xref: /openbmc/linux/mm/slab.c (revision 54cbac81)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 /*
161  * true if a page was allocated from pfmemalloc reserves for network-based
162  * swap
163  */
164 static bool pfmemalloc_active __read_mostly;
165 
166 /*
167  * kmem_bufctl_t:
168  *
169  * Bufctl's are used for linking objs within a slab
170  * linked offsets.
171  *
172  * This implementation relies on "struct page" for locating the cache &
173  * slab an object belongs to.
174  * This allows the bufctl structure to be small (one int), but limits
175  * the number of objects a slab (not a cache) can contain when off-slab
176  * bufctls are used. The limit is the size of the largest general cache
177  * that does not use off-slab slabs.
178  * For 32bit archs with 4 kB pages, is this 56.
179  * This is not serious, as it is only for large objects, when it is unwise
180  * to have too many per slab.
181  * Note: This limit can be raised by introducing a general cache whose size
182  * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183  */
184 
185 typedef unsigned int kmem_bufctl_t;
186 #define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
187 #define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
188 #define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
189 #define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
190 
191 /*
192  * struct slab_rcu
193  *
194  * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195  * arrange for kmem_freepages to be called via RCU.  This is useful if
196  * we need to approach a kernel structure obliquely, from its address
197  * obtained without the usual locking.  We can lock the structure to
198  * stabilize it and check it's still at the given address, only if we
199  * can be sure that the memory has not been meanwhile reused for some
200  * other kind of object (which our subsystem's lock might corrupt).
201  *
202  * rcu_read_lock before reading the address, then rcu_read_unlock after
203  * taking the spinlock within the structure expected at that address.
204  */
205 struct slab_rcu {
206 	struct rcu_head head;
207 	struct kmem_cache *cachep;
208 	void *addr;
209 };
210 
211 /*
212  * struct slab
213  *
214  * Manages the objs in a slab. Placed either at the beginning of mem allocated
215  * for a slab, or allocated from an general cache.
216  * Slabs are chained into three list: fully used, partial, fully free slabs.
217  */
218 struct slab {
219 	union {
220 		struct {
221 			struct list_head list;
222 			unsigned long colouroff;
223 			void *s_mem;		/* including colour offset */
224 			unsigned int inuse;	/* num of objs active in slab */
225 			kmem_bufctl_t free;
226 			unsigned short nodeid;
227 		};
228 		struct slab_rcu __slab_cover_slab_rcu;
229 	};
230 };
231 
232 /*
233  * struct array_cache
234  *
235  * Purpose:
236  * - LIFO ordering, to hand out cache-warm objects from _alloc
237  * - reduce the number of linked list operations
238  * - reduce spinlock operations
239  *
240  * The limit is stored in the per-cpu structure to reduce the data cache
241  * footprint.
242  *
243  */
244 struct array_cache {
245 	unsigned int avail;
246 	unsigned int limit;
247 	unsigned int batchcount;
248 	unsigned int touched;
249 	spinlock_t lock;
250 	void *entry[];	/*
251 			 * Must have this definition in here for the proper
252 			 * alignment of array_cache. Also simplifies accessing
253 			 * the entries.
254 			 *
255 			 * Entries should not be directly dereferenced as
256 			 * entries belonging to slabs marked pfmemalloc will
257 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
258 			 */
259 };
260 
261 #define SLAB_OBJ_PFMEMALLOC	1
262 static inline bool is_obj_pfmemalloc(void *objp)
263 {
264 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265 }
266 
267 static inline void set_obj_pfmemalloc(void **objp)
268 {
269 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 	return;
271 }
272 
273 static inline void clear_obj_pfmemalloc(void **objp)
274 {
275 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276 }
277 
278 /*
279  * bootstrap: The caches do not work without cpuarrays anymore, but the
280  * cpuarrays are allocated from the generic caches...
281  */
282 #define BOOT_CPUCACHE_ENTRIES	1
283 struct arraycache_init {
284 	struct array_cache cache;
285 	void *entries[BOOT_CPUCACHE_ENTRIES];
286 };
287 
288 /*
289  * The slab lists for all objects.
290  */
291 struct kmem_list3 {
292 	struct list_head slabs_partial;	/* partial list first, better asm code */
293 	struct list_head slabs_full;
294 	struct list_head slabs_free;
295 	unsigned long free_objects;
296 	unsigned int free_limit;
297 	unsigned int colour_next;	/* Per-node cache coloring */
298 	spinlock_t list_lock;
299 	struct array_cache *shared;	/* shared per node */
300 	struct array_cache **alien;	/* on other nodes */
301 	unsigned long next_reap;	/* updated without locking */
302 	int free_touched;		/* updated without locking */
303 };
304 
305 /*
306  * Need this for bootstrapping a per node allocator.
307  */
308 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
309 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310 #define	CACHE_CACHE 0
311 #define	SIZE_AC MAX_NUMNODES
312 #define	SIZE_L3 (2 * MAX_NUMNODES)
313 
314 static int drain_freelist(struct kmem_cache *cache,
315 			struct kmem_list3 *l3, int tofree);
316 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 			int node);
318 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
319 static void cache_reap(struct work_struct *unused);
320 
321 /*
322  * This function must be completely optimized away if a constant is passed to
323  * it.  Mostly the same as what is in linux/slab.h except it returns an index.
324  */
325 static __always_inline int index_of(const size_t size)
326 {
327 	extern void __bad_size(void);
328 
329 	if (__builtin_constant_p(size)) {
330 		int i = 0;
331 
332 #define CACHE(x) \
333 	if (size <=x) \
334 		return i; \
335 	else \
336 		i++;
337 #include <linux/kmalloc_sizes.h>
338 #undef CACHE
339 		__bad_size();
340 	} else
341 		__bad_size();
342 	return 0;
343 }
344 
345 static int slab_early_init = 1;
346 
347 #define INDEX_AC index_of(sizeof(struct arraycache_init))
348 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 
350 static void kmem_list3_init(struct kmem_list3 *parent)
351 {
352 	INIT_LIST_HEAD(&parent->slabs_full);
353 	INIT_LIST_HEAD(&parent->slabs_partial);
354 	INIT_LIST_HEAD(&parent->slabs_free);
355 	parent->shared = NULL;
356 	parent->alien = NULL;
357 	parent->colour_next = 0;
358 	spin_lock_init(&parent->list_lock);
359 	parent->free_objects = 0;
360 	parent->free_touched = 0;
361 }
362 
363 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
364 	do {								\
365 		INIT_LIST_HEAD(listp);					\
366 		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
367 	} while (0)
368 
369 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
370 	do {								\
371 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
372 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
374 	} while (0)
375 
376 #define CFLGS_OFF_SLAB		(0x80000000UL)
377 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
378 
379 #define BATCHREFILL_LIMIT	16
380 /*
381  * Optimization question: fewer reaps means less probability for unnessary
382  * cpucache drain/refill cycles.
383  *
384  * OTOH the cpuarrays can contain lots of objects,
385  * which could lock up otherwise freeable slabs.
386  */
387 #define REAPTIMEOUT_CPUC	(2*HZ)
388 #define REAPTIMEOUT_LIST3	(4*HZ)
389 
390 #if STATS
391 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
392 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
393 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
394 #define	STATS_INC_GROWN(x)	((x)->grown++)
395 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
396 #define	STATS_SET_HIGH(x)						\
397 	do {								\
398 		if ((x)->num_active > (x)->high_mark)			\
399 			(x)->high_mark = (x)->num_active;		\
400 	} while (0)
401 #define	STATS_INC_ERR(x)	((x)->errors++)
402 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
403 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
404 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
405 #define	STATS_SET_FREEABLE(x, i)					\
406 	do {								\
407 		if ((x)->max_freeable < i)				\
408 			(x)->max_freeable = i;				\
409 	} while (0)
410 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
411 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
412 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
413 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
414 #else
415 #define	STATS_INC_ACTIVE(x)	do { } while (0)
416 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
417 #define	STATS_INC_ALLOCED(x)	do { } while (0)
418 #define	STATS_INC_GROWN(x)	do { } while (0)
419 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
420 #define	STATS_SET_HIGH(x)	do { } while (0)
421 #define	STATS_INC_ERR(x)	do { } while (0)
422 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
423 #define	STATS_INC_NODEFREES(x)	do { } while (0)
424 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
425 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
426 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
427 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
428 #define STATS_INC_FREEHIT(x)	do { } while (0)
429 #define STATS_INC_FREEMISS(x)	do { } while (0)
430 #endif
431 
432 #if DEBUG
433 
434 /*
435  * memory layout of objects:
436  * 0		: objp
437  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
438  * 		the end of an object is aligned with the end of the real
439  * 		allocation. Catches writes behind the end of the allocation.
440  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
441  * 		redzone word.
442  * cachep->obj_offset: The real object.
443  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
444  * cachep->size - 1* BYTES_PER_WORD: last caller address
445  *					[BYTES_PER_WORD long]
446  */
447 static int obj_offset(struct kmem_cache *cachep)
448 {
449 	return cachep->obj_offset;
450 }
451 
452 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
453 {
454 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
455 	return (unsigned long long*) (objp + obj_offset(cachep) -
456 				      sizeof(unsigned long long));
457 }
458 
459 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
460 {
461 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
462 	if (cachep->flags & SLAB_STORE_USER)
463 		return (unsigned long long *)(objp + cachep->size -
464 					      sizeof(unsigned long long) -
465 					      REDZONE_ALIGN);
466 	return (unsigned long long *) (objp + cachep->size -
467 				       sizeof(unsigned long long));
468 }
469 
470 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
471 {
472 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
473 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
474 }
475 
476 #else
477 
478 #define obj_offset(x)			0
479 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
480 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
481 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
482 
483 #endif
484 
485 /*
486  * Do not go above this order unless 0 objects fit into the slab or
487  * overridden on the command line.
488  */
489 #define	SLAB_MAX_ORDER_HI	1
490 #define	SLAB_MAX_ORDER_LO	0
491 static int slab_max_order = SLAB_MAX_ORDER_LO;
492 static bool slab_max_order_set __initdata;
493 
494 static inline struct kmem_cache *virt_to_cache(const void *obj)
495 {
496 	struct page *page = virt_to_head_page(obj);
497 	return page->slab_cache;
498 }
499 
500 static inline struct slab *virt_to_slab(const void *obj)
501 {
502 	struct page *page = virt_to_head_page(obj);
503 
504 	VM_BUG_ON(!PageSlab(page));
505 	return page->slab_page;
506 }
507 
508 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
509 				 unsigned int idx)
510 {
511 	return slab->s_mem + cache->size * idx;
512 }
513 
514 /*
515  * We want to avoid an expensive divide : (offset / cache->size)
516  *   Using the fact that size is a constant for a particular cache,
517  *   we can replace (offset / cache->size) by
518  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
519  */
520 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
521 					const struct slab *slab, void *obj)
522 {
523 	u32 offset = (obj - slab->s_mem);
524 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
525 }
526 
527 /*
528  * These are the default caches for kmalloc. Custom caches can have other sizes.
529  */
530 struct cache_sizes malloc_sizes[] = {
531 #define CACHE(x) { .cs_size = (x) },
532 #include <linux/kmalloc_sizes.h>
533 	CACHE(ULONG_MAX)
534 #undef CACHE
535 };
536 EXPORT_SYMBOL(malloc_sizes);
537 
538 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
539 struct cache_names {
540 	char *name;
541 	char *name_dma;
542 };
543 
544 static struct cache_names __initdata cache_names[] = {
545 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
546 #include <linux/kmalloc_sizes.h>
547 	{NULL,}
548 #undef CACHE
549 };
550 
551 static struct arraycache_init initarray_generic =
552     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
553 
554 /* internal cache of cache description objs */
555 static struct kmem_cache kmem_cache_boot = {
556 	.batchcount = 1,
557 	.limit = BOOT_CPUCACHE_ENTRIES,
558 	.shared = 1,
559 	.size = sizeof(struct kmem_cache),
560 	.name = "kmem_cache",
561 };
562 
563 #define BAD_ALIEN_MAGIC 0x01020304ul
564 
565 #ifdef CONFIG_LOCKDEP
566 
567 /*
568  * Slab sometimes uses the kmalloc slabs to store the slab headers
569  * for other slabs "off slab".
570  * The locking for this is tricky in that it nests within the locks
571  * of all other slabs in a few places; to deal with this special
572  * locking we put on-slab caches into a separate lock-class.
573  *
574  * We set lock class for alien array caches which are up during init.
575  * The lock annotation will be lost if all cpus of a node goes down and
576  * then comes back up during hotplug
577  */
578 static struct lock_class_key on_slab_l3_key;
579 static struct lock_class_key on_slab_alc_key;
580 
581 static struct lock_class_key debugobj_l3_key;
582 static struct lock_class_key debugobj_alc_key;
583 
584 static void slab_set_lock_classes(struct kmem_cache *cachep,
585 		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
586 		int q)
587 {
588 	struct array_cache **alc;
589 	struct kmem_list3 *l3;
590 	int r;
591 
592 	l3 = cachep->nodelists[q];
593 	if (!l3)
594 		return;
595 
596 	lockdep_set_class(&l3->list_lock, l3_key);
597 	alc = l3->alien;
598 	/*
599 	 * FIXME: This check for BAD_ALIEN_MAGIC
600 	 * should go away when common slab code is taught to
601 	 * work even without alien caches.
602 	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
603 	 * for alloc_alien_cache,
604 	 */
605 	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
606 		return;
607 	for_each_node(r) {
608 		if (alc[r])
609 			lockdep_set_class(&alc[r]->lock, alc_key);
610 	}
611 }
612 
613 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
614 {
615 	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
616 }
617 
618 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
619 {
620 	int node;
621 
622 	for_each_online_node(node)
623 		slab_set_debugobj_lock_classes_node(cachep, node);
624 }
625 
626 static void init_node_lock_keys(int q)
627 {
628 	struct cache_sizes *s = malloc_sizes;
629 
630 	if (slab_state < UP)
631 		return;
632 
633 	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
634 		struct kmem_list3 *l3;
635 
636 		l3 = s->cs_cachep->nodelists[q];
637 		if (!l3 || OFF_SLAB(s->cs_cachep))
638 			continue;
639 
640 		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
641 				&on_slab_alc_key, q);
642 	}
643 }
644 
645 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
646 {
647 	struct kmem_list3 *l3;
648 	l3 = cachep->nodelists[q];
649 	if (!l3)
650 		return;
651 
652 	slab_set_lock_classes(cachep, &on_slab_l3_key,
653 			&on_slab_alc_key, q);
654 }
655 
656 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
657 {
658 	int node;
659 
660 	VM_BUG_ON(OFF_SLAB(cachep));
661 	for_each_node(node)
662 		on_slab_lock_classes_node(cachep, node);
663 }
664 
665 static inline void init_lock_keys(void)
666 {
667 	int node;
668 
669 	for_each_node(node)
670 		init_node_lock_keys(node);
671 }
672 #else
673 static void init_node_lock_keys(int q)
674 {
675 }
676 
677 static inline void init_lock_keys(void)
678 {
679 }
680 
681 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
682 {
683 }
684 
685 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
686 {
687 }
688 
689 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690 {
691 }
692 
693 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694 {
695 }
696 #endif
697 
698 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
699 
700 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
701 {
702 	return cachep->array[smp_processor_id()];
703 }
704 
705 static inline struct kmem_cache *__find_general_cachep(size_t size,
706 							gfp_t gfpflags)
707 {
708 	struct cache_sizes *csizep = malloc_sizes;
709 
710 #if DEBUG
711 	/* This happens if someone tries to call
712 	 * kmem_cache_create(), or __kmalloc(), before
713 	 * the generic caches are initialized.
714 	 */
715 	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
716 #endif
717 	if (!size)
718 		return ZERO_SIZE_PTR;
719 
720 	while (size > csizep->cs_size)
721 		csizep++;
722 
723 	/*
724 	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
725 	 * has cs_{dma,}cachep==NULL. Thus no special case
726 	 * for large kmalloc calls required.
727 	 */
728 #ifdef CONFIG_ZONE_DMA
729 	if (unlikely(gfpflags & GFP_DMA))
730 		return csizep->cs_dmacachep;
731 #endif
732 	return csizep->cs_cachep;
733 }
734 
735 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 {
737 	return __find_general_cachep(size, gfpflags);
738 }
739 
740 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
741 {
742 	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743 }
744 
745 /*
746  * Calculate the number of objects and left-over bytes for a given buffer size.
747  */
748 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 			   size_t align, int flags, size_t *left_over,
750 			   unsigned int *num)
751 {
752 	int nr_objs;
753 	size_t mgmt_size;
754 	size_t slab_size = PAGE_SIZE << gfporder;
755 
756 	/*
757 	 * The slab management structure can be either off the slab or
758 	 * on it. For the latter case, the memory allocated for a
759 	 * slab is used for:
760 	 *
761 	 * - The struct slab
762 	 * - One kmem_bufctl_t for each object
763 	 * - Padding to respect alignment of @align
764 	 * - @buffer_size bytes for each object
765 	 *
766 	 * If the slab management structure is off the slab, then the
767 	 * alignment will already be calculated into the size. Because
768 	 * the slabs are all pages aligned, the objects will be at the
769 	 * correct alignment when allocated.
770 	 */
771 	if (flags & CFLGS_OFF_SLAB) {
772 		mgmt_size = 0;
773 		nr_objs = slab_size / buffer_size;
774 
775 		if (nr_objs > SLAB_LIMIT)
776 			nr_objs = SLAB_LIMIT;
777 	} else {
778 		/*
779 		 * Ignore padding for the initial guess. The padding
780 		 * is at most @align-1 bytes, and @buffer_size is at
781 		 * least @align. In the worst case, this result will
782 		 * be one greater than the number of objects that fit
783 		 * into the memory allocation when taking the padding
784 		 * into account.
