1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'slab_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 120 #include <net/sock.h> 121 122 #include <asm/cacheflush.h> 123 #include <asm/tlbflush.h> 124 #include <asm/page.h> 125 126 #include <trace/events/kmem.h> 127 128 #include "internal.h" 129 130 #include "slab.h" 131 132 /* 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 134 * 0 for faster, smaller code (especially in the critical paths). 135 * 136 * STATS - 1 to collect stats for /proc/slabinfo. 137 * 0 for faster, smaller code (especially in the critical paths). 138 * 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 140 */ 141 142 #ifdef CONFIG_DEBUG_SLAB 143 #define DEBUG 1 144 #define STATS 1 145 #define FORCED_DEBUG 1 146 #else 147 #define DEBUG 0 148 #define STATS 0 149 #define FORCED_DEBUG 0 150 #endif 151 152 /* Shouldn't this be in a header file somewhere? */ 153 #define BYTES_PER_WORD sizeof(void *) 154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 155 156 #ifndef ARCH_KMALLOC_FLAGS 157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 158 #endif 159 160 /* 161 * true if a page was allocated from pfmemalloc reserves for network-based 162 * swap 163 */ 164 static bool pfmemalloc_active __read_mostly; 165 166 /* 167 * kmem_bufctl_t: 168 * 169 * Bufctl's are used for linking objs within a slab 170 * linked offsets. 171 * 172 * This implementation relies on "struct page" for locating the cache & 173 * slab an object belongs to. 174 * This allows the bufctl structure to be small (one int), but limits 175 * the number of objects a slab (not a cache) can contain when off-slab 176 * bufctls are used. The limit is the size of the largest general cache 177 * that does not use off-slab slabs. 178 * For 32bit archs with 4 kB pages, is this 56. 179 * This is not serious, as it is only for large objects, when it is unwise 180 * to have too many per slab. 181 * Note: This limit can be raised by introducing a general cache whose size 182 * is less than 512 (PAGE_SIZE<<3), but greater than 256. 183 */ 184 185 typedef unsigned int kmem_bufctl_t; 186 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) 187 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) 188 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) 189 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) 190 191 /* 192 * struct slab_rcu 193 * 194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to 195 * arrange for kmem_freepages to be called via RCU. This is useful if 196 * we need to approach a kernel structure obliquely, from its address 197 * obtained without the usual locking. We can lock the structure to 198 * stabilize it and check it's still at the given address, only if we 199 * can be sure that the memory has not been meanwhile reused for some 200 * other kind of object (which our subsystem's lock might corrupt). 201 * 202 * rcu_read_lock before reading the address, then rcu_read_unlock after 203 * taking the spinlock within the structure expected at that address. 204 */ 205 struct slab_rcu { 206 struct rcu_head head; 207 struct kmem_cache *cachep; 208 void *addr; 209 }; 210 211 /* 212 * struct slab 213 * 214 * Manages the objs in a slab. Placed either at the beginning of mem allocated 215 * for a slab, or allocated from an general cache. 216 * Slabs are chained into three list: fully used, partial, fully free slabs. 217 */ 218 struct slab { 219 union { 220 struct { 221 struct list_head list; 222 unsigned long colouroff; 223 void *s_mem; /* including colour offset */ 224 unsigned int inuse; /* num of objs active in slab */ 225 kmem_bufctl_t free; 226 unsigned short nodeid; 227 }; 228 struct slab_rcu __slab_cover_slab_rcu; 229 }; 230 }; 231 232 /* 233 * struct array_cache 234 * 235 * Purpose: 236 * - LIFO ordering, to hand out cache-warm objects from _alloc 237 * - reduce the number of linked list operations 238 * - reduce spinlock operations 239 * 240 * The limit is stored in the per-cpu structure to reduce the data cache 241 * footprint. 242 * 243 */ 244 struct array_cache { 245 unsigned int avail; 246 unsigned int limit; 247 unsigned int batchcount; 248 unsigned int touched; 249 spinlock_t lock; 250 void *entry[]; /* 251 * Must have this definition in here for the proper 252 * alignment of array_cache. Also simplifies accessing 253 * the entries. 254 * 255 * Entries should not be directly dereferenced as 256 * entries belonging to slabs marked pfmemalloc will 257 * have the lower bits set SLAB_OBJ_PFMEMALLOC 258 */ 259 }; 260 261 #define SLAB_OBJ_PFMEMALLOC 1 262 static inline bool is_obj_pfmemalloc(void *objp) 263 { 264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC; 265 } 266 267 static inline void set_obj_pfmemalloc(void **objp) 268 { 269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC); 270 return; 271 } 272 273 static inline void clear_obj_pfmemalloc(void **objp) 274 { 275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC); 276 } 277 278 /* 279 * bootstrap: The caches do not work without cpuarrays anymore, but the 280 * cpuarrays are allocated from the generic caches... 281 */ 282 #define BOOT_CPUCACHE_ENTRIES 1 283 struct arraycache_init { 284 struct array_cache cache; 285 void *entries[BOOT_CPUCACHE_ENTRIES]; 286 }; 287 288 /* 289 * The slab lists for all objects. 290 */ 291 struct kmem_list3 { 292 struct list_head slabs_partial; /* partial list first, better asm code */ 293 struct list_head slabs_full; 294 struct list_head slabs_free; 295 unsigned long free_objects; 296 unsigned int free_limit; 297 unsigned int colour_next; /* Per-node cache coloring */ 298 spinlock_t list_lock; 299 struct array_cache *shared; /* shared per node */ 300 struct array_cache **alien; /* on other nodes */ 301 unsigned long next_reap; /* updated without locking */ 302 int free_touched; /* updated without locking */ 303 }; 304 305 /* 306 * Need this for bootstrapping a per node allocator. 307 */ 308 #define NUM_INIT_LISTS (3 * MAX_NUMNODES) 309 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; 310 #define CACHE_CACHE 0 311 #define SIZE_AC MAX_NUMNODES 312 #define SIZE_L3 (2 * MAX_NUMNODES) 313 314 static int drain_freelist(struct kmem_cache *cache, 315 struct kmem_list3 *l3, int tofree); 316 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 317 int node); 318 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 319 static void cache_reap(struct work_struct *unused); 320 321 /* 322 * This function must be completely optimized away if a constant is passed to 323 * it. Mostly the same as what is in linux/slab.h except it returns an index. 324 */ 325 static __always_inline int index_of(const size_t size) 326 { 327 extern void __bad_size(void); 328 329 if (__builtin_constant_p(size)) { 330 int i = 0; 331 332 #define CACHE(x) \ 333 if (size <=x) \ 334 return i; \ 335 else \ 336 i++; 337 #include <linux/kmalloc_sizes.h> 338 #undef CACHE 339 __bad_size(); 340 } else 341 __bad_size(); 342 return 0; 343 } 344 345 static int slab_early_init = 1; 346 347 #define INDEX_AC index_of(sizeof(struct arraycache_init)) 348 #define INDEX_L3 index_of(sizeof(struct kmem_list3)) 349 350 static void kmem_list3_init(struct kmem_list3 *parent) 351 { 352 INIT_LIST_HEAD(&parent->slabs_full); 353 INIT_LIST_HEAD(&parent->slabs_partial); 354 INIT_LIST_HEAD(&parent->slabs_free); 355 parent->shared = NULL; 356 parent->alien = NULL; 357 parent->colour_next = 0; 358 spin_lock_init(&parent->list_lock); 359 parent->free_objects = 0; 360 parent->free_touched = 0; 361 } 362 363 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 364 do { \ 365 INIT_LIST_HEAD(listp); \ 366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ 367 } while (0) 368 369 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 370 do { \ 371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 374 } while (0) 375 376 #define CFLGS_OFF_SLAB (0x80000000UL) 377 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 378 379 #define BATCHREFILL_LIMIT 16 380 /* 381 * Optimization question: fewer reaps means less probability for unnessary 382 * cpucache drain/refill cycles. 383 * 384 * OTOH the cpuarrays can contain lots of objects, 385 * which could lock up otherwise freeable slabs. 386 */ 387 #define REAPTIMEOUT_CPUC (2*HZ) 388 #define REAPTIMEOUT_LIST3 (4*HZ) 389 390 #if STATS 391 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 392 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 393 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 394 #define STATS_INC_GROWN(x) ((x)->grown++) 395 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 396 #define STATS_SET_HIGH(x) \ 397 do { \ 398 if ((x)->num_active > (x)->high_mark) \ 399 (x)->high_mark = (x)->num_active; \ 400 } while (0) 401 #define STATS_INC_ERR(x) ((x)->errors++) 402 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 403 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 404 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 405 #define STATS_SET_FREEABLE(x, i) \ 406 do { \ 407 if ((x)->max_freeable < i) \ 408 (x)->max_freeable = i; \ 409 } while (0) 410 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 411 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 412 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 413 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 414 #else 415 #define STATS_INC_ACTIVE(x) do { } while (0) 416 #define STATS_DEC_ACTIVE(x) do { } while (0) 417 #define STATS_INC_ALLOCED(x) do { } while (0) 418 #define STATS_INC_GROWN(x) do { } while (0) 419 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 420 #define STATS_SET_HIGH(x) do { } while (0) 421 #define STATS_INC_ERR(x) do { } while (0) 422 #define STATS_INC_NODEALLOCS(x) do { } while (0) 423 #define STATS_INC_NODEFREES(x) do { } while (0) 424 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 425 #define STATS_SET_FREEABLE(x, i) do { } while (0) 426 #define STATS_INC_ALLOCHIT(x) do { } while (0) 427 #define STATS_INC_ALLOCMISS(x) do { } while (0) 428 #define STATS_INC_FREEHIT(x) do { } while (0) 429 #define STATS_INC_FREEMISS(x) do { } while (0) 430 #endif 431 432 #if DEBUG 433 434 /* 435 * memory layout of objects: 436 * 0 : objp 437 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 438 * the end of an object is aligned with the end of the real 439 * allocation. Catches writes behind the end of the allocation. 440 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 441 * redzone word. 442 * cachep->obj_offset: The real object. 443 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 444 * cachep->size - 1* BYTES_PER_WORD: last caller address 445 * [BYTES_PER_WORD long] 446 */ 447 static int obj_offset(struct kmem_cache *cachep) 448 { 449 return cachep->obj_offset; 450 } 451 452 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 453 { 454 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 455 return (unsigned long long*) (objp + obj_offset(cachep) - 456 sizeof(unsigned long long)); 457 } 458 459 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 460 { 461 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 462 if (cachep->flags & SLAB_STORE_USER) 463 return (unsigned long long *)(objp + cachep->size - 464 sizeof(unsigned long long) - 465 REDZONE_ALIGN); 466 return (unsigned long long *) (objp + cachep->size - 467 sizeof(unsigned long long)); 468 } 469 470 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 471 { 472 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 473 return (void **)(objp + cachep->size - BYTES_PER_WORD); 474 } 475 476 #else 477 478 #define obj_offset(x) 0 479 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 480 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 481 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 482 483 #endif 484 485 /* 486 * Do not go above this order unless 0 objects fit into the slab or 487 * overridden on the command line. 488 */ 489 #define SLAB_MAX_ORDER_HI 1 490 #define SLAB_MAX_ORDER_LO 0 491 static int slab_max_order = SLAB_MAX_ORDER_LO; 492 static bool slab_max_order_set __initdata; 493 494 static inline struct kmem_cache *virt_to_cache(const void *obj) 495 { 496 struct page *page = virt_to_head_page(obj); 497 return page->slab_cache; 498 } 499 500 static inline struct slab *virt_to_slab(const void *obj) 501 { 502 struct page *page = virt_to_head_page(obj); 503 504 VM_BUG_ON(!PageSlab(page)); 505 return page->slab_page; 506 } 507 508 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, 509 unsigned int idx) 510 { 511 return slab->s_mem + cache->size * idx; 512 } 513 514 /* 515 * We want to avoid an expensive divide : (offset / cache->size) 516 * Using the fact that size is a constant for a particular cache, 517 * we can replace (offset / cache->size) by 518 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 519 */ 520 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 521 const struct slab *slab, void *obj) 522 { 523 u32 offset = (obj - slab->s_mem); 524 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 525 } 526 527 /* 528 * These are the default caches for kmalloc. Custom caches can have other sizes. 529 */ 530 struct cache_sizes malloc_sizes[] = { 531 #define CACHE(x) { .cs_size = (x) }, 532 #include <linux/kmalloc_sizes.h> 533 CACHE(ULONG_MAX) 534 #undef CACHE 535 }; 536 EXPORT_SYMBOL(malloc_sizes); 537 538 /* Must match cache_sizes above. Out of line to keep cache footprint low. */ 539 struct cache_names { 540 char *name; 541 char *name_dma; 542 }; 543 544 static struct cache_names __initdata cache_names[] = { 545 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, 546 #include <linux/kmalloc_sizes.h> 547 {NULL,} 548 #undef CACHE 549 }; 550 551 static struct arraycache_init initarray_generic = 552 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 553 554 /* internal cache of cache description objs */ 555 static struct kmem_cache kmem_cache_boot = { 556 .batchcount = 1, 557 .limit = BOOT_CPUCACHE_ENTRIES, 558 .shared = 1, 559 .size = sizeof(struct kmem_cache), 560 .name = "kmem_cache", 561 }; 562 563 #define BAD_ALIEN_MAGIC 0x01020304ul 564 565 #ifdef CONFIG_LOCKDEP 566 567 /* 568 * Slab sometimes uses the kmalloc slabs to store the slab headers 569 * for other slabs "off slab". 570 * The locking for this is tricky in that it nests within the locks 571 * of all other slabs in a few places; to deal with this special 572 * locking we put on-slab caches into a separate lock-class. 573 * 574 * We set lock class for alien array caches which are up during init. 575 * The lock annotation will be lost if all cpus of a node goes down and 576 * then comes back up during hotplug 577 */ 578 static struct lock_class_key on_slab_l3_key; 579 static struct lock_class_key on_slab_alc_key; 580 581 static struct lock_class_key debugobj_l3_key; 582 static struct lock_class_key debugobj_alc_key; 583 584 static void slab_set_lock_classes(struct kmem_cache *cachep, 585 struct lock_class_key *l3_key, struct lock_class_key *alc_key, 586 int q) 587 { 588 struct array_cache **alc; 589 struct kmem_list3 *l3; 590 int r; 591 592 l3 = cachep->nodelists[q]; 593 if (!l3) 594 return; 595 596 lockdep_set_class(&l3->list_lock, l3_key); 597 alc = l3->alien; 598 /* 599 * FIXME: This check for BAD_ALIEN_MAGIC 600 * should go away when common slab code is taught to 601 * work even without alien caches. 