1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/cpu.h> 104 #include <linux/sysctl.h> 105 #include <linux/module.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 /* 366 * Do not go above this order unless 0 objects fit into the slab or 367 * overridden on the command line. 368 */ 369 #define SLAB_MAX_ORDER_HI 1 370 #define SLAB_MAX_ORDER_LO 0 371 static int slab_max_order = SLAB_MAX_ORDER_LO; 372 static bool slab_max_order_set __initdata; 373 374 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 375 unsigned int idx) 376 { 377 return page->s_mem + cache->size * idx; 378 } 379 380 #define BOOT_CPUCACHE_ENTRIES 1 381 /* internal cache of cache description objs */ 382 static struct kmem_cache kmem_cache_boot = { 383 .batchcount = 1, 384 .limit = BOOT_CPUCACHE_ENTRIES, 385 .shared = 1, 386 .size = sizeof(struct kmem_cache), 387 .name = "kmem_cache", 388 }; 389 390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 391 392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 393 { 394 return this_cpu_ptr(cachep->cpu_cache); 395 } 396 397 /* 398 * Calculate the number of objects and left-over bytes for a given buffer size. 399 */ 400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 401 slab_flags_t flags, size_t *left_over) 402 { 403 unsigned int num; 404 size_t slab_size = PAGE_SIZE << gfporder; 405 406 /* 407 * The slab management structure can be either off the slab or 408 * on it. For the latter case, the memory allocated for a 409 * slab is used for: 410 * 411 * - @buffer_size bytes for each object 412 * - One freelist_idx_t for each object 413 * 414 * We don't need to consider alignment of freelist because 415 * freelist will be at the end of slab page. The objects will be 416 * at the correct alignment. 417 * 418 * If the slab management structure is off the slab, then the 419 * alignment will already be calculated into the size. Because 420 * the slabs are all pages aligned, the objects will be at the 421 * correct alignment when allocated. 422 */ 423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 424 num = slab_size / buffer_size; 425 *left_over = slab_size % buffer_size; 426 } else { 427 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 428 *left_over = slab_size % 429 (buffer_size + sizeof(freelist_idx_t)); 430 } 431 432 return num; 433 } 434 435 #if DEBUG 436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 437 438 static void __slab_error(const char *function, struct kmem_cache *cachep, 439 char *msg) 440 { 441 pr_err("slab error in %s(): cache `%s': %s\n", 442 function, cachep->name, msg); 443 dump_stack(); 444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 445 } 446 #endif 447 448 /* 449 * By default on NUMA we use alien caches to stage the freeing of 450 * objects allocated from other nodes. This causes massive memory 451 * inefficiencies when using fake NUMA setup to split memory into a 452 * large number of small nodes, so it can be disabled on the command 453 * line 454 */ 455 456 static int use_alien_caches __read_mostly = 1; 457 static int __init noaliencache_setup(char *s) 458 { 459 use_alien_caches = 0; 460 return 1; 461 } 462 __setup("noaliencache", noaliencache_setup); 463 464 static int __init slab_max_order_setup(char *str) 465 { 466 get_option(&str, &slab_max_order); 467 slab_max_order = slab_max_order < 0 ? 0 : 468 min(slab_max_order, MAX_ORDER - 1); 469 slab_max_order_set = true; 470 471 return 1; 472 } 473 __setup("slab_max_order=", slab_max_order_setup); 474 475 #ifdef CONFIG_NUMA 476 /* 477 * Special reaping functions for NUMA systems called from cache_reap(). 478 * These take care of doing round robin flushing of alien caches (containing 479 * objects freed on different nodes from which they were allocated) and the 480 * flushing of remote pcps by calling drain_node_pages. 481 */ 482 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 483 484 static void init_reap_node(int cpu) 485 { 486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 487 node_online_map); 488 } 489 490 static void next_reap_node(void) 491 { 492 int node = __this_cpu_read(slab_reap_node); 493 494 node = next_node_in(node, node_online_map); 495 __this_cpu_write(slab_reap_node, node); 496 } 497 498 #else 499 #define init_reap_node(cpu) do { } while (0) 500 #define next_reap_node(void) do { } while (0) 501 #endif 502 503 /* 504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 505 * via the workqueue/eventd. 506 * Add the CPU number into the expiration time to minimize the possibility of 507 * the CPUs getting into lockstep and contending for the global cache chain 508 * lock. 509 */ 510 static void start_cpu_timer(int cpu) 511 { 512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 513 514 if (reap_work->work.func == NULL) { 515 init_reap_node(cpu); 516 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 517 schedule_delayed_work_on(cpu, reap_work, 518 __round_jiffies_relative(HZ, cpu)); 519 } 520 } 521 522 static void init_arraycache(struct array_cache *ac, int limit, int batch) 523 { 524 if (ac) { 525 ac->avail = 0; 526 ac->limit = limit; 527 ac->batchcount = batch; 528 ac->touched = 0; 529 } 530 } 531 532 static struct array_cache *alloc_arraycache(int node, int entries, 533 int batchcount, gfp_t gfp) 534 { 535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 536 struct array_cache *ac = NULL; 537 538 ac = kmalloc_node(memsize, gfp, node); 539 /* 540 * The array_cache structures contain pointers to free object. 541 * However, when such objects are allocated or transferred to another 542 * cache the pointers are not cleared and they could be counted as 543 * valid references during a kmemleak scan. Therefore, kmemleak must 544 * not scan such objects. 545 */ 546 kmemleak_no_scan(ac); 547 init_arraycache(ac, entries, batchcount); 548 return ac; 549 } 550 551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 552 struct page *page, void *objp) 553 { 554 struct kmem_cache_node *n; 555 int page_node; 556 LIST_HEAD(list); 557 558 page_node = page_to_nid(page); 559 n = get_node(cachep, page_node); 560 561 spin_lock(&n->list_lock); 562 free_block(cachep, &objp, 1, page_node, &list); 563 spin_unlock(&n->list_lock); 564 565 slabs_destroy(cachep, &list); 566 } 567 568 /* 569 * Transfer objects in one arraycache to another. 570 * Locking must be handled by the caller. 571 * 572 * Return the number of entries transferred. 573 */ 574 static int transfer_objects(struct array_cache *to, 575 struct array_cache *from, unsigned int max) 576 { 577 /* Figure out how many entries to transfer */ 578 int nr = min3(from->avail, max, to->limit - to->avail); 579 580 if (!nr) 581 return 0; 582 583 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 584 sizeof(void *) *nr); 585 586 from->avail -= nr; 587 to->avail += nr; 588 return nr; 589 } 590 591 /* &alien->lock must be held by alien callers. */ 592 static __always_inline void __free_one(struct array_cache *ac, void *objp) 593 { 594 /* Avoid trivial double-free. */ 595 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 596 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) 597 return; 598 ac->entry[ac->avail++] = objp; 599 } 600 601 #ifndef CONFIG_NUMA 602 603 #define drain_alien_cache(cachep, alien) do { } while (0) 604 #define reap_alien(cachep, n) do { } while (0) 605 606 static inline struct alien_cache **alloc_alien_cache(int node, 607 int limit, gfp_t gfp) 608 { 609 return NULL; 610 } 611 612 static inline void free_alien_cache(struct alien_cache **ac_ptr) 613 { 614 } 615 616 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 617 { 618 return 0; 619 } 620 621 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 622 gfp_t flags) 623 { 624 return NULL; 625 } 626 627 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 628 gfp_t flags, int nodeid) 629 { 630 return NULL; 631 } 632 633 static inline gfp_t gfp_exact_node(gfp_t flags) 634 { 635 return flags & ~__GFP_NOFAIL; 636 } 637 638 #else /* CONFIG_NUMA */ 639 640 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 641 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 642 643 static struct alien_cache *__alloc_alien_cache(int node, int entries, 644 int batch, gfp_t gfp) 645 { 646 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 647 struct alien_cache *alc = NULL; 648 649 alc = kmalloc_node(memsize, gfp, node); 650 if (alc) { 651 kmemleak_no_scan(alc); 652 init_arraycache(&alc->ac, entries, batch); 653 spin_lock_init(&alc->lock); 654 } 655 return alc; 656 } 657 658 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 659 { 660 struct alien_cache **alc_ptr; 661 int i; 662 663 if (limit > 1) 664 limit = 12; 665 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 666 if (!alc_ptr) 667 return NULL; 668 669 for_each_node(i) { 670 if (i == node || !node_online(i)) 671 continue; 672 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 673 if (!alc_ptr[i]) { 674 for (i--; i >= 0; i--) 675 kfree(alc_ptr[i]); 676 kfree(alc_ptr); 677 return NULL; 678 } 679 } 680 return alc_ptr; 681 } 682 683 static void free_alien_cache(struct alien_cache **alc_ptr) 684 { 685 int i; 686 687 if (!alc_ptr) 688 return; 689 for_each_node(i) 690 kfree(alc_ptr[i]); 691 kfree(alc_ptr); 692 } 693 694 static void __drain_alien_cache(struct kmem_cache *cachep, 695 struct array_cache *ac, int node, 696 struct list_head *list) 697 { 698 struct kmem_cache_node *n = get_node(cachep, node); 699 700 if (ac->avail) { 701 spin_lock(&n->list_lock); 702 /* 703 * Stuff objects into the remote nodes shared array first. 704 * That way we could avoid the overhead of putting the objects 705 * into the free lists and getting them back later. 706 */ 707 if (n->shared) 708 transfer_objects(n->shared, ac, ac->limit); 709 710 free_block(cachep, ac->entry, ac->avail, node, list); 711 ac->avail = 0; 712 spin_unlock(&n->list_lock); 713 } 714 } 715 716 /* 717 * Called from cache_reap() to regularly drain alien caches round robin. 718 */ 719 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 720 { 721 int node = __this_cpu_read(slab_reap_node); 722 723 if (n->alien) { 724 struct alien_cache *alc = n->alien[node]; 725 struct array_cache *ac; 726 727 if (alc) { 728 ac = &alc->ac; 729 if (ac->avail && spin_trylock_irq(&alc->lock)) { 730 LIST_HEAD(list); 731 732 __drain_alien_cache(cachep, ac, node, &list); 733 spin_unlock_irq(&alc->lock); 734 slabs_destroy(cachep, &list); 735 } 736 } 737 } 738 } 739 740 static void drain_alien_cache(struct kmem_cache *cachep, 741 struct alien_cache **alien) 742 { 743 int i = 0; 744 struct alien_cache *alc; 745 struct array_cache *ac; 746 unsigned long flags; 747 748 for_each_online_node(i) { 749 alc = alien[i]; 750 if (alc) { 751 LIST_HEAD(list); 752 753 ac = &alc->ac; 754 spin_lock_irqsave(&alc->lock, flags); 755 __drain_alien_cache(cachep, ac, i, &list); 756 spin_unlock_irqrestore(&alc->lock, flags); 757 slabs_destroy(cachep, &list); 758 } 759 } 760 } 761 762 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 763 int node, int page_node) 764 { 765 struct kmem_cache_node *n; 766 struct alien_cache *alien = NULL; 767 struct array_cache *ac; 768 LIST_HEAD(list); 769 770 n = get_node(cachep, node); 771 STATS_INC_NODEFREES(cachep); 772 if (n->alien && n->alien[page_node]) { 773 alien = n->alien[page_node]; 774 ac = &alien->ac; 775 spin_lock(&alien->lock); 776 if (unlikely(ac->avail == ac->limit)) { 777 STATS_INC_ACOVERFLOW(cachep); 778 __drain_alien_cache(cachep, ac, page_node, &list); 779 } 780 __free_one(ac, objp); 781 spin_unlock(&alien->lock); 782 slabs_destroy(cachep, &list); 783 } else { 784 n = get_node(cachep, page_node); 785 spin_lock(&n->list_lock); 786 free_block(cachep, &objp, 1, page_node, &list); 787 spin_unlock(&n->list_lock); 788 slabs_destroy(cachep, &list); 789 } 790 return 1; 791 } 792 793 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 794 { 795 int page_node = page_to_nid(virt_to_page(objp)); 796 int node = numa_mem_id(); 797 /* 798 * Make sure we are not freeing a object from another node to the array 799 * cache on this cpu. 800 */ 801 if (likely(node == page_node)) 802 return 0; 803 804 return __cache_free_alien(cachep, objp, node, page_node); 805 } 806 807 /* 808 * Construct gfp mask to allocate from a specific node but do not reclaim or 809 * warn about failures. 810 */ 811 static inline gfp_t gfp_exact_node(gfp_t flags) 812 { 813 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 814 } 815 #endif 816 817 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 818 { 819 struct kmem_cache_node *n; 820 821 /* 822 * Set up the kmem_cache_node for cpu before we can 823 * begin anything. Make sure some other cpu on this 824 * node has not already allocated this 825 */ 826 n = get_node(cachep, node); 827 if (n) { 828 spin_lock_irq(&n->list_lock); 829 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 830 cachep->num; 831 spin_unlock_irq(&n->list_lock); 832 833 return 0; 834 } 835 836 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 837 if (!n) 838 return -ENOMEM; 839 840 kmem_cache_node_init(n); 841 n->next_reap = jiffies + REAPTIMEOUT_NODE + 842 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 843 844 n->free_limit = 845 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 846 847 /* 848 * The kmem_cache_nodes don't come and go as CPUs 849 * come and go. slab_mutex is sufficient 850 * protection here. 851 */ 852 cachep->node[node] = n; 853 854 return 0; 855 } 856 857 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 858 /* 859 * Allocates and initializes node for a node on each slab cache, used for 860 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 861 * will be allocated off-node since memory is not yet online for the new node. 862 * When hotplugging memory or a cpu, existing node are not replaced if 863 * already in use. 864 * 865 * Must hold slab_mutex. 