1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/cpu.h> 104 #include <linux/sysctl.h> 105 #include <linux/module.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 /* 366 * Do not go above this order unless 0 objects fit into the slab or 367 * overridden on the command line. 368 */ 369 #define SLAB_MAX_ORDER_HI 1 370 #define SLAB_MAX_ORDER_LO 0 371 static int slab_max_order = SLAB_MAX_ORDER_LO; 372 static bool slab_max_order_set __initdata; 373 374 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 375 unsigned int idx) 376 { 377 return page->s_mem + cache->size * idx; 378 } 379 380 #define BOOT_CPUCACHE_ENTRIES 1 381 /* internal cache of cache description objs */ 382 static struct kmem_cache kmem_cache_boot = { 383 .batchcount = 1, 384 .limit = BOOT_CPUCACHE_ENTRIES, 385 .shared = 1, 386 .size = sizeof(struct kmem_cache), 387 .name = "kmem_cache", 388 }; 389 390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 391 392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 393 { 394 return this_cpu_ptr(cachep->cpu_cache); 395 } 396 397 /* 398 * Calculate the number of objects and left-over bytes for a given buffer size. 399 */ 400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 401 slab_flags_t flags, size_t *left_over) 402 { 403 unsigned int num; 404 size_t slab_size = PAGE_SIZE << gfporder; 405 406 /* 407 * The slab management structure can be either off the slab or 408 * on it. For the latter case, the memory allocated for a 409 * slab is used for: 410 * 411 * - @buffer_size bytes for each object 412 * - One freelist_idx_t for each object 413 * 414 * We don't need to consider alignment of freelist because 415 * freelist will be at the end of slab page. The objects will be 416 * at the correct alignment. 417 * 418 * If the slab management structure is off the slab, then the 419 * alignment will already be calculated into the size. Because 420 * the slabs are all pages aligned, the objects will be at the 421 * correct alignment when allocated. 422 */ 423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 424 num = slab_size / buffer_size; 425 *left_over = slab_size % buffer_size; 426 } else { 427 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 428 *left_over = slab_size % 429 (buffer_size + sizeof(freelist_idx_t)); 430 } 431 432 return num; 433 } 434 435 #if DEBUG 436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 437 438 static void __slab_error(const char *function, struct kmem_cache *cachep, 439 char *msg) 440 { 441 pr_err("slab error in %s(): cache `%s': %s\n", 442 function, cachep->name, msg); 443 dump_stack(); 444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 445 } 446 #endif 447 448 /* 449 * By default on NUMA we use alien caches to stage the freeing of 450 * objects allocated from other nodes. This causes massive memory 451 * inefficiencies when using fake NUMA setup to split memory into a 452 * large number of small nodes, so it can be disabled on the command 453 * line 454 */ 455 456 static int use_alien_caches __read_mostly = 1; 457 static int __init noaliencache_setup(char *s) 458 { 459 use_alien_caches = 0; 460 return 1; 461 } 462 __setup("noaliencache", noaliencache_setup); 463 464 static int __init slab_max_order_setup(char *str) 465 { 466 get_option(&str, &slab_max_order); 467 slab_max_order = slab_max_order < 0 ? 0 : 468 min(slab_max_order, MAX_ORDER - 1); 469 slab_max_order_set = true; 470 471 return 1; 472 } 473 __setup("slab_max_order=", slab_max_order_setup); 474 475 #ifdef CONFIG_NUMA 476 /* 477 * Special reaping functions for NUMA systems called from cache_reap(). 478 * These take care of doing round robin flushing of alien caches (containing 479 * objects freed on different nodes from which they were allocated) and the 480 * flushing of remote pcps by calling drain_node_pages. 481 */ 482 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 483 484 static void init_reap_node(int cpu) 485 { 486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 487 node_online_map); 488 } 489 490 static void next_reap_node(void) 491 { 492 int node = __this_cpu_read(slab_reap_node); 493 494 node = next_node_in(node, node_online_map); 495 __this_cpu_write(slab_reap_node, node); 496 } 497 498 #else 499 #define init_reap_node(cpu) do { } while (0) 500 #define next_reap_node(void) do { } while (0) 501 #endif 502 503 /* 504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 505 * via the workqueue/eventd. 506 * Add the CPU number into the expiration time to minimize the possibility of 507 * the CPUs getting into lockstep and contending for the global cache chain 508 * lock. 509 */ 510 static void start_cpu_timer(int cpu) 511 { 512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 513 514 if (reap_work->work.func == NULL) { 515 init_reap_node(cpu); 516 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 517 schedule_delayed_work_on(cpu, reap_work, 518 __round_jiffies_relative(HZ, cpu)); 519 } 520 } 521 522 static void init_arraycache(struct array_cache *ac, int limit, int batch) 523 { 524 if (ac) { 525 ac->avail = 0; 526 ac->limit = limit; 527 ac->batchcount = batch; 528 ac->touched = 0; 529 } 530 } 531 532 static struct array_cache *alloc_arraycache(int node, int entries, 533 int batchcount, gfp_t gfp) 534 { 535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 536 struct array_cache *ac = NULL; 537 538 ac = kmalloc_node(memsize, gfp, node); 539 /* 540 * The array_cache structures contain pointers to free object. 541 * However, when such objects are allocated or transferred to another 542 * cache the pointers are not cleared and they could be counted as 543 * valid references during a kmemleak scan. Therefore, kmemleak must 544 * not scan such objects. 545 */ 546 kmemleak_no_scan(ac); 547 init_arraycache(ac, entries, batchcount); 548 return ac; 549 } 550 551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 552 struct page *page, void *objp) 553 { 554 struct kmem_cache_node *n; 555 int page_node; 556 LIST_HEAD(list); 557 558 page_node = page_to_nid(page); 559 n = get_node(cachep, page_node); 560 561 spin_lock(&n->list_lock); 562 free_block(cachep, &objp, 1, page_node, &list); 563 spin_unlock(&n->list_lock); 564 565 slabs_destroy(cachep, &list); 566 } 567 568 /* 569 * Transfer objects in one arraycache to another. 570 * Locking must be handled by the caller. 571 * 572 * Return the number of entries transferred. 573 */ 574 static int transfer_objects(struct array_cache *to, 575 struct array_cache *from, unsigned int max) 576 { 577 /* Figure out how many entries to transfer */ 578 int nr = min3(from->avail, max, to->limit - to->avail); 579 580 if (!nr) 581 return 0; 582 583 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 584 sizeof(void *) *nr); 585 586 from->avail -= nr; 587 to->avail += nr; 588 return nr; 589 } 590 591 #ifndef CONFIG_NUMA 592 593 #define drain_alien_cache(cachep, alien) do { } while (0) 594 #define reap_alien(cachep, n) do { } while (0) 595 596 static inline struct alien_cache **alloc_alien_cache(int node, 597 int limit, gfp_t gfp) 598 { 599 return NULL; 600 } 601 602 static inline void free_alien_cache(struct alien_cache **ac_ptr) 603 { 604 } 605 606 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 607 { 608 return 0; 609 } 610 611 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 612 gfp_t flags) 613 { 614 return NULL; 615 } 616 617 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 618 gfp_t flags, int nodeid) 619 { 620 return NULL; 621 } 622 623 static inline gfp_t gfp_exact_node(gfp_t flags) 624 { 625 return flags & ~__GFP_NOFAIL; 626 } 627 628 #else /* CONFIG_NUMA */ 629 630 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 631 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 632 633 static struct alien_cache *__alloc_alien_cache(int node, int entries, 634 int batch, gfp_t gfp) 635 { 636 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 637 struct alien_cache *alc = NULL; 638 639 alc = kmalloc_node(memsize, gfp, node); 640 if (alc) { 641 kmemleak_no_scan(alc); 642 init_arraycache(&alc->ac, entries, batch); 643 spin_lock_init(&alc->lock); 644 } 645 return alc; 646 } 647 648 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 649 { 650 struct alien_cache **alc_ptr; 651 int i; 652 653 if (limit > 1) 654 limit = 12; 655 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 656 if (!alc_ptr) 657 return NULL; 658 659 for_each_node(i) { 660 if (i == node || !node_online(i)) 661 continue; 662 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 663 if (!alc_ptr[i]) { 664 for (i--; i >= 0; i--) 665 kfree(alc_ptr[i]); 666 kfree(alc_ptr); 667 return NULL; 668 } 669 } 670 return alc_ptr; 671 } 672 673 static void free_alien_cache(struct alien_cache **alc_ptr) 674 { 675 int i; 676 677 if (!alc_ptr) 678 return; 679 for_each_node(i) 680 kfree(alc_ptr[i]); 681 kfree(alc_ptr); 682 } 683 684 static void __drain_alien_cache(struct kmem_cache *cachep, 685 struct array_cache *ac, int node, 686 struct list_head *list) 687 { 688 struct kmem_cache_node *n = get_node(cachep, node); 689 690 if (ac->avail) { 691 spin_lock(&n->list_lock); 692 /* 693 * Stuff objects into the remote nodes shared array first. 694 * That way we could avoid the overhead of putting the objects 695 * into the free lists and getting them back later. 696 */ 697 if (n->shared) 698 transfer_objects(n->shared, ac, ac->limit); 699 700 free_block(cachep, ac->entry, ac->avail, node, list); 701 ac->avail = 0; 702 spin_unlock(&n->list_lock); 703 } 704 } 705 706 /* 707 * Called from cache_reap() to regularly drain alien caches round robin. 708 */ 709 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 710 { 711 int node = __this_cpu_read(slab_reap_node); 712 713 if (n->alien) { 714 struct alien_cache *alc = n->alien[node]; 715 struct array_cache *ac; 716 717 if (alc) { 718 ac = &alc->ac; 719 if (ac->avail && spin_trylock_irq(&alc->lock)) { 720 LIST_HEAD(list); 721 722 __drain_alien_cache(cachep, ac, node, &list); 723 spin_unlock_irq(&alc->lock); 724 slabs_destroy(cachep, &list); 725 } 726 } 727 } 728 } 729 730 static void drain_alien_cache(struct kmem_cache *cachep, 731 struct alien_cache **alien) 732 { 733 int i = 0; 734 struct alien_cache *alc; 735 struct array_cache *ac; 736 unsigned long flags; 737 738 for_each_online_node(i) { 739 alc = alien[i]; 740 if (alc) { 741 LIST_HEAD(list); 742 743 ac = &alc->ac; 744 spin_lock_irqsave(&alc->lock, flags); 745 __drain_alien_cache(cachep, ac, i, &list); 746 spin_unlock_irqrestore(&alc->lock, flags); 747 slabs_destroy(cachep, &list); 748 } 749 } 750 } 751 752 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 753 int node, int page_node) 754 { 755 struct kmem_cache_node *n; 756 struct alien_cache *alien = NULL; 757 struct array_cache *ac; 758 LIST_HEAD(list); 759 760 n = get_node(cachep, node); 761 STATS_INC_NODEFREES(cachep); 762 if (n->alien && n->alien[page_node]) { 763 alien = n->alien[page_node]; 764 ac = &alien->ac; 765 spin_lock(&alien->lock); 766 if (unlikely(ac->avail == ac->limit)) { 767 STATS_INC_ACOVERFLOW(cachep); 768 __drain_alien_cache(cachep, ac, page_node, &list); 769 } 770 ac->entry[ac->avail++] = objp; 771 spin_unlock(&alien->lock); 772 slabs_destroy(cachep, &list); 773 } else { 774 n = get_node(cachep, page_node); 775 spin_lock(&n->list_lock); 776 free_block(cachep, &objp, 1, page_node, &list); 777 spin_unlock(&n->list_lock); 778 slabs_destroy(cachep, &list); 779 } 780 return 1; 781 } 782 783 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 784 { 785 int page_node = page_to_nid(virt_to_page(objp)); 786 int node = numa_mem_id(); 787 /* 788 * Make sure we are not freeing a object from another node to the array 789 * cache on this cpu. 790 */ 791 if (likely(node == page_node)) 792 return 0; 793 794 return __cache_free_alien(cachep, objp, node, page_node); 795 } 796 797 /* 798 * Construct gfp mask to allocate from a specific node but do not reclaim or 799 * warn about failures. 800 */ 801 static inline gfp_t gfp_exact_node(gfp_t flags) 802 { 803 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 804 } 805 #endif 806 807 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 808 { 809 struct kmem_cache_node *n; 810 811 /* 812 * Set up the kmem_cache_node for cpu before we can 813 * begin anything. Make sure some other cpu on this 814 * node has not already allocated this 815 */ 816 n = get_node(cachep, node); 817 if (n) { 818 spin_lock_irq(&n->list_lock); 819 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 820 cachep->num; 821 spin_unlock_irq(&n->list_lock); 822 823 return 0; 824 } 825 826 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 827 if (!n) 828 return -ENOMEM; 829 830 kmem_cache_node_init(n); 831 n->next_reap = jiffies + REAPTIMEOUT_NODE + 832 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 833 834 n->free_limit = 835 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 836 837 /* 838 * The kmem_cache_nodes don't come and go as CPUs 839 * come and go. slab_mutex is sufficient 840 * protection here. 841 */ 842 cachep->node[node] = n; 843 844 return 0; 845 } 846 847 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 848 /* 849 * Allocates and initializes node for a node on each slab cache, used for 850 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 851 * will be allocated off-node since memory is not yet online for the new node. 852 * When hotplugging memory or a cpu, existing node are not replaced if 853 * already in use. 854 * 855 * Must hold slab_mutex. 