1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/cpu.h> 104 #include <linux/sysctl.h> 105 #include <linux/module.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 #ifdef CONFIG_DEBUG_SLAB_LEAK 366 367 static inline bool is_store_user_clean(struct kmem_cache *cachep) 368 { 369 return atomic_read(&cachep->store_user_clean) == 1; 370 } 371 372 static inline void set_store_user_clean(struct kmem_cache *cachep) 373 { 374 atomic_set(&cachep->store_user_clean, 1); 375 } 376 377 static inline void set_store_user_dirty(struct kmem_cache *cachep) 378 { 379 if (is_store_user_clean(cachep)) 380 atomic_set(&cachep->store_user_clean, 0); 381 } 382 383 #else 384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 385 386 #endif 387 388 /* 389 * Do not go above this order unless 0 objects fit into the slab or 390 * overridden on the command line. 391 */ 392 #define SLAB_MAX_ORDER_HI 1 393 #define SLAB_MAX_ORDER_LO 0 394 static int slab_max_order = SLAB_MAX_ORDER_LO; 395 static bool slab_max_order_set __initdata; 396 397 static inline struct kmem_cache *virt_to_cache(const void *obj) 398 { 399 struct page *page = virt_to_head_page(obj); 400 return page->slab_cache; 401 } 402 403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 404 unsigned int idx) 405 { 406 return page->s_mem + cache->size * idx; 407 } 408 409 /* 410 * We want to avoid an expensive divide : (offset / cache->size) 411 * Using the fact that size is a constant for a particular cache, 412 * we can replace (offset / cache->size) by 413 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 414 */ 415 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 416 const struct page *page, void *obj) 417 { 418 u32 offset = (obj - page->s_mem); 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 420 } 421 422 #define BOOT_CPUCACHE_ENTRIES 1 423 /* internal cache of cache description objs */ 424 static struct kmem_cache kmem_cache_boot = { 425 .batchcount = 1, 426 .limit = BOOT_CPUCACHE_ENTRIES, 427 .shared = 1, 428 .size = sizeof(struct kmem_cache), 429 .name = "kmem_cache", 430 }; 431 432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 433 434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 435 { 436 return this_cpu_ptr(cachep->cpu_cache); 437 } 438 439 /* 440 * Calculate the number of objects and left-over bytes for a given buffer size. 441 */ 442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 443 slab_flags_t flags, size_t *left_over) 444 { 445 unsigned int num; 446 size_t slab_size = PAGE_SIZE << gfporder; 447 448 /* 449 * The slab management structure can be either off the slab or 450 * on it. For the latter case, the memory allocated for a 451 * slab is used for: 452 * 453 * - @buffer_size bytes for each object 454 * - One freelist_idx_t for each object 455 * 456 * We don't need to consider alignment of freelist because 457 * freelist will be at the end of slab page. The objects will be 458 * at the correct alignment. 459 * 460 * If the slab management structure is off the slab, then the 461 * alignment will already be calculated into the size. Because 462 * the slabs are all pages aligned, the objects will be at the 463 * correct alignment when allocated. 464 */ 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 466 num = slab_size / buffer_size; 467 *left_over = slab_size % buffer_size; 468 } else { 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 470 *left_over = slab_size % 471 (buffer_size + sizeof(freelist_idx_t)); 472 } 473 474 return num; 475 } 476 477 #if DEBUG 478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 479 480 static void __slab_error(const char *function, struct kmem_cache *cachep, 481 char *msg) 482 { 483 pr_err("slab error in %s(): cache `%s': %s\n", 484 function, cachep->name, msg); 485 dump_stack(); 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 487 } 488 #endif 489 490 /* 491 * By default on NUMA we use alien caches to stage the freeing of 492 * objects allocated from other nodes. This causes massive memory 493 * inefficiencies when using fake NUMA setup to split memory into a 494 * large number of small nodes, so it can be disabled on the command 495 * line 496 */ 497 498 static int use_alien_caches __read_mostly = 1; 499 static int __init noaliencache_setup(char *s) 500 { 501 use_alien_caches = 0; 502 return 1; 503 } 504 __setup("noaliencache", noaliencache_setup); 505 506 static int __init slab_max_order_setup(char *str) 507 { 508 get_option(&str, &slab_max_order); 509 slab_max_order = slab_max_order < 0 ? 0 : 510 min(slab_max_order, MAX_ORDER - 1); 511 slab_max_order_set = true; 512 513 return 1; 514 } 515 __setup("slab_max_order=", slab_max_order_setup); 516 517 #ifdef CONFIG_NUMA 518 /* 519 * Special reaping functions for NUMA systems called from cache_reap(). 520 * These take care of doing round robin flushing of alien caches (containing 521 * objects freed on different nodes from which they were allocated) and the 522 * flushing of remote pcps by calling drain_node_pages. 523 */ 524 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 525 526 static void init_reap_node(int cpu) 527 { 528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 529 node_online_map); 530 } 531 532 static void next_reap_node(void) 533 { 534 int node = __this_cpu_read(slab_reap_node); 535 536 node = next_node_in(node, node_online_map); 537 __this_cpu_write(slab_reap_node, node); 538 } 539 540 #else 541 #define init_reap_node(cpu) do { } while (0) 542 #define next_reap_node(void) do { } while (0) 543 #endif 544 545 /* 546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 547 * via the workqueue/eventd. 548 * Add the CPU number into the expiration time to minimize the possibility of 549 * the CPUs getting into lockstep and contending for the global cache chain 550 * lock. 551 */ 552 static void start_cpu_timer(int cpu) 553 { 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 555 556 if (reap_work->work.func == NULL) { 557 init_reap_node(cpu); 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 559 schedule_delayed_work_on(cpu, reap_work, 560 __round_jiffies_relative(HZ, cpu)); 561 } 562 } 563 564 static void init_arraycache(struct array_cache *ac, int limit, int batch) 565 { 566 /* 567 * The array_cache structures contain pointers to free object. 568 * However, when such objects are allocated or transferred to another 569 * cache the pointers are not cleared and they could be counted as 570 * valid references during a kmemleak scan. Therefore, kmemleak must 571 * not scan such objects. 572 */ 573 kmemleak_no_scan(ac); 574 if (ac) { 575 ac->avail = 0; 576 ac->limit = limit; 577 ac->batchcount = batch; 578 ac->touched = 0; 579 } 580 } 581 582 static struct array_cache *alloc_arraycache(int node, int entries, 583 int batchcount, gfp_t gfp) 584 { 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 586 struct array_cache *ac = NULL; 587 588 ac = kmalloc_node(memsize, gfp, node); 589 init_arraycache(ac, entries, batchcount); 590 return ac; 591 } 592 593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 594 struct page *page, void *objp) 595 { 596 struct kmem_cache_node *n; 597 int page_node; 598 LIST_HEAD(list); 599 600 page_node = page_to_nid(page); 601 n = get_node(cachep, page_node); 602 603 spin_lock(&n->list_lock); 604 free_block(cachep, &objp, 1, page_node, &list); 605 spin_unlock(&n->list_lock); 606 607 slabs_destroy(cachep, &list); 608 } 609 610 /* 611 * Transfer objects in one arraycache to another. 612 * Locking must be handled by the caller. 613 * 614 * Return the number of entries transferred. 615 */ 616 static int transfer_objects(struct array_cache *to, 617 struct array_cache *from, unsigned int max) 618 { 619 /* Figure out how many entries to transfer */ 620 int nr = min3(from->avail, max, to->limit - to->avail); 621 622 if (!nr) 623 return 0; 624 625 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 626 sizeof(void *) *nr); 627 628 from->avail -= nr; 629 to->avail += nr; 630 return nr; 631 } 632 633 #ifndef CONFIG_NUMA 634 635 #define drain_alien_cache(cachep, alien) do { } while (0) 636 #define reap_alien(cachep, n) do { } while (0) 637 638 static inline struct alien_cache **alloc_alien_cache(int node, 639 int limit, gfp_t gfp) 640 { 641 return NULL; 642 } 643 644 static inline void free_alien_cache(struct alien_cache **ac_ptr) 645 { 646 } 647 648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 649 { 650 return 0; 651 } 652 653 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 654 gfp_t flags) 655 { 656 return NULL; 657 } 658 659 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 660 gfp_t flags, int nodeid) 661 { 662 return NULL; 663 } 664 665 static inline gfp_t gfp_exact_node(gfp_t flags) 666 { 667 return flags & ~__GFP_NOFAIL; 668 } 669 670 #else /* CONFIG_NUMA */ 671 672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 674 675 static struct alien_cache *__alloc_alien_cache(int node, int entries, 676 int batch, gfp_t gfp) 677 { 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 679 struct alien_cache *alc = NULL; 680 681 alc = kmalloc_node(memsize, gfp, node); 682 init_arraycache(&alc->ac, entries, batch); 683 spin_lock_init(&alc->lock); 684 return alc; 685 } 686 687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 688 { 689 struct alien_cache **alc_ptr; 690 size_t memsize = sizeof(void *) * nr_node_ids; 691 int i; 692 693 if (limit > 1) 694 limit = 12; 695 alc_ptr = kzalloc_node(memsize, gfp, node); 696 if (!alc_ptr) 697 return NULL; 698 699 for_each_node(i) { 700 if (i == node || !node_online(i)) 701 continue; 702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 703 if (!alc_ptr[i]) { 704 for (i--; i >= 0; i--) 705 kfree(alc_ptr[i]); 706 kfree(alc_ptr); 707 return NULL; 708 } 709 } 710 return alc_ptr; 711 } 712 713 static void free_alien_cache(struct alien_cache **alc_ptr) 714 { 715 int i; 716 717 if (!alc_ptr) 718 return; 719 for_each_node(i) 720 kfree(alc_ptr[i]); 721 kfree(alc_ptr); 722 } 723 724 static void __drain_alien_cache(struct kmem_cache *cachep, 725 struct array_cache *ac, int node, 726 struct list_head *list) 727 { 728 struct kmem_cache_node *n = get_node(cachep, node); 729 730 if (ac->avail) { 731 spin_lock(&n->list_lock); 732 /* 733 * Stuff objects into the remote nodes shared array first. 734 * That way we could avoid the overhead of putting the objects 735 * into the free lists and getting them back later. 736 */ 737 if (n->shared) 738 transfer_objects(n->shared, ac, ac->limit); 739 740 free_block(cachep, ac->entry, ac->avail, node, list); 741 ac->avail = 0; 742 spin_unlock(&n->list_lock); 743 } 744 } 745 746 /* 747 * Called from cache_reap() to regularly drain alien caches round robin. 748 */ 749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 750 { 751 int node = __this_cpu_read(slab_reap_node); 752 753 if (n->alien) { 754 struct alien_cache *alc = n->alien[node]; 755 struct array_cache *ac; 756 757 if (alc) { 758 ac = &alc->ac; 759 if (ac->avail && spin_trylock_irq(&alc->lock)) { 760 LIST_HEAD(list); 761 762 __drain_alien_cache(cachep, ac, node, &list); 763 spin_unlock_irq(&alc->lock); 764 slabs_destroy(cachep, &list); 765 } 766 } 767 } 768 } 769 770 static void drain_alien_cache(struct kmem_cache *cachep, 771 struct alien_cache **alien) 772 { 773 int i = 0; 774 struct alien_cache *alc; 775 struct array_cache *ac; 776 unsigned long flags; 777 778 for_each_online_node(i) { 779 alc = alien[i]; 780 if (alc) { 781 LIST_HEAD(list); 782 783 ac = &alc->ac; 784 spin_lock_irqsave(&alc->lock, flags); 785 __drain_alien_cache(cachep, ac, i, &list); 786 spin_unlock_irqrestore(&alc->lock, flags); 787 slabs_destroy(cachep, &list); 788 } 789 } 790 } 791 792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 793 int node, int page_node) 794 { 795 struct kmem_cache_node *n; 796 struct alien_cache *alien = NULL; 797 struct array_cache *ac; 798 LIST_HEAD(list); 799 800 n = get_node(cachep, node); 801 STATS_INC_NODEFREES(cachep); 802 if (n->alien && n->alien[page_node]) { 803 alien = n->alien[page_node]; 804 ac = &alien->ac; 805 spin_lock(&alien->lock); 806 if (unlikely(ac->avail == ac->limit)) { 807 STATS_INC_ACOVERFLOW(cachep); 808 __drain_alien_cache(cachep, ac, page_node, &list); 809 } 810 ac->entry[ac->avail++] = objp; 811 spin_unlock(&alien->lock); 812 slabs_destroy(cachep, &list); 813 } else { 814 n = get_node(cachep, page_node); 815 spin_lock(&n->list_lock); 816 free_block(cachep, &objp, 1, page_node, &list); 817 spin_unlock(&n->list_lock); 818 slabs_destroy(cachep, &list); 819 } 820 return 1; 821 } 822 823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 824 { 825 int page_node = page_to_nid(virt_to_page(objp)); 826 int node = numa_mem_id(); 827 /* 828 * Make sure we are not freeing a object from another node to the array 829 * cache on this cpu. 830 */ 831 if (likely(node == page_node)) 832 return 0; 833 834 return __cache_free_alien(cachep, objp, node, page_node); 835 } 836 837 /* 838 * Construct gfp mask to allocate from a specific node but do not reclaim or 839 * warn about failures. 840 */ 841 static inline gfp_t gfp_exact_node(gfp_t flags) 842 { 843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 844 } 845 #endif 846 847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 848 { 849 struct kmem_cache_node *n; 850 851 /* 852 * Set up the kmem_cache_node for cpu before we can 853 * begin anything. Make sure some other cpu on this 854 * node has not already allocated this 855 */ 856 n = get_node(cachep, node); 857 if (n) { 858 spin_lock_irq(&n->list_lock); 859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 860 cachep->num; 861 spin_unlock_irq(&n->list_lock); 862 863 return 0; 864 } 865 866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 867 if (!n) 868 return -ENOMEM; 869 870 kmem_cache_node_init(n); 871 n->next_reap = jiffies + REAPTIMEOUT_NODE + 872 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 873 874 n->free_limit = 875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 876 877 /* 878 * The kmem_cache_nodes don't come and go as CPUs 879 * come and go. slab_mutex is sufficient 880 * protection here. 881 */ 882 cachep->node[node] = n; 883 884 return 0; 885 } 886 887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 888 /* 889 * Allocates and initializes node for a node on each slab cache, used for 890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 891 * will be allocated off-node since memory is not yet online for the new node. 892 * When hotplugging memory or a cpu, existing node are not replaced if 893 * already in use. 894 * 895 * Must hold slab_mutex. 