866 */ 867 static int init_cache_node_node(int node) 868 { 869 int ret; 870 struct kmem_cache *cachep; 871 872 list_for_each_entry(cachep, &slab_caches, list) { 873 ret = init_cache_node(cachep, node, GFP_KERNEL); 874 if (ret) 875 return ret; 876 } 877 878 return 0; 879 } 880 #endif 881 882 static int setup_kmem_cache_node(struct kmem_cache *cachep, 883 int node, gfp_t gfp, bool force_change) 884 { 885 int ret = -ENOMEM; 886 struct kmem_cache_node *n; 887 struct array_cache *old_shared = NULL; 888 struct array_cache *new_shared = NULL; 889 struct alien_cache **new_alien = NULL; 890 LIST_HEAD(list); 891 892 if (use_alien_caches) { 893 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 894 if (!new_alien) 895 goto fail; 896 } 897 898 if (cachep->shared) { 899 new_shared = alloc_arraycache(node, 900 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 901 if (!new_shared) 902 goto fail; 903 } 904 905 ret = init_cache_node(cachep, node, gfp); 906 if (ret) 907 goto fail; 908 909 n = get_node(cachep, node); 910 spin_lock_irq(&n->list_lock); 911 if (n->shared && force_change) { 912 free_block(cachep, n->shared->entry, 913 n->shared->avail, node, &list); 914 n->shared->avail = 0; 915 } 916 917 if (!n->shared || force_change) { 918 old_shared = n->shared; 919 n->shared = new_shared; 920 new_shared = NULL; 921 } 922 923 if (!n->alien) { 924 n->alien = new_alien; 925 new_alien = NULL; 926 } 927 928 spin_unlock_irq(&n->list_lock); 929 slabs_destroy(cachep, &list); 930 931 /* 932 * To protect lockless access to n->shared during irq disabled context. 933 * If n->shared isn't NULL in irq disabled context, accessing to it is 934 * guaranteed to be valid until irq is re-enabled, because it will be 935 * freed after synchronize_rcu(). 936 */ 937 if (old_shared && force_change) 938 synchronize_rcu(); 939 940 fail: 941 kfree(old_shared); 942 kfree(new_shared); 943 free_alien_cache(new_alien); 944 945 return ret; 946 } 947 948 #ifdef CONFIG_SMP 949 950 static void cpuup_canceled(long cpu) 951 { 952 struct kmem_cache *cachep; 953 struct kmem_cache_node *n = NULL; 954 int node = cpu_to_mem(cpu); 955 const struct cpumask *mask = cpumask_of_node(node); 956 957 list_for_each_entry(cachep, &slab_caches, list) { 958 struct array_cache *nc; 959 struct array_cache *shared; 960 struct alien_cache **alien; 961 LIST_HEAD(list); 962 963 n = get_node(cachep, node); 964 if (!n) 965 continue; 966 967 spin_lock_irq(&n->list_lock); 968 969 /* Free limit for this kmem_cache_node */ 970 n->free_limit -= cachep->batchcount; 971 972 /* cpu is dead; no one can alloc from it. */ 973 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 974 free_block(cachep, nc->entry, nc->avail, node, &list); 975 nc->avail = 0; 976 977 if (!cpumask_empty(mask)) { 978 spin_unlock_irq(&n->list_lock); 979 goto free_slab; 980 } 981 982 shared = n->shared; 983 if (shared) { 984 free_block(cachep, shared->entry, 985 shared->avail, node, &list); 986 n->shared = NULL; 987 } 988 989 alien = n->alien; 990 n->alien = NULL; 991 992 spin_unlock_irq(&n->list_lock); 993 994 kfree(shared); 995 if (alien) { 996 drain_alien_cache(cachep, alien); 997 free_alien_cache(alien); 998 } 999 1000 free_slab: 1001 slabs_destroy(cachep, &list); 1002 } 1003 /* 1004 * In the previous loop, all the objects were freed to 1005 * the respective cache's slabs, now we can go ahead and 1006 * shrink each nodelist to its limit. 1007 */ 1008 list_for_each_entry(cachep, &slab_caches, list) { 1009 n = get_node(cachep, node); 1010 if (!n) 1011 continue; 1012 drain_freelist(cachep, n, INT_MAX); 1013 } 1014 } 1015 1016 static int cpuup_prepare(long cpu) 1017 { 1018 struct kmem_cache *cachep; 1019 int node = cpu_to_mem(cpu); 1020 int err; 1021 1022 /* 1023 * We need to do this right in the beginning since 1024 * alloc_arraycache's are going to use this list. 1025 * kmalloc_node allows us to add the slab to the right 1026 * kmem_cache_node and not this cpu's kmem_cache_node 1027 */ 1028 err = init_cache_node_node(node); 1029 if (err < 0) 1030 goto bad; 1031 1032 /* 1033 * Now we can go ahead with allocating the shared arrays and 1034 * array caches 1035 */ 1036 list_for_each_entry(cachep, &slab_caches, list) { 1037 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1038 if (err) 1039 goto bad; 1040 } 1041 1042 return 0; 1043 bad: 1044 cpuup_canceled(cpu); 1045 return -ENOMEM; 1046 } 1047 1048 int slab_prepare_cpu(unsigned int cpu) 1049 { 1050 int err; 1051 1052 mutex_lock(&slab_mutex); 1053 err = cpuup_prepare(cpu); 1054 mutex_unlock(&slab_mutex); 1055 return err; 1056 } 1057 1058 /* 1059 * This is called for a failed online attempt and for a successful 1060 * offline. 1061 * 1062 * Even if all the cpus of a node are down, we don't free the 1063 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and 1064 * a kmalloc allocation from another cpu for memory from the node of 1065 * the cpu going down. The list3 structure is usually allocated from 1066 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1067 */ 1068 int slab_dead_cpu(unsigned int cpu) 1069 { 1070 mutex_lock(&slab_mutex); 1071 cpuup_canceled(cpu); 1072 mutex_unlock(&slab_mutex); 1073 return 0; 1074 } 1075 #endif 1076 1077 static int slab_online_cpu(unsigned int cpu) 1078 { 1079 start_cpu_timer(cpu); 1080 return 0; 1081 } 1082 1083 static int slab_offline_cpu(unsigned int cpu) 1084 { 1085 /* 1086 * Shutdown cache reaper. Note that the slab_mutex is held so 1087 * that if cache_reap() is invoked it cannot do anything 1088 * expensive but will only modify reap_work and reschedule the 1089 * timer. 1090 */ 1091 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1092 /* Now the cache_reaper is guaranteed to be not running. */ 1093 per_cpu(slab_reap_work, cpu).work.func = NULL; 1094 return 0; 1095 } 1096 1097 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1098 /* 1099 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1100 * Returns -EBUSY if all objects cannot be drained so that the node is not 1101 * removed. 1102 * 1103 * Must hold slab_mutex. 1104 */ 1105 static int __meminit drain_cache_node_node(int node) 1106 { 1107 struct kmem_cache *cachep; 1108 int ret = 0; 1109 1110 list_for_each_entry(cachep, &slab_caches, list) { 1111 struct kmem_cache_node *n; 1112 1113 n = get_node(cachep, node); 1114 if (!n) 1115 continue; 1116 1117 drain_freelist(cachep, n, INT_MAX); 1118 1119 if (!list_empty(&n->slabs_full) || 1120 !list_empty(&n->slabs_partial)) { 1121 ret = -EBUSY; 1122 break; 1123 } 1124 } 1125 return ret; 1126 } 1127 1128 static int __meminit slab_memory_callback(struct notifier_block *self, 1129 unsigned long action, void *arg) 1130 { 1131 struct memory_notify *mnb = arg; 1132 int ret = 0; 1133 int nid; 1134 1135 nid = mnb->status_change_nid; 1136 if (nid < 0) 1137 goto out; 1138 1139 switch (action) { 1140 case MEM_GOING_ONLINE: 1141 mutex_lock(&slab_mutex); 1142 ret = init_cache_node_node(nid); 1143 mutex_unlock(&slab_mutex); 1144 break; 1145 case MEM_GOING_OFFLINE: 1146 mutex_lock(&slab_mutex); 1147 ret = drain_cache_node_node(nid); 1148 mutex_unlock(&slab_mutex); 1149 break; 1150 case MEM_ONLINE: 1151 case MEM_OFFLINE: 1152 case MEM_CANCEL_ONLINE: 1153 case MEM_CANCEL_OFFLINE: 1154 break; 1155 } 1156 out: 1157 return notifier_from_errno(ret); 1158 } 1159 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1160 1161 /* 1162 * swap the static kmem_cache_node with kmalloced memory 1163 */ 1164 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1165 int nodeid) 1166 { 1167 struct kmem_cache_node *ptr; 1168 1169 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1170 BUG_ON(!ptr); 1171 1172 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1173 /* 1174 * Do not assume that spinlocks can be initialized via memcpy: 1175 */ 1176 spin_lock_init(&ptr->list_lock); 1177 1178 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1179 cachep->node[nodeid] = ptr; 1180 } 1181 1182 /* 1183 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1184 * size of kmem_cache_node. 1185 */ 1186 static void __init set_up_node(struct kmem_cache *cachep, int index) 1187 { 1188 int node; 1189 1190 for_each_online_node(node) { 1191 cachep->node[node] = &init_kmem_cache_node[index + node]; 1192 cachep->node[node]->next_reap = jiffies + 1193 REAPTIMEOUT_NODE + 1194 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1195 } 1196 } 1197 1198 /* 1199 * Initialisation. Called after the page allocator have been initialised and 1200 * before smp_init(). 1201 */ 1202 void __init kmem_cache_init(void) 1203 { 1204 int i; 1205 1206 kmem_cache = &kmem_cache_boot; 1207 1208 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1209 use_alien_caches = 0; 1210 1211 for (i = 0; i < NUM_INIT_LISTS; i++) 1212 kmem_cache_node_init(&init_kmem_cache_node[i]); 1213 1214 /* 1215 * Fragmentation resistance on low memory - only use bigger 1216 * page orders on machines with more than 32MB of memory if 1217 * not overridden on the command line. 1218 */ 1219 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1220 slab_max_order = SLAB_MAX_ORDER_HI; 1221 1222 /* Bootstrap is tricky, because several objects are allocated 1223 * from caches that do not exist yet: 1224 * 1) initialize the kmem_cache cache: it contains the struct 1225 * kmem_cache structures of all caches, except kmem_cache itself: 1226 * kmem_cache is statically allocated. 1227 * Initially an __init data area is used for the head array and the 1228 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1229 * array at the end of the bootstrap. 1230 * 2) Create the first kmalloc cache. 1231 * The struct kmem_cache for the new cache is allocated normally. 1232 * An __init data area is used for the head array. 1233 * 3) Create the remaining kmalloc caches, with minimally sized 1234 * head arrays. 1235 * 4) Replace the __init data head arrays for kmem_cache and the first 1236 * kmalloc cache with kmalloc allocated arrays. 1237 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1238 * the other cache's with kmalloc allocated memory. 1239 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1240 */ 1241 1242 /* 1) create the kmem_cache */ 1243 1244 /* 1245 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1246 */ 1247 create_boot_cache(kmem_cache, "kmem_cache", 1248 offsetof(struct kmem_cache, node) + 1249 nr_node_ids * sizeof(struct kmem_cache_node *), 1250 SLAB_HWCACHE_ALIGN, 0, 0); 1251 list_add(&kmem_cache->list, &slab_caches); 1252 slab_state = PARTIAL; 1253 1254 /* 1255 * Initialize the caches that provide memory for the kmem_cache_node 1256 * structures first. Without this, further allocations will bug. 1257 */ 1258 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( 1259 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL], 1260 kmalloc_info[INDEX_NODE].size, 1261 ARCH_KMALLOC_FLAGS, 0, 1262 kmalloc_info[INDEX_NODE].size); 1263 slab_state = PARTIAL_NODE; 1264 setup_kmalloc_cache_index_table(); 1265 1266 slab_early_init = 0; 1267 1268 /* 5) Replace the bootstrap kmem_cache_node */ 1269 { 1270 int nid; 1271 1272 for_each_online_node(nid) { 1273 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1274 1275 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1276 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1277 } 1278 } 1279 1280 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1281 } 1282 1283 void __init kmem_cache_init_late(void) 1284 { 1285 struct kmem_cache *cachep; 1286 1287 /* 6) resize the head arrays to their final sizes */ 1288 mutex_lock(&slab_mutex); 1289 list_for_each_entry(cachep, &slab_caches, list) 1290 if (enable_cpucache(cachep, GFP_NOWAIT)) 1291 BUG(); 1292 mutex_unlock(&slab_mutex); 1293 1294 /* Done! */ 1295 slab_state = FULL; 1296 1297 #ifdef CONFIG_NUMA 1298 /* 1299 * Register a memory hotplug callback that initializes and frees 1300 * node. 1301 */ 1302 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1303 #endif 1304 1305 /* 1306 * The reap timers are started later, with a module init call: That part 1307 * of the kernel is not yet operational. 