab_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL) 255 #define CFLGS_OFF_SLAB (0x80000000UL) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 #ifdef CONFIG_DEBUG_SLAB_LEAK 366 367 static inline bool is_store_user_clean(struct kmem_cache *cachep) 368 { 369 return atomic_read(&cachep->store_user_clean) == 1; 370 } 371 372 static inline void set_store_user_clean(struct kmem_cache *cachep) 373 { 374 atomic_set(&cachep->store_user_clean, 1); 375 } 376 377 static inline void set_store_user_dirty(struct kmem_cache *cachep) 378 { 379 if (is_store_user_clean(cachep)) 380 atomic_set(&cachep->store_user_clean, 0); 381 } 382 383 #else 384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 385 386 #endif 387 388 /* 389 * Do not go above this order unless 0 objects fit into the slab or 390 * overridden on the command line. 391 */ 392 #define SLAB_MAX_ORDER_HI 1 393 #define SLAB_MAX_ORDER_LO 0 394 static int slab_max_order = SLAB_MAX_ORDER_LO; 395 static bool slab_max_order_set __initdata; 396 397 static inline struct kmem_cache *virt_to_cache(const void *obj) 398 { 399 struct page *page = virt_to_head_page(obj); 400 return page->slab_cache; 401 } 402 403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 404 unsigned int idx) 405 { 406 return page->s_mem + cache->size * idx; 407 } 408 409 /* 410 * We want to avoid an expensive divide : (offset / cache->size) 411 * Using the fact that size is a constant for a particular cache, 412 * we can replace (offset / cache->size) by 413 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 414 */ 415 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 416 const struct page *page, void *obj) 417 { 418 u32 offset = (obj - page->s_mem); 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 420 } 421 422 #define BOOT_CPUCACHE_ENTRIES 1 423 /* internal cache of cache description objs */ 424 static struct kmem_cache kmem_cache_boot = { 425 .batchcount = 1, 426 .limit = BOOT_CPUCACHE_ENTRIES, 427 .shared = 1, 428 .size = sizeof(struct kmem_cache), 429 .name = "kmem_cache", 430 }; 431 432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 433 434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 435 { 436 return this_cpu_ptr(cachep->cpu_cache); 437 } 438 439 /* 440 * Calculate the number of objects and left-over bytes for a given buffer size. 441 */ 442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 443 unsigned long flags, size_t *left_over) 444 { 445 unsigned int num; 446 size_t slab_size = PAGE_SIZE << gfporder; 447 448 /* 449 * The slab management structure can be either off the slab or 450 * on it. For the latter case, the memory allocated for a 451 * slab is used for: 452 * 453 * - @buffer_size bytes for each object 454 * - One freelist_idx_t for each object 455 * 456 * We don't need to consider alignment of freelist because 457 * freelist will be at the end of slab page. The objects will be 458 * at the correct alignment. 459 * 460 * If the slab management structure is off the slab, then the 461 * alignment will already be calculated into the size. Because 462 * the slabs are all pages aligned, the objects will be at the 463 * correct alignment when allocated. 464 */ 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 466 num = slab_size / buffer_size; 467 *left_over = slab_size % buffer_size; 468 } else { 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 470 *left_over = slab_size % 471 (buffer_size + sizeof(freelist_idx_t)); 472 } 473 474 return num; 475 } 476 477 #if DEBUG 478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 479 480 static void __slab_error(const char *function, struct kmem_cache *cachep, 481 char *msg) 482 { 483 pr_err("slab error in %s(): cache `%s': %s\n", 484 function, cachep->name, msg); 485 dump_stack(); 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 487 } 488 #endif 489 490 /* 491 * By default on NUMA we use alien caches to stage the freeing of 492 * objects allocated from other nodes. This causes massive memory 493 * inefficiencies when using fake NUMA setup to split memory into a 494 * large number of small nodes, so it can be disabled on the command 495 * line 496 */ 497 498 static int use_alien_caches __read_mostly = 1; 499 static int __init noaliencache_setup(char *s) 500 { 501 use_alien_caches = 0; 502 return 1; 503 } 504 __setup("noaliencache", noaliencache_setup); 505 506 static int __init slab_max_order_setup(char *str) 507 { 508 get_option(&str, &slab_max_order); 509 slab_max_order = slab_max_order < 0 ? 0 : 510 min(slab_max_order, MAX_ORDER - 1); 511 slab_max_order_set = true; 512 513 return 1; 514 } 515 __setup("slab_max_order=", slab_max_order_setup); 516 517 #ifdef CONFIG_NUMA 518 /* 519 * Special reaping functions for NUMA systems called from cache_reap(). 520 * These take care of doing round robin flushing of alien caches (containing 521 * objects freed on different nodes from which they were allocated) and the 522 * flushing of remote pcps by calling drain_node_pages. 523 */ 524 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 525 526 static void init_reap_node(int cpu) 527 { 528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 529 node_online_map); 530 } 531 532 static void next_reap_node(void) 533 { 534 int node = __this_cpu_read(slab_reap_node); 535 536 node = next_node_in(node, node_online_map); 537 __this_cpu_write(slab_reap_node, node); 538 } 539 540 #else 541 #define init_reap_node(cpu) do { } while (0) 542 #define next_reap_node(void) do { } while (0) 543 #endif 544 545 /* 546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 547 * via the workqueue/eventd. 548 * Add the CPU number into the expiration time to minimize the possibility of 549 * the CPUs getting into lockstep and contending for the global cache chain 550 * lock. 551 */ 552 static void start_cpu_timer(int cpu) 553 { 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 555 556 if (reap_work->work.func == NULL) { 557 init_reap_node(cpu); 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 559 schedule_delayed_work_on(cpu, reap_work, 560 __round_jiffies_relative(HZ, cpu)); 561 } 562 } 563 564 static void init_arraycache(struct array_cache *ac, int limit, int batch) 565 { 566 /* 567 * The array_cache structures contain pointers to free object. 568 * However, when such objects are allocated or transferred to another 569 * cache the pointers are not cleared and they could be counted as 570 * valid references during a kmemleak scan. Therefore, kmemleak must 571 * not scan such objects. 572 */ 573 kmemleak_no_scan(ac); 574 if (ac) { 575 ac->avail = 0; 576 ac->limit = limit; 577 ac->batchcount = batch; 578 ac->touched = 0; 579 } 580 } 581 582 static struct array_cache *alloc_arraycache(int node, int entries, 583 int batchcount, gfp_t gfp) 584 { 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 586 struct array_cache *ac = NULL; 587 588 ac = kmalloc_node(memsize, gfp, node); 589 init_arraycache(ac, entries, batchcount); 590 return ac; 591 } 592 593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 594 struct page *page, void *objp) 595 { 596 struct kmem_cache_node *n; 597 int page_node; 598 LIST_HEAD(list); 599 600 page_node = page_to_nid(page); 601 n = get_node(cachep, page_node); 602 603 spin_lock(&n->list_lock); 604 free_block(cachep, &objp, 1, page_node, &list); 605 spin_unlock(&n->list_lock); 606 607 slabs_destroy(cachep, &list); 608 } 609 610 /* 611 * Transfer objects in one arraycache to another. 612 * Locking must be handled by the caller. 613 * 614 * Return the number of entries transferred. 615 */ 616 static int transfer_objects(struct array_cache *to, 617 struct array_cache *from, unsigned int max) 618 { 619 /* Figure out how many entries to transfer */ 620 int nr = min3(from->avail, max, to->limit - to->avail); 621 622 if (!nr) 623 return 0; 624 625 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 626 sizeof(void *) *nr); 627 628 from->avail -= nr; 629 to->avail += nr; 630 return nr; 631 } 632 633 #ifndef CONFIG_NUMA 634 635 #define drain_alien_cache(cachep, alien) do { } while (0) 636 #define reap_alien(cachep, n) do { } while (0) 637 638 static inline struct alien_cache **alloc_alien_cache(int node, 639 int limit, gfp_t gfp) 640 { 641 return NULL; 642 } 643 644 static inline void free_alien_cache(struct alien_cache **ac_ptr) 645 { 646 } 647 648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 649 { 650 return 0; 651 } 652 653 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 654 gfp_t flags) 655 { 656 return NULL; 657 } 658 659 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 660 gfp_t flags, int nodeid) 661 { 662 return NULL; 663 } 664 665 static inline gfp_t gfp_exact_node(gfp_t flags) 666 { 667 return flags & ~__GFP_NOFAIL; 668 } 669 670 #else /* CONFIG_NUMA */ 671 672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 674 675 static struct alien_cache *__alloc_alien_cache(int node, int entries, 676 int batch, gfp_t gfp) 677 { 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 679 struct alien_cache *alc = NULL; 680 681 alc = kmalloc_node(memsize, gfp, node); 682 init_arraycache(&alc->ac, entries, batch); 683 spin_lock_init(&alc->lock); 684 return alc; 685 } 686 687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 688 { 689 struct alien_cache **alc_ptr; 690 size_t memsize = sizeof(void *) * nr_node_ids; 691 int i; 692 693 if (limit > 1) 694 limit = 12; 695 alc_ptr = kzalloc_node(memsize, gfp, node); 696 if (!alc_ptr) 697 return NULL; 698 699 for_each_node(i) { 700 if (i == node || !node_online(i)) 701 continue; 702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 703 if (!alc_ptr[i]) { 704 for (i--; i >= 0; i--) 705 kfree(alc_ptr[i]); 706 kfree(alc_ptr); 707 return NULL; 708 } 709 } 710 return alc_ptr; 711 } 712 713 static void free_alien_cache(struct alien_cache **alc_ptr) 714 { 715 int i; 716 717 if (!alc_ptr) 718 return; 719 for_each_node(i) 720 kfree(alc_ptr[i]); 721 kfree(alc_ptr); 722 } 723 724 static void __drain_alien_cache(struct kmem_cache *cachep, 725 struct array_cache *ac, int node, 726 struct list_head *list) 727 { 728 struct kmem_cache_node *n = get_node(cachep, node); 729 730 if (ac->avail) { 731 spin_lock(&n->list_lock); 732 /* 733 * Stuff objects into the remote nodes shared array first. 734 * That way we could avoid the overhead of putting the objects 735 * into the free lists and getting them back later. 736 */ 737 if (n->shared) 738 transfer_objects(n->shared, ac, ac->limit); 739 740 free_block(cachep, ac->entry, ac->avail, node, list); 741 ac->avail = 0; 742 spin_unlock(&n->list_lock); 743 } 744 } 745 746 /* 747 * Called from cache_reap() to regularly drain alien caches round robin. 748 */ 749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 750 { 751 int node = __this_cpu_read(slab_reap_node); 752 753 if (n->alien) { 754 struct alien_cache *alc = n->alien[node]; 755 struct array_cache *ac; 756 757 if (alc) { 758 ac = &alc->ac; 759 if (ac->avail && spin_trylock_irq(&alc->lock)) { 760 LIST_HEAD(list); 761 762 __drain_alien_cache(cachep, ac, node, &list); 763 spin_unlock_irq(&alc->lock); 764 slabs_destroy(cachep, &list); 765 } 766 } 767 } 768 } 769 770 static void drain_alien_cache(struct kmem_cache *cachep, 771 struct alien_cache **alien) 772 { 773 int i = 0; 774 struct alien_cache *alc; 775 struct array_cache *ac; 776 unsigned long flags; 777 778 for_each_online_node(i) { 779 alc = alien[i]; 780 if (alc) { 781 LIST_HEAD(list); 782 783 ac = &alc->ac; 784 spin_lock_irqsave(&alc->lock, flags); 785 __drain_alien_cache(cachep, ac, i, &list); 786 spin_unlock_irqrestore(&alc->lock, flags); 787 slabs_destroy(cachep, &list); 788 } 789 } 790 } 791 792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 793 int node, int page_node) 794 { 795 struct kmem_cache_node *n; 796 struct alien_cache *alien = NULL; 797 struct array_cache *ac; 798 LIST_HEAD(list); 799 800 n = get_node(cachep, node); 801 STATS_INC_NODEFREES(cachep); 802 if (n->alien && n->alien[page_node]) { 803 alien = n->alien[page_node]; 804 ac = &alien->ac; 805 spin_lock(&alien->lock); 806 if (unlikely(ac->avail == ac->limit)) { 807 STATS_INC_ACOVERFLOW(cachep); 808 __drain_alien_cache(cachep, ac, page_node, &list); 809 } 810 ac->entry[ac->avail++] = objp; 811 spin_unlock(&alien->lock); 812 slabs_destroy(cachep, &list); 813 } else { 814 n = get_node(cachep, page_node); 815 spin_lock(&n->list_lock); 816 free_block(cachep, &objp, 1, page_node, &list); 817 spin_unlock(&n->list_lock); 818 slabs_destroy(cachep, &list); 819 } 820 return 1; 821 } 822 823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 824 { 825 int page_node = page_to_nid(virt_to_page(objp)); 826 int node = numa_mem_id(); 827 /* 828 * Make sure we are not freeing a object from another node to the array 829 * cache on this cpu. 830 */ 831 if (likely(node == page_node)) 832 return 0; 833 834 return __cache_free_alien(cachep, objp, node, page_node); 835 } 836 837 /* 838 * Construct gfp mask to allocate from a specific node but do not reclaim or 839 * warn about failures. 840 */ 841 static inline gfp_t gfp_exact_node(gfp_t flags) 842 { 843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 844 } 845 #endif 846 847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 848 { 849 struct kmem_cache_node *n; 850 851 /* 852 * Set up the kmem_cache_node for cpu before we can 853 * begin anything. Make sure some other cpu on this 854 * node has not already allocated this 855 */ 856 n = get_node(cachep, node); 857 if (n) { 858 spin_lock_irq(&n->list_lock); 859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 860 cachep->num; 861 spin_unlock_irq(&n->list_lock); 862 863 return 0; 864 } 865 866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 867 if (!n) 868 return -ENOMEM; 869 870 kmem_cache_node_init(n); 871 n->next_reap = jiffies + REAPTIMEOUT_NODE + 872 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 873 874 n->free_limit = 875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 876 877 /* 878 * The kmem_cache_nodes don't come and go as CPUs 879 * come and go. slab_mutex is sufficient 880 * protection here. 881 */ 882 cachep->node[node] = n; 883 884 return 0; 885 } 886 887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 888 /* 889 * Allocates and initializes node for a node on each slab cache, used for 890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 891 * will be allocated off-node since memory is not yet online for the new node. 892 * When hotplugging memory or a cpu, existing node are not replaced if 893 * already in use. 894 * 895 * Must hold slab_mutex. 