785 		 */
786 		nr_objs = (slab_size - sizeof(struct slab)) /
787 			  (buffer_size + sizeof(kmem_bufctl_t));
788 
789 		/*
790 		 * This calculated number will be either the right
791 		 * amount, or one greater than what we want.
792 		 */
793 		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 		       > slab_size)
795 			nr_objs--;
796 
797 		if (nr_objs > SLAB_LIMIT)
798 			nr_objs = SLAB_LIMIT;
799 
800 		mgmt_size = slab_mgmt_size(nr_objs, align);
801 	}
802 	*num = nr_objs;
803 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
804 }
805 
806 #if DEBUG
807 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
808 
809 static void __slab_error(const char *function, struct kmem_cache *cachep,
810 			char *msg)
811 {
812 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
813 	       function, cachep->name, msg);
814 	dump_stack();
815 	add_taint(TAINT_BAD_PAGE);
816 }
817 #endif
818 
819 /*
820  * By default on NUMA we use alien caches to stage the freeing of
821  * objects allocated from other nodes. This causes massive memory
822  * inefficiencies when using fake NUMA setup to split memory into a
823  * large number of small nodes, so it can be disabled on the command
824  * line
825   */
826 
827 static int use_alien_caches __read_mostly = 1;
828 static int __init noaliencache_setup(char *s)
829 {
830 	use_alien_caches = 0;
831 	return 1;
832 }
833 __setup("noaliencache", noaliencache_setup);
834 
835 static int __init slab_max_order_setup(char *str)
836 {
837 	get_option(&str, &slab_max_order);
838 	slab_max_order = slab_max_order < 0 ? 0 :
839 				min(slab_max_order, MAX_ORDER - 1);
840 	slab_max_order_set = true;
841 
842 	return 1;
843 }
844 __setup("slab_max_order=", slab_max_order_setup);
845 
846 #ifdef CONFIG_NUMA
847 /*
848  * Special reaping functions for NUMA systems called from cache_reap().
849  * These take care of doing round robin flushing of alien caches (containing
850  * objects freed on different nodes from which they were allocated) and the
851  * flushing of remote pcps by calling drain_node_pages.
852  */
853 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
854 
855 static void init_reap_node(int cpu)
856 {
857 	int node;
858 
859 	node = next_node(cpu_to_mem(cpu), node_online_map);
860 	if (node == MAX_NUMNODES)
861 		node = first_node(node_online_map);
862 
863 	per_cpu(slab_reap_node, cpu) = node;
864 }
865 
866 static void next_reap_node(void)
867 {
868 	int node = __this_cpu_read(slab_reap_node);
869 
870 	node = next_node(node, node_online_map);
871 	if (unlikely(node >= MAX_NUMNODES))
872 		node = first_node(node_online_map);
873 	__this_cpu_write(slab_reap_node, node);
874 }
875 
876 #else
877 #define init_reap_node(cpu) do { } while (0)
878 #define next_reap_node(void) do { } while (0)
879 #endif
880 
881 /*
882  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
883  * via the workqueue/eventd.
884  * Add the CPU number into the expiration time to minimize the possibility of
885  * the CPUs getting into lockstep and contending for the global cache chain
886  * lock.
887  */
888 static void __cpuinit start_cpu_timer(int cpu)
889 {
890 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
891 
892 	/*
893 	 * When this gets called from do_initcalls via cpucache_init(),
894 	 * init_workqueues() has already run, so keventd will be setup
895 	 * at that time.
896 	 */
897 	if (keventd_up() && reap_work->work.func == NULL) {
898 		init_reap_node(cpu);
899 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
900 		schedule_delayed_work_on(cpu, reap_work,
901 					__round_jiffies_relative(HZ, cpu));
902 	}
903 }
904 
905 static struct array_cache *alloc_arraycache(int node, int entries,
906 					    int batchcount, gfp_t gfp)
907 {
908 	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
909 	struct array_cache *nc = NULL;
910 
911 	nc = kmalloc_node(memsize, gfp, node);
912 	/*
913 	 * The array_cache structures contain pointers to free object.
914 	 * However, when such objects are allocated or transferred to another
915 	 * cache the pointers are not cleared and they could be counted as
916 	 * valid references during a kmemleak scan. Therefore, kmemleak must
917 	 * not scan such objects.
918 	 */
919 	kmemleak_no_scan(nc);
920 	if (nc) {
921 		nc->avail = 0;
922 		nc->limit = entries;
923 		nc->batchcount = batchcount;
924 		nc->touched = 0;
925 		spin_lock_init(&nc->lock);
926 	}
927 	return nc;
928 }
929 
930 static inline bool is_slab_pfmemalloc(struct slab *slabp)
931 {
932 	struct page *page = virt_to_page(slabp->s_mem);
933 
934 	return PageSlabPfmemalloc(page);
935 }
936 
937 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
938 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
939 						struct array_cache *ac)
940 {
941 	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
942 	struct slab *slabp;
943 	unsigned long flags;
944 
945 	if (!pfmemalloc_active)
946 		return;
947 
948 	spin_lock_irqsave(&l3->list_lock, flags);
949 	list_for_each_entry(slabp, &l3->slabs_full, list)
950 		if (is_slab_pfmemalloc(slabp))
951 			goto out;
952 
953 	list_for_each_entry(slabp, &l3->slabs_partial, list)
954 		if (is_slab_pfmemalloc(slabp))
955 			goto out;
956 
957 	list_for_each_entry(slabp, &l3->slabs_free, list)
958 		if (is_slab_pfmemalloc(slabp))
959 			goto out;
960 
961 	pfmemalloc_active = false;
962 out:
963 	spin_unlock_irqrestore(&l3->list_lock, flags);
964 }
965 
966 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
967 						gfp_t flags, bool force_refill)
968 {
969 	int i;
970 	void *objp = ac->entry[--ac->avail];
971 
972 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
973 	if (unlikely(is_obj_pfmemalloc(objp))) {
974 		struct kmem_list3 *l3;
975 
976 		if (gfp_pfmemalloc_allowed(flags)) {
977 			clear_obj_pfmemalloc(&objp);
978 			return objp;
979 		}
980 
981 		/* The caller cannot use PFMEMALLOC objects, find another one */
982 		for (i = 0; i < ac->avail; i++) {
983 			/* If a !PFMEMALLOC object is found, swap them */
984 			if (!is_obj_pfmemalloc(ac->entry[i])) {
985 				objp = ac->entry[i];
986 				ac->entry[i] = ac->entry[ac->avail];
987 				ac->entry[ac->avail] = objp;
988 				return objp;
989 			}
990 		}
991 
992 		/*
993 		 * If there are empty slabs on the slabs_free list and we are
994 		 * being forced to refill the cache, mark this one !pfmemalloc.
995 		 */
996 		l3 = cachep->nodelists[numa_mem_id()];
997 		if (!list_empty(&l3->slabs_free) && force_refill) {
998 			struct slab *slabp = virt_to_slab(objp);
999 			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
1000 			clear_obj_pfmemalloc(&objp);
1001 			recheck_pfmemalloc_active(cachep, ac);
1002 			return objp;
1003 		}
1004 
1005 		/* No !PFMEMALLOC objects available */
1006 		ac->avail++;
1007 		objp = NULL;
1008 	}
1009 
1010 	return objp;
1011 }
1012 
1013 static inline void *ac_get_obj(struct kmem_cache *cachep,
1014 			struct array_cache *ac, gfp_t flags, bool force_refill)
1015 {
1016 	void *objp;
1017 
1018 	if (unlikely(sk_memalloc_socks()))
1019 		objp = __ac_get_obj(cachep, ac, flags, force_refill);
1020 	else
1021 		objp = ac->entry[--ac->avail];
1022 
1023 	return objp;
1024 }
1025 
1026 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1027 								void *objp)
1028 {
1029 	if (unlikely(pfmemalloc_active)) {
1030 		/* Some pfmemalloc slabs exist, check if this is one */
1031 		struct page *page = virt_to_head_page(objp);
1032 		if (PageSlabPfmemalloc(page))
1033 			set_obj_pfmemalloc(&objp);
1034 	}
1035 
1036 	return objp;
1037 }
1038 
1039 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1040 								void *objp)
1041 {
1042 	if (unlikely(sk_memalloc_socks()))
1043 		objp = __ac_put_obj(cachep, ac, objp);
1044 
1045 	ac->entry[ac->avail++] = objp;
1046 }
1047 
1048 /*
1049  * Transfer objects in one arraycache to another.
1050  * Locking must be handled by the caller.
1051  *
1052  * Return the number of entries transferred.
1053  */
1054 static int transfer_objects(struct array_cache *to,
1055 		struct array_cache *from, unsigned int max)
1056 {
1057 	/* Figure out how many entries to transfer */
1058 	int nr = min3(from->avail, max, to->limit - to->avail);
1059 
1060 	if (!nr)
1061 		return 0;
1062 
1063 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1064 			sizeof(void *) *nr);
1065 
1066 	from->avail -= nr;
1067 	to->avail += nr;
1068 	return nr;
1069 }
1070 
1071 #ifndef CONFIG_NUMA
1072 
1073 #define drain_alien_cache(cachep, alien) do { } while (0)
1074 #define reap_alien(cachep, l3) do { } while (0)
1075 
1076 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1077 {
1078 	return (struct array_cache **)BAD_ALIEN_MAGIC;
1079 }
1080 
1081 static inline void free_alien_cache(struct array_cache **ac_ptr)
1082 {
1083 }
1084 
1085 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1086 {
1087 	return 0;
1088 }
1089 
1090 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1091 		gfp_t flags)
1092 {
1093 	return NULL;
1094 }
1095 
1096 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1097 		 gfp_t flags, int nodeid)
1098 {
1099 	return NULL;
1100 }
1101 
1102 #else	/* CONFIG_NUMA */
1103 
1104 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1105 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1106 
1107 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1108 {
1109 	struct array_cache **ac_ptr;
1110 	int memsize = sizeof(void *) * nr_node_ids;
1111 	int i;
1112 
1113 	if (limit > 1)
1114 		limit = 12;
1115 	ac_ptr = kzalloc_node(memsize, gfp, node);
1116 	if (ac_ptr) {
1117 		for_each_node(i) {
1118 			if (i == node || !node_online(i))
1119 				continue;
1120 			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1121 			if (!ac_ptr[i]) {
1122 				for (i--; i >= 0; i--)
1123 					kfree(ac_ptr[i]);
1124 				kfree(ac_ptr);
1125 				return NULL;
1126 			}
1127 		}
1128 	}
1129 	return ac_ptr;
1130 }
1131 
1132 static void free_alien_cache(struct array_cache **ac_ptr)
1133 {
1134 	int i;
1135 
1136 	if (!ac_ptr)
1137 		return;
1138 	for_each_node(i)
1139 	    kfree(ac_ptr[i]);
1140 	kfree(ac_ptr);
1141 }
1142 
1143 static void __drain_alien_cache(struct kmem_cache *cachep,
1144 				struct array_cache *ac, int node)
1145 {
1146 	struct kmem_list3 *rl3 = cachep->nodelists[node];
1147 
1148 	if (ac->avail) {
1149 		spin_lock(&rl3->list_lock);
1150 		/*
1151 		 * Stuff objects into the remote nodes shared array first.
1152 		 * That way we could avoid the overhead of putting the objects
1153 		 * into the free lists and getting them back later.
1154 		 */
1155 		if (rl3->shared)
1156 			transfer_objects(rl3->shared, ac, ac->limit);
1157 
1158 		free_block(cachep, ac->entry, ac->avail, node);
1159 		ac->avail = 0;
1160 		spin_unlock(&rl3->list_lock);
1161 	}
1162 }
1163 
1164 /*
1165  * Called from cache_reap() to regularly drain alien caches round robin.
1166  */
1167 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1168 {
1169 	int node = __this_cpu_read(slab_reap_node);
1170 
1171 	if (l3->alien) {
1172 		struct array_cache *ac = l3->alien[node];
1173 
1174 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1175 			__drain_alien_cache(cachep, ac, node);
1176 			spin_unlock_irq(&ac->lock);
1177 		}
1178 	}
1179 }
1180 
1181 static void drain_alien_cache(struct kmem_cache *cachep,
1182 				struct array_cache **alien)
1183 {
1184 	int i = 0;
1185 	struct array_cache *ac;
1186 	unsigned long flags;
1187 
1188 	for_each_online_node(i) {
1189 		ac = alien[i];
1190 		if (ac) {
1191 			spin_lock_irqsave(&ac->lock, flags);
1192 			__drain_alien_cache(cachep, ac, i);
1193 			spin_unlock_irqrestore(&ac->lock, flags);
1194 		}
1195 	}
1196 }
1197 
1198 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1199 {
1200 	struct slab *slabp = virt_to_slab(objp);
1201 	int nodeid = slabp->nodeid;
1202 	struct kmem_list3 *l3;
1203 	struct array_cache *alien = NULL;
1204 	int node;
1205 
1206 	node = numa_mem_id();
1207 
1208 	/*
1209 	 * Make sure we are not freeing a object from another node to the array
1210 	 * cache on this cpu.
1211 	 */
1212 	if (likely(slabp->nodeid == node))
1213 		return 0;
1214 
1215 	l3 = cachep->nodelists[node];
1216 	STATS_INC_NODEFREES(cachep);
1217 	if (l3->alien && l3->alien[nodeid]) {
1218 		alien = l3->alien[nodeid];
1219 		spin_lock(&alien->lock);
1220 		if (unlikely(alien->avail == alien->limit)) {
1221 			STATS_INC_ACOVERFLOW(cachep);
1222 			__drain_alien_cache(cachep, alien, nodeid);
1223 		}
1224 		ac_put_obj(cachep, alien, objp);
1225 		spin_unlock(&alien->lock);
1226 	} else {
1227 		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1228 		free_block(cachep, &objp, 1, nodeid);
1229 		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1230 	}
1231 	return 1;
1232 }
1233 #endif
1234 
1235 /*
1236  * Allocates and initializes nodelists for a node on each slab cache, used for
1237  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
1238  * will be allocated off-node since memory is not yet online for the new node.
1239  * When hotplugging memory or a cpu, existing nodelists are not replaced if
1240  * already in use.
1241  *
1242  * Must hold slab_mutex.
1243  */
1244 static int init_cache_nodelists_node(int node)
1245 {
1246 	struct kmem_cache *cachep;
1247 	struct kmem_list3 *l3;
1248 	const int memsize = sizeof(struct kmem_list3);
1249 
1250 	list_for_each_entry(cachep, &slab_caches, list) {
1251 		/*
1252 		 * Set up the size64 kmemlist for cpu before we can
1253 		 * begin anything. Make sure some other cpu on this
1254 		 * node has not already allocated this
1255 		 */
1256 		if (!cachep->nodelists[node]) {
1257 			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1258 			if (!l3)
1259 				return -ENOMEM;
1260 			kmem_list3_init(l3);
1261 			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1262 			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1263 
1264 			/*
1265 			 * The l3s don't come and go as CPUs come and
1266 			 * go.  slab_mutex is sufficient
1267 			 * protection here.
1268 			 */
1269 			cachep->nodelists[node] = l3;
1270 		}
1271 
1272 		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1273 		cachep->nodelists[node]->free_limit =
1274 			(1 + nr_cpus_node(node)) *
1275 			cachep->batchcount + cachep->num;
1276 		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1277 	}
1278 	return 0;
1279 }
1280 
1281 static void __cpuinit cpuup_canceled(long cpu)
1282 {
1283 	struct kmem_cache *cachep;
1284 	struct kmem_list3 *l3 = NULL;
1285 	int node = cpu_to_mem(cpu);
1286 	const struct cpumask *mask = cpumask_of_node(node);
1287 
1288 	list_for_each_entry(cachep, &slab_caches, list) {
1289 		struct array_cache *nc;
1290 		struct array_cache *shared;
1291 		struct array_cache **alien;
1292 
1293 		/* cpu is dead; no one can alloc from it. */
1294 		nc = cachep->array[cpu];
1295 		cachep->array[cpu] = NULL;
1296 		l3 = cachep->nodelists[node];
1297 
1298 		if (!l3)
1299 			goto free_array_cache;
1300 
1301 		spin_lock_irq(&l3->list_lock);
1302 
1303 		/* Free limit for this kmem_list3 */
1304 		l3->free_limit -= cachep->batchcount;
1305 		if (nc)
1306 			free_block(cachep, nc->entry, nc->avail, node);
1307 
1308 		if (!cpumask_empty(mask)) {
1309 			spin_unlock_irq(&l3->list_lock);
1310 			goto free_array_cache;
1311 		}
1312 
1313 		shared = l3->shared;
1314 		if (shared) {
1315 			free_block(cachep, shared->entry,
1316 				   shared->avail, node);
1317 			l3->shared = NULL;
1318 		}
1319 
1320 		alien = l3->alien;
1321 		l3->alien = NULL;
1322 
1323 		spin_unlock_irq(&l3->list_lock);
1324 
1325 		kfree(shared);
1326 		if (alien) {
1327 			drain_alien_cache(cachep, alien);
1328 			free_alien_cache(alien);
1329 		}
1330 free_array_cache:
1331 		kfree(nc);
1332 	}
1333 	/*
1334 	 * In the previous loop, all the objects were freed to
1335 	 * the respective cache's slabs,  now we can go ahead and
1336 	 * shrink each nodelist to its limit.