602 * Currently, non NUMA code returns BAD_ALIEN_MAGIC 603 * for alloc_alien_cache, 604 */ 605 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) 606 return; 607 for_each_node(r) { 608 if (alc[r]) 609 lockdep_set_class(&alc[r]->lock, alc_key); 610 } 611 } 612 613 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) 614 { 615 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node); 616 } 617 618 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) 619 { 620 int node; 621 622 for_each_online_node(node) 623 slab_set_debugobj_lock_classes_node(cachep, node); 624 } 625 626 static void init_node_lock_keys(int q) 627 { 628 struct cache_sizes *s = malloc_sizes; 629 630 if (slab_state < UP) 631 return; 632 633 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) { 634 struct kmem_list3 *l3; 635 636 l3 = s->cs_cachep->nodelists[q]; 637 if (!l3 || OFF_SLAB(s->cs_cachep)) 638 continue; 639 640 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key, 641 &on_slab_alc_key, q); 642 } 643 } 644 645 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q) 646 { 647 struct kmem_list3 *l3; 648 l3 = cachep->nodelists[q]; 649 if (!l3) 650 return; 651 652 slab_set_lock_classes(cachep, &on_slab_l3_key, 653 &on_slab_alc_key, q); 654 } 655 656 static inline void on_slab_lock_classes(struct kmem_cache *cachep) 657 { 658 int node; 659 660 VM_BUG_ON(OFF_SLAB(cachep)); 661 for_each_node(node) 662 on_slab_lock_classes_node(cachep, node); 663 } 664 665 static inline void init_lock_keys(void) 666 { 667 int node; 668 669 for_each_node(node) 670 init_node_lock_keys(node); 671 } 672 #else 673 static void init_node_lock_keys(int q) 674 { 675 } 676 677 static inline void init_lock_keys(void) 678 { 679 } 680 681 static inline void on_slab_lock_classes(struct kmem_cache *cachep) 682 { 683 } 684 685 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node) 686 { 687 } 688 689 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) 690 { 691 } 692 693 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) 694 { 695 } 696 #endif 697 698 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 699 700 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 701 { 702 return cachep->array[smp_processor_id()]; 703 } 704 705 static inline struct kmem_cache *__find_general_cachep(size_t size, 706 gfp_t gfpflags) 707 { 708 struct cache_sizes *csizep = malloc_sizes; 709 710 #if DEBUG 711 /* This happens if someone tries to call 712 * kmem_cache_create(), or __kmalloc(), before 713 * the generic caches are initialized. 714 */ 715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); 716 #endif 717 if (!size) 718 return ZERO_SIZE_PTR; 719 720 while (size > csizep->cs_size) 721 csizep++; 722 723 /* 724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX 725 * has cs_{dma,}cachep==NULL. Thus no special case 726 * for large kmalloc calls required. 727 */ 728 #ifdef CONFIG_ZONE_DMA 729 if (unlikely(gfpflags & GFP_DMA)) 730 return csizep->cs_dmacachep; 731 #endif 732 return csizep->cs_cachep; 733 } 734 735 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) 736 { 737 return __find_general_cachep(size, gfpflags); 738 } 739 740 static size_t slab_mgmt_size(size_t nr_objs, size_t align) 741 { 742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); 743 } 744 745 /* 746 * Calculate the number of objects and left-over bytes for a given buffer size. 747 */ 748 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 749 size_t align, int flags, size_t *left_over, 750 unsigned int *num) 751 { 752 int nr_objs; 753 size_t mgmt_size; 754 size_t slab_size = PAGE_SIZE << gfporder; 755 756 /* 757 * The slab management structure can be either off the slab or 758 * on it. For the latter case, the memory allocated for a 759 * slab is used for: 760 * 761 * - The struct slab 762 * - One kmem_bufctl_t for each object 763 * - Padding to respect alignment of @align 764 * - @buffer_size bytes for each object 765 * 766 * If the slab management structure is off the slab, then the 767 * alignment will already be calculated into the size. Because 768 * the slabs are all pages aligned, the objects will be at the 769 * correct alignment when allocated. 770 */ 771 if (flags & CFLGS_OFF_SLAB) { 772 mgmt_size = 0; 773 nr_objs = slab_size / buffer_size; 774 775 if (nr_objs > SLAB_LIMIT) 776 nr_objs = SLAB_LIMIT; 777 } else { 778 /* 779 * Ignore padding for the initial guess. The padding 780 * is at most @align-1 bytes, and @buffer_size is at 781 * least @align. In the worst case, this result will 782 * be one greater than the number of objects that fit 783 * into the memory allocation when taking the padding 784 * into account. 785 */ 786 nr_objs = (slab_size - sizeof(struct slab)) / 787 (buffer_size + sizeof(kmem_bufctl_t)); 788 789 /* 790 * This calculated number will be either the right 791 * amount, or one greater than what we want. 792 */ 793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size 794 > slab_size) 795 nr_objs--; 796 797 if (nr_objs > SLAB_LIMIT) 798 nr_objs = SLAB_LIMIT; 799 800 mgmt_size = slab_mgmt_size(nr_objs, align); 801 } 802 *num = nr_objs; 803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 804 } 805 806 #if DEBUG 807 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 808 809 static void __slab_error(const char *function, struct kmem_cache *cachep, 810 char *msg) 811 { 812 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 813 function, cachep->name, msg); 814 dump_stack(); 815 add_taint(TAINT_BAD_PAGE); 816 } 817 #endif 818 819 /* 820 * By default on NUMA we use alien caches to stage the freeing of 821 * objects allocated from other nodes. This causes massive memory 822 * inefficiencies when using fake NUMA setup to split memory into a 823 * large number of small nodes, so it can be disabled on the command 824 * line 825 */ 826 827 static int use_alien_caches __read_mostly = 1; 828 static int __init noaliencache_setup(char *s) 829 { 830 use_alien_caches = 0; 831 return 1; 832 } 833 __setup("noaliencache", noaliencache_setup); 834 835 static int __init slab_max_order_setup(char *str) 836 { 837 get_option(&str, &slab_max_order); 838 slab_max_order = slab_max_order < 0 ? 0 : 839 min(slab_max_order, MAX_ORDER - 1); 840 slab_max_order_set = true; 841 842 return 1; 843 } 844 __setup("slab_max_order=", slab_max_order_setup); 845 846 #ifdef CONFIG_NUMA 847 /* 848 * Special reaping functions for NUMA systems called from cache_reap(). 849 * These take care of doing round robin flushing of alien caches (containing 850 * objects freed on different nodes from which they were allocated) and the 851 * flushing of remote pcps by calling drain_node_pages. 852 */ 853 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 854 855 static void init_reap_node(int cpu) 856 { 857 int node; 858 859 node = next_node(cpu_to_mem(cpu), node_online_map); 860 if (node == MAX_NUMNODES) 861 node = first_node(node_online_map); 862 863 per_cpu(slab_reap_node, cpu) = node; 864 } 865 866 static void next_reap_node(void) 867 { 868 int node = __this_cpu_read(slab_reap_node); 869 870 node = next_node(node, node_online_map); 871 if (unlikely(node >= MAX_NUMNODES)) 872 node = first_node(node_online_map); 873 __this_cpu_write(slab_reap_node, node); 874 } 875 876 #else 877 #define init_reap_node(cpu) do { } while (0) 878 #define next_reap_node(void) do { } while (0) 879 #endif 880 881 /* 882 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 883 * via the workqueue/eventd. 884 * Add the CPU number into the expiration time to minimize the possibility of 885 * the CPUs getting into lockstep and contending for the global cache chain 886 * lock. 887 */ 888 static void __cpuinit start_cpu_timer(int cpu) 889 { 890 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 891 892 /* 893 * When this gets called from do_initcalls via cpucache_init(), 894 * init_workqueues() has already run, so keventd will be setup 895 * at that time. 896 */ 897 if (keventd_up() && reap_work->work.func == NULL) { 898 init_reap_node(cpu); 899 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 900 schedule_delayed_work_on(cpu, reap_work, 901 __round_jiffies_relative(HZ, cpu)); 902 } 903 } 904 905 static struct array_cache *alloc_arraycache(int node, int entries, 906 int batchcount, gfp_t gfp) 907 { 908 int memsize = sizeof(void *) * entries + sizeof(struct array_cache); 909 struct array_cache *nc = NULL; 910 911 nc = kmalloc_node(memsize, gfp, node); 912 /* 913 * The array_cache structures contain pointers to free object. 914 * However, when such objects are allocated or transferred to another 915 * cache the pointers are not cleared and they could be counted as 916 * valid references during a kmemleak scan. Therefore, kmemleak must 917 * not scan such objects. 918 */ 919 kmemleak_no_scan(nc); 920 if (nc) { 921 nc->avail = 0; 922 nc->limit = entries; 923 nc->batchcount = batchcount; 924 nc->touched = 0; 925 spin_lock_init(&nc->lock); 926 } 927 return nc; 928 } 929 930 static inline bool is_slab_pfmemalloc(struct slab *slabp) 931 { 932 struct page *page = virt_to_page(slabp->s_mem); 933 934 return PageSlabPfmemalloc(page); 935 } 936 937 /* Clears pfmemalloc_active if no slabs have pfmalloc set */ 938 static void recheck_pfmemalloc_active(struct kmem_cache *cachep, 939 struct array_cache *ac) 940 { 941 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()]; 942 struct slab *slabp; 943 unsigned long flags; 944 945 if (!pfmemalloc_active) 946 return; 947 948 spin_lock_irqsave(&l3->list_lock, flags); 949 list_for_each_entry(slabp, &l3->slabs_full, list) 950 if (is_slab_pfmemalloc(slabp)) 951 goto out; 952 953 list_for_each_entry(slabp, &l3->slabs_partial, list) 954 if (is_slab_pfmemalloc(slabp)) 955 goto out; 956 957 list_for_each_entry(slabp, &l3->slabs_free, list) 958 if (is_slab_pfmemalloc(slabp)) 959 goto out; 960 961 pfmemalloc_active = false; 962 out: 963 spin_unlock_irqrestore(&l3->list_lock, flags); 964 } 965 966 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, 967 gfp_t flags, bool force_refill) 968 { 969 int i; 970 void *objp = ac->entry[--ac->avail]; 971 972 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ 973 if (unlikely(is_obj_pfmemalloc(objp))) { 974 struct kmem_list3 *l3; 975 976 if (gfp_pfmemalloc_allowed(flags)) { 977 clear_obj_pfmemalloc(&objp); 978 return objp; 979 } 980 981 /* The caller cannot use PFMEMALLOC objects, find another one */ 982 for (i = 0; i < ac->avail; i++) { 983 /* If a !PFMEMALLOC object is found, swap them */ 984 if (!is_obj_pfmemalloc(ac->entry[i])) { 985 objp = ac->entry[i]; 986 ac->entry[i] = ac->entry[ac->avail]; 987 ac->entry[ac->avail] = objp; 988 return objp; 989 } 990 } 991 992 /* 993 * If there are empty slabs on the slabs_free list and we are 994 * being forced to refill the cache, mark this one !pfmemalloc. 995 */ 996 l3 = cachep->nodelists[numa_mem_id()]; 997 if (!list_empty(&l3->slabs_free) && force_refill) { 998 struct slab *slabp = virt_to_slab(objp); 999 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem)); 1000 clear_obj_pfmemalloc(&objp); 1001 recheck_pfmemalloc_active(cachep, ac); 1002 return objp; 1003 } 1004 1005 /* No !PFMEMALLOC objects available */ 1006 ac->avail++; 1007 objp = NULL; 1008 } 1009 1010 return objp; 1011 } 1012 1013 static inline void *ac_get_obj(struct kmem_cache *cachep, 1014 struct array_cache *ac, gfp_t flags, bool force_refill) 1015 { 1016 void *objp; 1017 1018 if (unlikely(sk_memalloc_socks())) 1019 objp = __ac_get_obj(cachep, ac, flags, force_refill); 1020 else 1021 objp = ac->entry[--ac->avail]; 1022 1023 return objp; 1024 } 1025 1026 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, 1027 void *objp) 1028 { 1029 if (unlikely(pfmemalloc_active)) { 1030 /* Some pfmemalloc slabs exist, check if this is one */ 1031 struct page *page = virt_to_head_page(objp); 1032 if (PageSlabPfmemalloc(page)) 1033 set_obj_pfmemalloc(&objp); 1034 } 1035 1036 return objp; 1037 } 1038 1039 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, 1040 void *objp) 1041 { 1042 if (unlikely(sk_memalloc_socks())) 1043 objp = __ac_put_obj(cachep, ac, objp); 1044 1045 ac->entry[ac->avail++] = objp; 1046 } 1047 1048 /* 1049 * Transfer objects in one arraycache to another. 1050 * Locking must be handled by the caller. 1051 * 1052 * Return the number of entries transferred. 1053 */ 1054 static int transfer_objects(struct array_cache *to, 1055 struct array_cache *from, unsigned int max) 1056 { 1057 /* Figure out how many entries to transfer */ 1058 int nr = min3(from->avail, max, to->limit - to->avail); 1059 1060 if (!nr) 1061 return 0; 1062 1063 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 1064 sizeof(void *) *nr); 1065 1066 from->avail -= nr; 1067 to->avail += nr; 1068 return nr; 1069 } 1070 1071 #ifndef CONFIG_NUMA 1072 1073 #define drain_alien_cache(cachep, alien) do { } while (0) 1074 #define reap_alien(cachep, l3) do { } while (0) 1075 1076 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 1077 { 1078 return (struct array_cache **)BAD_ALIEN_MAGIC; 1079 } 1080 1081 static inline void free_alien_cache(struct array_cache **ac_ptr) 1082 { 1083 } 1084 1085 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1086 { 1087 return 0; 1088 } 1089 1090 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 1091 gfp_t flags) 1092 { 1093 return NULL; 1094 } 1095 1096 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 1097 gfp_t flags, int nodeid) 1098 { 1099 return NULL; 1100 } 1101 1102 #else /* CONFIG_NUMA */ 1103 1104 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 1105 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 1106 1107 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 1108 { 1109 struct array_cache **ac_ptr; 1110 int memsize = sizeof(void *) * nr_node_ids; 1111 int i; 1112 1113 if (limit > 1) 1114 limit = 12; 1115 ac_ptr = kzalloc_node(memsize, gfp, node); 1116 if (ac_ptr) { 1117 for_each_node(i) { 1118 if (i == node || !node_online(i)) 1119 continue; 1120 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); 1121 if (!ac_ptr[i]) { 1122 for (i--; i >= 0; i--) 1123 kfree(ac_ptr[i]); 1124 kfree(ac_ptr); 1125 return NULL; 1126 } 1127 } 1128 } 1129 return ac_ptr; 1130 } 1131 1132 static void free_alien_cache(struct array_cache **ac_ptr) 1133 { 1134 int i; 1135 1136 if (!ac_ptr) 1137 return; 1138 for_each_node(i) 1139 kfree(ac_ptr[i]); 1140 kfree(ac_ptr); 1141 } 1142 1143 static void __drain_alien_cache(struct kmem_cache *cachep, 1144 struct array_cache *ac, int node) 1145 { 1146 struct kmem_list3 *rl3 = cachep->nodelists[node]; 1147 1148 if (ac->avail) { 1149 spin_lock(&rl3->list_lock); 1150 /* 1151 * Stuff objects into the remote nodes shared array first. 1152 * That way we could avoid the overhead of putting the objects 1153 * into the free lists and getting them back later. 1154 */ 1155 if (rl3->shared) 1156 transfer_objects(rl3->shared, ac, ac->limit); 1157 1158 free_block(cachep, ac->entry, ac->avail, node); 1159 ac->avail = 0; 1160 spin_unlock(&rl3->list_lock); 1161 } 1162 } 1163 1164 /* 1165 * Called from cache_reap() to regularly drain alien caches round robin. 1166 */ 1167 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) 1168 { 1169 int node = __this_cpu_read(slab_reap_node); 1170 1171 if (l3->alien) { 1172 struct array_cache *ac = l3->alien[node]; 1173 1174 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { 1175 __drain_alien_cache(cachep, ac, node); 1176 spin_unlock_irq(&ac->lock); 1177 } 1178 } 1179 } 1180 1181 static void drain_alien_cache(struct kmem_cache *cachep, 1182 struct array_cache **alien) 1183 { 1184 int i = 0; 1185 struct array_cache *ac; 1186 unsigned long flags; 1187 1188 for_each_online_node(i) { 1189 ac = alien[i]; 1190 if (ac) { 1191 spin_lock_irqsave(&ac->lock, flags); 1192 __drain_alien_cache(cachep, ac, i); 1193 spin_unlock_irqrestore(&ac->lock, flags); 1194 } 1195 } 1196 } 1197 1198 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1199 { 1200 struct slab *slabp = virt_to_slab(objp); 1201 int nodeid = slabp->nodeid; 1202 struct kmem_list3 *l3; 1203 struct array_cache *alien = NULL; 1204 int node; 1205 1206 node = numa_mem_id(); 1207 1208 /* 1209 * Make sure we are not freeing a object from another node to the array 1210 * cache on this cpu. 1211 */ 1212 if (likely(slabp->nodeid == node)) 1213 return 0; 1214 1215 l3 = cachep->nodelists[node]; 1216 STATS_INC_NODEFREES(cachep); 1217 if (l3->alien && l3->alien[nodeid]) { 1218 alien = l3->alien[nodeid]; 1219 spin_lock(&alien->lock); 1220 if (unlikely(alien->avail == alien->limit)) { 1221 STATS_INC_ACOVERFLOW(cachep); 1222 __drain_alien_cache(cachep, alien, nodeid); 1223 } 1224 ac_put_obj(cachep, alien, objp); 1225 spin_unlock(&alien->lock); 1226 } else { 1227 spin_lock(&(cachep->nodelists[nodeid])->list_lock); 1228 free_block(cachep, &objp, 1, nodeid); 1229 spin_unlock(&(cachep->nodelists[nodeid])->list_lock); 1230 } 1231 return 1; 1232 } 1233 #endif 1234 1235 /* 1236 * Allocates and initializes nodelists for a node on each slab cache, used for 1237 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 1238 * will be allocated off-node since memory is not yet online for the new node. 1239 * When hotplugging memory or a cpu, existing nodelists are not replaced if 1240 * already in use. 1241 * 1242 * Must hold slab_mutex. 