896 */ 897 static int init_cache_node_node(int node) 898 { 899 int ret; 900 struct kmem_cache *cachep; 901 902 list_for_each_entry(cachep, &slab_caches, list) { 903 ret = init_cache_node(cachep, node, GFP_KERNEL); 904 if (ret) 905 return ret; 906 } 907 908 return 0; 909 } 910 #endif 911 912 static int setup_kmem_cache_node(struct kmem_cache *cachep, 913 int node, gfp_t gfp, bool force_change) 914 { 915 int ret = -ENOMEM; 916 struct kmem_cache_node *n; 917 struct array_cache *old_shared = NULL; 918 struct array_cache *new_shared = NULL; 919 struct alien_cache **new_alien = NULL; 920 LIST_HEAD(list); 921 922 if (use_alien_caches) { 923 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 924 if (!new_alien) 925 goto fail; 926 } 927 928 if (cachep->shared) { 929 new_shared = alloc_arraycache(node, 930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 931 if (!new_shared) 932 goto fail; 933 } 934 935 ret = init_cache_node(cachep, node, gfp); 936 if (ret) 937 goto fail; 938 939 n = get_node(cachep, node); 940 spin_lock_irq(&n->list_lock); 941 if (n->shared && force_change) { 942 free_block(cachep, n->shared->entry, 943 n->shared->avail, node, &list); 944 n->shared->avail = 0; 945 } 946 947 if (!n->shared || force_change) { 948 old_shared = n->shared; 949 n->shared = new_shared; 950 new_shared = NULL; 951 } 952 953 if (!n->alien) { 954 n->alien = new_alien; 955 new_alien = NULL; 956 } 957 958 spin_unlock_irq(&n->list_lock); 959 slabs_destroy(cachep, &list); 960 961 /* 962 * To protect lockless access to n->shared during irq disabled context. 963 * If n->shared isn't NULL in irq disabled context, accessing to it is 964 * guaranteed to be valid until irq is re-enabled, because it will be 965 * freed after synchronize_sched(). 966 */ 967 if (old_shared && force_change) 968 synchronize_sched(); 969 970 fail: 971 kfree(old_shared); 972 kfree(new_shared); 973 free_alien_cache(new_alien); 974 975 return ret; 976 } 977 978 #ifdef CONFIG_SMP 979 980 static void cpuup_canceled(long cpu) 981 { 982 struct kmem_cache *cachep; 983 struct kmem_cache_node *n = NULL; 984 int node = cpu_to_mem(cpu); 985 const struct cpumask *mask = cpumask_of_node(node); 986 987 list_for_each_entry(cachep, &slab_caches, list) { 988 struct array_cache *nc; 989 struct array_cache *shared; 990 struct alien_cache **alien; 991 LIST_HEAD(list); 992 993 n = get_node(cachep, node); 994 if (!n) 995 continue; 996 997 spin_lock_irq(&n->list_lock); 998 999 /* Free limit for this kmem_cache_node */ 1000 n->free_limit -= cachep->batchcount; 1001 1002 /* cpu is dead; no one can alloc from it. */ 1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 1004 if (nc) { 1005 free_block(cachep, nc->entry, nc->avail, node, &list); 1006 nc->avail = 0; 1007 } 1008 1009 if (!cpumask_empty(mask)) { 1010 spin_unlock_irq(&n->list_lock); 1011 goto free_slab; 1012 } 1013 1014 shared = n->shared; 1015 if (shared) { 1016 free_block(cachep, shared->entry, 1017 shared->avail, node, &list); 1018 n->shared = NULL; 1019 } 1020 1021 alien = n->alien; 1022 n->alien = NULL; 1023 1024 spin_unlock_irq(&n->list_lock); 1025 1026 kfree(shared); 1027 if (alien) { 1028 drain_alien_cache(cachep, alien); 1029 free_alien_cache(alien); 1030 } 1031 1032 free_slab: 1033 slabs_destroy(cachep, &list); 1034 } 1035 /* 1036 * In the previous loop, all the objects were freed to 1037 * the respective cache's slabs, now we can go ahead and 1038 * shrink each nodelist to its limit. 1039 */ 1040 list_for_each_entry(cachep, &slab_caches, list) { 1041 n = get_node(cachep, node); 1042 if (!n) 1043 continue; 1044 drain_freelist(cachep, n, INT_MAX); 1045 } 1046 } 1047 1048 static int cpuup_prepare(long cpu) 1049 { 1050 struct kmem_cache *cachep; 1051 int node = cpu_to_mem(cpu); 1052 int err; 1053 1054 /* 1055 * We need to do this right in the beginning since 1056 * alloc_arraycache's are going to use this list. 1057 * kmalloc_node allows us to add the slab to the right 1058 * kmem_cache_node and not this cpu's kmem_cache_node 1059 */ 1060 err = init_cache_node_node(node); 1061 if (err < 0) 1062 goto bad; 1063 1064 /* 1065 * Now we can go ahead with allocating the shared arrays and 1066 * array caches 1067 */ 1068 list_for_each_entry(cachep, &slab_caches, list) { 1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1070 if (err) 1071 goto bad; 1072 } 1073 1074 return 0; 1075 bad: 1076 cpuup_canceled(cpu); 1077 return -ENOMEM; 1078 } 1079 1080 int slab_prepare_cpu(unsigned int cpu) 1081 { 1082 int err; 1083 1084 mutex_lock(&slab_mutex); 1085 err = cpuup_prepare(cpu); 1086 mutex_unlock(&slab_mutex); 1087 return err; 1088 } 1089 1090 /* 1091 * This is called for a failed online attempt and for a successful 1092 * offline. 1093 * 1094 * Even if all the cpus of a node are down, we don't free the 1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1096 * a kmalloc allocation from another cpu for memory from the node of 1097 * the cpu going down. The list3 structure is usually allocated from 1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1099 */ 1100 int slab_dead_cpu(unsigned int cpu) 1101 { 1102 mutex_lock(&slab_mutex); 1103 cpuup_canceled(cpu); 1104 mutex_unlock(&slab_mutex); 1105 return 0; 1106 } 1107 #endif 1108 1109 static int slab_online_cpu(unsigned int cpu) 1110 { 1111 start_cpu_timer(cpu); 1112 return 0; 1113 } 1114 1115 static int slab_offline_cpu(unsigned int cpu) 1116 { 1117 /* 1118 * Shutdown cache reaper. Note that the slab_mutex is held so 1119 * that if cache_reap() is invoked it cannot do anything 1120 * expensive but will only modify reap_work and reschedule the 1121 * timer. 1122 */ 1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1124 /* Now the cache_reaper is guaranteed to be not running. */ 1125 per_cpu(slab_reap_work, cpu).work.func = NULL; 1126 return 0; 1127 } 1128 1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1130 /* 1131 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1132 * Returns -EBUSY if all objects cannot be drained so that the node is not 1133 * removed. 1134 * 1135 * Must hold slab_mutex. 1136 */ 1137 static int __meminit drain_cache_node_node(int node) 1138 { 1139 struct kmem_cache *cachep; 1140 int ret = 0; 1141 1142 list_for_each_entry(cachep, &slab_caches, list) { 1143 struct kmem_cache_node *n; 1144 1145 n = get_node(cachep, node); 1146 if (!n) 1147 continue; 1148 1149 drain_freelist(cachep, n, INT_MAX); 1150 1151 if (!list_empty(&n->slabs_full) || 1152 !list_empty(&n->slabs_partial)) { 1153 ret = -EBUSY; 1154 break; 1155 } 1156 } 1157 return ret; 1158 } 1159 1160 static int __meminit slab_memory_callback(struct notifier_block *self, 1161 unsigned long action, void *arg) 1162 { 1163 struct memory_notify *mnb = arg; 1164 int ret = 0; 1165 int nid; 1166 1167 nid = mnb->status_change_nid; 1168 if (nid < 0) 1169 goto out; 1170 1171 switch (action) { 1172 case MEM_GOING_ONLINE: 1173 mutex_lock(&slab_mutex); 1174 ret = init_cache_node_node(nid); 1175 mutex_unlock(&slab_mutex); 1176 break; 1177 case MEM_GOING_OFFLINE: 1178 mutex_lock(&slab_mutex); 1179 ret = drain_cache_node_node(nid); 1180 mutex_unlock(&slab_mutex); 1181 break; 1182 case MEM_ONLINE: 1183 case MEM_OFFLINE: 1184 case MEM_CANCEL_ONLINE: 1185 case MEM_CANCEL_OFFLINE: 1186 break; 1187 } 1188 out: 1189 return notifier_from_errno(ret); 1190 } 1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1192 1193 /* 1194 * swap the static kmem_cache_node with kmalloced memory 1195 */ 1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1197 int nodeid) 1198 { 1199 struct kmem_cache_node *ptr; 1200 1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1202 BUG_ON(!ptr); 1203 1204 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1205 /* 1206 * Do not assume that spinlocks can be initialized via memcpy: 1207 */ 1208 spin_lock_init(&ptr->list_lock); 1209 1210 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1211 cachep->node[nodeid] = ptr; 1212 } 1213 1214 /* 1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1216 * size of kmem_cache_node. 1217 */ 1218 static void __init set_up_node(struct kmem_cache *cachep, int index) 1219 { 1220 int node; 1221 1222 for_each_online_node(node) { 1223 cachep->node[node] = &init_kmem_cache_node[index + node]; 1224 cachep->node[node]->next_reap = jiffies + 1225 REAPTIMEOUT_NODE + 1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1227 } 1228 } 1229 1230 /* 1231 * Initialisation. Called after the page allocator have been initialised and 1232 * before smp_init(). 1233 */ 1234 void __init kmem_cache_init(void) 1235 { 1236 int i; 1237 1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1239 sizeof(struct rcu_head)); 1240 kmem_cache = &kmem_cache_boot; 1241 1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1243 use_alien_caches = 0; 1244 1245 for (i = 0; i < NUM_INIT_LISTS; i++) 1246 kmem_cache_node_init(&init_kmem_cache_node[i]); 1247 1248 /* 1249 * Fragmentation resistance on low memory - only use bigger 1250 * page orders on machines with more than 32MB of memory if 1251 * not overridden on the command line. 1252 */ 1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1254 slab_max_order = SLAB_MAX_ORDER_HI; 1255 1256 /* Bootstrap is tricky, because several objects are allocated 1257 * from caches that do not exist yet: 1258 * 1) initialize the kmem_cache cache: it contains the struct 1259 * kmem_cache structures of all caches, except kmem_cache itself: 1260 * kmem_cache is statically allocated. 1261 * Initially an __init data area is used for the head array and the 1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1263 * array at the end of the bootstrap. 1264 * 2) Create the first kmalloc cache. 1265 * The struct kmem_cache for the new cache is allocated normally. 1266 * An __init data area is used for the head array. 1267 * 3) Create the remaining kmalloc caches, with minimally sized 1268 * head arrays. 1269 * 4) Replace the __init data head arrays for kmem_cache and the first 1270 * kmalloc cache with kmalloc allocated arrays. 1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1272 * the other cache's with kmalloc allocated memory. 1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1274 */ 1275 1276 /* 1) create the kmem_cache */ 1277 1278 /* 1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1280 */ 1281 create_boot_cache(kmem_cache, "kmem_cache", 1282 offsetof(struct kmem_cache, node) + 1283 nr_node_ids * sizeof(struct kmem_cache_node *), 1284 SLAB_HWCACHE_ALIGN); 1285 list_add(&kmem_cache->list, &slab_caches); 1286 slab_state = PARTIAL; 1287 1288 /* 1289 * Initialize the caches that provide memory for the kmem_cache_node 1290 * structures first. Without this, further allocations will bug. 1291 */ 1292 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache( 1293 kmalloc_info[INDEX_NODE].name, 1294 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1295 slab_state = PARTIAL_NODE; 1296 setup_kmalloc_cache_index_table(); 1297 1298 slab_early_init = 0; 1299 1300 /* 5) Replace the bootstrap kmem_cache_node */ 1301 { 1302 int nid; 1303 1304 for_each_online_node(nid) { 1305 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1306 1307 init_list(kmalloc_caches[INDEX_NODE], 1308 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1309 } 1310 } 1311 1312 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1313 } 1314 1315 void __init kmem_cache_init_late(void) 1316 { 1317 struct kmem_cache *cachep; 1318 1319 slab_state = UP; 1320 1321 /* 6) resize the head arrays to their final sizes */ 1322 mutex_lock(&slab_mutex); 1323 list_for_each_entry(cachep, &slab_caches, list) 1324 if (enable_cpucache(cachep, GFP_NOWAIT)) 1325 BUG(); 1326 mutex_unlock(&slab_mutex); 1327 1328 /* Done! */ 1329 slab_state = FULL; 1330 1331 #ifdef CONFIG_NUMA 1332 /* 1333 * Register a memory hotplug callback that initializes and frees 1334 * node. 1335 */ 1336 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1337 #endif 1338 1339 /* 1340 * The reap timers are started later, with a module init call: That part 1341 * of the kernel is not yet operational. 1342 */ 1343 } 1344 1345 static int __init cpucache_init(void) 1346 { 1347 int ret; 1348 1349 /* 1350 * Register the timers that return unneeded pages to the page allocator 1351 */ 1352 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1353 slab_online_cpu, slab_offline_cpu); 1354 WARN_ON(ret < 0); 1355 1356 /* Done! */ 1357 slab_state = FULL; 1358 return 0; 1359 } 1360 __initcall(cpucache_init); 1361 1362 static noinline void 1363 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1364 { 1365 #if DEBUG 1366 struct kmem_cache_node *n; 1367 unsigned long flags; 1368 int node; 1369 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1370 DEFAULT_RATELIMIT_BURST); 1371 1372 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1373 return; 1374 1375 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1376 nodeid, gfpflags, &gfpflags); 1377 pr_warn(" cache: %s, object size: %d, order: %d\n", 1378 cachep->name, cachep->size, cachep->gfporder); 1379 1380 for_each_kmem_cache_node(cachep, node, n) { 1381 unsigned long total_slabs, free_slabs, free_objs; 1382 1383 spin_lock_irqsave(&n->list_lock, flags); 1384 total_slabs = n->total_slabs; 1385 free_slabs = n->free_slabs; 1386 free_objs = n->free_objects; 1387 spin_unlock_irqrestore(&n->list_lock, flags); 1388 1389 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1390 node, total_slabs - free_slabs, total_slabs, 1391 (total_slabs * cachep->num) - free_objs, 1392 total_slabs * cachep->num); 1393 } 1394 #endif 1395 } 1396 1397 /* 1398 * Interface to system's page allocator. No need to hold the 1399 * kmem_cache_node ->list_lock. 1400 * 1401 * If we requested dmaable memory, we will get it. Even if we 1402 * did not request dmaable memory, we might get it, but that 1403 * would be relatively rare and ignorable. 