856 */ 857 static int init_cache_node_node(int node) 858 { 859 int ret; 860 struct kmem_cache *cachep; 861 862 list_for_each_entry(cachep, &slab_caches, list) { 863 ret = init_cache_node(cachep, node, GFP_KERNEL); 864 if (ret) 865 return ret; 866 } 867 868 return 0; 869 } 870 #endif 871 872 static int setup_kmem_cache_node(struct kmem_cache *cachep, 873 int node, gfp_t gfp, bool force_change) 874 { 875 int ret = -ENOMEM; 876 struct kmem_cache_node *n; 877 struct array_cache *old_shared = NULL; 878 struct array_cache *new_shared = NULL; 879 struct alien_cache **new_alien = NULL; 880 LIST_HEAD(list); 881 882 if (use_alien_caches) { 883 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 884 if (!new_alien) 885 goto fail; 886 } 887 888 if (cachep->shared) { 889 new_shared = alloc_arraycache(node, 890 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 891 if (!new_shared) 892 goto fail; 893 } 894 895 ret = init_cache_node(cachep, node, gfp); 896 if (ret) 897 goto fail; 898 899 n = get_node(cachep, node); 900 spin_lock_irq(&n->list_lock); 901 if (n->shared && force_change) { 902 free_block(cachep, n->shared->entry, 903 n->shared->avail, node, &list); 904 n->shared->avail = 0; 905 } 906 907 if (!n->shared || force_change) { 908 old_shared = n->shared; 909 n->shared = new_shared; 910 new_shared = NULL; 911 } 912 913 if (!n->alien) { 914 n->alien = new_alien; 915 new_alien = NULL; 916 } 917 918 spin_unlock_irq(&n->list_lock); 919 slabs_destroy(cachep, &list); 920 921 /* 922 * To protect lockless access to n->shared during irq disabled context. 923 * If n->shared isn't NULL in irq disabled context, accessing to it is 924 * guaranteed to be valid until irq is re-enabled, because it will be 925 * freed after synchronize_rcu(). 926 */ 927 if (old_shared && force_change) 928 synchronize_rcu(); 929 930 fail: 931 kfree(old_shared); 932 kfree(new_shared); 933 free_alien_cache(new_alien); 934 935 return ret; 936 } 937 938 #ifdef CONFIG_SMP 939 940 static void cpuup_canceled(long cpu) 941 { 942 struct kmem_cache *cachep; 943 struct kmem_cache_node *n = NULL; 944 int node = cpu_to_mem(cpu); 945 const struct cpumask *mask = cpumask_of_node(node); 946 947 list_for_each_entry(cachep, &slab_caches, list) { 948 struct array_cache *nc; 949 struct array_cache *shared; 950 struct alien_cache **alien; 951 LIST_HEAD(list); 952 953 n = get_node(cachep, node); 954 if (!n) 955 continue; 956 957 spin_lock_irq(&n->list_lock); 958 959 /* Free limit for this kmem_cache_node */ 960 n->free_limit -= cachep->batchcount; 961 962 /* cpu is dead; no one can alloc from it. */ 963 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 964 free_block(cachep, nc->entry, nc->avail, node, &list); 965 nc->avail = 0; 966 967 if (!cpumask_empty(mask)) { 968 spin_unlock_irq(&n->list_lock); 969 goto free_slab; 970 } 971 972 shared = n->shared; 973 if (shared) { 974 free_block(cachep, shared->entry, 975 shared->avail, node, &list); 976 n->shared = NULL; 977 } 978 979 alien = n->alien; 980 n->alien = NULL; 981 982 spin_unlock_irq(&n->list_lock); 983 984 kfree(shared); 985 if (alien) { 986 drain_alien_cache(cachep, alien); 987 free_alien_cache(alien); 988 } 989 990 free_slab: 991 slabs_destroy(cachep, &list); 992 } 993 /* 994 * In the previous loop, all the objects were freed to 995 * the respective cache's slabs, now we can go ahead and 996 * shrink each nodelist to its limit. 997 */ 998 list_for_each_entry(cachep, &slab_caches, list) { 999 n = get_node(cachep, node); 1000 if (!n) 1001 continue; 1002 drain_freelist(cachep, n, INT_MAX); 1003 } 1004 } 1005 1006 static int cpuup_prepare(long cpu) 1007 { 1008 struct kmem_cache *cachep; 1009 int node = cpu_to_mem(cpu); 1010 int err; 1011 1012 /* 1013 * We need to do this right in the beginning since 1014 * alloc_arraycache's are going to use this list. 1015 * kmalloc_node allows us to add the slab to the right 1016 * kmem_cache_node and not this cpu's kmem_cache_node 1017 */ 1018 err = init_cache_node_node(node); 1019 if (err < 0) 1020 goto bad; 1021 1022 /* 1023 * Now we can go ahead with allocating the shared arrays and 1024 * array caches 1025 */ 1026 list_for_each_entry(cachep, &slab_caches, list) { 1027 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1028 if (err) 1029 goto bad; 1030 } 1031 1032 return 0; 1033 bad: 1034 cpuup_canceled(cpu); 1035 return -ENOMEM; 1036 } 1037 1038 int slab_prepare_cpu(unsigned int cpu) 1039 { 1040 int err; 1041 1042 mutex_lock(&slab_mutex); 1043 err = cpuup_prepare(cpu); 1044 mutex_unlock(&slab_mutex); 1045 return err; 1046 } 1047 1048 /* 1049 * This is called for a failed online attempt and for a successful 1050 * offline. 1051 * 1052 * Even if all the cpus of a node are down, we don't free the 1053 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1054 * a kmalloc allocation from another cpu for memory from the node of 1055 * the cpu going down. The list3 structure is usually allocated from 1056 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1057 */ 1058 int slab_dead_cpu(unsigned int cpu) 1059 { 1060 mutex_lock(&slab_mutex); 1061 cpuup_canceled(cpu); 1062 mutex_unlock(&slab_mutex); 1063 return 0; 1064 } 1065 #endif 1066 1067 static int slab_online_cpu(unsigned int cpu) 1068 { 1069 start_cpu_timer(cpu); 1070 return 0; 1071 } 1072 1073 static int slab_offline_cpu(unsigned int cpu) 1074 { 1075 /* 1076 * Shutdown cache reaper. Note that the slab_mutex is held so 1077 * that if cache_reap() is invoked it cannot do anything 1078 * expensive but will only modify reap_work and reschedule the 1079 * timer. 1080 */ 1081 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1082 /* Now the cache_reaper is guaranteed to be not running. */ 1083 per_cpu(slab_reap_work, cpu).work.func = NULL; 1084 return 0; 1085 } 1086 1087 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1088 /* 1089 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1090 * Returns -EBUSY if all objects cannot be drained so that the node is not 1091 * removed. 1092 * 1093 * Must hold slab_mutex. 1094 */ 1095 static int __meminit drain_cache_node_node(int node) 1096 { 1097 struct kmem_cache *cachep; 1098 int ret = 0; 1099 1100 list_for_each_entry(cachep, &slab_caches, list) { 1101 struct kmem_cache_node *n; 1102 1103 n = get_node(cachep, node); 1104 if (!n) 1105 continue; 1106 1107 drain_freelist(cachep, n, INT_MAX); 1108 1109 if (!list_empty(&n->slabs_full) || 1110 !list_empty(&n->slabs_partial)) { 1111 ret = -EBUSY; 1112 break; 1113 } 1114 } 1115 return ret; 1116 } 1117 1118 static int __meminit slab_memory_callback(struct notifier_block *self, 1119 unsigned long action, void *arg) 1120 { 1121 struct memory_notify *mnb = arg; 1122 int ret = 0; 1123 int nid; 1124 1125 nid = mnb->status_change_nid; 1126 if (nid < 0) 1127 goto out; 1128 1129 switch (action) { 1130 case MEM_GOING_ONLINE: 1131 mutex_lock(&slab_mutex); 1132 ret = init_cache_node_node(nid); 1133 mutex_unlock(&slab_mutex); 1134 break; 1135 case MEM_GOING_OFFLINE: 1136 mutex_lock(&slab_mutex); 1137 ret = drain_cache_node_node(nid); 1138 mutex_unlock(&slab_mutex); 1139 break; 1140 case MEM_ONLINE: 1141 case MEM_OFFLINE: 1142 case MEM_CANCEL_ONLINE: 1143 case MEM_CANCEL_OFFLINE: 1144 break; 1145 } 1146 out: 1147 return notifier_from_errno(ret); 1148 } 1149 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1150 1151 /* 1152 * swap the static kmem_cache_node with kmalloced memory 1153 */ 1154 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1155 int nodeid) 1156 { 1157 struct kmem_cache_node *ptr; 1158 1159 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1160 BUG_ON(!ptr); 1161 1162 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1163 /* 1164 * Do not assume that spinlocks can be initialized via memcpy: 1165 */ 1166 spin_lock_init(&ptr->list_lock); 1167 1168 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1169 cachep->node[nodeid] = ptr; 1170 } 1171 1172 /* 1173 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1174 * size of kmem_cache_node. 1175 */ 1176 static void __init set_up_node(struct kmem_cache *cachep, int index) 1177 { 1178 int node; 1179 1180 for_each_online_node(node) { 1181 cachep->node[node] = &init_kmem_cache_node[index + node]; 1182 cachep->node[node]->next_reap = jiffies + 1183 REAPTIMEOUT_NODE + 1184 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1185 } 1186 } 1187 1188 /* 1189 * Initialisation. Called after the page allocator have been initialised and 1190 * before smp_init(). 1191 */ 1192 void __init kmem_cache_init(void) 1193 { 1194 int i; 1195 1196 kmem_cache = &kmem_cache_boot; 1197 1198 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1199 use_alien_caches = 0; 1200 1201 for (i = 0; i < NUM_INIT_LISTS; i++) 1202 kmem_cache_node_init(&init_kmem_cache_node[i]); 1203 1204 /* 1205 * Fragmentation resistance on low memory - only use bigger 1206 * page orders on machines with more than 32MB of memory if 1207 * not overridden on the command line. 1208 */ 1209 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1210 slab_max_order = SLAB_MAX_ORDER_HI; 1211 1212 /* Bootstrap is tricky, because several objects are allocated 1213 * from caches that do not exist yet: 1214 * 1) initialize the kmem_cache cache: it contains the struct 1215 * kmem_cache structures of all caches, except kmem_cache itself: 1216 * kmem_cache is statically allocated. 1217 * Initially an __init data area is used for the head array and the 1218 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1219 * array at the end of the bootstrap. 1220 * 2) Create the first kmalloc cache. 1221 * The struct kmem_cache for the new cache is allocated normally. 1222 * An __init data area is used for the head array. 1223 * 3) Create the remaining kmalloc caches, with minimally sized 1224 * head arrays. 1225 * 4) Replace the __init data head arrays for kmem_cache and the first 1226 * kmalloc cache with kmalloc allocated arrays. 1227 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1228 * the other cache's with kmalloc allocated memory. 1229 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1230 */ 1231 1232 /* 1) create the kmem_cache */ 1233 1234 /* 1235 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1236 */ 1237 create_boot_cache(kmem_cache, "kmem_cache", 1238 offsetof(struct kmem_cache, node) + 1239 nr_node_ids * sizeof(struct kmem_cache_node *), 1240 SLAB_HWCACHE_ALIGN, 0, 0); 1241 list_add(&kmem_cache->list, &slab_caches); 1242 memcg_link_cache(kmem_cache, NULL); 1243 slab_state = PARTIAL; 1244 1245 /* 1246 * Initialize the caches that provide memory for the kmem_cache_node 1247 * structures first. Without this, further allocations will bug. 1248 */ 1249 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( 1250 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL], 1251 kmalloc_info[INDEX_NODE].size, 1252 ARCH_KMALLOC_FLAGS, 0, 1253 kmalloc_info[INDEX_NODE].size); 1254 slab_state = PARTIAL_NODE; 1255 setup_kmalloc_cache_index_table(); 1256 1257 slab_early_init = 0; 1258 1259 /* 5) Replace the bootstrap kmem_cache_node */ 1260 { 1261 int nid; 1262 1263 for_each_online_node(nid) { 1264 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1265 1266 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1267 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1268 } 1269 } 1270 1271 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1272 } 1273 1274 void __init kmem_cache_init_late(void) 1275 { 1276 struct kmem_cache *cachep; 1277 1278 /* 6) resize the head arrays to their final sizes */ 1279 mutex_lock(&slab_mutex); 1280 list_for_each_entry(cachep, &slab_caches, list) 1281 if (enable_cpucache(cachep, GFP_NOWAIT)) 1282 BUG(); 1283 mutex_unlock(&slab_mutex); 1284 1285 /* Done! */ 1286 slab_state = FULL; 1287 1288 #ifdef CONFIG_NUMA 1289 /* 1290 * Register a memory hotplug callback that initializes and frees 1291 * node. 1292 */ 1293 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1294 #endif 1295 1296 /* 1297 * The reap timers are started later, with a module init call: That part 1298 * of the kernel is not yet operational. 1299 */ 1300 } 1301 1302 static int __init cpucache_init(void) 1303 { 1304 int ret; 1305 1306 /* 1307 * Register the timers that return unneeded pages to the page allocator 1308 */ 1309 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1310 slab_online_cpu, slab_offline_cpu); 1311 WARN_ON(ret < 0); 1312 1313 return 0; 1314 } 1315 __initcall(cpucache_init); 1316 1317 static noinline void 1318 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1319 { 1320 #if DEBUG 1321 struct kmem_cache_node *n; 1322 unsigned long flags; 1323 int node; 1324 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1325 DEFAULT_RATELIMIT_BURST); 1326 1327 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1328 return; 1329 1330 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1331 nodeid, gfpflags, &gfpflags); 1332 pr_warn(" cache: %s, object size: %d, order: %d\n", 1333 cachep->name, cachep->size, cachep->gfporder); 1334 1335 for_each_kmem_cache_node(cachep, node, n) { 1336 unsigned long total_slabs, free_slabs, free_objs; 1337 1338 spin_lock_irqsave(&n->list_lock, flags); 1339 total_slabs = n->total_slabs; 1340 free_slabs = n->free_slabs; 1341 free_objs = n->free_objects; 1342 spin_unlock_irqrestore(&n->list_lock, flags); 1343 1344 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1345 node, total_slabs - free_slabs, total_slabs, 1346 (total_slabs * cachep->num) - free_objs, 1347 total_slabs * cachep->num); 1348 } 1349 #endif 1350 } 1351 1352 /* 1353 * Interface to system's page allocator. No need to hold the 1354 * kmem_cache_node ->list_lock. 1355 * 1356 * If we requested dmaable memory, we will get it. Even if we 1357 * did not request dmaable memory, we might get it, but that 1358 * would be relatively rare and ignorable. 