1243 */ 1244 static int init_cache_nodelists_node(int node) 1245 { 1246 struct kmem_cache *cachep; 1247 struct kmem_list3 *l3; 1248 const int memsize = sizeof(struct kmem_list3); 1249 1250 list_for_each_entry(cachep, &slab_caches, list) { 1251 /* 1252 * Set up the size64 kmemlist for cpu before we can 1253 * begin anything. Make sure some other cpu on this 1254 * node has not already allocated this 1255 */ 1256 if (!cachep->nodelists[node]) { 1257 l3 = kmalloc_node(memsize, GFP_KERNEL, node); 1258 if (!l3) 1259 return -ENOMEM; 1260 kmem_list3_init(l3); 1261 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 1262 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1263 1264 /* 1265 * The l3s don't come and go as CPUs come and 1266 * go. slab_mutex is sufficient 1267 * protection here. 1268 */ 1269 cachep->nodelists[node] = l3; 1270 } 1271 1272 spin_lock_irq(&cachep->nodelists[node]->list_lock); 1273 cachep->nodelists[node]->free_limit = 1274 (1 + nr_cpus_node(node)) * 1275 cachep->batchcount + cachep->num; 1276 spin_unlock_irq(&cachep->nodelists[node]->list_lock); 1277 } 1278 return 0; 1279 } 1280 1281 static void __cpuinit cpuup_canceled(long cpu) 1282 { 1283 struct kmem_cache *cachep; 1284 struct kmem_list3 *l3 = NULL; 1285 int node = cpu_to_mem(cpu); 1286 const struct cpumask *mask = cpumask_of_node(node); 1287 1288 list_for_each_entry(cachep, &slab_caches, list) { 1289 struct array_cache *nc; 1290 struct array_cache *shared; 1291 struct array_cache **alien; 1292 1293 /* cpu is dead; no one can alloc from it. */ 1294 nc = cachep->array[cpu]; 1295 cachep->array[cpu] = NULL; 1296 l3 = cachep->nodelists[node]; 1297 1298 if (!l3) 1299 goto free_array_cache; 1300 1301 spin_lock_irq(&l3->list_lock); 1302 1303 /* Free limit for this kmem_list3 */ 1304 l3->free_limit -= cachep->batchcount; 1305 if (nc) 1306 free_block(cachep, nc->entry, nc->avail, node); 1307 1308 if (!cpumask_empty(mask)) { 1309 spin_unlock_irq(&l3->list_lock); 1310 goto free_array_cache; 1311 } 1312 1313 shared = l3->shared; 1314 if (shared) { 1315 free_block(cachep, shared->entry, 1316 shared->avail, node); 1317 l3->shared = NULL; 1318 } 1319 1320 alien = l3->alien; 1321 l3->alien = NULL; 1322 1323 spin_unlock_irq(&l3->list_lock); 1324 1325 kfree(shared); 1326 if (alien) { 1327 drain_alien_cache(cachep, alien); 1328 free_alien_cache(alien); 1329 } 1330 free_array_cache: 1331 kfree(nc); 1332 } 1333 /* 1334 * In the previous loop, all the objects were freed to 1335 * the respective cache's slabs, now we can go ahead and 1336 * shrink each nodelist to its limit. 1337 */ 1338 list_for_each_entry(cachep, &slab_caches, list) { 1339 l3 = cachep->nodelists[node]; 1340 if (!l3) 1341 continue; 1342 drain_freelist(cachep, l3, l3->free_objects); 1343 } 1344 } 1345 1346 static int __cpuinit cpuup_prepare(long cpu) 1347 { 1348 struct kmem_cache *cachep; 1349 struct kmem_list3 *l3 = NULL; 1350 int node = cpu_to_mem(cpu); 1351 int err; 1352 1353 /* 1354 * We need to do this right in the beginning since 1355 * alloc_arraycache's are going to use this list. 1356 * kmalloc_node allows us to add the slab to the right 1357 * kmem_list3 and not this cpu's kmem_list3 1358 */ 1359 err = init_cache_nodelists_node(node); 1360 if (err < 0) 1361 goto bad; 1362 1363 /* 1364 * Now we can go ahead with allocating the shared arrays and 1365 * array caches 1366 */ 1367 list_for_each_entry(cachep, &slab_caches, list) { 1368 struct array_cache *nc; 1369 struct array_cache *shared = NULL; 1370 struct array_cache **alien = NULL; 1371 1372 nc = alloc_arraycache(node, cachep->limit, 1373 cachep->batchcount, GFP_KERNEL); 1374 if (!nc) 1375 goto bad; 1376 if (cachep->shared) { 1377 shared = alloc_arraycache(node, 1378 cachep->shared * cachep->batchcount, 1379 0xbaadf00d, GFP_KERNEL); 1380 if (!shared) { 1381 kfree(nc); 1382 goto bad; 1383 } 1384 } 1385 if (use_alien_caches) { 1386 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); 1387 if (!alien) { 1388 kfree(shared); 1389 kfree(nc); 1390 goto bad; 1391 } 1392 } 1393 cachep->array[cpu] = nc; 1394 l3 = cachep->nodelists[node]; 1395 BUG_ON(!l3); 1396 1397 spin_lock_irq(&l3->list_lock); 1398 if (!l3->shared) { 1399 /* 1400 * We are serialised from CPU_DEAD or 1401 * CPU_UP_CANCELLED by the cpucontrol lock 1402 */ 1403 l3->shared = shared; 1404 shared = NULL; 1405 } 1406 #ifdef CONFIG_NUMA 1407 if (!l3->alien) { 1408 l3->alien = alien; 1409 alien = NULL; 1410 } 1411 #endif 1412 spin_unlock_irq(&l3->list_lock); 1413 kfree(shared); 1414 free_alien_cache(alien); 1415 if (cachep->flags & SLAB_DEBUG_OBJECTS) 1416 slab_set_debugobj_lock_classes_node(cachep, node); 1417 else if (!OFF_SLAB(cachep) && 1418 !(cachep->flags & SLAB_DESTROY_BY_RCU)) 1419 on_slab_lock_classes_node(cachep, node); 1420 } 1421 init_node_lock_keys(node); 1422 1423 return 0; 1424 bad: 1425 cpuup_canceled(cpu); 1426 return -ENOMEM; 1427 } 1428 1429 static int __cpuinit cpuup_callback(struct notifier_block *nfb, 1430 unsigned long action, void *hcpu) 1431 { 1432 long cpu = (long)hcpu; 1433 int err = 0; 1434 1435 switch (action) { 1436 case CPU_UP_PREPARE: 1437 case CPU_UP_PREPARE_FROZEN: 1438 mutex_lock(&slab_mutex); 1439 err = cpuup_prepare(cpu); 1440 mutex_unlock(&slab_mutex); 1441 break; 1442 case CPU_ONLINE: 1443 case CPU_ONLINE_FROZEN: 1444 start_cpu_timer(cpu); 1445 break; 1446 #ifdef CONFIG_HOTPLUG_CPU 1447 case CPU_DOWN_PREPARE: 1448 case CPU_DOWN_PREPARE_FROZEN: 1449 /* 1450 * Shutdown cache reaper. Note that the slab_mutex is 1451 * held so that if cache_reap() is invoked it cannot do 1452 * anything expensive but will only modify reap_work 1453 * and reschedule the timer. 1454 */ 1455 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1456 /* Now the cache_reaper is guaranteed to be not running. */ 1457 per_cpu(slab_reap_work, cpu).work.func = NULL; 1458 break; 1459 case CPU_DOWN_FAILED: 1460 case CPU_DOWN_FAILED_FROZEN: 1461 start_cpu_timer(cpu); 1462 break; 1463 case CPU_DEAD: 1464 case CPU_DEAD_FROZEN: 1465 /* 1466 * Even if all the cpus of a node are down, we don't free the 1467 * kmem_list3 of any cache. This to avoid a race between 1468 * cpu_down, and a kmalloc allocation from another cpu for 1469 * memory from the node of the cpu going down. The list3 1470 * structure is usually allocated from kmem_cache_create() and 1471 * gets destroyed at kmem_cache_destroy(). 1472 */ 1473 /* fall through */ 1474 #endif 1475 case CPU_UP_CANCELED: 1476 case CPU_UP_CANCELED_FROZEN: 1477 mutex_lock(&slab_mutex); 1478 cpuup_canceled(cpu); 1479 mutex_unlock(&slab_mutex); 1480 break; 1481 } 1482 return notifier_from_errno(err); 1483 } 1484 1485 static struct notifier_block __cpuinitdata cpucache_notifier = { 1486 &cpuup_callback, NULL, 0 1487 }; 1488 1489 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1490 /* 1491 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1492 * Returns -EBUSY if all objects cannot be drained so that the node is not 1493 * removed. 1494 * 1495 * Must hold slab_mutex. 1496 */ 1497 static int __meminit drain_cache_nodelists_node(int node) 1498 { 1499 struct kmem_cache *cachep; 1500 int ret = 0; 1501 1502 list_for_each_entry(cachep, &slab_caches, list) { 1503 struct kmem_list3 *l3; 1504 1505 l3 = cachep->nodelists[node]; 1506 if (!l3) 1507 continue; 1508 1509 drain_freelist(cachep, l3, l3->free_objects); 1510 1511 if (!list_empty(&l3->slabs_full) || 1512 !list_empty(&l3->slabs_partial)) { 1513 ret = -EBUSY; 1514 break; 1515 } 1516 } 1517 return ret; 1518 } 1519 1520 static int __meminit slab_memory_callback(struct notifier_block *self, 1521 unsigned long action, void *arg) 1522 { 1523 struct memory_notify *mnb = arg; 1524 int ret = 0; 1525 int nid; 1526 1527 nid = mnb->status_change_nid; 1528 if (nid < 0) 1529 goto out; 1530 1531 switch (action) { 1532 case MEM_GOING_ONLINE: 1533 mutex_lock(&slab_mutex); 1534 ret = init_cache_nodelists_node(nid); 1535 mutex_unlock(&slab_mutex); 1536 break; 1537 case MEM_GOING_OFFLINE: 1538 mutex_lock(&slab_mutex); 1539 ret = drain_cache_nodelists_node(nid); 1540 mutex_unlock(&slab_mutex); 1541 break; 1542 case MEM_ONLINE: 1543 case MEM_OFFLINE: 1544 case MEM_CANCEL_ONLINE: 1545 case MEM_CANCEL_OFFLINE: 1546 break; 1547 } 1548 out: 1549 return notifier_from_errno(ret); 1550 } 1551 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1552 1553 /* 1554 * swap the static kmem_list3 with kmalloced memory 1555 */ 1556 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, 1557 int nodeid) 1558 { 1559 struct kmem_list3 *ptr; 1560 1561 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); 1562 BUG_ON(!ptr); 1563 1564 memcpy(ptr, list, sizeof(struct kmem_list3)); 1565 /* 1566 * Do not assume that spinlocks can be initialized via memcpy: 1567 */ 1568 spin_lock_init(&ptr->list_lock); 1569 1570 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1571 cachep->nodelists[nodeid] = ptr; 1572 } 1573 1574 /* 1575 * For setting up all the kmem_list3s for cache whose buffer_size is same as 1576 * size of kmem_list3. 1577 */ 1578 static void __init set_up_list3s(struct kmem_cache *cachep, int index) 1579 { 1580 int node; 1581 1582 for_each_online_node(node) { 1583 cachep->nodelists[node] = &initkmem_list3[index + node]; 1584 cachep->nodelists[node]->next_reap = jiffies + 1585 REAPTIMEOUT_LIST3 + 1586 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1587 } 1588 } 1589 1590 /* 1591 * The memory after the last cpu cache pointer is used for the 1592 * the nodelists pointer. 1593 */ 1594 static void setup_nodelists_pointer(struct kmem_cache *cachep) 1595 { 1596 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids]; 1597 } 1598 1599 /* 1600 * Initialisation. Called after the page allocator have been initialised and 1601 * before smp_init(). 1602 */ 1603 void __init kmem_cache_init(void) 1604 { 1605 struct cache_sizes *sizes; 1606 struct cache_names *names; 1607 int i; 1608 1609 kmem_cache = &kmem_cache_boot; 1610 setup_nodelists_pointer(kmem_cache); 1611 1612 if (num_possible_nodes() == 1) 1613 use_alien_caches = 0; 1614 1615 for (i = 0; i < NUM_INIT_LISTS; i++) 1616 kmem_list3_init(&initkmem_list3[i]); 1617 1618 set_up_list3s(kmem_cache, CACHE_CACHE); 1619 1620 /* 1621 * Fragmentation resistance on low memory - only use bigger 1622 * page orders on machines with more than 32MB of memory if 1623 * not overridden on the command line. 1624 */ 1625 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1626 slab_max_order = SLAB_MAX_ORDER_HI; 1627 1628 /* Bootstrap is tricky, because several objects are allocated 1629 * from caches that do not exist yet: 1630 * 1) initialize the kmem_cache cache: it contains the struct 1631 * kmem_cache structures of all caches, except kmem_cache itself: 1632 * kmem_cache is statically allocated. 1633 * Initially an __init data area is used for the head array and the 1634 * kmem_list3 structures, it's replaced with a kmalloc allocated 1635 * array at the end of the bootstrap. 1636 * 2) Create the first kmalloc cache. 1637 * The struct kmem_cache for the new cache is allocated normally. 1638 * An __init data area is used for the head array. 1639 * 3) Create the remaining kmalloc caches, with minimally sized 1640 * head arrays. 1641 * 4) Replace the __init data head arrays for kmem_cache and the first 1642 * kmalloc cache with kmalloc allocated arrays. 1643 * 5) Replace the __init data for kmem_list3 for kmem_cache and 1644 * the other cache's with kmalloc allocated memory. 1645 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1646 */ 1647 1648 /* 1) create the kmem_cache */ 1649 1650 /* 1651 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1652 */ 1653 create_boot_cache(kmem_cache, "kmem_cache", 1654 offsetof(struct kmem_cache, array[nr_cpu_ids]) + 1655 nr_node_ids * sizeof(struct kmem_list3 *), 1656 SLAB_HWCACHE_ALIGN); 1657 list_add(&kmem_cache->list, &slab_caches); 1658 1659 /* 2+3) create the kmalloc caches */ 1660 sizes = malloc_sizes; 1661 names = cache_names; 1662 1663 /* 1664 * Initialize the caches that provide memory for the array cache and the 1665 * kmem_list3 structures first. Without this, further allocations will 1666 * bug. 1667 */ 1668 1669 sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name, 1670 sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS); 1671 1672 if (INDEX_AC != INDEX_L3) 1673 sizes[INDEX_L3].cs_cachep = 1674 create_kmalloc_cache(names[INDEX_L3].name, 1675 sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS); 1676 1677 slab_early_init = 0; 1678 1679 while (sizes->cs_size != ULONG_MAX) { 1680 /* 1681 * For performance, all the general caches are L1 aligned. 1682 * This should be particularly beneficial on SMP boxes, as it 1683 * eliminates "false sharing". 1684 * Note for systems short on memory removing the alignment will 1685 * allow tighter packing of the smaller caches. 1686 */ 1687 if (!sizes->cs_cachep) 1688 sizes->cs_cachep = create_kmalloc_cache(names->name, 1689 sizes->cs_size, ARCH_KMALLOC_FLAGS); 1690 1691 #ifdef CONFIG_ZONE_DMA 1692 sizes->cs_dmacachep = create_kmalloc_cache( 1693 names->name_dma, sizes->cs_size, 1694 SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS); 1695 #endif 1696 sizes++; 1697 names++; 1698 } 1699 /* 4) Replace the bootstrap head arrays */ 1700 { 1701 struct array_cache *ptr; 1702 1703 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1704 1705 memcpy(ptr, cpu_cache_get(kmem_cache), 1706 sizeof(struct arraycache_init)); 1707 /* 1708 * Do not assume that spinlocks can be initialized via memcpy: 1709 */ 1710 spin_lock_init(&ptr->lock); 1711 1712 kmem_cache->array[smp_processor_id()] = ptr; 1713 1714 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1715 1716 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) 1717 != &initarray_generic.cache); 1718 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), 1719 sizeof(struct arraycache_init)); 1720 /* 1721 * Do not assume that spinlocks can be initialized via memcpy: 1722 */ 1723 spin_lock_init(&ptr->lock); 1724 1725 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = 1726 ptr; 1727 } 1728 /* 5) Replace the bootstrap kmem_list3's */ 1729 { 1730 int nid; 1731 1732 for_each_online_node(nid) { 1733 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid); 1734 1735 init_list(malloc_sizes[INDEX_AC].cs_cachep, 1736 &initkmem_list3[SIZE_AC + nid], nid); 1737 1738 if (INDEX_AC != INDEX_L3) { 1739 init_list(malloc_sizes[INDEX_L3].cs_cachep, 1740 &initkmem_list3[SIZE_L3 + nid], nid); 1741 } 1742 } 1743 } 1744 1745 slab_state = UP; 1746 } 1747 1748 void __init kmem_cache_init_late(void) 1749 { 1750 struct kmem_cache *cachep; 1751 1752 slab_state = UP; 1753 1754 /* 6) resize the head arrays to their final sizes */ 1755 mutex_lock(&slab_mutex); 1756 list_for_each_entry(cachep, &slab_caches, list) 1757 if (enable_cpucache(cachep, GFP_NOWAIT)) 1758 BUG(); 1759 mutex_unlock(&slab_mutex); 1760 1761 /* Annotate slab for lockdep -- annotate the malloc caches */ 1762 init_lock_keys(); 1763 1764 /* Done! */ 1765 slab_state = FULL; 1766 1767 /* 1768 * Register a cpu startup notifier callback that initializes 1769 * cpu_cache_get for all new cpus 1770 */ 1771 register_cpu_notifier(&cpucache_notifier); 1772 1773 #ifdef CONFIG_NUMA 1774 /* 1775 * Register a memory hotplug callback that initializes and frees 1776 * nodelists. 1777 */ 1778 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1779 #endif 1780 1781 /* 1782 * The reap timers are started later, with a module init call: That part 1783 * of the kernel is not yet operational. 