1404 */ 1405 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1406 int nodeid) 1407 { 1408 struct page *page; 1409 int nr_pages; 1410 1411 flags |= cachep->allocflags; 1412 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1413 flags |= __GFP_RECLAIMABLE; 1414 1415 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1416 if (!page) { 1417 slab_out_of_memory(cachep, flags, nodeid); 1418 return NULL; 1419 } 1420 1421 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1422 __free_pages(page, cachep->gfporder); 1423 return NULL; 1424 } 1425 1426 nr_pages = (1 << cachep->gfporder); 1427 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1428 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages); 1429 else 1430 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages); 1431 1432 __SetPageSlab(page); 1433 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1434 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1435 SetPageSlabPfmemalloc(page); 1436 1437 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1438 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1439 1440 if (cachep->ctor) 1441 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1442 else 1443 kmemcheck_mark_unallocated_pages(page, nr_pages); 1444 } 1445 1446 return page; 1447 } 1448 1449 /* 1450 * Interface to system's page release. 1451 */ 1452 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1453 { 1454 int order = cachep->gfporder; 1455 unsigned long nr_freed = (1 << order); 1456 1457 kmemcheck_free_shadow(page, order); 1458 1459 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1460 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed); 1461 else 1462 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed); 1463 1464 BUG_ON(!PageSlab(page)); 1465 __ClearPageSlabPfmemalloc(page); 1466 __ClearPageSlab(page); 1467 page_mapcount_reset(page); 1468 page->mapping = NULL; 1469 1470 if (current->reclaim_state) 1471 current->reclaim_state->reclaimed_slab += nr_freed; 1472 memcg_uncharge_slab(page, order, cachep); 1473 __free_pages(page, order); 1474 } 1475 1476 static void kmem_rcu_free(struct rcu_head *head) 1477 { 1478 struct kmem_cache *cachep; 1479 struct page *page; 1480 1481 page = container_of(head, struct page, rcu_head); 1482 cachep = page->slab_cache; 1483 1484 kmem_freepages(cachep, page); 1485 } 1486 1487 #if DEBUG 1488 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1489 { 1490 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1491 (cachep->size % PAGE_SIZE) == 0) 1492 return true; 1493 1494 return false; 1495 } 1496 1497 #ifdef CONFIG_DEBUG_PAGEALLOC 1498 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1499 unsigned long caller) 1500 { 1501 int size = cachep->object_size; 1502 1503 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1504 1505 if (size < 5 * sizeof(unsigned long)) 1506 return; 1507 1508 *addr++ = 0x12345678; 1509 *addr++ = caller; 1510 *addr++ = smp_processor_id(); 1511 size -= 3 * sizeof(unsigned long); 1512 { 1513 unsigned long *sptr = &caller; 1514 unsigned long svalue; 1515 1516 while (!kstack_end(sptr)) { 1517 svalue = *sptr++; 1518 if (kernel_text_address(svalue)) { 1519 *addr++ = svalue; 1520 size -= sizeof(unsigned long); 1521 if (size <= sizeof(unsigned long)) 1522 break; 1523 } 1524 } 1525 1526 } 1527 *addr++ = 0x87654321; 1528 } 1529 1530 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1531 int map, unsigned long caller) 1532 { 1533 if (!is_debug_pagealloc_cache(cachep)) 1534 return; 1535 1536 if (caller) 1537 store_stackinfo(cachep, objp, caller); 1538 1539 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1540 } 1541 1542 #else 1543 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1544 int map, unsigned long caller) {} 1545 1546 #endif 1547 1548 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1549 { 1550 int size = cachep->object_size; 1551 addr = &((char *)addr)[obj_offset(cachep)]; 1552 1553 memset(addr, val, size); 1554 *(unsigned char *)(addr + size - 1) = POISON_END; 1555 } 1556 1557 static void dump_line(char *data, int offset, int limit) 1558 { 1559 int i; 1560 unsigned char error = 0; 1561 int bad_count = 0; 1562 1563 pr_err("%03x: ", offset); 1564 for (i = 0; i < limit; i++) { 1565 if (data[offset + i] != POISON_FREE) { 1566 error = data[offset + i]; 1567 bad_count++; 1568 } 1569 } 1570 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1571 &data[offset], limit, 1); 1572 1573 if (bad_count == 1) { 1574 error ^= POISON_FREE; 1575 if (!(error & (error - 1))) { 1576 pr_err("Single bit error detected. Probably bad RAM.\n"); 1577 #ifdef CONFIG_X86 1578 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1579 #else 1580 pr_err("Run a memory test tool.\n"); 1581 #endif 1582 } 1583 } 1584 } 1585 #endif 1586 1587 #if DEBUG 1588 1589 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1590 { 1591 int i, size; 1592 char *realobj; 1593 1594 if (cachep->flags & SLAB_RED_ZONE) { 1595 pr_err("Redzone: 0x%llx/0x%llx\n", 1596 *dbg_redzone1(cachep, objp), 1597 *dbg_redzone2(cachep, objp)); 1598 } 1599 1600 if (cachep->flags & SLAB_STORE_USER) { 1601 pr_err("Last user: [<%p>](%pSR)\n", 1602 *dbg_userword(cachep, objp), 1603 *dbg_userword(cachep, objp)); 1604 } 1605 realobj = (char *)objp + obj_offset(cachep); 1606 size = cachep->object_size; 1607 for (i = 0; i < size && lines; i += 16, lines--) { 1608 int limit; 1609 limit = 16; 1610 if (i + limit > size) 1611 limit = size - i; 1612 dump_line(realobj, i, limit); 1613 } 1614 } 1615 1616 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1617 { 1618 char *realobj; 1619 int size, i; 1620 int lines = 0; 1621 1622 if (is_debug_pagealloc_cache(cachep)) 1623 return; 1624 1625 realobj = (char *)objp + obj_offset(cachep); 1626 size = cachep->object_size; 1627 1628 for (i = 0; i < size; i++) { 1629 char exp = POISON_FREE; 1630 if (i == size - 1) 1631 exp = POISON_END; 1632 if (realobj[i] != exp) { 1633 int limit; 1634 /* Mismatch ! */ 1635 /* Print header */ 1636 if (lines == 0) { 1637 pr_err("Slab corruption (%s): %s start=%p, len=%d\n", 1638 print_tainted(), cachep->name, 1639 realobj, size); 1640 print_objinfo(cachep, objp, 0); 1641 } 1642 /* Hexdump the affected line */ 1643 i = (i / 16) * 16; 1644 limit = 16; 1645 if (i + limit > size) 1646 limit = size - i; 1647 dump_line(realobj, i, limit); 1648 i += 16; 1649 lines++; 1650 /* Limit to 5 lines */ 1651 if (lines > 5) 1652 break; 1653 } 1654 } 1655 if (lines != 0) { 1656 /* Print some data about the neighboring objects, if they 1657 * exist: 1658 */ 1659 struct page *page = virt_to_head_page(objp); 1660 unsigned int objnr; 1661 1662 objnr = obj_to_index(cachep, page, objp); 1663 if (objnr) { 1664 objp = index_to_obj(cachep, page, objnr - 1); 1665 realobj = (char *)objp + obj_offset(cachep); 1666 pr_err("Prev obj: start=%p, len=%d\n", realobj, size); 1667 print_objinfo(cachep, objp, 2); 1668 } 1669 if (objnr + 1 < cachep->num) { 1670 objp = index_to_obj(cachep, page, objnr + 1); 1671 realobj = (char *)objp + obj_offset(cachep); 1672 pr_err("Next obj: start=%p, len=%d\n", realobj, size); 1673 print_objinfo(cachep, objp, 2); 1674 } 1675 } 1676 } 1677 #endif 1678 1679 #if DEBUG 1680 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1681 struct page *page) 1682 { 1683 int i; 1684 1685 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1686 poison_obj(cachep, page->freelist - obj_offset(cachep), 1687 POISON_FREE); 1688 } 1689 1690 for (i = 0; i < cachep->num; i++) { 1691 void *objp = index_to_obj(cachep, page, i); 1692 1693 if (cachep->flags & SLAB_POISON) { 1694 check_poison_obj(cachep, objp); 1695 slab_kernel_map(cachep, objp, 1, 0); 1696 } 1697 if (cachep->flags & SLAB_RED_ZONE) { 1698 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1699 slab_error(cachep, "start of a freed object was overwritten"); 1700 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1701 slab_error(cachep, "end of a freed object was overwritten"); 1702 } 1703 } 1704 } 1705 #else 1706 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1707 struct page *page) 1708 { 1709 } 1710 #endif 1711 1712 /** 1713 * slab_destroy - destroy and release all objects in a slab 1714 * @cachep: cache pointer being destroyed 1715 * @page: page pointer being destroyed 1716 * 1717 * Destroy all the objs in a slab page, and release the mem back to the system. 1718 * Before calling the slab page must have been unlinked from the cache. The 1719 * kmem_cache_node ->list_lock is not held/needed. 1720 */ 1721 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1722 { 1723 void *freelist; 1724 1725 freelist = page->freelist; 1726 slab_destroy_debugcheck(cachep, page); 1727 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1728 call_rcu(&page->rcu_head, kmem_rcu_free); 1729 else 1730 kmem_freepages(cachep, page); 1731 1732 /* 1733 * From now on, we don't use freelist 1734 * although actual page can be freed in rcu context 1735 */ 1736 if (OFF_SLAB(cachep)) 1737 kmem_cache_free(cachep->freelist_cache, freelist); 1738 } 1739 1740 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1741 { 1742 struct page *page, *n; 1743 1744 list_for_each_entry_safe(page, n, list, lru) { 1745 list_del(&page->lru); 1746 slab_destroy(cachep, page); 1747 } 1748 } 1749 1750 /** 1751 * calculate_slab_order - calculate size (page order) of slabs 1752 * @cachep: pointer to the cache that is being created 1753 * @size: size of objects to be created in this cache. 1754 * @flags: slab allocation flags 1755 * 1756 * Also calculates the number of objects per slab. 1757 * 1758 * This could be made much more intelligent. For now, try to avoid using 1759 * high order pages for slabs. When the gfp() functions are more friendly 1760 * towards high-order requests, this should be changed. 1761 */ 1762 static size_t calculate_slab_order(struct kmem_cache *cachep, 1763 size_t size, unsigned long flags) 1764 { 1765 size_t left_over = 0; 1766 int gfporder; 1767 1768 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1769 unsigned int num; 1770 size_t remainder; 1771 1772 num = cache_estimate(gfporder, size, flags, &remainder); 1773 if (!num) 1774 continue; 1775 1776 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1777 if (num > SLAB_OBJ_MAX_NUM) 1778 break; 1779 1780 if (flags & CFLGS_OFF_SLAB) { 1781 struct kmem_cache *freelist_cache; 1782 size_t freelist_size; 1783 1784 freelist_size = num * sizeof(freelist_idx_t); 1785 freelist_cache = kmalloc_slab(freelist_size, 0u); 1786 if (!freelist_cache) 1787 continue; 1788 1789 /* 1790 * Needed to avoid possible looping condition 1791 * in cache_grow_begin() 1792 */ 1793 if (OFF_SLAB(freelist_cache)) 1794 continue; 1795 1796 /* check if off slab has enough benefit */ 1797 if (freelist_cache->size > cachep->size / 2) 1798 continue; 1799 } 1800 1801 /* Found something acceptable - save it away */ 1802 cachep->num = num; 1803 cachep->gfporder = gfporder; 1804 left_over = remainder; 1805 1806 /* 1807 * A VFS-reclaimable slab tends to have most allocations 1808 * as GFP_NOFS and we really don't want to have to be allocating 1809 * higher-order pages when we are unable to shrink dcache. 1810 */ 1811 if (flags & SLAB_RECLAIM_ACCOUNT) 1812 break; 1813 1814 /* 1815 * Large number of objects is good, but very large slabs are 1816 * currently bad for the gfp()s. 1817 */ 1818 if (gfporder >= slab_max_order) 1819 break; 1820 1821 /* 1822 * Acceptable internal fragmentation? 1823 */ 1824 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1825 break; 1826 } 1827 return left_over; 1828 } 1829 1830 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1831 struct kmem_cache *cachep, int entries, int batchcount) 1832 { 1833 int cpu; 1834 size_t size; 1835 struct array_cache __percpu *cpu_cache; 1836 1837 size = sizeof(void *) * entries + sizeof(struct array_cache); 1838 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1839 1840 if (!cpu_cache) 1841 return NULL; 1842 1843 for_each_possible_cpu(cpu) { 1844 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1845 entries, batchcount); 1846 } 1847 1848 return cpu_cache; 1849 } 1850 1851 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1852 { 1853 if (slab_state >= FULL) 1854 return enable_cpucache(cachep, gfp); 1855 1856 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1857 if (!cachep->cpu_cache) 1858 return 1; 1859 1860 if (slab_state == DOWN) { 1861 /* Creation of first cache (kmem_cache). */ 1862 set_up_node(kmem_cache, CACHE_CACHE); 1863 } else if (slab_state == PARTIAL) { 1864 /* For kmem_cache_node */ 1865 set_up_node(cachep, SIZE_NODE); 1866 } else { 1867 int node; 1868 1869 for_each_online_node(node) { 1870 cachep->node[node] = kmalloc_node( 1871 sizeof(struct kmem_cache_node), gfp, node); 1872 BUG_ON(!cachep->node[node]); 1873 kmem_cache_node_init(cachep->node[node]); 1874 } 1875 } 1876 1877 cachep->node[numa_mem_id()]->next_reap = 1878 jiffies + REAPTIMEOUT_NODE + 1879 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1880 1881 cpu_cache_get(cachep)->avail = 0; 1882 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1883 cpu_cache_get(cachep)->batchcount = 1; 1884 cpu_cache_get(cachep)->touched = 0; 1885 cachep->batchcount = 1; 1886 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1887 return 0; 1888 } 1889 1890 unsigned long kmem_cache_flags(unsigned long object_size, 1891 unsigned long flags, const char *name, 1892 void (*ctor)(void *)) 1893 { 1894 return flags; 1895 } 1896 1897 struct kmem_cache * 1898 __kmem_cache_alias(const char *name, size_t size, size_t align, 1899 unsigned long flags, void (*ctor)(void *)) 1900 { 1901 struct kmem_cache *cachep; 1902 1903 cachep = find_mergeable(size, align, flags, name, ctor); 1904 if (cachep) { 1905 cachep->refcount++; 1906 1907 /* 1908 * Adjust the object sizes so that we clear 1909 * the complete object on kzalloc. 