1359 */ 1360 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1361 int nodeid) 1362 { 1363 struct page *page; 1364 1365 flags |= cachep->allocflags; 1366 1367 page = __alloc_pages_node(nodeid, flags, cachep->gfporder); 1368 if (!page) { 1369 slab_out_of_memory(cachep, flags, nodeid); 1370 return NULL; 1371 } 1372 1373 if (charge_slab_page(page, flags, cachep->gfporder, cachep)) { 1374 __free_pages(page, cachep->gfporder); 1375 return NULL; 1376 } 1377 1378 __SetPageSlab(page); 1379 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1380 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1381 SetPageSlabPfmemalloc(page); 1382 1383 return page; 1384 } 1385 1386 /* 1387 * Interface to system's page release. 1388 */ 1389 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1390 { 1391 int order = cachep->gfporder; 1392 1393 BUG_ON(!PageSlab(page)); 1394 __ClearPageSlabPfmemalloc(page); 1395 __ClearPageSlab(page); 1396 page_mapcount_reset(page); 1397 page->mapping = NULL; 1398 1399 if (current->reclaim_state) 1400 current->reclaim_state->reclaimed_slab += 1 << order; 1401 uncharge_slab_page(page, order, cachep); 1402 __free_pages(page, order); 1403 } 1404 1405 static void kmem_rcu_free(struct rcu_head *head) 1406 { 1407 struct kmem_cache *cachep; 1408 struct page *page; 1409 1410 page = container_of(head, struct page, rcu_head); 1411 cachep = page->slab_cache; 1412 1413 kmem_freepages(cachep, page); 1414 } 1415 1416 #if DEBUG 1417 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1418 { 1419 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && 1420 (cachep->size % PAGE_SIZE) == 0) 1421 return true; 1422 1423 return false; 1424 } 1425 1426 #ifdef CONFIG_DEBUG_PAGEALLOC 1427 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1428 { 1429 if (!is_debug_pagealloc_cache(cachep)) 1430 return; 1431 1432 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1433 } 1434 1435 #else 1436 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1437 int map) {} 1438 1439 #endif 1440 1441 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1442 { 1443 int size = cachep->object_size; 1444 addr = &((char *)addr)[obj_offset(cachep)]; 1445 1446 memset(addr, val, size); 1447 *(unsigned char *)(addr + size - 1) = POISON_END; 1448 } 1449 1450 static void dump_line(char *data, int offset, int limit) 1451 { 1452 int i; 1453 unsigned char error = 0; 1454 int bad_count = 0; 1455 1456 pr_err("%03x: ", offset); 1457 for (i = 0; i < limit; i++) { 1458 if (data[offset + i] != POISON_FREE) { 1459 error = data[offset + i]; 1460 bad_count++; 1461 } 1462 } 1463 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1464 &data[offset], limit, 1); 1465 1466 if (bad_count == 1) { 1467 error ^= POISON_FREE; 1468 if (!(error & (error - 1))) { 1469 pr_err("Single bit error detected. Probably bad RAM.\n"); 1470 #ifdef CONFIG_X86 1471 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1472 #else 1473 pr_err("Run a memory test tool.\n"); 1474 #endif 1475 } 1476 } 1477 } 1478 #endif 1479 1480 #if DEBUG 1481 1482 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1483 { 1484 int i, size; 1485 char *realobj; 1486 1487 if (cachep->flags & SLAB_RED_ZONE) { 1488 pr_err("Redzone: 0x%llx/0x%llx\n", 1489 *dbg_redzone1(cachep, objp), 1490 *dbg_redzone2(cachep, objp)); 1491 } 1492 1493 if (cachep->flags & SLAB_STORE_USER) 1494 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1495 realobj = (char *)objp + obj_offset(cachep); 1496 size = cachep->object_size; 1497 for (i = 0; i < size && lines; i += 16, lines--) { 1498 int limit; 1499 limit = 16; 1500 if (i + limit > size) 1501 limit = size - i; 1502 dump_line(realobj, i, limit); 1503 } 1504 } 1505 1506 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1507 { 1508 char *realobj; 1509 int size, i; 1510 int lines = 0; 1511 1512 if (is_debug_pagealloc_cache(cachep)) 1513 return; 1514 1515 realobj = (char *)objp + obj_offset(cachep); 1516 size = cachep->object_size; 1517 1518 for (i = 0; i < size; i++) { 1519 char exp = POISON_FREE; 1520 if (i == size - 1) 1521 exp = POISON_END; 1522 if (realobj[i] != exp) { 1523 int limit; 1524 /* Mismatch ! */ 1525 /* Print header */ 1526 if (lines == 0) { 1527 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1528 print_tainted(), cachep->name, 1529 realobj, size); 1530 print_objinfo(cachep, objp, 0); 1531 } 1532 /* Hexdump the affected line */ 1533 i = (i / 16) * 16; 1534 limit = 16; 1535 if (i + limit > size) 1536 limit = size - i; 1537 dump_line(realobj, i, limit); 1538 i += 16; 1539 lines++; 1540 /* Limit to 5 lines */ 1541 if (lines > 5) 1542 break; 1543 } 1544 } 1545 if (lines != 0) { 1546 /* Print some data about the neighboring objects, if they 1547 * exist: 1548 */ 1549 struct page *page = virt_to_head_page(objp); 1550 unsigned int objnr; 1551 1552 objnr = obj_to_index(cachep, page, objp); 1553 if (objnr) { 1554 objp = index_to_obj(cachep, page, objnr - 1); 1555 realobj = (char *)objp + obj_offset(cachep); 1556 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1557 print_objinfo(cachep, objp, 2); 1558 } 1559 if (objnr + 1 < cachep->num) { 1560 objp = index_to_obj(cachep, page, objnr + 1); 1561 realobj = (char *)objp + obj_offset(cachep); 1562 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1563 print_objinfo(cachep, objp, 2); 1564 } 1565 } 1566 } 1567 #endif 1568 1569 #if DEBUG 1570 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1571 struct page *page) 1572 { 1573 int i; 1574 1575 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1576 poison_obj(cachep, page->freelist - obj_offset(cachep), 1577 POISON_FREE); 1578 } 1579 1580 for (i = 0; i < cachep->num; i++) { 1581 void *objp = index_to_obj(cachep, page, i); 1582 1583 if (cachep->flags & SLAB_POISON) { 1584 check_poison_obj(cachep, objp); 1585 slab_kernel_map(cachep, objp, 1); 1586 } 1587 if (cachep->flags & SLAB_RED_ZONE) { 1588 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1589 slab_error(cachep, "start of a freed object was overwritten"); 1590 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1591 slab_error(cachep, "end of a freed object was overwritten"); 1592 } 1593 } 1594 } 1595 #else 1596 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1597 struct page *page) 1598 { 1599 } 1600 #endif 1601 1602 /** 1603 * slab_destroy - destroy and release all objects in a slab 1604 * @cachep: cache pointer being destroyed 1605 * @page: page pointer being destroyed 1606 * 1607 * Destroy all the objs in a slab page, and release the mem back to the system. 1608 * Before calling the slab page must have been unlinked from the cache. The 1609 * kmem_cache_node ->list_lock is not held/needed. 1610 */ 1611 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1612 { 1613 void *freelist; 1614 1615 freelist = page->freelist; 1616 slab_destroy_debugcheck(cachep, page); 1617 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1618 call_rcu(&page->rcu_head, kmem_rcu_free); 1619 else 1620 kmem_freepages(cachep, page); 1621 1622 /* 1623 * From now on, we don't use freelist 1624 * although actual page can be freed in rcu context 1625 */ 1626 if (OFF_SLAB(cachep)) 1627 kmem_cache_free(cachep->freelist_cache, freelist); 1628 } 1629 1630 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1631 { 1632 struct page *page, *n; 1633 1634 list_for_each_entry_safe(page, n, list, slab_list) { 1635 list_del(&page->slab_list); 1636 slab_destroy(cachep, page); 1637 } 1638 } 1639 1640 /** 1641 * calculate_slab_order - calculate size (page order) of slabs 1642 * @cachep: pointer to the cache that is being created 1643 * @size: size of objects to be created in this cache. 1644 * @flags: slab allocation flags 1645 * 1646 * Also calculates the number of objects per slab. 1647 * 1648 * This could be made much more intelligent. For now, try to avoid using 1649 * high order pages for slabs. When the gfp() functions are more friendly 1650 * towards high-order requests, this should be changed. 1651 * 1652 * Return: number of left-over bytes in a slab 1653 */ 1654 static size_t calculate_slab_order(struct kmem_cache *cachep, 1655 size_t size, slab_flags_t flags) 1656 { 1657 size_t left_over = 0; 1658 int gfporder; 1659 1660 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1661 unsigned int num; 1662 size_t remainder; 1663 1664 num = cache_estimate(gfporder, size, flags, &remainder); 1665 if (!num) 1666 continue; 1667 1668 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1669 if (num > SLAB_OBJ_MAX_NUM) 1670 break; 1671 1672 if (flags & CFLGS_OFF_SLAB) { 1673 struct kmem_cache *freelist_cache; 1674 size_t freelist_size; 1675 1676 freelist_size = num * sizeof(freelist_idx_t); 1677 freelist_cache = kmalloc_slab(freelist_size, 0u); 1678 if (!freelist_cache) 1679 continue; 1680 1681 /* 1682 * Needed to avoid possible looping condition 1683 * in cache_grow_begin() 1684 */ 1685 if (OFF_SLAB(freelist_cache)) 1686 continue; 1687 1688 /* check if off slab has enough benefit */ 1689 if (freelist_cache->size > cachep->size / 2) 1690 continue; 1691 } 1692 1693 /* Found something acceptable - save it away */ 1694 cachep->num = num; 1695 cachep->gfporder = gfporder; 1696 left_over = remainder; 1697 1698 /* 1699 * A VFS-reclaimable slab tends to have most allocations 1700 * as GFP_NOFS and we really don't want to have to be allocating 1701 * higher-order pages when we are unable to shrink dcache. 1702 */ 1703 if (flags & SLAB_RECLAIM_ACCOUNT) 1704 break; 1705 1706 /* 1707 * Large number of objects is good, but very large slabs are 1708 * currently bad for the gfp()s. 1709 */ 1710 if (gfporder >= slab_max_order) 1711 break; 1712 1713 /* 1714 * Acceptable internal fragmentation? 1715 */ 1716 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1717 break; 1718 } 1719 return left_over; 1720 } 1721 1722 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1723 struct kmem_cache *cachep, int entries, int batchcount) 1724 { 1725 int cpu; 1726 size_t size; 1727 struct array_cache __percpu *cpu_cache; 1728 1729 size = sizeof(void *) * entries + sizeof(struct array_cache); 1730 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1731 1732 if (!cpu_cache) 1733 return NULL; 1734 1735 for_each_possible_cpu(cpu) { 1736 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1737 entries, batchcount); 1738 } 1739 1740 return cpu_cache; 1741 } 1742 1743 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1744 { 1745 if (slab_state >= FULL) 1746 return enable_cpucache(cachep, gfp); 1747 1748 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1749 if (!cachep->cpu_cache) 1750 return 1; 1751 1752 if (slab_state == DOWN) { 1753 /* Creation of first cache (kmem_cache). */ 1754 set_up_node(kmem_cache, CACHE_CACHE); 1755 } else if (slab_state == PARTIAL) { 1756 /* For kmem_cache_node */ 1757 set_up_node(cachep, SIZE_NODE); 1758 } else { 1759 int node; 1760 1761 for_each_online_node(node) { 1762 cachep->node[node] = kmalloc_node( 1763 sizeof(struct kmem_cache_node), gfp, node); 1764 BUG_ON(!cachep->node[node]); 1765 kmem_cache_node_init(cachep->node[node]); 1766 } 1767 } 1768 1769 cachep->node[numa_mem_id()]->next_reap = 1770 jiffies + REAPTIMEOUT_NODE + 1771 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1772 1773 cpu_cache_get(cachep)->avail = 0; 1774 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1775 cpu_cache_get(cachep)->batchcount = 1; 1776 cpu_cache_get(cachep)->touched = 0; 1777 cachep->batchcount = 1; 1778 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1779 return 0; 1780 } 1781 1782 slab_flags_t kmem_cache_flags(unsigned int object_size, 1783 slab_flags_t flags, const char *name, 1784 void (*ctor)(void *)) 1785 { 1786 return flags; 1787 } 1788 1789 struct kmem_cache * 1790 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1791 slab_flags_t flags, void (*ctor)(void *)) 1792 { 1793 struct kmem_cache *cachep; 1794 1795 cachep = find_mergeable(size, align, flags, name, ctor); 1796 if (cachep) { 1797 cachep->refcount++; 1798 1799 /* 1800 * Adjust the object sizes so that we clear 1801 * the complete object on kzalloc. 1802 */ 1803 cachep->object_size = max_t(int, cachep->object_size, size); 1804 } 1805 return cachep; 1806 } 1807 1808 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1809 size_t size, slab_flags_t flags) 1810 { 1811 size_t left; 1812 1813 cachep->num = 0; 1814 1815 /* 1816 * If slab auto-initialization on free is enabled, store the freelist 1817 * off-slab, so that its contents don't end up in one of the allocated 1818 * objects. 1819 */ 1820 if (unlikely(slab_want_init_on_free(cachep))) 1821 return false; 1822 1823 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1824 return false; 1825 1826 left = calculate_slab_order(cachep, size, 1827 flags | CFLGS_OBJFREELIST_SLAB); 1828 if (!cachep->num) 1829 return false; 1830 1831 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1832 return false; 1833 1834 cachep->colour = left / cachep->colour_off; 1835 1836 return true; 1837 } 1838 1839 static bool set_off_slab_cache(struct kmem_cache *cachep, 1840 size_t size, slab_flags_t flags) 1841 { 1842 size_t left; 1843 1844 cachep->num = 0; 1845 1846 /* 1847 * Always use on-slab management when SLAB_NOLEAKTRACE 1848 * to avoid recursive calls into kmemleak. 