1784 */ 1785 } 1786 1787 static int __init cpucache_init(void) 1788 { 1789 int cpu; 1790 1791 /* 1792 * Register the timers that return unneeded pages to the page allocator 1793 */ 1794 for_each_online_cpu(cpu) 1795 start_cpu_timer(cpu); 1796 1797 /* Done! */ 1798 slab_state = FULL; 1799 return 0; 1800 } 1801 __initcall(cpucache_init); 1802 1803 static noinline void 1804 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1805 { 1806 struct kmem_list3 *l3; 1807 struct slab *slabp; 1808 unsigned long flags; 1809 int node; 1810 1811 printk(KERN_WARNING 1812 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1813 nodeid, gfpflags); 1814 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n", 1815 cachep->name, cachep->size, cachep->gfporder); 1816 1817 for_each_online_node(node) { 1818 unsigned long active_objs = 0, num_objs = 0, free_objects = 0; 1819 unsigned long active_slabs = 0, num_slabs = 0; 1820 1821 l3 = cachep->nodelists[node]; 1822 if (!l3) 1823 continue; 1824 1825 spin_lock_irqsave(&l3->list_lock, flags); 1826 list_for_each_entry(slabp, &l3->slabs_full, list) { 1827 active_objs += cachep->num; 1828 active_slabs++; 1829 } 1830 list_for_each_entry(slabp, &l3->slabs_partial, list) { 1831 active_objs += slabp->inuse; 1832 active_slabs++; 1833 } 1834 list_for_each_entry(slabp, &l3->slabs_free, list) 1835 num_slabs++; 1836 1837 free_objects += l3->free_objects; 1838 spin_unlock_irqrestore(&l3->list_lock, flags); 1839 1840 num_slabs += active_slabs; 1841 num_objs = num_slabs * cachep->num; 1842 printk(KERN_WARNING 1843 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", 1844 node, active_slabs, num_slabs, active_objs, num_objs, 1845 free_objects); 1846 } 1847 } 1848 1849 /* 1850 * Interface to system's page allocator. No need to hold the cache-lock. 1851 * 1852 * If we requested dmaable memory, we will get it. Even if we 1853 * did not request dmaable memory, we might get it, but that 1854 * would be relatively rare and ignorable. 1855 */ 1856 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) 1857 { 1858 struct page *page; 1859 int nr_pages; 1860 int i; 1861 1862 #ifndef CONFIG_MMU 1863 /* 1864 * Nommu uses slab's for process anonymous memory allocations, and thus 1865 * requires __GFP_COMP to properly refcount higher order allocations 1866 */ 1867 flags |= __GFP_COMP; 1868 #endif 1869 1870 flags |= cachep->allocflags; 1871 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1872 flags |= __GFP_RECLAIMABLE; 1873 1874 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1875 if (!page) { 1876 if (!(flags & __GFP_NOWARN) && printk_ratelimit()) 1877 slab_out_of_memory(cachep, flags, nodeid); 1878 return NULL; 1879 } 1880 1881 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1882 if (unlikely(page->pfmemalloc)) 1883 pfmemalloc_active = true; 1884 1885 nr_pages = (1 << cachep->gfporder); 1886 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1887 add_zone_page_state(page_zone(page), 1888 NR_SLAB_RECLAIMABLE, nr_pages); 1889 else 1890 add_zone_page_state(page_zone(page), 1891 NR_SLAB_UNRECLAIMABLE, nr_pages); 1892 for (i = 0; i < nr_pages; i++) { 1893 __SetPageSlab(page + i); 1894 1895 if (page->pfmemalloc) 1896 SetPageSlabPfmemalloc(page + i); 1897 } 1898 memcg_bind_pages(cachep, cachep->gfporder); 1899 1900 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1901 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1902 1903 if (cachep->ctor) 1904 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1905 else 1906 kmemcheck_mark_unallocated_pages(page, nr_pages); 1907 } 1908 1909 return page_address(page); 1910 } 1911 1912 /* 1913 * Interface to system's page release. 1914 */ 1915 static void kmem_freepages(struct kmem_cache *cachep, void *addr) 1916 { 1917 unsigned long i = (1 << cachep->gfporder); 1918 struct page *page = virt_to_page(addr); 1919 const unsigned long nr_freed = i; 1920 1921 kmemcheck_free_shadow(page, cachep->gfporder); 1922 1923 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1924 sub_zone_page_state(page_zone(page), 1925 NR_SLAB_RECLAIMABLE, nr_freed); 1926 else 1927 sub_zone_page_state(page_zone(page), 1928 NR_SLAB_UNRECLAIMABLE, nr_freed); 1929 while (i--) { 1930 BUG_ON(!PageSlab(page)); 1931 __ClearPageSlabPfmemalloc(page); 1932 __ClearPageSlab(page); 1933 page++; 1934 } 1935 1936 memcg_release_pages(cachep, cachep->gfporder); 1937 if (current->reclaim_state) 1938 current->reclaim_state->reclaimed_slab += nr_freed; 1939 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder); 1940 } 1941 1942 static void kmem_rcu_free(struct rcu_head *head) 1943 { 1944 struct slab_rcu *slab_rcu = (struct slab_rcu *)head; 1945 struct kmem_cache *cachep = slab_rcu->cachep; 1946 1947 kmem_freepages(cachep, slab_rcu->addr); 1948 if (OFF_SLAB(cachep)) 1949 kmem_cache_free(cachep->slabp_cache, slab_rcu); 1950 } 1951 1952 #if DEBUG 1953 1954 #ifdef CONFIG_DEBUG_PAGEALLOC 1955 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1956 unsigned long caller) 1957 { 1958 int size = cachep->object_size; 1959 1960 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1961 1962 if (size < 5 * sizeof(unsigned long)) 1963 return; 1964 1965 *addr++ = 0x12345678; 1966 *addr++ = caller; 1967 *addr++ = smp_processor_id(); 1968 size -= 3 * sizeof(unsigned long); 1969 { 1970 unsigned long *sptr = &caller; 1971 unsigned long svalue; 1972 1973 while (!kstack_end(sptr)) { 1974 svalue = *sptr++; 1975 if (kernel_text_address(svalue)) { 1976 *addr++ = svalue; 1977 size -= sizeof(unsigned long); 1978 if (size <= sizeof(unsigned long)) 1979 break; 1980 } 1981 } 1982 1983 } 1984 *addr++ = 0x87654321; 1985 } 1986 #endif 1987 1988 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1989 { 1990 int size = cachep->object_size; 1991 addr = &((char *)addr)[obj_offset(cachep)]; 1992 1993 memset(addr, val, size); 1994 *(unsigned char *)(addr + size - 1) = POISON_END; 1995 } 1996 1997 static void dump_line(char *data, int offset, int limit) 1998 { 1999 int i; 2000 unsigned char error = 0; 2001 int bad_count = 0; 2002 2003 printk(KERN_ERR "%03x: ", offset); 2004 for (i = 0; i < limit; i++) { 2005 if (data[offset + i] != POISON_FREE) { 2006 error = data[offset + i]; 2007 bad_count++; 2008 } 2009 } 2010 print_hex_dump(KERN_CONT, "", 0, 16, 1, 2011 &data[offset], limit, 1); 2012 2013 if (bad_count == 1) { 2014 error ^= POISON_FREE; 2015 if (!(error & (error - 1))) { 2016 printk(KERN_ERR "Single bit error detected. Probably " 2017 "bad RAM.\n"); 2018 #ifdef CONFIG_X86 2019 printk(KERN_ERR "Run memtest86+ or a similar memory " 2020 "test tool.\n"); 2021 #else 2022 printk(KERN_ERR "Run a memory test tool.\n"); 2023 #endif 2024 } 2025 } 2026 } 2027 #endif 2028 2029 #if DEBUG 2030 2031 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 2032 { 2033 int i, size; 2034 char *realobj; 2035 2036 if (cachep->flags & SLAB_RED_ZONE) { 2037 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 2038 *dbg_redzone1(cachep, objp), 2039 *dbg_redzone2(cachep, objp)); 2040 } 2041 2042 if (cachep->flags & SLAB_STORE_USER) { 2043 printk(KERN_ERR "Last user: [<%p>]", 2044 *dbg_userword(cachep, objp)); 2045 print_symbol("(%s)", 2046 (unsigned long)*dbg_userword(cachep, objp)); 2047 printk("\n"); 2048 } 2049 realobj = (char *)objp + obj_offset(cachep); 2050 size = cachep->object_size; 2051 for (i = 0; i < size && lines; i += 16, lines--) { 2052 int limit; 2053 limit = 16; 2054 if (i + limit > size) 2055 limit = size - i; 2056 dump_line(realobj, i, limit); 2057 } 2058 } 2059 2060 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 2061 { 2062 char *realobj; 2063 int size, i; 2064 int lines = 0; 2065 2066 realobj = (char *)objp + obj_offset(cachep); 2067 size = cachep->object_size; 2068 2069 for (i = 0; i < size; i++) { 2070 char exp = POISON_FREE; 2071 if (i == size - 1) 2072 exp = POISON_END; 2073 if (realobj[i] != exp) { 2074 int limit; 2075 /* Mismatch ! */ 2076 /* Print header */ 2077 if (lines == 0) { 2078 printk(KERN_ERR 2079 "Slab corruption (%s): %s start=%p, len=%d\n", 2080 print_tainted(), cachep->name, realobj, size); 2081 print_objinfo(cachep, objp, 0); 2082 } 2083 /* Hexdump the affected line */ 2084 i = (i / 16) * 16; 2085 limit = 16; 2086 if (i + limit > size) 2087 limit = size - i; 2088 dump_line(realobj, i, limit); 2089 i += 16; 2090 lines++; 2091 /* Limit to 5 lines */ 2092 if (lines > 5) 2093 break; 2094 } 2095 } 2096 if (lines != 0) { 2097 /* Print some data about the neighboring objects, if they 2098 * exist: 2099 */ 2100 struct slab *slabp = virt_to_slab(objp); 2101 unsigned int objnr; 2102 2103 objnr = obj_to_index(cachep, slabp, objp); 2104 if (objnr) { 2105 objp = index_to_obj(cachep, slabp, objnr - 1); 2106 realobj = (char *)objp + obj_offset(cachep); 2107 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 2108 realobj, size); 2109 print_objinfo(cachep, objp, 2); 2110 } 2111 if (objnr + 1 < cachep->num) { 2112 objp = index_to_obj(cachep, slabp, objnr + 1); 2113 realobj = (char *)objp + obj_offset(cachep); 2114 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 2115 realobj, size); 2116 print_objinfo(cachep, objp, 2); 2117 } 2118 } 2119 } 2120 #endif 2121 2122 #if DEBUG 2123 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 2124 { 2125 int i; 2126 for (i = 0; i < cachep->num; i++) { 2127 void *objp = index_to_obj(cachep, slabp, i); 2128 2129 if (cachep->flags & SLAB_POISON) { 2130 #ifdef CONFIG_DEBUG_PAGEALLOC 2131 if (cachep->size % PAGE_SIZE == 0 && 2132 OFF_SLAB(cachep)) 2133 kernel_map_pages(virt_to_page(objp), 2134 cachep->size / PAGE_SIZE, 1); 2135 else 2136 check_poison_obj(cachep, objp); 2137 #else 2138 check_poison_obj(cachep, objp); 2139 #endif 2140 } 2141 if (cachep->flags & SLAB_RED_ZONE) { 2142 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2143 slab_error(cachep, "start of a freed object " 2144 "was overwritten"); 2145 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2146 slab_error(cachep, "end of a freed object " 2147 "was overwritten"); 2148 } 2149 } 2150 } 2151 #else 2152 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 2153 { 2154 } 2155 #endif 2156 2157 /** 2158 * slab_destroy - destroy and release all objects in a slab 2159 * @cachep: cache pointer being destroyed 2160 * @slabp: slab pointer being destroyed 2161 * 2162 * Destroy all the objs in a slab, and release the mem back to the system. 2163 * Before calling the slab must have been unlinked from the cache. The 2164 * cache-lock is not held/needed. 2165 */ 2166 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) 2167 { 2168 void *addr = slabp->s_mem - slabp->colouroff; 2169 2170 slab_destroy_debugcheck(cachep, slabp); 2171 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 2172 struct slab_rcu *slab_rcu; 2173 2174 slab_rcu = (struct slab_rcu *)slabp; 2175 slab_rcu->cachep = cachep; 2176 slab_rcu->addr = addr; 2177 call_rcu(&slab_rcu->head, kmem_rcu_free); 2178 } else { 2179 kmem_freepages(cachep, addr); 2180 if (OFF_SLAB(cachep)) 2181 kmem_cache_free(cachep->slabp_cache, slabp); 2182 } 2183 } 2184 2185 /** 2186 * calculate_slab_order - calculate size (page order) of slabs 2187 * @cachep: pointer to the cache that is being created 2188 * @size: size of objects to be created in this cache. 2189 * @align: required alignment for the objects. 2190 * @flags: slab allocation flags 2191 * 2192 * Also calculates the number of objects per slab. 2193 * 2194 * This could be made much more intelligent. For now, try to avoid using 2195 * high order pages for slabs. When the gfp() functions are more friendly 2196 * towards high-order requests, this should be changed. 2197 */ 2198 static size_t calculate_slab_order(struct kmem_cache *cachep, 2199 size_t size, size_t align, unsigned long flags) 2200 { 2201 unsigned long offslab_limit; 2202 size_t left_over = 0; 2203 int gfporder; 2204 2205 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 2206 unsigned int num; 2207 size_t remainder; 2208 2209 cache_estimate(gfporder, size, align, flags, &remainder, &num); 2210 if (!num) 2211 continue; 2212 2213 if (flags & CFLGS_OFF_SLAB) { 2214 /* 2215 * Max number of objs-per-slab for caches which 2216 * use off-slab slabs. Needed to avoid a possible 2217 * looping condition in cache_grow(). 2218 */ 2219 offslab_limit = size - sizeof(struct slab); 2220 offslab_limit /= sizeof(kmem_bufctl_t); 2221 2222 if (num > offslab_limit) 2223 break; 2224 } 2225 2226 /* Found something acceptable - save it away */ 2227 cachep->num = num; 2228 cachep->gfporder = gfporder; 2229 left_over = remainder; 2230 2231 /* 2232 * A VFS-reclaimable slab tends to have most allocations 2233 * as GFP_NOFS and we really don't want to have to be allocating 2234 * higher-order pages when we are unable to shrink dcache. 2235 */ 2236 if (flags & SLAB_RECLAIM_ACCOUNT) 2237 break; 2238 2239 /* 2240 * Large number of objects is good, but very large slabs are 2241 * currently bad for the gfp()s. 2242 */ 2243 if (gfporder >= slab_max_order) 2244 break; 2245 2246 /* 2247 * Acceptable internal fragmentation? 2248 */ 2249 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 2250 break; 2251 } 2252 return left_over; 2253 } 2254 2255 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 2256 { 2257 if (slab_state >= FULL) 2258 return enable_cpucache(cachep, gfp); 2259 2260 if (slab_state == DOWN) { 2261 /* 2262 * Note: Creation of first cache (kmem_cache). 2263 * The setup_list3s is taken care 2264 * of by the caller of __kmem_cache_create 2265 */ 2266 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2267 slab_state = PARTIAL; 2268 } else if (slab_state == PARTIAL) { 2269 /* 2270 * Note: the second kmem_cache_create must create the cache 2271 * that's used by kmalloc(24), otherwise the creation of 2272 * further caches will BUG(). 2273 */ 2274 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2275 2276 /* 2277 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is 2278 * the second cache, then we need to set up all its list3s, 2279 * otherwise the creation of further caches will BUG(). 2280 */ 2281 set_up_list3s(cachep, SIZE_AC); 2282 if (INDEX_AC == INDEX_L3) 2283 slab_state = PARTIAL_L3; 2284 else 2285 slab_state = PARTIAL_ARRAYCACHE; 2286 } else { 2287 /* Remaining boot caches */ 2288 cachep->array[smp_processor_id()] = 2289 kmalloc(sizeof(struct arraycache_init), gfp); 2290 2291 if (slab_state == PARTIAL_ARRAYCACHE) { 2292 set_up_list3s(cachep, SIZE_L3); 2293 slab_state = PARTIAL_L3; 2294 } else { 2295 int node; 2296 for_each_online_node(node) { 2297 cachep->nodelists[node] = 2298 kmalloc_node(sizeof(struct kmem_list3), 2299 gfp, node); 2300 BUG_ON(!cachep->nodelists[node]); 2301 kmem_list3_init(cachep->nodelists[node]); 2302 } 2303 } 2304 } 2305 cachep->nodelists[numa_mem_id()]->next_reap = 2306 jiffies + REAPTIMEOUT_LIST3 + 2307 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 2308 2309 cpu_cache_get(cachep)->avail = 0; 2310 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2311 cpu_cache_get(cachep)->batchcount = 1; 2312 cpu_cache_get(cachep)->touched = 0; 2313 cachep->batchcount = 1; 2314 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2315 return 0; 2316 } 2317 2318 /** 2319 * __kmem_cache_create - Create a cache. 2320 * @cachep: cache management descriptor 2321 * @flags: SLAB flags 2322 * 2323 * Returns a ptr to the cache on success, NULL on failure. 2324 * Cannot be called within a int, but can be interrupted. 2325 * The @ctor is run when new pages are allocated by the cache. 2326 * 2327 * The flags are 2328 * 2329 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2330 * to catch references to uninitialised memory. 2331 * 2332 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2333 * for buffer overruns. 2334 * 2335 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2336 * cacheline. This can be beneficial if you're counting cycles as closely 2337 * as davem. 2338 */ 2339 int 2340 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2341 { 2342 size_t left_over, slab_size, ralign; 2343 gfp_t gfp; 2344 int err; 2345 size_t size = cachep->size; 2346 2347 #if DEBUG 2348 #if FORCED_DEBUG 2349 /* 2350 * Enable redzoning and last user accounting, except for caches with 2351 * large objects, if the increased size would increase the object size 2352 * above the next power of two: caches with object sizes just above a 2353 * power of two have a significant amount of internal fragmentation. 