896 */ 897 static int init_cache_node_node(int node) 898 { 899 int ret; 900 struct kmem_cache *cachep; 901 902 list_for_each_entry(cachep, &slab_caches, list) { 903 ret = init_cache_node(cachep, node, GFP_KERNEL); 904 if (ret) 905 return ret; 906 } 907 908 return 0; 909 } 910 #endif 911 912 static int setup_kmem_cache_node(struct kmem_cache *cachep, 913 int node, gfp_t gfp, bool force_change) 914 { 915 int ret = -ENOMEM; 916 struct kmem_cache_node *n; 917 struct array_cache *old_shared = NULL; 918 struct array_cache *new_shared = NULL; 919 struct alien_cache **new_alien = NULL; 920 LIST_HEAD(list); 921 922 if (use_alien_caches) { 923 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 924 if (!new_alien) 925 goto fail; 926 } 927 928 if (cachep->shared) { 929 new_shared = alloc_arraycache(node, 930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 931 if (!new_shared) 932 goto fail; 933 } 934 935 ret = init_cache_node(cachep, node, gfp); 936 if (ret) 937 goto fail; 938 939 n = get_node(cachep, node); 940 spin_lock_irq(&n->list_lock); 941 if (n->shared && force_change) { 942 free_block(cachep, n->shared->entry, 943 n->shared->avail, node, &list); 944 n->shared->avail = 0; 945 } 946 947 if (!n->shared || force_change) { 948 old_shared = n->shared; 949 n->shared = new_shared; 950 new_shared = NULL; 951 } 952 953 if (!n->alien) { 954 n->alien = new_alien; 955 new_alien = NULL; 956 } 957 958 spin_unlock_irq(&n->list_lock); 959 slabs_destroy(cachep, &list); 960 961 /* 962 * To protect lockless access to n->shared during irq disabled context. 963 * If n->shared isn't NULL in irq disabled context, accessing to it is 964 * guaranteed to be valid until irq is re-enabled, because it will be 965 * freed after synchronize_sched(). 966 */ 967 if (old_shared && force_change) 968 synchronize_sched(); 969 970 fail: 971 kfree(old_shared); 972 kfree(new_shared); 973 free_alien_cache(new_alien); 974 975 return ret; 976 } 977 978 #ifdef CONFIG_SMP 979 980 static void cpuup_canceled(long cpu) 981 { 982 struct kmem_cache *cachep; 983 struct kmem_cache_node *n = NULL; 984 int node = cpu_to_mem(cpu); 985 const struct cpumask *mask = cpumask_of_node(node); 986 987 list_for_each_entry(cachep, &slab_caches, list) { 988 struct array_cache *nc; 989 struct array_cache *shared; 990 struct alien_cache **alien; 991 LIST_HEAD(list); 992 993 n = get_node(cachep, node); 994 if (!n) 995 continue; 996 997 spin_lock_irq(&n->list_lock); 998 999 /* Free limit for this kmem_cache_node */ 1000 n->free_limit -= cachep->batchcount; 1001 1002 /* cpu is dead; no one can alloc from it. */ 1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 1004 if (nc) { 1005 free_block(cachep, nc->entry, nc->avail, node, &list); 1006 nc->avail = 0; 1007 } 1008 1009 if (!cpumask_empty(mask)) { 1010 spin_unlock_irq(&n->list_lock); 1011 goto free_slab; 1012 } 1013 1014 shared = n->shared; 1015 if (shared) { 1016 free_block(cachep, shared->entry, 1017 shared->avail, node, &list); 1018 n->shared = NULL; 1019 } 1020 1021 alien = n->alien; 1022 n->alien = NULL; 1023 1024 spin_unlock_irq(&n->list_lock); 1025 1026 kfree(shared); 1027 if (alien) { 1028 drain_alien_cache(cachep, alien); 1029 free_alien_cache(alien); 1030 } 1031 1032 free_slab: 1033 slabs_destroy(cachep, &list); 1034 } 1035 /* 1036 * In the previous loop, all the objects were freed to 1037 * the respective cache's slabs, now we can go ahead and 1038 * shrink each nodelist to its limit. 1039 */ 1040 list_for_each_entry(cachep, &slab_caches, list) { 1041 n = get_node(cachep, node); 1042 if (!n) 1043 continue; 1044 drain_freelist(cachep, n, INT_MAX); 1045 } 1046 } 1047 1048 static int cpuup_prepare(long cpu) 1049 { 1050 struct kmem_cache *cachep; 1051 int node = cpu_to_mem(cpu); 1052 int err; 1053 1054 /* 1055 * We need to do this right in the beginning since 1056 * alloc_arraycache's are going to use this list. 1057 * kmalloc_node allows us to add the slab to the right 1058 * kmem_cache_node and not this cpu's kmem_cache_node 1059 */ 1060 err = init_cache_node_node(node); 1061 if (err < 0) 1062 goto bad; 1063 1064 /* 1065 * Now we can go ahead with allocating the shared arrays and 1066 * array caches 1067 */ 1068 list_for_each_entry(cachep, &slab_caches, list) { 1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1070 if (err) 1071 goto bad; 1072 } 1073 1074 return 0; 1075 bad: 1076 cpuup_canceled(cpu); 1077 return -ENOMEM; 1078 } 1079 1080 int slab_prepare_cpu(unsigned int cpu) 1081 { 1082 int err; 1083 1084 mutex_lock(&slab_mutex); 1085 err = cpuup_prepare(cpu); 1086 mutex_unlock(&slab_mutex); 1087 return err; 1088 } 1089 1090 /* 1091 * This is called for a failed online attempt and for a successful 1092 * offline. 1093 * 1094 * Even if all the cpus of a node are down, we don't free the 1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1096 * a kmalloc allocation from another cpu for memory from the node of 1097 * the cpu going down. The list3 structure is usually allocated from 1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1099 */ 1100 int slab_dead_cpu(unsigned int cpu) 1101 { 1102 mutex_lock(&slab_mutex); 1103 cpuup_canceled(cpu); 1104 mutex_unlock(&slab_mutex); 1105 return 0; 1106 } 1107 #endif 1108 1109 static int slab_online_cpu(unsigned int cpu) 1110 { 1111 start_cpu_timer(cpu); 1112 return 0; 1113 } 1114 1115 static int slab_offline_cpu(unsigned int cpu) 1116 { 1117 /* 1118 * Shutdown cache reaper. Note that the slab_mutex is held so 1119 * that if cache_reap() is invoked it cannot do anything 1120 * expensive but will only modify reap_work and reschedule the 1121 * timer. 1122 */ 1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1124 /* Now the cache_reaper is guaranteed to be not running. */ 1125 per_cpu(slab_reap_work, cpu).work.func = NULL; 1126 return 0; 1127 } 1128 1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1130 /* 1131 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1132 * Returns -EBUSY if all objects cannot be drained so that the node is not 1133 * removed. 1134 * 1135 * Must hold slab_mutex. 1136 */ 1137 static int __meminit drain_cache_node_node(int node) 1138 { 1139 struct kmem_cache *cachep; 1140 int ret = 0; 1141 1142 list_for_each_entry(cachep, &slab_caches, list) { 1143 struct kmem_cache_node *n; 1144 1145 n = get_node(cachep, node); 1146 if (!n) 1147 continue; 1148 1149 drain_freelist(cachep, n, INT_MAX); 1150 1151 if (!list_empty(&n->slabs_full) || 1152 !list_empty(&n->slabs_partial)) { 1153 ret = -EBUSY; 1154 break; 1155 } 1156 } 1157 return ret; 1158 } 1159 1160 static int __meminit slab_memory_callback(struct notifier_block *self, 1161 unsigned long action, void *arg) 1162 { 1163 struct memory_notify *mnb = arg; 1164 int ret = 0; 1165 int nid; 1166 1167 nid = mnb->status_change_nid; 1168 if (nid < 0) 1169 goto out; 1170 1171 switch (action) { 1172 case MEM_GOING_ONLINE: 1173 mutex_lock(&slab_mutex); 1174 ret = init_cache_node_node(nid); 1175 mutex_unlock(&slab_mutex); 1176 break; 1177 case MEM_GOING_OFFLINE: 1178 mutex_lock(&slab_mutex); 1179 ret = drain_cache_node_node(nid); 1180 mutex_unlock(&slab_mutex); 1181 break; 1182 case MEM_ONLINE: 1183 case MEM_OFFLINE: 1184 case MEM_CANCEL_ONLINE: 1185 case MEM_CANCEL_OFFLINE: 1186 break; 1187 } 1188 out: 1189 return notifier_from_errno(ret); 1190 } 1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1192 1193 /* 1194 * swap the static kmem_cache_node with kmalloced memory 1195 */ 1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1197 int nodeid) 1198 { 1199 struct kmem_cache_node *ptr; 1200 1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1202 BUG_ON(!ptr); 1203 1204 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1205 /* 1206 * Do not assume that spinlocks can be initialized via memcpy: 1207 */ 1208 spin_lock_init(&ptr->list_lock); 1209 1210 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1211 cachep->node[nodeid] = ptr; 1212 } 1213 1214 /* 1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1216 * size of kmem_cache_node. 1217 */ 1218 static void __init set_up_node(struct kmem_cache *cachep, int index) 1219 { 1220 int node; 1221 1222 for_each_online_node(node) { 1223 cachep->node[node] = &init_kmem_cache_node[index + node]; 1224 cachep->node[node]->next_reap = jiffies + 1225 REAPTIMEOUT_NODE + 1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1227 } 1228 } 1229 1230 /* 1231 * Initialisation. Called after the page allocator have been initialised and 1232 * before smp_init(). 1233 */ 1234 void __init kmem_cache_init(void) 1235 { 1236 int i; 1237 1238 kmem_cache = &kmem_cache_boot; 1239 1240 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1241 use_alien_caches = 0; 1242 1243 for (i = 0; i < NUM_INIT_LISTS; i++) 1244 kmem_cache_node_init(&init_kmem_cache_node[i]); 1245 1246 /* 1247 * Fragmentation resistance on low memory - only use bigger 1248 * page orders on machines with more than 32MB of memory if 1249 * not overridden on the command line. 1250 */ 1251 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1252 slab_max_order = SLAB_MAX_ORDER_HI; 1253 1254 /* Bootstrap is tricky, because several objects are allocated 1255 * from caches that do not exist yet: 1256 * 1) initialize the kmem_cache cache: it contains the struct 1257 * kmem_cache structures of all caches, except kmem_cache itself: 1258 * kmem_cache is statically allocated. 1259 * Initially an __init data area is used for the head array and the 1260 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1261 * array at the end of the bootstrap. 1262 * 2) Create the first kmalloc cache. 1263 * The struct kmem_cache for the new cache is allocated normally. 1264 * An __init data area is used for the head array. 1265 * 3) Create the remaining kmalloc caches, with minimally sized 1266 * head arrays. 1267 * 4) Replace the __init data head arrays for kmem_cache and the first 1268 * kmalloc cache with kmalloc allocated arrays. 1269 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1270 * the other cache's with kmalloc allocated memory. 1271 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1272 */ 1273 1274 /* 1) create the kmem_cache */ 1275 1276 /* 1277 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1278 */ 1279 create_boot_cache(kmem_cache, "kmem_cache", 1280 offsetof(struct kmem_cache, node) + 1281 nr_node_ids * sizeof(struct kmem_cache_node *), 1282 SLAB_HWCACHE_ALIGN, 0, 0); 1283 list_add(&kmem_cache->list, &slab_caches); 1284 memcg_link_cache(kmem_cache); 1285 slab_state = PARTIAL; 1286 1287 /* 1288 * Initialize the caches that provide memory for the kmem_cache_node 1289 * structures first. Without this, further allocations will bug. 1290 */ 1291 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache( 1292 kmalloc_info[INDEX_NODE].name, 1293 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS, 1294 0, kmalloc_size(INDEX_NODE)); 1295 slab_state = PARTIAL_NODE; 1296 setup_kmalloc_cache_index_table(); 1297 1298 slab_early_init = 0; 1299 1300 /* 5) Replace the bootstrap kmem_cache_node */ 1301 { 1302 int nid; 1303 1304 for_each_online_node(nid) { 1305 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1306 1307 init_list(kmalloc_caches[INDEX_NODE], 1308 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1309 } 1310 } 1311 1312 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1313 } 1314 1315 void __init kmem_cache_init_late(void) 1316 { 1317 struct kmem_cache *cachep; 1318 1319 /* 6) resize the head arrays to their final sizes */ 1320 mutex_lock(&slab_mutex); 1321 list_for_each_entry(cachep, &slab_caches, list) 1322 if (enable_cpucache(cachep, GFP_NOWAIT)) 1323 BUG(); 1324 mutex_unlock(&slab_mutex); 1325 1326 /* Done! */ 1327 slab_state = FULL; 1328 1329 #ifdef CONFIG_NUMA 1330 /* 1331 * Register a memory hotplug callback that initializes and frees 1332 * node. 1333 */ 1334 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1335 #endif 1336 1337 /* 1338 * The reap timers are started later, with a module init call: That part 1339 * of the kernel is not yet operational. 1340 */ 1341 } 1342 1343 static int __init cpucache_init(void) 1344 { 1345 int ret; 1346 1347 /* 1348 * Register the timers that return unneeded pages to the page allocator 1349 */ 1350 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1351 slab_online_cpu, slab_offline_cpu); 1352 WARN_ON(ret < 0); 1353 1354 return 0; 1355 } 1356 __initcall(cpucache_init); 1357 1358 static noinline void 1359 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1360 { 1361 #if DEBUG 1362 struct kmem_cache_node *n; 1363 unsigned long flags; 1364 int node; 1365 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1366 DEFAULT_RATELIMIT_BURST); 1367 1368 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1369 return; 1370 1371 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1372 nodeid, gfpflags, &gfpflags); 1373 pr_warn(" cache: %s, object size: %d, order: %d\n", 1374 cachep->name, cachep->size, cachep->gfporder); 1375 1376 for_each_kmem_cache_node(cachep, node, n) { 1377 unsigned long total_slabs, free_slabs, free_objs; 1378 1379 spin_lock_irqsave(&n->list_lock, flags); 1380 total_slabs = n->total_slabs; 1381 free_slabs = n->free_slabs; 1382 free_objs = n->free_objects; 1383 spin_unlock_irqrestore(&n->list_lock, flags); 1384 1385 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1386 node, total_slabs - free_slabs, total_slabs, 1387 (total_slabs * cachep->num) - free_objs, 1388 total_slabs * cachep->num); 1389 } 1390 #endif 1391 } 1392 1393 /* 1394 * Interface to system's page allocator. No need to hold the 1395 * kmem_cache_node ->list_lock. 1396 * 1397 * If we requested dmaable memory, we will get it. Even if we 1398 * did not request dmaable memory, we might get it, but that 1399 * would be relatively rare and ignorable. 