1308 */ 1309 } 1310 1311 static int __init cpucache_init(void) 1312 { 1313 int ret; 1314 1315 /* 1316 * Register the timers that return unneeded pages to the page allocator 1317 */ 1318 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1319 slab_online_cpu, slab_offline_cpu); 1320 WARN_ON(ret < 0); 1321 1322 return 0; 1323 } 1324 __initcall(cpucache_init); 1325 1326 static noinline void 1327 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1328 { 1329 #if DEBUG 1330 struct kmem_cache_node *n; 1331 unsigned long flags; 1332 int node; 1333 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1334 DEFAULT_RATELIMIT_BURST); 1335 1336 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1337 return; 1338 1339 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1340 nodeid, gfpflags, &gfpflags); 1341 pr_warn(" cache: %s, object size: %d, order: %d\n", 1342 cachep->name, cachep->size, cachep->gfporder); 1343 1344 for_each_kmem_cache_node(cachep, node, n) { 1345 unsigned long total_slabs, free_slabs, free_objs; 1346 1347 spin_lock_irqsave(&n->list_lock, flags); 1348 total_slabs = n->total_slabs; 1349 free_slabs = n->free_slabs; 1350 free_objs = n->free_objects; 1351 spin_unlock_irqrestore(&n->list_lock, flags); 1352 1353 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1354 node, total_slabs - free_slabs, total_slabs, 1355 (total_slabs * cachep->num) - free_objs, 1356 total_slabs * cachep->num); 1357 } 1358 #endif 1359 } 1360 1361 /* 1362 * Interface to system's page allocator. No need to hold the 1363 * kmem_cache_node ->list_lock. 1364 * 1365 * If we requested dmaable memory, we will get it. Even if we 1366 * did not request dmaable memory, we might get it, but that 1367 * would be relatively rare and ignorable. 1368 */ 1369 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1370 int nodeid) 1371 { 1372 struct page *page; 1373 1374 flags |= cachep->allocflags; 1375 1376 page = __alloc_pages_node(nodeid, flags, cachep->gfporder); 1377 if (!page) { 1378 slab_out_of_memory(cachep, flags, nodeid); 1379 return NULL; 1380 } 1381 1382 account_slab_page(page, cachep->gfporder, cachep); 1383 __SetPageSlab(page); 1384 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1385 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1386 SetPageSlabPfmemalloc(page); 1387 1388 return page; 1389 } 1390 1391 /* 1392 * Interface to system's page release. 1393 */ 1394 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1395 { 1396 int order = cachep->gfporder; 1397 1398 BUG_ON(!PageSlab(page)); 1399 __ClearPageSlabPfmemalloc(page); 1400 __ClearPageSlab(page); 1401 page_mapcount_reset(page); 1402 page->mapping = NULL; 1403 1404 if (current->reclaim_state) 1405 current->reclaim_state->reclaimed_slab += 1 << order; 1406 unaccount_slab_page(page, order, cachep); 1407 __free_pages(page, order); 1408 } 1409 1410 static void kmem_rcu_free(struct rcu_head *head) 1411 { 1412 struct kmem_cache *cachep; 1413 struct page *page; 1414 1415 page = container_of(head, struct page, rcu_head); 1416 cachep = page->slab_cache; 1417 1418 kmem_freepages(cachep, page); 1419 } 1420 1421 #if DEBUG 1422 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1423 { 1424 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && 1425 (cachep->size % PAGE_SIZE) == 0) 1426 return true; 1427 1428 return false; 1429 } 1430 1431 #ifdef CONFIG_DEBUG_PAGEALLOC 1432 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1433 { 1434 if (!is_debug_pagealloc_cache(cachep)) 1435 return; 1436 1437 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1438 } 1439 1440 #else 1441 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1442 int map) {} 1443 1444 #endif 1445 1446 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1447 { 1448 int size = cachep->object_size; 1449 addr = &((char *)addr)[obj_offset(cachep)]; 1450 1451 memset(addr, val, size); 1452 *(unsigned char *)(addr + size - 1) = POISON_END; 1453 } 1454 1455 static void dump_line(char *data, int offset, int limit) 1456 { 1457 int i; 1458 unsigned char error = 0; 1459 int bad_count = 0; 1460 1461 pr_err("%03x: ", offset); 1462 for (i = 0; i < limit; i++) { 1463 if (data[offset + i] != POISON_FREE) { 1464 error = data[offset + i]; 1465 bad_count++; 1466 } 1467 } 1468 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1469 &data[offset], limit, 1); 1470 1471 if (bad_count == 1) { 1472 error ^= POISON_FREE; 1473 if (!(error & (error - 1))) { 1474 pr_err("Single bit error detected. Probably bad RAM.\n"); 1475 #ifdef CONFIG_X86 1476 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1477 #else 1478 pr_err("Run a memory test tool.\n"); 1479 #endif 1480 } 1481 } 1482 } 1483 #endif 1484 1485 #if DEBUG 1486 1487 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1488 { 1489 int i, size; 1490 char *realobj; 1491 1492 if (cachep->flags & SLAB_RED_ZONE) { 1493 pr_err("Redzone: 0x%llx/0x%llx\n", 1494 *dbg_redzone1(cachep, objp), 1495 *dbg_redzone2(cachep, objp)); 1496 } 1497 1498 if (cachep->flags & SLAB_STORE_USER) 1499 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1500 realobj = (char *)objp + obj_offset(cachep); 1501 size = cachep->object_size; 1502 for (i = 0; i < size && lines; i += 16, lines--) { 1503 int limit; 1504 limit = 16; 1505 if (i + limit > size) 1506 limit = size - i; 1507 dump_line(realobj, i, limit); 1508 } 1509 } 1510 1511 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1512 { 1513 char *realobj; 1514 int size, i; 1515 int lines = 0; 1516 1517 if (is_debug_pagealloc_cache(cachep)) 1518 return; 1519 1520 realobj = (char *)objp + obj_offset(cachep); 1521 size = cachep->object_size; 1522 1523 for (i = 0; i < size; i++) { 1524 char exp = POISON_FREE; 1525 if (i == size - 1) 1526 exp = POISON_END; 1527 if (realobj[i] != exp) { 1528 int limit; 1529 /* Mismatch ! */ 1530 /* Print header */ 1531 if (lines == 0) { 1532 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1533 print_tainted(), cachep->name, 1534 realobj, size); 1535 print_objinfo(cachep, objp, 0); 1536 } 1537 /* Hexdump the affected line */ 1538 i = (i / 16) * 16; 1539 limit = 16; 1540 if (i + limit > size) 1541 limit = size - i; 1542 dump_line(realobj, i, limit); 1543 i += 16; 1544 lines++; 1545 /* Limit to 5 lines */ 1546 if (lines > 5) 1547 break; 1548 } 1549 } 1550 if (lines != 0) { 1551 /* Print some data about the neighboring objects, if they 1552 * exist: 1553 */ 1554 struct page *page = virt_to_head_page(objp); 1555 unsigned int objnr; 1556 1557 objnr = obj_to_index(cachep, page, objp); 1558 if (objnr) { 1559 objp = index_to_obj(cachep, page, objnr - 1); 1560 realobj = (char *)objp + obj_offset(cachep); 1561 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1562 print_objinfo(cachep, objp, 2); 1563 } 1564 if (objnr + 1 < cachep->num) { 1565 objp = index_to_obj(cachep, page, objnr + 1); 1566 realobj = (char *)objp + obj_offset(cachep); 1567 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1568 print_objinfo(cachep, objp, 2); 1569 } 1570 } 1571 } 1572 #endif 1573 1574 #if DEBUG 1575 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1576 struct page *page) 1577 { 1578 int i; 1579 1580 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1581 poison_obj(cachep, page->freelist - obj_offset(cachep), 1582 POISON_FREE); 1583 } 1584 1585 for (i = 0; i < cachep->num; i++) { 1586 void *objp = index_to_obj(cachep, page, i); 1587 1588 if (cachep->flags & SLAB_POISON) { 1589 check_poison_obj(cachep, objp); 1590 slab_kernel_map(cachep, objp, 1); 1591 } 1592 if (cachep->flags & SLAB_RED_ZONE) { 1593 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1594 slab_error(cachep, "start of a freed object was overwritten"); 1595 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1596 slab_error(cachep, "end of a freed object was overwritten"); 1597 } 1598 } 1599 } 1600 #else 1601 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1602 struct page *page) 1603 { 1604 } 1605 #endif 1606 1607 /** 1608 * slab_destroy - destroy and release all objects in a slab 1609 * @cachep: cache pointer being destroyed 1610 * @page: page pointer being destroyed 1611 * 1612 * Destroy all the objs in a slab page, and release the mem back to the system. 1613 * Before calling the slab page must have been unlinked from the cache. The 1614 * kmem_cache_node ->list_lock is not held/needed. 1615 */ 1616 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1617 { 1618 void *freelist; 1619 1620 freelist = page->freelist; 1621 slab_destroy_debugcheck(cachep, page); 1622 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1623 call_rcu(&page->rcu_head, kmem_rcu_free); 1624 else 1625 kmem_freepages(cachep, page); 1626 1627 /* 1628 * From now on, we don't use freelist 1629 * although actual page can be freed in rcu context 1630 */ 1631 if (OFF_SLAB(cachep)) 1632 kmem_cache_free(cachep->freelist_cache, freelist); 1633 } 1634 1635 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1636 { 1637 struct page *page, *n; 1638 1639 list_for_each_entry_safe(page, n, list, slab_list) { 1640 list_del(&page->slab_list); 1641 slab_destroy(cachep, page); 1642 } 1643 } 1644 1645 /** 1646 * calculate_slab_order - calculate size (page order) of slabs 1647 * @cachep: pointer to the cache that is being created 1648 * @size: size of objects to be created in this cache. 1649 * @flags: slab allocation flags 1650 * 1651 * Also calculates the number of objects per slab. 1652 * 1653 * This could be made much more intelligent. For now, try to avoid using 1654 * high order pages for slabs. When the gfp() functions are more friendly 1655 * towards high-order requests, this should be changed. 1656 * 1657 * Return: number of left-over bytes in a slab 1658 */ 1659 static size_t calculate_slab_order(struct kmem_cache *cachep, 1660 size_t size, slab_flags_t flags) 1661 { 1662 size_t left_over = 0; 1663 int gfporder; 1664 1665 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1666 unsigned int num; 1667 size_t remainder; 1668 1669 num = cache_estimate(gfporder, size, flags, &remainder); 1670 if (!num) 1671 continue; 1672 1673 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1674 if (num > SLAB_OBJ_MAX_NUM) 1675 break; 1676 1677 if (flags & CFLGS_OFF_SLAB) { 1678 struct kmem_cache *freelist_cache; 1679 size_t freelist_size; 1680 1681 freelist_size = num * sizeof(freelist_idx_t); 1682 freelist_cache = kmalloc_slab(freelist_size, 0u); 1683 if (!freelist_cache) 1684 continue; 1685 1686 /* 1687 * Needed to avoid possible looping condition 1688 * in cache_grow_begin() 1689 */ 1690 if (OFF_SLAB(freelist_cache)) 1691 continue; 1692 1693 /* check if off slab has enough benefit */ 1694 if (freelist_cache->size > cachep->size / 2) 1695 continue; 1696 } 1697 1698 /* Found something acceptable - save it away */ 1699 cachep->num = num; 1700 cachep->gfporder = gfporder; 1701 left_over = remainder; 1702 1703 /* 1704 * A VFS-reclaimable slab tends to have most allocations 1705 * as GFP_NOFS and we really don't want to have to be allocating 1706 * higher-order pages when we are unable to shrink dcache. 1707 */ 1708 if (flags & SLAB_RECLAIM_ACCOUNT) 1709 break; 1710 1711 /* 1712 * Large number of objects is good, but very large slabs are 1713 * currently bad for the gfp()s. 1714 */ 1715 if (gfporder >= slab_max_order) 1716 break; 1717 1718 /* 1719 * Acceptable internal fragmentation? 1720 */ 1721 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1722 break; 1723 } 1724 return left_over; 1725 } 1726 1727 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1728 struct kmem_cache *cachep, int entries, int batchcount) 1729 { 1730 int cpu; 1731 size_t size; 1732 struct array_cache __percpu *cpu_cache; 1733 1734 size = sizeof(void *) * entries + sizeof(struct array_cache); 1735 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1736 1737 if (!cpu_cache) 1738 return NULL; 1739 1740 for_each_possible_cpu(cpu) { 1741 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1742 entries, batchcount); 1743 } 1744 1745 return cpu_cache; 1746 } 1747 1748 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1749 { 1750 if (slab_state >= FULL) 1751 return enable_cpucache(cachep, gfp); 1752 1753 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1754 if (!cachep->cpu_cache) 1755 return 1; 1756 1757 if (slab_state == DOWN) { 1758 /* Creation of first cache (kmem_cache). */ 1759 set_up_node(kmem_cache, CACHE_CACHE); 1760 } else if (slab_state == PARTIAL) { 1761 /* For kmem_cache_node */ 1762 set_up_node(cachep, SIZE_NODE); 1763 } else { 1764 int node; 1765 1766 for_each_online_node(node) { 1767 cachep->node[node] = kmalloc_node( 1768 sizeof(struct kmem_cache_node), gfp, node); 1769 BUG_ON(!cachep->node[node]); 1770 kmem_cache_node_init(cachep->node[node]); 1771 } 1772 } 1773 1774 cachep->node[numa_mem_id()]->next_reap = 1775 jiffies + REAPTIMEOUT_NODE + 1776 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1777 1778 cpu_cache_get(cachep)->avail = 0; 1779 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1780 cpu_cache_get(cachep)->batchcount = 1; 1781 cpu_cache_get(cachep)->touched = 0; 1782 cachep->batchcount = 1; 1783 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1784 return 0; 1785 } 1786 1787 slab_flags_t kmem_cache_flags(unsigned int object_size, 1788 slab_flags_t flags, const char *name, 1789 void (*ctor)(void *)) 1790 { 1791 return flags; 1792 } 1793 1794 struct kmem_cache * 1795 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1796 slab_flags_t flags, void (*ctor)(void *)) 1797 { 1798 struct kmem_cache *cachep; 1799 1800 cachep = find_mergeable(size, align, flags, name, ctor); 1801 if (cachep) { 1802 cachep->refcount++; 1803 1804 /* 1805 * Adjust the object sizes so that we clear 1806 * the complete object on kzalloc. 