2354 */ 2355 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2356 2 * sizeof(unsigned long long))) 2357 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2358 if (!(flags & SLAB_DESTROY_BY_RCU)) 2359 flags |= SLAB_POISON; 2360 #endif 2361 if (flags & SLAB_DESTROY_BY_RCU) 2362 BUG_ON(flags & SLAB_POISON); 2363 #endif 2364 2365 /* 2366 * Check that size is in terms of words. This is needed to avoid 2367 * unaligned accesses for some archs when redzoning is used, and makes 2368 * sure any on-slab bufctl's are also correctly aligned. 2369 */ 2370 if (size & (BYTES_PER_WORD - 1)) { 2371 size += (BYTES_PER_WORD - 1); 2372 size &= ~(BYTES_PER_WORD - 1); 2373 } 2374 2375 /* 2376 * Redzoning and user store require word alignment or possibly larger. 2377 * Note this will be overridden by architecture or caller mandated 2378 * alignment if either is greater than BYTES_PER_WORD. 2379 */ 2380 if (flags & SLAB_STORE_USER) 2381 ralign = BYTES_PER_WORD; 2382 2383 if (flags & SLAB_RED_ZONE) { 2384 ralign = REDZONE_ALIGN; 2385 /* If redzoning, ensure that the second redzone is suitably 2386 * aligned, by adjusting the object size accordingly. */ 2387 size += REDZONE_ALIGN - 1; 2388 size &= ~(REDZONE_ALIGN - 1); 2389 } 2390 2391 /* 3) caller mandated alignment */ 2392 if (ralign < cachep->align) { 2393 ralign = cachep->align; 2394 } 2395 /* disable debug if necessary */ 2396 if (ralign > __alignof__(unsigned long long)) 2397 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2398 /* 2399 * 4) Store it. 2400 */ 2401 cachep->align = ralign; 2402 2403 if (slab_is_available()) 2404 gfp = GFP_KERNEL; 2405 else 2406 gfp = GFP_NOWAIT; 2407 2408 setup_nodelists_pointer(cachep); 2409 #if DEBUG 2410 2411 /* 2412 * Both debugging options require word-alignment which is calculated 2413 * into align above. 2414 */ 2415 if (flags & SLAB_RED_ZONE) { 2416 /* add space for red zone words */ 2417 cachep->obj_offset += sizeof(unsigned long long); 2418 size += 2 * sizeof(unsigned long long); 2419 } 2420 if (flags & SLAB_STORE_USER) { 2421 /* user store requires one word storage behind the end of 2422 * the real object. But if the second red zone needs to be 2423 * aligned to 64 bits, we must allow that much space. 2424 */ 2425 if (flags & SLAB_RED_ZONE) 2426 size += REDZONE_ALIGN; 2427 else 2428 size += BYTES_PER_WORD; 2429 } 2430 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2431 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size 2432 && cachep->object_size > cache_line_size() 2433 && ALIGN(size, cachep->align) < PAGE_SIZE) { 2434 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); 2435 size = PAGE_SIZE; 2436 } 2437 #endif 2438 #endif 2439 2440 /* 2441 * Determine if the slab management is 'on' or 'off' slab. 2442 * (bootstrapping cannot cope with offslab caches so don't do 2443 * it too early on. Always use on-slab management when 2444 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) 2445 */ 2446 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init && 2447 !(flags & SLAB_NOLEAKTRACE)) 2448 /* 2449 * Size is large, assume best to place the slab management obj 2450 * off-slab (should allow better packing of objs). 2451 */ 2452 flags |= CFLGS_OFF_SLAB; 2453 2454 size = ALIGN(size, cachep->align); 2455 2456 left_over = calculate_slab_order(cachep, size, cachep->align, flags); 2457 2458 if (!cachep->num) 2459 return -E2BIG; 2460 2461 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) 2462 + sizeof(struct slab), cachep->align); 2463 2464 /* 2465 * If the slab has been placed off-slab, and we have enough space then 2466 * move it on-slab. This is at the expense of any extra colouring. 2467 */ 2468 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { 2469 flags &= ~CFLGS_OFF_SLAB; 2470 left_over -= slab_size; 2471 } 2472 2473 if (flags & CFLGS_OFF_SLAB) { 2474 /* really off slab. No need for manual alignment */ 2475 slab_size = 2476 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); 2477 2478 #ifdef CONFIG_PAGE_POISONING 2479 /* If we're going to use the generic kernel_map_pages() 2480 * poisoning, then it's going to smash the contents of 2481 * the redzone and userword anyhow, so switch them off. 2482 */ 2483 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) 2484 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2485 #endif 2486 } 2487 2488 cachep->colour_off = cache_line_size(); 2489 /* Offset must be a multiple of the alignment. */ 2490 if (cachep->colour_off < cachep->align) 2491 cachep->colour_off = cachep->align; 2492 cachep->colour = left_over / cachep->colour_off; 2493 cachep->slab_size = slab_size; 2494 cachep->flags = flags; 2495 cachep->allocflags = 0; 2496 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2497 cachep->allocflags |= GFP_DMA; 2498 cachep->size = size; 2499 cachep->reciprocal_buffer_size = reciprocal_value(size); 2500 2501 if (flags & CFLGS_OFF_SLAB) { 2502 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); 2503 /* 2504 * This is a possibility for one of the malloc_sizes caches. 2505 * But since we go off slab only for object size greater than 2506 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, 2507 * this should not happen at all. 2508 * But leave a BUG_ON for some lucky dude. 2509 */ 2510 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); 2511 } 2512 2513 err = setup_cpu_cache(cachep, gfp); 2514 if (err) { 2515 __kmem_cache_shutdown(cachep); 2516 return err; 2517 } 2518 2519 if (flags & SLAB_DEBUG_OBJECTS) { 2520 /* 2521 * Would deadlock through slab_destroy()->call_rcu()-> 2522 * debug_object_activate()->kmem_cache_alloc(). 2523 */ 2524 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU); 2525 2526 slab_set_debugobj_lock_classes(cachep); 2527 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU)) 2528 on_slab_lock_classes(cachep); 2529 2530 return 0; 2531 } 2532 2533 #if DEBUG 2534 static void check_irq_off(void) 2535 { 2536 BUG_ON(!irqs_disabled()); 2537 } 2538 2539 static void check_irq_on(void) 2540 { 2541 BUG_ON(irqs_disabled()); 2542 } 2543 2544 static void check_spinlock_acquired(struct kmem_cache *cachep) 2545 { 2546 #ifdef CONFIG_SMP 2547 check_irq_off(); 2548 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock); 2549 #endif 2550 } 2551 2552 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2553 { 2554 #ifdef CONFIG_SMP 2555 check_irq_off(); 2556 assert_spin_locked(&cachep->nodelists[node]->list_lock); 2557 #endif 2558 } 2559 2560 #else 2561 #define check_irq_off() do { } while(0) 2562 #define check_irq_on() do { } while(0) 2563 #define check_spinlock_acquired(x) do { } while(0) 2564 #define check_spinlock_acquired_node(x, y) do { } while(0) 2565 #endif 2566 2567 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 2568 struct array_cache *ac, 2569 int force, int node); 2570 2571 static void do_drain(void *arg) 2572 { 2573 struct kmem_cache *cachep = arg; 2574 struct array_cache *ac; 2575 int node = numa_mem_id(); 2576 2577 check_irq_off(); 2578 ac = cpu_cache_get(cachep); 2579 spin_lock(&cachep->nodelists[node]->list_lock); 2580 free_block(cachep, ac->entry, ac->avail, node); 2581 spin_unlock(&cachep->nodelists[node]->list_lock); 2582 ac->avail = 0; 2583 } 2584 2585 static void drain_cpu_caches(struct kmem_cache *cachep) 2586 { 2587 struct kmem_list3 *l3; 2588 int node; 2589 2590 on_each_cpu(do_drain, cachep, 1); 2591 check_irq_on(); 2592 for_each_online_node(node) { 2593 l3 = cachep->nodelists[node]; 2594 if (l3 && l3->alien) 2595 drain_alien_cache(cachep, l3->alien); 2596 } 2597 2598 for_each_online_node(node) { 2599 l3 = cachep->nodelists[node]; 2600 if (l3) 2601 drain_array(cachep, l3, l3->shared, 1, node); 2602 } 2603 } 2604 2605 /* 2606 * Remove slabs from the list of free slabs. 2607 * Specify the number of slabs to drain in tofree. 2608 * 2609 * Returns the actual number of slabs released. 2610 */ 2611 static int drain_freelist(struct kmem_cache *cache, 2612 struct kmem_list3 *l3, int tofree) 2613 { 2614 struct list_head *p; 2615 int nr_freed; 2616 struct slab *slabp; 2617 2618 nr_freed = 0; 2619 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { 2620 2621 spin_lock_irq(&l3->list_lock); 2622 p = l3->slabs_free.prev; 2623 if (p == &l3->slabs_free) { 2624 spin_unlock_irq(&l3->list_lock); 2625 goto out; 2626 } 2627 2628 slabp = list_entry(p, struct slab, list); 2629 #if DEBUG 2630 BUG_ON(slabp->inuse); 2631 #endif 2632 list_del(&slabp->list); 2633 /* 2634 * Safe to drop the lock. The slab is no longer linked 2635 * to the cache. 2636 */ 2637 l3->free_objects -= cache->num; 2638 spin_unlock_irq(&l3->list_lock); 2639 slab_destroy(cache, slabp); 2640 nr_freed++; 2641 } 2642 out: 2643 return nr_freed; 2644 } 2645 2646 /* Called with slab_mutex held to protect against cpu hotplug */ 2647 static int __cache_shrink(struct kmem_cache *cachep) 2648 { 2649 int ret = 0, i = 0; 2650 struct kmem_list3 *l3; 2651 2652 drain_cpu_caches(cachep); 2653 2654 check_irq_on(); 2655 for_each_online_node(i) { 2656 l3 = cachep->nodelists[i]; 2657 if (!l3) 2658 continue; 2659 2660 drain_freelist(cachep, l3, l3->free_objects); 2661 2662 ret += !list_empty(&l3->slabs_full) || 2663 !list_empty(&l3->slabs_partial); 2664 } 2665 return (ret ? 1 : 0); 2666 } 2667 2668 /** 2669 * kmem_cache_shrink - Shrink a cache. 2670 * @cachep: The cache to shrink. 2671 * 2672 * Releases as many slabs as possible for a cache. 2673 * To help debugging, a zero exit status indicates all slabs were released. 2674 */ 2675 int kmem_cache_shrink(struct kmem_cache *cachep) 2676 { 2677 int ret; 2678 BUG_ON(!cachep || in_interrupt()); 2679 2680 get_online_cpus(); 2681 mutex_lock(&slab_mutex); 2682 ret = __cache_shrink(cachep); 2683 mutex_unlock(&slab_mutex); 2684 put_online_cpus(); 2685 return ret; 2686 } 2687 EXPORT_SYMBOL(kmem_cache_shrink); 2688 2689 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2690 { 2691 int i; 2692 struct kmem_list3 *l3; 2693 int rc = __cache_shrink(cachep); 2694 2695 if (rc) 2696 return rc; 2697 2698 for_each_online_cpu(i) 2699 kfree(cachep->array[i]); 2700 2701 /* NUMA: free the list3 structures */ 2702 for_each_online_node(i) { 2703 l3 = cachep->nodelists[i]; 2704 if (l3) { 2705 kfree(l3->shared); 2706 free_alien_cache(l3->alien); 2707 kfree(l3); 2708 } 2709 } 2710 return 0; 2711 } 2712 2713 /* 2714 * Get the memory for a slab management obj. 2715 * For a slab cache when the slab descriptor is off-slab, slab descriptors 2716 * always come from malloc_sizes caches. The slab descriptor cannot 2717 * come from the same cache which is getting created because, 2718 * when we are searching for an appropriate cache for these 2719 * descriptors in kmem_cache_create, we search through the malloc_sizes array. 2720 * If we are creating a malloc_sizes cache here it would not be visible to 2721 * kmem_find_general_cachep till the initialization is complete. 2722 * Hence we cannot have slabp_cache same as the original cache. 2723 */ 2724 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, 2725 int colour_off, gfp_t local_flags, 2726 int nodeid) 2727 { 2728 struct slab *slabp; 2729 2730 if (OFF_SLAB(cachep)) { 2731 /* Slab management obj is off-slab. */ 2732 slabp = kmem_cache_alloc_node(cachep->slabp_cache, 2733 local_flags, nodeid); 2734 /* 2735 * If the first object in the slab is leaked (it's allocated 2736 * but no one has a reference to it), we want to make sure 2737 * kmemleak does not treat the ->s_mem pointer as a reference 2738 * to the object. Otherwise we will not report the leak. 2739 */ 2740 kmemleak_scan_area(&slabp->list, sizeof(struct list_head), 2741 local_flags); 2742 if (!slabp) 2743 return NULL; 2744 } else { 2745 slabp = objp + colour_off; 2746 colour_off += cachep->slab_size; 2747 } 2748 slabp->inuse = 0; 2749 slabp->colouroff = colour_off; 2750 slabp->s_mem = objp + colour_off; 2751 slabp->nodeid = nodeid; 2752 slabp->free = 0; 2753 return slabp; 2754 } 2755 2756 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) 2757 { 2758 return (kmem_bufctl_t *) (slabp + 1); 2759 } 2760 2761 static void cache_init_objs(struct kmem_cache *cachep, 2762 struct slab *slabp) 2763 { 2764 int i; 2765 2766 for (i = 0; i < cachep->num; i++) { 2767 void *objp = index_to_obj(cachep, slabp, i); 2768 #if DEBUG 2769 /* need to poison the objs? */ 2770 if (cachep->flags & SLAB_POISON) 2771 poison_obj(cachep, objp, POISON_FREE); 2772 if (cachep->flags & SLAB_STORE_USER) 2773 *dbg_userword(cachep, objp) = NULL; 2774 2775 if (cachep->flags & SLAB_RED_ZONE) { 2776 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2777 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2778 } 2779 /* 2780 * Constructors are not allowed to allocate memory from the same 2781 * cache which they are a constructor for. Otherwise, deadlock. 2782 * They must also be threaded. 2783 */ 2784 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2785 cachep->ctor(objp + obj_offset(cachep)); 2786 2787 if (cachep->flags & SLAB_RED_ZONE) { 2788 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2789 slab_error(cachep, "constructor overwrote the" 2790 " end of an object"); 2791 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2792 slab_error(cachep, "constructor overwrote the" 2793 " start of an object"); 2794 } 2795 if ((cachep->size % PAGE_SIZE) == 0 && 2796 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2797 kernel_map_pages(virt_to_page(objp), 2798 cachep->size / PAGE_SIZE, 0); 2799 #else 2800 if (cachep->ctor) 2801 cachep->ctor(objp); 2802 #endif 2803 slab_bufctl(slabp)[i] = i + 1; 2804 } 2805 slab_bufctl(slabp)[i - 1] = BUFCTL_END; 2806 } 2807 2808 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2809 { 2810 if (CONFIG_ZONE_DMA_FLAG) { 2811 if (flags & GFP_DMA) 2812 BUG_ON(!(cachep->allocflags & GFP_DMA)); 2813 else 2814 BUG_ON(cachep->allocflags & GFP_DMA); 2815 } 2816 } 2817 2818 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, 2819 int nodeid) 2820 { 2821 void *objp = index_to_obj(cachep, slabp, slabp->free); 2822 kmem_bufctl_t next; 2823 2824 slabp->inuse++; 2825 next = slab_bufctl(slabp)[slabp->free]; 2826 #if DEBUG 2827 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; 2828 WARN_ON(slabp->nodeid != nodeid); 2829 #endif 2830 slabp->free = next; 2831 2832 return objp; 2833 } 2834 2835 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, 2836 void *objp, int nodeid) 2837 { 2838 unsigned int objnr = obj_to_index(cachep, slabp, objp); 2839 2840 #if DEBUG 2841 /* Verify that the slab belongs to the intended node */ 2842 WARN_ON(slabp->nodeid != nodeid); 2843 2844 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { 2845 printk(KERN_ERR "slab: double free detected in cache " 2846 "'%s', objp %p\n", cachep->name, objp); 2847 BUG(); 2848 } 2849 #endif 2850 slab_bufctl(slabp)[objnr] = slabp->free; 2851 slabp->free = objnr; 2852 slabp->inuse--; 2853 } 2854 2855 /* 2856 * Map pages beginning at addr to the given cache and slab. This is required 2857 * for the slab allocator to be able to lookup the cache and slab of a 2858 * virtual address for kfree, ksize, and slab debugging. 2859 */ 2860 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, 2861 void *addr) 2862 { 2863 int nr_pages; 2864 struct page *page; 2865 2866 page = virt_to_page(addr); 2867 2868 nr_pages = 1; 2869 if (likely(!PageCompound(page))) 2870 nr_pages <<= cache->gfporder; 2871 2872 do { 2873 page->slab_cache = cache; 2874 page->slab_page = slab; 2875 page++; 2876 } while (--nr_pages); 2877 } 2878 2879 /* 2880 * Grow (by 1) the number of slabs within a cache. This is called by 2881 * kmem_cache_alloc() when there are no active objs left in a cache. 2882 */ 2883 static int cache_grow(struct kmem_cache *cachep, 2884 gfp_t flags, int nodeid, void *objp) 2885 { 2886 struct slab *slabp; 2887 size_t offset; 2888 gfp_t local_flags; 2889 struct kmem_list3 *l3; 2890 2891 /* 2892 * Be lazy and only check for valid flags here, keeping it out of the 2893 * critical path in kmem_cache_alloc(). 