1849 */ 1850 if (flags & SLAB_NOLEAKTRACE) 1851 return false; 1852 1853 /* 1854 * Size is large, assume best to place the slab management obj 1855 * off-slab (should allow better packing of objs). 1856 */ 1857 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1858 if (!cachep->num) 1859 return false; 1860 1861 /* 1862 * If the slab has been placed off-slab, and we have enough space then 1863 * move it on-slab. This is at the expense of any extra colouring. 1864 */ 1865 if (left >= cachep->num * sizeof(freelist_idx_t)) 1866 return false; 1867 1868 cachep->colour = left / cachep->colour_off; 1869 1870 return true; 1871 } 1872 1873 static bool set_on_slab_cache(struct kmem_cache *cachep, 1874 size_t size, slab_flags_t flags) 1875 { 1876 size_t left; 1877 1878 cachep->num = 0; 1879 1880 left = calculate_slab_order(cachep, size, flags); 1881 if (!cachep->num) 1882 return false; 1883 1884 cachep->colour = left / cachep->colour_off; 1885 1886 return true; 1887 } 1888 1889 /** 1890 * __kmem_cache_create - Create a cache. 1891 * @cachep: cache management descriptor 1892 * @flags: SLAB flags 1893 * 1894 * Returns a ptr to the cache on success, NULL on failure. 1895 * Cannot be called within a int, but can be interrupted. 1896 * The @ctor is run when new pages are allocated by the cache. 1897 * 1898 * The flags are 1899 * 1900 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1901 * to catch references to uninitialised memory. 1902 * 1903 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1904 * for buffer overruns. 1905 * 1906 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1907 * cacheline. This can be beneficial if you're counting cycles as closely 1908 * as davem. 1909 * 1910 * Return: a pointer to the created cache or %NULL in case of error 1911 */ 1912 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1913 { 1914 size_t ralign = BYTES_PER_WORD; 1915 gfp_t gfp; 1916 int err; 1917 unsigned int size = cachep->size; 1918 1919 #if DEBUG 1920 #if FORCED_DEBUG 1921 /* 1922 * Enable redzoning and last user accounting, except for caches with 1923 * large objects, if the increased size would increase the object size 1924 * above the next power of two: caches with object sizes just above a 1925 * power of two have a significant amount of internal fragmentation. 1926 */ 1927 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1928 2 * sizeof(unsigned long long))) 1929 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1930 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1931 flags |= SLAB_POISON; 1932 #endif 1933 #endif 1934 1935 /* 1936 * Check that size is in terms of words. This is needed to avoid 1937 * unaligned accesses for some archs when redzoning is used, and makes 1938 * sure any on-slab bufctl's are also correctly aligned. 1939 */ 1940 size = ALIGN(size, BYTES_PER_WORD); 1941 1942 if (flags & SLAB_RED_ZONE) { 1943 ralign = REDZONE_ALIGN; 1944 /* If redzoning, ensure that the second redzone is suitably 1945 * aligned, by adjusting the object size accordingly. */ 1946 size = ALIGN(size, REDZONE_ALIGN); 1947 } 1948 1949 /* 3) caller mandated alignment */ 1950 if (ralign < cachep->align) { 1951 ralign = cachep->align; 1952 } 1953 /* disable debug if necessary */ 1954 if (ralign > __alignof__(unsigned long long)) 1955 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1956 /* 1957 * 4) Store it. 1958 */ 1959 cachep->align = ralign; 1960 cachep->colour_off = cache_line_size(); 1961 /* Offset must be a multiple of the alignment. */ 1962 if (cachep->colour_off < cachep->align) 1963 cachep->colour_off = cachep->align; 1964 1965 if (slab_is_available()) 1966 gfp = GFP_KERNEL; 1967 else 1968 gfp = GFP_NOWAIT; 1969 1970 #if DEBUG 1971 1972 /* 1973 * Both debugging options require word-alignment which is calculated 1974 * into align above. 1975 */ 1976 if (flags & SLAB_RED_ZONE) { 1977 /* add space for red zone words */ 1978 cachep->obj_offset += sizeof(unsigned long long); 1979 size += 2 * sizeof(unsigned long long); 1980 } 1981 if (flags & SLAB_STORE_USER) { 1982 /* user store requires one word storage behind the end of 1983 * the real object. But if the second red zone needs to be 1984 * aligned to 64 bits, we must allow that much space. 1985 */ 1986 if (flags & SLAB_RED_ZONE) 1987 size += REDZONE_ALIGN; 1988 else 1989 size += BYTES_PER_WORD; 1990 } 1991 #endif 1992 1993 kasan_cache_create(cachep, &size, &flags); 1994 1995 size = ALIGN(size, cachep->align); 1996 /* 1997 * We should restrict the number of objects in a slab to implement 1998 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 1999 */ 2000 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2001 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2002 2003 #if DEBUG 2004 /* 2005 * To activate debug pagealloc, off-slab management is necessary 2006 * requirement. In early phase of initialization, small sized slab 2007 * doesn't get initialized so it would not be possible. So, we need 2008 * to check size >= 256. It guarantees that all necessary small 2009 * sized slab is initialized in current slab initialization sequence. 2010 */ 2011 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && 2012 size >= 256 && cachep->object_size > cache_line_size()) { 2013 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2014 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2015 2016 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2017 flags |= CFLGS_OFF_SLAB; 2018 cachep->obj_offset += tmp_size - size; 2019 size = tmp_size; 2020 goto done; 2021 } 2022 } 2023 } 2024 #endif 2025 2026 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2027 flags |= CFLGS_OBJFREELIST_SLAB; 2028 goto done; 2029 } 2030 2031 if (set_off_slab_cache(cachep, size, flags)) { 2032 flags |= CFLGS_OFF_SLAB; 2033 goto done; 2034 } 2035 2036 if (set_on_slab_cache(cachep, size, flags)) 2037 goto done; 2038 2039 return -E2BIG; 2040 2041 done: 2042 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2043 cachep->flags = flags; 2044 cachep->allocflags = __GFP_COMP; 2045 if (flags & SLAB_CACHE_DMA) 2046 cachep->allocflags |= GFP_DMA; 2047 if (flags & SLAB_CACHE_DMA32) 2048 cachep->allocflags |= GFP_DMA32; 2049 if (flags & SLAB_RECLAIM_ACCOUNT) 2050 cachep->allocflags |= __GFP_RECLAIMABLE; 2051 cachep->size = size; 2052 cachep->reciprocal_buffer_size = reciprocal_value(size); 2053 2054 #if DEBUG 2055 /* 2056 * If we're going to use the generic kernel_map_pages() 2057 * poisoning, then it's going to smash the contents of 2058 * the redzone and userword anyhow, so switch them off. 2059 */ 2060 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2061 (cachep->flags & SLAB_POISON) && 2062 is_debug_pagealloc_cache(cachep)) 2063 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2064 #endif 2065 2066 if (OFF_SLAB(cachep)) { 2067 cachep->freelist_cache = 2068 kmalloc_slab(cachep->freelist_size, 0u); 2069 } 2070 2071 err = setup_cpu_cache(cachep, gfp); 2072 if (err) { 2073 __kmem_cache_release(cachep); 2074 return err; 2075 } 2076 2077 return 0; 2078 } 2079 2080 #if DEBUG 2081 static void check_irq_off(void) 2082 { 2083 BUG_ON(!irqs_disabled()); 2084 } 2085 2086 static void check_irq_on(void) 2087 { 2088 BUG_ON(irqs_disabled()); 2089 } 2090 2091 static void check_mutex_acquired(void) 2092 { 2093 BUG_ON(!mutex_is_locked(&slab_mutex)); 2094 } 2095 2096 static void check_spinlock_acquired(struct kmem_cache *cachep) 2097 { 2098 #ifdef CONFIG_SMP 2099 check_irq_off(); 2100 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2101 #endif 2102 } 2103 2104 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2105 { 2106 #ifdef CONFIG_SMP 2107 check_irq_off(); 2108 assert_spin_locked(&get_node(cachep, node)->list_lock); 2109 #endif 2110 } 2111 2112 #else 2113 #define check_irq_off() do { } while(0) 2114 #define check_irq_on() do { } while(0) 2115 #define check_mutex_acquired() do { } while(0) 2116 #define check_spinlock_acquired(x) do { } while(0) 2117 #define check_spinlock_acquired_node(x, y) do { } while(0) 2118 #endif 2119 2120 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2121 int node, bool free_all, struct list_head *list) 2122 { 2123 int tofree; 2124 2125 if (!ac || !ac->avail) 2126 return; 2127 2128 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2129 if (tofree > ac->avail) 2130 tofree = (ac->avail + 1) / 2; 2131 2132 free_block(cachep, ac->entry, tofree, node, list); 2133 ac->avail -= tofree; 2134 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2135 } 2136 2137 static void do_drain(void *arg) 2138 { 2139 struct kmem_cache *cachep = arg; 2140 struct array_cache *ac; 2141 int node = numa_mem_id(); 2142 struct kmem_cache_node *n; 2143 LIST_HEAD(list); 2144 2145 check_irq_off(); 2146 ac = cpu_cache_get(cachep); 2147 n = get_node(cachep, node); 2148 spin_lock(&n->list_lock); 2149 free_block(cachep, ac->entry, ac->avail, node, &list); 2150 spin_unlock(&n->list_lock); 2151 slabs_destroy(cachep, &list); 2152 ac->avail = 0; 2153 } 2154 2155 static void drain_cpu_caches(struct kmem_cache *cachep) 2156 { 2157 struct kmem_cache_node *n; 2158 int node; 2159 LIST_HEAD(list); 2160 2161 on_each_cpu(do_drain, cachep, 1); 2162 check_irq_on(); 2163 for_each_kmem_cache_node(cachep, node, n) 2164 if (n->alien) 2165 drain_alien_cache(cachep, n->alien); 2166 2167 for_each_kmem_cache_node(cachep, node, n) { 2168 spin_lock_irq(&n->list_lock); 2169 drain_array_locked(cachep, n->shared, node, true, &list); 2170 spin_unlock_irq(&n->list_lock); 2171 2172 slabs_destroy(cachep, &list); 2173 } 2174 } 2175 2176 /* 2177 * Remove slabs from the list of free slabs. 2178 * Specify the number of slabs to drain in tofree. 2179 * 2180 * Returns the actual number of slabs released. 2181 */ 2182 static int drain_freelist(struct kmem_cache *cache, 2183 struct kmem_cache_node *n, int tofree) 2184 { 2185 struct list_head *p; 2186 int nr_freed; 2187 struct page *page; 2188 2189 nr_freed = 0; 2190 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2191 2192 spin_lock_irq(&n->list_lock); 2193 p = n->slabs_free.prev; 2194 if (p == &n->slabs_free) { 2195 spin_unlock_irq(&n->list_lock); 2196 goto out; 2197 } 2198 2199 page = list_entry(p, struct page, slab_list); 2200 list_del(&page->slab_list); 2201 n->free_slabs--; 2202 n->total_slabs--; 2203 /* 2204 * Safe to drop the lock. The slab is no longer linked 2205 * to the cache. 2206 */ 2207 n->free_objects -= cache->num; 2208 spin_unlock_irq(&n->list_lock); 2209 slab_destroy(cache, page); 2210 nr_freed++; 2211 } 2212 out: 2213 return nr_freed; 2214 } 2215 2216 bool __kmem_cache_empty(struct kmem_cache *s) 2217 { 2218 int node; 2219 struct kmem_cache_node *n; 2220 2221 for_each_kmem_cache_node(s, node, n) 2222 if (!list_empty(&n->slabs_full) || 2223 !list_empty(&n->slabs_partial)) 2224 return false; 2225 return true; 2226 } 2227 2228 int __kmem_cache_shrink(struct kmem_cache *cachep) 2229 { 2230 int ret = 0; 2231 int node; 2232 struct kmem_cache_node *n; 2233 2234 drain_cpu_caches(cachep); 2235 2236 check_irq_on(); 2237 for_each_kmem_cache_node(cachep, node, n) { 2238 drain_freelist(cachep, n, INT_MAX); 2239 2240 ret += !list_empty(&n->slabs_full) || 2241 !list_empty(&n->slabs_partial); 2242 } 2243 return (ret ? 1 : 0); 2244 } 2245 2246 #ifdef CONFIG_MEMCG 2247 void __kmemcg_cache_deactivate(struct kmem_cache *cachep) 2248 { 2249 __kmem_cache_shrink(cachep); 2250 } 2251 2252 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 2253 { 2254 } 2255 #endif 2256 2257 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2258 { 2259 return __kmem_cache_shrink(cachep); 2260 } 2261 2262 void __kmem_cache_release(struct kmem_cache *cachep) 2263 { 2264 int i; 2265 struct kmem_cache_node *n; 2266 2267 cache_random_seq_destroy(cachep); 2268 2269 free_percpu(cachep->cpu_cache); 2270 2271 /* NUMA: free the node structures */ 2272 for_each_kmem_cache_node(cachep, i, n) { 2273 kfree(n->shared); 2274 free_alien_cache(n->alien); 2275 kfree(n); 2276 cachep->node[i] = NULL; 2277 } 2278 } 2279 2280 /* 2281 * Get the memory for a slab management obj. 2282 * 2283 * For a slab cache when the slab descriptor is off-slab, the 2284 * slab descriptor can't come from the same cache which is being created, 2285 * Because if it is the case, that means we defer the creation of 2286 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2287 * And we eventually call down to __kmem_cache_create(), which 2288 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2289 * This is a "chicken-and-egg" problem. 2290 * 2291 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2292 * which are all initialized during kmem_cache_init(). 