1337 	 */
1338 	list_for_each_entry(cachep, &slab_caches, list) {
1339 		l3 = cachep->nodelists[node];
1340 		if (!l3)
1341 			continue;
1342 		drain_freelist(cachep, l3, l3->free_objects);
1343 	}
1344 }
1345 
1346 static int __cpuinit cpuup_prepare(long cpu)
1347 {
1348 	struct kmem_cache *cachep;
1349 	struct kmem_list3 *l3 = NULL;
1350 	int node = cpu_to_mem(cpu);
1351 	int err;
1352 
1353 	/*
1354 	 * We need to do this right in the beginning since
1355 	 * alloc_arraycache's are going to use this list.
1356 	 * kmalloc_node allows us to add the slab to the right
1357 	 * kmem_list3 and not this cpu's kmem_list3
1358 	 */
1359 	err = init_cache_nodelists_node(node);
1360 	if (err < 0)
1361 		goto bad;
1362 
1363 	/*
1364 	 * Now we can go ahead with allocating the shared arrays and
1365 	 * array caches
1366 	 */
1367 	list_for_each_entry(cachep, &slab_caches, list) {
1368 		struct array_cache *nc;
1369 		struct array_cache *shared = NULL;
1370 		struct array_cache **alien = NULL;
1371 
1372 		nc = alloc_arraycache(node, cachep->limit,
1373 					cachep->batchcount, GFP_KERNEL);
1374 		if (!nc)
1375 			goto bad;
1376 		if (cachep->shared) {
1377 			shared = alloc_arraycache(node,
1378 				cachep->shared * cachep->batchcount,
1379 				0xbaadf00d, GFP_KERNEL);
1380 			if (!shared) {
1381 				kfree(nc);
1382 				goto bad;
1383 			}
1384 		}
1385 		if (use_alien_caches) {
1386 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1387 			if (!alien) {
1388 				kfree(shared);
1389 				kfree(nc);
1390 				goto bad;
1391 			}
1392 		}
1393 		cachep->array[cpu] = nc;
1394 		l3 = cachep->nodelists[node];
1395 		BUG_ON(!l3);
1396 
1397 		spin_lock_irq(&l3->list_lock);
1398 		if (!l3->shared) {
1399 			/*
1400 			 * We are serialised from CPU_DEAD or
1401 			 * CPU_UP_CANCELLED by the cpucontrol lock
1402 			 */
1403 			l3->shared = shared;
1404 			shared = NULL;
1405 		}
1406 #ifdef CONFIG_NUMA
1407 		if (!l3->alien) {
1408 			l3->alien = alien;
1409 			alien = NULL;
1410 		}
1411 #endif
1412 		spin_unlock_irq(&l3->list_lock);
1413 		kfree(shared);
1414 		free_alien_cache(alien);
1415 		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1416 			slab_set_debugobj_lock_classes_node(cachep, node);
1417 		else if (!OFF_SLAB(cachep) &&
1418 			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1419 			on_slab_lock_classes_node(cachep, node);
1420 	}
1421 	init_node_lock_keys(node);
1422 
1423 	return 0;
1424 bad:
1425 	cpuup_canceled(cpu);
1426 	return -ENOMEM;
1427 }
1428 
1429 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1430 				    unsigned long action, void *hcpu)
1431 {
1432 	long cpu = (long)hcpu;
1433 	int err = 0;
1434 
1435 	switch (action) {
1436 	case CPU_UP_PREPARE:
1437 	case CPU_UP_PREPARE_FROZEN:
1438 		mutex_lock(&slab_mutex);
1439 		err = cpuup_prepare(cpu);
1440 		mutex_unlock(&slab_mutex);
1441 		break;
1442 	case CPU_ONLINE:
1443 	case CPU_ONLINE_FROZEN:
1444 		start_cpu_timer(cpu);
1445 		break;
1446 #ifdef CONFIG_HOTPLUG_CPU
1447   	case CPU_DOWN_PREPARE:
1448   	case CPU_DOWN_PREPARE_FROZEN:
1449 		/*
1450 		 * Shutdown cache reaper. Note that the slab_mutex is
1451 		 * held so that if cache_reap() is invoked it cannot do
1452 		 * anything expensive but will only modify reap_work
1453 		 * and reschedule the timer.
1454 		*/
1455 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1456 		/* Now the cache_reaper is guaranteed to be not running. */
1457 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1458   		break;
1459   	case CPU_DOWN_FAILED:
1460   	case CPU_DOWN_FAILED_FROZEN:
1461 		start_cpu_timer(cpu);
1462   		break;
1463 	case CPU_DEAD:
1464 	case CPU_DEAD_FROZEN:
1465 		/*
1466 		 * Even if all the cpus of a node are down, we don't free the
1467 		 * kmem_list3 of any cache. This to avoid a race between
1468 		 * cpu_down, and a kmalloc allocation from another cpu for
1469 		 * memory from the node of the cpu going down.  The list3
1470 		 * structure is usually allocated from kmem_cache_create() and
1471 		 * gets destroyed at kmem_cache_destroy().
1472 		 */
1473 		/* fall through */
1474 #endif
1475 	case CPU_UP_CANCELED:
1476 	case CPU_UP_CANCELED_FROZEN:
1477 		mutex_lock(&slab_mutex);
1478 		cpuup_canceled(cpu);
1479 		mutex_unlock(&slab_mutex);
1480 		break;
1481 	}
1482 	return notifier_from_errno(err);
1483 }
1484 
1485 static struct notifier_block __cpuinitdata cpucache_notifier = {
1486 	&cpuup_callback, NULL, 0
1487 };
1488 
1489 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1490 /*
1491  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1492  * Returns -EBUSY if all objects cannot be drained so that the node is not
1493  * removed.
1494  *
1495  * Must hold slab_mutex.
1496  */
1497 static int __meminit drain_cache_nodelists_node(int node)
1498 {
1499 	struct kmem_cache *cachep;
1500 	int ret = 0;
1501 
1502 	list_for_each_entry(cachep, &slab_caches, list) {
1503 		struct kmem_list3 *l3;
1504 
1505 		l3 = cachep->nodelists[node];
1506 		if (!l3)
1507 			continue;
1508 
1509 		drain_freelist(cachep, l3, l3->free_objects);
1510 
1511 		if (!list_empty(&l3->slabs_full) ||
1512 		    !list_empty(&l3->slabs_partial)) {
1513 			ret = -EBUSY;
1514 			break;
1515 		}
1516 	}
1517 	return ret;
1518 }
1519 
1520 static int __meminit slab_memory_callback(struct notifier_block *self,
1521 					unsigned long action, void *arg)
1522 {
1523 	struct memory_notify *mnb = arg;
1524 	int ret = 0;
1525 	int nid;
1526 
1527 	nid = mnb->status_change_nid;
1528 	if (nid < 0)
1529 		goto out;
1530 
1531 	switch (action) {
1532 	case MEM_GOING_ONLINE:
1533 		mutex_lock(&slab_mutex);
1534 		ret = init_cache_nodelists_node(nid);
1535 		mutex_unlock(&slab_mutex);
1536 		break;
1537 	case MEM_GOING_OFFLINE:
1538 		mutex_lock(&slab_mutex);
1539 		ret = drain_cache_nodelists_node(nid);
1540 		mutex_unlock(&slab_mutex);
1541 		break;
1542 	case MEM_ONLINE:
1543 	case MEM_OFFLINE:
1544 	case MEM_CANCEL_ONLINE:
1545 	case MEM_CANCEL_OFFLINE:
1546 		break;
1547 	}
1548 out:
1549 	return notifier_from_errno(ret);
1550 }
1551 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1552 
1553 /*
1554  * swap the static kmem_list3 with kmalloced memory
1555  */
1556 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1557 				int nodeid)
1558 {
1559 	struct kmem_list3 *ptr;
1560 
1561 	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1562 	BUG_ON(!ptr);
1563 
1564 	memcpy(ptr, list, sizeof(struct kmem_list3));
1565 	/*
1566 	 * Do not assume that spinlocks can be initialized via memcpy:
1567 	 */
1568 	spin_lock_init(&ptr->list_lock);
1569 
1570 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1571 	cachep->nodelists[nodeid] = ptr;
1572 }
1573 
1574 /*
1575  * For setting up all the kmem_list3s for cache whose buffer_size is same as
1576  * size of kmem_list3.
1577  */
1578 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1579 {
1580 	int node;
1581 
1582 	for_each_online_node(node) {
1583 		cachep->nodelists[node] = &initkmem_list3[index + node];
1584 		cachep->nodelists[node]->next_reap = jiffies +
1585 		    REAPTIMEOUT_LIST3 +
1586 		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1587 	}
1588 }
1589 
1590 /*
1591  * The memory after the last cpu cache pointer is used for the
1592  * the nodelists pointer.
1593  */
1594 static void setup_nodelists_pointer(struct kmem_cache *cachep)
1595 {
1596 	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1597 }
1598 
1599 /*
1600  * Initialisation.  Called after the page allocator have been initialised and
1601  * before smp_init().
1602  */
1603 void __init kmem_cache_init(void)
1604 {
1605 	struct cache_sizes *sizes;
1606 	struct cache_names *names;
1607 	int i;
1608 
1609 	kmem_cache = &kmem_cache_boot;
1610 	setup_nodelists_pointer(kmem_cache);
1611 
1612 	if (num_possible_nodes() == 1)
1613 		use_alien_caches = 0;
1614 
1615 	for (i = 0; i < NUM_INIT_LISTS; i++)
1616 		kmem_list3_init(&initkmem_list3[i]);
1617 
1618 	set_up_list3s(kmem_cache, CACHE_CACHE);
1619 
1620 	/*
1621 	 * Fragmentation resistance on low memory - only use bigger
1622 	 * page orders on machines with more than 32MB of memory if
1623 	 * not overridden on the command line.
1624 	 */
1625 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1626 		slab_max_order = SLAB_MAX_ORDER_HI;
1627 
1628 	/* Bootstrap is tricky, because several objects are allocated
1629 	 * from caches that do not exist yet:
1630 	 * 1) initialize the kmem_cache cache: it contains the struct
1631 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1632 	 *    kmem_cache is statically allocated.
1633 	 *    Initially an __init data area is used for the head array and the
1634 	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1635 	 *    array at the end of the bootstrap.
1636 	 * 2) Create the first kmalloc cache.
1637 	 *    The struct kmem_cache for the new cache is allocated normally.
1638 	 *    An __init data area is used for the head array.
1639 	 * 3) Create the remaining kmalloc caches, with minimally sized
1640 	 *    head arrays.
1641 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1642 	 *    kmalloc cache with kmalloc allocated arrays.
1643 	 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1644 	 *    the other cache's with kmalloc allocated memory.
1645 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1646 	 */
1647 
1648 	/* 1) create the kmem_cache */
1649 
1650 	/*
1651 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1652 	 */
1653 	create_boot_cache(kmem_cache, "kmem_cache",
1654 		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1655 				  nr_node_ids * sizeof(struct kmem_list3 *),
1656 				  SLAB_HWCACHE_ALIGN);
1657 	list_add(&kmem_cache->list, &slab_caches);
1658 
1659 	/* 2+3) create the kmalloc caches */
1660 	sizes = malloc_sizes;
1661 	names = cache_names;
1662 
1663 	/*
1664 	 * Initialize the caches that provide memory for the array cache and the
1665 	 * kmem_list3 structures first.  Without this, further allocations will
1666 	 * bug.
1667 	 */
1668 
1669 	sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name,
1670 					sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS);
1671 
1672 	if (INDEX_AC != INDEX_L3)
1673 		sizes[INDEX_L3].cs_cachep =
1674 			create_kmalloc_cache(names[INDEX_L3].name,
1675 				sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS);
1676 
1677 	slab_early_init = 0;
1678 
1679 	while (sizes->cs_size != ULONG_MAX) {
1680 		/*
1681 		 * For performance, all the general caches are L1 aligned.
1682 		 * This should be particularly beneficial on SMP boxes, as it
1683 		 * eliminates "false sharing".
1684 		 * Note for systems short on memory removing the alignment will
1685 		 * allow tighter packing of the smaller caches.
1686 		 */
1687 		if (!sizes->cs_cachep)
1688 			sizes->cs_cachep = create_kmalloc_cache(names->name,
1689 					sizes->cs_size, ARCH_KMALLOC_FLAGS);
1690 
1691 #ifdef CONFIG_ZONE_DMA
1692 		sizes->cs_dmacachep = create_kmalloc_cache(
1693 			names->name_dma, sizes->cs_size,
1694 			SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
1695 #endif
1696 		sizes++;
1697 		names++;
1698 	}
1699 	/* 4) Replace the bootstrap head arrays */
1700 	{
1701 		struct array_cache *ptr;
1702 
1703 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1704 
1705 		memcpy(ptr, cpu_cache_get(kmem_cache),
1706 		       sizeof(struct arraycache_init));
1707 		/*
1708 		 * Do not assume that spinlocks can be initialized via memcpy:
1709 		 */
1710 		spin_lock_init(&ptr->lock);
1711 
1712 		kmem_cache->array[smp_processor_id()] = ptr;
1713 
1714 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1715 
1716 		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1717 		       != &initarray_generic.cache);
1718 		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1719 		       sizeof(struct arraycache_init));
1720 		/*
1721 		 * Do not assume that spinlocks can be initialized via memcpy:
1722 		 */
1723 		spin_lock_init(&ptr->lock);
1724 
1725 		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1726 		    ptr;
1727 	}
1728 	/* 5) Replace the bootstrap kmem_list3's */
1729 	{
1730 		int nid;
1731 
1732 		for_each_online_node(nid) {
1733 			init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1734 
1735 			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1736 				  &initkmem_list3[SIZE_AC + nid], nid);
1737 
1738 			if (INDEX_AC != INDEX_L3) {
1739 				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1740 					  &initkmem_list3[SIZE_L3 + nid], nid);
1741 			}
1742 		}
1743 	}
1744 
1745 	slab_state = UP;
1746 }
1747 
1748 void __init kmem_cache_init_late(void)
1749 {
1750 	struct kmem_cache *cachep;
1751 
1752 	slab_state = UP;
1753 
1754 	/* 6) resize the head arrays to their final sizes */
1755 	mutex_lock(&slab_mutex);
1756 	list_for_each_entry(cachep, &slab_caches, list)
1757 		if (enable_cpucache(cachep, GFP_NOWAIT))
1758 			BUG();
1759 	mutex_unlock(&slab_mutex);
1760 
1761 	/* Annotate slab for lockdep -- annotate the malloc caches */
1762 	init_lock_keys();
1763 
1764 	/* Done! */
1765 	slab_state = FULL;
1766 
1767 	/*
1768 	 * Register a cpu startup notifier callback that initializes
1769 	 * cpu_cache_get for all new cpus
1770 	 */
1771 	register_cpu_notifier(&cpucache_notifier);
1772 
1773 #ifdef CONFIG_NUMA
1774 	/*
1775 	 * Register a memory hotplug callback that initializes and frees
1776 	 * nodelists.
1777 	 */
1778 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1779 #endif
1780 
1781 	/*
1782 	 * The reap timers are started later, with a module init call: That part
1783 	 * of the kernel is not yet operational.
1784 	 */
1785 }
1786 
1787 static int __init cpucache_init(void)
1788 {
1789 	int cpu;
1790 
1791 	/*
1792 	 * Register the timers that return unneeded pages to the page allocator
1793 	 */
1794 	for_each_online_cpu(cpu)
1795 		start_cpu_timer(cpu);
1796 
1797 	/* Done! */
1798 	slab_state = FULL;
1799 	return 0;
1800 }
1801 __initcall(cpucache_init);
1802 
1803 static noinline void
1804 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1805 {
1806 	struct kmem_list3 *l3;
1807 	struct slab *slabp;
1808 	unsigned long flags;
1809 	int node;
1810 
1811 	printk(KERN_WARNING
1812 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1813 		nodeid, gfpflags);
1814 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1815 		cachep->name, cachep->size, cachep->gfporder);
1816 
1817 	for_each_online_node(node) {
1818 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1819 		unsigned long active_slabs = 0, num_slabs = 0;
1820 
1821 		l3 = cachep->nodelists[node];
1822 		if (!l3)
1823 			continue;
1824 
1825 		spin_lock_irqsave(&l3->list_lock, flags);
1826 		list_for_each_entry(slabp, &l3->slabs_full, list) {
1827 			active_objs += cachep->num;
1828 			active_slabs++;
1829 		}
1830 		list_for_each_entry(slabp, &l3->slabs_partial, list) {
1831 			active_objs += slabp->inuse;
1832 			active_slabs++;
1833 		}
1834 		list_for_each_entry(slabp, &l3->slabs_free, list)
1835 			num_slabs++;
1836 
1837 		free_objects += l3->free_objects;
1838 		spin_unlock_irqrestore(&l3->list_lock, flags);
1839 
1840 		num_slabs += active_slabs;
1841 		num_objs = num_slabs * cachep->num;
1842 		printk(KERN_WARNING
1843 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1844 			node, active_slabs, num_slabs, active_objs, num_objs,
1845 			free_objects);
1846 	}
1847 }
1848 
1849 /*
1850  * Interface to system's page allocator. No need to hold the cache-lock.
1851  *
1852  * If we requested dmaable memory, we will get it. Even if we
1853  * did not request dmaable memory, we might get it, but that
1854  * would be relatively rare and ignorable.