1807 */ 1808 cachep->object_size = max_t(int, cachep->object_size, size); 1809 } 1810 return cachep; 1811 } 1812 1813 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1814 size_t size, slab_flags_t flags) 1815 { 1816 size_t left; 1817 1818 cachep->num = 0; 1819 1820 /* 1821 * If slab auto-initialization on free is enabled, store the freelist 1822 * off-slab, so that its contents don't end up in one of the allocated 1823 * objects. 1824 */ 1825 if (unlikely(slab_want_init_on_free(cachep))) 1826 return false; 1827 1828 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1829 return false; 1830 1831 left = calculate_slab_order(cachep, size, 1832 flags | CFLGS_OBJFREELIST_SLAB); 1833 if (!cachep->num) 1834 return false; 1835 1836 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1837 return false; 1838 1839 cachep->colour = left / cachep->colour_off; 1840 1841 return true; 1842 } 1843 1844 static bool set_off_slab_cache(struct kmem_cache *cachep, 1845 size_t size, slab_flags_t flags) 1846 { 1847 size_t left; 1848 1849 cachep->num = 0; 1850 1851 /* 1852 * Always use on-slab management when SLAB_NOLEAKTRACE 1853 * to avoid recursive calls into kmemleak. 1854 */ 1855 if (flags & SLAB_NOLEAKTRACE) 1856 return false; 1857 1858 /* 1859 * Size is large, assume best to place the slab management obj 1860 * off-slab (should allow better packing of objs). 1861 */ 1862 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1863 if (!cachep->num) 1864 return false; 1865 1866 /* 1867 * If the slab has been placed off-slab, and we have enough space then 1868 * move it on-slab. This is at the expense of any extra colouring. 1869 */ 1870 if (left >= cachep->num * sizeof(freelist_idx_t)) 1871 return false; 1872 1873 cachep->colour = left / cachep->colour_off; 1874 1875 return true; 1876 } 1877 1878 static bool set_on_slab_cache(struct kmem_cache *cachep, 1879 size_t size, slab_flags_t flags) 1880 { 1881 size_t left; 1882 1883 cachep->num = 0; 1884 1885 left = calculate_slab_order(cachep, size, flags); 1886 if (!cachep->num) 1887 return false; 1888 1889 cachep->colour = left / cachep->colour_off; 1890 1891 return true; 1892 } 1893 1894 /** 1895 * __kmem_cache_create - Create a cache. 1896 * @cachep: cache management descriptor 1897 * @flags: SLAB flags 1898 * 1899 * Returns a ptr to the cache on success, NULL on failure. 1900 * Cannot be called within a int, but can be interrupted. 1901 * The @ctor is run when new pages are allocated by the cache. 1902 * 1903 * The flags are 1904 * 1905 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1906 * to catch references to uninitialised memory. 1907 * 1908 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1909 * for buffer overruns. 1910 * 1911 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1912 * cacheline. This can be beneficial if you're counting cycles as closely 1913 * as davem. 1914 * 1915 * Return: a pointer to the created cache or %NULL in case of error 1916 */ 1917 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1918 { 1919 size_t ralign = BYTES_PER_WORD; 1920 gfp_t gfp; 1921 int err; 1922 unsigned int size = cachep->size; 1923 1924 #if DEBUG 1925 #if FORCED_DEBUG 1926 /* 1927 * Enable redzoning and last user accounting, except for caches with 1928 * large objects, if the increased size would increase the object size 1929 * above the next power of two: caches with object sizes just above a 1930 * power of two have a significant amount of internal fragmentation. 1931 */ 1932 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1933 2 * sizeof(unsigned long long))) 1934 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1935 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1936 flags |= SLAB_POISON; 1937 #endif 1938 #endif 1939 1940 /* 1941 * Check that size is in terms of words. This is needed to avoid 1942 * unaligned accesses for some archs when redzoning is used, and makes 1943 * sure any on-slab bufctl's are also correctly aligned. 1944 */ 1945 size = ALIGN(size, BYTES_PER_WORD); 1946 1947 if (flags & SLAB_RED_ZONE) { 1948 ralign = REDZONE_ALIGN; 1949 /* If redzoning, ensure that the second redzone is suitably 1950 * aligned, by adjusting the object size accordingly. */ 1951 size = ALIGN(size, REDZONE_ALIGN); 1952 } 1953 1954 /* 3) caller mandated alignment */ 1955 if (ralign < cachep->align) { 1956 ralign = cachep->align; 1957 } 1958 /* disable debug if necessary */ 1959 if (ralign > __alignof__(unsigned long long)) 1960 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1961 /* 1962 * 4) Store it. 1963 */ 1964 cachep->align = ralign; 1965 cachep->colour_off = cache_line_size(); 1966 /* Offset must be a multiple of the alignment. */ 1967 if (cachep->colour_off < cachep->align) 1968 cachep->colour_off = cachep->align; 1969 1970 if (slab_is_available()) 1971 gfp = GFP_KERNEL; 1972 else 1973 gfp = GFP_NOWAIT; 1974 1975 #if DEBUG 1976 1977 /* 1978 * Both debugging options require word-alignment which is calculated 1979 * into align above. 1980 */ 1981 if (flags & SLAB_RED_ZONE) { 1982 /* add space for red zone words */ 1983 cachep->obj_offset += sizeof(unsigned long long); 1984 size += 2 * sizeof(unsigned long long); 1985 } 1986 if (flags & SLAB_STORE_USER) { 1987 /* user store requires one word storage behind the end of 1988 * the real object. But if the second red zone needs to be 1989 * aligned to 64 bits, we must allow that much space. 1990 */ 1991 if (flags & SLAB_RED_ZONE) 1992 size += REDZONE_ALIGN; 1993 else 1994 size += BYTES_PER_WORD; 1995 } 1996 #endif 1997 1998 kasan_cache_create(cachep, &size, &flags); 1999 2000 size = ALIGN(size, cachep->align); 2001 /* 2002 * We should restrict the number of objects in a slab to implement 2003 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2004 */ 2005 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2006 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2007 2008 #if DEBUG 2009 /* 2010 * To activate debug pagealloc, off-slab management is necessary 2011 * requirement. In early phase of initialization, small sized slab 2012 * doesn't get initialized so it would not be possible. So, we need 2013 * to check size >= 256. It guarantees that all necessary small 2014 * sized slab is initialized in current slab initialization sequence. 2015 */ 2016 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && 2017 size >= 256 && cachep->object_size > cache_line_size()) { 2018 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2019 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2020 2021 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2022 flags |= CFLGS_OFF_SLAB; 2023 cachep->obj_offset += tmp_size - size; 2024 size = tmp_size; 2025 goto done; 2026 } 2027 } 2028 } 2029 #endif 2030 2031 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2032 flags |= CFLGS_OBJFREELIST_SLAB; 2033 goto done; 2034 } 2035 2036 if (set_off_slab_cache(cachep, size, flags)) { 2037 flags |= CFLGS_OFF_SLAB; 2038 goto done; 2039 } 2040 2041 if (set_on_slab_cache(cachep, size, flags)) 2042 goto done; 2043 2044 return -E2BIG; 2045 2046 done: 2047 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2048 cachep->flags = flags; 2049 cachep->allocflags = __GFP_COMP; 2050 if (flags & SLAB_CACHE_DMA) 2051 cachep->allocflags |= GFP_DMA; 2052 if (flags & SLAB_CACHE_DMA32) 2053 cachep->allocflags |= GFP_DMA32; 2054 if (flags & SLAB_RECLAIM_ACCOUNT) 2055 cachep->allocflags |= __GFP_RECLAIMABLE; 2056 cachep->size = size; 2057 cachep->reciprocal_buffer_size = reciprocal_value(size); 2058 2059 #if DEBUG 2060 /* 2061 * If we're going to use the generic kernel_map_pages() 2062 * poisoning, then it's going to smash the contents of 2063 * the redzone and userword anyhow, so switch them off. 2064 */ 2065 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2066 (cachep->flags & SLAB_POISON) && 2067 is_debug_pagealloc_cache(cachep)) 2068 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2069 #endif 2070 2071 if (OFF_SLAB(cachep)) { 2072 cachep->freelist_cache = 2073 kmalloc_slab(cachep->freelist_size, 0u); 2074 } 2075 2076 err = setup_cpu_cache(cachep, gfp); 2077 if (err) { 2078 __kmem_cache_release(cachep); 2079 return err; 2080 } 2081 2082 return 0; 2083 } 2084 2085 #if DEBUG 2086 static void check_irq_off(void) 2087 { 2088 BUG_ON(!irqs_disabled()); 2089 } 2090 2091 static void check_irq_on(void) 2092 { 2093 BUG_ON(irqs_disabled()); 2094 } 2095 2096 static void check_mutex_acquired(void) 2097 { 2098 BUG_ON(!mutex_is_locked(&slab_mutex)); 2099 } 2100 2101 static void check_spinlock_acquired(struct kmem_cache *cachep) 2102 { 2103 #ifdef CONFIG_SMP 2104 check_irq_off(); 2105 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2106 #endif 2107 } 2108 2109 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2110 { 2111 #ifdef CONFIG_SMP 2112 check_irq_off(); 2113 assert_spin_locked(&get_node(cachep, node)->list_lock); 2114 #endif 2115 } 2116 2117 #else 2118 #define check_irq_off() do { } while(0) 2119 #define check_irq_on() do { } while(0) 2120 #define check_mutex_acquired() do { } while(0) 2121 #define check_spinlock_acquired(x) do { } while(0) 2122 #define check_spinlock_acquired_node(x, y) do { } while(0) 2123 #endif 2124 2125 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2126 int node, bool free_all, struct list_head *list) 2127 { 2128 int tofree; 2129 2130 if (!ac || !ac->avail) 2131 return; 2132 2133 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2134 if (tofree > ac->avail) 2135 tofree = (ac->avail + 1) / 2; 2136 2137 free_block(cachep, ac->entry, tofree, node, list); 2138 ac->avail -= tofree; 2139 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2140 } 2141 2142 static void do_drain(void *arg) 2143 { 2144 struct kmem_cache *cachep = arg; 2145 struct array_cache *ac; 2146 int node = numa_mem_id(); 2147 struct kmem_cache_node *n; 2148 LIST_HEAD(list); 2149 2150 check_irq_off(); 2151 ac = cpu_cache_get(cachep); 2152 n = get_node(cachep, node); 2153 spin_lock(&n->list_lock); 2154 free_block(cachep, ac->entry, ac->avail, node, &list); 2155 spin_unlock(&n->list_lock); 2156 slabs_destroy(cachep, &list); 2157 ac->avail = 0; 2158 } 2159 2160 static void drain_cpu_caches(struct kmem_cache *cachep) 2161 { 2162 struct kmem_cache_node *n; 2163 int node; 2164 LIST_HEAD(list); 2165 2166 on_each_cpu(do_drain, cachep, 1); 2167 check_irq_on(); 2168 for_each_kmem_cache_node(cachep, node, n) 2169 if (n->alien) 2170 drain_alien_cache(cachep, n->alien); 2171 2172 for_each_kmem_cache_node(cachep, node, n) { 2173 spin_lock_irq(&n->list_lock); 2174 drain_array_locked(cachep, n->shared, node, true, &list); 2175 spin_unlock_irq(&n->list_lock); 2176 2177 slabs_destroy(cachep, &list); 2178 } 2179 } 2180 2181 /* 2182 * Remove slabs from the list of free slabs. 2183 * Specify the number of slabs to drain in tofree. 2184 * 2185 * Returns the actual number of slabs released. 2186 */ 2187 static int drain_freelist(struct kmem_cache *cache, 2188 struct kmem_cache_node *n, int tofree) 2189 { 2190 struct list_head *p; 2191 int nr_freed; 2192 struct page *page; 2193 2194 nr_freed = 0; 2195 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2196 2197 spin_lock_irq(&n->list_lock); 2198 p = n->slabs_free.prev; 2199 if (p == &n->slabs_free) { 2200 spin_unlock_irq(&n->list_lock); 2201 goto out; 2202 } 2203 2204 page = list_entry(p, struct page, slab_list); 2205 list_del(&page->slab_list); 2206 n->free_slabs--; 2207 n->total_slabs--; 2208 /* 2209 * Safe to drop the lock. The slab is no longer linked 2210 * to the cache. 2211 */ 2212 n->free_objects -= cache->num; 2213 spin_unlock_irq(&n->list_lock); 2214 slab_destroy(cache, page); 2215 nr_freed++; 2216 } 2217 out: 2218 return nr_freed; 2219 } 2220 2221 bool __kmem_cache_empty(struct kmem_cache *s) 2222 { 2223 int node; 2224 struct kmem_cache_node *n; 2225 2226 for_each_kmem_cache_node(s, node, n) 2227 if (!list_empty(&n->slabs_full) || 2228 !list_empty(&n->slabs_partial)) 2229 return false; 2230 return true; 2231 } 2232 2233 int __kmem_cache_shrink(struct kmem_cache *cachep) 2234 { 2235 int ret = 0; 2236 int node; 2237 struct kmem_cache_node *n; 2238 2239 drain_cpu_caches(cachep); 2240 2241 check_irq_on(); 2242 for_each_kmem_cache_node(cachep, node, n) { 2243 drain_freelist(cachep, n, INT_MAX); 2244 2245 ret += !list_empty(&n->slabs_full) || 2246 !list_empty(&n->slabs_partial); 2247 } 2248 return (ret ? 1 : 0); 2249 } 2250 2251 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2252 { 2253 return __kmem_cache_shrink(cachep); 2254 } 2255 2256 void __kmem_cache_release(struct kmem_cache *cachep) 2257 { 2258 int i; 2259 struct kmem_cache_node *n; 2260 2261 cache_random_seq_destroy(cachep); 2262 2263 free_percpu(cachep->cpu_cache); 2264 2265 /* NUMA: free the node structures */ 2266 for_each_kmem_cache_node(cachep, i, n) { 2267 kfree(n->shared); 2268 free_alien_cache(n->alien); 2269 kfree(n); 2270 cachep->node[i] = NULL; 2271 } 2272 } 2273 2274 /* 2275 * Get the memory for a slab management obj. 2276 * 2277 * For a slab cache when the slab descriptor is off-slab, the 2278 * slab descriptor can't come from the same cache which is being created, 2279 * Because if it is the case, that means we defer the creation of 2280 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2281 * And we eventually call down to __kmem_cache_create(), which 2282 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2283 * This is a "chicken-and-egg" problem. 