2293 */ 2294 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2295 struct page *page, int colour_off, 2296 gfp_t local_flags, int nodeid) 2297 { 2298 void *freelist; 2299 void *addr = page_address(page); 2300 2301 page->s_mem = addr + colour_off; 2302 page->active = 0; 2303 2304 if (OBJFREELIST_SLAB(cachep)) 2305 freelist = NULL; 2306 else if (OFF_SLAB(cachep)) { 2307 /* Slab management obj is off-slab. */ 2308 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2309 local_flags, nodeid); 2310 if (!freelist) 2311 return NULL; 2312 } else { 2313 /* We will use last bytes at the slab for freelist */ 2314 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2315 cachep->freelist_size; 2316 } 2317 2318 return freelist; 2319 } 2320 2321 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2322 { 2323 return ((freelist_idx_t *)page->freelist)[idx]; 2324 } 2325 2326 static inline void set_free_obj(struct page *page, 2327 unsigned int idx, freelist_idx_t val) 2328 { 2329 ((freelist_idx_t *)(page->freelist))[idx] = val; 2330 } 2331 2332 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2333 { 2334 #if DEBUG 2335 int i; 2336 2337 for (i = 0; i < cachep->num; i++) { 2338 void *objp = index_to_obj(cachep, page, i); 2339 2340 if (cachep->flags & SLAB_STORE_USER) 2341 *dbg_userword(cachep, objp) = NULL; 2342 2343 if (cachep->flags & SLAB_RED_ZONE) { 2344 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2345 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2346 } 2347 /* 2348 * Constructors are not allowed to allocate memory from the same 2349 * cache which they are a constructor for. Otherwise, deadlock. 2350 * They must also be threaded. 2351 */ 2352 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2353 kasan_unpoison_object_data(cachep, 2354 objp + obj_offset(cachep)); 2355 cachep->ctor(objp + obj_offset(cachep)); 2356 kasan_poison_object_data( 2357 cachep, objp + obj_offset(cachep)); 2358 } 2359 2360 if (cachep->flags & SLAB_RED_ZONE) { 2361 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2362 slab_error(cachep, "constructor overwrote the end of an object"); 2363 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2364 slab_error(cachep, "constructor overwrote the start of an object"); 2365 } 2366 /* need to poison the objs? */ 2367 if (cachep->flags & SLAB_POISON) { 2368 poison_obj(cachep, objp, POISON_FREE); 2369 slab_kernel_map(cachep, objp, 0); 2370 } 2371 } 2372 #endif 2373 } 2374 2375 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2376 /* Hold information during a freelist initialization */ 2377 union freelist_init_state { 2378 struct { 2379 unsigned int pos; 2380 unsigned int *list; 2381 unsigned int count; 2382 }; 2383 struct rnd_state rnd_state; 2384 }; 2385 2386 /* 2387 * Initialize the state based on the randomization methode available. 2388 * return true if the pre-computed list is available, false otherwize. 2389 */ 2390 static bool freelist_state_initialize(union freelist_init_state *state, 2391 struct kmem_cache *cachep, 2392 unsigned int count) 2393 { 2394 bool ret; 2395 unsigned int rand; 2396 2397 /* Use best entropy available to define a random shift */ 2398 rand = get_random_int(); 2399 2400 /* Use a random state if the pre-computed list is not available */ 2401 if (!cachep->random_seq) { 2402 prandom_seed_state(&state->rnd_state, rand); 2403 ret = false; 2404 } else { 2405 state->list = cachep->random_seq; 2406 state->count = count; 2407 state->pos = rand % count; 2408 ret = true; 2409 } 2410 return ret; 2411 } 2412 2413 /* Get the next entry on the list and randomize it using a random shift */ 2414 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2415 { 2416 if (state->pos >= state->count) 2417 state->pos = 0; 2418 return state->list[state->pos++]; 2419 } 2420 2421 /* Swap two freelist entries */ 2422 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2423 { 2424 swap(((freelist_idx_t *)page->freelist)[a], 2425 ((freelist_idx_t *)page->freelist)[b]); 2426 } 2427 2428 /* 2429 * Shuffle the freelist initialization state based on pre-computed lists. 2430 * return true if the list was successfully shuffled, false otherwise. 2431 */ 2432 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2433 { 2434 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2435 union freelist_init_state state; 2436 bool precomputed; 2437 2438 if (count < 2) 2439 return false; 2440 2441 precomputed = freelist_state_initialize(&state, cachep, count); 2442 2443 /* Take a random entry as the objfreelist */ 2444 if (OBJFREELIST_SLAB(cachep)) { 2445 if (!precomputed) 2446 objfreelist = count - 1; 2447 else 2448 objfreelist = next_random_slot(&state); 2449 page->freelist = index_to_obj(cachep, page, objfreelist) + 2450 obj_offset(cachep); 2451 count--; 2452 } 2453 2454 /* 2455 * On early boot, generate the list dynamically. 2456 * Later use a pre-computed list for speed. 2457 */ 2458 if (!precomputed) { 2459 for (i = 0; i < count; i++) 2460 set_free_obj(page, i, i); 2461 2462 /* Fisher-Yates shuffle */ 2463 for (i = count - 1; i > 0; i--) { 2464 rand = prandom_u32_state(&state.rnd_state); 2465 rand %= (i + 1); 2466 swap_free_obj(page, i, rand); 2467 } 2468 } else { 2469 for (i = 0; i < count; i++) 2470 set_free_obj(page, i, next_random_slot(&state)); 2471 } 2472 2473 if (OBJFREELIST_SLAB(cachep)) 2474 set_free_obj(page, cachep->num - 1, objfreelist); 2475 2476 return true; 2477 } 2478 #else 2479 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2480 struct page *page) 2481 { 2482 return false; 2483 } 2484 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2485 2486 static void cache_init_objs(struct kmem_cache *cachep, 2487 struct page *page) 2488 { 2489 int i; 2490 void *objp; 2491 bool shuffled; 2492 2493 cache_init_objs_debug(cachep, page); 2494 2495 /* Try to randomize the freelist if enabled */ 2496 shuffled = shuffle_freelist(cachep, page); 2497 2498 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2499 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2500 obj_offset(cachep); 2501 } 2502 2503 for (i = 0; i < cachep->num; i++) { 2504 objp = index_to_obj(cachep, page, i); 2505 objp = kasan_init_slab_obj(cachep, objp); 2506 2507 /* constructor could break poison info */ 2508 if (DEBUG == 0 && cachep->ctor) { 2509 kasan_unpoison_object_data(cachep, objp); 2510 cachep->ctor(objp); 2511 kasan_poison_object_data(cachep, objp); 2512 } 2513 2514 if (!shuffled) 2515 set_free_obj(page, i, i); 2516 } 2517 } 2518 2519 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2520 { 2521 void *objp; 2522 2523 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2524 page->active++; 2525 2526 return objp; 2527 } 2528 2529 static void slab_put_obj(struct kmem_cache *cachep, 2530 struct page *page, void *objp) 2531 { 2532 unsigned int objnr = obj_to_index(cachep, page, objp); 2533 #if DEBUG 2534 unsigned int i; 2535 2536 /* Verify double free bug */ 2537 for (i = page->active; i < cachep->num; i++) { 2538 if (get_free_obj(page, i) == objnr) { 2539 pr_err("slab: double free detected in cache '%s', objp %px\n", 2540 cachep->name, objp); 2541 BUG(); 2542 } 2543 } 2544 #endif 2545 page->active--; 2546 if (!page->freelist) 2547 page->freelist = objp + obj_offset(cachep); 2548 2549 set_free_obj(page, page->active, objnr); 2550 } 2551 2552 /* 2553 * Map pages beginning at addr to the given cache and slab. This is required 2554 * for the slab allocator to be able to lookup the cache and slab of a 2555 * virtual address for kfree, ksize, and slab debugging. 2556 */ 2557 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2558 void *freelist) 2559 { 2560 page->slab_cache = cache; 2561 page->freelist = freelist; 2562 } 2563 2564 /* 2565 * Grow (by 1) the number of slabs within a cache. This is called by 2566 * kmem_cache_alloc() when there are no active objs left in a cache. 2567 */ 2568 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2569 gfp_t flags, int nodeid) 2570 { 2571 void *freelist; 2572 size_t offset; 2573 gfp_t local_flags; 2574 int page_node; 2575 struct kmem_cache_node *n; 2576 struct page *page; 2577 2578 /* 2579 * Be lazy and only check for valid flags here, keeping it out of the 2580 * critical path in kmem_cache_alloc(). 2581 */ 2582 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2583 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2584 flags &= ~GFP_SLAB_BUG_MASK; 2585 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2586 invalid_mask, &invalid_mask, flags, &flags); 2587 dump_stack(); 2588 } 2589 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2590 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2591 2592 check_irq_off(); 2593 if (gfpflags_allow_blocking(local_flags)) 2594 local_irq_enable(); 2595 2596 /* 2597 * Get mem for the objs. Attempt to allocate a physical page from 2598 * 'nodeid'. 2599 */ 2600 page = kmem_getpages(cachep, local_flags, nodeid); 2601 if (!page) 2602 goto failed; 2603 2604 page_node = page_to_nid(page); 2605 n = get_node(cachep, page_node); 2606 2607 /* Get colour for the slab, and cal the next value. */ 2608 n->colour_next++; 2609 if (n->colour_next >= cachep->colour) 2610 n->colour_next = 0; 2611 2612 offset = n->colour_next; 2613 if (offset >= cachep->colour) 2614 offset = 0; 2615 2616 offset *= cachep->colour_off; 2617 2618 /* 2619 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2620 * page_address() in the latter returns a non-tagged pointer, 2621 * as it should be for slab pages. 2622 */ 2623 kasan_poison_slab(page); 2624 2625 /* Get slab management. */ 2626 freelist = alloc_slabmgmt(cachep, page, offset, 2627 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2628 if (OFF_SLAB(cachep) && !freelist) 2629 goto opps1; 2630 2631 slab_map_pages(cachep, page, freelist); 2632 2633 cache_init_objs(cachep, page); 2634 2635 if (gfpflags_allow_blocking(local_flags)) 2636 local_irq_disable(); 2637 2638 return page; 2639 2640 opps1: 2641 kmem_freepages(cachep, page); 2642 failed: 2643 if (gfpflags_allow_blocking(local_flags)) 2644 local_irq_disable(); 2645 return NULL; 2646 } 2647 2648 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2649 { 2650 struct kmem_cache_node *n; 2651 void *list = NULL; 2652 2653 check_irq_off(); 2654 2655 if (!page) 2656 return; 2657 2658 INIT_LIST_HEAD(&page->slab_list); 2659 n = get_node(cachep, page_to_nid(page)); 2660 2661 spin_lock(&n->list_lock); 2662 n->total_slabs++; 2663 if (!page->active) { 2664 list_add_tail(&page->slab_list, &n->slabs_free); 2665 n->free_slabs++; 2666 } else 2667 fixup_slab_list(cachep, n, page, &list); 2668 2669 STATS_INC_GROWN(cachep); 2670 n->free_objects += cachep->num - page->active; 2671 spin_unlock(&n->list_lock); 2672 2673 fixup_objfreelist_debug(cachep, &list); 2674 } 2675 2676 #if DEBUG 2677 2678 /* 2679 * Perform extra freeing checks: 2680 * - detect bad pointers. 2681 * - POISON/RED_ZONE checking 2682 */ 2683 static void kfree_debugcheck(const void *objp) 2684 { 2685 if (!virt_addr_valid(objp)) { 2686 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2687 (unsigned long)objp); 2688 BUG(); 2689 } 2690 } 2691 2692 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2693 { 2694 unsigned long long redzone1, redzone2; 2695 2696 redzone1 = *dbg_redzone1(cache, obj); 2697 redzone2 = *dbg_redzone2(cache, obj); 2698 2699 /* 2700 * Redzone is ok. 2701 */ 2702 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2703 return; 2704 2705 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2706 slab_error(cache, "double free detected"); 2707 else 2708 slab_error(cache, "memory outside object was overwritten"); 2709 2710 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2711 obj, redzone1, redzone2); 2712 } 2713 2714 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2715 unsigned long caller) 2716 { 2717 unsigned int objnr; 2718 struct page *page; 2719 2720 BUG_ON(virt_to_cache(objp) != cachep); 2721 2722 objp -= obj_offset(cachep); 2723 kfree_debugcheck(objp); 2724 page = virt_to_head_page(objp); 2725 2726 if (cachep->flags & SLAB_RED_ZONE) { 2727 verify_redzone_free(cachep, objp); 2728 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2729 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2730 } 2731 if (cachep->flags & SLAB_STORE_USER) 2732 *dbg_userword(cachep, objp) = (void *)caller; 2733 2734 objnr = obj_to_index(cachep, page, objp); 2735 2736 BUG_ON(objnr >= cachep->num); 2737 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2738 2739 if (cachep->flags & SLAB_POISON) { 2740 poison_obj(cachep, objp, POISON_FREE); 2741 slab_kernel_map(cachep, objp, 0); 2742 } 2743 return objp; 2744 } 2745 2746 #else 2747 #define kfree_debugcheck(x) do { } while(0) 2748 #define cache_free_debugcheck(x,objp,z) (objp) 2749 #endif 2750 2751 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2752 void **list) 2753 { 2754 #if DEBUG 2755 void *next = *list; 2756 void *objp; 2757 2758 while (next) { 2759 objp = next - obj_offset(cachep); 2760 next = *(void **)next; 2761 poison_obj(cachep, objp, POISON_FREE); 2762 } 2763 #endif 2764 } 2765 2766 static inline void fixup_slab_list(struct kmem_cache *cachep, 2767 struct kmem_cache_node *n, struct page *page, 2768 void **list) 2769 { 2770 /* move slabp to correct slabp list: */ 2771 list_del(&page->slab_list); 2772 if (page->active == cachep->num) { 2773 list_add(&page->slab_list, &n->slabs_full); 2774 if (OBJFREELIST_SLAB(cachep)) { 2775 #if DEBUG 2776 /* Poisoning will be done without holding the lock */ 2777 if (cachep->flags & SLAB_POISON) { 2778 void **objp = page->freelist; 2779 2780 *objp = *list; 2781 *list = objp; 2782 } 2783 #endif 2784 page->freelist = NULL; 2785 } 2786 } else 2787 list_add(&page->slab_list, &n->slabs_partial); 2788 } 2789 2790 /* Try to find non-pfmemalloc slab if needed */ 2791 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2792 struct page *page, bool pfmemalloc) 2793 { 2794 if (!page) 2795 