1400 */ 1401 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1402 int nodeid) 1403 { 1404 struct page *page; 1405 int nr_pages; 1406 1407 flags |= cachep->allocflags; 1408 1409 page = __alloc_pages_node(nodeid, flags, cachep->gfporder); 1410 if (!page) { 1411 slab_out_of_memory(cachep, flags, nodeid); 1412 return NULL; 1413 } 1414 1415 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1416 __free_pages(page, cachep->gfporder); 1417 return NULL; 1418 } 1419 1420 nr_pages = (1 << cachep->gfporder); 1421 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1422 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages); 1423 else 1424 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages); 1425 1426 __SetPageSlab(page); 1427 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1428 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1429 SetPageSlabPfmemalloc(page); 1430 1431 return page; 1432 } 1433 1434 /* 1435 * Interface to system's page release. 1436 */ 1437 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1438 { 1439 int order = cachep->gfporder; 1440 unsigned long nr_freed = (1 << order); 1441 1442 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1443 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed); 1444 else 1445 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed); 1446 1447 BUG_ON(!PageSlab(page)); 1448 __ClearPageSlabPfmemalloc(page); 1449 __ClearPageSlab(page); 1450 page_mapcount_reset(page); 1451 page->mapping = NULL; 1452 1453 if (current->reclaim_state) 1454 current->reclaim_state->reclaimed_slab += nr_freed; 1455 memcg_uncharge_slab(page, order, cachep); 1456 __free_pages(page, order); 1457 } 1458 1459 static void kmem_rcu_free(struct rcu_head *head) 1460 { 1461 struct kmem_cache *cachep; 1462 struct page *page; 1463 1464 page = container_of(head, struct page, rcu_head); 1465 cachep = page->slab_cache; 1466 1467 kmem_freepages(cachep, page); 1468 } 1469 1470 #if DEBUG 1471 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1472 { 1473 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1474 (cachep->size % PAGE_SIZE) == 0) 1475 return true; 1476 1477 return false; 1478 } 1479 1480 #ifdef CONFIG_DEBUG_PAGEALLOC 1481 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1482 unsigned long caller) 1483 { 1484 int size = cachep->object_size; 1485 1486 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1487 1488 if (size < 5 * sizeof(unsigned long)) 1489 return; 1490 1491 *addr++ = 0x12345678; 1492 *addr++ = caller; 1493 *addr++ = smp_processor_id(); 1494 size -= 3 * sizeof(unsigned long); 1495 { 1496 unsigned long *sptr = &caller; 1497 unsigned long svalue; 1498 1499 while (!kstack_end(sptr)) { 1500 svalue = *sptr++; 1501 if (kernel_text_address(svalue)) { 1502 *addr++ = svalue; 1503 size -= sizeof(unsigned long); 1504 if (size <= sizeof(unsigned long)) 1505 break; 1506 } 1507 } 1508 1509 } 1510 *addr++ = 0x87654321; 1511 } 1512 1513 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1514 int map, unsigned long caller) 1515 { 1516 if (!is_debug_pagealloc_cache(cachep)) 1517 return; 1518 1519 if (caller) 1520 store_stackinfo(cachep, objp, caller); 1521 1522 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1523 } 1524 1525 #else 1526 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1527 int map, unsigned long caller) {} 1528 1529 #endif 1530 1531 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1532 { 1533 int size = cachep->object_size; 1534 addr = &((char *)addr)[obj_offset(cachep)]; 1535 1536 memset(addr, val, size); 1537 *(unsigned char *)(addr + size - 1) = POISON_END; 1538 } 1539 1540 static void dump_line(char *data, int offset, int limit) 1541 { 1542 int i; 1543 unsigned char error = 0; 1544 int bad_count = 0; 1545 1546 pr_err("%03x: ", offset); 1547 for (i = 0; i < limit; i++) { 1548 if (data[offset + i] != POISON_FREE) { 1549 error = data[offset + i]; 1550 bad_count++; 1551 } 1552 } 1553 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1554 &data[offset], limit, 1); 1555 1556 if (bad_count == 1) { 1557 error ^= POISON_FREE; 1558 if (!(error & (error - 1))) { 1559 pr_err("Single bit error detected. Probably bad RAM.\n"); 1560 #ifdef CONFIG_X86 1561 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1562 #else 1563 pr_err("Run a memory test tool.\n"); 1564 #endif 1565 } 1566 } 1567 } 1568 #endif 1569 1570 #if DEBUG 1571 1572 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1573 { 1574 int i, size; 1575 char *realobj; 1576 1577 if (cachep->flags & SLAB_RED_ZONE) { 1578 pr_err("Redzone: 0x%llx/0x%llx\n", 1579 *dbg_redzone1(cachep, objp), 1580 *dbg_redzone2(cachep, objp)); 1581 } 1582 1583 if (cachep->flags & SLAB_STORE_USER) 1584 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1585 realobj = (char *)objp + obj_offset(cachep); 1586 size = cachep->object_size; 1587 for (i = 0; i < size && lines; i += 16, lines--) { 1588 int limit; 1589 limit = 16; 1590 if (i + limit > size) 1591 limit = size - i; 1592 dump_line(realobj, i, limit); 1593 } 1594 } 1595 1596 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1597 { 1598 char *realobj; 1599 int size, i; 1600 int lines = 0; 1601 1602 if (is_debug_pagealloc_cache(cachep)) 1603 return; 1604 1605 realobj = (char *)objp + obj_offset(cachep); 1606 size = cachep->object_size; 1607 1608 for (i = 0; i < size; i++) { 1609 char exp = POISON_FREE; 1610 if (i == size - 1) 1611 exp = POISON_END; 1612 if (realobj[i] != exp) { 1613 int limit; 1614 /* Mismatch ! */ 1615 /* Print header */ 1616 if (lines == 0) { 1617 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1618 print_tainted(), cachep->name, 1619 realobj, size); 1620 print_objinfo(cachep, objp, 0); 1621 } 1622 /* Hexdump the affected line */ 1623 i = (i / 16) * 16; 1624 limit = 16; 1625 if (i + limit > size) 1626 limit = size - i; 1627 dump_line(realobj, i, limit); 1628 i += 16; 1629 lines++; 1630 /* Limit to 5 lines */ 1631 if (lines > 5) 1632 break; 1633 } 1634 } 1635 if (lines != 0) { 1636 /* Print some data about the neighboring objects, if they 1637 * exist: 1638 */ 1639 struct page *page = virt_to_head_page(objp); 1640 unsigned int objnr; 1641 1642 objnr = obj_to_index(cachep, page, objp); 1643 if (objnr) { 1644 objp = index_to_obj(cachep, page, objnr - 1); 1645 realobj = (char *)objp + obj_offset(cachep); 1646 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1647 print_objinfo(cachep, objp, 2); 1648 } 1649 if (objnr + 1 < cachep->num) { 1650 objp = index_to_obj(cachep, page, objnr + 1); 1651 realobj = (char *)objp + obj_offset(cachep); 1652 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1653 print_objinfo(cachep, objp, 2); 1654 } 1655 } 1656 } 1657 #endif 1658 1659 #if DEBUG 1660 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1661 struct page *page) 1662 { 1663 int i; 1664 1665 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1666 poison_obj(cachep, page->freelist - obj_offset(cachep), 1667 POISON_FREE); 1668 } 1669 1670 for (i = 0; i < cachep->num; i++) { 1671 void *objp = index_to_obj(cachep, page, i); 1672 1673 if (cachep->flags & SLAB_POISON) { 1674 check_poison_obj(cachep, objp); 1675 slab_kernel_map(cachep, objp, 1, 0); 1676 } 1677 if (cachep->flags & SLAB_RED_ZONE) { 1678 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1679 slab_error(cachep, "start of a freed object was overwritten"); 1680 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1681 slab_error(cachep, "end of a freed object was overwritten"); 1682 } 1683 } 1684 } 1685 #else 1686 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1687 struct page *page) 1688 { 1689 } 1690 #endif 1691 1692 /** 1693 * slab_destroy - destroy and release all objects in a slab 1694 * @cachep: cache pointer being destroyed 1695 * @page: page pointer being destroyed 1696 * 1697 * Destroy all the objs in a slab page, and release the mem back to the system. 1698 * Before calling the slab page must have been unlinked from the cache. The 1699 * kmem_cache_node ->list_lock is not held/needed. 1700 */ 1701 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1702 { 1703 void *freelist; 1704 1705 freelist = page->freelist; 1706 slab_destroy_debugcheck(cachep, page); 1707 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1708 call_rcu(&page->rcu_head, kmem_rcu_free); 1709 else 1710 kmem_freepages(cachep, page); 1711 1712 /* 1713 * From now on, we don't use freelist 1714 * although actual page can be freed in rcu context 1715 */ 1716 if (OFF_SLAB(cachep)) 1717 kmem_cache_free(cachep->freelist_cache, freelist); 1718 } 1719 1720 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1721 { 1722 struct page *page, *n; 1723 1724 list_for_each_entry_safe(page, n, list, lru) { 1725 list_del(&page->lru); 1726 slab_destroy(cachep, page); 1727 } 1728 } 1729 1730 /** 1731 * calculate_slab_order - calculate size (page order) of slabs 1732 * @cachep: pointer to the cache that is being created 1733 * @size: size of objects to be created in this cache. 1734 * @flags: slab allocation flags 1735 * 1736 * Also calculates the number of objects per slab. 1737 * 1738 * This could be made much more intelligent. For now, try to avoid using 1739 * high order pages for slabs. When the gfp() functions are more friendly 1740 * towards high-order requests, this should be changed. 1741 */ 1742 static size_t calculate_slab_order(struct kmem_cache *cachep, 1743 size_t size, slab_flags_t flags) 1744 { 1745 size_t left_over = 0; 1746 int gfporder; 1747 1748 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1749 unsigned int num; 1750 size_t remainder; 1751 1752 num = cache_estimate(gfporder, size, flags, &remainder); 1753 if (!num) 1754 continue; 1755 1756 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1757 if (num > SLAB_OBJ_MAX_NUM) 1758 break; 1759 1760 if (flags & CFLGS_OFF_SLAB) { 1761 struct kmem_cache *freelist_cache; 1762 size_t freelist_size; 1763 1764 freelist_size = num * sizeof(freelist_idx_t); 1765 freelist_cache = kmalloc_slab(freelist_size, 0u); 1766 if (!freelist_cache) 1767 continue; 1768 1769 /* 1770 * Needed to avoid possible looping condition 1771 * in cache_grow_begin() 1772 */ 1773 if (OFF_SLAB(freelist_cache)) 1774 continue; 1775 1776 /* check if off slab has enough benefit */ 1777 if (freelist_cache->size > cachep->size / 2) 1778 continue; 1779 } 1780 1781 /* Found something acceptable - save it away */ 1782 cachep->num = num; 1783 cachep->gfporder = gfporder; 1784 left_over = remainder; 1785 1786 /* 1787 * A VFS-reclaimable slab tends to have most allocations 1788 * as GFP_NOFS and we really don't want to have to be allocating 1789 * higher-order pages when we are unable to shrink dcache. 1790 */ 1791 if (flags & SLAB_RECLAIM_ACCOUNT) 1792 break; 1793 1794 /* 1795 * Large number of objects is good, but very large slabs are 1796 * currently bad for the gfp()s. 1797 */ 1798 if (gfporder >= slab_max_order) 1799 break; 1800 1801 /* 1802 * Acceptable internal fragmentation? 1803 */ 1804 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1805 break; 1806 } 1807 return left_over; 1808 } 1809 1810 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1811 struct kmem_cache *cachep, int entries, int batchcount) 1812 { 1813 int cpu; 1814 size_t size; 1815 struct array_cache __percpu *cpu_cache; 1816 1817 size = sizeof(void *) * entries + sizeof(struct array_cache); 1818 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1819 1820 if (!cpu_cache) 1821 return NULL; 1822 1823 for_each_possible_cpu(cpu) { 1824 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1825 entries, batchcount); 1826 } 1827 1828 return cpu_cache; 1829 } 1830 1831 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1832 { 1833 if (slab_state >= FULL) 1834 return enable_cpucache(cachep, gfp); 1835 1836 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1837 if (!cachep->cpu_cache) 1838 return 1; 1839 1840 if (slab_state == DOWN) { 1841 /* Creation of first cache (kmem_cache). */ 1842 set_up_node(kmem_cache, CACHE_CACHE); 1843 } else if (slab_state == PARTIAL) { 1844 /* For kmem_cache_node */ 1845 set_up_node(cachep, SIZE_NODE); 1846 } else { 1847 int node; 1848 1849 for_each_online_node(node) { 1850 cachep->node[node] = kmalloc_node( 1851 sizeof(struct kmem_cache_node), gfp, node); 1852 BUG_ON(!cachep->node[node]); 1853 kmem_cache_node_init(cachep->node[node]); 1854 } 1855 } 1856 1857 cachep->node[numa_mem_id()]->next_reap = 1858 jiffies + REAPTIMEOUT_NODE + 1859 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1860 1861 cpu_cache_get(cachep)->avail = 0; 1862 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1863 cpu_cache_get(cachep)->batchcount = 1; 1864 cpu_cache_get(cachep)->touched = 0; 1865 cachep->batchcount = 1; 1866 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1867 return 0; 1868 } 1869 1870 slab_flags_t kmem_cache_flags(unsigned int object_size, 1871 slab_flags_t flags, const char *name, 1872 void (*ctor)(void *)) 1873 { 1874 return flags; 1875 } 1876 1877 struct kmem_cache * 1878 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1879 slab_flags_t flags, void (*ctor)(void *)) 1880 { 1881 struct kmem_cache *cachep; 1882 1883 cachep = find_mergeable(size, align, flags, name, ctor); 1884 if (cachep) { 1885 cachep->refcount++; 1886 1887 /* 1888 * Adjust the object sizes so that we clear 1889 * the complete object on kzalloc. 1890 */ 1891 cachep->object_size = max_t(int, cachep->object_size, size); 1892 } 1893 return cachep; 1894 } 1895 1896 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1897 size_t size, slab_flags_t flags) 1898 { 1899 size_t left; 1900 1901 cachep->num = 0; 1902 1903 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1904 return false; 1905 1906 left = calculate_slab_order(cachep, size, 1907 flags | CFLGS_OBJFREELIST_SLAB); 1908 if (!cachep->num) 1909 return false; 1910 1911 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1912 return false; 1913 1914 cachep->colour = left / cachep->colour_off; 1915 1916 return true; 1917 } 1918 1919 static bool set_off_slab_cache(struct kmem_cache *cachep, 1920 size_t size, slab_flags_t flags) 1921 { 1922 size_t left; 1923 1924 cachep->num = 0; 1925 1926 /* 1927 * Always use on-slab management when SLAB_NOLEAKTRACE 1928 * to avoid recursive calls into kmemleak. 