2284 * 2285 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2286 * which are all initialized during kmem_cache_init(). 2287 */ 2288 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2289 struct page *page, int colour_off, 2290 gfp_t local_flags, int nodeid) 2291 { 2292 void *freelist; 2293 void *addr = page_address(page); 2294 2295 page->s_mem = addr + colour_off; 2296 page->active = 0; 2297 2298 if (OBJFREELIST_SLAB(cachep)) 2299 freelist = NULL; 2300 else if (OFF_SLAB(cachep)) { 2301 /* Slab management obj is off-slab. */ 2302 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2303 local_flags, nodeid); 2304 if (!freelist) 2305 return NULL; 2306 } else { 2307 /* We will use last bytes at the slab for freelist */ 2308 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2309 cachep->freelist_size; 2310 } 2311 2312 return freelist; 2313 } 2314 2315 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2316 { 2317 return ((freelist_idx_t *)page->freelist)[idx]; 2318 } 2319 2320 static inline void set_free_obj(struct page *page, 2321 unsigned int idx, freelist_idx_t val) 2322 { 2323 ((freelist_idx_t *)(page->freelist))[idx] = val; 2324 } 2325 2326 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2327 { 2328 #if DEBUG 2329 int i; 2330 2331 for (i = 0; i < cachep->num; i++) { 2332 void *objp = index_to_obj(cachep, page, i); 2333 2334 if (cachep->flags & SLAB_STORE_USER) 2335 *dbg_userword(cachep, objp) = NULL; 2336 2337 if (cachep->flags & SLAB_RED_ZONE) { 2338 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2339 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2340 } 2341 /* 2342 * Constructors are not allowed to allocate memory from the same 2343 * cache which they are a constructor for. Otherwise, deadlock. 2344 * They must also be threaded. 2345 */ 2346 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2347 kasan_unpoison_object_data(cachep, 2348 objp + obj_offset(cachep)); 2349 cachep->ctor(objp + obj_offset(cachep)); 2350 kasan_poison_object_data( 2351 cachep, objp + obj_offset(cachep)); 2352 } 2353 2354 if (cachep->flags & SLAB_RED_ZONE) { 2355 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2356 slab_error(cachep, "constructor overwrote the end of an object"); 2357 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2358 slab_error(cachep, "constructor overwrote the start of an object"); 2359 } 2360 /* need to poison the objs? */ 2361 if (cachep->flags & SLAB_POISON) { 2362 poison_obj(cachep, objp, POISON_FREE); 2363 slab_kernel_map(cachep, objp, 0); 2364 } 2365 } 2366 #endif 2367 } 2368 2369 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2370 /* Hold information during a freelist initialization */ 2371 union freelist_init_state { 2372 struct { 2373 unsigned int pos; 2374 unsigned int *list; 2375 unsigned int count; 2376 }; 2377 struct rnd_state rnd_state; 2378 }; 2379 2380 /* 2381 * Initialize the state based on the randomization methode available. 2382 * return true if the pre-computed list is available, false otherwize. 2383 */ 2384 static bool freelist_state_initialize(union freelist_init_state *state, 2385 struct kmem_cache *cachep, 2386 unsigned int count) 2387 { 2388 bool ret; 2389 unsigned int rand; 2390 2391 /* Use best entropy available to define a random shift */ 2392 rand = get_random_int(); 2393 2394 /* Use a random state if the pre-computed list is not available */ 2395 if (!cachep->random_seq) { 2396 prandom_seed_state(&state->rnd_state, rand); 2397 ret = false; 2398 } else { 2399 state->list = cachep->random_seq; 2400 state->count = count; 2401 state->pos = rand % count; 2402 ret = true; 2403 } 2404 return ret; 2405 } 2406 2407 /* Get the next entry on the list and randomize it using a random shift */ 2408 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2409 { 2410 if (state->pos >= state->count) 2411 state->pos = 0; 2412 return state->list[state->pos++]; 2413 } 2414 2415 /* Swap two freelist entries */ 2416 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2417 { 2418 swap(((freelist_idx_t *)page->freelist)[a], 2419 ((freelist_idx_t *)page->freelist)[b]); 2420 } 2421 2422 /* 2423 * Shuffle the freelist initialization state based on pre-computed lists. 2424 * return true if the list was successfully shuffled, false otherwise. 2425 */ 2426 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2427 { 2428 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2429 union freelist_init_state state; 2430 bool precomputed; 2431 2432 if (count < 2) 2433 return false; 2434 2435 precomputed = freelist_state_initialize(&state, cachep, count); 2436 2437 /* Take a random entry as the objfreelist */ 2438 if (OBJFREELIST_SLAB(cachep)) { 2439 if (!precomputed) 2440 objfreelist = count - 1; 2441 else 2442 objfreelist = next_random_slot(&state); 2443 page->freelist = index_to_obj(cachep, page, objfreelist) + 2444 obj_offset(cachep); 2445 count--; 2446 } 2447 2448 /* 2449 * On early boot, generate the list dynamically. 2450 * Later use a pre-computed list for speed. 2451 */ 2452 if (!precomputed) { 2453 for (i = 0; i < count; i++) 2454 set_free_obj(page, i, i); 2455 2456 /* Fisher-Yates shuffle */ 2457 for (i = count - 1; i > 0; i--) { 2458 rand = prandom_u32_state(&state.rnd_state); 2459 rand %= (i + 1); 2460 swap_free_obj(page, i, rand); 2461 } 2462 } else { 2463 for (i = 0; i < count; i++) 2464 set_free_obj(page, i, next_random_slot(&state)); 2465 } 2466 2467 if (OBJFREELIST_SLAB(cachep)) 2468 set_free_obj(page, cachep->num - 1, objfreelist); 2469 2470 return true; 2471 } 2472 #else 2473 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2474 struct page *page) 2475 { 2476 return false; 2477 } 2478 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2479 2480 static void cache_init_objs(struct kmem_cache *cachep, 2481 struct page *page) 2482 { 2483 int i; 2484 void *objp; 2485 bool shuffled; 2486 2487 cache_init_objs_debug(cachep, page); 2488 2489 /* Try to randomize the freelist if enabled */ 2490 shuffled = shuffle_freelist(cachep, page); 2491 2492 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2493 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2494 obj_offset(cachep); 2495 } 2496 2497 for (i = 0; i < cachep->num; i++) { 2498 objp = index_to_obj(cachep, page, i); 2499 objp = kasan_init_slab_obj(cachep, objp); 2500 2501 /* constructor could break poison info */ 2502 if (DEBUG == 0 && cachep->ctor) { 2503 kasan_unpoison_object_data(cachep, objp); 2504 cachep->ctor(objp); 2505 kasan_poison_object_data(cachep, objp); 2506 } 2507 2508 if (!shuffled) 2509 set_free_obj(page, i, i); 2510 } 2511 } 2512 2513 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2514 { 2515 void *objp; 2516 2517 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2518 page->active++; 2519 2520 return objp; 2521 } 2522 2523 static void slab_put_obj(struct kmem_cache *cachep, 2524 struct page *page, void *objp) 2525 { 2526 unsigned int objnr = obj_to_index(cachep, page, objp); 2527 #if DEBUG 2528 unsigned int i; 2529 2530 /* Verify double free bug */ 2531 for (i = page->active; i < cachep->num; i++) { 2532 if (get_free_obj(page, i) == objnr) { 2533 pr_err("slab: double free detected in cache '%s', objp %px\n", 2534 cachep->name, objp); 2535 BUG(); 2536 } 2537 } 2538 #endif 2539 page->active--; 2540 if (!page->freelist) 2541 page->freelist = objp + obj_offset(cachep); 2542 2543 set_free_obj(page, page->active, objnr); 2544 } 2545 2546 /* 2547 * Map pages beginning at addr to the given cache and slab. This is required 2548 * for the slab allocator to be able to lookup the cache and slab of a 2549 * virtual address for kfree, ksize, and slab debugging. 2550 */ 2551 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2552 void *freelist) 2553 { 2554 page->slab_cache = cache; 2555 page->freelist = freelist; 2556 } 2557 2558 /* 2559 * Grow (by 1) the number of slabs within a cache. This is called by 2560 * kmem_cache_alloc() when there are no active objs left in a cache. 2561 */ 2562 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2563 gfp_t flags, int nodeid) 2564 { 2565 void *freelist; 2566 size_t offset; 2567 gfp_t local_flags; 2568 int page_node; 2569 struct kmem_cache_node *n; 2570 struct page *page; 2571 2572 /* 2573 * Be lazy and only check for valid flags here, keeping it out of the 2574 * critical path in kmem_cache_alloc(). 2575 */ 2576 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2577 flags = kmalloc_fix_flags(flags); 2578 2579 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2580 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2581 2582 check_irq_off(); 2583 if (gfpflags_allow_blocking(local_flags)) 2584 local_irq_enable(); 2585 2586 /* 2587 * Get mem for the objs. Attempt to allocate a physical page from 2588 * 'nodeid'. 2589 */ 2590 page = kmem_getpages(cachep, local_flags, nodeid); 2591 if (!page) 2592 goto failed; 2593 2594 page_node = page_to_nid(page); 2595 n = get_node(cachep, page_node); 2596 2597 /* Get colour for the slab, and cal the next value. */ 2598 n->colour_next++; 2599 if (n->colour_next >= cachep->colour) 2600 n->colour_next = 0; 2601 2602 offset = n->colour_next; 2603 if (offset >= cachep->colour) 2604 offset = 0; 2605 2606 offset *= cachep->colour_off; 2607 2608 /* 2609 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2610 * page_address() in the latter returns a non-tagged pointer, 2611 * as it should be for slab pages. 2612 */ 2613 kasan_poison_slab(page); 2614 2615 /* Get slab management. */ 2616 freelist = alloc_slabmgmt(cachep, page, offset, 2617 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2618 if (OFF_SLAB(cachep) && !freelist) 2619 goto opps1; 2620 2621 slab_map_pages(cachep, page, freelist); 2622 2623 cache_init_objs(cachep, page); 2624 2625 if (gfpflags_allow_blocking(local_flags)) 2626 local_irq_disable(); 2627 2628 return page; 2629 2630 opps1: 2631 kmem_freepages(cachep, page); 2632 failed: 2633 if (gfpflags_allow_blocking(local_flags)) 2634 local_irq_disable(); 2635 return NULL; 2636 } 2637 2638 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2639 { 2640 struct kmem_cache_node *n; 2641 void *list = NULL; 2642 2643 check_irq_off(); 2644 2645 if (!page) 2646 return; 2647 2648 INIT_LIST_HEAD(&page->slab_list); 2649 n = get_node(cachep, page_to_nid(page)); 2650 2651 spin_lock(&n->list_lock); 2652 n->total_slabs++; 2653 if (!page->active) { 2654 list_add_tail(&page->slab_list, &n->slabs_free); 2655 n->free_slabs++; 2656 } else 2657 fixup_slab_list(cachep, n, page, &list); 2658 2659 STATS_INC_GROWN(cachep); 2660 n->free_objects += cachep->num - page->active; 2661 spin_unlock(&n->list_lock); 2662 2663 fixup_objfreelist_debug(cachep, &list); 2664 } 2665 2666 #if DEBUG 2667 2668 /* 2669 * Perform extra freeing checks: 2670 * - detect bad pointers. 2671 * - POISON/RED_ZONE checking 2672 */ 2673 static void kfree_debugcheck(const void *objp) 2674 { 2675 if (!virt_addr_valid(objp)) { 2676 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2677 (unsigned long)objp); 2678 BUG(); 2679 } 2680 } 2681 2682 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2683 { 2684 unsigned long long redzone1, redzone2; 2685 2686 redzone1 = *dbg_redzone1(cache, obj); 2687 redzone2 = *dbg_redzone2(cache, obj); 2688 2689 /* 2690 * Redzone is ok. 2691 */ 2692 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2693 return; 2694 2695 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2696 slab_error(cache, "double free detected"); 2697 else 2698 slab_error(cache, "memory outside object was overwritten"); 2699 2700 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2701 obj, redzone1, redzone2); 2702 } 2703 2704 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2705 unsigned long caller) 2706 { 2707 unsigned int objnr; 2708 struct page *page; 2709 2710 BUG_ON(virt_to_cache(objp) != cachep); 2711 2712 objp -= obj_offset(cachep); 2713 kfree_debugcheck(objp); 2714 page = virt_to_head_page(objp); 2715 2716 if (cachep->flags & SLAB_RED_ZONE) { 2717 verify_redzone_free(cachep, objp); 2718 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2719 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2720 } 2721 if (cachep->flags & SLAB_STORE_USER) 2722 *dbg_userword(cachep, objp) = (void *)caller; 2723 2724 objnr = obj_to_index(cachep, page, objp); 2725 2726 BUG_ON(objnr >= cachep->num); 2727 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2728 2729 if (cachep->flags & SLAB_POISON) { 2730 poison_obj(cachep, objp, POISON_FREE); 2731 slab_kernel_map(cachep, objp, 0); 2732 } 2733 return objp; 2734 } 2735 2736 #else 2737 #define kfree_debugcheck(x) do { } while(0) 2738 #define cache_free_debugcheck(x,objp,z) (objp) 2739 #endif 2740 2741 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2742 void **list) 2743 { 2744 #if DEBUG 2745 void *next = *list; 2746 void *objp; 2747 2748 while (next) { 2749 objp = next - obj_offset(cachep); 