1910 */ 1911 cachep->object_size = max_t(int, cachep->object_size, size); 1912 } 1913 return cachep; 1914 } 1915 1916 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1917 size_t size, unsigned long flags) 1918 { 1919 size_t left; 1920 1921 cachep->num = 0; 1922 1923 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1924 return false; 1925 1926 left = calculate_slab_order(cachep, size, 1927 flags | CFLGS_OBJFREELIST_SLAB); 1928 if (!cachep->num) 1929 return false; 1930 1931 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1932 return false; 1933 1934 cachep->colour = left / cachep->colour_off; 1935 1936 return true; 1937 } 1938 1939 static bool set_off_slab_cache(struct kmem_cache *cachep, 1940 size_t size, unsigned long flags) 1941 { 1942 size_t left; 1943 1944 cachep->num = 0; 1945 1946 /* 1947 * Always use on-slab management when SLAB_NOLEAKTRACE 1948 * to avoid recursive calls into kmemleak. 1949 */ 1950 if (flags & SLAB_NOLEAKTRACE) 1951 return false; 1952 1953 /* 1954 * Size is large, assume best to place the slab management obj 1955 * off-slab (should allow better packing of objs). 1956 */ 1957 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1958 if (!cachep->num) 1959 return false; 1960 1961 /* 1962 * If the slab has been placed off-slab, and we have enough space then 1963 * move it on-slab. This is at the expense of any extra colouring. 1964 */ 1965 if (left >= cachep->num * sizeof(freelist_idx_t)) 1966 return false; 1967 1968 cachep->colour = left / cachep->colour_off; 1969 1970 return true; 1971 } 1972 1973 static bool set_on_slab_cache(struct kmem_cache *cachep, 1974 size_t size, unsigned long flags) 1975 { 1976 size_t left; 1977 1978 cachep->num = 0; 1979 1980 left = calculate_slab_order(cachep, size, flags); 1981 if (!cachep->num) 1982 return false; 1983 1984 cachep->colour = left / cachep->colour_off; 1985 1986 return true; 1987 } 1988 1989 /** 1990 * __kmem_cache_create - Create a cache. 1991 * @cachep: cache management descriptor 1992 * @flags: SLAB flags 1993 * 1994 * Returns a ptr to the cache on success, NULL on failure. 1995 * Cannot be called within a int, but can be interrupted. 1996 * The @ctor is run when new pages are allocated by the cache. 1997 * 1998 * The flags are 1999 * 2000 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2001 * to catch references to uninitialised memory. 2002 * 2003 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2004 * for buffer overruns. 2005 * 2006 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2007 * cacheline. This can be beneficial if you're counting cycles as closely 2008 * as davem. 2009 */ 2010 int 2011 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2012 { 2013 size_t ralign = BYTES_PER_WORD; 2014 gfp_t gfp; 2015 int err; 2016 size_t size = cachep->size; 2017 2018 #if DEBUG 2019 #if FORCED_DEBUG 2020 /* 2021 * Enable redzoning and last user accounting, except for caches with 2022 * large objects, if the increased size would increase the object size 2023 * above the next power of two: caches with object sizes just above a 2024 * power of two have a significant amount of internal fragmentation. 2025 */ 2026 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2027 2 * sizeof(unsigned long long))) 2028 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2029 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 2030 flags |= SLAB_POISON; 2031 #endif 2032 #endif 2033 2034 /* 2035 * Check that size is in terms of words. This is needed to avoid 2036 * unaligned accesses for some archs when redzoning is used, and makes 2037 * sure any on-slab bufctl's are also correctly aligned. 2038 */ 2039 size = ALIGN(size, BYTES_PER_WORD); 2040 2041 if (flags & SLAB_RED_ZONE) { 2042 ralign = REDZONE_ALIGN; 2043 /* If redzoning, ensure that the second redzone is suitably 2044 * aligned, by adjusting the object size accordingly. */ 2045 size = ALIGN(size, REDZONE_ALIGN); 2046 } 2047 2048 /* 3) caller mandated alignment */ 2049 if (ralign < cachep->align) { 2050 ralign = cachep->align; 2051 } 2052 /* disable debug if necessary */ 2053 if (ralign > __alignof__(unsigned long long)) 2054 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2055 /* 2056 * 4) Store it. 2057 */ 2058 cachep->align = ralign; 2059 cachep->colour_off = cache_line_size(); 2060 /* Offset must be a multiple of the alignment. */ 2061 if (cachep->colour_off < cachep->align) 2062 cachep->colour_off = cachep->align; 2063 2064 if (slab_is_available()) 2065 gfp = GFP_KERNEL; 2066 else 2067 gfp = GFP_NOWAIT; 2068 2069 #if DEBUG 2070 2071 /* 2072 * Both debugging options require word-alignment which is calculated 2073 * into align above. 2074 */ 2075 if (flags & SLAB_RED_ZONE) { 2076 /* add space for red zone words */ 2077 cachep->obj_offset += sizeof(unsigned long long); 2078 size += 2 * sizeof(unsigned long long); 2079 } 2080 if (flags & SLAB_STORE_USER) { 2081 /* user store requires one word storage behind the end of 2082 * the real object. But if the second red zone needs to be 2083 * aligned to 64 bits, we must allow that much space. 2084 */ 2085 if (flags & SLAB_RED_ZONE) 2086 size += REDZONE_ALIGN; 2087 else 2088 size += BYTES_PER_WORD; 2089 } 2090 #endif 2091 2092 kasan_cache_create(cachep, &size, &flags); 2093 2094 size = ALIGN(size, cachep->align); 2095 /* 2096 * We should restrict the number of objects in a slab to implement 2097 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2098 */ 2099 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2100 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2101 2102 #if DEBUG 2103 /* 2104 * To activate debug pagealloc, off-slab management is necessary 2105 * requirement. In early phase of initialization, small sized slab 2106 * doesn't get initialized so it would not be possible. So, we need 2107 * to check size >= 256. It guarantees that all necessary small 2108 * sized slab is initialized in current slab initialization sequence. 2109 */ 2110 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2111 size >= 256 && cachep->object_size > cache_line_size()) { 2112 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2113 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2114 2115 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2116 flags |= CFLGS_OFF_SLAB; 2117 cachep->obj_offset += tmp_size - size; 2118 size = tmp_size; 2119 goto done; 2120 } 2121 } 2122 } 2123 #endif 2124 2125 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2126 flags |= CFLGS_OBJFREELIST_SLAB; 2127 goto done; 2128 } 2129 2130 if (set_off_slab_cache(cachep, size, flags)) { 2131 flags |= CFLGS_OFF_SLAB; 2132 goto done; 2133 } 2134 2135 if (set_on_slab_cache(cachep, size, flags)) 2136 goto done; 2137 2138 return -E2BIG; 2139 2140 done: 2141 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2142 cachep->flags = flags; 2143 cachep->allocflags = __GFP_COMP; 2144 if (flags & SLAB_CACHE_DMA) 2145 cachep->allocflags |= GFP_DMA; 2146 cachep->size = size; 2147 cachep->reciprocal_buffer_size = reciprocal_value(size); 2148 2149 #if DEBUG 2150 /* 2151 * If we're going to use the generic kernel_map_pages() 2152 * poisoning, then it's going to smash the contents of 2153 * the redzone and userword anyhow, so switch them off. 2154 */ 2155 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2156 (cachep->flags & SLAB_POISON) && 2157 is_debug_pagealloc_cache(cachep)) 2158 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2159 #endif 2160 2161 if (OFF_SLAB(cachep)) { 2162 cachep->freelist_cache = 2163 kmalloc_slab(cachep->freelist_size, 0u); 2164 } 2165 2166 err = setup_cpu_cache(cachep, gfp); 2167 if (err) { 2168 __kmem_cache_release(cachep); 2169 return err; 2170 } 2171 2172 return 0; 2173 } 2174 2175 #if DEBUG 2176 static void check_irq_off(void) 2177 { 2178 BUG_ON(!irqs_disabled()); 2179 } 2180 2181 static void check_irq_on(void) 2182 { 2183 BUG_ON(irqs_disabled()); 2184 } 2185 2186 static void check_mutex_acquired(void) 2187 { 2188 BUG_ON(!mutex_is_locked(&slab_mutex)); 2189 } 2190 2191 static void check_spinlock_acquired(struct kmem_cache *cachep) 2192 { 2193 #ifdef CONFIG_SMP 2194 check_irq_off(); 2195 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2196 #endif 2197 } 2198 2199 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2200 { 2201 #ifdef CONFIG_SMP 2202 check_irq_off(); 2203 assert_spin_locked(&get_node(cachep, node)->list_lock); 2204 #endif 2205 } 2206 2207 #else 2208 #define check_irq_off() do { } while(0) 2209 #define check_irq_on() do { } while(0) 2210 #define check_mutex_acquired() do { } while(0) 2211 #define check_spinlock_acquired(x) do { } while(0) 2212 #define check_spinlock_acquired_node(x, y) do { } while(0) 2213 #endif 2214 2215 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2216 int node, bool free_all, struct list_head *list) 2217 { 2218 int tofree; 2219 2220 if (!ac || !ac->avail) 2221 return; 2222 2223 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2224 if (tofree > ac->avail) 2225 tofree = (ac->avail + 1) / 2; 2226 2227 free_block(cachep, ac->entry, tofree, node, list); 2228 ac->avail -= tofree; 2229 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2230 } 2231 2232 static void do_drain(void *arg) 2233 { 2234 struct kmem_cache *cachep = arg; 2235 struct array_cache *ac; 2236 int node = numa_mem_id(); 2237 struct kmem_cache_node *n; 2238 LIST_HEAD(list); 2239 2240 check_irq_off(); 2241 ac = cpu_cache_get(cachep); 2242 n = get_node(cachep, node); 2243 spin_lock(&n->list_lock); 2244 free_block(cachep, ac->entry, ac->avail, node, &list); 2245 spin_unlock(&n->list_lock); 2246 slabs_destroy(cachep, &list); 2247 ac->avail = 0; 2248 } 2249 2250 static void drain_cpu_caches(struct kmem_cache *cachep) 2251 { 2252 struct kmem_cache_node *n; 2253 int node; 2254 LIST_HEAD(list); 2255 2256 on_each_cpu(do_drain, cachep, 1); 2257 check_irq_on(); 2258 for_each_kmem_cache_node(cachep, node, n) 2259 if (n->alien) 2260 drain_alien_cache(cachep, n->alien); 2261 2262 for_each_kmem_cache_node(cachep, node, n) { 2263 spin_lock_irq(&n->list_lock); 2264 drain_array_locked(cachep, n->shared, node, true, &list); 2265 spin_unlock_irq(&n->list_lock); 2266 2267 slabs_destroy(cachep, &list); 2268 } 2269 } 2270 2271 /* 2272 * Remove slabs from the list of free slabs. 2273 * Specify the number of slabs to drain in tofree. 2274 * 2275 * Returns the actual number of slabs released. 2276 */ 2277 static int drain_freelist(struct kmem_cache *cache, 2278 struct kmem_cache_node *n, int tofree) 2279 { 2280 struct list_head *p; 2281 int nr_freed; 2282 struct page *page; 2283 2284 nr_freed = 0; 2285 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2286 2287 spin_lock_irq(&n->list_lock); 2288 p = n->slabs_free.prev; 2289 if (p == &n->slabs_free) { 2290 spin_unlock_irq(&n->list_lock); 2291 goto out; 2292 } 2293 2294 page = list_entry(p, struct page, lru); 2295 list_del(&page->lru); 2296 n->free_slabs--; 2297 n->total_slabs--; 2298 /* 2299 * Safe to drop the lock. The slab is no longer linked 2300 * to the cache. 2301 */ 2302 n->free_objects -= cache->num; 2303 spin_unlock_irq(&n->list_lock); 2304 slab_destroy(cache, page); 2305 nr_freed++; 2306 } 2307 out: 2308 return nr_freed; 2309 } 2310 2311 int __kmem_cache_shrink(struct kmem_cache *cachep) 2312 { 2313 int ret = 0; 2314 int node; 2315 struct kmem_cache_node *n; 2316 2317 drain_cpu_caches(cachep); 2318 2319 check_irq_on(); 2320 for_each_kmem_cache_node(cachep, node, n) { 2321 drain_freelist(cachep, n, INT_MAX); 2322 2323 ret += !list_empty(&n->slabs_full) || 2324 !list_empty(&n->slabs_partial); 2325 } 2326 return (ret ? 1 : 0); 2327 } 2328 2329 #ifdef CONFIG_MEMCG 2330 void __kmemcg_cache_deactivate(struct kmem_cache *cachep) 2331 { 2332 __kmem_cache_shrink(cachep); 2333 } 2334 #endif 2335 2336 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2337 { 2338 return __kmem_cache_shrink(cachep); 2339 } 2340 2341 void __kmem_cache_release(struct kmem_cache *cachep) 2342 { 2343 int i; 2344 struct kmem_cache_node *n; 2345 2346 cache_random_seq_destroy(cachep); 2347 2348 free_percpu(cachep->cpu_cache); 2349 2350 /* NUMA: free the node structures */ 2351 for_each_kmem_cache_node(cachep, i, n) { 2352 kfree(n->shared); 2353 free_alien_cache(n->alien); 2354 kfree(n); 2355 cachep->node[i] = NULL; 2356 } 2357 } 2358 2359 /* 2360 * Get the memory for a slab management obj. 2361 * 2362 * For a slab cache when the slab descriptor is off-slab, the 2363 * slab descriptor can't come from the same cache which is being created, 2364 * Because if it is the case, that means we defer the creation of 2365 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2366 * And we eventually call down to __kmem_cache_create(), which 2367 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2368 * This is a "chicken-and-egg" problem. 2369 * 2370 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2371 * which are all initialized during kmem_cache_init(). 2372 */ 2373 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2374 struct page *page, int colour_off, 2375 gfp_t local_flags, int nodeid) 2376 { 2377 void *freelist; 2378 void *addr = page_address(page); 2379 2380 page->s_mem = addr + colour_off; 2381 page->active = 0; 2382 2383 if (OBJFREELIST_SLAB(cachep)) 2384 freelist = NULL; 2385 else if (OFF_SLAB(cachep)) { 2386 /* Slab management obj is off-slab. */ 2387 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2388 local_flags, nodeid); 2389 if (!freelist) 2390 return NULL; 2391 } else { 2392 /* We will use last bytes at the slab for freelist */ 2393 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2394 cachep->freelist_size; 2395 } 2396 2397 return freelist; 2398 } 2399 2400 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2401 { 2402 return ((freelist_idx_t *)page->freelist)[idx]; 2403 } 2404 2405 static inline void set_free_obj(struct page *page, 2406 unsigned int idx, freelist_idx_t val) 2407 { 2408 ((freelist_idx_t *)(page->freelist))[idx] = val; 2409 } 2410 2411 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2412 { 2413 #if DEBUG 2414 int i; 2415 2416 for (i = 0; i < cachep->num; i++) { 2417 void *objp = index_to_obj(cachep, page, i); 2418 2419 if (cachep->flags & SLAB_STORE_USER) 2420 *dbg_userword(cachep, objp) = NULL; 2421 2422 if (cachep->flags & SLAB_RED_ZONE) { 2423 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2424 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2425 } 2426 /* 2427 * Constructors are not allowed to allocate memory from the same 2428 * cache which they are a constructor for. Otherwise, deadlock. 