1929 */ 1930 if (flags & SLAB_NOLEAKTRACE) 1931 return false; 1932 1933 /* 1934 * Size is large, assume best to place the slab management obj 1935 * off-slab (should allow better packing of objs). 1936 */ 1937 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1938 if (!cachep->num) 1939 return false; 1940 1941 /* 1942 * If the slab has been placed off-slab, and we have enough space then 1943 * move it on-slab. This is at the expense of any extra colouring. 1944 */ 1945 if (left >= cachep->num * sizeof(freelist_idx_t)) 1946 return false; 1947 1948 cachep->colour = left / cachep->colour_off; 1949 1950 return true; 1951 } 1952 1953 static bool set_on_slab_cache(struct kmem_cache *cachep, 1954 size_t size, slab_flags_t flags) 1955 { 1956 size_t left; 1957 1958 cachep->num = 0; 1959 1960 left = calculate_slab_order(cachep, size, flags); 1961 if (!cachep->num) 1962 return false; 1963 1964 cachep->colour = left / cachep->colour_off; 1965 1966 return true; 1967 } 1968 1969 /** 1970 * __kmem_cache_create - Create a cache. 1971 * @cachep: cache management descriptor 1972 * @flags: SLAB flags 1973 * 1974 * Returns a ptr to the cache on success, NULL on failure. 1975 * Cannot be called within a int, but can be interrupted. 1976 * The @ctor is run when new pages are allocated by the cache. 1977 * 1978 * The flags are 1979 * 1980 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1981 * to catch references to uninitialised memory. 1982 * 1983 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1984 * for buffer overruns. 1985 * 1986 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1987 * cacheline. This can be beneficial if you're counting cycles as closely 1988 * as davem. 1989 */ 1990 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1991 { 1992 size_t ralign = BYTES_PER_WORD; 1993 gfp_t gfp; 1994 int err; 1995 unsigned int size = cachep->size; 1996 1997 #if DEBUG 1998 #if FORCED_DEBUG 1999 /* 2000 * Enable redzoning and last user accounting, except for caches with 2001 * large objects, if the increased size would increase the object size 2002 * above the next power of two: caches with object sizes just above a 2003 * power of two have a significant amount of internal fragmentation. 2004 */ 2005 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2006 2 * sizeof(unsigned long long))) 2007 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2008 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 2009 flags |= SLAB_POISON; 2010 #endif 2011 #endif 2012 2013 /* 2014 * Check that size is in terms of words. This is needed to avoid 2015 * unaligned accesses for some archs when redzoning is used, and makes 2016 * sure any on-slab bufctl's are also correctly aligned. 2017 */ 2018 size = ALIGN(size, BYTES_PER_WORD); 2019 2020 if (flags & SLAB_RED_ZONE) { 2021 ralign = REDZONE_ALIGN; 2022 /* If redzoning, ensure that the second redzone is suitably 2023 * aligned, by adjusting the object size accordingly. */ 2024 size = ALIGN(size, REDZONE_ALIGN); 2025 } 2026 2027 /* 3) caller mandated alignment */ 2028 if (ralign < cachep->align) { 2029 ralign = cachep->align; 2030 } 2031 /* disable debug if necessary */ 2032 if (ralign > __alignof__(unsigned long long)) 2033 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2034 /* 2035 * 4) Store it. 2036 */ 2037 cachep->align = ralign; 2038 cachep->colour_off = cache_line_size(); 2039 /* Offset must be a multiple of the alignment. */ 2040 if (cachep->colour_off < cachep->align) 2041 cachep->colour_off = cachep->align; 2042 2043 if (slab_is_available()) 2044 gfp = GFP_KERNEL; 2045 else 2046 gfp = GFP_NOWAIT; 2047 2048 #if DEBUG 2049 2050 /* 2051 * Both debugging options require word-alignment which is calculated 2052 * into align above. 2053 */ 2054 if (flags & SLAB_RED_ZONE) { 2055 /* add space for red zone words */ 2056 cachep->obj_offset += sizeof(unsigned long long); 2057 size += 2 * sizeof(unsigned long long); 2058 } 2059 if (flags & SLAB_STORE_USER) { 2060 /* user store requires one word storage behind the end of 2061 * the real object. But if the second red zone needs to be 2062 * aligned to 64 bits, we must allow that much space. 2063 */ 2064 if (flags & SLAB_RED_ZONE) 2065 size += REDZONE_ALIGN; 2066 else 2067 size += BYTES_PER_WORD; 2068 } 2069 #endif 2070 2071 kasan_cache_create(cachep, &size, &flags); 2072 2073 size = ALIGN(size, cachep->align); 2074 /* 2075 * We should restrict the number of objects in a slab to implement 2076 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2077 */ 2078 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2079 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2080 2081 #if DEBUG 2082 /* 2083 * To activate debug pagealloc, off-slab management is necessary 2084 * requirement. In early phase of initialization, small sized slab 2085 * doesn't get initialized so it would not be possible. So, we need 2086 * to check size >= 256. It guarantees that all necessary small 2087 * sized slab is initialized in current slab initialization sequence. 2088 */ 2089 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2090 size >= 256 && cachep->object_size > cache_line_size()) { 2091 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2092 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2093 2094 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2095 flags |= CFLGS_OFF_SLAB; 2096 cachep->obj_offset += tmp_size - size; 2097 size = tmp_size; 2098 goto done; 2099 } 2100 } 2101 } 2102 #endif 2103 2104 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2105 flags |= CFLGS_OBJFREELIST_SLAB; 2106 goto done; 2107 } 2108 2109 if (set_off_slab_cache(cachep, size, flags)) { 2110 flags |= CFLGS_OFF_SLAB; 2111 goto done; 2112 } 2113 2114 if (set_on_slab_cache(cachep, size, flags)) 2115 goto done; 2116 2117 return -E2BIG; 2118 2119 done: 2120 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2121 cachep->flags = flags; 2122 cachep->allocflags = __GFP_COMP; 2123 if (flags & SLAB_CACHE_DMA) 2124 cachep->allocflags |= GFP_DMA; 2125 if (flags & SLAB_RECLAIM_ACCOUNT) 2126 cachep->allocflags |= __GFP_RECLAIMABLE; 2127 cachep->size = size; 2128 cachep->reciprocal_buffer_size = reciprocal_value(size); 2129 2130 #if DEBUG 2131 /* 2132 * If we're going to use the generic kernel_map_pages() 2133 * poisoning, then it's going to smash the contents of 2134 * the redzone and userword anyhow, so switch them off. 2135 */ 2136 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2137 (cachep->flags & SLAB_POISON) && 2138 is_debug_pagealloc_cache(cachep)) 2139 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2140 #endif 2141 2142 if (OFF_SLAB(cachep)) { 2143 cachep->freelist_cache = 2144 kmalloc_slab(cachep->freelist_size, 0u); 2145 } 2146 2147 err = setup_cpu_cache(cachep, gfp); 2148 if (err) { 2149 __kmem_cache_release(cachep); 2150 return err; 2151 } 2152 2153 return 0; 2154 } 2155 2156 #if DEBUG 2157 static void check_irq_off(void) 2158 { 2159 BUG_ON(!irqs_disabled()); 2160 } 2161 2162 static void check_irq_on(void) 2163 { 2164 BUG_ON(irqs_disabled()); 2165 } 2166 2167 static void check_mutex_acquired(void) 2168 { 2169 BUG_ON(!mutex_is_locked(&slab_mutex)); 2170 } 2171 2172 static void check_spinlock_acquired(struct kmem_cache *cachep) 2173 { 2174 #ifdef CONFIG_SMP 2175 check_irq_off(); 2176 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2177 #endif 2178 } 2179 2180 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2181 { 2182 #ifdef CONFIG_SMP 2183 check_irq_off(); 2184 assert_spin_locked(&get_node(cachep, node)->list_lock); 2185 #endif 2186 } 2187 2188 #else 2189 #define check_irq_off() do { } while(0) 2190 #define check_irq_on() do { } while(0) 2191 #define check_mutex_acquired() do { } while(0) 2192 #define check_spinlock_acquired(x) do { } while(0) 2193 #define check_spinlock_acquired_node(x, y) do { } while(0) 2194 #endif 2195 2196 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2197 int node, bool free_all, struct list_head *list) 2198 { 2199 int tofree; 2200 2201 if (!ac || !ac->avail) 2202 return; 2203 2204 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2205 if (tofree > ac->avail) 2206 tofree = (ac->avail + 1) / 2; 2207 2208 free_block(cachep, ac->entry, tofree, node, list); 2209 ac->avail -= tofree; 2210 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2211 } 2212 2213 static void do_drain(void *arg) 2214 { 2215 struct kmem_cache *cachep = arg; 2216 struct array_cache *ac; 2217 int node = numa_mem_id(); 2218 struct kmem_cache_node *n; 2219 LIST_HEAD(list); 2220 2221 check_irq_off(); 2222 ac = cpu_cache_get(cachep); 2223 n = get_node(cachep, node); 2224 spin_lock(&n->list_lock); 2225 free_block(cachep, ac->entry, ac->avail, node, &list); 2226 spin_unlock(&n->list_lock); 2227 slabs_destroy(cachep, &list); 2228 ac->avail = 0; 2229 } 2230 2231 static void drain_cpu_caches(struct kmem_cache *cachep) 2232 { 2233 struct kmem_cache_node *n; 2234 int node; 2235 LIST_HEAD(list); 2236 2237 on_each_cpu(do_drain, cachep, 1); 2238 check_irq_on(); 2239 for_each_kmem_cache_node(cachep, node, n) 2240 if (n->alien) 2241 drain_alien_cache(cachep, n->alien); 2242 2243 for_each_kmem_cache_node(cachep, node, n) { 2244 spin_lock_irq(&n->list_lock); 2245 drain_array_locked(cachep, n->shared, node, true, &list); 2246 spin_unlock_irq(&n->list_lock); 2247 2248 slabs_destroy(cachep, &list); 2249 } 2250 } 2251 2252 /* 2253 * Remove slabs from the list of free slabs. 2254 * Specify the number of slabs to drain in tofree. 2255 * 2256 * Returns the actual number of slabs released. 2257 */ 2258 static int drain_freelist(struct kmem_cache *cache, 2259 struct kmem_cache_node *n, int tofree) 2260 { 2261 struct list_head *p; 2262 int nr_freed; 2263 struct page *page; 2264 2265 nr_freed = 0; 2266 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2267 2268 spin_lock_irq(&n->list_lock); 2269 p = n->slabs_free.prev; 2270 if (p == &n->slabs_free) { 2271 spin_unlock_irq(&n->list_lock); 2272 goto out; 2273 } 2274 2275 page = list_entry(p, struct page, lru); 2276 list_del(&page->lru); 2277 n->free_slabs--; 2278 n->total_slabs--; 2279 /* 2280 * Safe to drop the lock. The slab is no longer linked 2281 * to the cache. 2282 */ 2283 n->free_objects -= cache->num; 2284 spin_unlock_irq(&n->list_lock); 2285 slab_destroy(cache, page); 2286 nr_freed++; 2287 } 2288 out: 2289 return nr_freed; 2290 } 2291 2292 bool __kmem_cache_empty(struct kmem_cache *s) 2293 { 2294 int node; 2295 struct kmem_cache_node *n; 2296 2297 for_each_kmem_cache_node(s, node, n) 2298 if (!list_empty(&n->slabs_full) || 2299 !list_empty(&n->slabs_partial)) 2300 return false; 2301 return true; 2302 } 2303 2304 int __kmem_cache_shrink(struct kmem_cache *cachep) 2305 { 2306 int ret = 0; 2307 int node; 2308 struct kmem_cache_node *n; 2309 2310 drain_cpu_caches(cachep); 2311 2312 check_irq_on(); 2313 for_each_kmem_cache_node(cachep, node, n) { 2314 drain_freelist(cachep, n, INT_MAX); 2315 2316 ret += !list_empty(&n->slabs_full) || 2317 !list_empty(&n->slabs_partial); 2318 } 2319 return (ret ? 1 : 0); 2320 } 2321 2322 #ifdef CONFIG_MEMCG 2323 void __kmemcg_cache_deactivate(struct kmem_cache *cachep) 2324 { 2325 __kmem_cache_shrink(cachep); 2326 } 2327 #endif 2328 2329 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2330 { 2331 return __kmem_cache_shrink(cachep); 2332 } 2333 2334 void __kmem_cache_release(struct kmem_cache *cachep) 2335 { 2336 int i; 2337 struct kmem_cache_node *n; 2338 2339 cache_random_seq_destroy(cachep); 2340 2341 free_percpu(cachep->cpu_cache); 2342 2343 /* NUMA: free the node structures */ 2344 for_each_kmem_cache_node(cachep, i, n) { 2345 kfree(n->shared); 2346 free_alien_cache(n->alien); 2347 kfree(n); 2348 cachep->node[i] = NULL; 2349 } 2350 } 2351 2352 /* 2353 * Get the memory for a slab management obj. 2354 * 2355 * For a slab cache when the slab descriptor is off-slab, the 2356 * slab descriptor can't come from the same cache which is being created, 2357 * Because if it is the case, that means we defer the creation of 2358 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2359 * And we eventually call down to __kmem_cache_create(), which 2360 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2361 * This is a "chicken-and-egg" problem. 2362 * 2363 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2364 * which are all initialized during kmem_cache_init(). 2365 */ 2366 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2367 struct page *page, int colour_off, 2368 gfp_t local_flags, int nodeid) 2369 { 2370 void *freelist; 2371 void *addr = page_address(page); 2372 2373 page->s_mem = addr + colour_off; 2374 page->active = 0; 2375 2376 if (OBJFREELIST_SLAB(cachep)) 2377 freelist = NULL; 2378 else if (OFF_SLAB(cachep)) { 2379 /* Slab management obj is off-slab. */ 2380 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2381 local_flags, nodeid); 2382 if (!freelist) 2383 return NULL; 2384 } else { 2385 /* We will use last bytes at the slab for freelist */ 2386 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2387 cachep->freelist_size; 2388 } 2389 2390 return freelist; 2391 } 2392 2393 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2394 { 2395 return ((freelist_idx_t *)page->freelist)[idx]; 2396 } 2397 2398 static inline void set_free_obj(struct page *page, 2399 unsigned int idx, freelist_idx_t val) 2400 { 2401 ((freelist_idx_t *)(page->freelist))[idx] = val; 2402 } 2403 2404 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2405 { 2406 #if DEBUG 2407 int i; 2408 2409 for (i = 0; i < cachep->num; i++) { 2410 void *objp = index_to_obj(cachep, page, i); 2411 2412 if (cachep->flags & SLAB_STORE_USER) 2413 *dbg_userword(cachep, objp) = NULL; 2414 2415 if (cachep->flags & SLAB_RED_ZONE) { 2416 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2417 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2418 } 2419 /* 2420 * Constructors are not allowed to allocate memory from the same 2421 * cache which they are a constructor for. Otherwise, deadlock. 2422 * They must also be threaded. 