xref: /openbmc/linux/mm/slab.c (revision 588b48ca)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * true if a page was allocated from pfmemalloc reserves for network-based
173  * swap
174  */
175 static bool pfmemalloc_active __read_mostly;
176 
177 /*
178  * struct array_cache
179  *
180  * Purpose:
181  * - LIFO ordering, to hand out cache-warm objects from _alloc
182  * - reduce the number of linked list operations
183  * - reduce spinlock operations
184  *
185  * The limit is stored in the per-cpu structure to reduce the data cache
186  * footprint.
187  *
188  */
189 struct array_cache {
190 	unsigned int avail;
191 	unsigned int limit;
192 	unsigned int batchcount;
193 	unsigned int touched;
194 	void *entry[];	/*
195 			 * Must have this definition in here for the proper
196 			 * alignment of array_cache. Also simplifies accessing
197 			 * the entries.
198 			 *
199 			 * Entries should not be directly dereferenced as
200 			 * entries belonging to slabs marked pfmemalloc will
201 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 			 */
203 };
204 
205 struct alien_cache {
206 	spinlock_t lock;
207 	struct array_cache ac;
208 };
209 
210 #define SLAB_OBJ_PFMEMALLOC	1
211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215 
216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 	return;
220 }
221 
222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226 
227 /*
228  * bootstrap: The caches do not work without cpuarrays anymore, but the
229  * cpuarrays are allocated from the generic caches...
230  */
231 #define BOOT_CPUCACHE_ENTRIES	1
232 struct arraycache_init {
233 	struct array_cache cache;
234 	void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236 
237 /*
238  * Need this for bootstrapping a per node allocator.
239  */
240 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define	CACHE_CACHE 0
243 #define	SIZE_AC MAX_NUMNODES
244 #define	SIZE_NODE (2 * MAX_NUMNODES)
245 
246 static int drain_freelist(struct kmem_cache *cache,
247 			struct kmem_cache_node *n, int tofree);
248 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
249 			int node, struct list_head *list);
250 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
251 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252 static void cache_reap(struct work_struct *unused);
253 
254 static int slab_early_init = 1;
255 
256 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
258 
259 static void kmem_cache_node_init(struct kmem_cache_node *parent)
260 {
261 	INIT_LIST_HEAD(&parent->slabs_full);
262 	INIT_LIST_HEAD(&parent->slabs_partial);
263 	INIT_LIST_HEAD(&parent->slabs_free);
264 	parent->shared = NULL;
265 	parent->alien = NULL;
266 	parent->colour_next = 0;
267 	spin_lock_init(&parent->list_lock);
268 	parent->free_objects = 0;
269 	parent->free_touched = 0;
270 }
271 
272 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
273 	do {								\
274 		INIT_LIST_HEAD(listp);					\
275 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
276 	} while (0)
277 
278 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
279 	do {								\
280 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
281 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
282 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
283 	} while (0)
284 
285 #define CFLGS_OFF_SLAB		(0x80000000UL)
286 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
287 
288 #define BATCHREFILL_LIMIT	16
289 /*
290  * Optimization question: fewer reaps means less probability for unnessary
291  * cpucache drain/refill cycles.
292  *
293  * OTOH the cpuarrays can contain lots of objects,
294  * which could lock up otherwise freeable slabs.
295  */
296 #define REAPTIMEOUT_AC		(2*HZ)
297 #define REAPTIMEOUT_NODE	(4*HZ)
298 
299 #if STATS
300 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
301 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
302 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
303 #define	STATS_INC_GROWN(x)	((x)->grown++)
304 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
305 #define	STATS_SET_HIGH(x)						\
306 	do {								\
307 		if ((x)->num_active > (x)->high_mark)			\
308 			(x)->high_mark = (x)->num_active;		\
309 	} while (0)
310 #define	STATS_INC_ERR(x)	((x)->errors++)
311 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
312 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
313 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
314 #define	STATS_SET_FREEABLE(x, i)					\
315 	do {								\
316 		if ((x)->max_freeable < i)				\
317 			(x)->max_freeable = i;				\
318 	} while (0)
319 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
320 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
321 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
322 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
323 #else
324 #define	STATS_INC_ACTIVE(x)	do { } while (0)
325 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
326 #define	STATS_INC_ALLOCED(x)	do { } while (0)
327 #define	STATS_INC_GROWN(x)	do { } while (0)
328 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
329 #define	STATS_SET_HIGH(x)	do { } while (0)
330 #define	STATS_INC_ERR(x)	do { } while (0)
331 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
332 #define	STATS_INC_NODEFREES(x)	do { } while (0)
333 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
334 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
335 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
336 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
337 #define STATS_INC_FREEHIT(x)	do { } while (0)
338 #define STATS_INC_FREEMISS(x)	do { } while (0)
339 #endif
340 
341 #if DEBUG
342 
343 /*
344  * memory layout of objects:
345  * 0		: objp
346  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
347  * 		the end of an object is aligned with the end of the real
348  * 		allocation. Catches writes behind the end of the allocation.
349  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
350  * 		redzone word.
351  * cachep->obj_offset: The real object.
352  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
353  * cachep->size - 1* BYTES_PER_WORD: last caller address
354  *					[BYTES_PER_WORD long]
355  */
356 static int obj_offset(struct kmem_cache *cachep)
357 {
358 	return cachep->obj_offset;
359 }
360 
361 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
362 {
363 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364 	return (unsigned long long*) (objp + obj_offset(cachep) -
365 				      sizeof(unsigned long long));
366 }
367 
368 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
369 {
370 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
371 	if (cachep->flags & SLAB_STORE_USER)
372 		return (unsigned long long *)(objp + cachep->size -
373 					      sizeof(unsigned long long) -
374 					      REDZONE_ALIGN);
375 	return (unsigned long long *) (objp + cachep->size -
376 				       sizeof(unsigned long long));
377 }
378 
379 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
380 {
381 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
383 }
384 
385 #else
386 
387 #define obj_offset(x)			0
388 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
389 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
390 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
391 
392 #endif
393 
394 #define OBJECT_FREE (0)
395 #define OBJECT_ACTIVE (1)
396 
397 #ifdef CONFIG_DEBUG_SLAB_LEAK
398 
399 static void set_obj_status(struct page *page, int idx, int val)
400 {
401 	int freelist_size;
402 	char *status;
403 	struct kmem_cache *cachep = page->slab_cache;
404 
405 	freelist_size = cachep->num * sizeof(freelist_idx_t);
406 	status = (char *)page->freelist + freelist_size;
407 	status[idx] = val;
408 }
409 
410 static inline unsigned int get_obj_status(struct page *page, int idx)
411 {
412 	int freelist_size;
413 	char *status;
414 	struct kmem_cache *cachep = page->slab_cache;
415 
416 	freelist_size = cachep->num * sizeof(freelist_idx_t);
417 	status = (char *)page->freelist + freelist_size;
418 
419 	return status[idx];
420 }
421 
422 #else
423 static inline void set_obj_status(struct page *page, int idx, int val) {}
424 
425 #endif
426 
427 /*
428  * Do not go above this order unless 0 objects fit into the slab or
429  * overridden on the command line.
430  */
431 #define	SLAB_MAX_ORDER_HI	1
432 #define	SLAB_MAX_ORDER_LO	0
433 static int slab_max_order = SLAB_MAX_ORDER_LO;
434 static bool slab_max_order_set __initdata;
435 
436 static inline struct kmem_cache *virt_to_cache(const void *obj)
437 {
438 	struct page *page = virt_to_head_page(obj);
439 	return page->slab_cache;
440 }
441 
442 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
443 				 unsigned int idx)
444 {
445 	return page->s_mem + cache->size * idx;
446 }
447 
448 /*
449  * We want to avoid an expensive divide : (offset / cache->size)
450  *   Using the fact that size is a constant for a particular cache,
451  *   we can replace (offset / cache->size) by
452  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
453  */
454 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455 					const struct page *page, void *obj)
456 {
457 	u32 offset = (obj - page->s_mem);
458 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459 }
460 
461 static struct arraycache_init initarray_generic =
462     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
463 
464 /* internal cache of cache description objs */
465 static struct kmem_cache kmem_cache_boot = {
466 	.batchcount = 1,
467 	.limit = BOOT_CPUCACHE_ENTRIES,
468 	.shared = 1,
469 	.size = sizeof(struct kmem_cache),
470 	.name = "kmem_cache",
471 };
472 
473 #define BAD_ALIEN_MAGIC 0x01020304ul
474 
475 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
476 
477 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
478 {
479 	return cachep->array[smp_processor_id()];
480 }
481 
482 static size_t calculate_freelist_size(int nr_objs, size_t align)
483 {
484 	size_t freelist_size;
485 
486 	freelist_size = nr_objs * sizeof(freelist_idx_t);
487 	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
488 		freelist_size += nr_objs * sizeof(char);
489 
490 	if (align)
491 		freelist_size = ALIGN(freelist_size, align);
492 
493 	return freelist_size;
494 }
495 
496 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
497 				size_t idx_size, size_t align)
498 {
499 	int nr_objs;
500 	size_t remained_size;
501 	size_t freelist_size;
502 	int extra_space = 0;
503 
504 	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
505 		extra_space = sizeof(char);
506 	/*
507 	 * Ignore padding for the initial guess. The padding
508 	 * is at most @align-1 bytes, and @buffer_size is at
509 	 * least @align. In the worst case, this result will
510 	 * be one greater than the number of objects that fit
511 	 * into the memory allocation when taking the padding
512 	 * into account.
513 	 */
514 	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
515 
516 	/*
517 	 * This calculated number will be either the right
518 	 * amount, or one greater than what we want.
519 	 */
520 	remained_size = slab_size - nr_objs * buffer_size;
521 	freelist_size = calculate_freelist_size(nr_objs, align);
522 	if (remained_size < freelist_size)
523 		nr_objs--;
524 
525 	return nr_objs;
526 }
527 
528 /*
529  * Calculate the number of objects and left-over bytes for a given buffer size.
530  */
531 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
532 			   size_t align, int flags, size_t *left_over,
533 			   unsigned int *num)
534 {
535 	int nr_objs;
536 	size_t mgmt_size;
537 	size_t slab_size = PAGE_SIZE << gfporder;
538 
539 	/*
540 	 * The slab management structure can be either off the slab or
541 	 * on it. For the latter case, the memory allocated for a
542 	 * slab is used for:
543 	 *
544 	 * - One unsigned int for each object
545 	 * - Padding to respect alignment of @align
546 	 * - @buffer_size bytes for each object
547 	 *
548 	 * If the slab management structure is off the slab, then the
549 	 * alignment will already be calculated into the size. Because
550 	 * the slabs are all pages aligned, the objects will be at the
551 	 * correct alignment when allocated.
552 	 */
553 	if (flags & CFLGS_OFF_SLAB) {
554 		mgmt_size = 0;
555 		nr_objs = slab_size / buffer_size;
556 
557 	} else {
558 		nr_objs = calculate_nr_objs(slab_size, buffer_size,
559 					sizeof(freelist_idx_t), align);
560 		mgmt_size = calculate_freelist_size(nr_objs, align);
561 	}
562 	*num = nr_objs;
563 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
564 }
565 
566 #if DEBUG
567 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
568 
569 static void __slab_error(const char *function, struct kmem_cache *cachep,
570 			char *msg)
571 {
572 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
573 	       function, cachep->name, msg);
574 	dump_stack();
575 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
576 }
577 #endif
578 
579 /*
580  * By default on NUMA we use alien caches to stage the freeing of
581  * objects allocated from other nodes. This causes massive memory
582  * inefficiencies when using fake NUMA setup to split memory into a
583  * large number of small nodes, so it can be disabled on the command
584  * line
585   */
586 
587 static int use_alien_caches __read_mostly = 1;
588 static int __init noaliencache_setup(char *s)
589 {
590 	use_alien_caches = 0;
591 	return 1;
592 }
593 __setup("noaliencache", noaliencache_setup);
594 
595 static int __init slab_max_order_setup(char *str)
596 {
597 	get_option(&str, &slab_max_order);
598 	slab_max_order = slab_max_order < 0 ? 0 :
599 				min(slab_max_order, MAX_ORDER - 1);
600 	slab_max_order_set = true;
601 
602 	return 1;
603 }
604 __setup("slab_max_order=", slab_max_order_setup);
605 
606 #ifdef CONFIG_NUMA
607 /*
608  * Special reaping functions for NUMA systems called from cache_reap().
609  * These take care of doing round robin flushing of alien caches (containing
610  * objects freed on different nodes from which they were allocated) and the
611  * flushing of remote pcps by calling drain_node_pages.
612  */
613 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
614 
615 static void init_reap_node(int cpu)
616 {
617 	int node;
618 
619 	node = next_node(cpu_to_mem(cpu), node_online_map);
620 	if (node == MAX_NUMNODES)
621 		node = first_node(node_online_map);
622 
623 	per_cpu(slab_reap_node, cpu) = node;
624 }
625 
626 static void next_reap_node(void)
627 {
628 	int node = __this_cpu_read(slab_reap_node);
629 
630 	node = next_node(node, node_online_map);
631 	if (unlikely(node >= MAX_NUMNODES))
632 		node = first_node(node_online_map);
633 	__this_cpu_write(slab_reap_node, node);
634 }
635 
636 #else
637 #define init_reap_node(cpu) do { } while (0)
638 #define next_reap_node(void) do { } while (0)
639 #endif
640 
641 /*
642  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
643  * via the workqueue/eventd.
644  * Add the CPU number into the expiration time to minimize the possibility of
645  * the CPUs getting into lockstep and contending for the global cache chain
646  * lock.
647  */
648 static void start_cpu_timer(int cpu)
649 {
650 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
651 
652 	/*
653 	 * When this gets called from do_initcalls via cpucache_init(),
654 	 * init_workqueues() has already run, so keventd will be setup
655 	 * at that time.
656 	 */
657 	if (keventd_up() && reap_work->work.func == NULL) {
658 		init_reap_node(cpu);
659 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
660 		schedule_delayed_work_on(cpu, reap_work,
661 					__round_jiffies_relative(HZ, cpu));
662 	}
663 }
664 
665 static void init_arraycache(struct array_cache *ac, int limit, int batch)
666 {
667 	/*
668 	 * The array_cache structures contain pointers to free object.
669 	 * However, when such objects are allocated or transferred to another
670 	 * cache the pointers are not cleared and they could be counted as
671 	 * valid references during a kmemleak scan. Therefore, kmemleak must
672 	 * not scan such objects.
673 	 */
674 	kmemleak_no_scan(ac);
675 	if (ac) {
676 		ac->avail = 0;
677 		ac->limit = limit;
678 		ac->batchcount = batch;
679 		ac->touched = 0;
680 	}
681 }
682 
683 static struct array_cache *alloc_arraycache(int node, int entries,
684 					    int batchcount, gfp_t gfp)
685 {
686 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
687 	struct array_cache *ac = NULL;
688 
689 	ac = kmalloc_node(memsize, gfp, node);
690 	init_arraycache(ac, entries, batchcount);
691 	return ac;
692 }
693 
694 static inline bool is_slab_pfmemalloc(struct page *page)
695 {
696 	return PageSlabPfmemalloc(page);
697 }
698 
699 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
700 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
701 						struct array_cache *ac)
702 {
703 	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
704 	struct page *page;
705 	unsigned long flags;
706 
707 	if (!pfmemalloc_active)
708 		return;
709 
710 	spin_lock_irqsave(&n->list_lock, flags);
711 	list_for_each_entry(page, &n->slabs_full, lru)
712 		if (is_slab_pfmemalloc(page))
713 			goto out;
714 
715 	list_for_each_entry(page, &n->slabs_partial, lru)
716 		if (is_slab_pfmemalloc(page))
717 			goto out;
718 
719 	list_for_each_entry(page, &n->slabs_free, lru)
720 		if (is_slab_pfmemalloc(page))
721 			goto out;
722 
723 	pfmemalloc_active = false;
724 out:
725 	spin_unlock_irqrestore(&n->list_lock, flags);
726 }
727 
728 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
729 						gfp_t flags, bool force_refill)
730 {
731 	int i;
732 	void *objp = ac->entry[--ac->avail];
733 
734 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
735 	if (unlikely(is_obj_pfmemalloc(objp))) {
736 		struct kmem_cache_node *n;
737 
738 		if (gfp_pfmemalloc_allowed(flags)) {
739 			clear_obj_pfmemalloc(&objp);
740 			return objp;
741 		}
742 
743 		/* The caller cannot use PFMEMALLOC objects, find another one */
744 		for (i = 0; i < ac->avail; i++) {
745 			/* If a !PFMEMALLOC object is found, swap them */
746 			if (!is_obj_pfmemalloc(ac->entry[i])) {
747 				objp = ac->entry[i];
748 				ac->entry[i] = ac->entry[ac->avail];
749 				ac->entry[ac->avail] = objp;
750 				return objp;
751 			}
752 		}
753 
754 		/*
755 		 * If there are empty slabs on the slabs_free list and we are
756 		 * being forced to refill the cache, mark this one !pfmemalloc.