1855  */
1856 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1857 {
1858 	struct page *page;
1859 	int nr_pages;
1860 	int i;
1861 
1862 #ifndef CONFIG_MMU
1863 	/*
1864 	 * Nommu uses slab's for process anonymous memory allocations, and thus
1865 	 * requires __GFP_COMP to properly refcount higher order allocations
1866 	 */
1867 	flags |= __GFP_COMP;
1868 #endif
1869 
1870 	flags |= cachep->allocflags;
1871 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1872 		flags |= __GFP_RECLAIMABLE;
1873 
1874 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1875 	if (!page) {
1876 		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1877 			slab_out_of_memory(cachep, flags, nodeid);
1878 		return NULL;
1879 	}
1880 
1881 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1882 	if (unlikely(page->pfmemalloc))
1883 		pfmemalloc_active = true;
1884 
1885 	nr_pages = (1 << cachep->gfporder);
1886 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1887 		add_zone_page_state(page_zone(page),
1888 			NR_SLAB_RECLAIMABLE, nr_pages);
1889 	else
1890 		add_zone_page_state(page_zone(page),
1891 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1892 	for (i = 0; i < nr_pages; i++) {
1893 		__SetPageSlab(page + i);
1894 
1895 		if (page->pfmemalloc)
1896 			SetPageSlabPfmemalloc(page + i);
1897 	}
1898 	memcg_bind_pages(cachep, cachep->gfporder);
1899 
1900 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1901 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1902 
1903 		if (cachep->ctor)
1904 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1905 		else
1906 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1907 	}
1908 
1909 	return page_address(page);
1910 }
1911 
1912 /*
1913  * Interface to system's page release.
1914  */
1915 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1916 {
1917 	unsigned long i = (1 << cachep->gfporder);
1918 	struct page *page = virt_to_page(addr);
1919 	const unsigned long nr_freed = i;
1920 
1921 	kmemcheck_free_shadow(page, cachep->gfporder);
1922 
1923 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1924 		sub_zone_page_state(page_zone(page),
1925 				NR_SLAB_RECLAIMABLE, nr_freed);
1926 	else
1927 		sub_zone_page_state(page_zone(page),
1928 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1929 	while (i--) {
1930 		BUG_ON(!PageSlab(page));
1931 		__ClearPageSlabPfmemalloc(page);
1932 		__ClearPageSlab(page);
1933 		page++;
1934 	}
1935 
1936 	memcg_release_pages(cachep, cachep->gfporder);
1937 	if (current->reclaim_state)
1938 		current->reclaim_state->reclaimed_slab += nr_freed;
1939 	free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1940 }
1941 
1942 static void kmem_rcu_free(struct rcu_head *head)
1943 {
1944 	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1945 	struct kmem_cache *cachep = slab_rcu->cachep;
1946 
1947 	kmem_freepages(cachep, slab_rcu->addr);
1948 	if (OFF_SLAB(cachep))
1949 		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1950 }
1951 
1952 #if DEBUG
1953 
1954 #ifdef CONFIG_DEBUG_PAGEALLOC
1955 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1956 			    unsigned long caller)
1957 {
1958 	int size = cachep->object_size;
1959 
1960 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1961 
1962 	if (size < 5 * sizeof(unsigned long))
1963 		return;
1964 
1965 	*addr++ = 0x12345678;
1966 	*addr++ = caller;
1967 	*addr++ = smp_processor_id();
1968 	size -= 3 * sizeof(unsigned long);
1969 	{
1970 		unsigned long *sptr = &caller;
1971 		unsigned long svalue;
1972 
1973 		while (!kstack_end(sptr)) {
1974 			svalue = *sptr++;
1975 			if (kernel_text_address(svalue)) {
1976 				*addr++ = svalue;
1977 				size -= sizeof(unsigned long);
1978 				if (size <= sizeof(unsigned long))
1979 					break;
1980 			}
1981 		}
1982 
1983 	}
1984 	*addr++ = 0x87654321;
1985 }
1986 #endif
1987 
1988 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1989 {
1990 	int size = cachep->object_size;
1991 	addr = &((char *)addr)[obj_offset(cachep)];
1992 
1993 	memset(addr, val, size);
1994 	*(unsigned char *)(addr + size - 1) = POISON_END;
1995 }
1996 
1997 static void dump_line(char *data, int offset, int limit)
1998 {
1999 	int i;
2000 	unsigned char error = 0;
2001 	int bad_count = 0;
2002 
2003 	printk(KERN_ERR "%03x: ", offset);
2004 	for (i = 0; i < limit; i++) {
2005 		if (data[offset + i] != POISON_FREE) {
2006 			error = data[offset + i];
2007 			bad_count++;
2008 		}
2009 	}
2010 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
2011 			&data[offset], limit, 1);
2012 
2013 	if (bad_count == 1) {
2014 		error ^= POISON_FREE;
2015 		if (!(error & (error - 1))) {
2016 			printk(KERN_ERR "Single bit error detected. Probably "
2017 					"bad RAM.\n");
2018 #ifdef CONFIG_X86
2019 			printk(KERN_ERR "Run memtest86+ or a similar memory "
2020 					"test tool.\n");
2021 #else
2022 			printk(KERN_ERR "Run a memory test tool.\n");
2023 #endif
2024 		}
2025 	}
2026 }
2027 #endif
2028 
2029 #if DEBUG
2030 
2031 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
2032 {
2033 	int i, size;
2034 	char *realobj;
2035 
2036 	if (cachep->flags & SLAB_RED_ZONE) {
2037 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
2038 			*dbg_redzone1(cachep, objp),
2039 			*dbg_redzone2(cachep, objp));
2040 	}
2041 
2042 	if (cachep->flags & SLAB_STORE_USER) {
2043 		printk(KERN_ERR "Last user: [<%p>]",
2044 			*dbg_userword(cachep, objp));
2045 		print_symbol("(%s)",
2046 				(unsigned long)*dbg_userword(cachep, objp));
2047 		printk("\n");
2048 	}
2049 	realobj = (char *)objp + obj_offset(cachep);
2050 	size = cachep->object_size;
2051 	for (i = 0; i < size && lines; i += 16, lines--) {
2052 		int limit;
2053 		limit = 16;
2054 		if (i + limit > size)
2055 			limit = size - i;
2056 		dump_line(realobj, i, limit);
2057 	}
2058 }
2059 
2060 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
2061 {
2062 	char *realobj;
2063 	int size, i;
2064 	int lines = 0;
2065 
2066 	realobj = (char *)objp + obj_offset(cachep);
2067 	size = cachep->object_size;
2068 
2069 	for (i = 0; i < size; i++) {
2070 		char exp = POISON_FREE;
2071 		if (i == size - 1)
2072 			exp = POISON_END;
2073 		if (realobj[i] != exp) {
2074 			int limit;
2075 			/* Mismatch ! */
2076 			/* Print header */
2077 			if (lines == 0) {
2078 				printk(KERN_ERR
2079 					"Slab corruption (%s): %s start=%p, len=%d\n",
2080 					print_tainted(), cachep->name, realobj, size);
2081 				print_objinfo(cachep, objp, 0);
2082 			}
2083 			/* Hexdump the affected line */
2084 			i = (i / 16) * 16;
2085 			limit = 16;
2086 			if (i + limit > size)
2087 				limit = size - i;
2088 			dump_line(realobj, i, limit);
2089 			i += 16;
2090 			lines++;
2091 			/* Limit to 5 lines */
2092 			if (lines > 5)
2093 				break;
2094 		}
2095 	}
2096 	if (lines != 0) {
2097 		/* Print some data about the neighboring objects, if they
2098 		 * exist:
2099 		 */
2100 		struct slab *slabp = virt_to_slab(objp);
2101 		unsigned int objnr;
2102 
2103 		objnr = obj_to_index(cachep, slabp, objp);
2104 		if (objnr) {
2105 			objp = index_to_obj(cachep, slabp, objnr - 1);
2106 			realobj = (char *)objp + obj_offset(cachep);
2107 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2108 			       realobj, size);
2109 			print_objinfo(cachep, objp, 2);
2110 		}
2111 		if (objnr + 1 < cachep->num) {
2112 			objp = index_to_obj(cachep, slabp, objnr + 1);
2113 			realobj = (char *)objp + obj_offset(cachep);
2114 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2115 			       realobj, size);
2116 			print_objinfo(cachep, objp, 2);
2117 		}
2118 	}
2119 }
2120 #endif
2121 
2122 #if DEBUG
2123 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2124 {
2125 	int i;
2126 	for (i = 0; i < cachep->num; i++) {
2127 		void *objp = index_to_obj(cachep, slabp, i);
2128 
2129 		if (cachep->flags & SLAB_POISON) {
2130 #ifdef CONFIG_DEBUG_PAGEALLOC
2131 			if (cachep->size % PAGE_SIZE == 0 &&
2132 					OFF_SLAB(cachep))
2133 				kernel_map_pages(virt_to_page(objp),
2134 					cachep->size / PAGE_SIZE, 1);
2135 			else
2136 				check_poison_obj(cachep, objp);
2137 #else
2138 			check_poison_obj(cachep, objp);
2139 #endif
2140 		}
2141 		if (cachep->flags & SLAB_RED_ZONE) {
2142 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2143 				slab_error(cachep, "start of a freed object "
2144 					   "was overwritten");
2145 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2146 				slab_error(cachep, "end of a freed object "
2147 					   "was overwritten");
2148 		}
2149 	}
2150 }
2151 #else
2152 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2153 {
2154 }
2155 #endif
2156 
2157 /**
2158  * slab_destroy - destroy and release all objects in a slab
2159  * @cachep: cache pointer being destroyed
2160  * @slabp: slab pointer being destroyed
2161  *
2162  * Destroy all the objs in a slab, and release the mem back to the system.
2163  * Before calling the slab must have been unlinked from the cache.  The
2164  * cache-lock is not held/needed.
2165  */
2166 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2167 {
2168 	void *addr = slabp->s_mem - slabp->colouroff;
2169 
2170 	slab_destroy_debugcheck(cachep, slabp);
2171 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2172 		struct slab_rcu *slab_rcu;
2173 
2174 		slab_rcu = (struct slab_rcu *)slabp;
2175 		slab_rcu->cachep = cachep;
2176 		slab_rcu->addr = addr;
2177 		call_rcu(&slab_rcu->head, kmem_rcu_free);
2178 	} else {
2179 		kmem_freepages(cachep, addr);
2180 		if (OFF_SLAB(cachep))
2181 			kmem_cache_free(cachep->slabp_cache, slabp);
2182 	}
2183 }
2184 
2185 /**
2186  * calculate_slab_order - calculate size (page order) of slabs
2187  * @cachep: pointer to the cache that is being created
2188  * @size: size of objects to be created in this cache.
2189  * @align: required alignment for the objects.
2190  * @flags: slab allocation flags
2191  *
2192  * Also calculates the number of objects per slab.
2193  *
2194  * This could be made much more intelligent.  For now, try to avoid using
2195  * high order pages for slabs.  When the gfp() functions are more friendly
2196  * towards high-order requests, this should be changed.
2197  */
2198 static size_t calculate_slab_order(struct kmem_cache *cachep,
2199 			size_t size, size_t align, unsigned long flags)
2200 {
2201 	unsigned long offslab_limit;
2202 	size_t left_over = 0;
2203 	int gfporder;
2204 
2205 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2206 		unsigned int num;
2207 		size_t remainder;
2208 
2209 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2210 		if (!num)
2211 			continue;
2212 
2213 		if (flags & CFLGS_OFF_SLAB) {
2214 			/*
2215 			 * Max number of objs-per-slab for caches which
2216 			 * use off-slab slabs. Needed to avoid a possible
2217 			 * looping condition in cache_grow().
2218 			 */
2219 			offslab_limit = size - sizeof(struct slab);
2220 			offslab_limit /= sizeof(kmem_bufctl_t);
2221 
2222  			if (num > offslab_limit)
2223 				break;
2224 		}
2225 
2226 		/* Found something acceptable - save it away */
2227 		cachep->num = num;
2228 		cachep->gfporder = gfporder;
2229 		left_over = remainder;
2230 
2231 		/*
2232 		 * A VFS-reclaimable slab tends to have most allocations
2233 		 * as GFP_NOFS and we really don't want to have to be allocating
2234 		 * higher-order pages when we are unable to shrink dcache.
2235 		 */
2236 		if (flags & SLAB_RECLAIM_ACCOUNT)
2237 			break;
2238 
2239 		/*
2240 		 * Large number of objects is good, but very large slabs are
2241 		 * currently bad for the gfp()s.
2242 		 */
2243 		if (gfporder >= slab_max_order)
2244 			break;
2245 
2246 		/*
2247 		 * Acceptable internal fragmentation?
2248 		 */
2249 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2250 			break;
2251 	}
2252 	return left_over;
2253 }
2254 
2255 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2256 {
2257 	if (slab_state >= FULL)
2258 		return enable_cpucache(cachep, gfp);
2259 
2260 	if (slab_state == DOWN) {
2261 		/*
2262 		 * Note: Creation of first cache (kmem_cache).
2263 		 * The setup_list3s is taken care
2264 		 * of by the caller of __kmem_cache_create
2265 		 */
2266 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2267 		slab_state = PARTIAL;
2268 	} else if (slab_state == PARTIAL) {
2269 		/*
2270 		 * Note: the second kmem_cache_create must create the cache
2271 		 * that's used by kmalloc(24), otherwise the creation of
2272 		 * further caches will BUG().
2273 		 */
2274 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2275 
2276 		/*
2277 		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2278 		 * the second cache, then we need to set up all its list3s,
2279 		 * otherwise the creation of further caches will BUG().
2280 		 */
2281 		set_up_list3s(cachep, SIZE_AC);
2282 		if (INDEX_AC == INDEX_L3)
2283 			slab_state = PARTIAL_L3;
2284 		else
2285 			slab_state = PARTIAL_ARRAYCACHE;
2286 	} else {
2287 		/* Remaining boot caches */
2288 		cachep->array[smp_processor_id()] =
2289 			kmalloc(sizeof(struct arraycache_init), gfp);
2290 
2291 		if (slab_state == PARTIAL_ARRAYCACHE) {
2292 			set_up_list3s(cachep, SIZE_L3);
2293 			slab_state = PARTIAL_L3;
2294 		} else {
2295 			int node;
2296 			for_each_online_node(node) {
2297 				cachep->nodelists[node] =
2298 				    kmalloc_node(sizeof(struct kmem_list3),
2299 						gfp, node);
2300 				BUG_ON(!cachep->nodelists[node]);
2301 				kmem_list3_init(cachep->nodelists[node]);
2302 			}
2303 		}
2304 	}
2305 	cachep->nodelists[numa_mem_id()]->next_reap =
2306 			jiffies + REAPTIMEOUT_LIST3 +
2307 			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2308 
2309 	cpu_cache_get(cachep)->avail = 0;
2310 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2311 	cpu_cache_get(cachep)->batchcount = 1;
2312 	cpu_cache_get(cachep)->touched = 0;
2313 	cachep->batchcount = 1;
2314 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2315 	return 0;
2316 }
2317 
2318 /**
2319  * __kmem_cache_create - Create a cache.
2320  * @cachep: cache management descriptor
2321  * @flags: SLAB flags
2322  *
2323  * Returns a ptr to the cache on success, NULL on failure.
2324  * Cannot be called within a int, but can be interrupted.
2325  * The @ctor is run when new pages are allocated by the cache.
2326  *
2327  * The flags are
2328  *
2329  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2330  * to catch references to uninitialised memory.
2331  *
2332  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2333  * for buffer overruns.
2334  *
2335  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2336  * cacheline.  This can be beneficial if you're counting cycles as closely
2337  * as davem.
2338  */
2339 int
2340 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2341 {
2342 	size_t left_over, slab_size, ralign;
2343 	gfp_t gfp;
2344 	int err;
2345 	size_t size = cachep->size;
2346 
2347 #if DEBUG
2348 #if FORCED_DEBUG
2349 	/*
2350 	 * Enable redzoning and last user accounting, except for caches with
2351 	 * large objects, if the increased size would increase the object size
2352 	 * above the next power of two: caches with object sizes just above a
2353 	 * power of two have a significant amount of internal fragmentation.
2354 	 */
2355 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2356 						2 * sizeof(unsigned long long)))
2357 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2358 	if (!(flags & SLAB_DESTROY_BY_RCU))
2359 		flags |= SLAB_POISON;
2360 #endif
2361 	if (flags & SLAB_DESTROY_BY_RCU)
2362 		BUG_ON(flags & SLAB_POISON);
2363 #endif
2364 
2365 	/*
2366 	 * Check that size is in terms of words.  This is needed to avoid
2367 	 * unaligned accesses for some archs when redzoning is used, and makes
2368 	 * sure any on-slab bufctl's are also correctly aligned.
2369 	 */
2370 	if (size & (BYTES_PER_WORD - 1)) {
2371 		size += (BYTES_PER_WORD - 1);
2372 		size &= ~(BYTES_PER_WORD - 1);
2373 	}
2374 
2375 	/*
2376 	 * Redzoning and user store require word alignment or possibly larger.
2377 	 * Note this will be overridden by architecture or caller mandated
2378 	 * alignment if either is greater than BYTES_PER_WORD.
2379 	 */
2380 	if (flags & SLAB_STORE_USER)
2381 		ralign = BYTES_PER_WORD;
2382 
2383 	if (flags & SLAB_RED_ZONE) {
2384 		ralign = REDZONE_ALIGN;
2385 		/* If redzoning, ensure that the second redzone is suitably
2386 		 * aligned, by adjusting the object size accordingly. */
2387 		size += REDZONE_ALIGN - 1;
2388 		size &= ~(REDZONE_ALIGN - 1);
2389 	}
2390 
2391 	/* 3) caller mandated alignment */
2392 	if (ralign < cachep->align) {
2393 		ralign = cachep->align;
2394 	}
2395 	/* disable debug if necessary */
2396 	if (ralign > __alignof__(unsigned long long))
2397 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2398 	/*
2399 	 * 4) Store it.