2429 * They must also be threaded. 2430 */ 2431 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2432 kasan_unpoison_object_data(cachep, 2433 objp + obj_offset(cachep)); 2434 cachep->ctor(objp + obj_offset(cachep)); 2435 kasan_poison_object_data( 2436 cachep, objp + obj_offset(cachep)); 2437 } 2438 2439 if (cachep->flags & SLAB_RED_ZONE) { 2440 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2441 slab_error(cachep, "constructor overwrote the end of an object"); 2442 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2443 slab_error(cachep, "constructor overwrote the start of an object"); 2444 } 2445 /* need to poison the objs? */ 2446 if (cachep->flags & SLAB_POISON) { 2447 poison_obj(cachep, objp, POISON_FREE); 2448 slab_kernel_map(cachep, objp, 0, 0); 2449 } 2450 } 2451 #endif 2452 } 2453 2454 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2455 /* Hold information during a freelist initialization */ 2456 union freelist_init_state { 2457 struct { 2458 unsigned int pos; 2459 unsigned int *list; 2460 unsigned int count; 2461 }; 2462 struct rnd_state rnd_state; 2463 }; 2464 2465 /* 2466 * Initialize the state based on the randomization methode available. 2467 * return true if the pre-computed list is available, false otherwize. 2468 */ 2469 static bool freelist_state_initialize(union freelist_init_state *state, 2470 struct kmem_cache *cachep, 2471 unsigned int count) 2472 { 2473 bool ret; 2474 unsigned int rand; 2475 2476 /* Use best entropy available to define a random shift */ 2477 rand = get_random_int(); 2478 2479 /* Use a random state if the pre-computed list is not available */ 2480 if (!cachep->random_seq) { 2481 prandom_seed_state(&state->rnd_state, rand); 2482 ret = false; 2483 } else { 2484 state->list = cachep->random_seq; 2485 state->count = count; 2486 state->pos = rand % count; 2487 ret = true; 2488 } 2489 return ret; 2490 } 2491 2492 /* Get the next entry on the list and randomize it using a random shift */ 2493 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2494 { 2495 if (state->pos >= state->count) 2496 state->pos = 0; 2497 return state->list[state->pos++]; 2498 } 2499 2500 /* Swap two freelist entries */ 2501 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2502 { 2503 swap(((freelist_idx_t *)page->freelist)[a], 2504 ((freelist_idx_t *)page->freelist)[b]); 2505 } 2506 2507 /* 2508 * Shuffle the freelist initialization state based on pre-computed lists. 2509 * return true if the list was successfully shuffled, false otherwise. 2510 */ 2511 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2512 { 2513 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2514 union freelist_init_state state; 2515 bool precomputed; 2516 2517 if (count < 2) 2518 return false; 2519 2520 precomputed = freelist_state_initialize(&state, cachep, count); 2521 2522 /* Take a random entry as the objfreelist */ 2523 if (OBJFREELIST_SLAB(cachep)) { 2524 if (!precomputed) 2525 objfreelist = count - 1; 2526 else 2527 objfreelist = next_random_slot(&state); 2528 page->freelist = index_to_obj(cachep, page, objfreelist) + 2529 obj_offset(cachep); 2530 count--; 2531 } 2532 2533 /* 2534 * On early boot, generate the list dynamically. 2535 * Later use a pre-computed list for speed. 2536 */ 2537 if (!precomputed) { 2538 for (i = 0; i < count; i++) 2539 set_free_obj(page, i, i); 2540 2541 /* Fisher-Yates shuffle */ 2542 for (i = count - 1; i > 0; i--) { 2543 rand = prandom_u32_state(&state.rnd_state); 2544 rand %= (i + 1); 2545 swap_free_obj(page, i, rand); 2546 } 2547 } else { 2548 for (i = 0; i < count; i++) 2549 set_free_obj(page, i, next_random_slot(&state)); 2550 } 2551 2552 if (OBJFREELIST_SLAB(cachep)) 2553 set_free_obj(page, cachep->num - 1, objfreelist); 2554 2555 return true; 2556 } 2557 #else 2558 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2559 struct page *page) 2560 { 2561 return false; 2562 } 2563 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2564 2565 static void cache_init_objs(struct kmem_cache *cachep, 2566 struct page *page) 2567 { 2568 int i; 2569 void *objp; 2570 bool shuffled; 2571 2572 cache_init_objs_debug(cachep, page); 2573 2574 /* Try to randomize the freelist if enabled */ 2575 shuffled = shuffle_freelist(cachep, page); 2576 2577 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2578 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2579 obj_offset(cachep); 2580 } 2581 2582 for (i = 0; i < cachep->num; i++) { 2583 objp = index_to_obj(cachep, page, i); 2584 kasan_init_slab_obj(cachep, objp); 2585 2586 /* constructor could break poison info */ 2587 if (DEBUG == 0 && cachep->ctor) { 2588 kasan_unpoison_object_data(cachep, objp); 2589 cachep->ctor(objp); 2590 kasan_poison_object_data(cachep, objp); 2591 } 2592 2593 if (!shuffled) 2594 set_free_obj(page, i, i); 2595 } 2596 } 2597 2598 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2599 { 2600 void *objp; 2601 2602 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2603 page->active++; 2604 2605 #if DEBUG 2606 if (cachep->flags & SLAB_STORE_USER) 2607 set_store_user_dirty(cachep); 2608 #endif 2609 2610 return objp; 2611 } 2612 2613 static void slab_put_obj(struct kmem_cache *cachep, 2614 struct page *page, void *objp) 2615 { 2616 unsigned int objnr = obj_to_index(cachep, page, objp); 2617 #if DEBUG 2618 unsigned int i; 2619 2620 /* Verify double free bug */ 2621 for (i = page->active; i < cachep->num; i++) { 2622 if (get_free_obj(page, i) == objnr) { 2623 pr_err("slab: double free detected in cache '%s', objp %p\n", 2624 cachep->name, objp); 2625 BUG(); 2626 } 2627 } 2628 #endif 2629 page->active--; 2630 if (!page->freelist) 2631 page->freelist = objp + obj_offset(cachep); 2632 2633 set_free_obj(page, page->active, objnr); 2634 } 2635 2636 /* 2637 * Map pages beginning at addr to the given cache and slab. This is required 2638 * for the slab allocator to be able to lookup the cache and slab of a 2639 * virtual address for kfree, ksize, and slab debugging. 2640 */ 2641 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2642 void *freelist) 2643 { 2644 page->slab_cache = cache; 2645 page->freelist = freelist; 2646 } 2647 2648 /* 2649 * Grow (by 1) the number of slabs within a cache. This is called by 2650 * kmem_cache_alloc() when there are no active objs left in a cache. 2651 */ 2652 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2653 gfp_t flags, int nodeid) 2654 { 2655 void *freelist; 2656 size_t offset; 2657 gfp_t local_flags; 2658 int page_node; 2659 struct kmem_cache_node *n; 2660 struct page *page; 2661 2662 /* 2663 * Be lazy and only check for valid flags here, keeping it out of the 2664 * critical path in kmem_cache_alloc(). 2665 */ 2666 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2667 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2668 flags &= ~GFP_SLAB_BUG_MASK; 2669 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2670 invalid_mask, &invalid_mask, flags, &flags); 2671 dump_stack(); 2672 } 2673 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2674 2675 check_irq_off(); 2676 if (gfpflags_allow_blocking(local_flags)) 2677 local_irq_enable(); 2678 2679 /* 2680 * Get mem for the objs. Attempt to allocate a physical page from 2681 * 'nodeid'. 2682 */ 2683 page = kmem_getpages(cachep, local_flags, nodeid); 2684 if (!page) 2685 goto failed; 2686 2687 page_node = page_to_nid(page); 2688 n = get_node(cachep, page_node); 2689 2690 /* Get colour for the slab, and cal the next value. */ 2691 n->colour_next++; 2692 if (n->colour_next >= cachep->colour) 2693 n->colour_next = 0; 2694 2695 offset = n->colour_next; 2696 if (offset >= cachep->colour) 2697 offset = 0; 2698 2699 offset *= cachep->colour_off; 2700 2701 /* Get slab management. */ 2702 freelist = alloc_slabmgmt(cachep, page, offset, 2703 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2704 if (OFF_SLAB(cachep) && !freelist) 2705 goto opps1; 2706 2707 slab_map_pages(cachep, page, freelist); 2708 2709 kasan_poison_slab(page); 2710 cache_init_objs(cachep, page); 2711 2712 if (gfpflags_allow_blocking(local_flags)) 2713 local_irq_disable(); 2714 2715 return page; 2716 2717 opps1: 2718 kmem_freepages(cachep, page); 2719 failed: 2720 if (gfpflags_allow_blocking(local_flags)) 2721 local_irq_disable(); 2722 return NULL; 2723 } 2724 2725 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2726 { 2727 struct kmem_cache_node *n; 2728 void *list = NULL; 2729 2730 check_irq_off(); 2731 2732 if (!page) 2733 return; 2734 2735 INIT_LIST_HEAD(&page->lru); 2736 n = get_node(cachep, page_to_nid(page)); 2737 2738 spin_lock(&n->list_lock); 2739 n->total_slabs++; 2740 if (!page->active) { 2741 list_add_tail(&page->lru, &(n->slabs_free)); 2742 n->free_slabs++; 2743 } else 2744 fixup_slab_list(cachep, n, page, &list); 2745 2746 STATS_INC_GROWN(cachep); 2747 n->free_objects += cachep->num - page->active; 2748 spin_unlock(&n->list_lock); 2749 2750 fixup_objfreelist_debug(cachep, &list); 2751 } 2752 2753 #if DEBUG 2754 2755 /* 2756 * Perform extra freeing checks: 2757 * - detect bad pointers. 2758 * - POISON/RED_ZONE checking 2759 */ 2760 static void kfree_debugcheck(const void *objp) 2761 { 2762 if (!virt_addr_valid(objp)) { 2763 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2764 (unsigned long)objp); 2765 BUG(); 2766 } 2767 } 2768 2769 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2770 { 2771 unsigned long long redzone1, redzone2; 2772 2773 redzone1 = *dbg_redzone1(cache, obj); 2774 redzone2 = *dbg_redzone2(cache, obj); 2775 2776 /* 2777 * Redzone is ok. 2778 */ 2779 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2780 return; 2781 2782 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2783 slab_error(cache, "double free detected"); 2784 else 2785 slab_error(cache, "memory outside object was overwritten"); 2786 2787 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2788 obj, redzone1, redzone2); 2789 } 2790 2791 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2792 unsigned long caller) 2793 { 2794 unsigned int objnr; 2795 struct page *page; 2796 2797 BUG_ON(virt_to_cache(objp) != cachep); 2798 2799 objp -= obj_offset(cachep); 2800 kfree_debugcheck(objp); 2801 page = virt_to_head_page(objp); 2802 2803 if (cachep->flags & SLAB_RED_ZONE) { 2804 verify_redzone_free(cachep, objp); 2805 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2806 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2807 } 2808 if (cachep->flags & SLAB_STORE_USER) { 2809 set_store_user_dirty(cachep); 2810 *dbg_userword(cachep, objp) = (void *)caller; 2811 } 2812 2813 objnr = obj_to_index(cachep, page, objp); 2814 2815 BUG_ON(objnr >= cachep->num); 2816 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2817 2818 if (cachep->flags & SLAB_POISON) { 2819 poison_obj(cachep, objp, POISON_FREE); 2820 slab_kernel_map(cachep, objp, 0, caller); 2821 } 2822 return objp; 2823 } 2824 2825 #else 2826 #define kfree_debugcheck(x) do { } while(0) 2827 #define cache_free_debugcheck(x,objp,z) (objp) 2828 #endif 2829 2830 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2831 void **list) 2832 { 2833 #if DEBUG 2834 void *next = *list; 2835 void *objp; 2836 2837 while (next) { 2838 objp = next - obj_offset(cachep); 2839 next = *(void **)next; 2840 poison_obj(cachep, objp, POISON_FREE); 2841 } 2842 #endif 2843 } 2844 2845 static inline void fixup_slab_list(struct kmem_cache *cachep, 2846 struct kmem_cache_node *n, struct page *page, 2847 void **list) 2848 { 2849 /* move slabp to correct slabp list: */ 2850 list_del(&page->lru); 2851 if (page->active == cachep->num) { 2852 list_add(&page->lru, &n->slabs_full); 2853 if (OBJFREELIST_SLAB(cachep)) { 2854 #if DEBUG 2855 /* Poisoning will be done without holding the lock */ 2856 if (cachep->flags & SLAB_POISON) { 2857 void **objp = page->freelist; 2858 2859 *objp = *list; 2860 *list = objp; 2861 } 2862 #endif 2863 page->freelist = NULL; 2864 } 2865 } else 2866 list_add(&page->lru, &n->slabs_partial); 2867 } 2868 2869 /* Try to find non-pfmemalloc slab if needed */ 2870 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2871 struct page *page, bool pfmemalloc) 2872 { 2873 if (!page) 2874 return NULL; 2875 2876 if (pfmemalloc) 2877 return page; 2878 2879 if (!PageSlabPfmemalloc(page)) 2880 return page; 2881 2882 /* No need to keep pfmemalloc slab if we have enough free objects */ 2883 if (n->free_objects > n->free_limit) { 2884 ClearPageSlabPfmemalloc(page); 2885 return page; 2886 } 2887 2888 /* Move pfmemalloc slab to the end of list to speed up next search */ 2889 list_del(&page->lru); 2890 if (!page->active) { 2891 list_add_tail(&page->lru, &n->slabs_free); 2892 n->free_slabs++; 2893 } else 2894 list_add_tail(&page->lru, &n->slabs_partial); 2895 2896 list_for_each_entry(page, &n->slabs_partial, lru) { 2897 if (!PageSlabPfmemalloc(page)) 2898 return page; 2899 } 2900 2901 n->free_touched = 1; 2902 list_for_each_entry(page, &n->slabs_free, lru) { 2903 if (!PageSlabPfmemalloc(page)) { 2904 n->free_slabs--; 2905 return page; 2906 } 2907 } 2908 2909 return NULL; 2910 } 2911 2912 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2913 { 2914 struct page *page; 2915 2916 assert_spin_locked(&n->list_lock); 2917 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru); 2918 if (!page) { 2919 n->free_touched = 1; 2920 page = list_first_entry_or_null(&n->slabs_free, struct page, 2921 lru); 2922 if (page) 2923 n->free_slabs--; 2924 } 2925 2926 if (sk_memalloc_socks()) 2927 page = get_valid_first_slab(n, page, pfmemalloc); 2928 2929 return page; 2930 } 2931 2932 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2933 struct kmem_cache_node *n, gfp_t flags) 2934 { 2935 struct page *page; 2936 void *obj; 2937 void *list = NULL; 2938 2939 if (!gfp_pfmemalloc_allowed(flags)) 2940 return NULL; 2941 2942 spin_lock(&n->list_lock); 2943 page = get_first_slab(n, true); 2944 if (!page) { 2945 spin_unlock(&n->list_lock); 2946 return NULL; 2947 } 2948 2949 obj = slab_get_obj(cachep, page); 2950 n->free_objects--; 2951 2952 fixup_slab_list(cachep, n, page, &list); 2953 2954 spin_unlock(&n->list_lock); 2955 fixup_objfreelist_debug(cachep, &list); 2956 2957 return obj; 2958 } 2959 2960 /* 2961 * Slab list should be fixed up by fixup_slab_list() for existing slab 2962 * or cache_grow_end() for new slab 2963 */ 2964 static __always_inline int alloc_block(struct kmem_cache *cachep, 2965 struct array_cache *ac, struct page *page, int batchcount) 2966 { 2967 /* 2968 * There must be at least one object available for 2969 * allocation. 