757 		 */
758 		n = get_node(cachep, numa_mem_id());
759 		if (!list_empty(&n->slabs_free) && force_refill) {
760 			struct page *page = virt_to_head_page(objp);
761 			ClearPageSlabPfmemalloc(page);
762 			clear_obj_pfmemalloc(&objp);
763 			recheck_pfmemalloc_active(cachep, ac);
764 			return objp;
765 		}
766 
767 		/* No !PFMEMALLOC objects available */
768 		ac->avail++;
769 		objp = NULL;
770 	}
771 
772 	return objp;
773 }
774 
775 static inline void *ac_get_obj(struct kmem_cache *cachep,
776 			struct array_cache *ac, gfp_t flags, bool force_refill)
777 {
778 	void *objp;
779 
780 	if (unlikely(sk_memalloc_socks()))
781 		objp = __ac_get_obj(cachep, ac, flags, force_refill);
782 	else
783 		objp = ac->entry[--ac->avail];
784 
785 	return objp;
786 }
787 
788 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
789 								void *objp)
790 {
791 	if (unlikely(pfmemalloc_active)) {
792 		/* Some pfmemalloc slabs exist, check if this is one */
793 		struct page *page = virt_to_head_page(objp);
794 		if (PageSlabPfmemalloc(page))
795 			set_obj_pfmemalloc(&objp);
796 	}
797 
798 	return objp;
799 }
800 
801 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
802 								void *objp)
803 {
804 	if (unlikely(sk_memalloc_socks()))
805 		objp = __ac_put_obj(cachep, ac, objp);
806 
807 	ac->entry[ac->avail++] = objp;
808 }
809 
810 /*
811  * Transfer objects in one arraycache to another.
812  * Locking must be handled by the caller.
813  *
814  * Return the number of entries transferred.
815  */
816 static int transfer_objects(struct array_cache *to,
817 		struct array_cache *from, unsigned int max)
818 {
819 	/* Figure out how many entries to transfer */
820 	int nr = min3(from->avail, max, to->limit - to->avail);
821 
822 	if (!nr)
823 		return 0;
824 
825 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
826 			sizeof(void *) *nr);
827 
828 	from->avail -= nr;
829 	to->avail += nr;
830 	return nr;
831 }
832 
833 #ifndef CONFIG_NUMA
834 
835 #define drain_alien_cache(cachep, alien) do { } while (0)
836 #define reap_alien(cachep, n) do { } while (0)
837 
838 static inline struct alien_cache **alloc_alien_cache(int node,
839 						int limit, gfp_t gfp)
840 {
841 	return (struct alien_cache **)BAD_ALIEN_MAGIC;
842 }
843 
844 static inline void free_alien_cache(struct alien_cache **ac_ptr)
845 {
846 }
847 
848 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
849 {
850 	return 0;
851 }
852 
853 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
854 		gfp_t flags)
855 {
856 	return NULL;
857 }
858 
859 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
860 		 gfp_t flags, int nodeid)
861 {
862 	return NULL;
863 }
864 
865 #else	/* CONFIG_NUMA */
866 
867 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
868 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
869 
870 static struct alien_cache *__alloc_alien_cache(int node, int entries,
871 						int batch, gfp_t gfp)
872 {
873 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
874 	struct alien_cache *alc = NULL;
875 
876 	alc = kmalloc_node(memsize, gfp, node);
877 	init_arraycache(&alc->ac, entries, batch);
878 	spin_lock_init(&alc->lock);
879 	return alc;
880 }
881 
882 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
883 {
884 	struct alien_cache **alc_ptr;
885 	size_t memsize = sizeof(void *) * nr_node_ids;
886 	int i;
887 
888 	if (limit > 1)
889 		limit = 12;
890 	alc_ptr = kzalloc_node(memsize, gfp, node);
891 	if (!alc_ptr)
892 		return NULL;
893 
894 	for_each_node(i) {
895 		if (i == node || !node_online(i))
896 			continue;
897 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
898 		if (!alc_ptr[i]) {
899 			for (i--; i >= 0; i--)
900 				kfree(alc_ptr[i]);
901 			kfree(alc_ptr);
902 			return NULL;
903 		}
904 	}
905 	return alc_ptr;
906 }
907 
908 static void free_alien_cache(struct alien_cache **alc_ptr)
909 {
910 	int i;
911 
912 	if (!alc_ptr)
913 		return;
914 	for_each_node(i)
915 	    kfree(alc_ptr[i]);
916 	kfree(alc_ptr);
917 }
918 
919 static void __drain_alien_cache(struct kmem_cache *cachep,
920 				struct array_cache *ac, int node,
921 				struct list_head *list)
922 {
923 	struct kmem_cache_node *n = get_node(cachep, node);
924 
925 	if (ac->avail) {
926 		spin_lock(&n->list_lock);
927 		/*
928 		 * Stuff objects into the remote nodes shared array first.
929 		 * That way we could avoid the overhead of putting the objects
930 		 * into the free lists and getting them back later.
931 		 */
932 		if (n->shared)
933 			transfer_objects(n->shared, ac, ac->limit);
934 
935 		free_block(cachep, ac->entry, ac->avail, node, list);
936 		ac->avail = 0;
937 		spin_unlock(&n->list_lock);
938 	}
939 }
940 
941 /*
942  * Called from cache_reap() to regularly drain alien caches round robin.
943  */
944 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
945 {
946 	int node = __this_cpu_read(slab_reap_node);
947 
948 	if (n->alien) {
949 		struct alien_cache *alc = n->alien[node];
950 		struct array_cache *ac;
951 
952 		if (alc) {
953 			ac = &alc->ac;
954 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
955 				LIST_HEAD(list);
956 
957 				__drain_alien_cache(cachep, ac, node, &list);
958 				spin_unlock_irq(&alc->lock);
959 				slabs_destroy(cachep, &list);
960 			}
961 		}
962 	}
963 }
964 
965 static void drain_alien_cache(struct kmem_cache *cachep,
966 				struct alien_cache **alien)
967 {
968 	int i = 0;
969 	struct alien_cache *alc;
970 	struct array_cache *ac;
971 	unsigned long flags;
972 
973 	for_each_online_node(i) {
974 		alc = alien[i];
975 		if (alc) {
976 			LIST_HEAD(list);
977 
978 			ac = &alc->ac;
979 			spin_lock_irqsave(&alc->lock, flags);
980 			__drain_alien_cache(cachep, ac, i, &list);
981 			spin_unlock_irqrestore(&alc->lock, flags);
982 			slabs_destroy(cachep, &list);
983 		}
984 	}
985 }
986 
987 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
988 {
989 	int nodeid = page_to_nid(virt_to_page(objp));
990 	struct kmem_cache_node *n;
991 	struct alien_cache *alien = NULL;
992 	struct array_cache *ac;
993 	int node;
994 	LIST_HEAD(list);
995 
996 	node = numa_mem_id();
997 
998 	/*
999 	 * Make sure we are not freeing a object from another node to the array
1000 	 * cache on this cpu.
1001 	 */
1002 	if (likely(nodeid == node))
1003 		return 0;
1004 
1005 	n = get_node(cachep, node);
1006 	STATS_INC_NODEFREES(cachep);
1007 	if (n->alien && n->alien[nodeid]) {
1008 		alien = n->alien[nodeid];
1009 		ac = &alien->ac;
1010 		spin_lock(&alien->lock);
1011 		if (unlikely(ac->avail == ac->limit)) {
1012 			STATS_INC_ACOVERFLOW(cachep);
1013 			__drain_alien_cache(cachep, ac, nodeid, &list);
1014 		}
1015 		ac_put_obj(cachep, ac, objp);
1016 		spin_unlock(&alien->lock);
1017 		slabs_destroy(cachep, &list);
1018 	} else {
1019 		n = get_node(cachep, nodeid);
1020 		spin_lock(&n->list_lock);
1021 		free_block(cachep, &objp, 1, nodeid, &list);
1022 		spin_unlock(&n->list_lock);
1023 		slabs_destroy(cachep, &list);
1024 	}
1025 	return 1;
1026 }
1027 #endif
1028 
1029 /*
1030  * Allocates and initializes node for a node on each slab cache, used for
1031  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1032  * will be allocated off-node since memory is not yet online for the new node.
1033  * When hotplugging memory or a cpu, existing node are not replaced if
1034  * already in use.
1035  *
1036  * Must hold slab_mutex.
1037  */
1038 static int init_cache_node_node(int node)
1039 {
1040 	struct kmem_cache *cachep;
1041 	struct kmem_cache_node *n;
1042 	const size_t memsize = sizeof(struct kmem_cache_node);
1043 
1044 	list_for_each_entry(cachep, &slab_caches, list) {
1045 		/*
1046 		 * Set up the kmem_cache_node for cpu before we can
1047 		 * begin anything. Make sure some other cpu on this
1048 		 * node has not already allocated this
1049 		 */
1050 		n = get_node(cachep, node);
1051 		if (!n) {
1052 			n = kmalloc_node(memsize, GFP_KERNEL, node);
1053 			if (!n)
1054 				return -ENOMEM;
1055 			kmem_cache_node_init(n);
1056 			n->next_reap = jiffies + REAPTIMEOUT_NODE +
1057 			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1058 
1059 			/*
1060 			 * The kmem_cache_nodes don't come and go as CPUs
1061 			 * come and go.  slab_mutex is sufficient
1062 			 * protection here.
1063 			 */
1064 			cachep->node[node] = n;
1065 		}
1066 
1067 		spin_lock_irq(&n->list_lock);
1068 		n->free_limit =
1069 			(1 + nr_cpus_node(node)) *
1070 			cachep->batchcount + cachep->num;
1071 		spin_unlock_irq(&n->list_lock);
1072 	}
1073 	return 0;
1074 }
1075 
1076 static inline int slabs_tofree(struct kmem_cache *cachep,
1077 						struct kmem_cache_node *n)
1078 {
1079 	return (n->free_objects + cachep->num - 1) / cachep->num;
1080 }
1081 
1082 static void cpuup_canceled(long cpu)
1083 {
1084 	struct kmem_cache *cachep;
1085 	struct kmem_cache_node *n = NULL;
1086 	int node = cpu_to_mem(cpu);
1087 	const struct cpumask *mask = cpumask_of_node(node);
1088 
1089 	list_for_each_entry(cachep, &slab_caches, list) {
1090 		struct array_cache *nc;
1091 		struct array_cache *shared;
1092 		struct alien_cache **alien;
1093 		LIST_HEAD(list);
1094 
1095 		/* cpu is dead; no one can alloc from it. */
1096 		nc = cachep->array[cpu];
1097 		cachep->array[cpu] = NULL;
1098 		n = get_node(cachep, node);
1099 
1100 		if (!n)
1101 			goto free_array_cache;
1102 
1103 		spin_lock_irq(&n->list_lock);
1104 
1105 		/* Free limit for this kmem_cache_node */
1106 		n->free_limit -= cachep->batchcount;
1107 		if (nc)
1108 			free_block(cachep, nc->entry, nc->avail, node, &list);
1109 
1110 		if (!cpumask_empty(mask)) {
1111 			spin_unlock_irq(&n->list_lock);
1112 			goto free_array_cache;
1113 		}
1114 
1115 		shared = n->shared;
1116 		if (shared) {
1117 			free_block(cachep, shared->entry,
1118 				   shared->avail, node, &list);
1119 			n->shared = NULL;
1120 		}
1121 
1122 		alien = n->alien;
1123 		n->alien = NULL;
1124 
1125 		spin_unlock_irq(&n->list_lock);
1126 
1127 		kfree(shared);
1128 		if (alien) {
1129 			drain_alien_cache(cachep, alien);
1130 			free_alien_cache(alien);
1131 		}
1132 free_array_cache:
1133 		slabs_destroy(cachep, &list);
1134 		kfree(nc);
1135 	}
1136 	/*
1137 	 * In the previous loop, all the objects were freed to
1138 	 * the respective cache's slabs,  now we can go ahead and
1139 	 * shrink each nodelist to its limit.
1140 	 */
1141 	list_for_each_entry(cachep, &slab_caches, list) {
1142 		n = get_node(cachep, node);
1143 		if (!n)
1144 			continue;
1145 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1146 	}
1147 }
1148 
1149 static int cpuup_prepare(long cpu)
1150 {
1151 	struct kmem_cache *cachep;
1152 	struct kmem_cache_node *n = NULL;
1153 	int node = cpu_to_mem(cpu);
1154 	int err;
1155 
1156 	/*
1157 	 * We need to do this right in the beginning since
1158 	 * alloc_arraycache's are going to use this list.
1159 	 * kmalloc_node allows us to add the slab to the right
1160 	 * kmem_cache_node and not this cpu's kmem_cache_node
1161 	 */
1162 	err = init_cache_node_node(node);
1163 	if (err < 0)
1164 		goto bad;
1165 
1166 	/*
1167 	 * Now we can go ahead with allocating the shared arrays and
1168 	 * array caches
1169 	 */
1170 	list_for_each_entry(cachep, &slab_caches, list) {
1171 		struct array_cache *nc;
1172 		struct array_cache *shared = NULL;
1173 		struct alien_cache **alien = NULL;
1174 
1175 		nc = alloc_arraycache(node, cachep->limit,
1176 					cachep->batchcount, GFP_KERNEL);
1177 		if (!nc)
1178 			goto bad;
1179 		if (cachep->shared) {
1180 			shared = alloc_arraycache(node,
1181 				cachep->shared * cachep->batchcount,
1182 				0xbaadf00d, GFP_KERNEL);
1183 			if (!shared) {
1184 				kfree(nc);
1185 				goto bad;
1186 			}
1187 		}
1188 		if (use_alien_caches) {
1189 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1190 			if (!alien) {
1191 				kfree(shared);
1192 				kfree(nc);
1193 				goto bad;
1194 			}
1195 		}
1196 		cachep->array[cpu] = nc;
1197 		n = get_node(cachep, node);
1198 		BUG_ON(!n);
1199 
1200 		spin_lock_irq(&n->list_lock);
1201 		if (!n->shared) {
1202 			/*
1203 			 * We are serialised from CPU_DEAD or
1204 			 * CPU_UP_CANCELLED by the cpucontrol lock
1205 			 */
1206 			n->shared = shared;
1207 			shared = NULL;
1208 		}
1209 #ifdef CONFIG_NUMA
1210 		if (!n->alien) {
1211 			n->alien = alien;
1212 			alien = NULL;
1213 		}
1214 #endif
1215 		spin_unlock_irq(&n->list_lock);
1216 		kfree(shared);
1217 		free_alien_cache(alien);
1218 	}
1219 
1220 	return 0;
1221 bad:
1222 	cpuup_canceled(cpu);
1223 	return -ENOMEM;
1224 }
1225 
1226 static int cpuup_callback(struct notifier_block *nfb,
1227 				    unsigned long action, void *hcpu)
1228 {
1229 	long cpu = (long)hcpu;
1230 	int err = 0;
1231 
1232 	switch (action) {
1233 	case CPU_UP_PREPARE:
1234 	case CPU_UP_PREPARE_FROZEN:
1235 		mutex_lock(&slab_mutex);
1236 		err = cpuup_prepare(cpu);
1237 		mutex_unlock(&slab_mutex);
1238 		break;
1239 	case CPU_ONLINE:
1240 	case CPU_ONLINE_FROZEN:
1241 		start_cpu_timer(cpu);
1242 		break;
1243 #ifdef CONFIG_HOTPLUG_CPU
1244   	case CPU_DOWN_PREPARE:
1245   	case CPU_DOWN_PREPARE_FROZEN:
1246 		/*
1247 		 * Shutdown cache reaper. Note that the slab_mutex is
1248 		 * held so that if cache_reap() is invoked it cannot do
1249 		 * anything expensive but will only modify reap_work
1250 		 * and reschedule the timer.