2423 */ 2424 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2425 kasan_unpoison_object_data(cachep, 2426 objp + obj_offset(cachep)); 2427 cachep->ctor(objp + obj_offset(cachep)); 2428 kasan_poison_object_data( 2429 cachep, objp + obj_offset(cachep)); 2430 } 2431 2432 if (cachep->flags & SLAB_RED_ZONE) { 2433 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2434 slab_error(cachep, "constructor overwrote the end of an object"); 2435 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2436 slab_error(cachep, "constructor overwrote the start of an object"); 2437 } 2438 /* need to poison the objs? */ 2439 if (cachep->flags & SLAB_POISON) { 2440 poison_obj(cachep, objp, POISON_FREE); 2441 slab_kernel_map(cachep, objp, 0, 0); 2442 } 2443 } 2444 #endif 2445 } 2446 2447 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2448 /* Hold information during a freelist initialization */ 2449 union freelist_init_state { 2450 struct { 2451 unsigned int pos; 2452 unsigned int *list; 2453 unsigned int count; 2454 }; 2455 struct rnd_state rnd_state; 2456 }; 2457 2458 /* 2459 * Initialize the state based on the randomization methode available. 2460 * return true if the pre-computed list is available, false otherwize. 2461 */ 2462 static bool freelist_state_initialize(union freelist_init_state *state, 2463 struct kmem_cache *cachep, 2464 unsigned int count) 2465 { 2466 bool ret; 2467 unsigned int rand; 2468 2469 /* Use best entropy available to define a random shift */ 2470 rand = get_random_int(); 2471 2472 /* Use a random state if the pre-computed list is not available */ 2473 if (!cachep->random_seq) { 2474 prandom_seed_state(&state->rnd_state, rand); 2475 ret = false; 2476 } else { 2477 state->list = cachep->random_seq; 2478 state->count = count; 2479 state->pos = rand % count; 2480 ret = true; 2481 } 2482 return ret; 2483 } 2484 2485 /* Get the next entry on the list and randomize it using a random shift */ 2486 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2487 { 2488 if (state->pos >= state->count) 2489 state->pos = 0; 2490 return state->list[state->pos++]; 2491 } 2492 2493 /* Swap two freelist entries */ 2494 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2495 { 2496 swap(((freelist_idx_t *)page->freelist)[a], 2497 ((freelist_idx_t *)page->freelist)[b]); 2498 } 2499 2500 /* 2501 * Shuffle the freelist initialization state based on pre-computed lists. 2502 * return true if the list was successfully shuffled, false otherwise. 2503 */ 2504 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2505 { 2506 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2507 union freelist_init_state state; 2508 bool precomputed; 2509 2510 if (count < 2) 2511 return false; 2512 2513 precomputed = freelist_state_initialize(&state, cachep, count); 2514 2515 /* Take a random entry as the objfreelist */ 2516 if (OBJFREELIST_SLAB(cachep)) { 2517 if (!precomputed) 2518 objfreelist = count - 1; 2519 else 2520 objfreelist = next_random_slot(&state); 2521 page->freelist = index_to_obj(cachep, page, objfreelist) + 2522 obj_offset(cachep); 2523 count--; 2524 } 2525 2526 /* 2527 * On early boot, generate the list dynamically. 2528 * Later use a pre-computed list for speed. 2529 */ 2530 if (!precomputed) { 2531 for (i = 0; i < count; i++) 2532 set_free_obj(page, i, i); 2533 2534 /* Fisher-Yates shuffle */ 2535 for (i = count - 1; i > 0; i--) { 2536 rand = prandom_u32_state(&state.rnd_state); 2537 rand %= (i + 1); 2538 swap_free_obj(page, i, rand); 2539 } 2540 } else { 2541 for (i = 0; i < count; i++) 2542 set_free_obj(page, i, next_random_slot(&state)); 2543 } 2544 2545 if (OBJFREELIST_SLAB(cachep)) 2546 set_free_obj(page, cachep->num - 1, objfreelist); 2547 2548 return true; 2549 } 2550 #else 2551 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2552 struct page *page) 2553 { 2554 return false; 2555 } 2556 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2557 2558 static void cache_init_objs(struct kmem_cache *cachep, 2559 struct page *page) 2560 { 2561 int i; 2562 void *objp; 2563 bool shuffled; 2564 2565 cache_init_objs_debug(cachep, page); 2566 2567 /* Try to randomize the freelist if enabled */ 2568 shuffled = shuffle_freelist(cachep, page); 2569 2570 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2571 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2572 obj_offset(cachep); 2573 } 2574 2575 for (i = 0; i < cachep->num; i++) { 2576 objp = index_to_obj(cachep, page, i); 2577 kasan_init_slab_obj(cachep, objp); 2578 2579 /* constructor could break poison info */ 2580 if (DEBUG == 0 && cachep->ctor) { 2581 kasan_unpoison_object_data(cachep, objp); 2582 cachep->ctor(objp); 2583 kasan_poison_object_data(cachep, objp); 2584 } 2585 2586 if (!shuffled) 2587 set_free_obj(page, i, i); 2588 } 2589 } 2590 2591 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2592 { 2593 void *objp; 2594 2595 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2596 page->active++; 2597 2598 #if DEBUG 2599 if (cachep->flags & SLAB_STORE_USER) 2600 set_store_user_dirty(cachep); 2601 #endif 2602 2603 return objp; 2604 } 2605 2606 static void slab_put_obj(struct kmem_cache *cachep, 2607 struct page *page, void *objp) 2608 { 2609 unsigned int objnr = obj_to_index(cachep, page, objp); 2610 #if DEBUG 2611 unsigned int i; 2612 2613 /* Verify double free bug */ 2614 for (i = page->active; i < cachep->num; i++) { 2615 if (get_free_obj(page, i) == objnr) { 2616 pr_err("slab: double free detected in cache '%s', objp %px\n", 2617 cachep->name, objp); 2618 BUG(); 2619 } 2620 } 2621 #endif 2622 page->active--; 2623 if (!page->freelist) 2624 page->freelist = objp + obj_offset(cachep); 2625 2626 set_free_obj(page, page->active, objnr); 2627 } 2628 2629 /* 2630 * Map pages beginning at addr to the given cache and slab. This is required 2631 * for the slab allocator to be able to lookup the cache and slab of a 2632 * virtual address for kfree, ksize, and slab debugging. 2633 */ 2634 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2635 void *freelist) 2636 { 2637 page->slab_cache = cache; 2638 page->freelist = freelist; 2639 } 2640 2641 /* 2642 * Grow (by 1) the number of slabs within a cache. This is called by 2643 * kmem_cache_alloc() when there are no active objs left in a cache. 2644 */ 2645 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2646 gfp_t flags, int nodeid) 2647 { 2648 void *freelist; 2649 size_t offset; 2650 gfp_t local_flags; 2651 int page_node; 2652 struct kmem_cache_node *n; 2653 struct page *page; 2654 2655 /* 2656 * Be lazy and only check for valid flags here, keeping it out of the 2657 * critical path in kmem_cache_alloc(). 2658 */ 2659 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2660 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2661 flags &= ~GFP_SLAB_BUG_MASK; 2662 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2663 invalid_mask, &invalid_mask, flags, &flags); 2664 dump_stack(); 2665 } 2666 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2667 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2668 2669 check_irq_off(); 2670 if (gfpflags_allow_blocking(local_flags)) 2671 local_irq_enable(); 2672 2673 /* 2674 * Get mem for the objs. Attempt to allocate a physical page from 2675 * 'nodeid'. 2676 */ 2677 page = kmem_getpages(cachep, local_flags, nodeid); 2678 if (!page) 2679 goto failed; 2680 2681 page_node = page_to_nid(page); 2682 n = get_node(cachep, page_node); 2683 2684 /* Get colour for the slab, and cal the next value. */ 2685 n->colour_next++; 2686 if (n->colour_next >= cachep->colour) 2687 n->colour_next = 0; 2688 2689 offset = n->colour_next; 2690 if (offset >= cachep->colour) 2691 offset = 0; 2692 2693 offset *= cachep->colour_off; 2694 2695 /* Get slab management. */ 2696 freelist = alloc_slabmgmt(cachep, page, offset, 2697 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2698 if (OFF_SLAB(cachep) && !freelist) 2699 goto opps1; 2700 2701 slab_map_pages(cachep, page, freelist); 2702 2703 kasan_poison_slab(page); 2704 cache_init_objs(cachep, page); 2705 2706 if (gfpflags_allow_blocking(local_flags)) 2707 local_irq_disable(); 2708 2709 return page; 2710 2711 opps1: 2712 kmem_freepages(cachep, page); 2713 failed: 2714 if (gfpflags_allow_blocking(local_flags)) 2715 local_irq_disable(); 2716 return NULL; 2717 } 2718 2719 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2720 { 2721 struct kmem_cache_node *n; 2722 void *list = NULL; 2723 2724 check_irq_off(); 2725 2726 if (!page) 2727 return; 2728 2729 INIT_LIST_HEAD(&page->lru); 2730 n = get_node(cachep, page_to_nid(page)); 2731 2732 spin_lock(&n->list_lock); 2733 n->total_slabs++; 2734 if (!page->active) { 2735 list_add_tail(&page->lru, &(n->slabs_free)); 2736 n->free_slabs++; 2737 } else 2738 fixup_slab_list(cachep, n, page, &list); 2739 2740 STATS_INC_GROWN(cachep); 2741 n->free_objects += cachep->num - page->active; 2742 spin_unlock(&n->list_lock); 2743 2744 fixup_objfreelist_debug(cachep, &list); 2745 } 2746 2747 #if DEBUG 2748 2749 /* 2750 * Perform extra freeing checks: 2751 * - detect bad pointers. 2752 * - POISON/RED_ZONE checking 2753 */ 2754 static void kfree_debugcheck(const void *objp) 2755 { 2756 if (!virt_addr_valid(objp)) { 2757 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2758 (unsigned long)objp); 2759 BUG(); 2760 } 2761 } 2762 2763 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2764 { 2765 unsigned long long redzone1, redzone2; 2766 2767 redzone1 = *dbg_redzone1(cache, obj); 2768 redzone2 = *dbg_redzone2(cache, obj); 2769 2770 /* 2771 * Redzone is ok. 2772 */ 2773 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2774 return; 2775 2776 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2777 slab_error(cache, "double free detected"); 2778 else 2779 slab_error(cache, "memory outside object was overwritten"); 2780 2781 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2782 obj, redzone1, redzone2); 2783 } 2784 2785 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2786 unsigned long caller) 2787 { 2788 unsigned int objnr; 2789 struct page *page; 2790 2791 BUG_ON(virt_to_cache(objp) != cachep); 2792 2793 objp -= obj_offset(cachep); 2794 kfree_debugcheck(objp); 2795 page = virt_to_head_page(objp); 2796 2797 if (cachep->flags & SLAB_RED_ZONE) { 2798 verify_redzone_free(cachep, objp); 2799 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2800 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2801 } 2802 if (cachep->flags & SLAB_STORE_USER) { 2803 set_store_user_dirty(cachep); 2804 *dbg_userword(cachep, objp) = (void *)caller; 2805 } 2806 2807 objnr = obj_to_index(cachep, page, objp); 2808 2809 BUG_ON(objnr >= cachep->num); 2810 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2811 2812 if (cachep->flags & SLAB_POISON) { 2813 poison_obj(cachep, objp, POISON_FREE); 2814 slab_kernel_map(cachep, objp, 0, caller); 2815 } 2816 return objp; 2817 } 2818 2819 #else 2820 #define kfree_debugcheck(x) do { } while(0) 2821 #define cache_free_debugcheck(x,objp,z) (objp) 2822 #endif 2823 2824 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2825 void **list) 2826 { 2827 #if DEBUG 2828 void *next = *list; 2829 void *objp; 2830 2831 while (next) { 2832 objp = next - obj_offset(cachep); 2833 next = *(void **)next; 2834 poison_obj(cachep, objp, POISON_FREE); 2835 } 2836 #endif 2837 } 2838 2839 static inline void fixup_slab_list(struct kmem_cache *cachep, 2840 struct kmem_cache_node *n, struct page *page, 2841 void **list) 2842 { 2843 /* move slabp to correct slabp list: */ 2844 list_del(&page->lru); 2845 if (page->active == cachep->num) { 2846 list_add(&page->lru, &n->slabs_full); 2847 if (OBJFREELIST_SLAB(cachep)) { 2848 #if DEBUG 2849 /* Poisoning will be done without holding the lock */ 2850 if (cachep->flags & SLAB_POISON) { 2851 void **objp = page->freelist; 2852 2853 *objp = *list; 2854 *list = objp; 2855 } 2856 #endif 2857 page->freelist = NULL; 2858 } 2859 } else 2860 list_add(&page->lru, &n->slabs_partial); 2861 } 2862 2863 /* Try to find non-pfmemalloc slab if needed */ 2864 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2865 struct page *page, bool pfmemalloc) 2866 { 2867 if (!page) 2868 return NULL; 2869 2870 if (pfmemalloc) 2871 return page; 2872 2873 if (!PageSlabPfmemalloc(page)) 2874 return page; 2875 2876 /* No need to keep pfmemalloc slab if we have enough free objects */ 2877 if (n->free_objects > n->free_limit) { 2878 ClearPageSlabPfmemalloc(page); 2879 return page; 2880 } 2881 2882 /* Move pfmemalloc slab to the end of list to speed up next search */ 2883 list_del(&page->lru); 2884 if (!page->active) { 2885 list_add_tail(&page->lru, &n->slabs_free); 2886 n->free_slabs++; 2887 } else 2888 list_add_tail(&page->lru, &n->slabs_partial); 2889 2890 list_for_each_entry(page, &n->slabs_partial, lru) { 2891 if (!PageSlabPfmemalloc(page)) 2892 return page; 2893 } 2894 2895 n->free_touched = 1; 2896 list_for_each_entry(page, &n->slabs_free, lru) { 2897 if (!PageSlabPfmemalloc(page)) { 2898 n->free_slabs--; 2899 return page; 2900 } 2901 } 2902 2903 return NULL; 2904 } 2905 2906 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2907 { 2908 struct page *page; 2909 2910 assert_spin_locked(&n->list_lock); 2911 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru); 2912 if (!page) { 2913 n->free_touched = 1; 2914 page = list_first_entry_or_null(&n->slabs_free, struct page, 2915 lru); 2916 if (page) 2917 n->free_slabs--; 2918 } 2919 2920 if (sk_memalloc_socks()) 2921 page = get_valid_first_slab(n, page, pfmemalloc); 2922 2923 return page; 2924 } 2925 2926 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2927 struct kmem_cache_node *n, gfp_t flags) 2928 { 2929 struct page *page; 2930 void *obj; 2931 void *list = NULL; 2932 2933 if (!gfp_pfmemalloc_allowed(flags)) 2934 return NULL; 2935 2936 spin_lock(&n->list_lock); 2937 page = get_first_slab(n, true); 2938 if (!page) { 2939 spin_unlock(&n->list_lock); 2940 return NULL; 2941 } 2942 2943 obj = slab_get_obj(cachep, page); 2944 n->free_objects--; 2945 2946 fixup_slab_list(cachep, n, page, &list); 2947 2948 spin_unlock(&n->list_lock); 2949 fixup_objfreelist_debug(cachep, &list); 2950 2951 return obj; 2952 } 2953 2954 /* 2955 * Slab list should be fixed up by fixup_slab_list() for existing slab 2956 * or cache_grow_end() for new slab 2957 */ 2958 static __always_inline int alloc_block(struct kmem_cache *cachep, 2959 struct array_cache *ac, struct page *page, int batchcount) 2960 { 2961 /* 2962 * There must be at least one object available for 2963 * allocation. 