return NULL; 2796 2797 if (pfmemalloc) 2798 return page; 2799 2800 if (!PageSlabPfmemalloc(page)) 2801 return page; 2802 2803 /* No need to keep pfmemalloc slab if we have enough free objects */ 2804 if (n->free_objects > n->free_limit) { 2805 ClearPageSlabPfmemalloc(page); 2806 return page; 2807 } 2808 2809 /* Move pfmemalloc slab to the end of list to speed up next search */ 2810 list_del(&page->slab_list); 2811 if (!page->active) { 2812 list_add_tail(&page->slab_list, &n->slabs_free); 2813 n->free_slabs++; 2814 } else 2815 list_add_tail(&page->slab_list, &n->slabs_partial); 2816 2817 list_for_each_entry(page, &n->slabs_partial, slab_list) { 2818 if (!PageSlabPfmemalloc(page)) 2819 return page; 2820 } 2821 2822 n->free_touched = 1; 2823 list_for_each_entry(page, &n->slabs_free, slab_list) { 2824 if (!PageSlabPfmemalloc(page)) { 2825 n->free_slabs--; 2826 return page; 2827 } 2828 } 2829 2830 return NULL; 2831 } 2832 2833 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2834 { 2835 struct page *page; 2836 2837 assert_spin_locked(&n->list_lock); 2838 page = list_first_entry_or_null(&n->slabs_partial, struct page, 2839 slab_list); 2840 if (!page) { 2841 n->free_touched = 1; 2842 page = list_first_entry_or_null(&n->slabs_free, struct page, 2843 slab_list); 2844 if (page) 2845 n->free_slabs--; 2846 } 2847 2848 if (sk_memalloc_socks()) 2849 page = get_valid_first_slab(n, page, pfmemalloc); 2850 2851 return page; 2852 } 2853 2854 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2855 struct kmem_cache_node *n, gfp_t flags) 2856 { 2857 struct page *page; 2858 void *obj; 2859 void *list = NULL; 2860 2861 if (!gfp_pfmemalloc_allowed(flags)) 2862 return NULL; 2863 2864 spin_lock(&n->list_lock); 2865 page = get_first_slab(n, true); 2866 if (!page) { 2867 spin_unlock(&n->list_lock); 2868 return NULL; 2869 } 2870 2871 obj = slab_get_obj(cachep, page); 2872 n->free_objects--; 2873 2874 fixup_slab_list(cachep, n, page, &list); 2875 2876 spin_unlock(&n->list_lock); 2877 fixup_objfreelist_debug(cachep, &list); 2878 2879 return obj; 2880 } 2881 2882 /* 2883 * Slab list should be fixed up by fixup_slab_list() for existing slab 2884 * or cache_grow_end() for new slab 2885 */ 2886 static __always_inline int alloc_block(struct kmem_cache *cachep, 2887 struct array_cache *ac, struct page *page, int batchcount) 2888 { 2889 /* 2890 * There must be at least one object available for 2891 * allocation. 2892 */ 2893 BUG_ON(page->active >= cachep->num); 2894 2895 while (page->active < cachep->num && batchcount--) { 2896 STATS_INC_ALLOCED(cachep); 2897 STATS_INC_ACTIVE(cachep); 2898 STATS_SET_HIGH(cachep); 2899 2900 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2901 } 2902 2903 return batchcount; 2904 } 2905 2906 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2907 { 2908 int batchcount; 2909 struct kmem_cache_node *n; 2910 struct array_cache *ac, *shared; 2911 int node; 2912 void *list = NULL; 2913 struct page *page; 2914 2915 check_irq_off(); 2916 node = numa_mem_id(); 2917 2918 ac = cpu_cache_get(cachep); 2919 batchcount = ac->batchcount; 2920 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2921 /* 2922 * If there was little recent activity on this cache, then 2923 * perform only a partial refill. Otherwise we could generate 2924 * refill bouncing. 2925 */ 2926 batchcount = BATCHREFILL_LIMIT; 2927 } 2928 n = get_node(cachep, node); 2929 2930 BUG_ON(ac->avail > 0 || !n); 2931 shared = READ_ONCE(n->shared); 2932 if (!n->free_objects && (!shared || !shared->avail)) 2933 goto direct_grow; 2934 2935 spin_lock(&n->list_lock); 2936 shared = READ_ONCE(n->shared); 2937 2938 /* See if we can refill from the shared array */ 2939 if (shared && transfer_objects(ac, shared, batchcount)) { 2940 shared->touched = 1; 2941 goto alloc_done; 2942 } 2943 2944 while (batchcount > 0) { 2945 /* Get slab alloc is to come from. */ 2946 page = get_first_slab(n, false); 2947 if (!page) 2948 goto must_grow; 2949 2950 check_spinlock_acquired(cachep); 2951 2952 batchcount = alloc_block(cachep, ac, page, batchcount); 2953 fixup_slab_list(cachep, n, page, &list); 2954 } 2955 2956 must_grow: 2957 n->free_objects -= ac->avail; 2958 alloc_done: 2959 spin_unlock(&n->list_lock); 2960 fixup_objfreelist_debug(cachep, &list); 2961 2962 direct_grow: 2963 if (unlikely(!ac->avail)) { 2964 /* Check if we can use obj in pfmemalloc slab */ 2965 if (sk_memalloc_socks()) { 2966 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2967 2968 if (obj) 2969 return obj; 2970 } 2971 2972 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 2973 2974 /* 2975 * cache_grow_begin() can reenable interrupts, 2976 * then ac could change. 2977 */ 2978 ac = cpu_cache_get(cachep); 2979 if (!ac->avail && page) 2980 alloc_block(cachep, ac, page, batchcount); 2981 cache_grow_end(cachep, page); 2982 2983 if (!ac->avail) 2984 return NULL; 2985 } 2986 ac->touched = 1; 2987 2988 return ac->entry[--ac->avail]; 2989 } 2990 2991 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 2992 gfp_t flags) 2993 { 2994 might_sleep_if(gfpflags_allow_blocking(flags)); 2995 } 2996 2997 #if DEBUG 2998 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2999 gfp_t flags, void *objp, unsigned long caller) 3000 { 3001 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 3002 if (!objp) 3003 return objp; 3004 if (cachep->flags & SLAB_POISON) { 3005 check_poison_obj(cachep, objp); 3006 slab_kernel_map(cachep, objp, 1); 3007 poison_obj(cachep, objp, POISON_INUSE); 3008 } 3009 if (cachep->flags & SLAB_STORE_USER) 3010 *dbg_userword(cachep, objp) = (void *)caller; 3011 3012 if (cachep->flags & SLAB_RED_ZONE) { 3013 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3014 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3015 slab_error(cachep, "double free, or memory outside object was overwritten"); 3016 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 3017 objp, *dbg_redzone1(cachep, objp), 3018 *dbg_redzone2(cachep, objp)); 3019 } 3020 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3021 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3022 } 3023 3024 objp += obj_offset(cachep); 3025 if (cachep->ctor && cachep->flags & SLAB_POISON) 3026 cachep->ctor(objp); 3027 if (ARCH_SLAB_MINALIGN && 3028 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3029 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3030 objp, (int)ARCH_SLAB_MINALIGN); 3031 } 3032 return objp; 3033 } 3034 #else 3035 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3036 #endif 3037 3038 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3039 { 3040 void *objp; 3041 struct array_cache *ac; 3042 3043 check_irq_off(); 3044 3045 ac = cpu_cache_get(cachep); 3046 if (likely(ac->avail)) { 3047 ac->touched = 1; 3048 objp = ac->entry[--ac->avail]; 3049 3050 STATS_INC_ALLOCHIT(cachep); 3051 goto out; 3052 } 3053 3054 STATS_INC_ALLOCMISS(cachep); 3055 objp = cache_alloc_refill(cachep, flags); 3056 /* 3057 * the 'ac' may be updated by cache_alloc_refill(), 3058 * and kmemleak_erase() requires its correct value. 3059 */ 3060 ac = cpu_cache_get(cachep); 3061 3062 out: 3063 /* 3064 * To avoid a false negative, if an object that is in one of the 3065 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3066 * treat the array pointers as a reference to the object. 3067 */ 3068 if (objp) 3069 kmemleak_erase(&ac->entry[ac->avail]); 3070 return objp; 3071 } 3072 3073 #ifdef CONFIG_NUMA 3074 /* 3075 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3076 * 3077 * If we are in_interrupt, then process context, including cpusets and 3078 * mempolicy, may not apply and should not be used for allocation policy. 3079 */ 3080 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3081 { 3082 int nid_alloc, nid_here; 3083 3084 if (in_interrupt() || (flags & __GFP_THISNODE)) 3085 return NULL; 3086 nid_alloc = nid_here = numa_mem_id(); 3087 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3088 nid_alloc = cpuset_slab_spread_node(); 3089 else if (current->mempolicy) 3090 nid_alloc = mempolicy_slab_node(); 3091 if (nid_alloc != nid_here) 3092 return ____cache_alloc_node(cachep, flags, nid_alloc); 3093 return NULL; 3094 } 3095 3096 /* 3097 * Fallback function if there was no memory available and no objects on a 3098 * certain node and fall back is permitted. First we scan all the 3099 * available node for available objects. If that fails then we 3100 * perform an allocation without specifying a node. This allows the page 3101 * allocator to do its reclaim / fallback magic. We then insert the 3102 * slab into the proper nodelist and then allocate from it. 3103 */ 3104 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3105 { 3106 struct zonelist *zonelist; 3107 struct zoneref *z; 3108 struct zone *zone; 3109 enum zone_type highest_zoneidx = gfp_zone(flags); 3110 void *obj = NULL; 3111 struct page *page; 3112 int nid; 3113 unsigned int cpuset_mems_cookie; 3114 3115 if (flags & __GFP_THISNODE) 3116 return NULL; 3117 3118 retry_cpuset: 3119 cpuset_mems_cookie = read_mems_allowed_begin(); 3120 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3121 3122 retry: 3123 /* 3124 * Look through allowed nodes for objects available 3125 * from existing per node queues. 3126 */ 3127 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 3128 nid = zone_to_nid(zone); 3129 3130 if (cpuset_zone_allowed(zone, flags) && 3131 get_node(cache, nid) && 3132 get_node(cache, nid)->free_objects) { 3133 obj = ____cache_alloc_node(cache, 3134 gfp_exact_node(flags), nid); 3135 if (obj) 3136 break; 3137 } 3138 } 3139 3140 if (!obj) { 3141 /* 3142 * This allocation will be performed within the constraints 3143 * of the current cpuset / memory policy requirements. 3144 * We may trigger various forms of reclaim on the allowed 3145 * set and go into memory reserves if necessary. 3146 */ 3147 page = cache_grow_begin(cache, flags, numa_mem_id()); 3148 cache_grow_end(cache, page); 3149 if (page) { 3150 nid = page_to_nid(page); 3151 obj = ____cache_alloc_node(cache, 3152 gfp_exact_node(flags), nid); 3153 3154 /* 3155 * Another processor may allocate the objects in 3156 * the slab since we are not holding any locks. 3157 */ 3158 if (!obj) 3159 goto retry; 3160 } 3161 } 3162 3163 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3164 goto retry_cpuset; 3165 return obj; 3166 } 3167 3168 /* 3169 * A interface to enable slab creation on nodeid 3170 */ 3171 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3172 int nodeid) 3173 { 3174 struct page *page; 3175 struct kmem_cache_node *n; 3176 void *obj = NULL; 3177 void *list = NULL; 3178 3179 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3180 n = get_node(cachep, nodeid); 3181 BUG_ON(!n); 3182 3183 check_irq_off(); 3184 spin_lock(&n->list_lock); 3185 page = get_first_slab(n, false); 3186 if (!page) 3187 goto must_grow; 3188 3189 check_spinlock_acquired_node(cachep, nodeid); 3190 3191 STATS_INC_NODEALLOCS(cachep); 3192 STATS_INC_ACTIVE(cachep); 3193 STATS_SET_HIGH(cachep); 3194 3195 BUG_ON(page->active == cachep->num); 3196 3197 obj = slab_get_obj(cachep, page); 3198 n->free_objects--; 3199 3200 fixup_slab_list(cachep, n, page, &list); 3201 3202 spin_unlock(&n->list_lock); 3203 fixup_objfreelist_debug(cachep, &list); 3204 return obj; 3205 3206 must_grow: 3207 spin_unlock(&n->list_lock); 3208 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3209 if (page) { 3210 /* This slab isn't counted yet so don't update free_objects */ 3211 obj = slab_get_obj(cachep, page); 3212 } 3213 cache_grow_end(cachep, page); 3214 3215 return obj ? obj : fallback_alloc(cachep, flags); 3216 } 3217 3218 static __always_inline void * 3219 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3220 unsigned long caller) 3221 { 3222 unsigned long save_flags; 3223 void *ptr; 3224 int slab_node = numa_mem_id(); 3225 3226 flags &= gfp_allowed_mask; 3227 cachep = slab_pre_alloc_hook(cachep, flags); 3228 if (unlikely(!cachep)) 3229 return NULL; 3230 3231 cache_alloc_debugcheck_before(cachep, flags); 3232 local_irq_save(save_flags); 3233 3234 if (nodeid == NUMA_NO_NODE) 3235 nodeid = slab_node; 3236 3237 if (unlikely(!get_node(cachep, nodeid))) { 3238 /* Node not bootstrapped yet */ 3239 ptr = fallback_alloc(cachep, flags); 3240 goto out; 3241 } 3242 3243 if (nodeid == slab_node) { 3244 /* 3245 * Use the locally cached objects if possible. 3246 * However ____cache_alloc does not allow fallback 3247 * to other nodes. It may fail while we still have 3248 * objects on other nodes available. 