2400 	 */
2401 	cachep->align = ralign;
2402 
2403 	if (slab_is_available())
2404 		gfp = GFP_KERNEL;
2405 	else
2406 		gfp = GFP_NOWAIT;
2407 
2408 	setup_nodelists_pointer(cachep);
2409 #if DEBUG
2410 
2411 	/*
2412 	 * Both debugging options require word-alignment which is calculated
2413 	 * into align above.
2414 	 */
2415 	if (flags & SLAB_RED_ZONE) {
2416 		/* add space for red zone words */
2417 		cachep->obj_offset += sizeof(unsigned long long);
2418 		size += 2 * sizeof(unsigned long long);
2419 	}
2420 	if (flags & SLAB_STORE_USER) {
2421 		/* user store requires one word storage behind the end of
2422 		 * the real object. But if the second red zone needs to be
2423 		 * aligned to 64 bits, we must allow that much space.
2424 		 */
2425 		if (flags & SLAB_RED_ZONE)
2426 			size += REDZONE_ALIGN;
2427 		else
2428 			size += BYTES_PER_WORD;
2429 	}
2430 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2431 	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2432 	    && cachep->object_size > cache_line_size()
2433 	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
2434 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2435 		size = PAGE_SIZE;
2436 	}
2437 #endif
2438 #endif
2439 
2440 	/*
2441 	 * Determine if the slab management is 'on' or 'off' slab.
2442 	 * (bootstrapping cannot cope with offslab caches so don't do
2443 	 * it too early on. Always use on-slab management when
2444 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2445 	 */
2446 	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2447 	    !(flags & SLAB_NOLEAKTRACE))
2448 		/*
2449 		 * Size is large, assume best to place the slab management obj
2450 		 * off-slab (should allow better packing of objs).
2451 		 */
2452 		flags |= CFLGS_OFF_SLAB;
2453 
2454 	size = ALIGN(size, cachep->align);
2455 
2456 	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2457 
2458 	if (!cachep->num)
2459 		return -E2BIG;
2460 
2461 	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2462 			  + sizeof(struct slab), cachep->align);
2463 
2464 	/*
2465 	 * If the slab has been placed off-slab, and we have enough space then
2466 	 * move it on-slab. This is at the expense of any extra colouring.
2467 	 */
2468 	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2469 		flags &= ~CFLGS_OFF_SLAB;
2470 		left_over -= slab_size;
2471 	}
2472 
2473 	if (flags & CFLGS_OFF_SLAB) {
2474 		/* really off slab. No need for manual alignment */
2475 		slab_size =
2476 		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2477 
2478 #ifdef CONFIG_PAGE_POISONING
2479 		/* If we're going to use the generic kernel_map_pages()
2480 		 * poisoning, then it's going to smash the contents of
2481 		 * the redzone and userword anyhow, so switch them off.
2482 		 */
2483 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2484 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2485 #endif
2486 	}
2487 
2488 	cachep->colour_off = cache_line_size();
2489 	/* Offset must be a multiple of the alignment. */
2490 	if (cachep->colour_off < cachep->align)
2491 		cachep->colour_off = cachep->align;
2492 	cachep->colour = left_over / cachep->colour_off;
2493 	cachep->slab_size = slab_size;
2494 	cachep->flags = flags;
2495 	cachep->allocflags = 0;
2496 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2497 		cachep->allocflags |= GFP_DMA;
2498 	cachep->size = size;
2499 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2500 
2501 	if (flags & CFLGS_OFF_SLAB) {
2502 		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2503 		/*
2504 		 * This is a possibility for one of the malloc_sizes caches.
2505 		 * But since we go off slab only for object size greater than
2506 		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2507 		 * this should not happen at all.
2508 		 * But leave a BUG_ON for some lucky dude.
2509 		 */
2510 		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2511 	}
2512 
2513 	err = setup_cpu_cache(cachep, gfp);
2514 	if (err) {
2515 		__kmem_cache_shutdown(cachep);
2516 		return err;
2517 	}
2518 
2519 	if (flags & SLAB_DEBUG_OBJECTS) {
2520 		/*
2521 		 * Would deadlock through slab_destroy()->call_rcu()->
2522 		 * debug_object_activate()->kmem_cache_alloc().
2523 		 */
2524 		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2525 
2526 		slab_set_debugobj_lock_classes(cachep);
2527 	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2528 		on_slab_lock_classes(cachep);
2529 
2530 	return 0;
2531 }
2532 
2533 #if DEBUG
2534 static void check_irq_off(void)
2535 {
2536 	BUG_ON(!irqs_disabled());
2537 }
2538 
2539 static void check_irq_on(void)
2540 {
2541 	BUG_ON(irqs_disabled());
2542 }
2543 
2544 static void check_spinlock_acquired(struct kmem_cache *cachep)
2545 {
2546 #ifdef CONFIG_SMP
2547 	check_irq_off();
2548 	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2549 #endif
2550 }
2551 
2552 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2553 {
2554 #ifdef CONFIG_SMP
2555 	check_irq_off();
2556 	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2557 #endif
2558 }
2559 
2560 #else
2561 #define check_irq_off()	do { } while(0)
2562 #define check_irq_on()	do { } while(0)
2563 #define check_spinlock_acquired(x) do { } while(0)
2564 #define check_spinlock_acquired_node(x, y) do { } while(0)
2565 #endif
2566 
2567 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2568 			struct array_cache *ac,
2569 			int force, int node);
2570 
2571 static void do_drain(void *arg)
2572 {
2573 	struct kmem_cache *cachep = arg;
2574 	struct array_cache *ac;
2575 	int node = numa_mem_id();
2576 
2577 	check_irq_off();
2578 	ac = cpu_cache_get(cachep);
2579 	spin_lock(&cachep->nodelists[node]->list_lock);
2580 	free_block(cachep, ac->entry, ac->avail, node);
2581 	spin_unlock(&cachep->nodelists[node]->list_lock);
2582 	ac->avail = 0;
2583 }
2584 
2585 static void drain_cpu_caches(struct kmem_cache *cachep)
2586 {
2587 	struct kmem_list3 *l3;
2588 	int node;
2589 
2590 	on_each_cpu(do_drain, cachep, 1);
2591 	check_irq_on();
2592 	for_each_online_node(node) {
2593 		l3 = cachep->nodelists[node];
2594 		if (l3 && l3->alien)
2595 			drain_alien_cache(cachep, l3->alien);
2596 	}
2597 
2598 	for_each_online_node(node) {
2599 		l3 = cachep->nodelists[node];
2600 		if (l3)
2601 			drain_array(cachep, l3, l3->shared, 1, node);
2602 	}
2603 }
2604 
2605 /*
2606  * Remove slabs from the list of free slabs.
2607  * Specify the number of slabs to drain in tofree.
2608  *
2609  * Returns the actual number of slabs released.
2610  */
2611 static int drain_freelist(struct kmem_cache *cache,
2612 			struct kmem_list3 *l3, int tofree)
2613 {
2614 	struct list_head *p;
2615 	int nr_freed;
2616 	struct slab *slabp;
2617 
2618 	nr_freed = 0;
2619 	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2620 
2621 		spin_lock_irq(&l3->list_lock);
2622 		p = l3->slabs_free.prev;
2623 		if (p == &l3->slabs_free) {
2624 			spin_unlock_irq(&l3->list_lock);
2625 			goto out;
2626 		}
2627 
2628 		slabp = list_entry(p, struct slab, list);
2629 #if DEBUG
2630 		BUG_ON(slabp->inuse);
2631 #endif
2632 		list_del(&slabp->list);
2633 		/*
2634 		 * Safe to drop the lock. The slab is no longer linked
2635 		 * to the cache.
2636 		 */
2637 		l3->free_objects -= cache->num;
2638 		spin_unlock_irq(&l3->list_lock);
2639 		slab_destroy(cache, slabp);
2640 		nr_freed++;
2641 	}
2642 out:
2643 	return nr_freed;
2644 }
2645 
2646 /* Called with slab_mutex held to protect against cpu hotplug */
2647 static int __cache_shrink(struct kmem_cache *cachep)
2648 {
2649 	int ret = 0, i = 0;
2650 	struct kmem_list3 *l3;
2651 
2652 	drain_cpu_caches(cachep);
2653 
2654 	check_irq_on();
2655 	for_each_online_node(i) {
2656 		l3 = cachep->nodelists[i];
2657 		if (!l3)
2658 			continue;
2659 
2660 		drain_freelist(cachep, l3, l3->free_objects);
2661 
2662 		ret += !list_empty(&l3->slabs_full) ||
2663 			!list_empty(&l3->slabs_partial);
2664 	}
2665 	return (ret ? 1 : 0);
2666 }
2667 
2668 /**
2669  * kmem_cache_shrink - Shrink a cache.
2670  * @cachep: The cache to shrink.
2671  *
2672  * Releases as many slabs as possible for a cache.
2673  * To help debugging, a zero exit status indicates all slabs were released.
2674  */
2675 int kmem_cache_shrink(struct kmem_cache *cachep)
2676 {
2677 	int ret;
2678 	BUG_ON(!cachep || in_interrupt());
2679 
2680 	get_online_cpus();
2681 	mutex_lock(&slab_mutex);
2682 	ret = __cache_shrink(cachep);
2683 	mutex_unlock(&slab_mutex);
2684 	put_online_cpus();
2685 	return ret;
2686 }
2687 EXPORT_SYMBOL(kmem_cache_shrink);
2688 
2689 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2690 {
2691 	int i;
2692 	struct kmem_list3 *l3;
2693 	int rc = __cache_shrink(cachep);
2694 
2695 	if (rc)
2696 		return rc;
2697 
2698 	for_each_online_cpu(i)
2699 	    kfree(cachep->array[i]);
2700 
2701 	/* NUMA: free the list3 structures */
2702 	for_each_online_node(i) {
2703 		l3 = cachep->nodelists[i];
2704 		if (l3) {
2705 			kfree(l3->shared);
2706 			free_alien_cache(l3->alien);
2707 			kfree(l3);
2708 		}
2709 	}
2710 	return 0;
2711 }
2712 
2713 /*
2714  * Get the memory for a slab management obj.
2715  * For a slab cache when the slab descriptor is off-slab, slab descriptors
2716  * always come from malloc_sizes caches.  The slab descriptor cannot
2717  * come from the same cache which is getting created because,
2718  * when we are searching for an appropriate cache for these
2719  * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2720  * If we are creating a malloc_sizes cache here it would not be visible to
2721  * kmem_find_general_cachep till the initialization is complete.
2722  * Hence we cannot have slabp_cache same as the original cache.
2723  */
2724 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2725 				   int colour_off, gfp_t local_flags,
2726 				   int nodeid)
2727 {
2728 	struct slab *slabp;
2729 
2730 	if (OFF_SLAB(cachep)) {
2731 		/* Slab management obj is off-slab. */
2732 		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2733 					      local_flags, nodeid);
2734 		/*
2735 		 * If the first object in the slab is leaked (it's allocated
2736 		 * but no one has a reference to it), we want to make sure
2737 		 * kmemleak does not treat the ->s_mem pointer as a reference
2738 		 * to the object. Otherwise we will not report the leak.
2739 		 */
2740 		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2741 				   local_flags);
2742 		if (!slabp)
2743 			return NULL;
2744 	} else {
2745 		slabp = objp + colour_off;
2746 		colour_off += cachep->slab_size;
2747 	}
2748 	slabp->inuse = 0;
2749 	slabp->colouroff = colour_off;
2750 	slabp->s_mem = objp + colour_off;
2751 	slabp->nodeid = nodeid;
2752 	slabp->free = 0;
2753 	return slabp;
2754 }
2755 
2756 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2757 {
2758 	return (kmem_bufctl_t *) (slabp + 1);
2759 }
2760 
2761 static void cache_init_objs(struct kmem_cache *cachep,
2762 			    struct slab *slabp)
2763 {
2764 	int i;
2765 
2766 	for (i = 0; i < cachep->num; i++) {
2767 		void *objp = index_to_obj(cachep, slabp, i);
2768 #if DEBUG
2769 		/* need to poison the objs? */
2770 		if (cachep->flags & SLAB_POISON)
2771 			poison_obj(cachep, objp, POISON_FREE);
2772 		if (cachep->flags & SLAB_STORE_USER)
2773 			*dbg_userword(cachep, objp) = NULL;
2774 
2775 		if (cachep->flags & SLAB_RED_ZONE) {
2776 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2777 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2778 		}
2779 		/*
2780 		 * Constructors are not allowed to allocate memory from the same
2781 		 * cache which they are a constructor for.  Otherwise, deadlock.
2782 		 * They must also be threaded.
2783 		 */
2784 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2785 			cachep->ctor(objp + obj_offset(cachep));
2786 
2787 		if (cachep->flags & SLAB_RED_ZONE) {
2788 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2789 				slab_error(cachep, "constructor overwrote the"
2790 					   " end of an object");
2791 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2792 				slab_error(cachep, "constructor overwrote the"
2793 					   " start of an object");
2794 		}
2795 		if ((cachep->size % PAGE_SIZE) == 0 &&
2796 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2797 			kernel_map_pages(virt_to_page(objp),
2798 					 cachep->size / PAGE_SIZE, 0);
2799 #else
2800 		if (cachep->ctor)
2801 			cachep->ctor(objp);
2802 #endif
2803 		slab_bufctl(slabp)[i] = i + 1;
2804 	}
2805 	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2806 }
2807 
2808 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2809 {
2810 	if (CONFIG_ZONE_DMA_FLAG) {
2811 		if (flags & GFP_DMA)
2812 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2813 		else
2814 			BUG_ON(cachep->allocflags & GFP_DMA);
2815 	}
2816 }
2817 
2818 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2819 				int nodeid)
2820 {
2821 	void *objp = index_to_obj(cachep, slabp, slabp->free);
2822 	kmem_bufctl_t next;
2823 
2824 	slabp->inuse++;
2825 	next = slab_bufctl(slabp)[slabp->free];
2826 #if DEBUG
2827 	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2828 	WARN_ON(slabp->nodeid != nodeid);
2829 #endif
2830 	slabp->free = next;
2831 
2832 	return objp;
2833 }
2834 
2835 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2836 				void *objp, int nodeid)
2837 {
2838 	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2839 
2840 #if DEBUG
2841 	/* Verify that the slab belongs to the intended node */
2842 	WARN_ON(slabp->nodeid != nodeid);
2843 
2844 	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2845 		printk(KERN_ERR "slab: double free detected in cache "
2846 				"'%s', objp %p\n", cachep->name, objp);
2847 		BUG();
2848 	}
2849 #endif
2850 	slab_bufctl(slabp)[objnr] = slabp->free;
2851 	slabp->free = objnr;
2852 	slabp->inuse--;
2853 }
2854 
2855 /*
2856  * Map pages beginning at addr to the given cache and slab. This is required
2857  * for the slab allocator to be able to lookup the cache and slab of a
2858  * virtual address for kfree, ksize, and slab debugging.
2859  */
2860 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2861 			   void *addr)
2862 {
2863 	int nr_pages;
2864 	struct page *page;
2865 
2866 	page = virt_to_page(addr);
2867 
2868 	nr_pages = 1;
2869 	if (likely(!PageCompound(page)))
2870 		nr_pages <<= cache->gfporder;
2871 
2872 	do {
2873 		page->slab_cache = cache;
2874 		page->slab_page = slab;
2875 		page++;
2876 	} while (--nr_pages);
2877 }
2878 
2879 /*
2880  * Grow (by 1) the number of slabs within a cache.  This is called by
2881  * kmem_cache_alloc() when there are no active objs left in a cache.
2882  */
2883 static int cache_grow(struct kmem_cache *cachep,
2884 		gfp_t flags, int nodeid, void *objp)
2885 {
2886 	struct slab *slabp;
2887 	size_t offset;
2888 	gfp_t local_flags;
2889 	struct kmem_list3 *l3;
2890 
2891 	/*
2892 	 * Be lazy and only check for valid flags here,  keeping it out of the
2893 	 * critical path in kmem_cache_alloc().
2894 	 */
2895 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2896 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2897 
2898 	/* Take the l3 list lock to change the colour_next on this node */
2899 	check_irq_off();
2900 	l3 = cachep->nodelists[nodeid];
2901 	spin_lock(&l3->list_lock);
2902 
2903 	/* Get colour for the slab, and cal the next value. */
2904 	offset = l3->colour_next;
2905 	l3->colour_next++;
2906 	if (l3->colour_next >= cachep->colour)
2907 		l3->colour_next = 0;
2908 	spin_unlock(&l3->list_lock);
2909 
2910 	offset *= cachep->colour_off;
2911 
2912 	if (local_flags & __GFP_WAIT)
2913 		local_irq_enable();
2914 
2915 	/*
2916 	 * The test for missing atomic flag is performed here, rather than
2917 	 * the more obvious place, simply to reduce the critical path length
2918 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2919 	 * will eventually be caught here (where it matters).
2920 	 */
2921 	kmem_flagcheck(cachep, flags);
2922 
2923 	/*
2924 	 * Get mem for the objs.  Attempt to allocate a physical page from
2925 	 * 'nodeid'.