2964 */ 2965 BUG_ON(page->active >= cachep->num); 2966 2967 while (page->active < cachep->num && batchcount--) { 2968 STATS_INC_ALLOCED(cachep); 2969 STATS_INC_ACTIVE(cachep); 2970 STATS_SET_HIGH(cachep); 2971 2972 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2973 } 2974 2975 return batchcount; 2976 } 2977 2978 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2979 { 2980 int batchcount; 2981 struct kmem_cache_node *n; 2982 struct array_cache *ac, *shared; 2983 int node; 2984 void *list = NULL; 2985 struct page *page; 2986 2987 check_irq_off(); 2988 node = numa_mem_id(); 2989 2990 ac = cpu_cache_get(cachep); 2991 batchcount = ac->batchcount; 2992 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2993 /* 2994 * If there was little recent activity on this cache, then 2995 * perform only a partial refill. Otherwise we could generate 2996 * refill bouncing. 2997 */ 2998 batchcount = BATCHREFILL_LIMIT; 2999 } 3000 n = get_node(cachep, node); 3001 3002 BUG_ON(ac->avail > 0 || !n); 3003 shared = READ_ONCE(n->shared); 3004 if (!n->free_objects && (!shared || !shared->avail)) 3005 goto direct_grow; 3006 3007 spin_lock(&n->list_lock); 3008 shared = READ_ONCE(n->shared); 3009 3010 /* See if we can refill from the shared array */ 3011 if (shared && transfer_objects(ac, shared, batchcount)) { 3012 shared->touched = 1; 3013 goto alloc_done; 3014 } 3015 3016 while (batchcount > 0) { 3017 /* Get slab alloc is to come from. */ 3018 page = get_first_slab(n, false); 3019 if (!page) 3020 goto must_grow; 3021 3022 check_spinlock_acquired(cachep); 3023 3024 batchcount = alloc_block(cachep, ac, page, batchcount); 3025 fixup_slab_list(cachep, n, page, &list); 3026 } 3027 3028 must_grow: 3029 n->free_objects -= ac->avail; 3030 alloc_done: 3031 spin_unlock(&n->list_lock); 3032 fixup_objfreelist_debug(cachep, &list); 3033 3034 direct_grow: 3035 if (unlikely(!ac->avail)) { 3036 /* Check if we can use obj in pfmemalloc slab */ 3037 if (sk_memalloc_socks()) { 3038 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 3039 3040 if (obj) 3041 return obj; 3042 } 3043 3044 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 3045 3046 /* 3047 * cache_grow_begin() can reenable interrupts, 3048 * then ac could change. 3049 */ 3050 ac = cpu_cache_get(cachep); 3051 if (!ac->avail && page) 3052 alloc_block(cachep, ac, page, batchcount); 3053 cache_grow_end(cachep, page); 3054 3055 if (!ac->avail) 3056 return NULL; 3057 } 3058 ac->touched = 1; 3059 3060 return ac->entry[--ac->avail]; 3061 } 3062 3063 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3064 gfp_t flags) 3065 { 3066 might_sleep_if(gfpflags_allow_blocking(flags)); 3067 } 3068 3069 #if DEBUG 3070 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3071 gfp_t flags, void *objp, unsigned long caller) 3072 { 3073 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 3074 if (!objp) 3075 return objp; 3076 if (cachep->flags & SLAB_POISON) { 3077 check_poison_obj(cachep, objp); 3078 slab_kernel_map(cachep, objp, 1, 0); 3079 poison_obj(cachep, objp, POISON_INUSE); 3080 } 3081 if (cachep->flags & SLAB_STORE_USER) 3082 *dbg_userword(cachep, objp) = (void *)caller; 3083 3084 if (cachep->flags & SLAB_RED_ZONE) { 3085 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3086 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3087 slab_error(cachep, "double free, or memory outside object was overwritten"); 3088 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 3089 objp, *dbg_redzone1(cachep, objp), 3090 *dbg_redzone2(cachep, objp)); 3091 } 3092 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3093 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3094 } 3095 3096 objp += obj_offset(cachep); 3097 if (cachep->ctor && cachep->flags & SLAB_POISON) 3098 cachep->ctor(objp); 3099 if (ARCH_SLAB_MINALIGN && 3100 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3101 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3102 objp, (int)ARCH_SLAB_MINALIGN); 3103 } 3104 return objp; 3105 } 3106 #else 3107 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3108 #endif 3109 3110 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3111 { 3112 void *objp; 3113 struct array_cache *ac; 3114 3115 check_irq_off(); 3116 3117 ac = cpu_cache_get(cachep); 3118 if (likely(ac->avail)) { 3119 ac->touched = 1; 3120 objp = ac->entry[--ac->avail]; 3121 3122 STATS_INC_ALLOCHIT(cachep); 3123 goto out; 3124 } 3125 3126 STATS_INC_ALLOCMISS(cachep); 3127 objp = cache_alloc_refill(cachep, flags); 3128 /* 3129 * the 'ac' may be updated by cache_alloc_refill(), 3130 * and kmemleak_erase() requires its correct value. 3131 */ 3132 ac = cpu_cache_get(cachep); 3133 3134 out: 3135 /* 3136 * To avoid a false negative, if an object that is in one of the 3137 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3138 * treat the array pointers as a reference to the object. 3139 */ 3140 if (objp) 3141 kmemleak_erase(&ac->entry[ac->avail]); 3142 return objp; 3143 } 3144 3145 #ifdef CONFIG_NUMA 3146 /* 3147 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3148 * 3149 * If we are in_interrupt, then process context, including cpusets and 3150 * mempolicy, may not apply and should not be used for allocation policy. 3151 */ 3152 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3153 { 3154 int nid_alloc, nid_here; 3155 3156 if (in_interrupt() || (flags & __GFP_THISNODE)) 3157 return NULL; 3158 nid_alloc = nid_here = numa_mem_id(); 3159 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3160 nid_alloc = cpuset_slab_spread_node(); 3161 else if (current->mempolicy) 3162 nid_alloc = mempolicy_slab_node(); 3163 if (nid_alloc != nid_here) 3164 return ____cache_alloc_node(cachep, flags, nid_alloc); 3165 return NULL; 3166 } 3167 3168 /* 3169 * Fallback function if there was no memory available and no objects on a 3170 * certain node and fall back is permitted. First we scan all the 3171 * available node for available objects. If that fails then we 3172 * perform an allocation without specifying a node. This allows the page 3173 * allocator to do its reclaim / fallback magic. We then insert the 3174 * slab into the proper nodelist and then allocate from it. 3175 */ 3176 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3177 { 3178 struct zonelist *zonelist; 3179 struct zoneref *z; 3180 struct zone *zone; 3181 enum zone_type high_zoneidx = gfp_zone(flags); 3182 void *obj = NULL; 3183 struct page *page; 3184 int nid; 3185 unsigned int cpuset_mems_cookie; 3186 3187 if (flags & __GFP_THISNODE) 3188 return NULL; 3189 3190 retry_cpuset: 3191 cpuset_mems_cookie = read_mems_allowed_begin(); 3192 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3193 3194 retry: 3195 /* 3196 * Look through allowed nodes for objects available 3197 * from existing per node queues. 3198 */ 3199 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3200 nid = zone_to_nid(zone); 3201 3202 if (cpuset_zone_allowed(zone, flags) && 3203 get_node(cache, nid) && 3204 get_node(cache, nid)->free_objects) { 3205 obj = ____cache_alloc_node(cache, 3206 gfp_exact_node(flags), nid); 3207 if (obj) 3208 break; 3209 } 3210 } 3211 3212 if (!obj) { 3213 /* 3214 * This allocation will be performed within the constraints 3215 * of the current cpuset / memory policy requirements. 3216 * We may trigger various forms of reclaim on the allowed 3217 * set and go into memory reserves if necessary. 3218 */ 3219 page = cache_grow_begin(cache, flags, numa_mem_id()); 3220 cache_grow_end(cache, page); 3221 if (page) { 3222 nid = page_to_nid(page); 3223 obj = ____cache_alloc_node(cache, 3224 gfp_exact_node(flags), nid); 3225 3226 /* 3227 * Another processor may allocate the objects in 3228 * the slab since we are not holding any locks. 3229 */ 3230 if (!obj) 3231 goto retry; 3232 } 3233 } 3234 3235 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3236 goto retry_cpuset; 3237 return obj; 3238 } 3239 3240 /* 3241 * A interface to enable slab creation on nodeid 3242 */ 3243 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3244 int nodeid) 3245 { 3246 struct page *page; 3247 struct kmem_cache_node *n; 3248 void *obj = NULL; 3249 void *list = NULL; 3250 3251 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3252 n = get_node(cachep, nodeid); 3253 BUG_ON(!n); 3254 3255 check_irq_off(); 3256 spin_lock(&n->list_lock); 3257 page = get_first_slab(n, false); 3258 if (!page) 3259 goto must_grow; 3260 3261 check_spinlock_acquired_node(cachep, nodeid); 3262 3263 STATS_INC_NODEALLOCS(cachep); 3264 STATS_INC_ACTIVE(cachep); 3265 STATS_SET_HIGH(cachep); 3266 3267 BUG_ON(page->active == cachep->num); 3268 3269 obj = slab_get_obj(cachep, page); 3270 n->free_objects--; 3271 3272 fixup_slab_list(cachep, n, page, &list); 3273 3274 spin_unlock(&n->list_lock); 3275 fixup_objfreelist_debug(cachep, &list); 3276 return obj; 3277 3278 must_grow: 3279 spin_unlock(&n->list_lock); 3280 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3281 if (page) { 3282 /* This slab isn't counted yet so don't update free_objects */ 3283 obj = slab_get_obj(cachep, page); 3284 } 3285 cache_grow_end(cachep, page); 3286 3287 return obj ? obj : fallback_alloc(cachep, flags); 3288 } 3289 3290 static __always_inline void * 3291 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3292 unsigned long caller) 3293 { 3294 unsigned long save_flags; 3295 void *ptr; 3296 int slab_node = numa_mem_id(); 3297 3298 flags &= gfp_allowed_mask; 3299 cachep = slab_pre_alloc_hook(cachep, flags); 3300 if (unlikely(!cachep)) 3301 return NULL; 3302 3303 cache_alloc_debugcheck_before(cachep, flags); 3304 local_irq_save(save_flags); 3305 3306 if (nodeid == NUMA_NO_NODE) 3307 nodeid = slab_node; 3308 3309 if (unlikely(!get_node(cachep, nodeid))) { 3310 /* Node not bootstrapped yet */ 3311 ptr = fallback_alloc(cachep, flags); 3312 goto out; 3313 } 3314 3315 if (nodeid == slab_node) { 3316 /* 3317 * Use the locally cached objects if possible. 3318 * However ____cache_alloc does not allow fallback 3319 * to other nodes. It may fail while we still have 3320 * objects on other nodes available. 3321 */ 3322 ptr = ____cache_alloc(cachep, flags); 3323 if (ptr) 3324 goto out; 3325 } 3326 /* ___cache_alloc_node can fall back to other nodes */ 3327 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3328 out: 3329 local_irq_restore(save_flags); 3330 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3331 3332 if (unlikely(flags & __GFP_ZERO) && ptr) 3333 memset(ptr, 0, cachep->object_size); 3334 3335 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3336 return ptr; 3337 } 3338 3339 static __always_inline void * 3340 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3341 { 3342 void *objp; 3343 3344 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3345 objp = alternate_node_alloc(cache, flags); 3346 if (objp) 3347 goto out; 3348 } 3349 objp = ____cache_alloc(cache, flags); 3350 3351 /* 3352 * We may just have run out of memory on the local node. 3353 * ____cache_alloc_node() knows how to locate memory on other nodes 3354 */ 3355 if (!objp) 3356 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3357 3358 out: 3359 return objp; 3360 } 3361 #else 3362 3363 static __always_inline void * 3364 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3365 { 3366 return ____cache_alloc(cachep, flags); 3367 } 3368 3369 #endif /* CONFIG_NUMA */ 3370 3371 static __always_inline void * 3372 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3373 { 3374 unsigned long save_flags; 3375 void *objp; 3376 3377 flags &= gfp_allowed_mask; 3378 cachep = slab_pre_alloc_hook(cachep, flags); 3379 if (unlikely(!cachep)) 3380 return NULL; 3381 3382 cache_alloc_debugcheck_before(cachep, flags); 3383 local_irq_save(save_flags); 3384 objp = __do_cache_alloc(cachep, flags); 3385 local_irq_restore(save_flags); 3386 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3387 prefetchw(objp); 3388 3389 if (unlikely(flags & __GFP_ZERO) && objp) 3390 memset(objp, 0, cachep->object_size); 3391 3392 slab_post_alloc_hook(cachep, flags, 1, &objp); 3393 return objp; 3394 } 3395 3396 /* 3397 * Caller needs to acquire correct kmem_cache_node's list_lock 3398 * @list: List of detached free slabs should be freed by caller 3399 */ 3400 static void free_block(struct kmem_cache *cachep, void **objpp, 3401 int nr_objects, int node, struct list_head *list) 3402 { 3403 int i; 3404 struct kmem_cache_node *n = get_node(cachep, node); 3405 struct page *page; 3406 3407 n->free_objects += nr_objects; 3408 3409 for (i = 0; i < nr_objects; i++) { 3410 void *objp; 3411 struct page *page; 3412 3413 objp = objpp[i]; 3414 3415 page = virt_to_head_page(objp); 3416 list_del(&page->lru); 3417 check_spinlock_acquired_node(cachep, node); 3418 slab_put_obj(cachep, page, objp); 3419 STATS_DEC_ACTIVE(cachep); 3420 3421 /* fixup slab chains */ 3422 if (page->active == 0) { 3423 list_add(&page->lru, &n->slabs_free); 3424 n->free_slabs++; 3425 } else { 3426 /* Unconditionally move a slab to the end of the 3427 * partial list on free - maximum time for the 3428 * other objects to be freed, too. 3429 */ 3430 list_add_tail(&page->lru, &n->slabs_partial); 3431 } 3432 } 3433 3434 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3435 n->free_objects -= cachep->num; 3436 3437 page = list_last_entry(&n->slabs_free, struct page, lru); 3438 list_move(&page->lru, list); 3439 n->free_slabs--; 3440 n->total_slabs--; 3441 } 3442 } 3443 3444 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3445 { 3446 int batchcount; 3447 struct kmem_cache_node *n; 3448 int node = numa_mem_id(); 3449 LIST_HEAD(list); 3450 3451 batchcount = ac->batchcount; 3452 3453 check_irq_off(); 3454 n = get_node(cachep, node); 3455 spin_lock(&n->list_lock); 3456 if (n->shared) { 3457 struct array_cache *shared_array = n->shared; 3458 int max = shared_array->limit - shared_array->avail; 3459 if (max) { 3460 if (batchcount > max) 3461 batchcount = max; 3462 memcpy(&(shared_array->entry[shared_array->avail]), 3463 ac->entry, sizeof(void *) * batchcount); 3464 shared_array->avail += batchcount; 3465 goto free_done; 3466 } 3467 } 3468 3469 free_block(cachep, ac->entry, batchcount, node, &list); 3470 free_done: 3471 #if STATS 3472 { 3473 int i = 0; 3474 struct page *page; 3475 3476 list_for_each_entry(page, &n->slabs_free, lru) { 3477 BUG_ON(page->active); 3478 3479 i++; 3480 } 3481 STATS_SET_FREEABLE(cachep, i); 3482 } 3483 #endif 3484 spin_unlock(&n->list_lock); 3485 slabs_destroy(cachep, &list); 3486 ac->avail -= batchcount; 3487 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3488 } 3489 3490 /* 3491 * Release an obj back to its cache. If the obj has a constructed state, it must 3492 * be in this state _before_ it is released. Called with disabled ints. 3493 */ 3494 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3495 unsigned long caller) 3496 { 3497 /* Put the object into the quarantine, don't touch it for now. */ 3498 if (kasan_slab_free(cachep, objp, _RET_IP_)) 3499 return; 3500 3501 ___cache_free(cachep, objp, caller); 3502 } 3503 3504 void ___cache_free(struct kmem_cache *cachep, void *objp, 3505 unsigned long caller) 3506 { 3507 struct array_cache *ac = cpu_cache_get(cachep); 3508 3509 check_irq_off(); 3510 kmemleak_free_recursive(objp, cachep->flags); 3511 objp = cache_free_debugcheck(cachep, objp, caller); 3512 3513 /* 3514 * Skip calling cache_free_alien() when the platform is not numa. 3515 * This will avoid cache misses that happen while accessing slabp (which 3516 * is per page memory reference) to get nodeid. Instead use a global 3517 * variable to skip the call, which is mostly likely to be present in 3518 * the cache. 