2970 */ 2971 BUG_ON(page->active >= cachep->num); 2972 2973 while (page->active < cachep->num && batchcount--) { 2974 STATS_INC_ALLOCED(cachep); 2975 STATS_INC_ACTIVE(cachep); 2976 STATS_SET_HIGH(cachep); 2977 2978 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2979 } 2980 2981 return batchcount; 2982 } 2983 2984 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2985 { 2986 int batchcount; 2987 struct kmem_cache_node *n; 2988 struct array_cache *ac, *shared; 2989 int node; 2990 void *list = NULL; 2991 struct page *page; 2992 2993 check_irq_off(); 2994 node = numa_mem_id(); 2995 2996 ac = cpu_cache_get(cachep); 2997 batchcount = ac->batchcount; 2998 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2999 /* 3000 * If there was little recent activity on this cache, then 3001 * perform only a partial refill. Otherwise we could generate 3002 * refill bouncing. 3003 */ 3004 batchcount = BATCHREFILL_LIMIT; 3005 } 3006 n = get_node(cachep, node); 3007 3008 BUG_ON(ac->avail > 0 || !n); 3009 shared = READ_ONCE(n->shared); 3010 if (!n->free_objects && (!shared || !shared->avail)) 3011 goto direct_grow; 3012 3013 spin_lock(&n->list_lock); 3014 shared = READ_ONCE(n->shared); 3015 3016 /* See if we can refill from the shared array */ 3017 if (shared && transfer_objects(ac, shared, batchcount)) { 3018 shared->touched = 1; 3019 goto alloc_done; 3020 } 3021 3022 while (batchcount > 0) { 3023 /* Get slab alloc is to come from. */ 3024 page = get_first_slab(n, false); 3025 if (!page) 3026 goto must_grow; 3027 3028 check_spinlock_acquired(cachep); 3029 3030 batchcount = alloc_block(cachep, ac, page, batchcount); 3031 fixup_slab_list(cachep, n, page, &list); 3032 } 3033 3034 must_grow: 3035 n->free_objects -= ac->avail; 3036 alloc_done: 3037 spin_unlock(&n->list_lock); 3038 fixup_objfreelist_debug(cachep, &list); 3039 3040 direct_grow: 3041 if (unlikely(!ac->avail)) { 3042 /* Check if we can use obj in pfmemalloc slab */ 3043 if (sk_memalloc_socks()) { 3044 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 3045 3046 if (obj) 3047 return obj; 3048 } 3049 3050 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 3051 3052 /* 3053 * cache_grow_begin() can reenable interrupts, 3054 * then ac could change. 3055 */ 3056 ac = cpu_cache_get(cachep); 3057 if (!ac->avail && page) 3058 alloc_block(cachep, ac, page, batchcount); 3059 cache_grow_end(cachep, page); 3060 3061 if (!ac->avail) 3062 return NULL; 3063 } 3064 ac->touched = 1; 3065 3066 return ac->entry[--ac->avail]; 3067 } 3068 3069 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3070 gfp_t flags) 3071 { 3072 might_sleep_if(gfpflags_allow_blocking(flags)); 3073 } 3074 3075 #if DEBUG 3076 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3077 gfp_t flags, void *objp, unsigned long caller) 3078 { 3079 if (!objp) 3080 return objp; 3081 if (cachep->flags & SLAB_POISON) { 3082 check_poison_obj(cachep, objp); 3083 slab_kernel_map(cachep, objp, 1, 0); 3084 poison_obj(cachep, objp, POISON_INUSE); 3085 } 3086 if (cachep->flags & SLAB_STORE_USER) 3087 *dbg_userword(cachep, objp) = (void *)caller; 3088 3089 if (cachep->flags & SLAB_RED_ZONE) { 3090 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3091 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3092 slab_error(cachep, "double free, or memory outside object was overwritten"); 3093 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3094 objp, *dbg_redzone1(cachep, objp), 3095 *dbg_redzone2(cachep, objp)); 3096 } 3097 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3098 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3099 } 3100 3101 objp += obj_offset(cachep); 3102 if (cachep->ctor && cachep->flags & SLAB_POISON) 3103 cachep->ctor(objp); 3104 if (ARCH_SLAB_MINALIGN && 3105 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3106 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3107 objp, (int)ARCH_SLAB_MINALIGN); 3108 } 3109 return objp; 3110 } 3111 #else 3112 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3113 #endif 3114 3115 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3116 { 3117 void *objp; 3118 struct array_cache *ac; 3119 3120 check_irq_off(); 3121 3122 ac = cpu_cache_get(cachep); 3123 if (likely(ac->avail)) { 3124 ac->touched = 1; 3125 objp = ac->entry[--ac->avail]; 3126 3127 STATS_INC_ALLOCHIT(cachep); 3128 goto out; 3129 } 3130 3131 STATS_INC_ALLOCMISS(cachep); 3132 objp = cache_alloc_refill(cachep, flags); 3133 /* 3134 * the 'ac' may be updated by cache_alloc_refill(), 3135 * and kmemleak_erase() requires its correct value. 3136 */ 3137 ac = cpu_cache_get(cachep); 3138 3139 out: 3140 /* 3141 * To avoid a false negative, if an object that is in one of the 3142 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3143 * treat the array pointers as a reference to the object. 3144 */ 3145 if (objp) 3146 kmemleak_erase(&ac->entry[ac->avail]); 3147 return objp; 3148 } 3149 3150 #ifdef CONFIG_NUMA 3151 /* 3152 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3153 * 3154 * If we are in_interrupt, then process context, including cpusets and 3155 * mempolicy, may not apply and should not be used for allocation policy. 3156 */ 3157 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3158 { 3159 int nid_alloc, nid_here; 3160 3161 if (in_interrupt() || (flags & __GFP_THISNODE)) 3162 return NULL; 3163 nid_alloc = nid_here = numa_mem_id(); 3164 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3165 nid_alloc = cpuset_slab_spread_node(); 3166 else if (current->mempolicy) 3167 nid_alloc = mempolicy_slab_node(); 3168 if (nid_alloc != nid_here) 3169 return ____cache_alloc_node(cachep, flags, nid_alloc); 3170 return NULL; 3171 } 3172 3173 /* 3174 * Fallback function if there was no memory available and no objects on a 3175 * certain node and fall back is permitted. First we scan all the 3176 * available node for available objects. If that fails then we 3177 * perform an allocation without specifying a node. This allows the page 3178 * allocator to do its reclaim / fallback magic. We then insert the 3179 * slab into the proper nodelist and then allocate from it. 3180 */ 3181 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3182 { 3183 struct zonelist *zonelist; 3184 struct zoneref *z; 3185 struct zone *zone; 3186 enum zone_type high_zoneidx = gfp_zone(flags); 3187 void *obj = NULL; 3188 struct page *page; 3189 int nid; 3190 unsigned int cpuset_mems_cookie; 3191 3192 if (flags & __GFP_THISNODE) 3193 return NULL; 3194 3195 retry_cpuset: 3196 cpuset_mems_cookie = read_mems_allowed_begin(); 3197 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3198 3199 retry: 3200 /* 3201 * Look through allowed nodes for objects available 3202 * from existing per node queues. 3203 */ 3204 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3205 nid = zone_to_nid(zone); 3206 3207 if (cpuset_zone_allowed(zone, flags) && 3208 get_node(cache, nid) && 3209 get_node(cache, nid)->free_objects) { 3210 obj = ____cache_alloc_node(cache, 3211 gfp_exact_node(flags), nid); 3212 if (obj) 3213 break; 3214 } 3215 } 3216 3217 if (!obj) { 3218 /* 3219 * This allocation will be performed within the constraints 3220 * of the current cpuset / memory policy requirements. 3221 * We may trigger various forms of reclaim on the allowed 3222 * set and go into memory reserves if necessary. 3223 */ 3224 page = cache_grow_begin(cache, flags, numa_mem_id()); 3225 cache_grow_end(cache, page); 3226 if (page) { 3227 nid = page_to_nid(page); 3228 obj = ____cache_alloc_node(cache, 3229 gfp_exact_node(flags), nid); 3230 3231 /* 3232 * Another processor may allocate the objects in 3233 * the slab since we are not holding any locks. 3234 */ 3235 if (!obj) 3236 goto retry; 3237 } 3238 } 3239 3240 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3241 goto retry_cpuset; 3242 return obj; 3243 } 3244 3245 /* 3246 * A interface to enable slab creation on nodeid 3247 */ 3248 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3249 int nodeid) 3250 { 3251 struct page *page; 3252 struct kmem_cache_node *n; 3253 void *obj = NULL; 3254 void *list = NULL; 3255 3256 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3257 n = get_node(cachep, nodeid); 3258 BUG_ON(!n); 3259 3260 check_irq_off(); 3261 spin_lock(&n->list_lock); 3262 page = get_first_slab(n, false); 3263 if (!page) 3264 goto must_grow; 3265 3266 check_spinlock_acquired_node(cachep, nodeid); 3267 3268 STATS_INC_NODEALLOCS(cachep); 3269 STATS_INC_ACTIVE(cachep); 3270 STATS_SET_HIGH(cachep); 3271 3272 BUG_ON(page->active == cachep->num); 3273 3274 obj = slab_get_obj(cachep, page); 3275 n->free_objects--; 3276 3277 fixup_slab_list(cachep, n, page, &list); 3278 3279 spin_unlock(&n->list_lock); 3280 fixup_objfreelist_debug(cachep, &list); 3281 return obj; 3282 3283 must_grow: 3284 spin_unlock(&n->list_lock); 3285 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3286 if (page) { 3287 /* This slab isn't counted yet so don't update free_objects */ 3288 obj = slab_get_obj(cachep, page); 3289 } 3290 cache_grow_end(cachep, page); 3291 3292 return obj ? obj : fallback_alloc(cachep, flags); 3293 } 3294 3295 static __always_inline void * 3296 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3297 unsigned long caller) 3298 { 3299 unsigned long save_flags; 3300 void *ptr; 3301 int slab_node = numa_mem_id(); 3302 3303 flags &= gfp_allowed_mask; 3304 cachep = slab_pre_alloc_hook(cachep, flags); 3305 if (unlikely(!cachep)) 3306 return NULL; 3307 3308 cache_alloc_debugcheck_before(cachep, flags); 3309 local_irq_save(save_flags); 3310 3311 if (nodeid == NUMA_NO_NODE) 3312 nodeid = slab_node; 3313 3314 if (unlikely(!get_node(cachep, nodeid))) { 3315 /* Node not bootstrapped yet */ 3316 ptr = fallback_alloc(cachep, flags); 3317 goto out; 3318 } 3319 3320 if (nodeid == slab_node) { 3321 /* 3322 * Use the locally cached objects if possible. 3323 * However ____cache_alloc does not allow fallback 3324 * to other nodes. It may fail while we still have 3325 * objects on other nodes available. 3326 */ 3327 ptr = ____cache_alloc(cachep, flags); 3328 if (ptr) 3329 goto out; 3330 } 3331 /* ___cache_alloc_node can fall back to other nodes */ 3332 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3333 out: 3334 local_irq_restore(save_flags); 3335 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3336 3337 if (unlikely(flags & __GFP_ZERO) && ptr) 3338 memset(ptr, 0, cachep->object_size); 3339 3340 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3341 return ptr; 3342 } 3343 3344 static __always_inline void * 3345 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3346 { 3347 void *objp; 3348 3349 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3350 objp = alternate_node_alloc(cache, flags); 3351 if (objp) 3352 goto out; 3353 } 3354 objp = ____cache_alloc(cache, flags); 3355 3356 /* 3357 * We may just have run out of memory on the local node. 3358 * ____cache_alloc_node() knows how to locate memory on other nodes 3359 */ 3360 if (!objp) 3361 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3362 3363 out: 3364 return objp; 3365 } 3366 #else 3367 3368 static __always_inline void * 3369 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3370 { 3371 return ____cache_alloc(cachep, flags); 3372 } 3373 3374 #endif /* CONFIG_NUMA */ 3375 3376 static __always_inline void * 3377 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3378 { 3379 unsigned long save_flags; 3380 void *objp; 3381 3382 flags &= gfp_allowed_mask; 3383 cachep = slab_pre_alloc_hook(cachep, flags); 3384 if (unlikely(!cachep)) 3385 return NULL; 3386 3387 cache_alloc_debugcheck_before(cachep, flags); 3388 local_irq_save(save_flags); 3389 objp = __do_cache_alloc(cachep, flags); 3390 local_irq_restore(save_flags); 3391 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3392 prefetchw(objp); 3393 3394 if (unlikely(flags & __GFP_ZERO) && objp) 3395 memset(objp, 0, cachep->object_size); 3396 3397 slab_post_alloc_hook(cachep, flags, 1, &objp); 3398 return objp; 3399 } 3400 3401 /* 3402 * Caller needs to acquire correct kmem_cache_node's list_lock 3403 * @list: List of detached free slabs should be freed by caller 3404 */ 3405 static void free_block(struct kmem_cache *cachep, void **objpp, 3406 int nr_objects, int node, struct list_head *list) 3407 { 3408 int i; 3409 struct kmem_cache_node *n = get_node(cachep, node); 3410 struct page *page; 3411 3412 n->free_objects += nr_objects; 3413 3414 for (i = 0; i < nr_objects; i++) { 3415 void *objp; 3416 struct page *page; 3417 3418 objp = objpp[i]; 3419 3420 page = virt_to_head_page(objp); 3421 list_del(&page->lru); 3422 check_spinlock_acquired_node(cachep, node); 3423 slab_put_obj(cachep, page, objp); 3424 STATS_DEC_ACTIVE(cachep); 3425 3426 /* fixup slab chains */ 3427 if (page->active == 0) { 3428 list_add(&page->lru, &n->slabs_free); 3429 n->free_slabs++; 3430 } else { 3431 /* Unconditionally move a slab to the end of the 3432 * partial list on free - maximum time for the 3433 * other objects to be freed, too. 3434 */ 3435 list_add_tail(&page->lru, &n->slabs_partial); 3436 } 3437 } 3438 3439 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3440 n->free_objects -= cachep->num; 3441 3442 page = list_last_entry(&n->slabs_free, struct page, lru); 3443 