1251 		*/
1252 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1253 		/* Now the cache_reaper is guaranteed to be not running. */
1254 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1255   		break;
1256   	case CPU_DOWN_FAILED:
1257   	case CPU_DOWN_FAILED_FROZEN:
1258 		start_cpu_timer(cpu);
1259   		break;
1260 	case CPU_DEAD:
1261 	case CPU_DEAD_FROZEN:
1262 		/*
1263 		 * Even if all the cpus of a node are down, we don't free the
1264 		 * kmem_cache_node of any cache. This to avoid a race between
1265 		 * cpu_down, and a kmalloc allocation from another cpu for
1266 		 * memory from the node of the cpu going down.  The node
1267 		 * structure is usually allocated from kmem_cache_create() and
1268 		 * gets destroyed at kmem_cache_destroy().
1269 		 */
1270 		/* fall through */
1271 #endif
1272 	case CPU_UP_CANCELED:
1273 	case CPU_UP_CANCELED_FROZEN:
1274 		mutex_lock(&slab_mutex);
1275 		cpuup_canceled(cpu);
1276 		mutex_unlock(&slab_mutex);
1277 		break;
1278 	}
1279 	return notifier_from_errno(err);
1280 }
1281 
1282 static struct notifier_block cpucache_notifier = {
1283 	&cpuup_callback, NULL, 0
1284 };
1285 
1286 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1287 /*
1288  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1289  * Returns -EBUSY if all objects cannot be drained so that the node is not
1290  * removed.
1291  *
1292  * Must hold slab_mutex.
1293  */
1294 static int __meminit drain_cache_node_node(int node)
1295 {
1296 	struct kmem_cache *cachep;
1297 	int ret = 0;
1298 
1299 	list_for_each_entry(cachep, &slab_caches, list) {
1300 		struct kmem_cache_node *n;
1301 
1302 		n = get_node(cachep, node);
1303 		if (!n)
1304 			continue;
1305 
1306 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1307 
1308 		if (!list_empty(&n->slabs_full) ||
1309 		    !list_empty(&n->slabs_partial)) {
1310 			ret = -EBUSY;
1311 			break;
1312 		}
1313 	}
1314 	return ret;
1315 }
1316 
1317 static int __meminit slab_memory_callback(struct notifier_block *self,
1318 					unsigned long action, void *arg)
1319 {
1320 	struct memory_notify *mnb = arg;
1321 	int ret = 0;
1322 	int nid;
1323 
1324 	nid = mnb->status_change_nid;
1325 	if (nid < 0)
1326 		goto out;
1327 
1328 	switch (action) {
1329 	case MEM_GOING_ONLINE:
1330 		mutex_lock(&slab_mutex);
1331 		ret = init_cache_node_node(nid);
1332 		mutex_unlock(&slab_mutex);
1333 		break;
1334 	case MEM_GOING_OFFLINE:
1335 		mutex_lock(&slab_mutex);
1336 		ret = drain_cache_node_node(nid);
1337 		mutex_unlock(&slab_mutex);
1338 		break;
1339 	case MEM_ONLINE:
1340 	case MEM_OFFLINE:
1341 	case MEM_CANCEL_ONLINE:
1342 	case MEM_CANCEL_OFFLINE:
1343 		break;
1344 	}
1345 out:
1346 	return notifier_from_errno(ret);
1347 }
1348 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1349 
1350 /*
1351  * swap the static kmem_cache_node with kmalloced memory
1352  */
1353 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1354 				int nodeid)
1355 {
1356 	struct kmem_cache_node *ptr;
1357 
1358 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1359 	BUG_ON(!ptr);
1360 
1361 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1362 	/*
1363 	 * Do not assume that spinlocks can be initialized via memcpy:
1364 	 */
1365 	spin_lock_init(&ptr->list_lock);
1366 
1367 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1368 	cachep->node[nodeid] = ptr;
1369 }
1370 
1371 /*
1372  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1373  * size of kmem_cache_node.
1374  */
1375 static void __init set_up_node(struct kmem_cache *cachep, int index)
1376 {
1377 	int node;
1378 
1379 	for_each_online_node(node) {
1380 		cachep->node[node] = &init_kmem_cache_node[index + node];
1381 		cachep->node[node]->next_reap = jiffies +
1382 		    REAPTIMEOUT_NODE +
1383 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1384 	}
1385 }
1386 
1387 /*
1388  * The memory after the last cpu cache pointer is used for the
1389  * the node pointer.
1390  */
1391 static void setup_node_pointer(struct kmem_cache *cachep)
1392 {
1393 	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1394 }
1395 
1396 /*
1397  * Initialisation.  Called after the page allocator have been initialised and
1398  * before smp_init().
1399  */
1400 void __init kmem_cache_init(void)
1401 {
1402 	int i;
1403 
1404 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1405 					sizeof(struct rcu_head));
1406 	kmem_cache = &kmem_cache_boot;
1407 	setup_node_pointer(kmem_cache);
1408 
1409 	if (num_possible_nodes() == 1)
1410 		use_alien_caches = 0;
1411 
1412 	for (i = 0; i < NUM_INIT_LISTS; i++)
1413 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1414 
1415 	set_up_node(kmem_cache, CACHE_CACHE);
1416 
1417 	/*
1418 	 * Fragmentation resistance on low memory - only use bigger
1419 	 * page orders on machines with more than 32MB of memory if
1420 	 * not overridden on the command line.
1421 	 */
1422 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1423 		slab_max_order = SLAB_MAX_ORDER_HI;
1424 
1425 	/* Bootstrap is tricky, because several objects are allocated
1426 	 * from caches that do not exist yet:
1427 	 * 1) initialize the kmem_cache cache: it contains the struct
1428 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1429 	 *    kmem_cache is statically allocated.
1430 	 *    Initially an __init data area is used for the head array and the
1431 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1432 	 *    array at the end of the bootstrap.
1433 	 * 2) Create the first kmalloc cache.
1434 	 *    The struct kmem_cache for the new cache is allocated normally.
1435 	 *    An __init data area is used for the head array.
1436 	 * 3) Create the remaining kmalloc caches, with minimally sized
1437 	 *    head arrays.
1438 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1439 	 *    kmalloc cache with kmalloc allocated arrays.
1440 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1441 	 *    the other cache's with kmalloc allocated memory.
1442 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1443 	 */
1444 
1445 	/* 1) create the kmem_cache */
1446 
1447 	/*
1448 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1449 	 */
1450 	create_boot_cache(kmem_cache, "kmem_cache",
1451 		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1452 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1453 				  SLAB_HWCACHE_ALIGN);
1454 	list_add(&kmem_cache->list, &slab_caches);
1455 
1456 	/* 2+3) create the kmalloc caches */
1457 
1458 	/*
1459 	 * Initialize the caches that provide memory for the array cache and the
1460 	 * kmem_cache_node structures first.  Without this, further allocations will
1461 	 * bug.
1462 	 */
1463 
1464 	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1465 					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1466 
1467 	if (INDEX_AC != INDEX_NODE)
1468 		kmalloc_caches[INDEX_NODE] =
1469 			create_kmalloc_cache("kmalloc-node",
1470 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1471 
1472 	slab_early_init = 0;
1473 
1474 	/* 4) Replace the bootstrap head arrays */
1475 	{
1476 		struct array_cache *ptr;
1477 
1478 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1479 
1480 		memcpy(ptr, cpu_cache_get(kmem_cache),
1481 		       sizeof(struct arraycache_init));
1482 
1483 		kmem_cache->array[smp_processor_id()] = ptr;
1484 
1485 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1486 
1487 		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1488 		       != &initarray_generic.cache);
1489 		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1490 		       sizeof(struct arraycache_init));
1491 
1492 		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1493 	}
1494 	/* 5) Replace the bootstrap kmem_cache_node */
1495 	{
1496 		int nid;
1497 
1498 		for_each_online_node(nid) {
1499 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1500 
1501 			init_list(kmalloc_caches[INDEX_AC],
1502 				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1503 
1504 			if (INDEX_AC != INDEX_NODE) {
1505 				init_list(kmalloc_caches[INDEX_NODE],
1506 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1507 			}
1508 		}
1509 	}
1510 
1511 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1512 }
1513 
1514 void __init kmem_cache_init_late(void)
1515 {
1516 	struct kmem_cache *cachep;
1517 
1518 	slab_state = UP;
1519 
1520 	/* 6) resize the head arrays to their final sizes */
1521 	mutex_lock(&slab_mutex);
1522 	list_for_each_entry(cachep, &slab_caches, list)
1523 		if (enable_cpucache(cachep, GFP_NOWAIT))
1524 			BUG();
1525 	mutex_unlock(&slab_mutex);
1526 
1527 	/* Done! */
1528 	slab_state = FULL;
1529 
1530 	/*
1531 	 * Register a cpu startup notifier callback that initializes
1532 	 * cpu_cache_get for all new cpus
1533 	 */
1534 	register_cpu_notifier(&cpucache_notifier);
1535 
1536 #ifdef CONFIG_NUMA
1537 	/*
1538 	 * Register a memory hotplug callback that initializes and frees
1539 	 * node.
1540 	 */
1541 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1542 #endif
1543 
1544 	/*
1545 	 * The reap timers are started later, with a module init call: That part
1546 	 * of the kernel is not yet operational.
1547 	 */
1548 }
1549 
1550 static int __init cpucache_init(void)
1551 {
1552 	int cpu;
1553 
1554 	/*
1555 	 * Register the timers that return unneeded pages to the page allocator
1556 	 */
1557 	for_each_online_cpu(cpu)
1558 		start_cpu_timer(cpu);
1559 
1560 	/* Done! */
1561 	slab_state = FULL;
1562 	return 0;
1563 }
1564 __initcall(cpucache_init);
1565 
1566 static noinline void
1567 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1568 {
1569 #if DEBUG
1570 	struct kmem_cache_node *n;
1571 	struct page *page;
1572 	unsigned long flags;
1573 	int node;
1574 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1575 				      DEFAULT_RATELIMIT_BURST);
1576 
1577 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1578 		return;
1579 
1580 	printk(KERN_WARNING
1581 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1582 		nodeid, gfpflags);
1583 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1584 		cachep->name, cachep->size, cachep->gfporder);
1585 
1586 	for_each_kmem_cache_node(cachep, node, n) {
1587 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1588 		unsigned long active_slabs = 0, num_slabs = 0;
1589 
1590 		spin_lock_irqsave(&n->list_lock, flags);
1591 		list_for_each_entry(page, &n->slabs_full, lru) {
1592 			active_objs += cachep->num;
1593 			active_slabs++;
1594 		}
1595 		list_for_each_entry(page, &n->slabs_partial, lru) {
1596 			active_objs += page->active;
1597 			active_slabs++;
1598 		}
1599 		list_for_each_entry(page, &n->slabs_free, lru)
1600 			num_slabs++;
1601 
1602 		free_objects += n->free_objects;
1603 		spin_unlock_irqrestore(&n->list_lock, flags);
1604 
1605 		num_slabs += active_slabs;
1606 		num_objs = num_slabs * cachep->num;
1607 		printk(KERN_WARNING
1608 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1609 			node, active_slabs, num_slabs, active_objs, num_objs,
1610 			free_objects);
1611 	}
1612 #endif
1613 }
1614 
1615 /*
1616  * Interface to system's page allocator. No need to hold the
1617  * kmem_cache_node ->list_lock.
1618  *
1619  * If we requested dmaable memory, we will get it. Even if we
1620  * did not request dmaable memory, we might get it, but that
1621  * would be relatively rare and ignorable.
1622  */
1623 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1624 								int nodeid)
1625 {
1626 	struct page *page;
1627 	int nr_pages;
1628 
1629 	flags |= cachep->allocflags;
1630 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1631 		flags |= __GFP_RECLAIMABLE;
1632 
1633 	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1634 		return NULL;
1635 
1636 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1637 	if (!page) {
1638 		memcg_uncharge_slab(cachep, cachep->gfporder);
1639 		slab_out_of_memory(cachep, flags, nodeid);
1640 		return NULL;
1641 	}
1642 
1643 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1644 	if (unlikely(page->pfmemalloc))
1645 		pfmemalloc_active = true;
1646 
1647 	nr_pages = (1 << cachep->gfporder);
1648 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1649 		add_zone_page_state(page_zone(page),
1650 			NR_SLAB_RECLAIMABLE, nr_pages);
1651 	else
1652 		add_zone_page_state(page_zone(page),
1653 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1654 	__SetPageSlab(page);
1655 	if (page->pfmemalloc)
1656 		SetPageSlabPfmemalloc(page);
1657 
1658 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1659 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1660 
1661 		if (cachep->ctor)
1662 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1663 		else
1664 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1665 	}
1666 
1667 	return page;
1668 }
1669 
1670 /*
1671  * Interface to system's page release.