2894 */ 2895 BUG_ON(flags & GFP_SLAB_BUG_MASK); 2896 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2897 2898 /* Take the l3 list lock to change the colour_next on this node */ 2899 check_irq_off(); 2900 l3 = cachep->nodelists[nodeid]; 2901 spin_lock(&l3->list_lock); 2902 2903 /* Get colour for the slab, and cal the next value. */ 2904 offset = l3->colour_next; 2905 l3->colour_next++; 2906 if (l3->colour_next >= cachep->colour) 2907 l3->colour_next = 0; 2908 spin_unlock(&l3->list_lock); 2909 2910 offset *= cachep->colour_off; 2911 2912 if (local_flags & __GFP_WAIT) 2913 local_irq_enable(); 2914 2915 /* 2916 * The test for missing atomic flag is performed here, rather than 2917 * the more obvious place, simply to reduce the critical path length 2918 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2919 * will eventually be caught here (where it matters). 2920 */ 2921 kmem_flagcheck(cachep, flags); 2922 2923 /* 2924 * Get mem for the objs. Attempt to allocate a physical page from 2925 * 'nodeid'. 2926 */ 2927 if (!objp) 2928 objp = kmem_getpages(cachep, local_flags, nodeid); 2929 if (!objp) 2930 goto failed; 2931 2932 /* Get slab management. */ 2933 slabp = alloc_slabmgmt(cachep, objp, offset, 2934 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2935 if (!slabp) 2936 goto opps1; 2937 2938 slab_map_pages(cachep, slabp, objp); 2939 2940 cache_init_objs(cachep, slabp); 2941 2942 if (local_flags & __GFP_WAIT) 2943 local_irq_disable(); 2944 check_irq_off(); 2945 spin_lock(&l3->list_lock); 2946 2947 /* Make slab active. */ 2948 list_add_tail(&slabp->list, &(l3->slabs_free)); 2949 STATS_INC_GROWN(cachep); 2950 l3->free_objects += cachep->num; 2951 spin_unlock(&l3->list_lock); 2952 return 1; 2953 opps1: 2954 kmem_freepages(cachep, objp); 2955 failed: 2956 if (local_flags & __GFP_WAIT) 2957 local_irq_disable(); 2958 return 0; 2959 } 2960 2961 #if DEBUG 2962 2963 /* 2964 * Perform extra freeing checks: 2965 * - detect bad pointers. 2966 * - POISON/RED_ZONE checking 2967 */ 2968 static void kfree_debugcheck(const void *objp) 2969 { 2970 if (!virt_addr_valid(objp)) { 2971 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2972 (unsigned long)objp); 2973 BUG(); 2974 } 2975 } 2976 2977 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2978 { 2979 unsigned long long redzone1, redzone2; 2980 2981 redzone1 = *dbg_redzone1(cache, obj); 2982 redzone2 = *dbg_redzone2(cache, obj); 2983 2984 /* 2985 * Redzone is ok. 2986 */ 2987 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2988 return; 2989 2990 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2991 slab_error(cache, "double free detected"); 2992 else 2993 slab_error(cache, "memory outside object was overwritten"); 2994 2995 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 2996 obj, redzone1, redzone2); 2997 } 2998 2999 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 3000 unsigned long caller) 3001 { 3002 struct page *page; 3003 unsigned int objnr; 3004 struct slab *slabp; 3005 3006 BUG_ON(virt_to_cache(objp) != cachep); 3007 3008 objp -= obj_offset(cachep); 3009 kfree_debugcheck(objp); 3010 page = virt_to_head_page(objp); 3011 3012 slabp = page->slab_page; 3013 3014 if (cachep->flags & SLAB_RED_ZONE) { 3015 verify_redzone_free(cachep, objp); 3016 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 3017 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 3018 } 3019 if (cachep->flags & SLAB_STORE_USER) 3020 *dbg_userword(cachep, objp) = (void *)caller; 3021 3022 objnr = obj_to_index(cachep, slabp, objp); 3023 3024 BUG_ON(objnr >= cachep->num); 3025 BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); 3026 3027 #ifdef CONFIG_DEBUG_SLAB_LEAK 3028 slab_bufctl(slabp)[objnr] = BUFCTL_FREE; 3029 #endif 3030 if (cachep->flags & SLAB_POISON) { 3031 #ifdef CONFIG_DEBUG_PAGEALLOC 3032 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 3033 store_stackinfo(cachep, objp, caller); 3034 kernel_map_pages(virt_to_page(objp), 3035 cachep->size / PAGE_SIZE, 0); 3036 } else { 3037 poison_obj(cachep, objp, POISON_FREE); 3038 } 3039 #else 3040 poison_obj(cachep, objp, POISON_FREE); 3041 #endif 3042 } 3043 return objp; 3044 } 3045 3046 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) 3047 { 3048 kmem_bufctl_t i; 3049 int entries = 0; 3050 3051 /* Check slab's freelist to see if this obj is there. */ 3052 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { 3053 entries++; 3054 if (entries > cachep->num || i >= cachep->num) 3055 goto bad; 3056 } 3057 if (entries != cachep->num - slabp->inuse) { 3058 bad: 3059 printk(KERN_ERR "slab: Internal list corruption detected in " 3060 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n", 3061 cachep->name, cachep->num, slabp, slabp->inuse, 3062 print_tainted()); 3063 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp, 3064 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t), 3065 1); 3066 BUG(); 3067 } 3068 } 3069 #else 3070 #define kfree_debugcheck(x) do { } while(0) 3071 #define cache_free_debugcheck(x,objp,z) (objp) 3072 #define check_slabp(x,y) do { } while(0) 3073 #endif 3074 3075 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, 3076 bool force_refill) 3077 { 3078 int batchcount; 3079 struct kmem_list3 *l3; 3080 struct array_cache *ac; 3081 int node; 3082 3083 check_irq_off(); 3084 node = numa_mem_id(); 3085 if (unlikely(force_refill)) 3086 goto force_grow; 3087 retry: 3088 ac = cpu_cache_get(cachep); 3089 batchcount = ac->batchcount; 3090 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 3091 /* 3092 * If there was little recent activity on this cache, then 3093 * perform only a partial refill. Otherwise we could generate 3094 * refill bouncing. 3095 */ 3096 batchcount = BATCHREFILL_LIMIT; 3097 } 3098 l3 = cachep->nodelists[node]; 3099 3100 BUG_ON(ac->avail > 0 || !l3); 3101 spin_lock(&l3->list_lock); 3102 3103 /* See if we can refill from the shared array */ 3104 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) { 3105 l3->shared->touched = 1; 3106 goto alloc_done; 3107 } 3108 3109 while (batchcount > 0) { 3110 struct list_head *entry; 3111 struct slab *slabp; 3112 /* Get slab alloc is to come from. */ 3113 entry = l3->slabs_partial.next; 3114 if (entry == &l3->slabs_partial) { 3115 l3->free_touched = 1; 3116 entry = l3->slabs_free.next; 3117 if (entry == &l3->slabs_free) 3118 goto must_grow; 3119 } 3120 3121 slabp = list_entry(entry, struct slab, list); 3122 check_slabp(cachep, slabp); 3123 check_spinlock_acquired(cachep); 3124 3125 /* 3126 * The slab was either on partial or free list so 3127 * there must be at least one object available for 3128 * allocation. 3129 */ 3130 BUG_ON(slabp->inuse >= cachep->num); 3131 3132 while (slabp->inuse < cachep->num && batchcount--) { 3133 STATS_INC_ALLOCED(cachep); 3134 STATS_INC_ACTIVE(cachep); 3135 STATS_SET_HIGH(cachep); 3136 3137 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp, 3138 node)); 3139 } 3140 check_slabp(cachep, slabp); 3141 3142 /* move slabp to correct slabp list: */ 3143 list_del(&slabp->list); 3144 if (slabp->free == BUFCTL_END) 3145 list_add(&slabp->list, &l3->slabs_full); 3146 else 3147 list_add(&slabp->list, &l3->slabs_partial); 3148 } 3149 3150 must_grow: 3151 l3->free_objects -= ac->avail; 3152 alloc_done: 3153 spin_unlock(&l3->list_lock); 3154 3155 if (unlikely(!ac->avail)) { 3156 int x; 3157 force_grow: 3158 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 3159 3160 /* cache_grow can reenable interrupts, then ac could change. */ 3161 ac = cpu_cache_get(cachep); 3162 node = numa_mem_id(); 3163 3164 /* no objects in sight? abort */ 3165 if (!x && (ac->avail == 0 || force_refill)) 3166 return NULL; 3167 3168 if (!ac->avail) /* objects refilled by interrupt? */ 3169 goto retry; 3170 } 3171 ac->touched = 1; 3172 3173 return ac_get_obj(cachep, ac, flags, force_refill); 3174 } 3175 3176 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3177 gfp_t flags) 3178 { 3179 might_sleep_if(flags & __GFP_WAIT); 3180 #if DEBUG 3181 kmem_flagcheck(cachep, flags); 3182 #endif 3183 } 3184 3185 #if DEBUG 3186 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3187 gfp_t flags, void *objp, unsigned long caller) 3188 { 3189 if (!objp) 3190 return objp; 3191 if (cachep->flags & SLAB_POISON) { 3192 #ifdef CONFIG_DEBUG_PAGEALLOC 3193 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 3194 kernel_map_pages(virt_to_page(objp), 3195 cachep->size / PAGE_SIZE, 1); 3196 else 3197 check_poison_obj(cachep, objp); 3198 #else 3199 check_poison_obj(cachep, objp); 3200 #endif 3201 poison_obj(cachep, objp, POISON_INUSE); 3202 } 3203 if (cachep->flags & SLAB_STORE_USER) 3204 *dbg_userword(cachep, objp) = (void *)caller; 3205 3206 if (cachep->flags & SLAB_RED_ZONE) { 3207 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3208 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3209 slab_error(cachep, "double free, or memory outside" 3210 " object was overwritten"); 3211 printk(KERN_ERR 3212 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3213 objp, *dbg_redzone1(cachep, objp), 3214 *dbg_redzone2(cachep, objp)); 3215 } 3216 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3217 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3218 } 3219 #ifdef CONFIG_DEBUG_SLAB_LEAK 3220 { 3221 struct slab *slabp; 3222 unsigned objnr; 3223 3224 slabp = virt_to_head_page(objp)->slab_page; 3225 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size; 3226 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; 3227 } 3228 #endif 3229 objp += obj_offset(cachep); 3230 if (cachep->ctor && cachep->flags & SLAB_POISON) 3231 cachep->ctor(objp); 3232 if (ARCH_SLAB_MINALIGN && 3233 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3234 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3235 objp, (int)ARCH_SLAB_MINALIGN); 3236 } 3237 return objp; 3238 } 3239 #else 3240 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3241 #endif 3242 3243 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) 3244 { 3245 if (cachep == kmem_cache) 3246 return false; 3247 3248 return should_failslab(cachep->object_size, flags, cachep->flags); 3249 } 3250 3251 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3252 { 3253 void *objp; 3254 struct array_cache *ac; 3255 bool force_refill = false; 3256 3257 check_irq_off(); 3258 3259 ac = cpu_cache_get(cachep); 3260 if (likely(ac->avail)) { 3261 ac->touched = 1; 3262 objp = ac_get_obj(cachep, ac, flags, false); 3263 3264 /* 3265 * Allow for the possibility all avail objects are not allowed 3266 * by the current flags 3267 */ 3268 if (objp) { 3269 STATS_INC_ALLOCHIT(cachep); 3270 goto out; 3271 } 3272 force_refill = true; 3273 } 3274 3275 STATS_INC_ALLOCMISS(cachep); 3276 objp = cache_alloc_refill(cachep, flags, force_refill); 3277 /* 3278 * the 'ac' may be updated by cache_alloc_refill(), 3279 * and kmemleak_erase() requires its correct value. 3280 */ 3281 ac = cpu_cache_get(cachep); 3282 3283 out: 3284 /* 3285 * To avoid a false negative, if an object that is in one of the 3286 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3287 * treat the array pointers as a reference to the object. 3288 */ 3289 if (objp) 3290 kmemleak_erase(&ac->entry[ac->avail]); 3291 return objp; 3292 } 3293 3294 #ifdef CONFIG_NUMA 3295 /* 3296 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. 3297 * 3298 * If we are in_interrupt, then process context, including cpusets and 3299 * mempolicy, may not apply and should not be used for allocation policy. 3300 */ 3301 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3302 { 3303 int nid_alloc, nid_here; 3304 3305 if (in_interrupt() || (flags & __GFP_THISNODE)) 3306 return NULL; 3307 nid_alloc = nid_here = numa_mem_id(); 3308 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3309 nid_alloc = cpuset_slab_spread_node(); 3310 else if (current->mempolicy) 3311 nid_alloc = slab_node(); 3312 if (nid_alloc != nid_here) 3313 return ____cache_alloc_node(cachep, flags, nid_alloc); 3314 return NULL; 3315 } 3316 3317 /* 3318 * Fallback function if there was no memory available and no objects on a 3319 * certain node and fall back is permitted. First we scan all the 3320 * available nodelists for available objects. If that fails then we 3321 * perform an allocation without specifying a node. This allows the page 3322 * allocator to do its reclaim / fallback magic. We then insert the 3323 * slab into the proper nodelist and then allocate from it. 3324 */ 3325 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3326 { 3327 struct zonelist *zonelist; 3328 gfp_t local_flags; 3329 struct zoneref *z; 3330 struct zone *zone; 3331 enum zone_type high_zoneidx = gfp_zone(flags); 3332 void *obj = NULL; 3333 int nid; 3334 unsigned int cpuset_mems_cookie; 3335 3336 if (flags & __GFP_THISNODE) 3337 return NULL; 3338 3339 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3340 3341 retry_cpuset: 3342 cpuset_mems_cookie = get_mems_allowed(); 3343 zonelist = node_zonelist(slab_node(), flags); 3344 3345 retry: 3346 /* 3347 * Look through allowed nodes for objects available 3348 * from existing per node queues. 3349 */ 3350 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3351 nid = zone_to_nid(zone); 3352 3353 if (cpuset_zone_allowed_hardwall(zone, flags) && 3354 cache->nodelists[nid] && 3355 cache->nodelists[nid]->free_objects) { 3356 obj = ____cache_alloc_node(cache, 3357 flags | GFP_THISNODE, nid); 3358 if (obj) 3359 break; 3360 } 3361 } 3362 3363 if (!obj) { 3364 /* 3365 * This allocation will be performed within the constraints 3366 * of the current cpuset / memory policy requirements. 3367 * We may trigger various forms of reclaim on the allowed 3368 * set and go into memory reserves if necessary. 3369 */ 3370 if (local_flags & __GFP_WAIT) 3371 local_irq_enable(); 3372 kmem_flagcheck(cache, flags); 3373 obj = kmem_getpages(cache, local_flags, numa_mem_id()); 3374 if (local_flags & __GFP_WAIT) 3375 local_irq_disable(); 3376 if (obj) { 3377 /* 3378 * Insert into the appropriate per node queues 3379 */ 3380 nid = page_to_nid(virt_to_page(obj)); 3381 if (cache_grow(cache, flags, nid, obj)) { 3382 obj = ____cache_alloc_node(cache, 3383 flags | GFP_THISNODE, nid); 3384 if (!obj) 3385 /* 3386 * Another processor may allocate the 3387 * objects in the slab since we are 3388 * not holding any locks. 3389 */ 3390 goto retry; 3391 } else { 3392 /* cache_grow already freed obj */ 3393 obj = NULL; 3394 } 3395 } 3396 } 3397 3398 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj)) 3399 goto retry_cpuset; 3400 return obj; 3401 } 3402 3403 /* 3404 * A interface to enable slab creation on nodeid 3405 */ 3406 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3407 int nodeid) 3408 { 3409 struct list_head *entry; 3410 struct slab *slabp; 3411 struct kmem_list3 *l3; 3412 void *obj; 3413 int x; 3414 3415 l3 = cachep->nodelists[nodeid]; 3416 BUG_ON(!l3); 3417 3418 retry: 3419 check_irq_off(); 3420 spin_lock(&l3->list_lock); 3421 entry = l3->slabs_partial.next; 3422 if (entry == &l3->slabs_partial) { 3423 l3->free_touched = 1; 3424 entry = l3->slabs_free.next; 3425 if (entry == &l3->slabs_free) 3426 goto must_grow; 3427 } 3428 3429 slabp = list_entry(entry, struct slab, list); 3430 check_spinlock_acquired_node(cachep, nodeid); 3431 check_slabp(cachep, slabp); 3432 3433 STATS_INC_NODEALLOCS(cachep); 3434 STATS_INC_ACTIVE(cachep); 3435 STATS_SET_HIGH(cachep); 3436 3437 BUG_ON(slabp->inuse == cachep->num); 3438 3439 obj = slab_get_obj(cachep, slabp, nodeid); 3440 check_slabp(cachep, slabp); 3441 l3->free_objects--; 3442 /* move slabp to correct slabp list: */ 3443 list_del(&slabp->list); 3444 3445 if (slabp->free == BUFCTL_END) 3446 list_add(&slabp->list, &l3->slabs_full); 3447 else 3448 list_add(&slabp->list, &l3->slabs_partial); 3449 3450 spin_unlock(&l3->list_lock); 3451 goto done; 3452 3453 must_grow: 3454 spin_unlock(&l3->list_lock); 3455 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3456 if (x) 3457 goto retry; 3458 3459 return fallback_alloc(cachep, flags); 3460 3461 done: 3462 return obj; 3463 } 3464 3465 /** 3466 * kmem_cache_alloc_node - Allocate an object on the specified node 3467 * @cachep: The cache to allocate from. 3468 * @flags: See kmalloc(). 