list_move(&page->lru, list); 3444 n->free_slabs--; 3445 n->total_slabs--; 3446 } 3447 } 3448 3449 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3450 { 3451 int batchcount; 3452 struct kmem_cache_node *n; 3453 int node = numa_mem_id(); 3454 LIST_HEAD(list); 3455 3456 batchcount = ac->batchcount; 3457 3458 check_irq_off(); 3459 n = get_node(cachep, node); 3460 spin_lock(&n->list_lock); 3461 if (n->shared) { 3462 struct array_cache *shared_array = n->shared; 3463 int max = shared_array->limit - shared_array->avail; 3464 if (max) { 3465 if (batchcount > max) 3466 batchcount = max; 3467 memcpy(&(shared_array->entry[shared_array->avail]), 3468 ac->entry, sizeof(void *) * batchcount); 3469 shared_array->avail += batchcount; 3470 goto free_done; 3471 } 3472 } 3473 3474 free_block(cachep, ac->entry, batchcount, node, &list); 3475 free_done: 3476 #if STATS 3477 { 3478 int i = 0; 3479 struct page *page; 3480 3481 list_for_each_entry(page, &n->slabs_free, lru) { 3482 BUG_ON(page->active); 3483 3484 i++; 3485 } 3486 STATS_SET_FREEABLE(cachep, i); 3487 } 3488 #endif 3489 spin_unlock(&n->list_lock); 3490 slabs_destroy(cachep, &list); 3491 ac->avail -= batchcount; 3492 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3493 } 3494 3495 /* 3496 * Release an obj back to its cache. If the obj has a constructed state, it must 3497 * be in this state _before_ it is released. Called with disabled ints. 3498 */ 3499 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3500 unsigned long caller) 3501 { 3502 /* Put the object into the quarantine, don't touch it for now. */ 3503 if (kasan_slab_free(cachep, objp)) 3504 return; 3505 3506 ___cache_free(cachep, objp, caller); 3507 } 3508 3509 void ___cache_free(struct kmem_cache *cachep, void *objp, 3510 unsigned long caller) 3511 { 3512 struct array_cache *ac = cpu_cache_get(cachep); 3513 3514 check_irq_off(); 3515 kmemleak_free_recursive(objp, cachep->flags); 3516 objp = cache_free_debugcheck(cachep, objp, caller); 3517 3518 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3519 3520 /* 3521 * Skip calling cache_free_alien() when the platform is not numa. 3522 * This will avoid cache misses that happen while accessing slabp (which 3523 * is per page memory reference) to get nodeid. Instead use a global 3524 * variable to skip the call, which is mostly likely to be present in 3525 * the cache. 3526 */ 3527 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3528 return; 3529 3530 if (ac->avail < ac->limit) { 3531 STATS_INC_FREEHIT(cachep); 3532 } else { 3533 STATS_INC_FREEMISS(cachep); 3534 cache_flusharray(cachep, ac); 3535 } 3536 3537 if (sk_memalloc_socks()) { 3538 struct page *page = virt_to_head_page(objp); 3539 3540 if (unlikely(PageSlabPfmemalloc(page))) { 3541 cache_free_pfmemalloc(cachep, page, objp); 3542 return; 3543 } 3544 } 3545 3546 ac->entry[ac->avail++] = objp; 3547 } 3548 3549 /** 3550 * kmem_cache_alloc - Allocate an object 3551 * @cachep: The cache to allocate from. 3552 * @flags: See kmalloc(). 3553 * 3554 * Allocate an object from this cache. The flags are only relevant 3555 * if the cache has no available objects. 3556 */ 3557 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3558 { 3559 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3560 3561 kasan_slab_alloc(cachep, ret, flags); 3562 trace_kmem_cache_alloc(_RET_IP_, ret, 3563 cachep->object_size, cachep->size, flags); 3564 3565 return ret; 3566 } 3567 EXPORT_SYMBOL(kmem_cache_alloc); 3568 3569 static __always_inline void 3570 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3571 size_t size, void **p, unsigned long caller) 3572 { 3573 size_t i; 3574 3575 for (i = 0; i < size; i++) 3576 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3577 } 3578 3579 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3580 void **p) 3581 { 3582 size_t i; 3583 3584 s = slab_pre_alloc_hook(s, flags); 3585 if (!s) 3586 return 0; 3587 3588 cache_alloc_debugcheck_before(s, flags); 3589 3590 local_irq_disable(); 3591 for (i = 0; i < size; i++) { 3592 void *objp = __do_cache_alloc(s, flags); 3593 3594 if (unlikely(!objp)) 3595 goto error; 3596 p[i] = objp; 3597 } 3598 local_irq_enable(); 3599 3600 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3601 3602 /* Clear memory outside IRQ disabled section */ 3603 if (unlikely(flags & __GFP_ZERO)) 3604 for (i = 0; i < size; i++) 3605 memset(p[i], 0, s->object_size); 3606 3607 slab_post_alloc_hook(s, flags, size, p); 3608 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3609 return size; 3610 error: 3611 local_irq_enable(); 3612 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3613 slab_post_alloc_hook(s, flags, i, p); 3614 __kmem_cache_free_bulk(s, i, p); 3615 return 0; 3616 } 3617 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3618 3619 #ifdef CONFIG_TRACING 3620 void * 3621 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3622 { 3623 void *ret; 3624 3625 ret = slab_alloc(cachep, flags, _RET_IP_); 3626 3627 kasan_kmalloc(cachep, ret, size, flags); 3628 trace_kmalloc(_RET_IP_, ret, 3629 size, cachep->size, flags); 3630 return ret; 3631 } 3632 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3633 #endif 3634 3635 #ifdef CONFIG_NUMA 3636 /** 3637 * kmem_cache_alloc_node - Allocate an object on the specified node 3638 * @cachep: The cache to allocate from. 3639 * @flags: See kmalloc(). 3640 * @nodeid: node number of the target node. 3641 * 3642 * Identical to kmem_cache_alloc but it will allocate memory on the given 3643 * node, which can improve the performance for cpu bound structures. 3644 * 3645 * Fallback to other node is possible if __GFP_THISNODE is not set. 3646 */ 3647 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3648 { 3649 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3650 3651 kasan_slab_alloc(cachep, ret, flags); 3652 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3653 cachep->object_size, cachep->size, 3654 flags, nodeid); 3655 3656 return ret; 3657 } 3658 EXPORT_SYMBOL(kmem_cache_alloc_node); 3659 3660 #ifdef CONFIG_TRACING 3661 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3662 gfp_t flags, 3663 int nodeid, 3664 size_t size) 3665 { 3666 void *ret; 3667 3668 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3669 3670 kasan_kmalloc(cachep, ret, size, flags); 3671 trace_kmalloc_node(_RET_IP_, ret, 3672 size, cachep->size, 3673 flags, nodeid); 3674 return ret; 3675 } 3676 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3677 #endif 3678 3679 static __always_inline void * 3680 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3681 { 3682 struct kmem_cache *cachep; 3683 void *ret; 3684 3685 cachep = kmalloc_slab(size, flags); 3686 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3687 return cachep; 3688 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3689 kasan_kmalloc(cachep, ret, size, flags); 3690 3691 return ret; 3692 } 3693 3694 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3695 { 3696 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3697 } 3698 EXPORT_SYMBOL(__kmalloc_node); 3699 3700 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3701 int node, unsigned long caller) 3702 { 3703 return __do_kmalloc_node(size, flags, node, caller); 3704 } 3705 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3706 #endif /* CONFIG_NUMA */ 3707 3708 /** 3709 * __do_kmalloc - allocate memory 3710 * @size: how many bytes of memory are required. 3711 * @flags: the type of memory to allocate (see kmalloc). 3712 * @caller: function caller for debug tracking of the caller 3713 */ 3714 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3715 unsigned long caller) 3716 { 3717 struct kmem_cache *cachep; 3718 void *ret; 3719 3720 cachep = kmalloc_slab(size, flags); 3721 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3722 return cachep; 3723 ret = slab_alloc(cachep, flags, caller); 3724 3725 kasan_kmalloc(cachep, ret, size, flags); 3726 trace_kmalloc(caller, ret, 3727 size, cachep->size, flags); 3728 3729 return ret; 3730 } 3731 3732 void *__kmalloc(size_t size, gfp_t flags) 3733 { 3734 return __do_kmalloc(size, flags, _RET_IP_); 3735 } 3736 EXPORT_SYMBOL(__kmalloc); 3737 3738 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3739 { 3740 return __do_kmalloc(size, flags, caller); 3741 } 3742 EXPORT_SYMBOL(__kmalloc_track_caller); 3743 3744 /** 3745 * kmem_cache_free - Deallocate an object 3746 * @cachep: The cache the allocation was from. 3747 * @objp: The previously allocated object. 3748 * 3749 * Free an object which was previously allocated from this 3750 * cache. 3751 */ 3752 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3753 { 3754 unsigned long flags; 3755 cachep = cache_from_obj(cachep, objp); 3756 if (!cachep) 3757 return; 3758 3759 local_irq_save(flags); 3760 debug_check_no_locks_freed(objp, cachep->object_size); 3761 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3762 debug_check_no_obj_freed(objp, cachep->object_size); 3763 __cache_free(cachep, objp, _RET_IP_); 3764 local_irq_restore(flags); 3765 3766 trace_kmem_cache_free(_RET_IP_, objp); 3767 } 3768 EXPORT_SYMBOL(kmem_cache_free); 3769 3770 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3771 { 3772 struct kmem_cache *s; 3773 size_t i; 3774 3775 local_irq_disable(); 3776 for (i = 0; i < size; i++) { 3777 void *objp = p[i]; 3778 3779 if (!orig_s) /* called via kfree_bulk */ 3780 s = virt_to_cache(objp); 3781 else 3782 s = cache_from_obj(orig_s, objp); 3783 3784 debug_check_no_locks_freed(objp, s->object_size); 3785 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3786 debug_check_no_obj_freed(objp, s->object_size); 3787 3788 __cache_free(s, objp, _RET_IP_); 3789 } 3790 local_irq_enable(); 3791 3792 /* FIXME: add tracing */ 3793 } 3794 EXPORT_SYMBOL(kmem_cache_free_bulk); 3795 3796 /** 3797 * kfree - free previously allocated memory 3798 * @objp: pointer returned by kmalloc. 3799 * 3800 * If @objp is NULL, no operation is performed. 3801 * 3802 * Don't free memory not originally allocated by kmalloc() 3803 * or you will run into trouble. 3804 */ 3805 void kfree(const void *objp) 3806 { 3807 struct kmem_cache *c; 3808 unsigned long flags; 3809 3810 trace_kfree(_RET_IP_, objp); 3811 3812 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3813 return; 3814 local_irq_save(flags); 3815 kfree_debugcheck(objp); 3816 c = virt_to_cache(objp); 3817 debug_check_no_locks_freed(objp, c->object_size); 3818 3819 debug_check_no_obj_freed(objp, c->object_size); 3820 __cache_free(c, (void *)objp, _RET_IP_); 3821 local_irq_restore(flags); 3822 } 3823 EXPORT_SYMBOL(kfree); 3824 3825 /* 3826 * This initializes kmem_cache_node or resizes various caches for all nodes. 3827 */ 3828 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3829 { 3830 int ret; 3831 int node; 3832 struct kmem_cache_node *n; 3833 3834 for_each_online_node(node) { 3835 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3836 if (ret) 3837 goto fail; 3838 3839 } 3840 3841 return 0; 3842 3843 fail: 3844 if (!cachep->list.next) { 3845 /* Cache is not active yet. Roll back what we did */ 3846 node--; 3847 while (node >= 0) { 3848 n = get_node(cachep, node); 3849 if (n) { 3850 kfree(n->shared); 3851 free_alien_cache(n->alien); 3852 kfree(n); 3853 cachep->node[node] = NULL; 3854 } 3855 node--; 3856 } 3857 } 3858 return -ENOMEM; 3859 } 3860 3861 /* Always called with the slab_mutex held */ 3862 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3863 int batchcount, int shared, gfp_t gfp) 3864 { 3865 struct array_cache __percpu *cpu_cache, *prev; 3866 int cpu; 3867 3868 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3869 if (!cpu_cache) 3870 return -ENOMEM; 3871 3872 prev = cachep->cpu_cache; 3873 cachep->cpu_cache = cpu_cache; 3874 /* 3875 * Without a previous cpu_cache there's no need to synchronize remote 3876 * cpus, so skip the IPIs. 3877 */ 3878 if (prev) 3879 kick_all_cpus_sync(); 3880 3881 check_irq_on(); 3882 cachep->batchcount = batchcount; 3883 cachep->limit = limit; 3884 cachep->shared = shared; 3885 3886 if (!prev) 3887 goto setup_node; 3888 3889 for_each_online_cpu(cpu) { 3890 LIST_HEAD(list); 3891 int node; 3892 struct kmem_cache_node *n; 3893 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3894 3895 node = cpu_to_mem(cpu); 3896 n = get_node(cachep, node); 3897 spin_lock_irq(&n->list_lock); 3898 free_block(cachep, ac->entry, ac->avail, node, &list); 3899 spin_unlock_irq(&n->list_lock); 3900 slabs_destroy(cachep, &list); 3901 } 3902 free_percpu(prev); 3903 3904 setup_node: 3905 return setup_kmem_cache_nodes(cachep, gfp); 3906 } 3907 3908 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3909 int batchcount, int shared, gfp_t gfp) 3910 { 3911 int ret; 3912 struct kmem_cache *c; 3913 3914 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3915 3916 if (slab_state < FULL) 3917 return ret; 3918 3919 if ((ret < 0) || !is_root_cache(cachep)) 3920 return ret; 3921 3922 lockdep_assert_held(&slab_mutex); 3923 for_each_memcg_cache(c, cachep) { 3924 /* return value determined by the root cache only */ 3925 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3926 } 3927 3928 return ret; 3929 } 3930 3931 /* Called with slab_mutex held always */ 3932 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3933 { 3934 int err; 3935 int limit = 0; 3936 int shared = 0; 3937 int batchcount = 0; 3938 3939 err = cache_random_seq_create(cachep, cachep->num, gfp); 3940 if (err) 3941 goto end; 3942 3943 if (!is_root_cache(cachep)) { 3944 struct kmem_cache *root = memcg_root_cache(cachep); 3945 limit = root->limit; 3946 shared = root->shared; 3947 batchcount = root->batchcount; 3948 } 3949 3950 if (limit && shared && batchcount) 3951 goto skip_setup; 3952 /* 3953 * The head array serves three purposes: 3954 * - create a LIFO ordering, i.e. return objects that are cache-warm 3955 * - reduce the number of spinlock operations. 3956 * - reduce the number of linked list operations on the slab and 3957 * bufctl chains: array operations are cheaper. 3958 * The numbers are guessed, we should auto-tune as described by 3959 * Bonwick. 