1672  */
1673 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1674 {
1675 	const unsigned long nr_freed = (1 << cachep->gfporder);
1676 
1677 	kmemcheck_free_shadow(page, cachep->gfporder);
1678 
1679 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1680 		sub_zone_page_state(page_zone(page),
1681 				NR_SLAB_RECLAIMABLE, nr_freed);
1682 	else
1683 		sub_zone_page_state(page_zone(page),
1684 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1685 
1686 	BUG_ON(!PageSlab(page));
1687 	__ClearPageSlabPfmemalloc(page);
1688 	__ClearPageSlab(page);
1689 	page_mapcount_reset(page);
1690 	page->mapping = NULL;
1691 
1692 	if (current->reclaim_state)
1693 		current->reclaim_state->reclaimed_slab += nr_freed;
1694 	__free_pages(page, cachep->gfporder);
1695 	memcg_uncharge_slab(cachep, cachep->gfporder);
1696 }
1697 
1698 static void kmem_rcu_free(struct rcu_head *head)
1699 {
1700 	struct kmem_cache *cachep;
1701 	struct page *page;
1702 
1703 	page = container_of(head, struct page, rcu_head);
1704 	cachep = page->slab_cache;
1705 
1706 	kmem_freepages(cachep, page);
1707 }
1708 
1709 #if DEBUG
1710 
1711 #ifdef CONFIG_DEBUG_PAGEALLOC
1712 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1713 			    unsigned long caller)
1714 {
1715 	int size = cachep->object_size;
1716 
1717 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1718 
1719 	if (size < 5 * sizeof(unsigned long))
1720 		return;
1721 
1722 	*addr++ = 0x12345678;
1723 	*addr++ = caller;
1724 	*addr++ = smp_processor_id();
1725 	size -= 3 * sizeof(unsigned long);
1726 	{
1727 		unsigned long *sptr = &caller;
1728 		unsigned long svalue;
1729 
1730 		while (!kstack_end(sptr)) {
1731 			svalue = *sptr++;
1732 			if (kernel_text_address(svalue)) {
1733 				*addr++ = svalue;
1734 				size -= sizeof(unsigned long);
1735 				if (size <= sizeof(unsigned long))
1736 					break;
1737 			}
1738 		}
1739 
1740 	}
1741 	*addr++ = 0x87654321;
1742 }
1743 #endif
1744 
1745 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1746 {
1747 	int size = cachep->object_size;
1748 	addr = &((char *)addr)[obj_offset(cachep)];
1749 
1750 	memset(addr, val, size);
1751 	*(unsigned char *)(addr + size - 1) = POISON_END;
1752 }
1753 
1754 static void dump_line(char *data, int offset, int limit)
1755 {
1756 	int i;
1757 	unsigned char error = 0;
1758 	int bad_count = 0;
1759 
1760 	printk(KERN_ERR "%03x: ", offset);
1761 	for (i = 0; i < limit; i++) {
1762 		if (data[offset + i] != POISON_FREE) {
1763 			error = data[offset + i];
1764 			bad_count++;
1765 		}
1766 	}
1767 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1768 			&data[offset], limit, 1);
1769 
1770 	if (bad_count == 1) {
1771 		error ^= POISON_FREE;
1772 		if (!(error & (error - 1))) {
1773 			printk(KERN_ERR "Single bit error detected. Probably "
1774 					"bad RAM.\n");
1775 #ifdef CONFIG_X86
1776 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1777 					"test tool.\n");
1778 #else
1779 			printk(KERN_ERR "Run a memory test tool.\n");
1780 #endif
1781 		}
1782 	}
1783 }
1784 #endif
1785 
1786 #if DEBUG
1787 
1788 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1789 {
1790 	int i, size;
1791 	char *realobj;
1792 
1793 	if (cachep->flags & SLAB_RED_ZONE) {
1794 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1795 			*dbg_redzone1(cachep, objp),
1796 			*dbg_redzone2(cachep, objp));
1797 	}
1798 
1799 	if (cachep->flags & SLAB_STORE_USER) {
1800 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1801 		       *dbg_userword(cachep, objp),
1802 		       *dbg_userword(cachep, objp));
1803 	}
1804 	realobj = (char *)objp + obj_offset(cachep);
1805 	size = cachep->object_size;
1806 	for (i = 0; i < size && lines; i += 16, lines--) {
1807 		int limit;
1808 		limit = 16;
1809 		if (i + limit > size)
1810 			limit = size - i;
1811 		dump_line(realobj, i, limit);
1812 	}
1813 }
1814 
1815 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1816 {
1817 	char *realobj;
1818 	int size, i;
1819 	int lines = 0;
1820 
1821 	realobj = (char *)objp + obj_offset(cachep);
1822 	size = cachep->object_size;
1823 
1824 	for (i = 0; i < size; i++) {
1825 		char exp = POISON_FREE;
1826 		if (i == size - 1)
1827 			exp = POISON_END;
1828 		if (realobj[i] != exp) {
1829 			int limit;
1830 			/* Mismatch ! */
1831 			/* Print header */
1832 			if (lines == 0) {
1833 				printk(KERN_ERR
1834 					"Slab corruption (%s): %s start=%p, len=%d\n",
1835 					print_tainted(), cachep->name, realobj, size);
1836 				print_objinfo(cachep, objp, 0);
1837 			}
1838 			/* Hexdump the affected line */
1839 			i = (i / 16) * 16;
1840 			limit = 16;
1841 			if (i + limit > size)
1842 				limit = size - i;
1843 			dump_line(realobj, i, limit);
1844 			i += 16;
1845 			lines++;
1846 			/* Limit to 5 lines */
1847 			if (lines > 5)
1848 				break;
1849 		}
1850 	}
1851 	if (lines != 0) {
1852 		/* Print some data about the neighboring objects, if they
1853 		 * exist:
1854 		 */
1855 		struct page *page = virt_to_head_page(objp);
1856 		unsigned int objnr;
1857 
1858 		objnr = obj_to_index(cachep, page, objp);
1859 		if (objnr) {
1860 			objp = index_to_obj(cachep, page, objnr - 1);
1861 			realobj = (char *)objp + obj_offset(cachep);
1862 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1863 			       realobj, size);
1864 			print_objinfo(cachep, objp, 2);
1865 		}
1866 		if (objnr + 1 < cachep->num) {
1867 			objp = index_to_obj(cachep, page, objnr + 1);
1868 			realobj = (char *)objp + obj_offset(cachep);
1869 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1870 			       realobj, size);
1871 			print_objinfo(cachep, objp, 2);
1872 		}
1873 	}
1874 }
1875 #endif
1876 
1877 #if DEBUG
1878 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1879 						struct page *page)
1880 {
1881 	int i;
1882 	for (i = 0; i < cachep->num; i++) {
1883 		void *objp = index_to_obj(cachep, page, i);
1884 
1885 		if (cachep->flags & SLAB_POISON) {
1886 #ifdef CONFIG_DEBUG_PAGEALLOC
1887 			if (cachep->size % PAGE_SIZE == 0 &&
1888 					OFF_SLAB(cachep))
1889 				kernel_map_pages(virt_to_page(objp),
1890 					cachep->size / PAGE_SIZE, 1);
1891 			else
1892 				check_poison_obj(cachep, objp);
1893 #else
1894 			check_poison_obj(cachep, objp);
1895 #endif
1896 		}
1897 		if (cachep->flags & SLAB_RED_ZONE) {
1898 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1899 				slab_error(cachep, "start of a freed object "
1900 					   "was overwritten");
1901 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1902 				slab_error(cachep, "end of a freed object "
1903 					   "was overwritten");
1904 		}
1905 	}
1906 }
1907 #else
1908 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1909 						struct page *page)
1910 {
1911 }
1912 #endif
1913 
1914 /**
1915  * slab_destroy - destroy and release all objects in a slab
1916  * @cachep: cache pointer being destroyed
1917  * @page: page pointer being destroyed
1918  *
1919  * Destroy all the objs in a slab page, and release the mem back to the system.
1920  * Before calling the slab page must have been unlinked from the cache. The
1921  * kmem_cache_node ->list_lock is not held/needed.
1922  */
1923 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1924 {
1925 	void *freelist;
1926 
1927 	freelist = page->freelist;
1928 	slab_destroy_debugcheck(cachep, page);
1929 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1930 		struct rcu_head *head;
1931 
1932 		/*
1933 		 * RCU free overloads the RCU head over the LRU.
1934 		 * slab_page has been overloeaded over the LRU,
1935 		 * however it is not used from now on so that
1936 		 * we can use it safely.
1937 		 */
1938 		head = (void *)&page->rcu_head;
1939 		call_rcu(head, kmem_rcu_free);
1940 
1941 	} else {
1942 		kmem_freepages(cachep, page);
1943 	}
1944 
1945 	/*
1946 	 * From now on, we don't use freelist
1947 	 * although actual page can be freed in rcu context
1948 	 */
1949 	if (OFF_SLAB(cachep))
1950 		kmem_cache_free(cachep->freelist_cache, freelist);
1951 }
1952 
1953 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1954 {
1955 	struct page *page, *n;
1956 
1957 	list_for_each_entry_safe(page, n, list, lru) {
1958 		list_del(&page->lru);
1959 		slab_destroy(cachep, page);
1960 	}
1961 }
1962 
1963 /**
1964  * calculate_slab_order - calculate size (page order) of slabs
1965  * @cachep: pointer to the cache that is being created
1966  * @size: size of objects to be created in this cache.
1967  * @align: required alignment for the objects.
1968  * @flags: slab allocation flags
1969  *
1970  * Also calculates the number of objects per slab.
1971  *
1972  * This could be made much more intelligent.  For now, try to avoid using
1973  * high order pages for slabs.  When the gfp() functions are more friendly
1974  * towards high-order requests, this should be changed.
1975  */
1976 static size_t calculate_slab_order(struct kmem_cache *cachep,
1977 			size_t size, size_t align, unsigned long flags)
1978 {
1979 	unsigned long offslab_limit;
1980 	size_t left_over = 0;
1981 	int gfporder;
1982 
1983 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1984 		unsigned int num;
1985 		size_t remainder;
1986 
1987 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1988 		if (!num)
1989 			continue;
1990 
1991 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1992 		if (num > SLAB_OBJ_MAX_NUM)
1993 			break;
1994 
1995 		if (flags & CFLGS_OFF_SLAB) {
1996 			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1997 			/*
1998 			 * Max number of objs-per-slab for caches which
1999 			 * use off-slab slabs. Needed to avoid a possible
2000 			 * looping condition in cache_grow().
2001 			 */
2002 			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
2003 				freelist_size_per_obj += sizeof(char);
2004 			offslab_limit = size;
2005 			offslab_limit /= freelist_size_per_obj;
2006 
2007  			if (num > offslab_limit)
2008 				break;
2009 		}
2010 
2011 		/* Found something acceptable - save it away */
2012 		cachep->num = num;
2013 		cachep->gfporder = gfporder;
2014 		left_over = remainder;
2015 
2016 		/*
2017 		 * A VFS-reclaimable slab tends to have most allocations
2018 		 * as GFP_NOFS and we really don't want to have to be allocating
2019 		 * higher-order pages when we are unable to shrink dcache.
2020 		 */
2021 		if (flags & SLAB_RECLAIM_ACCOUNT)
2022 			break;
2023 
2024 		/*
2025 		 * Large number of objects is good, but very large slabs are
2026 		 * currently bad for the gfp()s.
2027 		 */
2028 		if (gfporder >= slab_max_order)
2029 			break;
2030 
2031 		/*
2032 		 * Acceptable internal fragmentation?
2033 		 */
2034 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2035 			break;
2036 	}
2037 	return left_over;
2038 }
2039 
2040 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2041 {
2042 	if (slab_state >= FULL)
2043 		return enable_cpucache(cachep, gfp);
2044 
2045 	if (slab_state == DOWN) {
2046 		/*
2047 		 * Note: Creation of first cache (kmem_cache).
2048 		 * The setup_node is taken care
2049 		 * of by the caller of __kmem_cache_create
2050 		 */
2051 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2052 		slab_state = PARTIAL;
2053 	} else if (slab_state == PARTIAL) {
2054 		/*
2055 		 * Note: the second kmem_cache_create must create the cache
2056 		 * that's used by kmalloc(24), otherwise the creation of
2057 		 * further caches will BUG().
2058 		 */
2059 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2060 
2061 		/*
2062 		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2063 		 * the second cache, then we need to set up all its node/,
2064 		 * otherwise the creation of further caches will BUG().
2065 		 */
2066 		set_up_node(cachep, SIZE_AC);
2067 		if (INDEX_AC == INDEX_NODE)
2068 			slab_state = PARTIAL_NODE;
2069 		else
2070 			slab_state = PARTIAL_ARRAYCACHE;
2071 	} else {
2072 		/* Remaining boot caches */
2073 		cachep->array[smp_processor_id()] =
2074 			kmalloc(sizeof(struct arraycache_init), gfp);
2075 
2076 		if (slab_state == PARTIAL_ARRAYCACHE) {
2077 			set_up_node(cachep, SIZE_NODE);
2078 			slab_state = PARTIAL_NODE;
2079 		} else {
2080 			int node;
2081 			for_each_online_node(node) {
2082 				cachep->node[node] =
2083 				    kmalloc_node(sizeof(struct kmem_cache_node),
2084 						gfp, node);
2085 				BUG_ON(!cachep->node[node]);
2086 				kmem_cache_node_init(cachep->node[node]);
2087 			}
2088 		}
2089 	}
2090 	cachep->node[numa_mem_id()]->next_reap =
2091 			jiffies + REAPTIMEOUT_NODE +
2092 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2093 
2094 	cpu_cache_get(cachep)->avail = 0;
2095 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2096 	cpu_cache_get(cachep)->batchcount = 1;
2097 	cpu_cache_get(cachep)->touched = 0;
2098 	cachep->batchcount = 1;
2099 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2100 	return 0;
2101 }
2102 
2103 /**
2104  * __kmem_cache_create - Create a cache.
2105  * @cachep: cache management descriptor
2106  * @flags: SLAB flags
2107  *
2108  * Returns a ptr to the cache on success, NULL on failure.
2109  * Cannot be called within a int, but can be interrupted.
2110  * The @ctor is run when new pages are allocated by the cache.
2111  *
2112  * The flags are
2113  *
2114  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2115  * to catch references to uninitialised memory.
2116  *
2117  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2118  * for buffer overruns.
2119  *
2120  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2121  * cacheline.  This can be beneficial if you're counting cycles as closely
2122  * as davem.
2123  */
2124 int
2125 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2126 {
2127 	size_t left_over, freelist_size, ralign;
2128 	gfp_t gfp;
2129 	int err;
2130 	size_t size = cachep->size;
2131 
2132 #if DEBUG
2133 #if FORCED_DEBUG
2134 	/*
2135 	 * Enable redzoning and last user accounting, except for caches with
2136 	 * large objects, if the increased size would increase the object size
2137 	 * above the next power of two: caches with object sizes just above a
2138 	 * power of two have a significant amount of internal fragmentation.
2139 	 */
2140 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2141 						2 * sizeof(unsigned long long)))
2142 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2143 	if (!(flags & SLAB_DESTROY_BY_RCU))
2144 		flags |= SLAB_POISON;
2145 #endif
2146 	if (flags & SLAB_DESTROY_BY_RCU)
2147 		BUG_ON(flags & SLAB_POISON);
2148 #endif
2149 
2150 	/*
2151 	 * Check that size is in terms of words.  This is needed to avoid
2152 	 * unaligned accesses for some archs when redzoning is used, and makes
2153 	 * sure any on-slab bufctl's are also correctly aligned.
2154 	 */
2155 	if (size & (BYTES_PER_WORD - 1)) {
2156 		size += (BYTES_PER_WORD - 1);
2157 		size &= ~(BYTES_PER_WORD - 1);
2158 	}
2159 
2160 	/*
2161 	 * Redzoning and user store require word alignment or possibly larger.
2162 	 * Note this will be overridden by architecture or caller mandated
2163 	 * alignment if either is greater than BYTES_PER_WORD.
2164 	 */
2165 	if (flags & SLAB_STORE_USER)
2166 		ralign = BYTES_PER_WORD;
2167 
2168 	if (flags & SLAB_RED_ZONE) {
2169 		ralign = REDZONE_ALIGN;
2170 		/* If redzoning, ensure that the second redzone is suitably
2171 		 * aligned, by adjusting the object size accordingly. */
2172 		size += REDZONE_ALIGN - 1;
2173 		size &= ~(REDZONE_ALIGN - 1);
2174 	}
2175 
2176 	/* 3) caller mandated alignment */
2177 	if (ralign < cachep->align) {
2178 		ralign = cachep->align;
2179 	}
2180 	/* disable debug if necessary */
2181 	if (ralign > __alignof__(unsigned long long))
2182 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2183 	/*
2184 	 * 4) Store it.
2185 	 */
2186 	cachep->align = ralign;
2187 
2188 	if (slab_is_available())
2189 		gfp = GFP_KERNEL;
2190 	else
2191 		gfp = GFP_NOWAIT;
2192 
2193 	setup_node_pointer(cachep);
2194 #if DEBUG
2195 
2196 	/*
2197 	 * Both debugging options require word-alignment which is calculated
2198 	 * into align above.
2199 	 */
2200 	if (flags & SLAB_RED_ZONE) {
2201 		/* add space for red zone words */
2202 		cachep->obj_offset += sizeof(unsigned long long);
2203 		size += 2 * sizeof(unsigned long long);
2204 	}
2205 	if (flags & SLAB_STORE_USER) {
2206 		/* user store requires one word storage behind the end of
2207 		 * the real object. But if the second red zone needs to be
2208 		 * aligned to 64 bits, we must allow that much space.
2209 		 */
2210 		if (flags & SLAB_RED_ZONE)
2211 			size += REDZONE_ALIGN;
2212 		else
2213 			size += BYTES_PER_WORD;
2214 	}
2215 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2216 	if (size >= kmalloc_size(INDEX_NODE + 1)
2217 	    && cachep->object_size > cache_line_size()
2218 	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
2219 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2220 		size = PAGE_SIZE;
2221 	}
2222 #endif
2223 #endif
2224 
2225 	/*
2226 	 * Determine if the slab management is 'on' or 'off' slab.
2227 	 * (bootstrapping cannot cope with offslab caches so don't do
2228 	 * it too early on. Always use on-slab management when
2229 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2230 	 */
2231 	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2232 	    !(flags & SLAB_NOLEAKTRACE))
2233 		/*
2234 		 * Size is large, assume best to place the slab management obj
2235 		 * off-slab (should allow better packing of objs).