3249 */ 3250 ptr = ____cache_alloc(cachep, flags); 3251 if (ptr) 3252 goto out; 3253 } 3254 /* ___cache_alloc_node can fall back to other nodes */ 3255 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3256 out: 3257 local_irq_restore(save_flags); 3258 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3259 3260 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr) 3261 memset(ptr, 0, cachep->object_size); 3262 3263 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3264 return ptr; 3265 } 3266 3267 static __always_inline void * 3268 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3269 { 3270 void *objp; 3271 3272 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3273 objp = alternate_node_alloc(cache, flags); 3274 if (objp) 3275 goto out; 3276 } 3277 objp = ____cache_alloc(cache, flags); 3278 3279 /* 3280 * We may just have run out of memory on the local node. 3281 * ____cache_alloc_node() knows how to locate memory on other nodes 3282 */ 3283 if (!objp) 3284 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3285 3286 out: 3287 return objp; 3288 } 3289 #else 3290 3291 static __always_inline void * 3292 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3293 { 3294 return ____cache_alloc(cachep, flags); 3295 } 3296 3297 #endif /* CONFIG_NUMA */ 3298 3299 static __always_inline void * 3300 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3301 { 3302 unsigned long save_flags; 3303 void *objp; 3304 3305 flags &= gfp_allowed_mask; 3306 cachep = slab_pre_alloc_hook(cachep, flags); 3307 if (unlikely(!cachep)) 3308 return NULL; 3309 3310 cache_alloc_debugcheck_before(cachep, flags); 3311 local_irq_save(save_flags); 3312 objp = __do_cache_alloc(cachep, flags); 3313 local_irq_restore(save_flags); 3314 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3315 prefetchw(objp); 3316 3317 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp) 3318 memset(objp, 0, cachep->object_size); 3319 3320 slab_post_alloc_hook(cachep, flags, 1, &objp); 3321 return objp; 3322 } 3323 3324 /* 3325 * Caller needs to acquire correct kmem_cache_node's list_lock 3326 * @list: List of detached free slabs should be freed by caller 3327 */ 3328 static void free_block(struct kmem_cache *cachep, void **objpp, 3329 int nr_objects, int node, struct list_head *list) 3330 { 3331 int i; 3332 struct kmem_cache_node *n = get_node(cachep, node); 3333 struct page *page; 3334 3335 n->free_objects += nr_objects; 3336 3337 for (i = 0; i < nr_objects; i++) { 3338 void *objp; 3339 struct page *page; 3340 3341 objp = objpp[i]; 3342 3343 page = virt_to_head_page(objp); 3344 list_del(&page->slab_list); 3345 check_spinlock_acquired_node(cachep, node); 3346 slab_put_obj(cachep, page, objp); 3347 STATS_DEC_ACTIVE(cachep); 3348 3349 /* fixup slab chains */ 3350 if (page->active == 0) { 3351 list_add(&page->slab_list, &n->slabs_free); 3352 n->free_slabs++; 3353 } else { 3354 /* Unconditionally move a slab to the end of the 3355 * partial list on free - maximum time for the 3356 * other objects to be freed, too. 3357 */ 3358 list_add_tail(&page->slab_list, &n->slabs_partial); 3359 } 3360 } 3361 3362 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3363 n->free_objects -= cachep->num; 3364 3365 page = list_last_entry(&n->slabs_free, struct page, slab_list); 3366 list_move(&page->slab_list, list); 3367 n->free_slabs--; 3368 n->total_slabs--; 3369 } 3370 } 3371 3372 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3373 { 3374 int batchcount; 3375 struct kmem_cache_node *n; 3376 int node = numa_mem_id(); 3377 LIST_HEAD(list); 3378 3379 batchcount = ac->batchcount; 3380 3381 check_irq_off(); 3382 n = get_node(cachep, node); 3383 spin_lock(&n->list_lock); 3384 if (n->shared) { 3385 struct array_cache *shared_array = n->shared; 3386 int max = shared_array->limit - shared_array->avail; 3387 if (max) { 3388 if (batchcount > max) 3389 batchcount = max; 3390 memcpy(&(shared_array->entry[shared_array->avail]), 3391 ac->entry, sizeof(void *) * batchcount); 3392 shared_array->avail += batchcount; 3393 goto free_done; 3394 } 3395 } 3396 3397 free_block(cachep, ac->entry, batchcount, node, &list); 3398 free_done: 3399 #if STATS 3400 { 3401 int i = 0; 3402 struct page *page; 3403 3404 list_for_each_entry(page, &n->slabs_free, slab_list) { 3405 BUG_ON(page->active); 3406 3407 i++; 3408 } 3409 STATS_SET_FREEABLE(cachep, i); 3410 } 3411 #endif 3412 spin_unlock(&n->list_lock); 3413 slabs_destroy(cachep, &list); 3414 ac->avail -= batchcount; 3415 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3416 } 3417 3418 /* 3419 * Release an obj back to its cache. If the obj has a constructed state, it must 3420 * be in this state _before_ it is released. Called with disabled ints. 3421 */ 3422 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3423 unsigned long caller) 3424 { 3425 /* Put the object into the quarantine, don't touch it for now. */ 3426 if (kasan_slab_free(cachep, objp, _RET_IP_)) 3427 return; 3428 3429 ___cache_free(cachep, objp, caller); 3430 } 3431 3432 void ___cache_free(struct kmem_cache *cachep, void *objp, 3433 unsigned long caller) 3434 { 3435 struct array_cache *ac = cpu_cache_get(cachep); 3436 3437 check_irq_off(); 3438 if (unlikely(slab_want_init_on_free(cachep))) 3439 memset(objp, 0, cachep->object_size); 3440 kmemleak_free_recursive(objp, cachep->flags); 3441 objp = cache_free_debugcheck(cachep, objp, caller); 3442 3443 /* 3444 * Skip calling cache_free_alien() when the platform is not numa. 3445 * This will avoid cache misses that happen while accessing slabp (which 3446 * is per page memory reference) to get nodeid. Instead use a global 3447 * variable to skip the call, which is mostly likely to be present in 3448 * the cache. 3449 */ 3450 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3451 return; 3452 3453 if (ac->avail < ac->limit) { 3454 STATS_INC_FREEHIT(cachep); 3455 } else { 3456 STATS_INC_FREEMISS(cachep); 3457 cache_flusharray(cachep, ac); 3458 } 3459 3460 if (sk_memalloc_socks()) { 3461 struct page *page = virt_to_head_page(objp); 3462 3463 if (unlikely(PageSlabPfmemalloc(page))) { 3464 cache_free_pfmemalloc(cachep, page, objp); 3465 return; 3466 } 3467 } 3468 3469 ac->entry[ac->avail++] = objp; 3470 } 3471 3472 /** 3473 * kmem_cache_alloc - Allocate an object 3474 * @cachep: The cache to allocate from. 3475 * @flags: See kmalloc(). 3476 * 3477 * Allocate an object from this cache. The flags are only relevant 3478 * if the cache has no available objects. 3479 * 3480 * Return: pointer to the new object or %NULL in case of error 3481 */ 3482 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3483 { 3484 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3485 3486 trace_kmem_cache_alloc(_RET_IP_, ret, 3487 cachep->object_size, cachep->size, flags); 3488 3489 return ret; 3490 } 3491 EXPORT_SYMBOL(kmem_cache_alloc); 3492 3493 static __always_inline void 3494 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3495 size_t size, void **p, unsigned long caller) 3496 { 3497 size_t i; 3498 3499 for (i = 0; i < size; i++) 3500 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3501 } 3502 3503 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3504 void **p) 3505 { 3506 size_t i; 3507 3508 s = slab_pre_alloc_hook(s, flags); 3509 if (!s) 3510 return 0; 3511 3512 cache_alloc_debugcheck_before(s, flags); 3513 3514 local_irq_disable(); 3515 for (i = 0; i < size; i++) { 3516 void *objp = __do_cache_alloc(s, flags); 3517 3518 if (unlikely(!objp)) 3519 goto error; 3520 p[i] = objp; 3521 } 3522 local_irq_enable(); 3523 3524 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3525 3526 /* Clear memory outside IRQ disabled section */ 3527 if (unlikely(slab_want_init_on_alloc(flags, s))) 3528 for (i = 0; i < size; i++) 3529 memset(p[i], 0, s->object_size); 3530 3531 slab_post_alloc_hook(s, flags, size, p); 3532 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3533 return size; 3534 error: 3535 local_irq_enable(); 3536 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3537 slab_post_alloc_hook(s, flags, i, p); 3538 __kmem_cache_free_bulk(s, i, p); 3539 return 0; 3540 } 3541 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3542 3543 #ifdef CONFIG_TRACING 3544 void * 3545 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3546 { 3547 void *ret; 3548 3549 ret = slab_alloc(cachep, flags, _RET_IP_); 3550 3551 ret = kasan_kmalloc(cachep, ret, size, flags); 3552 trace_kmalloc(_RET_IP_, ret, 3553 size, cachep->size, flags); 3554 return ret; 3555 } 3556 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3557 #endif 3558 3559 #ifdef CONFIG_NUMA 3560 /** 3561 * kmem_cache_alloc_node - Allocate an object on the specified node 3562 * @cachep: The cache to allocate from. 3563 * @flags: See kmalloc(). 3564 * @nodeid: node number of the target node. 3565 * 3566 * Identical to kmem_cache_alloc but it will allocate memory on the given 3567 * node, which can improve the performance for cpu bound structures. 3568 * 3569 * Fallback to other node is possible if __GFP_THISNODE is not set. 3570 * 3571 * Return: pointer to the new object or %NULL in case of error 3572 */ 3573 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3574 { 3575 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3576 3577 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3578 cachep->object_size, cachep->size, 3579 flags, nodeid); 3580 3581 return ret; 3582 } 3583 EXPORT_SYMBOL(kmem_cache_alloc_node); 3584 3585 #ifdef CONFIG_TRACING 3586 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3587 gfp_t flags, 3588 int nodeid, 3589 size_t size) 3590 { 3591 void *ret; 3592 3593 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3594 3595 ret = kasan_kmalloc(cachep, ret, size, flags); 3596 trace_kmalloc_node(_RET_IP_, ret, 3597 size, cachep->size, 3598 flags, nodeid); 3599 return ret; 3600 } 3601 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3602 #endif 3603 3604 static __always_inline void * 3605 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3606 { 3607 struct kmem_cache *cachep; 3608 void *ret; 3609 3610 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3611 return NULL; 3612 cachep = kmalloc_slab(size, flags); 3613 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3614 return cachep; 3615 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3616 ret = kasan_kmalloc(cachep, ret, size, flags); 3617 3618 return ret; 3619 } 3620 3621 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3622 { 3623 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3624 } 3625 EXPORT_SYMBOL(__kmalloc_node); 3626 3627 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3628 int node, unsigned long caller) 3629 { 3630 return __do_kmalloc_node(size, flags, node, caller); 3631 } 3632 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3633 #endif /* CONFIG_NUMA */ 3634 3635 /** 3636 * __do_kmalloc - allocate memory 3637 * @size: how many bytes of memory are required. 3638 * @flags: the type of memory to allocate (see kmalloc). 3639 * @caller: function caller for debug tracking of the caller 3640 * 3641 * Return: pointer to the allocated memory or %NULL in case of error 3642 */ 3643 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3644 unsigned long caller) 3645 { 3646 struct kmem_cache *cachep; 3647 void *ret; 3648 3649 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3650 return NULL; 3651 cachep = kmalloc_slab(size, flags); 3652 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3653 return cachep; 3654 ret = slab_alloc(cachep, flags, caller); 3655 3656 ret = kasan_kmalloc(cachep, ret, size, flags); 3657 trace_kmalloc(caller, ret, 3658 size, cachep->size, flags); 3659 3660 return ret; 3661 } 3662 3663 void *__kmalloc(size_t size, gfp_t flags) 3664 { 3665 return __do_kmalloc(size, flags, _RET_IP_); 3666 } 3667 EXPORT_SYMBOL(__kmalloc); 3668 3669 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3670 { 3671 return __do_kmalloc(size, flags, caller); 3672 } 3673 EXPORT_SYMBOL(__kmalloc_track_caller); 3674 3675 /** 3676 * kmem_cache_free - Deallocate an object 3677 * @cachep: The cache the allocation was from. 3678 * @objp: The previously allocated object. 3679 * 3680 * Free an object which was previously allocated from this 3681 * cache. 3682 */ 3683 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3684 { 3685 unsigned long flags; 3686 cachep = cache_from_obj(cachep, objp); 3687 if (!cachep) 3688 return; 3689 3690 local_irq_save(flags); 3691 debug_check_no_locks_freed(objp, cachep->object_size); 3692 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3693 debug_check_no_obj_freed(objp, cachep->object_size); 3694 __cache_free(cachep, objp, _RET_IP_); 3695 local_irq_restore(flags); 3696 3697 trace_kmem_cache_free(_RET_IP_, objp); 3698 } 3699 EXPORT_SYMBOL(kmem_cache_free); 3700 3701 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3702 { 3703 struct kmem_cache *s; 3704 size_t i; 3705 3706 local_irq_disable(); 3707 for (i = 0; i < size; i++) { 3708 void *objp = p[i]; 3709 3710 if (!orig_s) /* called via kfree_bulk */ 3711 s = virt_to_cache(objp); 3712 else 3713 s = cache_from_obj(orig_s, objp); 3714 if (!s) 3715 continue; 3716 3717 debug_check_no_locks_freed(objp, s->object_size); 3718 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3719 debug_check_no_obj_freed(objp, s->object_size); 3720 3721 __cache_free(s, objp, _RET_IP_); 3722 } 3723 local_irq_enable(); 3724 3725 /* FIXME: add tracing */ 3726 } 3727 EXPORT_SYMBOL(kmem_cache_free_bulk); 3728 3729 /** 3730 * kfree - free previously allocated memory 3731 * @objp: pointer returned by kmalloc. 3732 * 3733 * If @objp is NULL, no operation is performed. 3734 * 3735 * Don't free memory not originally allocated by kmalloc() 3736 * or you will run into trouble. 3737 */ 3738 void kfree(const void *objp) 3739 { 3740 struct kmem_cache *c; 3741 unsigned long flags; 3742 3743 trace_kfree(_RET_IP_, objp); 3744 3745 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3746 return; 3747 local_irq_save(flags); 3748 kfree_debugcheck(objp); 3749 c = virt_to_cache(objp); 3750 if (!c) { 3751 local_irq_restore(flags); 3752 return; 3753 } 3754 debug_check_no_locks_freed(objp, c->object_size); 3755 3756 debug_check_no_obj_freed(objp, c->object_size); 3757 __cache_free(c, (void *)objp, _RET_IP_); 3758 local_irq_restore(flags); 3759 } 3760 EXPORT_SYMBOL(kfree); 3761 3762 /* 3763 * This initializes kmem_cache_node or resizes various caches for all nodes. 