2926 	 */
2927 	if (!objp)
2928 		objp = kmem_getpages(cachep, local_flags, nodeid);
2929 	if (!objp)
2930 		goto failed;
2931 
2932 	/* Get slab management. */
2933 	slabp = alloc_slabmgmt(cachep, objp, offset,
2934 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2935 	if (!slabp)
2936 		goto opps1;
2937 
2938 	slab_map_pages(cachep, slabp, objp);
2939 
2940 	cache_init_objs(cachep, slabp);
2941 
2942 	if (local_flags & __GFP_WAIT)
2943 		local_irq_disable();
2944 	check_irq_off();
2945 	spin_lock(&l3->list_lock);
2946 
2947 	/* Make slab active. */
2948 	list_add_tail(&slabp->list, &(l3->slabs_free));
2949 	STATS_INC_GROWN(cachep);
2950 	l3->free_objects += cachep->num;
2951 	spin_unlock(&l3->list_lock);
2952 	return 1;
2953 opps1:
2954 	kmem_freepages(cachep, objp);
2955 failed:
2956 	if (local_flags & __GFP_WAIT)
2957 		local_irq_disable();
2958 	return 0;
2959 }
2960 
2961 #if DEBUG
2962 
2963 /*
2964  * Perform extra freeing checks:
2965  * - detect bad pointers.
2966  * - POISON/RED_ZONE checking
2967  */
2968 static void kfree_debugcheck(const void *objp)
2969 {
2970 	if (!virt_addr_valid(objp)) {
2971 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2972 		       (unsigned long)objp);
2973 		BUG();
2974 	}
2975 }
2976 
2977 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2978 {
2979 	unsigned long long redzone1, redzone2;
2980 
2981 	redzone1 = *dbg_redzone1(cache, obj);
2982 	redzone2 = *dbg_redzone2(cache, obj);
2983 
2984 	/*
2985 	 * Redzone is ok.
2986 	 */
2987 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2988 		return;
2989 
2990 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2991 		slab_error(cache, "double free detected");
2992 	else
2993 		slab_error(cache, "memory outside object was overwritten");
2994 
2995 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2996 			obj, redzone1, redzone2);
2997 }
2998 
2999 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3000 				   unsigned long caller)
3001 {
3002 	struct page *page;
3003 	unsigned int objnr;
3004 	struct slab *slabp;
3005 
3006 	BUG_ON(virt_to_cache(objp) != cachep);
3007 
3008 	objp -= obj_offset(cachep);
3009 	kfree_debugcheck(objp);
3010 	page = virt_to_head_page(objp);
3011 
3012 	slabp = page->slab_page;
3013 
3014 	if (cachep->flags & SLAB_RED_ZONE) {
3015 		verify_redzone_free(cachep, objp);
3016 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
3017 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
3018 	}
3019 	if (cachep->flags & SLAB_STORE_USER)
3020 		*dbg_userword(cachep, objp) = (void *)caller;
3021 
3022 	objnr = obj_to_index(cachep, slabp, objp);
3023 
3024 	BUG_ON(objnr >= cachep->num);
3025 	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3026 
3027 #ifdef CONFIG_DEBUG_SLAB_LEAK
3028 	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3029 #endif
3030 	if (cachep->flags & SLAB_POISON) {
3031 #ifdef CONFIG_DEBUG_PAGEALLOC
3032 		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3033 			store_stackinfo(cachep, objp, caller);
3034 			kernel_map_pages(virt_to_page(objp),
3035 					 cachep->size / PAGE_SIZE, 0);
3036 		} else {
3037 			poison_obj(cachep, objp, POISON_FREE);
3038 		}
3039 #else
3040 		poison_obj(cachep, objp, POISON_FREE);
3041 #endif
3042 	}
3043 	return objp;
3044 }
3045 
3046 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3047 {
3048 	kmem_bufctl_t i;
3049 	int entries = 0;
3050 
3051 	/* Check slab's freelist to see if this obj is there. */
3052 	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3053 		entries++;
3054 		if (entries > cachep->num || i >= cachep->num)
3055 			goto bad;
3056 	}
3057 	if (entries != cachep->num - slabp->inuse) {
3058 bad:
3059 		printk(KERN_ERR "slab: Internal list corruption detected in "
3060 			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3061 			cachep->name, cachep->num, slabp, slabp->inuse,
3062 			print_tainted());
3063 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3064 			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3065 			1);
3066 		BUG();
3067 	}
3068 }
3069 #else
3070 #define kfree_debugcheck(x) do { } while(0)
3071 #define cache_free_debugcheck(x,objp,z) (objp)
3072 #define check_slabp(x,y) do { } while(0)
3073 #endif
3074 
3075 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3076 							bool force_refill)
3077 {
3078 	int batchcount;
3079 	struct kmem_list3 *l3;
3080 	struct array_cache *ac;
3081 	int node;
3082 
3083 	check_irq_off();
3084 	node = numa_mem_id();
3085 	if (unlikely(force_refill))
3086 		goto force_grow;
3087 retry:
3088 	ac = cpu_cache_get(cachep);
3089 	batchcount = ac->batchcount;
3090 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3091 		/*
3092 		 * If there was little recent activity on this cache, then
3093 		 * perform only a partial refill.  Otherwise we could generate
3094 		 * refill bouncing.
3095 		 */
3096 		batchcount = BATCHREFILL_LIMIT;
3097 	}
3098 	l3 = cachep->nodelists[node];
3099 
3100 	BUG_ON(ac->avail > 0 || !l3);
3101 	spin_lock(&l3->list_lock);
3102 
3103 	/* See if we can refill from the shared array */
3104 	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3105 		l3->shared->touched = 1;
3106 		goto alloc_done;
3107 	}
3108 
3109 	while (batchcount > 0) {
3110 		struct list_head *entry;
3111 		struct slab *slabp;
3112 		/* Get slab alloc is to come from. */
3113 		entry = l3->slabs_partial.next;
3114 		if (entry == &l3->slabs_partial) {
3115 			l3->free_touched = 1;
3116 			entry = l3->slabs_free.next;
3117 			if (entry == &l3->slabs_free)
3118 				goto must_grow;
3119 		}
3120 
3121 		slabp = list_entry(entry, struct slab, list);
3122 		check_slabp(cachep, slabp);
3123 		check_spinlock_acquired(cachep);
3124 
3125 		/*
3126 		 * The slab was either on partial or free list so
3127 		 * there must be at least one object available for
3128 		 * allocation.
3129 		 */
3130 		BUG_ON(slabp->inuse >= cachep->num);
3131 
3132 		while (slabp->inuse < cachep->num && batchcount--) {
3133 			STATS_INC_ALLOCED(cachep);
3134 			STATS_INC_ACTIVE(cachep);
3135 			STATS_SET_HIGH(cachep);
3136 
3137 			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3138 									node));
3139 		}
3140 		check_slabp(cachep, slabp);
3141 
3142 		/* move slabp to correct slabp list: */
3143 		list_del(&slabp->list);
3144 		if (slabp->free == BUFCTL_END)
3145 			list_add(&slabp->list, &l3->slabs_full);
3146 		else
3147 			list_add(&slabp->list, &l3->slabs_partial);
3148 	}
3149 
3150 must_grow:
3151 	l3->free_objects -= ac->avail;
3152 alloc_done:
3153 	spin_unlock(&l3->list_lock);
3154 
3155 	if (unlikely(!ac->avail)) {
3156 		int x;
3157 force_grow:
3158 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3159 
3160 		/* cache_grow can reenable interrupts, then ac could change. */
3161 		ac = cpu_cache_get(cachep);
3162 		node = numa_mem_id();
3163 
3164 		/* no objects in sight? abort */
3165 		if (!x && (ac->avail == 0 || force_refill))
3166 			return NULL;
3167 
3168 		if (!ac->avail)		/* objects refilled by interrupt? */
3169 			goto retry;
3170 	}
3171 	ac->touched = 1;
3172 
3173 	return ac_get_obj(cachep, ac, flags, force_refill);
3174 }
3175 
3176 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3177 						gfp_t flags)
3178 {
3179 	might_sleep_if(flags & __GFP_WAIT);
3180 #if DEBUG
3181 	kmem_flagcheck(cachep, flags);
3182 #endif
3183 }
3184 
3185 #if DEBUG
3186 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3187 				gfp_t flags, void *objp, unsigned long caller)
3188 {
3189 	if (!objp)
3190 		return objp;
3191 	if (cachep->flags & SLAB_POISON) {
3192 #ifdef CONFIG_DEBUG_PAGEALLOC
3193 		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3194 			kernel_map_pages(virt_to_page(objp),
3195 					 cachep->size / PAGE_SIZE, 1);
3196 		else
3197 			check_poison_obj(cachep, objp);
3198 #else
3199 		check_poison_obj(cachep, objp);
3200 #endif
3201 		poison_obj(cachep, objp, POISON_INUSE);
3202 	}
3203 	if (cachep->flags & SLAB_STORE_USER)
3204 		*dbg_userword(cachep, objp) = (void *)caller;
3205 
3206 	if (cachep->flags & SLAB_RED_ZONE) {
3207 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3208 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3209 			slab_error(cachep, "double free, or memory outside"
3210 						" object was overwritten");
3211 			printk(KERN_ERR
3212 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3213 				objp, *dbg_redzone1(cachep, objp),
3214 				*dbg_redzone2(cachep, objp));
3215 		}
3216 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3217 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3218 	}
3219 #ifdef CONFIG_DEBUG_SLAB_LEAK
3220 	{
3221 		struct slab *slabp;
3222 		unsigned objnr;
3223 
3224 		slabp = virt_to_head_page(objp)->slab_page;
3225 		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3226 		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3227 	}
3228 #endif
3229 	objp += obj_offset(cachep);
3230 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3231 		cachep->ctor(objp);
3232 	if (ARCH_SLAB_MINALIGN &&
3233 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3234 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3235 		       objp, (int)ARCH_SLAB_MINALIGN);
3236 	}
3237 	return objp;
3238 }
3239 #else
3240 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3241 #endif
3242 
3243 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3244 {
3245 	if (cachep == kmem_cache)
3246 		return false;
3247 
3248 	return should_failslab(cachep->object_size, flags, cachep->flags);
3249 }
3250 
3251 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3252 {
3253 	void *objp;
3254 	struct array_cache *ac;
3255 	bool force_refill = false;
3256 
3257 	check_irq_off();
3258 
3259 	ac = cpu_cache_get(cachep);
3260 	if (likely(ac->avail)) {
3261 		ac->touched = 1;
3262 		objp = ac_get_obj(cachep, ac, flags, false);
3263 
3264 		/*
3265 		 * Allow for the possibility all avail objects are not allowed
3266 		 * by the current flags
3267 		 */
3268 		if (objp) {
3269 			STATS_INC_ALLOCHIT(cachep);
3270 			goto out;
3271 		}
3272 		force_refill = true;
3273 	}
3274 
3275 	STATS_INC_ALLOCMISS(cachep);
3276 	objp = cache_alloc_refill(cachep, flags, force_refill);
3277 	/*
3278 	 * the 'ac' may be updated by cache_alloc_refill(),
3279 	 * and kmemleak_erase() requires its correct value.
3280 	 */
3281 	ac = cpu_cache_get(cachep);
3282 
3283 out:
3284 	/*
3285 	 * To avoid a false negative, if an object that is in one of the
3286 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3287 	 * treat the array pointers as a reference to the object.
3288 	 */
3289 	if (objp)
3290 		kmemleak_erase(&ac->entry[ac->avail]);
3291 	return objp;
3292 }
3293 
3294 #ifdef CONFIG_NUMA
3295 /*
3296  * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3297  *
3298  * If we are in_interrupt, then process context, including cpusets and
3299  * mempolicy, may not apply and should not be used for allocation policy.
3300  */
3301 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3302 {
3303 	int nid_alloc, nid_here;
3304 
3305 	if (in_interrupt() || (flags & __GFP_THISNODE))
3306 		return NULL;
3307 	nid_alloc = nid_here = numa_mem_id();
3308 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3309 		nid_alloc = cpuset_slab_spread_node();
3310 	else if (current->mempolicy)
3311 		nid_alloc = slab_node();
3312 	if (nid_alloc != nid_here)
3313 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3314 	return NULL;
3315 }
3316 
3317 /*
3318  * Fallback function if there was no memory available and no objects on a
3319  * certain node and fall back is permitted. First we scan all the
3320  * available nodelists for available objects. If that fails then we
3321  * perform an allocation without specifying a node. This allows the page
3322  * allocator to do its reclaim / fallback magic. We then insert the
3323  * slab into the proper nodelist and then allocate from it.
3324  */
3325 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3326 {
3327 	struct zonelist *zonelist;
3328 	gfp_t local_flags;
3329 	struct zoneref *z;
3330 	struct zone *zone;
3331 	enum zone_type high_zoneidx = gfp_zone(flags);
3332 	void *obj = NULL;
3333 	int nid;
3334 	unsigned int cpuset_mems_cookie;
3335 
3336 	if (flags & __GFP_THISNODE)
3337 		return NULL;
3338 
3339 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3340 
3341 retry_cpuset:
3342 	cpuset_mems_cookie = get_mems_allowed();
3343 	zonelist = node_zonelist(slab_node(), flags);
3344 
3345 retry:
3346 	/*
3347 	 * Look through allowed nodes for objects available
3348 	 * from existing per node queues.
3349 	 */
3350 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3351 		nid = zone_to_nid(zone);
3352 
3353 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3354 			cache->nodelists[nid] &&
3355 			cache->nodelists[nid]->free_objects) {
3356 				obj = ____cache_alloc_node(cache,
3357 					flags | GFP_THISNODE, nid);
3358 				if (obj)
3359 					break;
3360 		}
3361 	}
3362 
3363 	if (!obj) {
3364 		/*
3365 		 * This allocation will be performed within the constraints
3366 		 * of the current cpuset / memory policy requirements.
3367 		 * We may trigger various forms of reclaim on the allowed
3368 		 * set and go into memory reserves if necessary.
3369 		 */
3370 		if (local_flags & __GFP_WAIT)
3371 			local_irq_enable();
3372 		kmem_flagcheck(cache, flags);
3373 		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3374 		if (local_flags & __GFP_WAIT)
3375 			local_irq_disable();
3376 		if (obj) {
3377 			/*
3378 			 * Insert into the appropriate per node queues
3379 			 */
3380 			nid = page_to_nid(virt_to_page(obj));
3381 			if (cache_grow(cache, flags, nid, obj)) {
3382 				obj = ____cache_alloc_node(cache,
3383 					flags | GFP_THISNODE, nid);
3384 				if (!obj)
3385 					/*
3386 					 * Another processor may allocate the
3387 					 * objects in the slab since we are
3388 					 * not holding any locks.
3389 					 */
3390 					goto retry;
3391 			} else {
3392 				/* cache_grow already freed obj */
3393 				obj = NULL;
3394 			}
3395 		}
3396 	}
3397 
3398 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3399 		goto retry_cpuset;
3400 	return obj;
3401 }
3402 
3403 /*
3404  * A interface to enable slab creation on nodeid
3405  */
3406 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3407 				int nodeid)
3408 {
3409 	struct list_head *entry;
3410 	struct slab *slabp;
3411 	struct kmem_list3 *l3;
3412 	void *obj;
3413 	int x;
3414 
3415 	l3 = cachep->nodelists[nodeid];
3416 	BUG_ON(!l3);
3417 
3418 retry:
3419 	check_irq_off();
3420 	spin_lock(&l3->list_lock);
3421 	entry = l3->slabs_partial.next;
3422 	if (entry == &l3->slabs_partial) {
3423 		l3->free_touched = 1;
3424 		entry = l3->slabs_free.next;
3425 		if (entry == &l3->slabs_free)
3426 			goto must_grow;
3427 	}
3428 
3429 	slabp = list_entry(entry, struct slab, list);
3430 	check_spinlock_acquired_node(cachep, nodeid);
3431 	check_slabp(cachep, slabp);
3432 
3433 	STATS_INC_NODEALLOCS(cachep);
3434 	STATS_INC_ACTIVE(cachep);
3435 	STATS_SET_HIGH(cachep);
3436 
3437 	BUG_ON(slabp->inuse == cachep->num);
3438 
3439 	obj = slab_get_obj(cachep, slabp, nodeid);
3440 	check_slabp(cachep, slabp);
3441 	l3->free_objects--;
3442 	/* move slabp to correct slabp list: */
3443 	list_del(&slabp->list);
3444 
3445 	if (slabp->free == BUFCTL_END)
3446 		list_add(&slabp->list, &l3->slabs_full);
3447 	else
3448 		list_add(&slabp->list, &l3->slabs_partial);
3449 
3450 	spin_unlock(&l3->list_lock);
3451 	goto done;
3452 
3453 must_grow:
3454 	spin_unlock(&l3->list_lock);
3455 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3456 	if (x)
3457 		goto retry;
3458 
3459 	return fallback_alloc(cachep, flags);
3460 
3461 done:
3462 	return obj;
3463 }
3464 
3465 /**
3466  * kmem_cache_alloc_node - Allocate an object on the specified node
3467  * @cachep: The cache to allocate from.
3468  * @flags: See kmalloc().
3469  * @nodeid: node number of the target node.
3470  * @caller: return address of caller, used for debug information
3471  *
3472  * Identical to kmem_cache_alloc but it will allocate memory on the given
3473  * node, which can improve the performance for cpu bound structures.
3474  *
3475  * Fallback to other node is possible if __GFP_THISNODE is not set.