3960 */ 3961 if (cachep->size > 131072) 3962 limit = 1; 3963 else if (cachep->size > PAGE_SIZE) 3964 limit = 8; 3965 else if (cachep->size > 1024) 3966 limit = 24; 3967 else if (cachep->size > 256) 3968 limit = 54; 3969 else 3970 limit = 120; 3971 3972 /* 3973 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3974 * allocation behaviour: Most allocs on one cpu, most free operations 3975 * on another cpu. For these cases, an efficient object passing between 3976 * cpus is necessary. This is provided by a shared array. The array 3977 * replaces Bonwick's magazine layer. 3978 * On uniprocessor, it's functionally equivalent (but less efficient) 3979 * to a larger limit. Thus disabled by default. 3980 */ 3981 shared = 0; 3982 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3983 shared = 8; 3984 3985 #if DEBUG 3986 /* 3987 * With debugging enabled, large batchcount lead to excessively long 3988 * periods with disabled local interrupts. Limit the batchcount 3989 */ 3990 if (limit > 32) 3991 limit = 32; 3992 #endif 3993 batchcount = (limit + 1) / 2; 3994 skip_setup: 3995 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3996 end: 3997 if (err) 3998 pr_err("enable_cpucache failed for %s, error %d\n", 3999 cachep->name, -err); 4000 return err; 4001 } 4002 4003 /* 4004 * Drain an array if it contains any elements taking the node lock only if 4005 * necessary. Note that the node listlock also protects the array_cache 4006 * if drain_array() is used on the shared array. 4007 */ 4008 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 4009 struct array_cache *ac, int node) 4010 { 4011 LIST_HEAD(list); 4012 4013 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 4014 check_mutex_acquired(); 4015 4016 if (!ac || !ac->avail) 4017 return; 4018 4019 if (ac->touched) { 4020 ac->touched = 0; 4021 return; 4022 } 4023 4024 spin_lock_irq(&n->list_lock); 4025 drain_array_locked(cachep, ac, node, false, &list); 4026 spin_unlock_irq(&n->list_lock); 4027 4028 slabs_destroy(cachep, &list); 4029 } 4030 4031 /** 4032 * cache_reap - Reclaim memory from caches. 4033 * @w: work descriptor 4034 * 4035 * Called from workqueue/eventd every few seconds. 4036 * Purpose: 4037 * - clear the per-cpu caches for this CPU. 4038 * - return freeable pages to the main free memory pool. 4039 * 4040 * If we cannot acquire the cache chain mutex then just give up - we'll try 4041 * again on the next iteration. 4042 */ 4043 static void cache_reap(struct work_struct *w) 4044 { 4045 struct kmem_cache *searchp; 4046 struct kmem_cache_node *n; 4047 int node = numa_mem_id(); 4048 struct delayed_work *work = to_delayed_work(w); 4049 4050 if (!mutex_trylock(&slab_mutex)) 4051 /* Give up. Setup the next iteration. */ 4052 goto out; 4053 4054 list_for_each_entry(searchp, &slab_caches, list) { 4055 check_irq_on(); 4056 4057 /* 4058 * We only take the node lock if absolutely necessary and we 4059 * have established with reasonable certainty that 4060 * we can do some work if the lock was obtained. 4061 */ 4062 n = get_node(searchp, node); 4063 4064 reap_alien(searchp, n); 4065 4066 drain_array(searchp, n, cpu_cache_get(searchp), node); 4067 4068 /* 4069 * These are racy checks but it does not matter 4070 * if we skip one check or scan twice. 4071 */ 4072 if (time_after(n->next_reap, jiffies)) 4073 goto next; 4074 4075 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4076 4077 drain_array(searchp, n, n->shared, node); 4078 4079 if (n->free_touched) 4080 n->free_touched = 0; 4081 else { 4082 int freed; 4083 4084 freed = drain_freelist(searchp, n, (n->free_limit + 4085 5 * searchp->num - 1) / (5 * searchp->num)); 4086 STATS_ADD_REAPED(searchp, freed); 4087 } 4088 next: 4089 cond_resched(); 4090 } 4091 check_irq_on(); 4092 mutex_unlock(&slab_mutex); 4093 next_reap_node(); 4094 out: 4095 /* Set up the next iteration */ 4096 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 4097 } 4098 4099 #ifdef CONFIG_SLABINFO 4100 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4101 { 4102 unsigned long active_objs, num_objs, active_slabs; 4103 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4104 unsigned long free_slabs = 0; 4105 int node; 4106 struct kmem_cache_node *n; 4107 4108 for_each_kmem_cache_node(cachep, node, n) { 4109 check_irq_on(); 4110 spin_lock_irq(&n->list_lock); 4111 4112 total_slabs += n->total_slabs; 4113 free_slabs += n->free_slabs; 4114 free_objs += n->free_objects; 4115 4116 if (n->shared) 4117 shared_avail += n->shared->avail; 4118 4119 spin_unlock_irq(&n->list_lock); 4120 } 4121 num_objs = total_slabs * cachep->num; 4122 active_slabs = total_slabs - free_slabs; 4123 active_objs = num_objs - free_objs; 4124 4125 sinfo->active_objs = active_objs; 4126 sinfo->num_objs = num_objs; 4127 sinfo->active_slabs = active_slabs; 4128 sinfo->num_slabs = total_slabs; 4129 sinfo->shared_avail = shared_avail; 4130 sinfo->limit = cachep->limit; 4131 sinfo->batchcount = cachep->batchcount; 4132 sinfo->shared = cachep->shared; 4133 sinfo->objects_per_slab = cachep->num; 4134 sinfo->cache_order = cachep->gfporder; 4135 } 4136 4137 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4138 { 4139 #if STATS 4140 { /* node stats */ 4141 unsigned long high = cachep->high_mark; 4142 unsigned long allocs = cachep->num_allocations; 4143 unsigned long grown = cachep->grown; 4144 unsigned long reaped = cachep->reaped; 4145 unsigned long errors = cachep->errors; 4146 unsigned long max_freeable = cachep->max_freeable; 4147 unsigned long node_allocs = cachep->node_allocs; 4148 unsigned long node_frees = cachep->node_frees; 4149 unsigned long overflows = cachep->node_overflow; 4150 4151 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4152 allocs, high, grown, 4153 reaped, errors, max_freeable, node_allocs, 4154 node_frees, overflows); 4155 } 4156 /* cpu stats */ 4157 { 4158 unsigned long allochit = atomic_read(&cachep->allochit); 4159 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4160 unsigned long freehit = atomic_read(&cachep->freehit); 4161 unsigned long freemiss = atomic_read(&cachep->freemiss); 4162 4163 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4164 allochit, allocmiss, freehit, freemiss); 4165 } 4166 #endif 4167 } 4168 4169 #define MAX_SLABINFO_WRITE 128 4170 /** 4171 * slabinfo_write - Tuning for the slab allocator 4172 * @file: unused 4173 * @buffer: user buffer 4174 * @count: data length 4175 * @ppos: unused 4176 */ 4177 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4178 size_t count, loff_t *ppos) 4179 { 4180 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4181 int limit, batchcount, shared, res; 4182 struct kmem_cache *cachep; 4183 4184 if (count > MAX_SLABINFO_WRITE) 4185 return -EINVAL; 4186 if (copy_from_user(&kbuf, buffer, count)) 4187 return -EFAULT; 4188 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4189 4190 tmp = strchr(kbuf, ' '); 4191 if (!tmp) 4192 return -EINVAL; 4193 *tmp = '\0'; 4194 tmp++; 4195 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4196 return -EINVAL; 4197 4198 /* Find the cache in the chain of caches. */ 4199 mutex_lock(&slab_mutex); 4200 res = -EINVAL; 4201 list_for_each_entry(cachep, &slab_caches, list) { 4202 if (!strcmp(cachep->name, kbuf)) { 4203 if (limit < 1 || batchcount < 1 || 4204 batchcount > limit || shared < 0) { 4205 res = 0; 4206 } else { 4207 res = do_tune_cpucache(cachep, limit, 4208 batchcount, shared, 4209 GFP_KERNEL); 4210 } 4211 break; 4212 } 4213 } 4214 mutex_unlock(&slab_mutex); 4215 if (res >= 0) 4216 res = count; 4217 return res; 4218 } 4219 4220 #ifdef CONFIG_DEBUG_SLAB_LEAK 4221 4222 static inline int add_caller(unsigned long *n, unsigned long v) 4223 { 4224 unsigned long *p; 4225 int l; 4226 if (!v) 4227 return 1; 4228 l = n[1]; 4229 p = n + 2; 4230 while (l) { 4231 int i = l/2; 4232 unsigned long *q = p + 2 * i; 4233 if (*q == v) { 4234 q[1]++; 4235 return 1; 4236 } 4237 if (*q > v) { 4238 l = i; 4239 } else { 4240 p = q + 2; 4241 l -= i + 1; 4242 } 4243 } 4244 if (++n[1] == n[0]) 4245 return 0; 4246 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4247 p[0] = v; 4248 p[1] = 1; 4249 return 1; 4250 } 4251 4252 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4253 struct page *page) 4254 { 4255 void *p; 4256 int i, j; 4257 unsigned long v; 4258 4259 if (n[0] == n[1]) 4260 return; 4261 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4262 bool active = true; 4263 4264 for (j = page->active; j < c->num; j++) { 4265 if (get_free_obj(page, j) == i) { 4266 active = false; 4267 break; 4268 } 4269 } 4270 4271 if (!active) 4272 continue; 4273 4274 /* 4275 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4276 * mapping is established when actual object allocation and 4277 * we could mistakenly access the unmapped object in the cpu 4278 * cache. 4279 */ 4280 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4281 continue; 4282 4283 if (!add_caller(n, v)) 4284 return; 4285 } 4286 } 4287 4288 static void show_symbol(struct seq_file *m, unsigned long address) 4289 { 4290 #ifdef CONFIG_KALLSYMS 4291 unsigned long offset, size; 4292 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4293 4294 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4295 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4296 if (modname[0]) 4297 seq_printf(m, " [%s]", modname); 4298 return; 4299 } 4300 #endif 4301 seq_printf(m, "%p", (void *)address); 4302 } 4303 4304 static int leaks_show(struct seq_file *m, void *p) 4305 { 4306 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4307 struct page *page; 4308 struct kmem_cache_node *n; 4309 const char *name; 4310 unsigned long *x = m->private; 4311 int node; 4312 int i; 4313 4314 if (!(cachep->flags & SLAB_STORE_USER)) 4315 return 0; 4316 if (!(cachep->flags & SLAB_RED_ZONE)) 4317 return 0; 4318 4319 /* 4320 * Set store_user_clean and start to grab stored user information 4321 * for all objects on this cache. If some alloc/free requests comes 4322 * during the processing, information would be wrong so restart 4323 * whole processing. 4324 */ 4325 do { 4326 set_store_user_clean(cachep); 4327 drain_cpu_caches(cachep); 4328 4329 x[1] = 0; 4330 4331 for_each_kmem_cache_node(cachep, node, n) { 4332 4333 check_irq_on(); 4334 spin_lock_irq(&n->list_lock); 4335 4336 list_for_each_entry(page, &n->slabs_full, lru) 4337 handle_slab(x, cachep, page); 4338 list_for_each_entry(page, &n->slabs_partial, lru) 4339 handle_slab(x, cachep, page); 4340 spin_unlock_irq(&n->list_lock); 4341 } 4342 } while (!is_store_user_clean(cachep)); 4343 4344 name = cachep->name; 4345 if (x[0] == x[1]) { 4346 /* Increase the buffer size */ 4347 mutex_unlock(&slab_mutex); 4348 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4349 if (!m->private) { 4350 /* Too bad, we are really out */ 4351 m->private = x; 4352 mutex_lock(&slab_mutex); 4353 return -ENOMEM; 4354 } 4355 *(unsigned long *)m->private = x[0] * 2; 4356 kfree(x); 4357 mutex_lock(&slab_mutex); 4358 /* Now make sure this entry will be retried */ 4359 m->count = m->size; 4360 return 0; 4361 } 4362 for (i = 0; i < x[1]; i++) { 4363 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4364 show_symbol(m, x[2*i+2]); 4365 seq_putc(m, '\n'); 4366 } 4367 4368 return 0; 4369 } 4370 4371 static const struct seq_operations slabstats_op = { 4372 .start = slab_start, 4373 .next = slab_next, 4374 .stop = slab_stop, 4375 .show = leaks_show, 4376 }; 4377 4378 static int slabstats_open(struct inode *inode, struct file *file) 4379 { 4380 unsigned long *n; 4381 4382 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4383 if (!n) 4384 return -ENOMEM; 4385 4386 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4387 4388 return 0; 4389 } 4390 4391 static const struct file_operations proc_slabstats_operations = { 4392 .open = slabstats_open, 4393 .read = seq_read, 4394 .llseek = seq_lseek, 4395 .release = seq_release_private, 4396 }; 4397 #endif 4398 4399 static int __init slab_proc_init(void) 4400 { 4401 #ifdef CONFIG_DEBUG_SLAB_LEAK 4402 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4403 #endif 4404 return 0; 4405 } 4406 module_init(slab_proc_init); 4407 #endif 4408 4409 #ifdef CONFIG_HARDENED_USERCOPY 4410 /* 4411 * Rejects objects that are incorrectly sized. 4412 * 4413 * Returns NULL if check passes, otherwise const char * to name of cache 4414 * to indicate an error. 4415 */ 4416 const char *__check_heap_object(const void *ptr, unsigned long n, 4417 struct page *page) 4418 { 4419 struct kmem_cache *cachep; 4420 unsigned int objnr; 4421 unsigned long offset; 4422 4423 /* Find and validate object. */ 4424 cachep = page->slab_cache; 4425 objnr = obj_to_index(cachep, page, (void *)ptr); 4426 BUG_ON(objnr >= cachep->num); 4427 4428 /* Find offset within object. */ 4429 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4430 4431 /* Allow address range falling entirely within object size. */ 4432 if (offset <= cachep->object_size && n <= cachep->object_size - offset) 4433 return NULL; 4434 4435 return cachep->name; 4436 } 4437 #endif /* CONFIG_HARDENED_USERCOPY */ 4438 4439 /** 4440 * ksize - get the actual amount of memory allocated for a given object 4441 * @objp: Pointer to the object 4442 * 4443 * kmalloc may internally round up allocations and return more memory 4444 * than requested. ksize() can be used to determine the actual amount of 4445 * memory allocated. The caller may use this additional memory, even though 4446 * a smaller amount of memory was initially specified with the kmalloc call. 4447 * The caller must guarantee that objp points to a valid object previously 4448 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4449 * must not be freed during the duration of the call. 4450 */ 4451 size_t ksize(const void *objp) 4452 { 4453 size_t size; 4454 4455 BUG_ON(!objp); 4456 if (unlikely(objp == ZERO_SIZE_PTR)) 4457 return 0; 4458 4459 size = virt_to_cache(objp)->object_size; 4460 /* We assume that ksize callers could use the whole allocated area, 4461 * so we need to unpoison this area. 4462 */ 4463 kasan_unpoison_shadow(objp, size); 4464 4465 return size; 4466 } 4467 EXPORT_SYMBOL(ksize); 4468