2236 		 */
2237 		flags |= CFLGS_OFF_SLAB;
2238 
2239 	size = ALIGN(size, cachep->align);
2240 	/*
2241 	 * We should restrict the number of objects in a slab to implement
2242 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2243 	 */
2244 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2245 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2246 
2247 	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2248 
2249 	if (!cachep->num)
2250 		return -E2BIG;
2251 
2252 	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2253 
2254 	/*
2255 	 * If the slab has been placed off-slab, and we have enough space then
2256 	 * move it on-slab. This is at the expense of any extra colouring.
2257 	 */
2258 	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2259 		flags &= ~CFLGS_OFF_SLAB;
2260 		left_over -= freelist_size;
2261 	}
2262 
2263 	if (flags & CFLGS_OFF_SLAB) {
2264 		/* really off slab. No need for manual alignment */
2265 		freelist_size = calculate_freelist_size(cachep->num, 0);
2266 
2267 #ifdef CONFIG_PAGE_POISONING
2268 		/* If we're going to use the generic kernel_map_pages()
2269 		 * poisoning, then it's going to smash the contents of
2270 		 * the redzone and userword anyhow, so switch them off.
2271 		 */
2272 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2273 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2274 #endif
2275 	}
2276 
2277 	cachep->colour_off = cache_line_size();
2278 	/* Offset must be a multiple of the alignment. */
2279 	if (cachep->colour_off < cachep->align)
2280 		cachep->colour_off = cachep->align;
2281 	cachep->colour = left_over / cachep->colour_off;
2282 	cachep->freelist_size = freelist_size;
2283 	cachep->flags = flags;
2284 	cachep->allocflags = __GFP_COMP;
2285 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2286 		cachep->allocflags |= GFP_DMA;
2287 	cachep->size = size;
2288 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2289 
2290 	if (flags & CFLGS_OFF_SLAB) {
2291 		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2292 		/*
2293 		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2294 		 * But since we go off slab only for object size greater than
2295 		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2296 		 * in ascending order,this should not happen at all.
2297 		 * But leave a BUG_ON for some lucky dude.
2298 		 */
2299 		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2300 	}
2301 
2302 	err = setup_cpu_cache(cachep, gfp);
2303 	if (err) {
2304 		__kmem_cache_shutdown(cachep);
2305 		return err;
2306 	}
2307 
2308 	return 0;
2309 }
2310 
2311 #if DEBUG
2312 static void check_irq_off(void)
2313 {
2314 	BUG_ON(!irqs_disabled());
2315 }
2316 
2317 static void check_irq_on(void)
2318 {
2319 	BUG_ON(irqs_disabled());
2320 }
2321 
2322 static void check_spinlock_acquired(struct kmem_cache *cachep)
2323 {
2324 #ifdef CONFIG_SMP
2325 	check_irq_off();
2326 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2327 #endif
2328 }
2329 
2330 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2331 {
2332 #ifdef CONFIG_SMP
2333 	check_irq_off();
2334 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2335 #endif
2336 }
2337 
2338 #else
2339 #define check_irq_off()	do { } while(0)
2340 #define check_irq_on()	do { } while(0)
2341 #define check_spinlock_acquired(x) do { } while(0)
2342 #define check_spinlock_acquired_node(x, y) do { } while(0)
2343 #endif
2344 
2345 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2346 			struct array_cache *ac,
2347 			int force, int node);
2348 
2349 static void do_drain(void *arg)
2350 {
2351 	struct kmem_cache *cachep = arg;
2352 	struct array_cache *ac;
2353 	int node = numa_mem_id();
2354 	struct kmem_cache_node *n;
2355 	LIST_HEAD(list);
2356 
2357 	check_irq_off();
2358 	ac = cpu_cache_get(cachep);
2359 	n = get_node(cachep, node);
2360 	spin_lock(&n->list_lock);
2361 	free_block(cachep, ac->entry, ac->avail, node, &list);
2362 	spin_unlock(&n->list_lock);
2363 	slabs_destroy(cachep, &list);
2364 	ac->avail = 0;
2365 }
2366 
2367 static void drain_cpu_caches(struct kmem_cache *cachep)
2368 {
2369 	struct kmem_cache_node *n;
2370 	int node;
2371 
2372 	on_each_cpu(do_drain, cachep, 1);
2373 	check_irq_on();
2374 	for_each_kmem_cache_node(cachep, node, n)
2375 		if (n->alien)
2376 			drain_alien_cache(cachep, n->alien);
2377 
2378 	for_each_kmem_cache_node(cachep, node, n)
2379 		drain_array(cachep, n, n->shared, 1, node);
2380 }
2381 
2382 /*
2383  * Remove slabs from the list of free slabs.
2384  * Specify the number of slabs to drain in tofree.
2385  *
2386  * Returns the actual number of slabs released.
2387  */
2388 static int drain_freelist(struct kmem_cache *cache,
2389 			struct kmem_cache_node *n, int tofree)
2390 {
2391 	struct list_head *p;
2392 	int nr_freed;
2393 	struct page *page;
2394 
2395 	nr_freed = 0;
2396 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2397 
2398 		spin_lock_irq(&n->list_lock);
2399 		p = n->slabs_free.prev;
2400 		if (p == &n->slabs_free) {
2401 			spin_unlock_irq(&n->list_lock);
2402 			goto out;
2403 		}
2404 
2405 		page = list_entry(p, struct page, lru);
2406 #if DEBUG
2407 		BUG_ON(page->active);
2408 #endif
2409 		list_del(&page->lru);
2410 		/*
2411 		 * Safe to drop the lock. The slab is no longer linked
2412 		 * to the cache.
2413 		 */
2414 		n->free_objects -= cache->num;
2415 		spin_unlock_irq(&n->list_lock);
2416 		slab_destroy(cache, page);
2417 		nr_freed++;
2418 	}
2419 out:
2420 	return nr_freed;
2421 }
2422 
2423 int __kmem_cache_shrink(struct kmem_cache *cachep)
2424 {
2425 	int ret = 0;
2426 	int node;
2427 	struct kmem_cache_node *n;
2428 
2429 	drain_cpu_caches(cachep);
2430 
2431 	check_irq_on();
2432 	for_each_kmem_cache_node(cachep, node, n) {
2433 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2434 
2435 		ret += !list_empty(&n->slabs_full) ||
2436 			!list_empty(&n->slabs_partial);
2437 	}
2438 	return (ret ? 1 : 0);
2439 }
2440 
2441 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2442 {
2443 	int i;
2444 	struct kmem_cache_node *n;
2445 	int rc = __kmem_cache_shrink(cachep);
2446 
2447 	if (rc)
2448 		return rc;
2449 
2450 	for_each_online_cpu(i)
2451 	    kfree(cachep->array[i]);
2452 
2453 	/* NUMA: free the node structures */
2454 	for_each_kmem_cache_node(cachep, i, n) {
2455 		kfree(n->shared);
2456 		free_alien_cache(n->alien);
2457 		kfree(n);
2458 		cachep->node[i] = NULL;
2459 	}
2460 	return 0;
2461 }
2462 
2463 /*
2464  * Get the memory for a slab management obj.
2465  *
2466  * For a slab cache when the slab descriptor is off-slab, the
2467  * slab descriptor can't come from the same cache which is being created,
2468  * Because if it is the case, that means we defer the creation of
2469  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2470  * And we eventually call down to __kmem_cache_create(), which
2471  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2472  * This is a "chicken-and-egg" problem.
2473  *
2474  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2475  * which are all initialized during kmem_cache_init().
2476  */
2477 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2478 				   struct page *page, int colour_off,
2479 				   gfp_t local_flags, int nodeid)
2480 {
2481 	void *freelist;
2482 	void *addr = page_address(page);
2483 
2484 	if (OFF_SLAB(cachep)) {
2485 		/* Slab management obj is off-slab. */
2486 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2487 					      local_flags, nodeid);
2488 		if (!freelist)
2489 			return NULL;
2490 	} else {
2491 		freelist = addr + colour_off;
2492 		colour_off += cachep->freelist_size;
2493 	}
2494 	page->active = 0;
2495 	page->s_mem = addr + colour_off;
2496 	return freelist;
2497 }
2498 
2499 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2500 {
2501 	return ((freelist_idx_t *)page->freelist)[idx];
2502 }
2503 
2504 static inline void set_free_obj(struct page *page,
2505 					unsigned int idx, freelist_idx_t val)
2506 {
2507 	((freelist_idx_t *)(page->freelist))[idx] = val;
2508 }
2509 
2510 static void cache_init_objs(struct kmem_cache *cachep,
2511 			    struct page *page)
2512 {
2513 	int i;
2514 
2515 	for (i = 0; i < cachep->num; i++) {
2516 		void *objp = index_to_obj(cachep, page, i);
2517 #if DEBUG
2518 		/* need to poison the objs? */
2519 		if (cachep->flags & SLAB_POISON)
2520 			poison_obj(cachep, objp, POISON_FREE);
2521 		if (cachep->flags & SLAB_STORE_USER)
2522 			*dbg_userword(cachep, objp) = NULL;
2523 
2524 		if (cachep->flags & SLAB_RED_ZONE) {
2525 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2526 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2527 		}
2528 		/*
2529 		 * Constructors are not allowed to allocate memory from the same
2530 		 * cache which they are a constructor for.  Otherwise, deadlock.
2531 		 * They must also be threaded.
2532 		 */
2533 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2534 			cachep->ctor(objp + obj_offset(cachep));
2535 
2536 		if (cachep->flags & SLAB_RED_ZONE) {
2537 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2538 				slab_error(cachep, "constructor overwrote the"
2539 					   " end of an object");
2540 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2541 				slab_error(cachep, "constructor overwrote the"
2542 					   " start of an object");
2543 		}
2544 		if ((cachep->size % PAGE_SIZE) == 0 &&
2545 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2546 			kernel_map_pages(virt_to_page(objp),
2547 					 cachep->size / PAGE_SIZE, 0);
2548 #else
2549 		if (cachep->ctor)
2550 			cachep->ctor(objp);
2551 #endif
2552 		set_obj_status(page, i, OBJECT_FREE);
2553 		set_free_obj(page, i, i);
2554 	}
2555 }
2556 
2557 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2558 {
2559 	if (CONFIG_ZONE_DMA_FLAG) {
2560 		if (flags & GFP_DMA)
2561 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2562 		else
2563 			BUG_ON(cachep->allocflags & GFP_DMA);
2564 	}
2565 }
2566 
2567 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2568 				int nodeid)
2569 {
2570 	void *objp;
2571 
2572 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2573 	page->active++;
2574 #if DEBUG
2575 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2576 #endif
2577 
2578 	return objp;
2579 }
2580 
2581 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2582 				void *objp, int nodeid)
2583 {
2584 	unsigned int objnr = obj_to_index(cachep, page, objp);
2585 #if DEBUG
2586 	unsigned int i;
2587 
2588 	/* Verify that the slab belongs to the intended node */
2589 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2590 
2591 	/* Verify double free bug */
2592 	for (i = page->active; i < cachep->num; i++) {
2593 		if (get_free_obj(page, i) == objnr) {
2594 			printk(KERN_ERR "slab: double free detected in cache "
2595 					"'%s', objp %p\n", cachep->name, objp);
2596 			BUG();
2597 		}
2598 	}
2599 #endif
2600 	page->active--;
2601 	set_free_obj(page, page->active, objnr);
2602 }
2603 
2604 /*
2605  * Map pages beginning at addr to the given cache and slab. This is required
2606  * for the slab allocator to be able to lookup the cache and slab of a
2607  * virtual address for kfree, ksize, and slab debugging.
2608  */
2609 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2610 			   void *freelist)
2611 {
2612 	page->slab_cache = cache;
2613 	page->freelist = freelist;
2614 }
2615 
2616 /*
2617  * Grow (by 1) the number of slabs within a cache.  This is called by
2618  * kmem_cache_alloc() when there are no active objs left in a cache.
2619  */
2620 static int cache_grow(struct kmem_cache *cachep,
2621 		gfp_t flags, int nodeid, struct page *page)
2622 {
2623 	void *freelist;
2624 	size_t offset;
2625 	gfp_t local_flags;
2626 	struct kmem_cache_node *n;
2627 
2628 	/*
2629 	 * Be lazy and only check for valid flags here,  keeping it out of the
2630 	 * critical path in kmem_cache_alloc().
2631 	 */
2632 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2633 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2634 
2635 	/* Take the node list lock to change the colour_next on this node */
2636 	check_irq_off();
2637 	n = get_node(cachep, nodeid);
2638 	spin_lock(&n->list_lock);
2639 
2640 	/* Get colour for the slab, and cal the next value. */
2641 	offset = n->colour_next;
2642 	n->colour_next++;
2643 	if (n->colour_next >= cachep->colour)
2644 		n->colour_next = 0;
2645 	spin_unlock(&n->list_lock);
2646 
2647 	offset *= cachep->colour_off;
2648 
2649 	if (local_flags & __GFP_WAIT)
2650 		local_irq_enable();
2651 
2652 	/*
2653 	 * The test for missing atomic flag is performed here, rather than
2654 	 * the more obvious place, simply to reduce the critical path length
2655 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2656 	 * will eventually be caught here (where it matters).
2657 	 */
2658 	kmem_flagcheck(cachep, flags);
2659 
2660 	/*
2661 	 * Get mem for the objs.  Attempt to allocate a physical page from
2662 	 * 'nodeid'.
2663 	 */
2664 	if (!page)
2665 		page = kmem_getpages(cachep, local_flags, nodeid);
2666 	if (!page)
2667 		goto failed;
2668 
2669 	/* Get slab management. */
2670 	freelist = alloc_slabmgmt(cachep, page, offset,
2671 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2672 	if (!freelist)
2673 		goto opps1;
2674 
2675 	slab_map_pages(cachep, page, freelist);
2676 
2677 	cache_init_objs(cachep, page);
2678 
2679 	if (local_flags & __GFP_WAIT)
2680 		local_irq_disable();
2681 	check_irq_off();
2682 	spin_lock(&n->list_lock);
2683 
2684 	/* Make slab active. */
2685 	list_add_tail(&page->lru, &(n->slabs_free));
2686 	STATS_INC_GROWN(cachep);
2687 	n->free_objects += cachep->num;
2688 	spin_unlock(&n->list_lock);
2689 	return 1;
2690 opps1:
2691 	kmem_freepages(cachep, page);
2692 failed:
2693 	if (local_flags & __GFP_WAIT)
2694 		local_irq_disable();
2695 	return 0;
2696 }
2697 
2698 #if DEBUG
2699 
2700 /*
2701  * Perform extra freeing checks:
2702  * - detect bad pointers.
2703  * - POISON/RED_ZONE checking
2704  */
2705 static void kfree_debugcheck(const void *objp)
2706 {
2707 	if (!virt_addr_valid(objp)) {
2708 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2709 		       (unsigned long)objp);
2710 		BUG();
2711 	}
2712 }
2713 
2714 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2715 {
2716 	unsigned long long redzone1, redzone2;
2717 
2718 	redzone1 = *dbg_redzone1(cache, obj);
2719 	redzone2 = *dbg_redzone2(cache, obj);
2720 
2721 	/*
2722 	 * Redzone is ok.