2750 next = *(void **)next; 2751 poison_obj(cachep, objp, POISON_FREE); 2752 } 2753 #endif 2754 } 2755 2756 static inline void fixup_slab_list(struct kmem_cache *cachep, 2757 struct kmem_cache_node *n, struct page *page, 2758 void **list) 2759 { 2760 /* move slabp to correct slabp list: */ 2761 list_del(&page->slab_list); 2762 if (page->active == cachep->num) { 2763 list_add(&page->slab_list, &n->slabs_full); 2764 if (OBJFREELIST_SLAB(cachep)) { 2765 #if DEBUG 2766 /* Poisoning will be done without holding the lock */ 2767 if (cachep->flags & SLAB_POISON) { 2768 void **objp = page->freelist; 2769 2770 *objp = *list; 2771 *list = objp; 2772 } 2773 #endif 2774 page->freelist = NULL; 2775 } 2776 } else 2777 list_add(&page->slab_list, &n->slabs_partial); 2778 } 2779 2780 /* Try to find non-pfmemalloc slab if needed */ 2781 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2782 struct page *page, bool pfmemalloc) 2783 { 2784 if (!page) 2785 return NULL; 2786 2787 if (pfmemalloc) 2788 return page; 2789 2790 if (!PageSlabPfmemalloc(page)) 2791 return page; 2792 2793 /* No need to keep pfmemalloc slab if we have enough free objects */ 2794 if (n->free_objects > n->free_limit) { 2795 ClearPageSlabPfmemalloc(page); 2796 return page; 2797 } 2798 2799 /* Move pfmemalloc slab to the end of list to speed up next search */ 2800 list_del(&page->slab_list); 2801 if (!page->active) { 2802 list_add_tail(&page->slab_list, &n->slabs_free); 2803 n->free_slabs++; 2804 } else 2805 list_add_tail(&page->slab_list, &n->slabs_partial); 2806 2807 list_for_each_entry(page, &n->slabs_partial, slab_list) { 2808 if (!PageSlabPfmemalloc(page)) 2809 return page; 2810 } 2811 2812 n->free_touched = 1; 2813 list_for_each_entry(page, &n->slabs_free, slab_list) { 2814 if (!PageSlabPfmemalloc(page)) { 2815 n->free_slabs--; 2816 return page; 2817 } 2818 } 2819 2820 return NULL; 2821 } 2822 2823 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2824 { 2825 struct page *page; 2826 2827 assert_spin_locked(&n->list_lock); 2828 page = list_first_entry_or_null(&n->slabs_partial, struct page, 2829 slab_list); 2830 if (!page) { 2831 n->free_touched = 1; 2832 page = list_first_entry_or_null(&n->slabs_free, struct page, 2833 slab_list); 2834 if (page) 2835 n->free_slabs--; 2836 } 2837 2838 if (sk_memalloc_socks()) 2839 page = get_valid_first_slab(n, page, pfmemalloc); 2840 2841 return page; 2842 } 2843 2844 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2845 struct kmem_cache_node *n, gfp_t flags) 2846 { 2847 struct page *page; 2848 void *obj; 2849 void *list = NULL; 2850 2851 if (!gfp_pfmemalloc_allowed(flags)) 2852 return NULL; 2853 2854 spin_lock(&n->list_lock); 2855 page = get_first_slab(n, true); 2856 if (!page) { 2857 spin_unlock(&n->list_lock); 2858 return NULL; 2859 } 2860 2861 obj = slab_get_obj(cachep, page); 2862 n->free_objects--; 2863 2864 fixup_slab_list(cachep, n, page, &list); 2865 2866 spin_unlock(&n->list_lock); 2867 fixup_objfreelist_debug(cachep, &list); 2868 2869 return obj; 2870 } 2871 2872 /* 2873 * Slab list should be fixed up by fixup_slab_list() for existing slab 2874 * or cache_grow_end() for new slab 2875 */ 2876 static __always_inline int alloc_block(struct kmem_cache *cachep, 2877 struct array_cache *ac, struct page *page, int batchcount) 2878 { 2879 /* 2880 * There must be at least one object available for 2881 * allocation. 2882 */ 2883 BUG_ON(page->active >= cachep->num); 2884 2885 while (page->active < cachep->num && batchcount--) { 2886 STATS_INC_ALLOCED(cachep); 2887 STATS_INC_ACTIVE(cachep); 2888 STATS_SET_HIGH(cachep); 2889 2890 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2891 } 2892 2893 return batchcount; 2894 } 2895 2896 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2897 { 2898 int batchcount; 2899 struct kmem_cache_node *n; 2900 struct array_cache *ac, *shared; 2901 int node; 2902 void *list = NULL; 2903 struct page *page; 2904 2905 check_irq_off(); 2906 node = numa_mem_id(); 2907 2908 ac = cpu_cache_get(cachep); 2909 batchcount = ac->batchcount; 2910 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2911 /* 2912 * If there was little recent activity on this cache, then 2913 * perform only a partial refill. Otherwise we could generate 2914 * refill bouncing. 2915 */ 2916 batchcount = BATCHREFILL_LIMIT; 2917 } 2918 n = get_node(cachep, node); 2919 2920 BUG_ON(ac->avail > 0 || !n); 2921 shared = READ_ONCE(n->shared); 2922 if (!n->free_objects && (!shared || !shared->avail)) 2923 goto direct_grow; 2924 2925 spin_lock(&n->list_lock); 2926 shared = READ_ONCE(n->shared); 2927 2928 /* See if we can refill from the shared array */ 2929 if (shared && transfer_objects(ac, shared, batchcount)) { 2930 shared->touched = 1; 2931 goto alloc_done; 2932 } 2933 2934 while (batchcount > 0) { 2935 /* Get slab alloc is to come from. */ 2936 page = get_first_slab(n, false); 2937 if (!page) 2938 goto must_grow; 2939 2940 check_spinlock_acquired(cachep); 2941 2942 batchcount = alloc_block(cachep, ac, page, batchcount); 2943 fixup_slab_list(cachep, n, page, &list); 2944 } 2945 2946 must_grow: 2947 n->free_objects -= ac->avail; 2948 alloc_done: 2949 spin_unlock(&n->list_lock); 2950 fixup_objfreelist_debug(cachep, &list); 2951 2952 direct_grow: 2953 if (unlikely(!ac->avail)) { 2954 /* Check if we can use obj in pfmemalloc slab */ 2955 if (sk_memalloc_socks()) { 2956 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2957 2958 if (obj) 2959 return obj; 2960 } 2961 2962 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 2963 2964 /* 2965 * cache_grow_begin() can reenable interrupts, 2966 * then ac could change. 2967 */ 2968 ac = cpu_cache_get(cachep); 2969 if (!ac->avail && page) 2970 alloc_block(cachep, ac, page, batchcount); 2971 cache_grow_end(cachep, page); 2972 2973 if (!ac->avail) 2974 return NULL; 2975 } 2976 ac->touched = 1; 2977 2978 return ac->entry[--ac->avail]; 2979 } 2980 2981 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 2982 gfp_t flags) 2983 { 2984 might_sleep_if(gfpflags_allow_blocking(flags)); 2985 } 2986 2987 #if DEBUG 2988 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2989 gfp_t flags, void *objp, unsigned long caller) 2990 { 2991 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2992 if (!objp) 2993 return objp; 2994 if (cachep->flags & SLAB_POISON) { 2995 check_poison_obj(cachep, objp); 2996 slab_kernel_map(cachep, objp, 1); 2997 poison_obj(cachep, objp, POISON_INUSE); 2998 } 2999 if (cachep->flags & SLAB_STORE_USER) 3000 *dbg_userword(cachep, objp) = (void *)caller; 3001 3002 if (cachep->flags & SLAB_RED_ZONE) { 3003 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3004 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3005 slab_error(cachep, "double free, or memory outside object was overwritten"); 3006 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 3007 objp, *dbg_redzone1(cachep, objp), 3008 *dbg_redzone2(cachep, objp)); 3009 } 3010 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3011 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3012 } 3013 3014 objp += obj_offset(cachep); 3015 if (cachep->ctor && cachep->flags & SLAB_POISON) 3016 cachep->ctor(objp); 3017 if (ARCH_SLAB_MINALIGN && 3018 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3019 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3020 objp, (int)ARCH_SLAB_MINALIGN); 3021 } 3022 return objp; 3023 } 3024 #else 3025 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3026 #endif 3027 3028 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3029 { 3030 void *objp; 3031 struct array_cache *ac; 3032 3033 check_irq_off(); 3034 3035 ac = cpu_cache_get(cachep); 3036 if (likely(ac->avail)) { 3037 ac->touched = 1; 3038 objp = ac->entry[--ac->avail]; 3039 3040 STATS_INC_ALLOCHIT(cachep); 3041 goto out; 3042 } 3043 3044 STATS_INC_ALLOCMISS(cachep); 3045 objp = cache_alloc_refill(cachep, flags); 3046 /* 3047 * the 'ac' may be updated by cache_alloc_refill(), 3048 * and kmemleak_erase() requires its correct value. 3049 */ 3050 ac = cpu_cache_get(cachep); 3051 3052 out: 3053 /* 3054 * To avoid a false negative, if an object that is in one of the 3055 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3056 * treat the array pointers as a reference to the object. 3057 */ 3058 if (objp) 3059 kmemleak_erase(&ac->entry[ac->avail]); 3060 return objp; 3061 } 3062 3063 #ifdef CONFIG_NUMA 3064 /* 3065 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3066 * 3067 * If we are in_interrupt, then process context, including cpusets and 3068 * mempolicy, may not apply and should not be used for allocation policy. 3069 */ 3070 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3071 { 3072 int nid_alloc, nid_here; 3073 3074 if (in_interrupt() || (flags & __GFP_THISNODE)) 3075 return NULL; 3076 nid_alloc = nid_here = numa_mem_id(); 3077 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3078 nid_alloc = cpuset_slab_spread_node(); 3079 else if (current->mempolicy) 3080 nid_alloc = mempolicy_slab_node(); 3081 if (nid_alloc != nid_here) 3082 return ____cache_alloc_node(cachep, flags, nid_alloc); 3083 return NULL; 3084 } 3085 3086 /* 3087 * Fallback function if there was no memory available and no objects on a 3088 * certain node and fall back is permitted. First we scan all the 3089 * available node for available objects. If that fails then we 3090 * perform an allocation without specifying a node. This allows the page 3091 * allocator to do its reclaim / fallback magic. We then insert the 3092 * slab into the proper nodelist and then allocate from it. 3093 */ 3094 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3095 { 3096 struct zonelist *zonelist; 3097 struct zoneref *z; 3098 struct zone *zone; 3099 enum zone_type highest_zoneidx = gfp_zone(flags); 3100 void *obj = NULL; 3101 struct page *page; 3102 int nid; 3103 unsigned int cpuset_mems_cookie; 3104 3105 if (flags & __GFP_THISNODE) 3106 return NULL; 3107 3108 retry_cpuset: 3109 cpuset_mems_cookie = read_mems_allowed_begin(); 3110 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3111 3112 retry: 3113 /* 3114 * Look through allowed nodes for objects available 3115 * from existing per node queues. 3116 */ 3117 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 3118 nid = zone_to_nid(zone); 3119 3120 if (cpuset_zone_allowed(zone, flags) && 3121 get_node(cache, nid) && 3122 get_node(cache, nid)->free_objects) { 3123 obj = ____cache_alloc_node(cache, 3124 gfp_exact_node(flags), nid); 3125 if (obj) 3126 break; 3127 } 3128 } 3129 3130 if (!obj) { 3131 /* 3132 * This allocation will be performed within the constraints 3133 * of the current cpuset / memory policy requirements. 3134 * We may trigger various forms of reclaim on the allowed 3135 * set and go into memory reserves if necessary. 3136 */ 3137 page = cache_grow_begin(cache, flags, numa_mem_id()); 3138 cache_grow_end(cache, page); 3139 if (page) { 3140 nid = page_to_nid(page); 3141 obj = ____cache_alloc_node(cache, 3142 gfp_exact_node(flags), nid); 3143 3144 /* 3145 * Another processor may allocate the objects in 3146 * the slab since we are not holding any locks. 3147 */ 3148 if (!obj) 3149 goto retry; 3150 } 3151 } 3152 3153 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3154 goto retry_cpuset; 3155 return obj; 3156 } 3157 3158 /* 3159 * A interface to enable slab creation on nodeid 3160 */ 3161 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3162 int nodeid) 3163 { 3164 struct page *page; 3165 struct kmem_cache_node *n; 3166 void *obj = NULL; 3167 void *list = NULL; 3168 3169 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3170 n = get_node(cachep, nodeid); 3171 BUG_ON(!n); 3172 3173 check_irq_off(); 3174 spin_lock(&n->list_lock); 3175 page = get_first_slab(n, false); 3176 if (!page) 3177 goto must_grow; 3178 3179 check_spinlock_acquired_node(cachep, nodeid); 3180 3181 STATS_INC_NODEALLOCS(cachep); 3182 STATS_INC_ACTIVE(cachep); 3183 STATS_SET_HIGH(cachep); 3184 3185 BUG_ON(page->active == cachep->num); 3186 3187 obj = slab_get_obj(cachep, page); 3188 n->free_objects--; 3189 3190 fixup_slab_list(cachep, n, page, &list); 3191 3192 spin_unlock(&n->list_lock); 3193 fixup_objfreelist_debug(cachep, &list); 3194 return obj; 3195 3196 must_grow: 3197 spin_unlock(&n->list_lock); 3198 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3199 if (page) { 3200 /* This slab isn't counted yet so don't update free_objects */ 3201 obj = slab_get_obj(cachep, page); 3202 } 3203 cache_grow_end(cachep, page); 3204 3205 return obj ? obj : fallback_alloc(cachep, flags); 3206 } 3207 3208 static __always_inline void * 3209 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3210 unsigned long caller) 3211 { 3212 unsigned long save_flags; 3213 void *ptr; 3214 int slab_node = numa_mem_id(); 3215 struct obj_cgroup *objcg = NULL; 3216 3217 flags &= gfp_allowed_mask; 3218 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags); 3219 if (unlikely(!cachep)) 3220 return NULL; 3221 3222 cache_alloc_debugcheck_before(cachep, flags); 3223 local_irq_save(save_flags); 3224 3225 if (nodeid == NUMA_NO_NODE) 3226 nodeid = slab_node; 3227 3228 if (unlikely(!get_node(cachep, nodeid))) { 3229 /* Node not bootstrapped yet */ 3230 ptr = fallback_alloc(cachep, flags); 3231 goto out; 3232 } 3233 3234 if (nodeid == slab_node) { 3235 /* 3236 * Use the locally cached objects if possible. 