3469 * @nodeid: node number of the target node. 3470 * @caller: return address of caller, used for debug information 3471 * 3472 * Identical to kmem_cache_alloc but it will allocate memory on the given 3473 * node, which can improve the performance for cpu bound structures. 3474 * 3475 * Fallback to other node is possible if __GFP_THISNODE is not set. 3476 */ 3477 static __always_inline void * 3478 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3479 unsigned long caller) 3480 { 3481 unsigned long save_flags; 3482 void *ptr; 3483 int slab_node = numa_mem_id(); 3484 3485 flags &= gfp_allowed_mask; 3486 3487 lockdep_trace_alloc(flags); 3488 3489 if (slab_should_failslab(cachep, flags)) 3490 return NULL; 3491 3492 cachep = memcg_kmem_get_cache(cachep, flags); 3493 3494 cache_alloc_debugcheck_before(cachep, flags); 3495 local_irq_save(save_flags); 3496 3497 if (nodeid == NUMA_NO_NODE) 3498 nodeid = slab_node; 3499 3500 if (unlikely(!cachep->nodelists[nodeid])) { 3501 /* Node not bootstrapped yet */ 3502 ptr = fallback_alloc(cachep, flags); 3503 goto out; 3504 } 3505 3506 if (nodeid == slab_node) { 3507 /* 3508 * Use the locally cached objects if possible. 3509 * However ____cache_alloc does not allow fallback 3510 * to other nodes. It may fail while we still have 3511 * objects on other nodes available. 3512 */ 3513 ptr = ____cache_alloc(cachep, flags); 3514 if (ptr) 3515 goto out; 3516 } 3517 /* ___cache_alloc_node can fall back to other nodes */ 3518 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3519 out: 3520 local_irq_restore(save_flags); 3521 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3522 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags, 3523 flags); 3524 3525 if (likely(ptr)) 3526 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size); 3527 3528 if (unlikely((flags & __GFP_ZERO) && ptr)) 3529 memset(ptr, 0, cachep->object_size); 3530 3531 return ptr; 3532 } 3533 3534 static __always_inline void * 3535 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3536 { 3537 void *objp; 3538 3539 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { 3540 objp = alternate_node_alloc(cache, flags); 3541 if (objp) 3542 goto out; 3543 } 3544 objp = ____cache_alloc(cache, flags); 3545 3546 /* 3547 * We may just have run out of memory on the local node. 3548 * ____cache_alloc_node() knows how to locate memory on other nodes 3549 */ 3550 if (!objp) 3551 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3552 3553 out: 3554 return objp; 3555 } 3556 #else 3557 3558 static __always_inline void * 3559 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3560 { 3561 return ____cache_alloc(cachep, flags); 3562 } 3563 3564 #endif /* CONFIG_NUMA */ 3565 3566 static __always_inline void * 3567 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3568 { 3569 unsigned long save_flags; 3570 void *objp; 3571 3572 flags &= gfp_allowed_mask; 3573 3574 lockdep_trace_alloc(flags); 3575 3576 if (slab_should_failslab(cachep, flags)) 3577 return NULL; 3578 3579 cachep = memcg_kmem_get_cache(cachep, flags); 3580 3581 cache_alloc_debugcheck_before(cachep, flags); 3582 local_irq_save(save_flags); 3583 objp = __do_cache_alloc(cachep, flags); 3584 local_irq_restore(save_flags); 3585 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3586 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags, 3587 flags); 3588 prefetchw(objp); 3589 3590 if (likely(objp)) 3591 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size); 3592 3593 if (unlikely((flags & __GFP_ZERO) && objp)) 3594 memset(objp, 0, cachep->object_size); 3595 3596 return objp; 3597 } 3598 3599 /* 3600 * Caller needs to acquire correct kmem_list's list_lock 3601 */ 3602 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, 3603 int node) 3604 { 3605 int i; 3606 struct kmem_list3 *l3; 3607 3608 for (i = 0; i < nr_objects; i++) { 3609 void *objp; 3610 struct slab *slabp; 3611 3612 clear_obj_pfmemalloc(&objpp[i]); 3613 objp = objpp[i]; 3614 3615 slabp = virt_to_slab(objp); 3616 l3 = cachep->nodelists[node]; 3617 list_del(&slabp->list); 3618 check_spinlock_acquired_node(cachep, node); 3619 check_slabp(cachep, slabp); 3620 slab_put_obj(cachep, slabp, objp, node); 3621 STATS_DEC_ACTIVE(cachep); 3622 l3->free_objects++; 3623 check_slabp(cachep, slabp); 3624 3625 /* fixup slab chains */ 3626 if (slabp->inuse == 0) { 3627 if (l3->free_objects > l3->free_limit) { 3628 l3->free_objects -= cachep->num; 3629 /* No need to drop any previously held 3630 * lock here, even if we have a off-slab slab 3631 * descriptor it is guaranteed to come from 3632 * a different cache, refer to comments before 3633 * alloc_slabmgmt. 3634 */ 3635 slab_destroy(cachep, slabp); 3636 } else { 3637 list_add(&slabp->list, &l3->slabs_free); 3638 } 3639 } else { 3640 /* Unconditionally move a slab to the end of the 3641 * partial list on free - maximum time for the 3642 * other objects to be freed, too. 3643 */ 3644 list_add_tail(&slabp->list, &l3->slabs_partial); 3645 } 3646 } 3647 } 3648 3649 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3650 { 3651 int batchcount; 3652 struct kmem_list3 *l3; 3653 int node = numa_mem_id(); 3654 3655 batchcount = ac->batchcount; 3656 #if DEBUG 3657 BUG_ON(!batchcount || batchcount > ac->avail); 3658 #endif 3659 check_irq_off(); 3660 l3 = cachep->nodelists[node]; 3661 spin_lock(&l3->list_lock); 3662 if (l3->shared) { 3663 struct array_cache *shared_array = l3->shared; 3664 int max = shared_array->limit - shared_array->avail; 3665 if (max) { 3666 if (batchcount > max) 3667 batchcount = max; 3668 memcpy(&(shared_array->entry[shared_array->avail]), 3669 ac->entry, sizeof(void *) * batchcount); 3670 shared_array->avail += batchcount; 3671 goto free_done; 3672 } 3673 } 3674 3675 free_block(cachep, ac->entry, batchcount, node); 3676 free_done: 3677 #if STATS 3678 { 3679 int i = 0; 3680 struct list_head *p; 3681 3682 p = l3->slabs_free.next; 3683 while (p != &(l3->slabs_free)) { 3684 struct slab *slabp; 3685 3686 slabp = list_entry(p, struct slab, list); 3687 BUG_ON(slabp->inuse); 3688 3689 i++; 3690 p = p->next; 3691 } 3692 STATS_SET_FREEABLE(cachep, i); 3693 } 3694 #endif 3695 spin_unlock(&l3->list_lock); 3696 ac->avail -= batchcount; 3697 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3698 } 3699 3700 /* 3701 * Release an obj back to its cache. If the obj has a constructed state, it must 3702 * be in this state _before_ it is released. Called with disabled ints. 3703 */ 3704 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3705 unsigned long caller) 3706 { 3707 struct array_cache *ac = cpu_cache_get(cachep); 3708 3709 check_irq_off(); 3710 kmemleak_free_recursive(objp, cachep->flags); 3711 objp = cache_free_debugcheck(cachep, objp, caller); 3712 3713 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3714 3715 /* 3716 * Skip calling cache_free_alien() when the platform is not numa. 3717 * This will avoid cache misses that happen while accessing slabp (which 3718 * is per page memory reference) to get nodeid. Instead use a global 3719 * variable to skip the call, which is mostly likely to be present in 3720 * the cache. 3721 */ 3722 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3723 return; 3724 3725 if (likely(ac->avail < ac->limit)) { 3726 STATS_INC_FREEHIT(cachep); 3727 } else { 3728 STATS_INC_FREEMISS(cachep); 3729 cache_flusharray(cachep, ac); 3730 } 3731 3732 ac_put_obj(cachep, ac, objp); 3733 } 3734 3735 /** 3736 * kmem_cache_alloc - Allocate an object 3737 * @cachep: The cache to allocate from. 3738 * @flags: See kmalloc(). 3739 * 3740 * Allocate an object from this cache. The flags are only relevant 3741 * if the cache has no available objects. 3742 */ 3743 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3744 { 3745 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3746 3747 trace_kmem_cache_alloc(_RET_IP_, ret, 3748 cachep->object_size, cachep->size, flags); 3749 3750 return ret; 3751 } 3752 EXPORT_SYMBOL(kmem_cache_alloc); 3753 3754 #ifdef CONFIG_TRACING 3755 void * 3756 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3757 { 3758 void *ret; 3759 3760 ret = slab_alloc(cachep, flags, _RET_IP_); 3761 3762 trace_kmalloc(_RET_IP_, ret, 3763 size, cachep->size, flags); 3764 return ret; 3765 } 3766 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3767 #endif 3768 3769 #ifdef CONFIG_NUMA 3770 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3771 { 3772 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3773 3774 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3775 cachep->object_size, cachep->size, 3776 flags, nodeid); 3777 3778 return ret; 3779 } 3780 EXPORT_SYMBOL(kmem_cache_alloc_node); 3781 3782 #ifdef CONFIG_TRACING 3783 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3784 gfp_t flags, 3785 int nodeid, 3786 size_t size) 3787 { 3788 void *ret; 3789 3790 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3791 3792 trace_kmalloc_node(_RET_IP_, ret, 3793 size, cachep->size, 3794 flags, nodeid); 3795 return ret; 3796 } 3797 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3798 #endif 3799 3800 static __always_inline void * 3801 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3802 { 3803 struct kmem_cache *cachep; 3804 3805 cachep = kmem_find_general_cachep(size, flags); 3806 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3807 return cachep; 3808 return kmem_cache_alloc_node_trace(cachep, flags, node, size); 3809 } 3810 3811 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3812 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3813 { 3814 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3815 } 3816 EXPORT_SYMBOL(__kmalloc_node); 3817 3818 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3819 int node, unsigned long caller) 3820 { 3821 return __do_kmalloc_node(size, flags, node, caller); 3822 } 3823 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3824 #else 3825 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3826 { 3827 return __do_kmalloc_node(size, flags, node, 0); 3828 } 3829 EXPORT_SYMBOL(__kmalloc_node); 3830 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ 3831 #endif /* CONFIG_NUMA */ 3832 3833 /** 3834 * __do_kmalloc - allocate memory 3835 * @size: how many bytes of memory are required. 3836 * @flags: the type of memory to allocate (see kmalloc). 3837 * @caller: function caller for debug tracking of the caller 3838 */ 3839 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3840 unsigned long caller) 3841 { 3842 struct kmem_cache *cachep; 3843 void *ret; 3844 3845 /* If you want to save a few bytes .text space: replace 3846 * __ with kmem_. 3847 * Then kmalloc uses the uninlined functions instead of the inline 3848 * functions. 3849 */ 3850 cachep = __find_general_cachep(size, flags); 3851 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3852 return cachep; 3853 ret = slab_alloc(cachep, flags, caller); 3854 3855 trace_kmalloc(caller, ret, 3856 size, cachep->size, flags); 3857 3858 return ret; 3859 } 3860 3861 3862 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3863 void *__kmalloc(size_t size, gfp_t flags) 3864 { 3865 return __do_kmalloc(size, flags, _RET_IP_); 3866 } 3867 EXPORT_SYMBOL(__kmalloc); 3868 3869 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3870 { 3871 return __do_kmalloc(size, flags, caller); 3872 } 3873 EXPORT_SYMBOL(__kmalloc_track_caller); 3874 3875 #else 3876 void *__kmalloc(size_t size, gfp_t flags) 3877 { 3878 return __do_kmalloc(size, flags, 0); 3879 } 3880 EXPORT_SYMBOL(__kmalloc); 3881 #endif 3882 3883 /** 3884 * kmem_cache_free - Deallocate an object 3885 * @cachep: The cache the allocation was from. 3886 * @objp: The previously allocated object. 3887 * 3888 * Free an object which was previously allocated from this 3889 * cache. 3890 */ 3891 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3892 { 3893 unsigned long flags; 3894 cachep = cache_from_obj(cachep, objp); 3895 if (!cachep) 3896 return; 3897 3898 local_irq_save(flags); 3899 debug_check_no_locks_freed(objp, cachep->object_size); 3900 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3901 debug_check_no_obj_freed(objp, cachep->object_size); 3902 __cache_free(cachep, objp, _RET_IP_); 3903 local_irq_restore(flags); 3904 3905 trace_kmem_cache_free(_RET_IP_, objp); 3906 } 3907 EXPORT_SYMBOL(kmem_cache_free); 3908 3909 /** 3910 * kfree - free previously allocated memory 3911 * @objp: pointer returned by kmalloc. 3912 * 3913 * If @objp is NULL, no operation is performed. 3914 * 3915 * Don't free memory not originally allocated by kmalloc() 3916 * or you will run into trouble. 3917 */ 3918 void kfree(const void *objp) 3919 { 3920 struct kmem_cache *c; 3921 unsigned long flags; 3922 3923 trace_kfree(_RET_IP_, objp); 3924 3925 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3926 return; 3927 local_irq_save(flags); 3928 kfree_debugcheck(objp); 3929 c = virt_to_cache(objp); 3930 debug_check_no_locks_freed(objp, c->object_size); 3931 3932 debug_check_no_obj_freed(objp, c->object_size); 3933 __cache_free(c, (void *)objp, _RET_IP_); 3934 local_irq_restore(flags); 3935 } 3936 EXPORT_SYMBOL(kfree); 3937 3938 /* 3939 * This initializes kmem_list3 or resizes various caches for all nodes. 3940 */ 3941 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) 3942 { 3943 int node; 3944 struct kmem_list3 *l3; 3945 struct array_cache *new_shared; 3946 struct array_cache **new_alien = NULL; 3947 3948 for_each_online_node(node) { 3949 3950 if (use_alien_caches) { 3951 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 3952 if (!new_alien) 3953 goto fail; 3954 } 3955 3956 new_shared = NULL; 3957 if (cachep->shared) { 3958 new_shared = alloc_arraycache(node, 3959 cachep->shared*cachep->batchcount, 3960 0xbaadf00d, gfp); 3961 if (!new_shared) { 3962 free_alien_cache(new_alien); 3963 goto fail; 3964 } 3965 } 3966 3967 l3 = cachep->nodelists[node]; 3968 if (l3) { 3969 struct array_cache *shared = l3->shared; 3970 3971 spin_lock_irq(&l3->list_lock); 3972 3973 if (shared) 3974 free_block(cachep, shared->entry, 3975 shared->avail, node); 3976 3977 l3->shared = new_shared; 3978 if (!l3->alien) { 3979 l3->alien = new_alien; 3980 new_alien = NULL; 3981 } 3982 l3->free_limit = (1 + nr_cpus_node(node)) * 3983 cachep->batchcount + cachep->num; 3984 spin_unlock_irq(&l3->list_lock); 3985 kfree(shared); 3986 free_alien_cache(new_alien); 3987 continue; 3988 } 3989 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); 3990 if (!l3) { 3991 free_alien_cache(new_alien); 3992 kfree(new_shared); 3993 goto fail; 3994 } 3995 3996 kmem_list3_init(l3); 3997 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 3998 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 3999 l3->shared = new_shared; 4000 l3->alien = new_alien; 4001 l3->free_limit = (1 + nr_cpus_node(node)) * 4002 cachep->batchcount + cachep->num; 4003 cachep->nodelists[node] = l3; 4004 } 4005 return 0; 4006 4007 fail: 4008 if (!cachep->list.next) { 4009 /* Cache is not active yet. Roll back what we did */ 4010 node--; 4011 while (node >= 0) { 4012 if (cachep->nodelists[node]) { 4013 l3 = cachep->nodelists[node]; 4014 4015 kfree(l3->shared); 4016 free_alien_cache(l3->alien); 4017 kfree(l3); 4018 cachep->nodelists[node] = NULL; 4019 } 4020 node--; 4021 } 4022 } 4023 return -ENOMEM; 4024 } 4025 4026 struct ccupdate_struct { 4027 struct kmem_cache *cachep; 4028 struct array_cache *new[0]; 4029 }; 4030 4031 static void do_ccupdate_local(void *info) 4032 { 4033 struct ccupdate_struct *new = info; 4034 struct array_cache *old; 4035 4036 check_irq_off(); 4037 old = cpu_cache_get(new->cachep); 4038 4039 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 4040 new->new[smp_processor_id()] = old; 4041 } 4042 4043 /* Always called with the slab_mutex held */ 4044 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 4045 int batchcount, int shared, gfp_t gfp) 4046 { 4047 struct ccupdate_struct *new; 4048 int i; 4049 4050 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *), 4051 gfp); 4052 if (!new) 4053 return -ENOMEM; 4054 4055 for_each_online_cpu(i) { 4056 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, 4057 batchcount, gfp); 4058 if (!new->new[i]) { 4059 for (i--; i >= 0; i--) 4060 kfree(new->new[i]); 4061 kfree(new); 4062 return -ENOMEM; 4063 } 4064 } 4065 new->cachep = cachep; 4066 4067 on_each_cpu(do_ccupdate_local, (void *)new, 1); 4068 4069 check_irq_on(); 4070 cachep->batchcount = batchcount; 4071 cachep->limit = limit; 4072 cachep->shared = shared; 4073 4074 for_each_online_cpu(i) { 4075 struct array_cache *ccold = new->new[i]; 4076 if (!ccold) 4077 continue; 4078 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); 4079 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); 4080 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); 4081 kfree(ccold); 4082 } 4083 kfree(new); 4084 return alloc_kmemlist(cachep, gfp); 4085 } 4086 4087 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 4088 int batchcount, int shared, gfp_t gfp) 4089 { 4090 int ret; 4091 struct kmem_cache *c = NULL; 4092 int i = 0; 4093 4094 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 4095 4096 if (slab_state < FULL) 4097 return ret; 4098 4099 if ((ret < 0) || !is_root_cache(cachep)) 4100 return ret; 4101 4102 VM_BUG_ON(!mutex_is_locked(&slab_mutex)); 4103 for_each_memcg_cache_index(i) { 4104 c = cache_from_memcg(cachep, i); 4105 if (c) 4106 /* return value determined by the parent cache only */ 4107 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 4108 } 4109 4110 return ret; 4111 } 4112 4113 /* Called with slab_mutex held always */ 4114 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 4115 { 4116 int err; 4117 int limit = 0; 4118 int shared = 0; 4119 int batchcount = 0; 4120 4121 if (!is_root_cache(cachep)) { 4122 struct kmem_cache *root = memcg_root_cache(cachep); 4123 limit = root->limit; 4124 shared = root->shared; 4125 batchcount = root->batchcount; 4126 } 4127 4128 if (limit && shared && batchcount) 4129 goto skip_setup; 4130 /* 4131 * The head array serves three purposes: 4132 * - create a LIFO ordering, i.e. return objects that are cache-warm 4133 * - reduce the number of spinlock operations. 