2723 	 */
2724 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2725 		return;
2726 
2727 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2728 		slab_error(cache, "double free detected");
2729 	else
2730 		slab_error(cache, "memory outside object was overwritten");
2731 
2732 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2733 			obj, redzone1, redzone2);
2734 }
2735 
2736 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2737 				   unsigned long caller)
2738 {
2739 	unsigned int objnr;
2740 	struct page *page;
2741 
2742 	BUG_ON(virt_to_cache(objp) != cachep);
2743 
2744 	objp -= obj_offset(cachep);
2745 	kfree_debugcheck(objp);
2746 	page = virt_to_head_page(objp);
2747 
2748 	if (cachep->flags & SLAB_RED_ZONE) {
2749 		verify_redzone_free(cachep, objp);
2750 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2751 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2752 	}
2753 	if (cachep->flags & SLAB_STORE_USER)
2754 		*dbg_userword(cachep, objp) = (void *)caller;
2755 
2756 	objnr = obj_to_index(cachep, page, objp);
2757 
2758 	BUG_ON(objnr >= cachep->num);
2759 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2760 
2761 	set_obj_status(page, objnr, OBJECT_FREE);
2762 	if (cachep->flags & SLAB_POISON) {
2763 #ifdef CONFIG_DEBUG_PAGEALLOC
2764 		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2765 			store_stackinfo(cachep, objp, caller);
2766 			kernel_map_pages(virt_to_page(objp),
2767 					 cachep->size / PAGE_SIZE, 0);
2768 		} else {
2769 			poison_obj(cachep, objp, POISON_FREE);
2770 		}
2771 #else
2772 		poison_obj(cachep, objp, POISON_FREE);
2773 #endif
2774 	}
2775 	return objp;
2776 }
2777 
2778 #else
2779 #define kfree_debugcheck(x) do { } while(0)
2780 #define cache_free_debugcheck(x,objp,z) (objp)
2781 #endif
2782 
2783 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2784 							bool force_refill)
2785 {
2786 	int batchcount;
2787 	struct kmem_cache_node *n;
2788 	struct array_cache *ac;
2789 	int node;
2790 
2791 	check_irq_off();
2792 	node = numa_mem_id();
2793 	if (unlikely(force_refill))
2794 		goto force_grow;
2795 retry:
2796 	ac = cpu_cache_get(cachep);
2797 	batchcount = ac->batchcount;
2798 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2799 		/*
2800 		 * If there was little recent activity on this cache, then
2801 		 * perform only a partial refill.  Otherwise we could generate
2802 		 * refill bouncing.
2803 		 */
2804 		batchcount = BATCHREFILL_LIMIT;
2805 	}
2806 	n = get_node(cachep, node);
2807 
2808 	BUG_ON(ac->avail > 0 || !n);
2809 	spin_lock(&n->list_lock);
2810 
2811 	/* See if we can refill from the shared array */
2812 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2813 		n->shared->touched = 1;
2814 		goto alloc_done;
2815 	}
2816 
2817 	while (batchcount > 0) {
2818 		struct list_head *entry;
2819 		struct page *page;
2820 		/* Get slab alloc is to come from. */
2821 		entry = n->slabs_partial.next;
2822 		if (entry == &n->slabs_partial) {
2823 			n->free_touched = 1;
2824 			entry = n->slabs_free.next;
2825 			if (entry == &n->slabs_free)
2826 				goto must_grow;
2827 		}
2828 
2829 		page = list_entry(entry, struct page, lru);
2830 		check_spinlock_acquired(cachep);
2831 
2832 		/*
2833 		 * The slab was either on partial or free list so
2834 		 * there must be at least one object available for
2835 		 * allocation.
2836 		 */
2837 		BUG_ON(page->active >= cachep->num);
2838 
2839 		while (page->active < cachep->num && batchcount--) {
2840 			STATS_INC_ALLOCED(cachep);
2841 			STATS_INC_ACTIVE(cachep);
2842 			STATS_SET_HIGH(cachep);
2843 
2844 			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2845 									node));
2846 		}
2847 
2848 		/* move slabp to correct slabp list: */
2849 		list_del(&page->lru);
2850 		if (page->active == cachep->num)
2851 			list_add(&page->lru, &n->slabs_full);
2852 		else
2853 			list_add(&page->lru, &n->slabs_partial);
2854 	}
2855 
2856 must_grow:
2857 	n->free_objects -= ac->avail;
2858 alloc_done:
2859 	spin_unlock(&n->list_lock);
2860 
2861 	if (unlikely(!ac->avail)) {
2862 		int x;
2863 force_grow:
2864 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2865 
2866 		/* cache_grow can reenable interrupts, then ac could change. */
2867 		ac = cpu_cache_get(cachep);
2868 		node = numa_mem_id();
2869 
2870 		/* no objects in sight? abort */
2871 		if (!x && (ac->avail == 0 || force_refill))
2872 			return NULL;
2873 
2874 		if (!ac->avail)		/* objects refilled by interrupt? */
2875 			goto retry;
2876 	}
2877 	ac->touched = 1;
2878 
2879 	return ac_get_obj(cachep, ac, flags, force_refill);
2880 }
2881 
2882 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2883 						gfp_t flags)
2884 {
2885 	might_sleep_if(flags & __GFP_WAIT);
2886 #if DEBUG
2887 	kmem_flagcheck(cachep, flags);
2888 #endif
2889 }
2890 
2891 #if DEBUG
2892 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2893 				gfp_t flags, void *objp, unsigned long caller)
2894 {
2895 	struct page *page;
2896 
2897 	if (!objp)
2898 		return objp;
2899 	if (cachep->flags & SLAB_POISON) {
2900 #ifdef CONFIG_DEBUG_PAGEALLOC
2901 		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2902 			kernel_map_pages(virt_to_page(objp),
2903 					 cachep->size / PAGE_SIZE, 1);
2904 		else
2905 			check_poison_obj(cachep, objp);
2906 #else
2907 		check_poison_obj(cachep, objp);
2908 #endif
2909 		poison_obj(cachep, objp, POISON_INUSE);
2910 	}
2911 	if (cachep->flags & SLAB_STORE_USER)
2912 		*dbg_userword(cachep, objp) = (void *)caller;
2913 
2914 	if (cachep->flags & SLAB_RED_ZONE) {
2915 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2916 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2917 			slab_error(cachep, "double free, or memory outside"
2918 						" object was overwritten");
2919 			printk(KERN_ERR
2920 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2921 				objp, *dbg_redzone1(cachep, objp),
2922 				*dbg_redzone2(cachep, objp));
2923 		}
2924 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2925 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2926 	}
2927 
2928 	page = virt_to_head_page(objp);
2929 	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2930 	objp += obj_offset(cachep);
2931 	if (cachep->ctor && cachep->flags & SLAB_POISON)
2932 		cachep->ctor(objp);
2933 	if (ARCH_SLAB_MINALIGN &&
2934 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2935 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2936 		       objp, (int)ARCH_SLAB_MINALIGN);
2937 	}
2938 	return objp;
2939 }
2940 #else
2941 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2942 #endif
2943 
2944 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2945 {
2946 	if (unlikely(cachep == kmem_cache))
2947 		return false;
2948 
2949 	return should_failslab(cachep->object_size, flags, cachep->flags);
2950 }
2951 
2952 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2953 {
2954 	void *objp;
2955 	struct array_cache *ac;
2956 	bool force_refill = false;
2957 
2958 	check_irq_off();
2959 
2960 	ac = cpu_cache_get(cachep);
2961 	if (likely(ac->avail)) {
2962 		ac->touched = 1;
2963 		objp = ac_get_obj(cachep, ac, flags, false);
2964 
2965 		/*
2966 		 * Allow for the possibility all avail objects are not allowed
2967 		 * by the current flags
2968 		 */
2969 		if (objp) {
2970 			STATS_INC_ALLOCHIT(cachep);
2971 			goto out;
2972 		}
2973 		force_refill = true;
2974 	}
2975 
2976 	STATS_INC_ALLOCMISS(cachep);
2977 	objp = cache_alloc_refill(cachep, flags, force_refill);
2978 	/*
2979 	 * the 'ac' may be updated by cache_alloc_refill(),
2980 	 * and kmemleak_erase() requires its correct value.
2981 	 */
2982 	ac = cpu_cache_get(cachep);
2983 
2984 out:
2985 	/*
2986 	 * To avoid a false negative, if an object that is in one of the
2987 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2988 	 * treat the array pointers as a reference to the object.
2989 	 */
2990 	if (objp)
2991 		kmemleak_erase(&ac->entry[ac->avail]);
2992 	return objp;
2993 }
2994 
2995 #ifdef CONFIG_NUMA
2996 /*
2997  * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
2998  *
2999  * If we are in_interrupt, then process context, including cpusets and
3000  * mempolicy, may not apply and should not be used for allocation policy.
3001  */
3002 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3003 {
3004 	int nid_alloc, nid_here;
3005 
3006 	if (in_interrupt() || (flags & __GFP_THISNODE))
3007 		return NULL;
3008 	nid_alloc = nid_here = numa_mem_id();
3009 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3010 		nid_alloc = cpuset_slab_spread_node();
3011 	else if (current->mempolicy)
3012 		nid_alloc = mempolicy_slab_node();
3013 	if (nid_alloc != nid_here)
3014 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3015 	return NULL;
3016 }
3017 
3018 /*
3019  * Fallback function if there was no memory available and no objects on a
3020  * certain node and fall back is permitted. First we scan all the
3021  * available node for available objects. If that fails then we
3022  * perform an allocation without specifying a node. This allows the page
3023  * allocator to do its reclaim / fallback magic. We then insert the
3024  * slab into the proper nodelist and then allocate from it.
3025  */
3026 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3027 {
3028 	struct zonelist *zonelist;
3029 	gfp_t local_flags;
3030 	struct zoneref *z;
3031 	struct zone *zone;
3032 	enum zone_type high_zoneidx = gfp_zone(flags);
3033 	void *obj = NULL;
3034 	int nid;
3035 	unsigned int cpuset_mems_cookie;
3036 
3037 	if (flags & __GFP_THISNODE)
3038 		return NULL;
3039 
3040 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3041 
3042 retry_cpuset:
3043 	cpuset_mems_cookie = read_mems_allowed_begin();
3044 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3045 
3046 retry:
3047 	/*
3048 	 * Look through allowed nodes for objects available
3049 	 * from existing per node queues.
3050 	 */
3051 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3052 		nid = zone_to_nid(zone);
3053 
3054 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3055 			get_node(cache, nid) &&
3056 			get_node(cache, nid)->free_objects) {
3057 				obj = ____cache_alloc_node(cache,
3058 					flags | GFP_THISNODE, nid);
3059 				if (obj)
3060 					break;
3061 		}
3062 	}
3063 
3064 	if (!obj) {
3065 		/*
3066 		 * This allocation will be performed within the constraints
3067 		 * of the current cpuset / memory policy requirements.
3068 		 * We may trigger various forms of reclaim on the allowed
3069 		 * set and go into memory reserves if necessary.
3070 		 */
3071 		struct page *page;
3072 
3073 		if (local_flags & __GFP_WAIT)
3074 			local_irq_enable();
3075 		kmem_flagcheck(cache, flags);
3076 		page = kmem_getpages(cache, local_flags, numa_mem_id());
3077 		if (local_flags & __GFP_WAIT)
3078 			local_irq_disable();
3079 		if (page) {
3080 			/*
3081 			 * Insert into the appropriate per node queues
3082 			 */
3083 			nid = page_to_nid(page);
3084 			if (cache_grow(cache, flags, nid, page)) {
3085 				obj = ____cache_alloc_node(cache,
3086 					flags | GFP_THISNODE, nid);
3087 				if (!obj)
3088 					/*
3089 					 * Another processor may allocate the
3090 					 * objects in the slab since we are
3091 					 * not holding any locks.
3092 					 */
3093 					goto retry;
3094 			} else {
3095 				/* cache_grow already freed obj */
3096 				obj = NULL;
3097 			}
3098 		}
3099 	}
3100 
3101 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3102 		goto retry_cpuset;
3103 	return obj;
3104 }
3105 
3106 /*
3107  * A interface to enable slab creation on nodeid
3108  */
3109 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3110 				int nodeid)
3111 {
3112 	struct list_head *entry;
3113 	struct page *page;
3114 	struct kmem_cache_node *n;
3115 	void *obj;
3116 	int x;
3117 
3118 	VM_BUG_ON(nodeid > num_online_nodes());
3119 	n = get_node(cachep, nodeid);
3120 	BUG_ON(!n);
3121 
3122 retry:
3123 	check_irq_off();
3124 	spin_lock(&n->list_lock);
3125 	entry = n->slabs_partial.next;
3126 	if (entry == &n->slabs_partial) {
3127 		n->free_touched = 1;
3128 		entry = n->slabs_free.next;
3129 		if (entry == &n->slabs_free)
3130 			goto must_grow;
3131 	}
3132 
3133 	page = list_entry(entry, struct page, lru);
3134 	check_spinlock_acquired_node(cachep, nodeid);
3135 
3136 	STATS_INC_NODEALLOCS(cachep);
3137 	STATS_INC_ACTIVE(cachep);
3138 	STATS_SET_HIGH(cachep);
3139 
3140 	BUG_ON(page->active == cachep->num);
3141 
3142 	obj = slab_get_obj(cachep, page, nodeid);
3143 	n->free_objects--;
3144 	/* move slabp to correct slabp list: */
3145 	list_del(&page->lru);
3146 
3147 	if (page->active == cachep->num)
3148 		list_add(&page->lru, &n->slabs_full);
3149 	else
3150 		list_add(&page->lru, &n->slabs_partial);
3151 
3152 	spin_unlock(&n->list_lock);
3153 	goto done;
3154 
3155 must_grow:
3156 	spin_unlock(&n->list_lock);
3157 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3158 	if (x)
3159 		goto retry;
3160 
3161 	return fallback_alloc(cachep, flags);
3162 
3163 done:
3164 	return obj;
3165 }
3166 
3167 static __always_inline void *
3168 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3169 		   unsigned long caller)
3170 {
3171 	unsigned long save_flags;
3172 	void *ptr;
3173 	int slab_node = numa_mem_id();
3174 
3175 	flags &= gfp_allowed_mask;
3176 
3177 	lockdep_trace_alloc(flags);
3178 
3179 	if (slab_should_failslab(cachep, flags))
3180 		return NULL;
3181 
3182 	cachep = memcg_kmem_get_cache(cachep, flags);
3183 
3184 	cache_alloc_debugcheck_before(cachep, flags);
3185 	local_irq_save(save_flags);
3186 
3187 	if (nodeid == NUMA_NO_NODE)
3188 		nodeid = slab_node;
3189 
3190 	if (unlikely(!get_node(cachep, nodeid))) {
3191 		/* Node not bootstrapped yet */
3192 		ptr = fallback_alloc(cachep, flags);
3193 		goto out;
3194 	}
3195 
3196 	if (nodeid == slab_node) {
3197 		/*
3198 		 * Use the locally cached objects if possible.
3199 		 * However ____cache_alloc does not allow fallback
3200 		 * to other nodes. It may fail while we still have
3201 		 * objects on other nodes available.
3202 		 */
3203 		ptr = ____cache_alloc(cachep, flags);
3204 		if (ptr)
3205 			goto out;
3206 	}
3207 	/* ___cache_alloc_node can fall back to other nodes */
3208 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3209   out:
3210 	local_irq_restore(save_flags);
3211 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3212 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3213 				 flags);
3214 
3215 	if (likely(ptr)) {
3216 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3217 		if (unlikely(flags & __GFP_ZERO))
3218 			memset(ptr, 0, cachep->object_size);
3219 	}
3220 
3221 	return ptr;
3222 }
3223 
3224 static __always_inline void *
3225 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3226 {
3227 	void *objp;
3228 
3229 	if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3230 		objp = alternate_node_alloc(cache, flags);
3231 		if (objp)
3232 			goto out;
3233 	}
3234 	objp = ____cache_alloc(cache, flags);
3235 
3236 	/*
3237 	 * We may just have run out of memory on the local node.