3519 */ 3520 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3521 return; 3522 3523 if (ac->avail < ac->limit) { 3524 STATS_INC_FREEHIT(cachep); 3525 } else { 3526 STATS_INC_FREEMISS(cachep); 3527 cache_flusharray(cachep, ac); 3528 } 3529 3530 if (sk_memalloc_socks()) { 3531 struct page *page = virt_to_head_page(objp); 3532 3533 if (unlikely(PageSlabPfmemalloc(page))) { 3534 cache_free_pfmemalloc(cachep, page, objp); 3535 return; 3536 } 3537 } 3538 3539 ac->entry[ac->avail++] = objp; 3540 } 3541 3542 /** 3543 * kmem_cache_alloc - Allocate an object 3544 * @cachep: The cache to allocate from. 3545 * @flags: See kmalloc(). 3546 * 3547 * Allocate an object from this cache. The flags are only relevant 3548 * if the cache has no available objects. 3549 */ 3550 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3551 { 3552 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3553 3554 kasan_slab_alloc(cachep, ret, flags); 3555 trace_kmem_cache_alloc(_RET_IP_, ret, 3556 cachep->object_size, cachep->size, flags); 3557 3558 return ret; 3559 } 3560 EXPORT_SYMBOL(kmem_cache_alloc); 3561 3562 static __always_inline void 3563 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3564 size_t size, void **p, unsigned long caller) 3565 { 3566 size_t i; 3567 3568 for (i = 0; i < size; i++) 3569 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3570 } 3571 3572 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3573 void **p) 3574 { 3575 size_t i; 3576 3577 s = slab_pre_alloc_hook(s, flags); 3578 if (!s) 3579 return 0; 3580 3581 cache_alloc_debugcheck_before(s, flags); 3582 3583 local_irq_disable(); 3584 for (i = 0; i < size; i++) { 3585 void *objp = __do_cache_alloc(s, flags); 3586 3587 if (unlikely(!objp)) 3588 goto error; 3589 p[i] = objp; 3590 } 3591 local_irq_enable(); 3592 3593 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3594 3595 /* Clear memory outside IRQ disabled section */ 3596 if (unlikely(flags & __GFP_ZERO)) 3597 for (i = 0; i < size; i++) 3598 memset(p[i], 0, s->object_size); 3599 3600 slab_post_alloc_hook(s, flags, size, p); 3601 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3602 return size; 3603 error: 3604 local_irq_enable(); 3605 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3606 slab_post_alloc_hook(s, flags, i, p); 3607 __kmem_cache_free_bulk(s, i, p); 3608 return 0; 3609 } 3610 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3611 3612 #ifdef CONFIG_TRACING 3613 void * 3614 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3615 { 3616 void *ret; 3617 3618 ret = slab_alloc(cachep, flags, _RET_IP_); 3619 3620 kasan_kmalloc(cachep, ret, size, flags); 3621 trace_kmalloc(_RET_IP_, ret, 3622 size, cachep->size, flags); 3623 return ret; 3624 } 3625 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3626 #endif 3627 3628 #ifdef CONFIG_NUMA 3629 /** 3630 * kmem_cache_alloc_node - Allocate an object on the specified node 3631 * @cachep: The cache to allocate from. 3632 * @flags: See kmalloc(). 3633 * @nodeid: node number of the target node. 3634 * 3635 * Identical to kmem_cache_alloc but it will allocate memory on the given 3636 * node, which can improve the performance for cpu bound structures. 3637 * 3638 * Fallback to other node is possible if __GFP_THISNODE is not set. 3639 */ 3640 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3641 { 3642 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3643 3644 kasan_slab_alloc(cachep, ret, flags); 3645 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3646 cachep->object_size, cachep->size, 3647 flags, nodeid); 3648 3649 return ret; 3650 } 3651 EXPORT_SYMBOL(kmem_cache_alloc_node); 3652 3653 #ifdef CONFIG_TRACING 3654 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3655 gfp_t flags, 3656 int nodeid, 3657 size_t size) 3658 { 3659 void *ret; 3660 3661 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3662 3663 kasan_kmalloc(cachep, ret, size, flags); 3664 trace_kmalloc_node(_RET_IP_, ret, 3665 size, cachep->size, 3666 flags, nodeid); 3667 return ret; 3668 } 3669 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3670 #endif 3671 3672 static __always_inline void * 3673 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3674 { 3675 struct kmem_cache *cachep; 3676 void *ret; 3677 3678 cachep = kmalloc_slab(size, flags); 3679 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3680 return cachep; 3681 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3682 kasan_kmalloc(cachep, ret, size, flags); 3683 3684 return ret; 3685 } 3686 3687 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3688 { 3689 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3690 } 3691 EXPORT_SYMBOL(__kmalloc_node); 3692 3693 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3694 int node, unsigned long caller) 3695 { 3696 return __do_kmalloc_node(size, flags, node, caller); 3697 } 3698 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3699 #endif /* CONFIG_NUMA */ 3700 3701 /** 3702 * __do_kmalloc - allocate memory 3703 * @size: how many bytes of memory are required. 3704 * @flags: the type of memory to allocate (see kmalloc). 3705 * @caller: function caller for debug tracking of the caller 3706 */ 3707 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3708 unsigned long caller) 3709 { 3710 struct kmem_cache *cachep; 3711 void *ret; 3712 3713 cachep = kmalloc_slab(size, flags); 3714 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3715 return cachep; 3716 ret = slab_alloc(cachep, flags, caller); 3717 3718 kasan_kmalloc(cachep, ret, size, flags); 3719 trace_kmalloc(caller, ret, 3720 size, cachep->size, flags); 3721 3722 return ret; 3723 } 3724 3725 void *__kmalloc(size_t size, gfp_t flags) 3726 { 3727 return __do_kmalloc(size, flags, _RET_IP_); 3728 } 3729 EXPORT_SYMBOL(__kmalloc); 3730 3731 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3732 { 3733 return __do_kmalloc(size, flags, caller); 3734 } 3735 EXPORT_SYMBOL(__kmalloc_track_caller); 3736 3737 /** 3738 * kmem_cache_free - Deallocate an object 3739 * @cachep: The cache the allocation was from. 3740 * @objp: The previously allocated object. 3741 * 3742 * Free an object which was previously allocated from this 3743 * cache. 3744 */ 3745 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3746 { 3747 unsigned long flags; 3748 cachep = cache_from_obj(cachep, objp); 3749 if (!cachep) 3750 return; 3751 3752 local_irq_save(flags); 3753 debug_check_no_locks_freed(objp, cachep->object_size); 3754 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3755 debug_check_no_obj_freed(objp, cachep->object_size); 3756 __cache_free(cachep, objp, _RET_IP_); 3757 local_irq_restore(flags); 3758 3759 trace_kmem_cache_free(_RET_IP_, objp); 3760 } 3761 EXPORT_SYMBOL(kmem_cache_free); 3762 3763 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3764 { 3765 struct kmem_cache *s; 3766 size_t i; 3767 3768 local_irq_disable(); 3769 for (i = 0; i < size; i++) { 3770 void *objp = p[i]; 3771 3772 if (!orig_s) /* called via kfree_bulk */ 3773 s = virt_to_cache(objp); 3774 else 3775 s = cache_from_obj(orig_s, objp); 3776 3777 debug_check_no_locks_freed(objp, s->object_size); 3778 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3779 debug_check_no_obj_freed(objp, s->object_size); 3780 3781 __cache_free(s, objp, _RET_IP_); 3782 } 3783 local_irq_enable(); 3784 3785 /* FIXME: add tracing */ 3786 } 3787 EXPORT_SYMBOL(kmem_cache_free_bulk); 3788 3789 /** 3790 * kfree - free previously allocated memory 3791 * @objp: pointer returned by kmalloc. 3792 * 3793 * If @objp is NULL, no operation is performed. 3794 * 3795 * Don't free memory not originally allocated by kmalloc() 3796 * or you will run into trouble. 3797 */ 3798 void kfree(const void *objp) 3799 { 3800 struct kmem_cache *c; 3801 unsigned long flags; 3802 3803 trace_kfree(_RET_IP_, objp); 3804 3805 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3806 return; 3807 local_irq_save(flags); 3808 kfree_debugcheck(objp); 3809 c = virt_to_cache(objp); 3810 debug_check_no_locks_freed(objp, c->object_size); 3811 3812 debug_check_no_obj_freed(objp, c->object_size); 3813 __cache_free(c, (void *)objp, _RET_IP_); 3814 local_irq_restore(flags); 3815 } 3816 EXPORT_SYMBOL(kfree); 3817 3818 /* 3819 * This initializes kmem_cache_node or resizes various caches for all nodes. 3820 */ 3821 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3822 { 3823 int ret; 3824 int node; 3825 struct kmem_cache_node *n; 3826 3827 for_each_online_node(node) { 3828 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3829 if (ret) 3830 goto fail; 3831 3832 } 3833 3834 return 0; 3835 3836 fail: 3837 if (!cachep->list.next) { 3838 /* Cache is not active yet. Roll back what we did */ 3839 node--; 3840 while (node >= 0) { 3841 n = get_node(cachep, node); 3842 if (n) { 3843 kfree(n->shared); 3844 free_alien_cache(n->alien); 3845 kfree(n); 3846 cachep->node[node] = NULL; 3847 } 3848 node--; 3849 } 3850 } 3851 return -ENOMEM; 3852 } 3853 3854 /* Always called with the slab_mutex held */ 3855 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3856 int batchcount, int shared, gfp_t gfp) 3857 { 3858 struct array_cache __percpu *cpu_cache, *prev; 3859 int cpu; 3860 3861 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3862 if (!cpu_cache) 3863 return -ENOMEM; 3864 3865 prev = cachep->cpu_cache; 3866 cachep->cpu_cache = cpu_cache; 3867 /* 3868 * Without a previous cpu_cache there's no need to synchronize remote 3869 * cpus, so skip the IPIs. 3870 */ 3871 if (prev) 3872 kick_all_cpus_sync(); 3873 3874 check_irq_on(); 3875 cachep->batchcount = batchcount; 3876 cachep->limit = limit; 3877 cachep->shared = shared; 3878 3879 if (!prev) 3880 goto setup_node; 3881 3882 for_each_online_cpu(cpu) { 3883 LIST_HEAD(list); 3884 int node; 3885 struct kmem_cache_node *n; 3886 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3887 3888 node = cpu_to_mem(cpu); 3889 n = get_node(cachep, node); 3890 spin_lock_irq(&n->list_lock); 3891 free_block(cachep, ac->entry, ac->avail, node, &list); 3892 spin_unlock_irq(&n->list_lock); 3893 slabs_destroy(cachep, &list); 3894 } 3895 free_percpu(prev); 3896 3897 setup_node: 3898 return setup_kmem_cache_nodes(cachep, gfp); 3899 } 3900 3901 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3902 int batchcount, int shared, gfp_t gfp) 3903 { 3904 int ret; 3905 struct kmem_cache *c; 3906 3907 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3908 3909 if (slab_state < FULL) 3910 return ret; 3911 3912 if ((ret < 0) || !is_root_cache(cachep)) 3913 return ret; 3914 3915 lockdep_assert_held(&slab_mutex); 3916 for_each_memcg_cache(c, cachep) { 3917 /* return value determined by the root cache only */ 3918 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3919 } 3920 3921 return ret; 3922 } 3923 3924 /* Called with slab_mutex held always */ 3925 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3926 { 3927 int err; 3928 int limit = 0; 3929 int shared = 0; 3930 int batchcount = 0; 3931 3932 err = cache_random_seq_create(cachep, cachep->num, gfp); 3933 if (err) 3934 goto end; 3935 3936 if (!is_root_cache(cachep)) { 3937 struct kmem_cache *root = memcg_root_cache(cachep); 3938 limit = root->limit; 3939 shared = root->shared; 3940 batchcount = root->batchcount; 3941 } 3942 3943 if (limit && shared && batchcount) 3944 goto skip_setup; 3945 /* 3946 * The head array serves three purposes: 3947 * - create a LIFO ordering, i.e. return objects that are cache-warm 3948 * - reduce the number of spinlock operations. 3949 * - reduce the number of linked list operations on the slab and 3950 * bufctl chains: array operations are cheaper. 3951 * The numbers are guessed, we should auto-tune as described by 3952 * Bonwick. 3953 */ 3954 if (cachep->size > 131072) 3955 limit = 1; 3956 else if (cachep->size > PAGE_SIZE) 3957 limit = 8; 3958 else if (cachep->size > 1024) 3959 limit = 24; 3960 else if (cachep->size > 256) 3961 limit = 54; 3962 else 3963 limit = 120; 3964 3965 /* 3966 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3967 * allocation behaviour: Most allocs on one cpu, most free operations 3968 * on another cpu. For these cases, an efficient object passing between 3969 * cpus is necessary. This is provided by a shared array. The array 3970 * replaces Bonwick's magazine layer. 