3237 * However ____cache_alloc does not allow fallback 3238 * to other nodes. It may fail while we still have 3239 * objects on other nodes available. 3240 */ 3241 ptr = ____cache_alloc(cachep, flags); 3242 if (ptr) 3243 goto out; 3244 } 3245 /* ___cache_alloc_node can fall back to other nodes */ 3246 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3247 out: 3248 local_irq_restore(save_flags); 3249 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3250 3251 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr) 3252 memset(ptr, 0, cachep->object_size); 3253 3254 slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr); 3255 return ptr; 3256 } 3257 3258 static __always_inline void * 3259 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3260 { 3261 void *objp; 3262 3263 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3264 objp = alternate_node_alloc(cache, flags); 3265 if (objp) 3266 goto out; 3267 } 3268 objp = ____cache_alloc(cache, flags); 3269 3270 /* 3271 * We may just have run out of memory on the local node. 3272 * ____cache_alloc_node() knows how to locate memory on other nodes 3273 */ 3274 if (!objp) 3275 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3276 3277 out: 3278 return objp; 3279 } 3280 #else 3281 3282 static __always_inline void * 3283 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3284 { 3285 return ____cache_alloc(cachep, flags); 3286 } 3287 3288 #endif /* CONFIG_NUMA */ 3289 3290 static __always_inline void * 3291 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3292 { 3293 unsigned long save_flags; 3294 void *objp; 3295 struct obj_cgroup *objcg = NULL; 3296 3297 flags &= gfp_allowed_mask; 3298 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags); 3299 if (unlikely(!cachep)) 3300 return NULL; 3301 3302 cache_alloc_debugcheck_before(cachep, flags); 3303 local_irq_save(save_flags); 3304 objp = __do_cache_alloc(cachep, flags); 3305 local_irq_restore(save_flags); 3306 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3307 prefetchw(objp); 3308 3309 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp) 3310 memset(objp, 0, cachep->object_size); 3311 3312 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp); 3313 return objp; 3314 } 3315 3316 /* 3317 * Caller needs to acquire correct kmem_cache_node's list_lock 3318 * @list: List of detached free slabs should be freed by caller 3319 */ 3320 static void free_block(struct kmem_cache *cachep, void **objpp, 3321 int nr_objects, int node, struct list_head *list) 3322 { 3323 int i; 3324 struct kmem_cache_node *n = get_node(cachep, node); 3325 struct page *page; 3326 3327 n->free_objects += nr_objects; 3328 3329 for (i = 0; i < nr_objects; i++) { 3330 void *objp; 3331 struct page *page; 3332 3333 objp = objpp[i]; 3334 3335 page = virt_to_head_page(objp); 3336 list_del(&page->slab_list); 3337 check_spinlock_acquired_node(cachep, node); 3338 slab_put_obj(cachep, page, objp); 3339 STATS_DEC_ACTIVE(cachep); 3340 3341 /* fixup slab chains */ 3342 if (page->active == 0) { 3343 list_add(&page->slab_list, &n->slabs_free); 3344 n->free_slabs++; 3345 } else { 3346 /* Unconditionally move a slab to the end of the 3347 * partial list on free - maximum time for the 3348 * other objects to be freed, too. 3349 */ 3350 list_add_tail(&page->slab_list, &n->slabs_partial); 3351 } 3352 } 3353 3354 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3355 n->free_objects -= cachep->num; 3356 3357 page = list_last_entry(&n->slabs_free, struct page, slab_list); 3358 list_move(&page->slab_list, list); 3359 n->free_slabs--; 3360 n->total_slabs--; 3361 } 3362 } 3363 3364 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3365 { 3366 int batchcount; 3367 struct kmem_cache_node *n; 3368 int node = numa_mem_id(); 3369 LIST_HEAD(list); 3370 3371 batchcount = ac->batchcount; 3372 3373 check_irq_off(); 3374 n = get_node(cachep, node); 3375 spin_lock(&n->list_lock); 3376 if (n->shared) { 3377 struct array_cache *shared_array = n->shared; 3378 int max = shared_array->limit - shared_array->avail; 3379 if (max) { 3380 if (batchcount > max) 3381 batchcount = max; 3382 memcpy(&(shared_array->entry[shared_array->avail]), 3383 ac->entry, sizeof(void *) * batchcount); 3384 shared_array->avail += batchcount; 3385 goto free_done; 3386 } 3387 } 3388 3389 free_block(cachep, ac->entry, batchcount, node, &list); 3390 free_done: 3391 #if STATS 3392 { 3393 int i = 0; 3394 struct page *page; 3395 3396 list_for_each_entry(page, &n->slabs_free, slab_list) { 3397 BUG_ON(page->active); 3398 3399 i++; 3400 } 3401 STATS_SET_FREEABLE(cachep, i); 3402 } 3403 #endif 3404 spin_unlock(&n->list_lock); 3405 slabs_destroy(cachep, &list); 3406 ac->avail -= batchcount; 3407 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3408 } 3409 3410 /* 3411 * Release an obj back to its cache. If the obj has a constructed state, it must 3412 * be in this state _before_ it is released. Called with disabled ints. 3413 */ 3414 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3415 unsigned long caller) 3416 { 3417 /* Put the object into the quarantine, don't touch it for now. */ 3418 if (kasan_slab_free(cachep, objp, _RET_IP_)) 3419 return; 3420 3421 /* Use KCSAN to help debug racy use-after-free. */ 3422 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 3423 __kcsan_check_access(objp, cachep->object_size, 3424 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 3425 3426 ___cache_free(cachep, objp, caller); 3427 } 3428 3429 void ___cache_free(struct kmem_cache *cachep, void *objp, 3430 unsigned long caller) 3431 { 3432 struct array_cache *ac = cpu_cache_get(cachep); 3433 3434 check_irq_off(); 3435 if (unlikely(slab_want_init_on_free(cachep))) 3436 memset(objp, 0, cachep->object_size); 3437 kmemleak_free_recursive(objp, cachep->flags); 3438 objp = cache_free_debugcheck(cachep, objp, caller); 3439 memcg_slab_free_hook(cachep, virt_to_head_page(objp), objp); 3440 3441 /* 3442 * Skip calling cache_free_alien() when the platform is not numa. 3443 * This will avoid cache misses that happen while accessing slabp (which 3444 * is per page memory reference) to get nodeid. Instead use a global 3445 * variable to skip the call, which is mostly likely to be present in 3446 * the cache. 3447 */ 3448 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3449 return; 3450 3451 if (ac->avail < ac->limit) { 3452 STATS_INC_FREEHIT(cachep); 3453 } else { 3454 STATS_INC_FREEMISS(cachep); 3455 cache_flusharray(cachep, ac); 3456 } 3457 3458 if (sk_memalloc_socks()) { 3459 struct page *page = virt_to_head_page(objp); 3460 3461 if (unlikely(PageSlabPfmemalloc(page))) { 3462 cache_free_pfmemalloc(cachep, page, objp); 3463 return; 3464 } 3465 } 3466 3467 __free_one(ac, objp); 3468 } 3469 3470 /** 3471 * kmem_cache_alloc - Allocate an object 3472 * @cachep: The cache to allocate from. 3473 * @flags: See kmalloc(). 3474 * 3475 * Allocate an object from this cache. The flags are only relevant 3476 * if the cache has no available objects. 3477 * 3478 * Return: pointer to the new object or %NULL in case of error 3479 */ 3480 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3481 { 3482 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3483 3484 trace_kmem_cache_alloc(_RET_IP_, ret, 3485 cachep->object_size, cachep->size, flags); 3486 3487 return ret; 3488 } 3489 EXPORT_SYMBOL(kmem_cache_alloc); 3490 3491 static __always_inline void 3492 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3493 size_t size, void **p, unsigned long caller) 3494 { 3495 size_t i; 3496 3497 for (i = 0; i < size; i++) 3498 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3499 } 3500 3501 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3502 void **p) 3503 { 3504 size_t i; 3505 struct obj_cgroup *objcg = NULL; 3506 3507 s = slab_pre_alloc_hook(s, &objcg, size, flags); 3508 if (!s) 3509 return 0; 3510 3511 cache_alloc_debugcheck_before(s, flags); 3512 3513 local_irq_disable(); 3514 for (i = 0; i < size; i++) { 3515 void *objp = __do_cache_alloc(s, flags); 3516 3517 if (unlikely(!objp)) 3518 goto error; 3519 p[i] = objp; 3520 } 3521 local_irq_enable(); 3522 3523 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3524 3525 /* Clear memory outside IRQ disabled section */ 3526 if (unlikely(slab_want_init_on_alloc(flags, s))) 3527 for (i = 0; i < size; i++) 3528 memset(p[i], 0, s->object_size); 3529 3530 slab_post_alloc_hook(s, objcg, flags, size, p); 3531 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3532 return size; 3533 error: 3534 local_irq_enable(); 3535 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3536 slab_post_alloc_hook(s, objcg, flags, i, p); 3537 __kmem_cache_free_bulk(s, i, p); 3538 return 0; 3539 } 3540 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3541 3542 #ifdef CONFIG_TRACING 3543 void * 3544 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3545 { 3546 void *ret; 3547 3548 ret = slab_alloc(cachep, flags, _RET_IP_); 3549 3550 ret = kasan_kmalloc(cachep, ret, size, flags); 3551 trace_kmalloc(_RET_IP_, ret, 3552 size, cachep->size, flags); 3553 return ret; 3554 } 3555 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3556 #endif 3557 3558 #ifdef CONFIG_NUMA 3559 /** 3560 * kmem_cache_alloc_node - Allocate an object on the specified node 3561 * @cachep: The cache to allocate from. 3562 * @flags: See kmalloc(). 3563 * @nodeid: node number of the target node. 3564 * 3565 * Identical to kmem_cache_alloc but it will allocate memory on the given 3566 * node, which can improve the performance for cpu bound structures. 3567 * 3568 * Fallback to other node is possible if __GFP_THISNODE is not set. 3569 * 3570 * Return: pointer to the new object or %NULL in case of error 3571 */ 3572 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3573 { 3574 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3575 3576 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3577 cachep->object_size, cachep->size, 3578 flags, nodeid); 3579 3580 return ret; 3581 } 3582 EXPORT_SYMBOL(kmem_cache_alloc_node); 3583 3584 #ifdef CONFIG_TRACING 3585 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3586 gfp_t flags, 3587 int nodeid, 3588 size_t size) 3589 { 3590 void *ret; 3591 3592 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3593 3594 ret = kasan_kmalloc(cachep, ret, size, flags); 3595 trace_kmalloc_node(_RET_IP_, ret, 3596 size, cachep->size, 3597 flags, nodeid); 3598 return ret; 3599 } 3600 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3601 #endif 3602 3603 static __always_inline void * 3604 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3605 { 3606 struct kmem_cache *cachep; 3607 void *ret; 3608 3609 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3610 return NULL; 3611 cachep = kmalloc_slab(size, flags); 3612 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3613 return cachep; 3614 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3615 ret = kasan_kmalloc(cachep, ret, size, flags); 3616 3617 return ret; 3618 } 3619 3620 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3621 { 3622 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3623 } 3624 EXPORT_SYMBOL(__kmalloc_node); 3625 3626 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3627 int node, unsigned long caller) 3628 { 3629 return __do_kmalloc_node(size, flags, node, caller); 3630 } 3631 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3632 #endif /* CONFIG_NUMA */ 3633 3634 /** 3635 * __do_kmalloc - allocate memory 3636 * @size: how many bytes of memory are required. 3637 * @flags: the type of memory to allocate (see kmalloc). 3638 * @caller: function caller for debug tracking of the caller 3639 * 3640 * Return: pointer to the allocated memory or %NULL in case of error 3641 */ 3642 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3643 unsigned long caller) 3644 { 3645 struct kmem_cache *cachep; 3646 void *ret; 3647 3648 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3649 return NULL; 3650 cachep = kmalloc_slab(size, flags); 3651 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3652 return cachep; 3653 ret = slab_alloc(cachep, flags, caller); 3654 3655 ret = kasan_kmalloc(cachep, ret, size, flags); 3656 trace_kmalloc(caller, ret, 3657 size, cachep->size, flags); 3658 3659 return ret; 3660 } 3661 3662 void *__kmalloc(size_t size, gfp_t flags) 3663 { 3664 return __do_kmalloc(size, flags, _RET_IP_); 3665 } 3666 EXPORT_SYMBOL(__kmalloc); 3667 3668 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3669 { 3670 return __do_kmalloc(size, flags, caller); 3671 } 3672 EXPORT_SYMBOL(__kmalloc_track_caller); 3673 3674 /** 3675 * kmem_cache_free - Deallocate an object 3676 * @cachep: The cache the allocation was from. 3677 * @objp: The previously allocated object. 3678 * 3679 * Free an object which was previously allocated from this 3680 * cache. 