3238 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3239 	 */
3240 	if (!objp)
3241 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3242 
3243   out:
3244 	return objp;
3245 }
3246 #else
3247 
3248 static __always_inline void *
3249 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3250 {
3251 	return ____cache_alloc(cachep, flags);
3252 }
3253 
3254 #endif /* CONFIG_NUMA */
3255 
3256 static __always_inline void *
3257 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3258 {
3259 	unsigned long save_flags;
3260 	void *objp;
3261 
3262 	flags &= gfp_allowed_mask;
3263 
3264 	lockdep_trace_alloc(flags);
3265 
3266 	if (slab_should_failslab(cachep, flags))
3267 		return NULL;
3268 
3269 	cachep = memcg_kmem_get_cache(cachep, flags);
3270 
3271 	cache_alloc_debugcheck_before(cachep, flags);
3272 	local_irq_save(save_flags);
3273 	objp = __do_cache_alloc(cachep, flags);
3274 	local_irq_restore(save_flags);
3275 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3276 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3277 				 flags);
3278 	prefetchw(objp);
3279 
3280 	if (likely(objp)) {
3281 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3282 		if (unlikely(flags & __GFP_ZERO))
3283 			memset(objp, 0, cachep->object_size);
3284 	}
3285 
3286 	return objp;
3287 }
3288 
3289 /*
3290  * Caller needs to acquire correct kmem_cache_node's list_lock
3291  * @list: List of detached free slabs should be freed by caller
3292  */
3293 static void free_block(struct kmem_cache *cachep, void **objpp,
3294 			int nr_objects, int node, struct list_head *list)
3295 {
3296 	int i;
3297 	struct kmem_cache_node *n = get_node(cachep, node);
3298 
3299 	for (i = 0; i < nr_objects; i++) {
3300 		void *objp;
3301 		struct page *page;
3302 
3303 		clear_obj_pfmemalloc(&objpp[i]);
3304 		objp = objpp[i];
3305 
3306 		page = virt_to_head_page(objp);
3307 		list_del(&page->lru);
3308 		check_spinlock_acquired_node(cachep, node);
3309 		slab_put_obj(cachep, page, objp, node);
3310 		STATS_DEC_ACTIVE(cachep);
3311 		n->free_objects++;
3312 
3313 		/* fixup slab chains */
3314 		if (page->active == 0) {
3315 			if (n->free_objects > n->free_limit) {
3316 				n->free_objects -= cachep->num;
3317 				list_add_tail(&page->lru, list);
3318 			} else {
3319 				list_add(&page->lru, &n->slabs_free);
3320 			}
3321 		} else {
3322 			/* Unconditionally move a slab to the end of the
3323 			 * partial list on free - maximum time for the
3324 			 * other objects to be freed, too.
3325 			 */
3326 			list_add_tail(&page->lru, &n->slabs_partial);
3327 		}
3328 	}
3329 }
3330 
3331 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3332 {
3333 	int batchcount;
3334 	struct kmem_cache_node *n;
3335 	int node = numa_mem_id();
3336 	LIST_HEAD(list);
3337 
3338 	batchcount = ac->batchcount;
3339 #if DEBUG
3340 	BUG_ON(!batchcount || batchcount > ac->avail);
3341 #endif
3342 	check_irq_off();
3343 	n = get_node(cachep, node);
3344 	spin_lock(&n->list_lock);
3345 	if (n->shared) {
3346 		struct array_cache *shared_array = n->shared;
3347 		int max = shared_array->limit - shared_array->avail;
3348 		if (max) {
3349 			if (batchcount > max)
3350 				batchcount = max;
3351 			memcpy(&(shared_array->entry[shared_array->avail]),
3352 			       ac->entry, sizeof(void *) * batchcount);
3353 			shared_array->avail += batchcount;
3354 			goto free_done;
3355 		}
3356 	}
3357 
3358 	free_block(cachep, ac->entry, batchcount, node, &list);
3359 free_done:
3360 #if STATS
3361 	{
3362 		int i = 0;
3363 		struct list_head *p;
3364 
3365 		p = n->slabs_free.next;
3366 		while (p != &(n->slabs_free)) {
3367 			struct page *page;
3368 
3369 			page = list_entry(p, struct page, lru);
3370 			BUG_ON(page->active);
3371 
3372 			i++;
3373 			p = p->next;
3374 		}
3375 		STATS_SET_FREEABLE(cachep, i);
3376 	}
3377 #endif
3378 	spin_unlock(&n->list_lock);
3379 	slabs_destroy(cachep, &list);
3380 	ac->avail -= batchcount;
3381 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3382 }
3383 
3384 /*
3385  * Release an obj back to its cache. If the obj has a constructed state, it must
3386  * be in this state _before_ it is released.  Called with disabled ints.
3387  */
3388 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3389 				unsigned long caller)
3390 {
3391 	struct array_cache *ac = cpu_cache_get(cachep);
3392 
3393 	check_irq_off();
3394 	kmemleak_free_recursive(objp, cachep->flags);
3395 	objp = cache_free_debugcheck(cachep, objp, caller);
3396 
3397 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3398 
3399 	/*
3400 	 * Skip calling cache_free_alien() when the platform is not numa.
3401 	 * This will avoid cache misses that happen while accessing slabp (which
3402 	 * is per page memory  reference) to get nodeid. Instead use a global
3403 	 * variable to skip the call, which is mostly likely to be present in
3404 	 * the cache.
3405 	 */
3406 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3407 		return;
3408 
3409 	if (likely(ac->avail < ac->limit)) {
3410 		STATS_INC_FREEHIT(cachep);
3411 	} else {
3412 		STATS_INC_FREEMISS(cachep);
3413 		cache_flusharray(cachep, ac);
3414 	}
3415 
3416 	ac_put_obj(cachep, ac, objp);
3417 }
3418 
3419 /**
3420  * kmem_cache_alloc - Allocate an object
3421  * @cachep: The cache to allocate from.
3422  * @flags: See kmalloc().
3423  *
3424  * Allocate an object from this cache.  The flags are only relevant
3425  * if the cache has no available objects.
3426  */
3427 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3428 {
3429 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3430 
3431 	trace_kmem_cache_alloc(_RET_IP_, ret,
3432 			       cachep->object_size, cachep->size, flags);
3433 
3434 	return ret;
3435 }
3436 EXPORT_SYMBOL(kmem_cache_alloc);
3437 
3438 #ifdef CONFIG_TRACING
3439 void *
3440 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3441 {
3442 	void *ret;
3443 
3444 	ret = slab_alloc(cachep, flags, _RET_IP_);
3445 
3446 	trace_kmalloc(_RET_IP_, ret,
3447 		      size, cachep->size, flags);
3448 	return ret;
3449 }
3450 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3451 #endif
3452 
3453 #ifdef CONFIG_NUMA
3454 /**
3455  * kmem_cache_alloc_node - Allocate an object on the specified node
3456  * @cachep: The cache to allocate from.
3457  * @flags: See kmalloc().
3458  * @nodeid: node number of the target node.
3459  *
3460  * Identical to kmem_cache_alloc but it will allocate memory on the given
3461  * node, which can improve the performance for cpu bound structures.
3462  *
3463  * Fallback to other node is possible if __GFP_THISNODE is not set.
3464  */
3465 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3466 {
3467 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3468 
3469 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3470 				    cachep->object_size, cachep->size,
3471 				    flags, nodeid);
3472 
3473 	return ret;
3474 }
3475 EXPORT_SYMBOL(kmem_cache_alloc_node);
3476 
3477 #ifdef CONFIG_TRACING
3478 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3479 				  gfp_t flags,
3480 				  int nodeid,
3481 				  size_t size)
3482 {
3483 	void *ret;
3484 
3485 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3486 
3487 	trace_kmalloc_node(_RET_IP_, ret,
3488 			   size, cachep->size,
3489 			   flags, nodeid);
3490 	return ret;
3491 }
3492 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3493 #endif
3494 
3495 static __always_inline void *
3496 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3497 {
3498 	struct kmem_cache *cachep;
3499 
3500 	cachep = kmalloc_slab(size, flags);
3501 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3502 		return cachep;
3503 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3504 }
3505 
3506 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3507 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3508 {
3509 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3510 }
3511 EXPORT_SYMBOL(__kmalloc_node);
3512 
3513 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3514 		int node, unsigned long caller)
3515 {
3516 	return __do_kmalloc_node(size, flags, node, caller);
3517 }
3518 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3519 #else
3520 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3521 {
3522 	return __do_kmalloc_node(size, flags, node, 0);
3523 }
3524 EXPORT_SYMBOL(__kmalloc_node);
3525 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3526 #endif /* CONFIG_NUMA */
3527 
3528 /**
3529  * __do_kmalloc - allocate memory
3530  * @size: how many bytes of memory are required.
3531  * @flags: the type of memory to allocate (see kmalloc).
3532  * @caller: function caller for debug tracking of the caller
3533  */
3534 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3535 					  unsigned long caller)
3536 {
3537 	struct kmem_cache *cachep;
3538 	void *ret;
3539 
3540 	cachep = kmalloc_slab(size, flags);
3541 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3542 		return cachep;
3543 	ret = slab_alloc(cachep, flags, caller);
3544 
3545 	trace_kmalloc(caller, ret,
3546 		      size, cachep->size, flags);
3547 
3548 	return ret;
3549 }
3550 
3551 
3552 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3553 void *__kmalloc(size_t size, gfp_t flags)
3554 {
3555 	return __do_kmalloc(size, flags, _RET_IP_);
3556 }
3557 EXPORT_SYMBOL(__kmalloc);
3558 
3559 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3560 {
3561 	return __do_kmalloc(size, flags, caller);
3562 }
3563 EXPORT_SYMBOL(__kmalloc_track_caller);
3564 
3565 #else
3566 void *__kmalloc(size_t size, gfp_t flags)
3567 {
3568 	return __do_kmalloc(size, flags, 0);
3569 }
3570 EXPORT_SYMBOL(__kmalloc);
3571 #endif
3572 
3573 /**
3574  * kmem_cache_free - Deallocate an object
3575  * @cachep: The cache the allocation was from.
3576  * @objp: The previously allocated object.
3577  *
3578  * Free an object which was previously allocated from this
3579  * cache.
3580  */
3581 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3582 {
3583 	unsigned long flags;
3584 	cachep = cache_from_obj(cachep, objp);
3585 	if (!cachep)
3586 		return;
3587 
3588 	local_irq_save(flags);
3589 	debug_check_no_locks_freed(objp, cachep->object_size);
3590 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3591 		debug_check_no_obj_freed(objp, cachep->object_size);
3592 	__cache_free(cachep, objp, _RET_IP_);
3593 	local_irq_restore(flags);
3594 
3595 	trace_kmem_cache_free(_RET_IP_, objp);
3596 }
3597 EXPORT_SYMBOL(kmem_cache_free);
3598 
3599 /**
3600  * kfree - free previously allocated memory
3601  * @objp: pointer returned by kmalloc.
3602  *
3603  * If @objp is NULL, no operation is performed.
3604  *
3605  * Don't free memory not originally allocated by kmalloc()
3606  * or you will run into trouble.
3607  */
3608 void kfree(const void *objp)
3609 {
3610 	struct kmem_cache *c;
3611 	unsigned long flags;
3612 
3613 	trace_kfree(_RET_IP_, objp);
3614 
3615 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3616 		return;
3617 	local_irq_save(flags);
3618 	kfree_debugcheck(objp);
3619 	c = virt_to_cache(objp);
3620 	debug_check_no_locks_freed(objp, c->object_size);
3621 
3622 	debug_check_no_obj_freed(objp, c->object_size);
3623 	__cache_free(c, (void *)objp, _RET_IP_);
3624 	local_irq_restore(flags);
3625 }
3626 EXPORT_SYMBOL(kfree);
3627 
3628 /*
3629  * This initializes kmem_cache_node or resizes various caches for all nodes.
3630  */
3631 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3632 {
3633 	int node;
3634 	struct kmem_cache_node *n;
3635 	struct array_cache *new_shared;
3636 	struct alien_cache **new_alien = NULL;
3637 
3638 	for_each_online_node(node) {
3639 
3640                 if (use_alien_caches) {
3641                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3642                         if (!new_alien)
3643                                 goto fail;
3644                 }
3645 
3646 		new_shared = NULL;
3647 		if (cachep->shared) {
3648 			new_shared = alloc_arraycache(node,
3649 				cachep->shared*cachep->batchcount,
3650 					0xbaadf00d, gfp);
3651 			if (!new_shared) {
3652 				free_alien_cache(new_alien);
3653 				goto fail;
3654 			}
3655 		}
3656 
3657 		n = get_node(cachep, node);
3658 		if (n) {
3659 			struct array_cache *shared = n->shared;
3660 			LIST_HEAD(list);
3661 
3662 			spin_lock_irq(&n->list_lock);
3663 
3664 			if (shared)
3665 				free_block(cachep, shared->entry,
3666 						shared->avail, node, &list);
3667 
3668 			n->shared = new_shared;
3669 			if (!n->alien) {
3670 				n->alien = new_alien;
3671 				new_alien = NULL;
3672 			}
3673 			n->free_limit = (1 + nr_cpus_node(node)) *
3674 					cachep->batchcount + cachep->num;
3675 			spin_unlock_irq(&n->list_lock);
3676 			slabs_destroy(cachep, &list);
3677 			kfree(shared);
3678 			free_alien_cache(new_alien);
3679 			continue;
3680 		}
3681 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3682 		if (!n) {
3683 			free_alien_cache(new_alien);
3684 			kfree(new_shared);
3685 			goto fail;
3686 		}
3687 
3688 		kmem_cache_node_init(n);
3689 		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3690 				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3691 		n->shared = new_shared;
3692 		n->alien = new_alien;
3693 		n->free_limit = (1 + nr_cpus_node(node)) *
3694 					cachep->batchcount + cachep->num;
3695 		cachep->node[node] = n;
3696 	}
3697 	return 0;
3698 
3699 fail:
3700 	if (!cachep->list.next) {
3701 		/* Cache is not active yet. Roll back what we did */
3702 		node--;
3703 		while (node >= 0) {
3704 			n = get_node(cachep, node);
3705 			if (n) {
3706 				kfree(n->shared);
3707 				free_alien_cache(n->alien);
3708 				kfree(n);
3709 				cachep->node[node] = NULL;
3710 			}
3711 			node--;
3712 		}
3713 	}
3714 	return -ENOMEM;
3715 }
3716 
3717 struct ccupdate_struct {
3718 	struct kmem_cache *cachep;
3719 	struct array_cache *new[0];
3720 };
3721 
3722 static void do_ccupdate_local(void *info)
3723 {
3724 	struct ccupdate_struct *new = info;
3725 	struct array_cache *old;
3726 
3727 	check_irq_off();
3728 	old = cpu_cache_get(new->cachep);
3729 
3730 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3731 	new->new[smp_processor_id()] = old;
3732 }
3733 
3734 /* Always called with the slab_mutex held */
3735 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3736 				int batchcount, int shared, gfp_t gfp)
3737 {
3738 	struct ccupdate_struct *new;
3739 	int i;
3740 
3741 	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3742 		      gfp);
3743 	if (!new)
3744 		return -ENOMEM;
3745 
3746 	for_each_online_cpu(i) {
3747 		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3748 						batchcount, gfp);
3749 		if (!new->new[i]) {
3750 			for (i--; i >= 0; i--)
3751 				kfree(new->new[i]);
3752 			kfree(new);
3753 			return -ENOMEM;
3754 		}
3755 	}
3756 	new->cachep = cachep;
3757 
3758 	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3759 
3760 	check_irq_on();
3761 	cachep->batchcount = batchcount;
3762 	cachep->limit = limit;
3763 	cachep->shared = shared;
3764 
3765 	for_each_online_cpu(i) {
3766 		LIST_HEAD(list);
3767 		struct array_cache *ccold = new->new[i];
3768 		int node;
3769 		struct kmem_cache_node *n;
3770 
3771 		if (!ccold)
3772 			continue;
3773 
3774 		node = cpu_to_mem(i);
3775 		n = get_node(cachep, node);
3776 		spin_lock_irq(&n->list_lock);
3777 		free_block(cachep, ccold->entry, ccold->avail, node, &list);
3778 		spin_unlock_irq(&n->list_lock);
3779 		slabs_destroy(cachep, &list);
3780 		kfree(ccold);
3781 	}
3782 	kfree(new);
3783 	return alloc_kmem_cache_node(cachep, gfp);
3784 }
3785 
3786 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3787 				int batchcount, int shared, gfp_t gfp)
3788 {
3789 	int ret;
3790 	struct kmem_cache *c = NULL;
3791 	int i = 0;
3792 
3793 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3794 
3795 	if (slab_state < FULL)
3796 		return ret;
3797 
3798 	if ((ret < 0) || !is_root_cache(cachep))
3799 		return ret;
3800 
3801 	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3802 	for_each_memcg_cache_index(i) {
3803 		c = cache_from_memcg_idx(cachep, i);
3804 		if (c)
3805 			/* return value determined by the parent cache only */
3806 			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3807 	}
3808 
3809 	return ret;
3810 }
3811 
3812 /* Called with slab_mutex held always */
3813 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3814 {
3815 	int err;
3816 	int limit = 0;
3817 	int shared = 0;
3818 	int batchcount = 0;
3819 
3820 	if (!is_root_cache(cachep)) {
3821 		struct kmem_cache *root = memcg_root_cache(cachep);
3822 		limit = root->limit;
3823 		shared = root->shared;
3824 		batchcount = root->batchcount;
3825 	}
3826 
3827 	if (limit && shared && batchcount)
3828 		goto skip_setup;
3829 	/*
3830 	 * The head array serves three purposes:
3831 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3832 	 * - reduce the number of spinlock operations.