3476  */
3477 static __always_inline void *
3478 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3479 		   unsigned long caller)
3480 {
3481 	unsigned long save_flags;
3482 	void *ptr;
3483 	int slab_node = numa_mem_id();
3484 
3485 	flags &= gfp_allowed_mask;
3486 
3487 	lockdep_trace_alloc(flags);
3488 
3489 	if (slab_should_failslab(cachep, flags))
3490 		return NULL;
3491 
3492 	cachep = memcg_kmem_get_cache(cachep, flags);
3493 
3494 	cache_alloc_debugcheck_before(cachep, flags);
3495 	local_irq_save(save_flags);
3496 
3497 	if (nodeid == NUMA_NO_NODE)
3498 		nodeid = slab_node;
3499 
3500 	if (unlikely(!cachep->nodelists[nodeid])) {
3501 		/* Node not bootstrapped yet */
3502 		ptr = fallback_alloc(cachep, flags);
3503 		goto out;
3504 	}
3505 
3506 	if (nodeid == slab_node) {
3507 		/*
3508 		 * Use the locally cached objects if possible.
3509 		 * However ____cache_alloc does not allow fallback
3510 		 * to other nodes. It may fail while we still have
3511 		 * objects on other nodes available.
3512 		 */
3513 		ptr = ____cache_alloc(cachep, flags);
3514 		if (ptr)
3515 			goto out;
3516 	}
3517 	/* ___cache_alloc_node can fall back to other nodes */
3518 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3519   out:
3520 	local_irq_restore(save_flags);
3521 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3522 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3523 				 flags);
3524 
3525 	if (likely(ptr))
3526 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3527 
3528 	if (unlikely((flags & __GFP_ZERO) && ptr))
3529 		memset(ptr, 0, cachep->object_size);
3530 
3531 	return ptr;
3532 }
3533 
3534 static __always_inline void *
3535 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3536 {
3537 	void *objp;
3538 
3539 	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3540 		objp = alternate_node_alloc(cache, flags);
3541 		if (objp)
3542 			goto out;
3543 	}
3544 	objp = ____cache_alloc(cache, flags);
3545 
3546 	/*
3547 	 * We may just have run out of memory on the local node.
3548 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3549 	 */
3550 	if (!objp)
3551 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3552 
3553   out:
3554 	return objp;
3555 }
3556 #else
3557 
3558 static __always_inline void *
3559 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3560 {
3561 	return ____cache_alloc(cachep, flags);
3562 }
3563 
3564 #endif /* CONFIG_NUMA */
3565 
3566 static __always_inline void *
3567 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3568 {
3569 	unsigned long save_flags;
3570 	void *objp;
3571 
3572 	flags &= gfp_allowed_mask;
3573 
3574 	lockdep_trace_alloc(flags);
3575 
3576 	if (slab_should_failslab(cachep, flags))
3577 		return NULL;
3578 
3579 	cachep = memcg_kmem_get_cache(cachep, flags);
3580 
3581 	cache_alloc_debugcheck_before(cachep, flags);
3582 	local_irq_save(save_flags);
3583 	objp = __do_cache_alloc(cachep, flags);
3584 	local_irq_restore(save_flags);
3585 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3586 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3587 				 flags);
3588 	prefetchw(objp);
3589 
3590 	if (likely(objp))
3591 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3592 
3593 	if (unlikely((flags & __GFP_ZERO) && objp))
3594 		memset(objp, 0, cachep->object_size);
3595 
3596 	return objp;
3597 }
3598 
3599 /*
3600  * Caller needs to acquire correct kmem_list's list_lock
3601  */
3602 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3603 		       int node)
3604 {
3605 	int i;
3606 	struct kmem_list3 *l3;
3607 
3608 	for (i = 0; i < nr_objects; i++) {
3609 		void *objp;
3610 		struct slab *slabp;
3611 
3612 		clear_obj_pfmemalloc(&objpp[i]);
3613 		objp = objpp[i];
3614 
3615 		slabp = virt_to_slab(objp);
3616 		l3 = cachep->nodelists[node];
3617 		list_del(&slabp->list);
3618 		check_spinlock_acquired_node(cachep, node);
3619 		check_slabp(cachep, slabp);
3620 		slab_put_obj(cachep, slabp, objp, node);
3621 		STATS_DEC_ACTIVE(cachep);
3622 		l3->free_objects++;
3623 		check_slabp(cachep, slabp);
3624 
3625 		/* fixup slab chains */
3626 		if (slabp->inuse == 0) {
3627 			if (l3->free_objects > l3->free_limit) {
3628 				l3->free_objects -= cachep->num;
3629 				/* No need to drop any previously held
3630 				 * lock here, even if we have a off-slab slab
3631 				 * descriptor it is guaranteed to come from
3632 				 * a different cache, refer to comments before
3633 				 * alloc_slabmgmt.
3634 				 */
3635 				slab_destroy(cachep, slabp);
3636 			} else {
3637 				list_add(&slabp->list, &l3->slabs_free);
3638 			}
3639 		} else {
3640 			/* Unconditionally move a slab to the end of the
3641 			 * partial list on free - maximum time for the
3642 			 * other objects to be freed, too.
3643 			 */
3644 			list_add_tail(&slabp->list, &l3->slabs_partial);
3645 		}
3646 	}
3647 }
3648 
3649 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3650 {
3651 	int batchcount;
3652 	struct kmem_list3 *l3;
3653 	int node = numa_mem_id();
3654 
3655 	batchcount = ac->batchcount;
3656 #if DEBUG
3657 	BUG_ON(!batchcount || batchcount > ac->avail);
3658 #endif
3659 	check_irq_off();
3660 	l3 = cachep->nodelists[node];
3661 	spin_lock(&l3->list_lock);
3662 	if (l3->shared) {
3663 		struct array_cache *shared_array = l3->shared;
3664 		int max = shared_array->limit - shared_array->avail;
3665 		if (max) {
3666 			if (batchcount > max)
3667 				batchcount = max;
3668 			memcpy(&(shared_array->entry[shared_array->avail]),
3669 			       ac->entry, sizeof(void *) * batchcount);
3670 			shared_array->avail += batchcount;
3671 			goto free_done;
3672 		}
3673 	}
3674 
3675 	free_block(cachep, ac->entry, batchcount, node);
3676 free_done:
3677 #if STATS
3678 	{
3679 		int i = 0;
3680 		struct list_head *p;
3681 
3682 		p = l3->slabs_free.next;
3683 		while (p != &(l3->slabs_free)) {
3684 			struct slab *slabp;
3685 
3686 			slabp = list_entry(p, struct slab, list);
3687 			BUG_ON(slabp->inuse);
3688 
3689 			i++;
3690 			p = p->next;
3691 		}
3692 		STATS_SET_FREEABLE(cachep, i);
3693 	}
3694 #endif
3695 	spin_unlock(&l3->list_lock);
3696 	ac->avail -= batchcount;
3697 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3698 }
3699 
3700 /*
3701  * Release an obj back to its cache. If the obj has a constructed state, it must
3702  * be in this state _before_ it is released.  Called with disabled ints.
3703  */
3704 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3705 				unsigned long caller)
3706 {
3707 	struct array_cache *ac = cpu_cache_get(cachep);
3708 
3709 	check_irq_off();
3710 	kmemleak_free_recursive(objp, cachep->flags);
3711 	objp = cache_free_debugcheck(cachep, objp, caller);
3712 
3713 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3714 
3715 	/*
3716 	 * Skip calling cache_free_alien() when the platform is not numa.
3717 	 * This will avoid cache misses that happen while accessing slabp (which
3718 	 * is per page memory  reference) to get nodeid. Instead use a global
3719 	 * variable to skip the call, which is mostly likely to be present in
3720 	 * the cache.
3721 	 */
3722 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3723 		return;
3724 
3725 	if (likely(ac->avail < ac->limit)) {
3726 		STATS_INC_FREEHIT(cachep);
3727 	} else {
3728 		STATS_INC_FREEMISS(cachep);
3729 		cache_flusharray(cachep, ac);
3730 	}
3731 
3732 	ac_put_obj(cachep, ac, objp);
3733 }
3734 
3735 /**
3736  * kmem_cache_alloc - Allocate an object
3737  * @cachep: The cache to allocate from.
3738  * @flags: See kmalloc().
3739  *
3740  * Allocate an object from this cache.  The flags are only relevant
3741  * if the cache has no available objects.
3742  */
3743 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3744 {
3745 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3746 
3747 	trace_kmem_cache_alloc(_RET_IP_, ret,
3748 			       cachep->object_size, cachep->size, flags);
3749 
3750 	return ret;
3751 }
3752 EXPORT_SYMBOL(kmem_cache_alloc);
3753 
3754 #ifdef CONFIG_TRACING
3755 void *
3756 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3757 {
3758 	void *ret;
3759 
3760 	ret = slab_alloc(cachep, flags, _RET_IP_);
3761 
3762 	trace_kmalloc(_RET_IP_, ret,
3763 		      size, cachep->size, flags);
3764 	return ret;
3765 }
3766 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3767 #endif
3768 
3769 #ifdef CONFIG_NUMA
3770 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3771 {
3772 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3773 
3774 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3775 				    cachep->object_size, cachep->size,
3776 				    flags, nodeid);
3777 
3778 	return ret;
3779 }
3780 EXPORT_SYMBOL(kmem_cache_alloc_node);
3781 
3782 #ifdef CONFIG_TRACING
3783 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3784 				  gfp_t flags,
3785 				  int nodeid,
3786 				  size_t size)
3787 {
3788 	void *ret;
3789 
3790 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3791 
3792 	trace_kmalloc_node(_RET_IP_, ret,
3793 			   size, cachep->size,
3794 			   flags, nodeid);
3795 	return ret;
3796 }
3797 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3798 #endif
3799 
3800 static __always_inline void *
3801 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3802 {
3803 	struct kmem_cache *cachep;
3804 
3805 	cachep = kmem_find_general_cachep(size, flags);
3806 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3807 		return cachep;
3808 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3809 }
3810 
3811 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3812 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3813 {
3814 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3815 }
3816 EXPORT_SYMBOL(__kmalloc_node);
3817 
3818 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3819 		int node, unsigned long caller)
3820 {
3821 	return __do_kmalloc_node(size, flags, node, caller);
3822 }
3823 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3824 #else
3825 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3826 {
3827 	return __do_kmalloc_node(size, flags, node, 0);
3828 }
3829 EXPORT_SYMBOL(__kmalloc_node);
3830 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3831 #endif /* CONFIG_NUMA */
3832 
3833 /**
3834  * __do_kmalloc - allocate memory
3835  * @size: how many bytes of memory are required.
3836  * @flags: the type of memory to allocate (see kmalloc).
3837  * @caller: function caller for debug tracking of the caller
3838  */
3839 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3840 					  unsigned long caller)
3841 {
3842 	struct kmem_cache *cachep;
3843 	void *ret;
3844 
3845 	/* If you want to save a few bytes .text space: replace
3846 	 * __ with kmem_.
3847 	 * Then kmalloc uses the uninlined functions instead of the inline
3848 	 * functions.
3849 	 */
3850 	cachep = __find_general_cachep(size, flags);
3851 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3852 		return cachep;
3853 	ret = slab_alloc(cachep, flags, caller);
3854 
3855 	trace_kmalloc(caller, ret,
3856 		      size, cachep->size, flags);
3857 
3858 	return ret;
3859 }
3860 
3861 
3862 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3863 void *__kmalloc(size_t size, gfp_t flags)
3864 {
3865 	return __do_kmalloc(size, flags, _RET_IP_);
3866 }
3867 EXPORT_SYMBOL(__kmalloc);
3868 
3869 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3870 {
3871 	return __do_kmalloc(size, flags, caller);
3872 }
3873 EXPORT_SYMBOL(__kmalloc_track_caller);
3874 
3875 #else
3876 void *__kmalloc(size_t size, gfp_t flags)
3877 {
3878 	return __do_kmalloc(size, flags, 0);
3879 }
3880 EXPORT_SYMBOL(__kmalloc);
3881 #endif
3882 
3883 /**
3884  * kmem_cache_free - Deallocate an object
3885  * @cachep: The cache the allocation was from.
3886  * @objp: The previously allocated object.
3887  *
3888  * Free an object which was previously allocated from this
3889  * cache.
3890  */
3891 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3892 {
3893 	unsigned long flags;
3894 	cachep = cache_from_obj(cachep, objp);
3895 	if (!cachep)
3896 		return;
3897 
3898 	local_irq_save(flags);
3899 	debug_check_no_locks_freed(objp, cachep->object_size);
3900 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3901 		debug_check_no_obj_freed(objp, cachep->object_size);
3902 	__cache_free(cachep, objp, _RET_IP_);
3903 	local_irq_restore(flags);
3904 
3905 	trace_kmem_cache_free(_RET_IP_, objp);
3906 }
3907 EXPORT_SYMBOL(kmem_cache_free);
3908 
3909 /**
3910  * kfree - free previously allocated memory
3911  * @objp: pointer returned by kmalloc.
3912  *
3913  * If @objp is NULL, no operation is performed.
3914  *
3915  * Don't free memory not originally allocated by kmalloc()
3916  * or you will run into trouble.
3917  */
3918 void kfree(const void *objp)
3919 {
3920 	struct kmem_cache *c;
3921 	unsigned long flags;
3922 
3923 	trace_kfree(_RET_IP_, objp);
3924 
3925 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3926 		return;
3927 	local_irq_save(flags);
3928 	kfree_debugcheck(objp);
3929 	c = virt_to_cache(objp);
3930 	debug_check_no_locks_freed(objp, c->object_size);
3931 
3932 	debug_check_no_obj_freed(objp, c->object_size);
3933 	__cache_free(c, (void *)objp, _RET_IP_);
3934 	local_irq_restore(flags);
3935 }
3936 EXPORT_SYMBOL(kfree);
3937 
3938 /*
3939  * This initializes kmem_list3 or resizes various caches for all nodes.
3940  */
3941 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3942 {
3943 	int node;
3944 	struct kmem_list3 *l3;
3945 	struct array_cache *new_shared;
3946 	struct array_cache **new_alien = NULL;
3947 
3948 	for_each_online_node(node) {
3949 
3950                 if (use_alien_caches) {
3951                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3952                         if (!new_alien)
3953                                 goto fail;
3954                 }
3955 
3956 		new_shared = NULL;
3957 		if (cachep->shared) {
3958 			new_shared = alloc_arraycache(node,
3959 				cachep->shared*cachep->batchcount,
3960 					0xbaadf00d, gfp);
3961 			if (!new_shared) {
3962 				free_alien_cache(new_alien);
3963 				goto fail;
3964 			}
3965 		}
3966 
3967 		l3 = cachep->nodelists[node];
3968 		if (l3) {
3969 			struct array_cache *shared = l3->shared;
3970 
3971 			spin_lock_irq(&l3->list_lock);
3972 
3973 			if (shared)
3974 				free_block(cachep, shared->entry,
3975 						shared->avail, node);
3976 
3977 			l3->shared = new_shared;
3978 			if (!l3->alien) {
3979 				l3->alien = new_alien;
3980 				new_alien = NULL;
3981 			}
3982 			l3->free_limit = (1 + nr_cpus_node(node)) *
3983 					cachep->batchcount + cachep->num;
3984 			spin_unlock_irq(&l3->list_lock);
3985 			kfree(shared);
3986 			free_alien_cache(new_alien);
3987 			continue;
3988 		}
3989 		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3990 		if (!l3) {
3991 			free_alien_cache(new_alien);
3992 			kfree(new_shared);
3993 			goto fail;
3994 		}
3995 
3996 		kmem_list3_init(l3);
3997 		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3998 				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3999 		l3->shared = new_shared;
4000 		l3->alien = new_alien;
4001 		l3->free_limit = (1 + nr_cpus_node(node)) *
4002 					cachep->batchcount + cachep->num;
4003 		cachep->nodelists[node] = l3;
4004 	}
4005 	return 0;
4006 
4007 fail:
4008 	if (!cachep->list.next) {
4009 		/* Cache is not active yet. Roll back what we did */
4010 		node--;
4011 		while (node >= 0) {
4012 			if (cachep->nodelists[node]) {
4013 				l3 = cachep->nodelists[node];
4014 
4015 				kfree(l3->shared);
4016 				free_alien_cache(l3->alien);
4017 				kfree(l3);
4018 				cachep->nodelists[node] = NULL;
4019 			}
4020 			node--;
4021 		}
4022 	}
4023 	return -ENOMEM;
4024 }
4025 
4026 struct ccupdate_struct {
4027 	struct kmem_cache *cachep;
4028 	struct array_cache *new[0];
4029 };
4030 
4031 static void do_ccupdate_local(void *info)
4032 {
4033 	struct ccupdate_struct *new = info;
4034 	struct array_cache *old;
4035 
4036 	check_irq_off();
4037 	old = cpu_cache_get(new->cachep);
4038 
4039 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4040 	new->new[smp_processor_id()] = old;
4041 }
4042 
4043 /* Always called with the slab_mutex held */
4044 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
4045 				int batchcount, int shared, gfp_t gfp)
4046 {
4047 	struct ccupdate_struct *new;
4048 	int i;
4049 
4050 	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4051 		      gfp);
4052 	if (!new)
4053 		return -ENOMEM;
4054 
4055 	for_each_online_cpu(i) {
4056 		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4057 						batchcount, gfp);
4058 		if (!new->new[i]) {
4059 			for (i--; i >= 0; i--)
4060 				kfree(new->new[i]);
4061 			kfree(new);
4062 			return -ENOMEM;
4063 		}
4064 	}
4065 	new->cachep = cachep;
4066 
4067 	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4068 
4069 	check_irq_on();
4070 	cachep->batchcount = batchcount;
4071 	cachep->limit = limit;
4072 	cachep->shared = shared;
4073 
4074 	for_each_online_cpu(i) {
4075 		struct array_cache *ccold = new->new[i];
4076 		if (!ccold)
4077 			continue;
4078 		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4079 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4080 		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4081 		kfree(ccold);
4082 	}
4083 	kfree(new);
4084 	return alloc_kmemlist(cachep, gfp);
4085 }
4086 
4087 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4088 				int batchcount, int shared, gfp_t gfp)
4089 {
4090 	int ret;
4091 	struct kmem_cache *c = NULL;
4092 	int i = 0;
4093 
4094 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4095 
4096 	if (slab_state < FULL)
4097 		return ret;
4098 
4099 	if ((ret < 0) || !is_root_cache(cachep))
4100 		return ret;
4101 
4102 	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
4103 	for_each_memcg_cache_index(i) {
4104 		c = cache_from_memcg(cachep, i);
4105 		if (c)
4106 			/* return value determined by the parent cache only */
4107 			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
4108 	}
4109 
4110 	return ret;
4111 }
4112 
4113 /* Called with slab_mutex held always */
4114 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4115 {
4116 	int err;
4117 	int limit = 0;
4118 	int shared = 0;
4119 	int batchcount = 0;
4120 
4121 	if (!is_root_cache(cachep)) {
4122 		struct kmem_cache *root = memcg_root_cache(cachep);
4123 		limit = root->limit;
4124 		shared = root->shared;
4125 		batchcount = root->batchcount;
4126 	}
4127 
4128 	if (limit && shared && batchcount)
4129 		goto skip_setup;
4130 	/*
4131 	 * The head array serves three purposes:
4132 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
4133 	 * - reduce the number of spinlock operations.