4134 * - reduce the number of linked list operations on the slab and 4135 * bufctl chains: array operations are cheaper. 4136 * The numbers are guessed, we should auto-tune as described by 4137 * Bonwick. 4138 */ 4139 if (cachep->size > 131072) 4140 limit = 1; 4141 else if (cachep->size > PAGE_SIZE) 4142 limit = 8; 4143 else if (cachep->size > 1024) 4144 limit = 24; 4145 else if (cachep->size > 256) 4146 limit = 54; 4147 else 4148 limit = 120; 4149 4150 /* 4151 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 4152 * allocation behaviour: Most allocs on one cpu, most free operations 4153 * on another cpu. For these cases, an efficient object passing between 4154 * cpus is necessary. This is provided by a shared array. The array 4155 * replaces Bonwick's magazine layer. 4156 * On uniprocessor, it's functionally equivalent (but less efficient) 4157 * to a larger limit. Thus disabled by default. 4158 */ 4159 shared = 0; 4160 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 4161 shared = 8; 4162 4163 #if DEBUG 4164 /* 4165 * With debugging enabled, large batchcount lead to excessively long 4166 * periods with disabled local interrupts. Limit the batchcount 4167 */ 4168 if (limit > 32) 4169 limit = 32; 4170 #endif 4171 batchcount = (limit + 1) / 2; 4172 skip_setup: 4173 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 4174 if (err) 4175 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 4176 cachep->name, -err); 4177 return err; 4178 } 4179 4180 /* 4181 * Drain an array if it contains any elements taking the l3 lock only if 4182 * necessary. Note that the l3 listlock also protects the array_cache 4183 * if drain_array() is used on the shared array. 4184 */ 4185 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 4186 struct array_cache *ac, int force, int node) 4187 { 4188 int tofree; 4189 4190 if (!ac || !ac->avail) 4191 return; 4192 if (ac->touched && !force) { 4193 ac->touched = 0; 4194 } else { 4195 spin_lock_irq(&l3->list_lock); 4196 if (ac->avail) { 4197 tofree = force ? ac->avail : (ac->limit + 4) / 5; 4198 if (tofree > ac->avail) 4199 tofree = (ac->avail + 1) / 2; 4200 free_block(cachep, ac->entry, tofree, node); 4201 ac->avail -= tofree; 4202 memmove(ac->entry, &(ac->entry[tofree]), 4203 sizeof(void *) * ac->avail); 4204 } 4205 spin_unlock_irq(&l3->list_lock); 4206 } 4207 } 4208 4209 /** 4210 * cache_reap - Reclaim memory from caches. 4211 * @w: work descriptor 4212 * 4213 * Called from workqueue/eventd every few seconds. 4214 * Purpose: 4215 * - clear the per-cpu caches for this CPU. 4216 * - return freeable pages to the main free memory pool. 4217 * 4218 * If we cannot acquire the cache chain mutex then just give up - we'll try 4219 * again on the next iteration. 4220 */ 4221 static void cache_reap(struct work_struct *w) 4222 { 4223 struct kmem_cache *searchp; 4224 struct kmem_list3 *l3; 4225 int node = numa_mem_id(); 4226 struct delayed_work *work = to_delayed_work(w); 4227 4228 if (!mutex_trylock(&slab_mutex)) 4229 /* Give up. Setup the next iteration. */ 4230 goto out; 4231 4232 list_for_each_entry(searchp, &slab_caches, list) { 4233 check_irq_on(); 4234 4235 /* 4236 * We only take the l3 lock if absolutely necessary and we 4237 * have established with reasonable certainty that 4238 * we can do some work if the lock was obtained. 4239 */ 4240 l3 = searchp->nodelists[node]; 4241 4242 reap_alien(searchp, l3); 4243 4244 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); 4245 4246 /* 4247 * These are racy checks but it does not matter 4248 * if we skip one check or scan twice. 4249 */ 4250 if (time_after(l3->next_reap, jiffies)) 4251 goto next; 4252 4253 l3->next_reap = jiffies + REAPTIMEOUT_LIST3; 4254 4255 drain_array(searchp, l3, l3->shared, 0, node); 4256 4257 if (l3->free_touched) 4258 l3->free_touched = 0; 4259 else { 4260 int freed; 4261 4262 freed = drain_freelist(searchp, l3, (l3->free_limit + 4263 5 * searchp->num - 1) / (5 * searchp->num)); 4264 STATS_ADD_REAPED(searchp, freed); 4265 } 4266 next: 4267 cond_resched(); 4268 } 4269 check_irq_on(); 4270 mutex_unlock(&slab_mutex); 4271 next_reap_node(); 4272 out: 4273 /* Set up the next iteration */ 4274 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); 4275 } 4276 4277 #ifdef CONFIG_SLABINFO 4278 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4279 { 4280 struct slab *slabp; 4281 unsigned long active_objs; 4282 unsigned long num_objs; 4283 unsigned long active_slabs = 0; 4284 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4285 const char *name; 4286 char *error = NULL; 4287 int node; 4288 struct kmem_list3 *l3; 4289 4290 active_objs = 0; 4291 num_slabs = 0; 4292 for_each_online_node(node) { 4293 l3 = cachep->nodelists[node]; 4294 if (!l3) 4295 continue; 4296 4297 check_irq_on(); 4298 spin_lock_irq(&l3->list_lock); 4299 4300 list_for_each_entry(slabp, &l3->slabs_full, list) { 4301 if (slabp->inuse != cachep->num && !error) 4302 error = "slabs_full accounting error"; 4303 active_objs += cachep->num; 4304 active_slabs++; 4305 } 4306 list_for_each_entry(slabp, &l3->slabs_partial, list) { 4307 if (slabp->inuse == cachep->num && !error) 4308 error = "slabs_partial inuse accounting error"; 4309 if (!slabp->inuse && !error) 4310 error = "slabs_partial/inuse accounting error"; 4311 active_objs += slabp->inuse; 4312 active_slabs++; 4313 } 4314 list_for_each_entry(slabp, &l3->slabs_free, list) { 4315 if (slabp->inuse && !error) 4316 error = "slabs_free/inuse accounting error"; 4317 num_slabs++; 4318 } 4319 free_objects += l3->free_objects; 4320 if (l3->shared) 4321 shared_avail += l3->shared->avail; 4322 4323 spin_unlock_irq(&l3->list_lock); 4324 } 4325 num_slabs += active_slabs; 4326 num_objs = num_slabs * cachep->num; 4327 if (num_objs - active_objs != free_objects && !error) 4328 error = "free_objects accounting error"; 4329 4330 name = cachep->name; 4331 if (error) 4332 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 4333 4334 sinfo->active_objs = active_objs; 4335 sinfo->num_objs = num_objs; 4336 sinfo->active_slabs = active_slabs; 4337 sinfo->num_slabs = num_slabs; 4338 sinfo->shared_avail = shared_avail; 4339 sinfo->limit = cachep->limit; 4340 sinfo->batchcount = cachep->batchcount; 4341 sinfo->shared = cachep->shared; 4342 sinfo->objects_per_slab = cachep->num; 4343 sinfo->cache_order = cachep->gfporder; 4344 } 4345 4346 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4347 { 4348 #if STATS 4349 { /* list3 stats */ 4350 unsigned long high = cachep->high_mark; 4351 unsigned long allocs = cachep->num_allocations; 4352 unsigned long grown = cachep->grown; 4353 unsigned long reaped = cachep->reaped; 4354 unsigned long errors = cachep->errors; 4355 unsigned long max_freeable = cachep->max_freeable; 4356 unsigned long node_allocs = cachep->node_allocs; 4357 unsigned long node_frees = cachep->node_frees; 4358 unsigned long overflows = cachep->node_overflow; 4359 4360 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " 4361 "%4lu %4lu %4lu %4lu %4lu", 4362 allocs, high, grown, 4363 reaped, errors, max_freeable, node_allocs, 4364 node_frees, overflows); 4365 } 4366 /* cpu stats */ 4367 { 4368 unsigned long allochit = atomic_read(&cachep->allochit); 4369 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4370 unsigned long freehit = atomic_read(&cachep->freehit); 4371 unsigned long freemiss = atomic_read(&cachep->freemiss); 4372 4373 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4374 allochit, allocmiss, freehit, freemiss); 4375 } 4376 #endif 4377 } 4378 4379 #define MAX_SLABINFO_WRITE 128 4380 /** 4381 * slabinfo_write - Tuning for the slab allocator 4382 * @file: unused 4383 * @buffer: user buffer 4384 * @count: data length 4385 * @ppos: unused 4386 */ 4387 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4388 size_t count, loff_t *ppos) 4389 { 4390 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4391 int limit, batchcount, shared, res; 4392 struct kmem_cache *cachep; 4393 4394 if (count > MAX_SLABINFO_WRITE) 4395 return -EINVAL; 4396 if (copy_from_user(&kbuf, buffer, count)) 4397 return -EFAULT; 4398 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4399 4400 tmp = strchr(kbuf, ' '); 4401 if (!tmp) 4402 return -EINVAL; 4403 *tmp = '\0'; 4404 tmp++; 4405 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4406 return -EINVAL; 4407 4408 /* Find the cache in the chain of caches. */ 4409 mutex_lock(&slab_mutex); 4410 res = -EINVAL; 4411 list_for_each_entry(cachep, &slab_caches, list) { 4412 if (!strcmp(cachep->name, kbuf)) { 4413 if (limit < 1 || batchcount < 1 || 4414 batchcount > limit || shared < 0) { 4415 res = 0; 4416 } else { 4417 res = do_tune_cpucache(cachep, limit, 4418 batchcount, shared, 4419 GFP_KERNEL); 4420 } 4421 break; 4422 } 4423 } 4424 mutex_unlock(&slab_mutex); 4425 if (res >= 0) 4426 res = count; 4427 return res; 4428 } 4429 4430 #ifdef CONFIG_DEBUG_SLAB_LEAK 4431 4432 static void *leaks_start(struct seq_file *m, loff_t *pos) 4433 { 4434 mutex_lock(&slab_mutex); 4435 return seq_list_start(&slab_caches, *pos); 4436 } 4437 4438 static inline int add_caller(unsigned long *n, unsigned long v) 4439 { 4440 unsigned long *p; 4441 int l; 4442 if (!v) 4443 return 1; 4444 l = n[1]; 4445 p = n + 2; 4446 while (l) { 4447 int i = l/2; 4448 unsigned long *q = p + 2 * i; 4449 if (*q == v) { 4450 q[1]++; 4451 return 1; 4452 } 4453 if (*q > v) { 4454 l = i; 4455 } else { 4456 p = q + 2; 4457 l -= i + 1; 4458 } 4459 } 4460 if (++n[1] == n[0]) 4461 return 0; 4462 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4463 p[0] = v; 4464 p[1] = 1; 4465 return 1; 4466 } 4467 4468 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) 4469 { 4470 void *p; 4471 int i; 4472 if (n[0] == n[1]) 4473 return; 4474 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) { 4475 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) 4476 continue; 4477 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4478 return; 4479 } 4480 } 4481 4482 static void show_symbol(struct seq_file *m, unsigned long address) 4483 { 4484 #ifdef CONFIG_KALLSYMS 4485 unsigned long offset, size; 4486 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4487 4488 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4489 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4490 if (modname[0]) 4491 seq_printf(m, " [%s]", modname); 4492 return; 4493 } 4494 #endif 4495 seq_printf(m, "%p", (void *)address); 4496 } 4497 4498 static int leaks_show(struct seq_file *m, void *p) 4499 { 4500 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4501 struct slab *slabp; 4502 struct kmem_list3 *l3; 4503 const char *name; 4504 unsigned long *n = m->private; 4505 int node; 4506 int i; 4507 4508 if (!(cachep->flags & SLAB_STORE_USER)) 4509 return 0; 4510 if (!(cachep->flags & SLAB_RED_ZONE)) 4511 return 0; 4512 4513 /* OK, we can do it */ 4514 4515 n[1] = 0; 4516 4517 for_each_online_node(node) { 4518 l3 = cachep->nodelists[node]; 4519 if (!l3) 4520 continue; 4521 4522 check_irq_on(); 4523 spin_lock_irq(&l3->list_lock); 4524 4525 list_for_each_entry(slabp, &l3->slabs_full, list) 4526 handle_slab(n, cachep, slabp); 4527 list_for_each_entry(slabp, &l3->slabs_partial, list) 4528 handle_slab(n, cachep, slabp); 4529 spin_unlock_irq(&l3->list_lock); 4530 } 4531 name = cachep->name; 4532 if (n[0] == n[1]) { 4533 /* Increase the buffer size */ 4534 mutex_unlock(&slab_mutex); 4535 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4536 if (!m->private) { 4537 /* Too bad, we are really out */ 4538 m->private = n; 4539 mutex_lock(&slab_mutex); 4540 return -ENOMEM; 4541 } 4542 *(unsigned long *)m->private = n[0] * 2; 4543 kfree(n); 4544 mutex_lock(&slab_mutex); 4545 /* Now make sure this entry will be retried */ 4546 m->count = m->size; 4547 return 0; 4548 } 4549 for (i = 0; i < n[1]; i++) { 4550 seq_printf(m, "%s: %lu ", name, n[2*i+3]); 4551 show_symbol(m, n[2*i+2]); 4552 seq_putc(m, '\n'); 4553 } 4554 4555 return 0; 4556 } 4557 4558 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4559 { 4560 return seq_list_next(p, &slab_caches, pos); 4561 } 4562 4563 static void s_stop(struct seq_file *m, void *p) 4564 { 4565 mutex_unlock(&slab_mutex); 4566 } 4567 4568 static const struct seq_operations slabstats_op = { 4569 .start = leaks_start, 4570 .next = s_next, 4571 .stop = s_stop, 4572 .show = leaks_show, 4573 }; 4574 4575 static int slabstats_open(struct inode *inode, struct file *file) 4576 { 4577 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); 4578 int ret = -ENOMEM; 4579 if (n) { 4580 ret = seq_open(file, &slabstats_op); 4581 if (!ret) { 4582 struct seq_file *m = file->private_data; 4583 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4584 m->private = n; 4585 n = NULL; 4586 } 4587 kfree(n); 4588 } 4589 return ret; 4590 } 4591 4592 static const struct file_operations proc_slabstats_operations = { 4593 .open = slabstats_open, 4594 .read = seq_read, 4595 .llseek = seq_lseek, 4596 .release = seq_release_private, 4597 }; 4598 #endif 4599 4600 static int __init slab_proc_init(void) 4601 { 4602 #ifdef CONFIG_DEBUG_SLAB_LEAK 4603 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4604 #endif 4605 return 0; 4606 } 4607 module_init(slab_proc_init); 4608 #endif 4609 4610 /** 4611 * ksize - get the actual amount of memory allocated for a given object 4612 * @objp: Pointer to the object 4613 * 4614 * kmalloc may internally round up allocations and return more memory 4615 * than requested. ksize() can be used to determine the actual amount of 4616 * memory allocated. The caller may use this additional memory, even though 4617 * a smaller amount of memory was initially specified with the kmalloc call. 4618 * The caller must guarantee that objp points to a valid object previously 4619 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4620 * must not be freed during the duration of the call. 4621 */ 4622 size_t ksize(const void *objp) 4623 { 4624 BUG_ON(!objp); 4625 if (unlikely(objp == ZERO_SIZE_PTR)) 4626 return 0; 4627 4628 return virt_to_cache(objp)->object_size; 4629 } 4630 EXPORT_SYMBOL(ksize); 4631