3833 	 * - reduce the number of linked list operations on the slab and
3834 	 *   bufctl chains: array operations are cheaper.
3835 	 * The numbers are guessed, we should auto-tune as described by
3836 	 * Bonwick.
3837 	 */
3838 	if (cachep->size > 131072)
3839 		limit = 1;
3840 	else if (cachep->size > PAGE_SIZE)
3841 		limit = 8;
3842 	else if (cachep->size > 1024)
3843 		limit = 24;
3844 	else if (cachep->size > 256)
3845 		limit = 54;
3846 	else
3847 		limit = 120;
3848 
3849 	/*
3850 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3851 	 * allocation behaviour: Most allocs on one cpu, most free operations
3852 	 * on another cpu. For these cases, an efficient object passing between
3853 	 * cpus is necessary. This is provided by a shared array. The array
3854 	 * replaces Bonwick's magazine layer.
3855 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3856 	 * to a larger limit. Thus disabled by default.
3857 	 */
3858 	shared = 0;
3859 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3860 		shared = 8;
3861 
3862 #if DEBUG
3863 	/*
3864 	 * With debugging enabled, large batchcount lead to excessively long
3865 	 * periods with disabled local interrupts. Limit the batchcount
3866 	 */
3867 	if (limit > 32)
3868 		limit = 32;
3869 #endif
3870 	batchcount = (limit + 1) / 2;
3871 skip_setup:
3872 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3873 	if (err)
3874 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3875 		       cachep->name, -err);
3876 	return err;
3877 }
3878 
3879 /*
3880  * Drain an array if it contains any elements taking the node lock only if
3881  * necessary. Note that the node listlock also protects the array_cache
3882  * if drain_array() is used on the shared array.
3883  */
3884 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3885 			 struct array_cache *ac, int force, int node)
3886 {
3887 	LIST_HEAD(list);
3888 	int tofree;
3889 
3890 	if (!ac || !ac->avail)
3891 		return;
3892 	if (ac->touched && !force) {
3893 		ac->touched = 0;
3894 	} else {
3895 		spin_lock_irq(&n->list_lock);
3896 		if (ac->avail) {
3897 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3898 			if (tofree > ac->avail)
3899 				tofree = (ac->avail + 1) / 2;
3900 			free_block(cachep, ac->entry, tofree, node, &list);
3901 			ac->avail -= tofree;
3902 			memmove(ac->entry, &(ac->entry[tofree]),
3903 				sizeof(void *) * ac->avail);
3904 		}
3905 		spin_unlock_irq(&n->list_lock);
3906 		slabs_destroy(cachep, &list);
3907 	}
3908 }
3909 
3910 /**
3911  * cache_reap - Reclaim memory from caches.
3912  * @w: work descriptor
3913  *
3914  * Called from workqueue/eventd every few seconds.
3915  * Purpose:
3916  * - clear the per-cpu caches for this CPU.
3917  * - return freeable pages to the main free memory pool.
3918  *
3919  * If we cannot acquire the cache chain mutex then just give up - we'll try
3920  * again on the next iteration.
3921  */
3922 static void cache_reap(struct work_struct *w)
3923 {
3924 	struct kmem_cache *searchp;
3925 	struct kmem_cache_node *n;
3926 	int node = numa_mem_id();
3927 	struct delayed_work *work = to_delayed_work(w);
3928 
3929 	if (!mutex_trylock(&slab_mutex))
3930 		/* Give up. Setup the next iteration. */
3931 		goto out;
3932 
3933 	list_for_each_entry(searchp, &slab_caches, list) {
3934 		check_irq_on();
3935 
3936 		/*
3937 		 * We only take the node lock if absolutely necessary and we
3938 		 * have established with reasonable certainty that
3939 		 * we can do some work if the lock was obtained.
3940 		 */
3941 		n = get_node(searchp, node);
3942 
3943 		reap_alien(searchp, n);
3944 
3945 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3946 
3947 		/*
3948 		 * These are racy checks but it does not matter
3949 		 * if we skip one check or scan twice.
3950 		 */
3951 		if (time_after(n->next_reap, jiffies))
3952 			goto next;
3953 
3954 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3955 
3956 		drain_array(searchp, n, n->shared, 0, node);
3957 
3958 		if (n->free_touched)
3959 			n->free_touched = 0;
3960 		else {
3961 			int freed;
3962 
3963 			freed = drain_freelist(searchp, n, (n->free_limit +
3964 				5 * searchp->num - 1) / (5 * searchp->num));
3965 			STATS_ADD_REAPED(searchp, freed);
3966 		}
3967 next:
3968 		cond_resched();
3969 	}
3970 	check_irq_on();
3971 	mutex_unlock(&slab_mutex);
3972 	next_reap_node();
3973 out:
3974 	/* Set up the next iteration */
3975 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3976 }
3977 
3978 #ifdef CONFIG_SLABINFO
3979 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3980 {
3981 	struct page *page;
3982 	unsigned long active_objs;
3983 	unsigned long num_objs;
3984 	unsigned long active_slabs = 0;
3985 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3986 	const char *name;
3987 	char *error = NULL;
3988 	int node;
3989 	struct kmem_cache_node *n;
3990 
3991 	active_objs = 0;
3992 	num_slabs = 0;
3993 	for_each_kmem_cache_node(cachep, node, n) {
3994 
3995 		check_irq_on();
3996 		spin_lock_irq(&n->list_lock);
3997 
3998 		list_for_each_entry(page, &n->slabs_full, lru) {
3999 			if (page->active != cachep->num && !error)
4000 				error = "slabs_full accounting error";
4001 			active_objs += cachep->num;
4002 			active_slabs++;
4003 		}
4004 		list_for_each_entry(page, &n->slabs_partial, lru) {
4005 			if (page->active == cachep->num && !error)
4006 				error = "slabs_partial accounting error";
4007 			if (!page->active && !error)
4008 				error = "slabs_partial accounting error";
4009 			active_objs += page->active;
4010 			active_slabs++;
4011 		}
4012 		list_for_each_entry(page, &n->slabs_free, lru) {
4013 			if (page->active && !error)
4014 				error = "slabs_free accounting error";
4015 			num_slabs++;
4016 		}
4017 		free_objects += n->free_objects;
4018 		if (n->shared)
4019 			shared_avail += n->shared->avail;
4020 
4021 		spin_unlock_irq(&n->list_lock);
4022 	}
4023 	num_slabs += active_slabs;
4024 	num_objs = num_slabs * cachep->num;
4025 	if (num_objs - active_objs != free_objects && !error)
4026 		error = "free_objects accounting error";
4027 
4028 	name = cachep->name;
4029 	if (error)
4030 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4031 
4032 	sinfo->active_objs = active_objs;
4033 	sinfo->num_objs = num_objs;
4034 	sinfo->active_slabs = active_slabs;
4035 	sinfo->num_slabs = num_slabs;
4036 	sinfo->shared_avail = shared_avail;
4037 	sinfo->limit = cachep->limit;
4038 	sinfo->batchcount = cachep->batchcount;
4039 	sinfo->shared = cachep->shared;
4040 	sinfo->objects_per_slab = cachep->num;
4041 	sinfo->cache_order = cachep->gfporder;
4042 }
4043 
4044 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4045 {
4046 #if STATS
4047 	{			/* node stats */
4048 		unsigned long high = cachep->high_mark;
4049 		unsigned long allocs = cachep->num_allocations;
4050 		unsigned long grown = cachep->grown;
4051 		unsigned long reaped = cachep->reaped;
4052 		unsigned long errors = cachep->errors;
4053 		unsigned long max_freeable = cachep->max_freeable;
4054 		unsigned long node_allocs = cachep->node_allocs;
4055 		unsigned long node_frees = cachep->node_frees;
4056 		unsigned long overflows = cachep->node_overflow;
4057 
4058 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4059 			   "%4lu %4lu %4lu %4lu %4lu",
4060 			   allocs, high, grown,
4061 			   reaped, errors, max_freeable, node_allocs,
4062 			   node_frees, overflows);
4063 	}
4064 	/* cpu stats */
4065 	{
4066 		unsigned long allochit = atomic_read(&cachep->allochit);
4067 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4068 		unsigned long freehit = atomic_read(&cachep->freehit);
4069 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4070 
4071 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4072 			   allochit, allocmiss, freehit, freemiss);
4073 	}
4074 #endif
4075 }
4076 
4077 #define MAX_SLABINFO_WRITE 128
4078 /**
4079  * slabinfo_write - Tuning for the slab allocator
4080  * @file: unused
4081  * @buffer: user buffer
4082  * @count: data length
4083  * @ppos: unused
4084  */
4085 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4086 		       size_t count, loff_t *ppos)
4087 {
4088 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4089 	int limit, batchcount, shared, res;
4090 	struct kmem_cache *cachep;
4091 
4092 	if (count > MAX_SLABINFO_WRITE)
4093 		return -EINVAL;
4094 	if (copy_from_user(&kbuf, buffer, count))
4095 		return -EFAULT;
4096 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4097 
4098 	tmp = strchr(kbuf, ' ');
4099 	if (!tmp)
4100 		return -EINVAL;
4101 	*tmp = '\0';
4102 	tmp++;
4103 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4104 		return -EINVAL;
4105 
4106 	/* Find the cache in the chain of caches. */
4107 	mutex_lock(&slab_mutex);
4108 	res = -EINVAL;
4109 	list_for_each_entry(cachep, &slab_caches, list) {
4110 		if (!strcmp(cachep->name, kbuf)) {
4111 			if (limit < 1 || batchcount < 1 ||
4112 					batchcount > limit || shared < 0) {
4113 				res = 0;
4114 			} else {
4115 				res = do_tune_cpucache(cachep, limit,
4116 						       batchcount, shared,
4117 						       GFP_KERNEL);
4118 			}
4119 			break;
4120 		}
4121 	}
4122 	mutex_unlock(&slab_mutex);
4123 	if (res >= 0)
4124 		res = count;
4125 	return res;
4126 }
4127 
4128 #ifdef CONFIG_DEBUG_SLAB_LEAK
4129 
4130 static void *leaks_start(struct seq_file *m, loff_t *pos)
4131 {
4132 	mutex_lock(&slab_mutex);
4133 	return seq_list_start(&slab_caches, *pos);
4134 }
4135 
4136 static inline int add_caller(unsigned long *n, unsigned long v)
4137 {
4138 	unsigned long *p;
4139 	int l;
4140 	if (!v)
4141 		return 1;
4142 	l = n[1];
4143 	p = n + 2;
4144 	while (l) {
4145 		int i = l/2;
4146 		unsigned long *q = p + 2 * i;
4147 		if (*q == v) {
4148 			q[1]++;
4149 			return 1;
4150 		}
4151 		if (*q > v) {
4152 			l = i;
4153 		} else {
4154 			p = q + 2;
4155 			l -= i + 1;
4156 		}
4157 	}
4158 	if (++n[1] == n[0])
4159 		return 0;
4160 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4161 	p[0] = v;
4162 	p[1] = 1;
4163 	return 1;
4164 }
4165 
4166 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4167 						struct page *page)
4168 {
4169 	void *p;
4170 	int i;
4171 
4172 	if (n[0] == n[1])
4173 		return;
4174 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4175 		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4176 			continue;
4177 
4178 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4179 			return;
4180 	}
4181 }
4182 
4183 static void show_symbol(struct seq_file *m, unsigned long address)
4184 {
4185 #ifdef CONFIG_KALLSYMS
4186 	unsigned long offset, size;
4187 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4188 
4189 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4190 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4191 		if (modname[0])
4192 			seq_printf(m, " [%s]", modname);
4193 		return;
4194 	}
4195 #endif
4196 	seq_printf(m, "%p", (void *)address);
4197 }
4198 
4199 static int leaks_show(struct seq_file *m, void *p)
4200 {
4201 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4202 	struct page *page;
4203 	struct kmem_cache_node *n;
4204 	const char *name;
4205 	unsigned long *x = m->private;
4206 	int node;
4207 	int i;
4208 
4209 	if (!(cachep->flags & SLAB_STORE_USER))
4210 		return 0;
4211 	if (!(cachep->flags & SLAB_RED_ZONE))
4212 		return 0;
4213 
4214 	/* OK, we can do it */
4215 
4216 	x[1] = 0;
4217 
4218 	for_each_kmem_cache_node(cachep, node, n) {
4219 
4220 		check_irq_on();
4221 		spin_lock_irq(&n->list_lock);
4222 
4223 		list_for_each_entry(page, &n->slabs_full, lru)
4224 			handle_slab(x, cachep, page);
4225 		list_for_each_entry(page, &n->slabs_partial, lru)
4226 			handle_slab(x, cachep, page);
4227 		spin_unlock_irq(&n->list_lock);
4228 	}
4229 	name = cachep->name;
4230 	if (x[0] == x[1]) {
4231 		/* Increase the buffer size */
4232 		mutex_unlock(&slab_mutex);
4233 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4234 		if (!m->private) {
4235 			/* Too bad, we are really out */
4236 			m->private = x;
4237 			mutex_lock(&slab_mutex);
4238 			return -ENOMEM;
4239 		}
4240 		*(unsigned long *)m->private = x[0] * 2;
4241 		kfree(x);
4242 		mutex_lock(&slab_mutex);
4243 		/* Now make sure this entry will be retried */
4244 		m->count = m->size;
4245 		return 0;
4246 	}
4247 	for (i = 0; i < x[1]; i++) {
4248 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4249 		show_symbol(m, x[2*i+2]);
4250 		seq_putc(m, '\n');
4251 	}
4252 
4253 	return 0;
4254 }
4255 
4256 static const struct seq_operations slabstats_op = {
4257 	.start = leaks_start,
4258 	.next = slab_next,
4259 	.stop = slab_stop,
4260 	.show = leaks_show,
4261 };
4262 
4263 static int slabstats_open(struct inode *inode, struct file *file)
4264 {
4265 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4266 	int ret = -ENOMEM;
4267 	if (n) {
4268 		ret = seq_open(file, &slabstats_op);
4269 		if (!ret) {
4270 			struct seq_file *m = file->private_data;
4271 			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4272 			m->private = n;
4273 			n = NULL;
4274 		}
4275 		kfree(n);
4276 	}
4277 	return ret;
4278 }
4279 
4280 static const struct file_operations proc_slabstats_operations = {
4281 	.open		= slabstats_open,
4282 	.read		= seq_read,
4283 	.llseek		= seq_lseek,
4284 	.release	= seq_release_private,
4285 };
4286 #endif
4287 
4288 static int __init slab_proc_init(void)
4289 {
4290 #ifdef CONFIG_DEBUG_SLAB_LEAK
4291 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4292 #endif
4293 	return 0;
4294 }
4295 module_init(slab_proc_init);
4296 #endif
4297 
4298 /**
4299  * ksize - get the actual amount of memory allocated for a given object
4300  * @objp: Pointer to the object
4301  *
4302  * kmalloc may internally round up allocations and return more memory
4303  * than requested. ksize() can be used to determine the actual amount of
4304  * memory allocated. The caller may use this additional memory, even though
4305  * a smaller amount of memory was initially specified with the kmalloc call.
4306  * The caller must guarantee that objp points to a valid object previously
4307  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4308  * must not be freed during the duration of the call.
4309  */
4310 size_t ksize(const void *objp)
4311 {
4312 	BUG_ON(!objp);
4313 	if (unlikely(objp == ZERO_SIZE_PTR))
4314 		return 0;
4315 
4316 	return virt_to_cache(objp)->object_size;
4317 }
4318 EXPORT_SYMBOL(ksize);
4319