3971 * On uniprocessor, it's functionally equivalent (but less efficient) 3972 * to a larger limit. Thus disabled by default. 3973 */ 3974 shared = 0; 3975 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3976 shared = 8; 3977 3978 #if DEBUG 3979 /* 3980 * With debugging enabled, large batchcount lead to excessively long 3981 * periods with disabled local interrupts. Limit the batchcount 3982 */ 3983 if (limit > 32) 3984 limit = 32; 3985 #endif 3986 batchcount = (limit + 1) / 2; 3987 skip_setup: 3988 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3989 end: 3990 if (err) 3991 pr_err("enable_cpucache failed for %s, error %d\n", 3992 cachep->name, -err); 3993 return err; 3994 } 3995 3996 /* 3997 * Drain an array if it contains any elements taking the node lock only if 3998 * necessary. Note that the node listlock also protects the array_cache 3999 * if drain_array() is used on the shared array. 4000 */ 4001 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 4002 struct array_cache *ac, int node) 4003 { 4004 LIST_HEAD(list); 4005 4006 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 4007 check_mutex_acquired(); 4008 4009 if (!ac || !ac->avail) 4010 return; 4011 4012 if (ac->touched) { 4013 ac->touched = 0; 4014 return; 4015 } 4016 4017 spin_lock_irq(&n->list_lock); 4018 drain_array_locked(cachep, ac, node, false, &list); 4019 spin_unlock_irq(&n->list_lock); 4020 4021 slabs_destroy(cachep, &list); 4022 } 4023 4024 /** 4025 * cache_reap - Reclaim memory from caches. 4026 * @w: work descriptor 4027 * 4028 * Called from workqueue/eventd every few seconds. 4029 * Purpose: 4030 * - clear the per-cpu caches for this CPU. 4031 * - return freeable pages to the main free memory pool. 4032 * 4033 * If we cannot acquire the cache chain mutex then just give up - we'll try 4034 * again on the next iteration. 4035 */ 4036 static void cache_reap(struct work_struct *w) 4037 { 4038 struct kmem_cache *searchp; 4039 struct kmem_cache_node *n; 4040 int node = numa_mem_id(); 4041 struct delayed_work *work = to_delayed_work(w); 4042 4043 if (!mutex_trylock(&slab_mutex)) 4044 /* Give up. Setup the next iteration. */ 4045 goto out; 4046 4047 list_for_each_entry(searchp, &slab_caches, list) { 4048 check_irq_on(); 4049 4050 /* 4051 * We only take the node lock if absolutely necessary and we 4052 * have established with reasonable certainty that 4053 * we can do some work if the lock was obtained. 4054 */ 4055 n = get_node(searchp, node); 4056 4057 reap_alien(searchp, n); 4058 4059 drain_array(searchp, n, cpu_cache_get(searchp), node); 4060 4061 /* 4062 * These are racy checks but it does not matter 4063 * if we skip one check or scan twice. 4064 */ 4065 if (time_after(n->next_reap, jiffies)) 4066 goto next; 4067 4068 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4069 4070 drain_array(searchp, n, n->shared, node); 4071 4072 if (n->free_touched) 4073 n->free_touched = 0; 4074 else { 4075 int freed; 4076 4077 freed = drain_freelist(searchp, n, (n->free_limit + 4078 5 * searchp->num - 1) / (5 * searchp->num)); 4079 STATS_ADD_REAPED(searchp, freed); 4080 } 4081 next: 4082 cond_resched(); 4083 } 4084 check_irq_on(); 4085 mutex_unlock(&slab_mutex); 4086 next_reap_node(); 4087 out: 4088 /* Set up the next iteration */ 4089 schedule_delayed_work_on(smp_processor_id(), work, 4090 round_jiffies_relative(REAPTIMEOUT_AC)); 4091 } 4092 4093 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4094 { 4095 unsigned long active_objs, num_objs, active_slabs; 4096 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4097 unsigned long free_slabs = 0; 4098 int node; 4099 struct kmem_cache_node *n; 4100 4101 for_each_kmem_cache_node(cachep, node, n) { 4102 check_irq_on(); 4103 spin_lock_irq(&n->list_lock); 4104 4105 total_slabs += n->total_slabs; 4106 free_slabs += n->free_slabs; 4107 free_objs += n->free_objects; 4108 4109 if (n->shared) 4110 shared_avail += n->shared->avail; 4111 4112 spin_unlock_irq(&n->list_lock); 4113 } 4114 num_objs = total_slabs * cachep->num; 4115 active_slabs = total_slabs - free_slabs; 4116 active_objs = num_objs - free_objs; 4117 4118 sinfo->active_objs = active_objs; 4119 sinfo->num_objs = num_objs; 4120 sinfo->active_slabs = active_slabs; 4121 sinfo->num_slabs = total_slabs; 4122 sinfo->shared_avail = shared_avail; 4123 sinfo->limit = cachep->limit; 4124 sinfo->batchcount = cachep->batchcount; 4125 sinfo->shared = cachep->shared; 4126 sinfo->objects_per_slab = cachep->num; 4127 sinfo->cache_order = cachep->gfporder; 4128 } 4129 4130 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4131 { 4132 #if STATS 4133 { /* node stats */ 4134 unsigned long high = cachep->high_mark; 4135 unsigned long allocs = cachep->num_allocations; 4136 unsigned long grown = cachep->grown; 4137 unsigned long reaped = cachep->reaped; 4138 unsigned long errors = cachep->errors; 4139 unsigned long max_freeable = cachep->max_freeable; 4140 unsigned long node_allocs = cachep->node_allocs; 4141 unsigned long node_frees = cachep->node_frees; 4142 unsigned long overflows = cachep->node_overflow; 4143 4144 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4145 allocs, high, grown, 4146 reaped, errors, max_freeable, node_allocs, 4147 node_frees, overflows); 4148 } 4149 /* cpu stats */ 4150 { 4151 unsigned long allochit = atomic_read(&cachep->allochit); 4152 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4153 unsigned long freehit = atomic_read(&cachep->freehit); 4154 unsigned long freemiss = atomic_read(&cachep->freemiss); 4155 4156 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4157 allochit, allocmiss, freehit, freemiss); 4158 } 4159 #endif 4160 } 4161 4162 #define MAX_SLABINFO_WRITE 128 4163 /** 4164 * slabinfo_write - Tuning for the slab allocator 4165 * @file: unused 4166 * @buffer: user buffer 4167 * @count: data length 4168 * @ppos: unused 4169 */ 4170 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4171 size_t count, loff_t *ppos) 4172 { 4173 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4174 int limit, batchcount, shared, res; 4175 struct kmem_cache *cachep; 4176 4177 if (count > MAX_SLABINFO_WRITE) 4178 return -EINVAL; 4179 if (copy_from_user(&kbuf, buffer, count)) 4180 return -EFAULT; 4181 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4182 4183 tmp = strchr(kbuf, ' '); 4184 if (!tmp) 4185 return -EINVAL; 4186 *tmp = '\0'; 4187 tmp++; 4188 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4189 return -EINVAL; 4190 4191 /* Find the cache in the chain of caches. */ 4192 mutex_lock(&slab_mutex); 4193 res = -EINVAL; 4194 list_for_each_entry(cachep, &slab_caches, list) { 4195 if (!strcmp(cachep->name, kbuf)) { 4196 if (limit < 1 || batchcount < 1 || 4197 batchcount > limit || shared < 0) { 4198 res = 0; 4199 } else { 4200 res = do_tune_cpucache(cachep, limit, 4201 batchcount, shared, 4202 GFP_KERNEL); 4203 } 4204 break; 4205 } 4206 } 4207 mutex_unlock(&slab_mutex); 4208 if (res >= 0) 4209 res = count; 4210 return res; 4211 } 4212 4213 #ifdef CONFIG_DEBUG_SLAB_LEAK 4214 4215 static inline int add_caller(unsigned long *n, unsigned long v) 4216 { 4217 unsigned long *p; 4218 int l; 4219 if (!v) 4220 return 1; 4221 l = n[1]; 4222 p = n + 2; 4223 while (l) { 4224 int i = l/2; 4225 unsigned long *q = p + 2 * i; 4226 if (*q == v) { 4227 q[1]++; 4228 return 1; 4229 } 4230 if (*q > v) { 4231 l = i; 4232 } else { 4233 p = q + 2; 4234 l -= i + 1; 4235 } 4236 } 4237 if (++n[1] == n[0]) 4238 return 0; 4239 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4240 p[0] = v; 4241 p[1] = 1; 4242 return 1; 4243 } 4244 4245 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4246 struct page *page) 4247 { 4248 void *p; 4249 int i, j; 4250 unsigned long v; 4251 4252 if (n[0] == n[1]) 4253 return; 4254 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4255 bool active = true; 4256 4257 for (j = page->active; j < c->num; j++) { 4258 if (get_free_obj(page, j) == i) { 4259 active = false; 4260 break; 4261 } 4262 } 4263 4264 if (!active) 4265 continue; 4266 4267 /* 4268 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4269 * mapping is established when actual object allocation and 4270 * we could mistakenly access the unmapped object in the cpu 4271 * cache. 4272 */ 4273 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4274 continue; 4275 4276 if (!add_caller(n, v)) 4277 return; 4278 } 4279 } 4280 4281 static void show_symbol(struct seq_file *m, unsigned long address) 4282 { 4283 #ifdef CONFIG_KALLSYMS 4284 unsigned long offset, size; 4285 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4286 4287 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4288 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4289 if (modname[0]) 4290 seq_printf(m, " [%s]", modname); 4291 return; 4292 } 4293 #endif 4294 seq_printf(m, "%px", (void *)address); 4295 } 4296 4297 static int leaks_show(struct seq_file *m, void *p) 4298 { 4299 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4300 struct page *page; 4301 struct kmem_cache_node *n; 4302 const char *name; 4303 unsigned long *x = m->private; 4304 int node; 4305 int i; 4306 4307 if (!(cachep->flags & SLAB_STORE_USER)) 4308 return 0; 4309 if (!(cachep->flags & SLAB_RED_ZONE)) 4310 return 0; 4311 4312 /* 4313 * Set store_user_clean and start to grab stored user information 4314 * for all objects on this cache. If some alloc/free requests comes 4315 * during the processing, information would be wrong so restart 4316 * whole processing. 4317 */ 4318 do { 4319 set_store_user_clean(cachep); 4320 drain_cpu_caches(cachep); 4321 4322 x[1] = 0; 4323 4324 for_each_kmem_cache_node(cachep, node, n) { 4325 4326 check_irq_on(); 4327 spin_lock_irq(&n->list_lock); 4328 4329 list_for_each_entry(page, &n->slabs_full, lru) 4330 handle_slab(x, cachep, page); 4331 list_for_each_entry(page, &n->slabs_partial, lru) 4332 handle_slab(x, cachep, page); 4333 spin_unlock_irq(&n->list_lock); 4334 } 4335 } while (!is_store_user_clean(cachep)); 4336 4337 name = cachep->name; 4338 if (x[0] == x[1]) { 4339 /* Increase the buffer size */ 4340 mutex_unlock(&slab_mutex); 4341 m->private = kcalloc(x[0] * 4, sizeof(unsigned long), 4342 GFP_KERNEL); 4343 if (!m->private) { 4344 /* Too bad, we are really out */ 4345 m->private = x; 4346 mutex_lock(&slab_mutex); 4347 return -ENOMEM; 4348 } 4349 *(unsigned long *)m->private = x[0] * 2; 4350 kfree(x); 4351 mutex_lock(&slab_mutex); 4352 /* Now make sure this entry will be retried */ 4353 m->count = m->size; 4354 return 0; 4355 } 4356 for (i = 0; i < x[1]; i++) { 4357 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4358 show_symbol(m, x[2*i+2]); 4359 seq_putc(m, '\n'); 4360 } 4361 4362 return 0; 4363 } 4364 4365 static const struct seq_operations slabstats_op = { 4366 .start = slab_start, 4367 .next = slab_next, 4368 .stop = slab_stop, 4369 .show = leaks_show, 4370 }; 4371 4372 static int slabstats_open(struct inode *inode, struct file *file) 4373 { 4374 unsigned long *n; 4375 4376 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4377 if (!n) 4378 return -ENOMEM; 4379 4380 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4381 4382 return 0; 4383 } 4384 4385 static const struct file_operations proc_slabstats_operations = { 4386 .open = slabstats_open, 4387 .read = seq_read, 4388 .llseek = seq_lseek, 4389 .release = seq_release_private, 4390 }; 4391 #endif 4392 4393 static int __init slab_proc_init(void) 4394 { 4395 #ifdef CONFIG_DEBUG_SLAB_LEAK 4396 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4397 #endif 4398 return 0; 4399 } 4400 module_init(slab_proc_init); 4401 4402 #ifdef CONFIG_HARDENED_USERCOPY 4403 /* 4404 * Rejects incorrectly sized objects and objects that are to be copied 4405 * to/from userspace but do not fall entirely within the containing slab 4406 * cache's usercopy region. 4407 * 4408 * Returns NULL if check passes, otherwise const char * to name of cache 4409 * to indicate an error. 4410 */ 4411 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4412 bool to_user) 4413 { 4414 struct kmem_cache *cachep; 4415 unsigned int objnr; 4416 unsigned long offset; 4417 4418 /* Find and validate object. */ 4419 cachep = page->slab_cache; 4420 objnr = obj_to_index(cachep, page, (void *)ptr); 4421 BUG_ON(objnr >= cachep->num); 4422 4423 /* Find offset within object. */ 4424 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4425 4426 /* Allow address range falling entirely within usercopy region. */ 4427 if (offset >= cachep->useroffset && 4428 offset - cachep->useroffset <= cachep->usersize && 4429 n <= cachep->useroffset - offset + cachep->usersize) 4430 return; 4431 4432 /* 4433 * If the copy is still within the allocated object, produce 4434 * a warning instead of rejecting the copy. This is intended 4435 * to be a temporary method to find any missing usercopy 4436 * whitelists. 4437 */ 4438 if (usercopy_fallback && 4439 offset <= cachep->object_size && 4440 n <= cachep->object_size - offset) { 4441 usercopy_warn("SLAB object", cachep->name, to_user, offset, n); 4442 return; 4443 } 4444 4445 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4446 } 4447 #endif /* CONFIG_HARDENED_USERCOPY */ 4448 4449 /** 4450 * ksize - get the actual amount of memory allocated for a given object 4451 * @objp: Pointer to the object 4452 * 4453 * kmalloc may internally round up allocations and return more memory 4454 * than requested. ksize() can be used to determine the actual amount of 4455 * memory allocated. The caller may use this additional memory, even though 4456 * a smaller amount of memory was initially specified with the kmalloc call. 4457 * The caller must guarantee that objp points to a valid object previously 4458 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4459 * must not be freed during the duration of the call. 4460 */ 4461 size_t ksize(const void *objp) 4462 { 4463 size_t size; 4464 4465 BUG_ON(!objp); 4466 if (unlikely(objp == ZERO_SIZE_PTR)) 4467 return 0; 4468 4469 size = virt_to_cache(objp)->object_size; 4470 /* We assume that ksize callers could use the whole allocated area, 4471 * so we need to unpoison this area. 4472 */ 4473 kasan_unpoison_shadow(objp, size); 4474 4475 return size; 4476 } 4477 EXPORT_SYMBOL(ksize); 4478