3764 */ 3765 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3766 { 3767 int ret; 3768 int node; 3769 struct kmem_cache_node *n; 3770 3771 for_each_online_node(node) { 3772 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3773 if (ret) 3774 goto fail; 3775 3776 } 3777 3778 return 0; 3779 3780 fail: 3781 if (!cachep->list.next) { 3782 /* Cache is not active yet. Roll back what we did */ 3783 node--; 3784 while (node >= 0) { 3785 n = get_node(cachep, node); 3786 if (n) { 3787 kfree(n->shared); 3788 free_alien_cache(n->alien); 3789 kfree(n); 3790 cachep->node[node] = NULL; 3791 } 3792 node--; 3793 } 3794 } 3795 return -ENOMEM; 3796 } 3797 3798 /* Always called with the slab_mutex held */ 3799 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3800 int batchcount, int shared, gfp_t gfp) 3801 { 3802 struct array_cache __percpu *cpu_cache, *prev; 3803 int cpu; 3804 3805 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3806 if (!cpu_cache) 3807 return -ENOMEM; 3808 3809 prev = cachep->cpu_cache; 3810 cachep->cpu_cache = cpu_cache; 3811 /* 3812 * Without a previous cpu_cache there's no need to synchronize remote 3813 * cpus, so skip the IPIs. 3814 */ 3815 if (prev) 3816 kick_all_cpus_sync(); 3817 3818 check_irq_on(); 3819 cachep->batchcount = batchcount; 3820 cachep->limit = limit; 3821 cachep->shared = shared; 3822 3823 if (!prev) 3824 goto setup_node; 3825 3826 for_each_online_cpu(cpu) { 3827 LIST_HEAD(list); 3828 int node; 3829 struct kmem_cache_node *n; 3830 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3831 3832 node = cpu_to_mem(cpu); 3833 n = get_node(cachep, node); 3834 spin_lock_irq(&n->list_lock); 3835 free_block(cachep, ac->entry, ac->avail, node, &list); 3836 spin_unlock_irq(&n->list_lock); 3837 slabs_destroy(cachep, &list); 3838 } 3839 free_percpu(prev); 3840 3841 setup_node: 3842 return setup_kmem_cache_nodes(cachep, gfp); 3843 } 3844 3845 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3846 int batchcount, int shared, gfp_t gfp) 3847 { 3848 int ret; 3849 struct kmem_cache *c; 3850 3851 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3852 3853 if (slab_state < FULL) 3854 return ret; 3855 3856 if ((ret < 0) || !is_root_cache(cachep)) 3857 return ret; 3858 3859 lockdep_assert_held(&slab_mutex); 3860 for_each_memcg_cache(c, cachep) { 3861 /* return value determined by the root cache only */ 3862 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3863 } 3864 3865 return ret; 3866 } 3867 3868 /* Called with slab_mutex held always */ 3869 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3870 { 3871 int err; 3872 int limit = 0; 3873 int shared = 0; 3874 int batchcount = 0; 3875 3876 err = cache_random_seq_create(cachep, cachep->num, gfp); 3877 if (err) 3878 goto end; 3879 3880 if (!is_root_cache(cachep)) { 3881 struct kmem_cache *root = memcg_root_cache(cachep); 3882 limit = root->limit; 3883 shared = root->shared; 3884 batchcount = root->batchcount; 3885 } 3886 3887 if (limit && shared && batchcount) 3888 goto skip_setup; 3889 /* 3890 * The head array serves three purposes: 3891 * - create a LIFO ordering, i.e. return objects that are cache-warm 3892 * - reduce the number of spinlock operations. 3893 * - reduce the number of linked list operations on the slab and 3894 * bufctl chains: array operations are cheaper. 3895 * The numbers are guessed, we should auto-tune as described by 3896 * Bonwick. 3897 */ 3898 if (cachep->size > 131072) 3899 limit = 1; 3900 else if (cachep->size > PAGE_SIZE) 3901 limit = 8; 3902 else if (cachep->size > 1024) 3903 limit = 24; 3904 else if (cachep->size > 256) 3905 limit = 54; 3906 else 3907 limit = 120; 3908 3909 /* 3910 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3911 * allocation behaviour: Most allocs on one cpu, most free operations 3912 * on another cpu. For these cases, an efficient object passing between 3913 * cpus is necessary. This is provided by a shared array. The array 3914 * replaces Bonwick's magazine layer. 3915 * On uniprocessor, it's functionally equivalent (but less efficient) 3916 * to a larger limit. Thus disabled by default. 3917 */ 3918 shared = 0; 3919 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3920 shared = 8; 3921 3922 #if DEBUG 3923 /* 3924 * With debugging enabled, large batchcount lead to excessively long 3925 * periods with disabled local interrupts. Limit the batchcount 3926 */ 3927 if (limit > 32) 3928 limit = 32; 3929 #endif 3930 batchcount = (limit + 1) / 2; 3931 skip_setup: 3932 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3933 end: 3934 if (err) 3935 pr_err("enable_cpucache failed for %s, error %d\n", 3936 cachep->name, -err); 3937 return err; 3938 } 3939 3940 /* 3941 * Drain an array if it contains any elements taking the node lock only if 3942 * necessary. Note that the node listlock also protects the array_cache 3943 * if drain_array() is used on the shared array. 3944 */ 3945 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3946 struct array_cache *ac, int node) 3947 { 3948 LIST_HEAD(list); 3949 3950 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3951 check_mutex_acquired(); 3952 3953 if (!ac || !ac->avail) 3954 return; 3955 3956 if (ac->touched) { 3957 ac->touched = 0; 3958 return; 3959 } 3960 3961 spin_lock_irq(&n->list_lock); 3962 drain_array_locked(cachep, ac, node, false, &list); 3963 spin_unlock_irq(&n->list_lock); 3964 3965 slabs_destroy(cachep, &list); 3966 } 3967 3968 /** 3969 * cache_reap - Reclaim memory from caches. 3970 * @w: work descriptor 3971 * 3972 * Called from workqueue/eventd every few seconds. 3973 * Purpose: 3974 * - clear the per-cpu caches for this CPU. 3975 * - return freeable pages to the main free memory pool. 3976 * 3977 * If we cannot acquire the cache chain mutex then just give up - we'll try 3978 * again on the next iteration. 3979 */ 3980 static void cache_reap(struct work_struct *w) 3981 { 3982 struct kmem_cache *searchp; 3983 struct kmem_cache_node *n; 3984 int node = numa_mem_id(); 3985 struct delayed_work *work = to_delayed_work(w); 3986 3987 if (!mutex_trylock(&slab_mutex)) 3988 /* Give up. Setup the next iteration. */ 3989 goto out; 3990 3991 list_for_each_entry(searchp, &slab_caches, list) { 3992 check_irq_on(); 3993 3994 /* 3995 * We only take the node lock if absolutely necessary and we 3996 * have established with reasonable certainty that 3997 * we can do some work if the lock was obtained. 3998 */ 3999 n = get_node(searchp, node); 4000 4001 reap_alien(searchp, n); 4002 4003 drain_array(searchp, n, cpu_cache_get(searchp), node); 4004 4005 /* 4006 * These are racy checks but it does not matter 4007 * if we skip one check or scan twice. 4008 */ 4009 if (time_after(n->next_reap, jiffies)) 4010 goto next; 4011 4012 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4013 4014 drain_array(searchp, n, n->shared, node); 4015 4016 if (n->free_touched) 4017 n->free_touched = 0; 4018 else { 4019 int freed; 4020 4021 freed = drain_freelist(searchp, n, (n->free_limit + 4022 5 * searchp->num - 1) / (5 * searchp->num)); 4023 STATS_ADD_REAPED(searchp, freed); 4024 } 4025 next: 4026 cond_resched(); 4027 } 4028 check_irq_on(); 4029 mutex_unlock(&slab_mutex); 4030 next_reap_node(); 4031 out: 4032 /* Set up the next iteration */ 4033 schedule_delayed_work_on(smp_processor_id(), work, 4034 round_jiffies_relative(REAPTIMEOUT_AC)); 4035 } 4036 4037 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4038 { 4039 unsigned long active_objs, num_objs, active_slabs; 4040 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4041 unsigned long free_slabs = 0; 4042 int node; 4043 struct kmem_cache_node *n; 4044 4045 for_each_kmem_cache_node(cachep, node, n) { 4046 check_irq_on(); 4047 spin_lock_irq(&n->list_lock); 4048 4049 total_slabs += n->total_slabs; 4050 free_slabs += n->free_slabs; 4051 free_objs += n->free_objects; 4052 4053 if (n->shared) 4054 shared_avail += n->shared->avail; 4055 4056 spin_unlock_irq(&n->list_lock); 4057 } 4058 num_objs = total_slabs * cachep->num; 4059 active_slabs = total_slabs - free_slabs; 4060 active_objs = num_objs - free_objs; 4061 4062 sinfo->active_objs = active_objs; 4063 sinfo->num_objs = num_objs; 4064 sinfo->active_slabs = active_slabs; 4065 sinfo->num_slabs = total_slabs; 4066 sinfo->shared_avail = shared_avail; 4067 sinfo->limit = cachep->limit; 4068 sinfo->batchcount = cachep->batchcount; 4069 sinfo->shared = cachep->shared; 4070 sinfo->objects_per_slab = cachep->num; 4071 sinfo->cache_order = cachep->gfporder; 4072 } 4073 4074 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4075 { 4076 #if STATS 4077 { /* node stats */ 4078 unsigned long high = cachep->high_mark; 4079 unsigned long allocs = cachep->num_allocations; 4080 unsigned long grown = cachep->grown; 4081 unsigned long reaped = cachep->reaped; 4082 unsigned long errors = cachep->errors; 4083 unsigned long max_freeable = cachep->max_freeable; 4084 unsigned long node_allocs = cachep->node_allocs; 4085 unsigned long node_frees = cachep->node_frees; 4086 unsigned long overflows = cachep->node_overflow; 4087 4088 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4089 allocs, high, grown, 4090 reaped, errors, max_freeable, node_allocs, 4091 node_frees, overflows); 4092 } 4093 /* cpu stats */ 4094 { 4095 unsigned long allochit = atomic_read(&cachep->allochit); 4096 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4097 unsigned long freehit = atomic_read(&cachep->freehit); 4098 unsigned long freemiss = atomic_read(&cachep->freemiss); 4099 4100 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4101 allochit, allocmiss, freehit, freemiss); 4102 } 4103 #endif 4104 } 4105 4106 #define MAX_SLABINFO_WRITE 128 4107 /** 4108 * slabinfo_write - Tuning for the slab allocator 4109 * @file: unused 4110 * @buffer: user buffer 4111 * @count: data length 4112 * @ppos: unused 4113 * 4114 * Return: %0 on success, negative error code otherwise. 4115 */ 4116 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4117 size_t count, loff_t *ppos) 4118 { 4119 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4120 int limit, batchcount, shared, res; 4121 struct kmem_cache *cachep; 4122 4123 if (count > MAX_SLABINFO_WRITE) 4124 return -EINVAL; 4125 if (copy_from_user(&kbuf, buffer, count)) 4126 return -EFAULT; 4127 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4128 4129 tmp = strchr(kbuf, ' '); 4130 if (!tmp) 4131 return -EINVAL; 4132 *tmp = '\0'; 4133 tmp++; 4134 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4135 return -EINVAL; 4136 4137 /* Find the cache in the chain of caches. */ 4138 mutex_lock(&slab_mutex); 4139 res = -EINVAL; 4140 list_for_each_entry(cachep, &slab_caches, list) { 4141 if (!strcmp(cachep->name, kbuf)) { 4142 if (limit < 1 || batchcount < 1 || 4143 batchcount > limit || shared < 0) { 4144 res = 0; 4145 } else { 4146 res = do_tune_cpucache(cachep, limit, 4147 batchcount, shared, 4148 GFP_KERNEL); 4149 } 4150 break; 4151 } 4152 } 4153 mutex_unlock(&slab_mutex); 4154 if (res >= 0) 4155 res = count; 4156 return res; 4157 } 4158 4159 #ifdef CONFIG_HARDENED_USERCOPY 4160 /* 4161 * Rejects incorrectly sized objects and objects that are to be copied 4162 * to/from userspace but do not fall entirely within the containing slab 4163 * cache's usercopy region. 4164 * 4165 * Returns NULL if check passes, otherwise const char * to name of cache 4166 * to indicate an error. 4167 */ 4168 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4169 bool to_user) 4170 { 4171 struct kmem_cache *cachep; 4172 unsigned int objnr; 4173 unsigned long offset; 4174 4175 ptr = kasan_reset_tag(ptr); 4176 4177 /* Find and validate object. */ 4178 cachep = page->slab_cache; 4179 objnr = obj_to_index(cachep, page, (void *)ptr); 4180 BUG_ON(objnr >= cachep->num); 4181 4182 /* Find offset within object. */ 4183 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4184 4185 /* Allow address range falling entirely within usercopy region. */ 4186 if (offset >= cachep->useroffset && 4187 offset - cachep->useroffset <= cachep->usersize && 4188 n <= cachep->useroffset - offset + cachep->usersize) 4189 return; 4190 4191 /* 4192 * If the copy is still within the allocated object, produce 4193 * a warning instead of rejecting the copy. This is intended 4194 * to be a temporary method to find any missing usercopy 4195 * whitelists. 4196 */ 4197 if (usercopy_fallback && 4198 offset <= cachep->object_size && 4199 n <= cachep->object_size - offset) { 4200 usercopy_warn("SLAB object", cachep->name, to_user, offset, n); 4201 return; 4202 } 4203 4204 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4205 } 4206 #endif /* CONFIG_HARDENED_USERCOPY */ 4207 4208 /** 4209 * __ksize -- Uninstrumented ksize. 4210 * @objp: pointer to the object 4211 * 4212 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same 4213 * safety checks as ksize() with KASAN instrumentation enabled. 4214 * 4215 * Return: size of the actual memory used by @objp in bytes 4216 */ 4217 size_t __ksize(const void *objp) 4218 { 4219 struct kmem_cache *c; 4220 size_t size; 4221 4222 BUG_ON(!objp); 4223 if (unlikely(objp == ZERO_SIZE_PTR)) 4224 return 0; 4225 4226 c = virt_to_cache(objp); 4227 size = c ? c->object_size : 0; 4228 4229 return size; 4230 } 4231 EXPORT_SYMBOL(__ksize); 4232