4134 	 * - reduce the number of linked list operations on the slab and
4135 	 *   bufctl chains: array operations are cheaper.
4136 	 * The numbers are guessed, we should auto-tune as described by
4137 	 * Bonwick.
4138 	 */
4139 	if (cachep->size > 131072)
4140 		limit = 1;
4141 	else if (cachep->size > PAGE_SIZE)
4142 		limit = 8;
4143 	else if (cachep->size > 1024)
4144 		limit = 24;
4145 	else if (cachep->size > 256)
4146 		limit = 54;
4147 	else
4148 		limit = 120;
4149 
4150 	/*
4151 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4152 	 * allocation behaviour: Most allocs on one cpu, most free operations
4153 	 * on another cpu. For these cases, an efficient object passing between
4154 	 * cpus is necessary. This is provided by a shared array. The array
4155 	 * replaces Bonwick's magazine layer.
4156 	 * On uniprocessor, it's functionally equivalent (but less efficient)
4157 	 * to a larger limit. Thus disabled by default.
4158 	 */
4159 	shared = 0;
4160 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4161 		shared = 8;
4162 
4163 #if DEBUG
4164 	/*
4165 	 * With debugging enabled, large batchcount lead to excessively long
4166 	 * periods with disabled local interrupts. Limit the batchcount
4167 	 */
4168 	if (limit > 32)
4169 		limit = 32;
4170 #endif
4171 	batchcount = (limit + 1) / 2;
4172 skip_setup:
4173 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4174 	if (err)
4175 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4176 		       cachep->name, -err);
4177 	return err;
4178 }
4179 
4180 /*
4181  * Drain an array if it contains any elements taking the l3 lock only if
4182  * necessary. Note that the l3 listlock also protects the array_cache
4183  * if drain_array() is used on the shared array.
4184  */
4185 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4186 			 struct array_cache *ac, int force, int node)
4187 {
4188 	int tofree;
4189 
4190 	if (!ac || !ac->avail)
4191 		return;
4192 	if (ac->touched && !force) {
4193 		ac->touched = 0;
4194 	} else {
4195 		spin_lock_irq(&l3->list_lock);
4196 		if (ac->avail) {
4197 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4198 			if (tofree > ac->avail)
4199 				tofree = (ac->avail + 1) / 2;
4200 			free_block(cachep, ac->entry, tofree, node);
4201 			ac->avail -= tofree;
4202 			memmove(ac->entry, &(ac->entry[tofree]),
4203 				sizeof(void *) * ac->avail);
4204 		}
4205 		spin_unlock_irq(&l3->list_lock);
4206 	}
4207 }
4208 
4209 /**
4210  * cache_reap - Reclaim memory from caches.
4211  * @w: work descriptor
4212  *
4213  * Called from workqueue/eventd every few seconds.
4214  * Purpose:
4215  * - clear the per-cpu caches for this CPU.
4216  * - return freeable pages to the main free memory pool.
4217  *
4218  * If we cannot acquire the cache chain mutex then just give up - we'll try
4219  * again on the next iteration.
4220  */
4221 static void cache_reap(struct work_struct *w)
4222 {
4223 	struct kmem_cache *searchp;
4224 	struct kmem_list3 *l3;
4225 	int node = numa_mem_id();
4226 	struct delayed_work *work = to_delayed_work(w);
4227 
4228 	if (!mutex_trylock(&slab_mutex))
4229 		/* Give up. Setup the next iteration. */
4230 		goto out;
4231 
4232 	list_for_each_entry(searchp, &slab_caches, list) {
4233 		check_irq_on();
4234 
4235 		/*
4236 		 * We only take the l3 lock if absolutely necessary and we
4237 		 * have established with reasonable certainty that
4238 		 * we can do some work if the lock was obtained.
4239 		 */
4240 		l3 = searchp->nodelists[node];
4241 
4242 		reap_alien(searchp, l3);
4243 
4244 		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4245 
4246 		/*
4247 		 * These are racy checks but it does not matter
4248 		 * if we skip one check or scan twice.
4249 		 */
4250 		if (time_after(l3->next_reap, jiffies))
4251 			goto next;
4252 
4253 		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4254 
4255 		drain_array(searchp, l3, l3->shared, 0, node);
4256 
4257 		if (l3->free_touched)
4258 			l3->free_touched = 0;
4259 		else {
4260 			int freed;
4261 
4262 			freed = drain_freelist(searchp, l3, (l3->free_limit +
4263 				5 * searchp->num - 1) / (5 * searchp->num));
4264 			STATS_ADD_REAPED(searchp, freed);
4265 		}
4266 next:
4267 		cond_resched();
4268 	}
4269 	check_irq_on();
4270 	mutex_unlock(&slab_mutex);
4271 	next_reap_node();
4272 out:
4273 	/* Set up the next iteration */
4274 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4275 }
4276 
4277 #ifdef CONFIG_SLABINFO
4278 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4279 {
4280 	struct slab *slabp;
4281 	unsigned long active_objs;
4282 	unsigned long num_objs;
4283 	unsigned long active_slabs = 0;
4284 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4285 	const char *name;
4286 	char *error = NULL;
4287 	int node;
4288 	struct kmem_list3 *l3;
4289 
4290 	active_objs = 0;
4291 	num_slabs = 0;
4292 	for_each_online_node(node) {
4293 		l3 = cachep->nodelists[node];
4294 		if (!l3)
4295 			continue;
4296 
4297 		check_irq_on();
4298 		spin_lock_irq(&l3->list_lock);
4299 
4300 		list_for_each_entry(slabp, &l3->slabs_full, list) {
4301 			if (slabp->inuse != cachep->num && !error)
4302 				error = "slabs_full accounting error";
4303 			active_objs += cachep->num;
4304 			active_slabs++;
4305 		}
4306 		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4307 			if (slabp->inuse == cachep->num && !error)
4308 				error = "slabs_partial inuse accounting error";
4309 			if (!slabp->inuse && !error)
4310 				error = "slabs_partial/inuse accounting error";
4311 			active_objs += slabp->inuse;
4312 			active_slabs++;
4313 		}
4314 		list_for_each_entry(slabp, &l3->slabs_free, list) {
4315 			if (slabp->inuse && !error)
4316 				error = "slabs_free/inuse accounting error";
4317 			num_slabs++;
4318 		}
4319 		free_objects += l3->free_objects;
4320 		if (l3->shared)
4321 			shared_avail += l3->shared->avail;
4322 
4323 		spin_unlock_irq(&l3->list_lock);
4324 	}
4325 	num_slabs += active_slabs;
4326 	num_objs = num_slabs * cachep->num;
4327 	if (num_objs - active_objs != free_objects && !error)
4328 		error = "free_objects accounting error";
4329 
4330 	name = cachep->name;
4331 	if (error)
4332 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4333 
4334 	sinfo->active_objs = active_objs;
4335 	sinfo->num_objs = num_objs;
4336 	sinfo->active_slabs = active_slabs;
4337 	sinfo->num_slabs = num_slabs;
4338 	sinfo->shared_avail = shared_avail;
4339 	sinfo->limit = cachep->limit;
4340 	sinfo->batchcount = cachep->batchcount;
4341 	sinfo->shared = cachep->shared;
4342 	sinfo->objects_per_slab = cachep->num;
4343 	sinfo->cache_order = cachep->gfporder;
4344 }
4345 
4346 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4347 {
4348 #if STATS
4349 	{			/* list3 stats */
4350 		unsigned long high = cachep->high_mark;
4351 		unsigned long allocs = cachep->num_allocations;
4352 		unsigned long grown = cachep->grown;
4353 		unsigned long reaped = cachep->reaped;
4354 		unsigned long errors = cachep->errors;
4355 		unsigned long max_freeable = cachep->max_freeable;
4356 		unsigned long node_allocs = cachep->node_allocs;
4357 		unsigned long node_frees = cachep->node_frees;
4358 		unsigned long overflows = cachep->node_overflow;
4359 
4360 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4361 			   "%4lu %4lu %4lu %4lu %4lu",
4362 			   allocs, high, grown,
4363 			   reaped, errors, max_freeable, node_allocs,
4364 			   node_frees, overflows);
4365 	}
4366 	/* cpu stats */
4367 	{
4368 		unsigned long allochit = atomic_read(&cachep->allochit);
4369 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4370 		unsigned long freehit = atomic_read(&cachep->freehit);
4371 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4372 
4373 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4374 			   allochit, allocmiss, freehit, freemiss);
4375 	}
4376 #endif
4377 }
4378 
4379 #define MAX_SLABINFO_WRITE 128
4380 /**
4381  * slabinfo_write - Tuning for the slab allocator
4382  * @file: unused
4383  * @buffer: user buffer
4384  * @count: data length
4385  * @ppos: unused
4386  */
4387 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4388 		       size_t count, loff_t *ppos)
4389 {
4390 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4391 	int limit, batchcount, shared, res;
4392 	struct kmem_cache *cachep;
4393 
4394 	if (count > MAX_SLABINFO_WRITE)
4395 		return -EINVAL;
4396 	if (copy_from_user(&kbuf, buffer, count))
4397 		return -EFAULT;
4398 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4399 
4400 	tmp = strchr(kbuf, ' ');
4401 	if (!tmp)
4402 		return -EINVAL;
4403 	*tmp = '\0';
4404 	tmp++;
4405 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4406 		return -EINVAL;
4407 
4408 	/* Find the cache in the chain of caches. */
4409 	mutex_lock(&slab_mutex);
4410 	res = -EINVAL;
4411 	list_for_each_entry(cachep, &slab_caches, list) {
4412 		if (!strcmp(cachep->name, kbuf)) {
4413 			if (limit < 1 || batchcount < 1 ||
4414 					batchcount > limit || shared < 0) {
4415 				res = 0;
4416 			} else {
4417 				res = do_tune_cpucache(cachep, limit,
4418 						       batchcount, shared,
4419 						       GFP_KERNEL);
4420 			}
4421 			break;
4422 		}
4423 	}
4424 	mutex_unlock(&slab_mutex);
4425 	if (res >= 0)
4426 		res = count;
4427 	return res;
4428 }
4429 
4430 #ifdef CONFIG_DEBUG_SLAB_LEAK
4431 
4432 static void *leaks_start(struct seq_file *m, loff_t *pos)
4433 {
4434 	mutex_lock(&slab_mutex);
4435 	return seq_list_start(&slab_caches, *pos);
4436 }
4437 
4438 static inline int add_caller(unsigned long *n, unsigned long v)
4439 {
4440 	unsigned long *p;
4441 	int l;
4442 	if (!v)
4443 		return 1;
4444 	l = n[1];
4445 	p = n + 2;
4446 	while (l) {
4447 		int i = l/2;
4448 		unsigned long *q = p + 2 * i;
4449 		if (*q == v) {
4450 			q[1]++;
4451 			return 1;
4452 		}
4453 		if (*q > v) {
4454 			l = i;
4455 		} else {
4456 			p = q + 2;
4457 			l -= i + 1;
4458 		}
4459 	}
4460 	if (++n[1] == n[0])
4461 		return 0;
4462 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4463 	p[0] = v;
4464 	p[1] = 1;
4465 	return 1;
4466 }
4467 
4468 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4469 {
4470 	void *p;
4471 	int i;
4472 	if (n[0] == n[1])
4473 		return;
4474 	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4475 		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4476 			continue;
4477 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4478 			return;
4479 	}
4480 }
4481 
4482 static void show_symbol(struct seq_file *m, unsigned long address)
4483 {
4484 #ifdef CONFIG_KALLSYMS
4485 	unsigned long offset, size;
4486 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4487 
4488 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4489 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4490 		if (modname[0])
4491 			seq_printf(m, " [%s]", modname);
4492 		return;
4493 	}
4494 #endif
4495 	seq_printf(m, "%p", (void *)address);
4496 }
4497 
4498 static int leaks_show(struct seq_file *m, void *p)
4499 {
4500 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4501 	struct slab *slabp;
4502 	struct kmem_list3 *l3;
4503 	const char *name;
4504 	unsigned long *n = m->private;
4505 	int node;
4506 	int i;
4507 
4508 	if (!(cachep->flags & SLAB_STORE_USER))
4509 		return 0;
4510 	if (!(cachep->flags & SLAB_RED_ZONE))
4511 		return 0;
4512 
4513 	/* OK, we can do it */
4514 
4515 	n[1] = 0;
4516 
4517 	for_each_online_node(node) {
4518 		l3 = cachep->nodelists[node];
4519 		if (!l3)
4520 			continue;
4521 
4522 		check_irq_on();
4523 		spin_lock_irq(&l3->list_lock);
4524 
4525 		list_for_each_entry(slabp, &l3->slabs_full, list)
4526 			handle_slab(n, cachep, slabp);
4527 		list_for_each_entry(slabp, &l3->slabs_partial, list)
4528 			handle_slab(n, cachep, slabp);
4529 		spin_unlock_irq(&l3->list_lock);
4530 	}
4531 	name = cachep->name;
4532 	if (n[0] == n[1]) {
4533 		/* Increase the buffer size */
4534 		mutex_unlock(&slab_mutex);
4535 		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4536 		if (!m->private) {
4537 			/* Too bad, we are really out */
4538 			m->private = n;
4539 			mutex_lock(&slab_mutex);
4540 			return -ENOMEM;
4541 		}
4542 		*(unsigned long *)m->private = n[0] * 2;
4543 		kfree(n);
4544 		mutex_lock(&slab_mutex);
4545 		/* Now make sure this entry will be retried */
4546 		m->count = m->size;
4547 		return 0;
4548 	}
4549 	for (i = 0; i < n[1]; i++) {
4550 		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4551 		show_symbol(m, n[2*i+2]);
4552 		seq_putc(m, '\n');
4553 	}
4554 
4555 	return 0;
4556 }
4557 
4558 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4559 {
4560 	return seq_list_next(p, &slab_caches, pos);
4561 }
4562 
4563 static void s_stop(struct seq_file *m, void *p)
4564 {
4565 	mutex_unlock(&slab_mutex);
4566 }
4567 
4568 static const struct seq_operations slabstats_op = {
4569 	.start = leaks_start,
4570 	.next = s_next,
4571 	.stop = s_stop,
4572 	.show = leaks_show,
4573 };
4574 
4575 static int slabstats_open(struct inode *inode, struct file *file)
4576 {
4577 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4578 	int ret = -ENOMEM;
4579 	if (n) {
4580 		ret = seq_open(file, &slabstats_op);
4581 		if (!ret) {
4582 			struct seq_file *m = file->private_data;
4583 			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4584 			m->private = n;
4585 			n = NULL;
4586 		}
4587 		kfree(n);
4588 	}
4589 	return ret;
4590 }
4591 
4592 static const struct file_operations proc_slabstats_operations = {
4593 	.open		= slabstats_open,
4594 	.read		= seq_read,
4595 	.llseek		= seq_lseek,
4596 	.release	= seq_release_private,
4597 };
4598 #endif
4599 
4600 static int __init slab_proc_init(void)
4601 {
4602 #ifdef CONFIG_DEBUG_SLAB_LEAK
4603 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4604 #endif
4605 	return 0;
4606 }
4607 module_init(slab_proc_init);
4608 #endif
4609 
4610 /**
4611  * ksize - get the actual amount of memory allocated for a given object
4612  * @objp: Pointer to the object
4613  *
4614  * kmalloc may internally round up allocations and return more memory
4615  * than requested. ksize() can be used to determine the actual amount of
4616  * memory allocated. The caller may use this additional memory, even though
4617  * a smaller amount of memory was initially specified with the kmalloc call.
4618  * The caller must guarantee that objp points to a valid object previously
4619  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4620  * must not be freed during the duration of the call.
4621  */
4622 size_t ksize(const void *objp)
4623 {
4624 	BUG_ON(!objp);
4625 	if (unlikely(objp == ZERO_SIZE_PTR))
4626 		return 0;
4627 
4628 	return virt_to_cache(objp)->object_size;
4629 }
4630 EXPORT_SYMBOL(ksize);
4631