3681 */ 3682 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3683 { 3684 unsigned long flags; 3685 cachep = cache_from_obj(cachep, objp); 3686 if (!cachep) 3687 return; 3688 3689 local_irq_save(flags); 3690 debug_check_no_locks_freed(objp, cachep->object_size); 3691 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3692 debug_check_no_obj_freed(objp, cachep->object_size); 3693 __cache_free(cachep, objp, _RET_IP_); 3694 local_irq_restore(flags); 3695 3696 trace_kmem_cache_free(_RET_IP_, objp); 3697 } 3698 EXPORT_SYMBOL(kmem_cache_free); 3699 3700 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3701 { 3702 struct kmem_cache *s; 3703 size_t i; 3704 3705 local_irq_disable(); 3706 for (i = 0; i < size; i++) { 3707 void *objp = p[i]; 3708 3709 if (!orig_s) /* called via kfree_bulk */ 3710 s = virt_to_cache(objp); 3711 else 3712 s = cache_from_obj(orig_s, objp); 3713 if (!s) 3714 continue; 3715 3716 debug_check_no_locks_freed(objp, s->object_size); 3717 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3718 debug_check_no_obj_freed(objp, s->object_size); 3719 3720 __cache_free(s, objp, _RET_IP_); 3721 } 3722 local_irq_enable(); 3723 3724 /* FIXME: add tracing */ 3725 } 3726 EXPORT_SYMBOL(kmem_cache_free_bulk); 3727 3728 /** 3729 * kfree - free previously allocated memory 3730 * @objp: pointer returned by kmalloc. 3731 * 3732 * If @objp is NULL, no operation is performed. 3733 * 3734 * Don't free memory not originally allocated by kmalloc() 3735 * or you will run into trouble. 3736 */ 3737 void kfree(const void *objp) 3738 { 3739 struct kmem_cache *c; 3740 unsigned long flags; 3741 3742 trace_kfree(_RET_IP_, objp); 3743 3744 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3745 return; 3746 local_irq_save(flags); 3747 kfree_debugcheck(objp); 3748 c = virt_to_cache(objp); 3749 if (!c) { 3750 local_irq_restore(flags); 3751 return; 3752 } 3753 debug_check_no_locks_freed(objp, c->object_size); 3754 3755 debug_check_no_obj_freed(objp, c->object_size); 3756 __cache_free(c, (void *)objp, _RET_IP_); 3757 local_irq_restore(flags); 3758 } 3759 EXPORT_SYMBOL(kfree); 3760 3761 /* 3762 * This initializes kmem_cache_node or resizes various caches for all nodes. 3763 */ 3764 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3765 { 3766 int ret; 3767 int node; 3768 struct kmem_cache_node *n; 3769 3770 for_each_online_node(node) { 3771 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3772 if (ret) 3773 goto fail; 3774 3775 } 3776 3777 return 0; 3778 3779 fail: 3780 if (!cachep->list.next) { 3781 /* Cache is not active yet. Roll back what we did */ 3782 node--; 3783 while (node >= 0) { 3784 n = get_node(cachep, node); 3785 if (n) { 3786 kfree(n->shared); 3787 free_alien_cache(n->alien); 3788 kfree(n); 3789 cachep->node[node] = NULL; 3790 } 3791 node--; 3792 } 3793 } 3794 return -ENOMEM; 3795 } 3796 3797 /* Always called with the slab_mutex held */ 3798 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3799 int batchcount, int shared, gfp_t gfp) 3800 { 3801 struct array_cache __percpu *cpu_cache, *prev; 3802 int cpu; 3803 3804 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3805 if (!cpu_cache) 3806 return -ENOMEM; 3807 3808 prev = cachep->cpu_cache; 3809 cachep->cpu_cache = cpu_cache; 3810 /* 3811 * Without a previous cpu_cache there's no need to synchronize remote 3812 * cpus, so skip the IPIs. 3813 */ 3814 if (prev) 3815 kick_all_cpus_sync(); 3816 3817 check_irq_on(); 3818 cachep->batchcount = batchcount; 3819 cachep->limit = limit; 3820 cachep->shared = shared; 3821 3822 if (!prev) 3823 goto setup_node; 3824 3825 for_each_online_cpu(cpu) { 3826 LIST_HEAD(list); 3827 int node; 3828 struct kmem_cache_node *n; 3829 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3830 3831 node = cpu_to_mem(cpu); 3832 n = get_node(cachep, node); 3833 spin_lock_irq(&n->list_lock); 3834 free_block(cachep, ac->entry, ac->avail, node, &list); 3835 spin_unlock_irq(&n->list_lock); 3836 slabs_destroy(cachep, &list); 3837 } 3838 free_percpu(prev); 3839 3840 setup_node: 3841 return setup_kmem_cache_nodes(cachep, gfp); 3842 } 3843 3844 /* Called with slab_mutex held always */ 3845 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3846 { 3847 int err; 3848 int limit = 0; 3849 int shared = 0; 3850 int batchcount = 0; 3851 3852 err = cache_random_seq_create(cachep, cachep->num, gfp); 3853 if (err) 3854 goto end; 3855 3856 if (limit && shared && batchcount) 3857 goto skip_setup; 3858 /* 3859 * The head array serves three purposes: 3860 * - create a LIFO ordering, i.e. return objects that are cache-warm 3861 * - reduce the number of spinlock operations. 3862 * - reduce the number of linked list operations on the slab and 3863 * bufctl chains: array operations are cheaper. 3864 * The numbers are guessed, we should auto-tune as described by 3865 * Bonwick. 3866 */ 3867 if (cachep->size > 131072) 3868 limit = 1; 3869 else if (cachep->size > PAGE_SIZE) 3870 limit = 8; 3871 else if (cachep->size > 1024) 3872 limit = 24; 3873 else if (cachep->size > 256) 3874 limit = 54; 3875 else 3876 limit = 120; 3877 3878 /* 3879 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3880 * allocation behaviour: Most allocs on one cpu, most free operations 3881 * on another cpu. For these cases, an efficient object passing between 3882 * cpus is necessary. This is provided by a shared array. The array 3883 * replaces Bonwick's magazine layer. 3884 * On uniprocessor, it's functionally equivalent (but less efficient) 3885 * to a larger limit. Thus disabled by default. 3886 */ 3887 shared = 0; 3888 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3889 shared = 8; 3890 3891 #if DEBUG 3892 /* 3893 * With debugging enabled, large batchcount lead to excessively long 3894 * periods with disabled local interrupts. Limit the batchcount 3895 */ 3896 if (limit > 32) 3897 limit = 32; 3898 #endif 3899 batchcount = (limit + 1) / 2; 3900 skip_setup: 3901 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3902 end: 3903 if (err) 3904 pr_err("enable_cpucache failed for %s, error %d\n", 3905 cachep->name, -err); 3906 return err; 3907 } 3908 3909 /* 3910 * Drain an array if it contains any elements taking the node lock only if 3911 * necessary. Note that the node listlock also protects the array_cache 3912 * if drain_array() is used on the shared array. 3913 */ 3914 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3915 struct array_cache *ac, int node) 3916 { 3917 LIST_HEAD(list); 3918 3919 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3920 check_mutex_acquired(); 3921 3922 if (!ac || !ac->avail) 3923 return; 3924 3925 if (ac->touched) { 3926 ac->touched = 0; 3927 return; 3928 } 3929 3930 spin_lock_irq(&n->list_lock); 3931 drain_array_locked(cachep, ac, node, false, &list); 3932 spin_unlock_irq(&n->list_lock); 3933 3934 slabs_destroy(cachep, &list); 3935 } 3936 3937 /** 3938 * cache_reap - Reclaim memory from caches. 3939 * @w: work descriptor 3940 * 3941 * Called from workqueue/eventd every few seconds. 3942 * Purpose: 3943 * - clear the per-cpu caches for this CPU. 3944 * - return freeable pages to the main free memory pool. 3945 * 3946 * If we cannot acquire the cache chain mutex then just give up - we'll try 3947 * again on the next iteration. 3948 */ 3949 static void cache_reap(struct work_struct *w) 3950 { 3951 struct kmem_cache *searchp; 3952 struct kmem_cache_node *n; 3953 int node = numa_mem_id(); 3954 struct delayed_work *work = to_delayed_work(w); 3955 3956 if (!mutex_trylock(&slab_mutex)) 3957 /* Give up. Setup the next iteration. */ 3958 goto out; 3959 3960 list_for_each_entry(searchp, &slab_caches, list) { 3961 check_irq_on(); 3962 3963 /* 3964 * We only take the node lock if absolutely necessary and we 3965 * have established with reasonable certainty that 3966 * we can do some work if the lock was obtained. 3967 */ 3968 n = get_node(searchp, node); 3969 3970 reap_alien(searchp, n); 3971 3972 drain_array(searchp, n, cpu_cache_get(searchp), node); 3973 3974 /* 3975 * These are racy checks but it does not matter 3976 * if we skip one check or scan twice. 3977 */ 3978 if (time_after(n->next_reap, jiffies)) 3979 goto next; 3980 3981 n->next_reap = jiffies + REAPTIMEOUT_NODE; 3982 3983 drain_array(searchp, n, n->shared, node); 3984 3985 if (n->free_touched) 3986 n->free_touched = 0; 3987 else { 3988 int freed; 3989 3990 freed = drain_freelist(searchp, n, (n->free_limit + 3991 5 * searchp->num - 1) / (5 * searchp->num)); 3992 STATS_ADD_REAPED(searchp, freed); 3993 } 3994 next: 3995 cond_resched(); 3996 } 3997 check_irq_on(); 3998 mutex_unlock(&slab_mutex); 3999 next_reap_node(); 4000 out: 4001 /* Set up the next iteration */ 4002 schedule_delayed_work_on(smp_processor_id(), work, 4003 round_jiffies_relative(REAPTIMEOUT_AC)); 4004 } 4005 4006 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4007 { 4008 unsigned long active_objs, num_objs, active_slabs; 4009 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4010 unsigned long free_slabs = 0; 4011 int node; 4012 struct kmem_cache_node *n; 4013 4014 for_each_kmem_cache_node(cachep, node, n) { 4015 check_irq_on(); 4016 spin_lock_irq(&n->list_lock); 4017 4018 total_slabs += n->total_slabs; 4019 free_slabs += n->free_slabs; 4020 free_objs += n->free_objects; 4021 4022 if (n->shared) 4023 shared_avail += n->shared->avail; 4024 4025 spin_unlock_irq(&n->list_lock); 4026 } 4027 num_objs = total_slabs * cachep->num; 4028 active_slabs = total_slabs - free_slabs; 4029 active_objs = num_objs - free_objs; 4030 4031 sinfo->active_objs = active_objs; 4032 sinfo->num_objs = num_objs; 4033 sinfo->active_slabs = active_slabs; 4034 sinfo->num_slabs = total_slabs; 4035 sinfo->shared_avail = shared_avail; 4036 sinfo->limit = cachep->limit; 4037 sinfo->batchcount = cachep->batchcount; 4038 sinfo->shared = cachep->shared; 4039 sinfo->objects_per_slab = cachep->num; 4040 sinfo->cache_order = cachep->gfporder; 4041 } 4042 4043 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4044 { 4045 #if STATS 4046 { /* node stats */ 4047 unsigned long high = cachep->high_mark; 4048 unsigned long allocs = cachep->num_allocations; 4049 unsigned long grown = cachep->grown; 4050 unsigned long reaped = cachep->reaped; 4051 unsigned long errors = cachep->errors; 4052 unsigned long max_freeable = cachep->max_freeable; 4053 unsigned long node_allocs = cachep->node_allocs; 4054 unsigned long node_frees = cachep->node_frees; 4055 unsigned long overflows = cachep->node_overflow; 4056 4057 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4058 allocs, high, grown, 4059 reaped, errors, max_freeable, node_allocs, 4060 node_frees, overflows); 4061 } 4062 /* cpu stats */ 4063 { 4064 unsigned long allochit = atomic_read(&cachep->allochit); 4065 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4066 unsigned long freehit = atomic_read(&cachep->freehit); 4067 unsigned long freemiss = atomic_read(&cachep->freemiss); 4068 4069 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4070 allochit, allocmiss, freehit, freemiss); 4071 } 4072 #endif 4073 } 4074 4075 #define MAX_SLABINFO_WRITE 128 4076 /** 4077 * slabinfo_write - Tuning for the slab allocator 4078 * @file: unused 4079 * @buffer: user buffer 4080 * @count: data length 4081 * @ppos: unused 4082 * 4083 * Return: %0 on success, negative error code otherwise. 4084 */ 4085 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4086 size_t count, loff_t *ppos) 4087 { 4088 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4089 int limit, batchcount, shared, res; 4090 struct kmem_cache *cachep; 4091 4092 if (count > MAX_SLABINFO_WRITE) 4093 return -EINVAL; 4094 if (copy_from_user(&kbuf, buffer, count)) 4095 return -EFAULT; 4096 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4097 4098 tmp = strchr(kbuf, ' '); 4099 if (!tmp) 4100 return -EINVAL; 4101 *tmp = '\0'; 4102 tmp++; 4103 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4104 return -EINVAL; 4105 4106 /* Find the cache in the chain of caches. */ 4107 mutex_lock(&slab_mutex); 4108 res = -EINVAL; 4109 list_for_each_entry(cachep, &slab_caches, list) { 4110 if (!strcmp(cachep->name, kbuf)) { 4111 if (limit < 1 || batchcount < 1 || 4112 batchcount > limit || shared < 0) { 4113 res = 0; 4114 } else { 4115 res = do_tune_cpucache(cachep, limit, 4116 batchcount, shared, 4117 GFP_KERNEL); 4118 } 4119 break; 4120 } 4121 } 4122 mutex_unlock(&slab_mutex); 4123 if (res >= 0) 4124 res = count; 4125 return res; 4126 } 4127 4128 #ifdef CONFIG_HARDENED_USERCOPY 4129 /* 4130 * Rejects incorrectly sized objects and objects that are to be copied 4131 * to/from userspace but do not fall entirely within the containing slab 4132 * cache's usercopy region. 4133 * 4134 * Returns NULL if check passes, otherwise const char * to name of cache 4135 * to indicate an error. 4136 */ 4137 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4138 bool to_user) 4139 { 4140 struct kmem_cache *cachep; 4141 unsigned int objnr; 4142 unsigned long offset; 4143 4144 ptr = kasan_reset_tag(ptr); 4145 4146 /* Find and validate object. */ 4147 cachep = page->slab_cache; 4148 objnr = obj_to_index(cachep, page, (void *)ptr); 4149 BUG_ON(objnr >= cachep->num); 4150 4151 /* Find offset within object. */ 4152 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4153 4154 /* Allow address range falling entirely within usercopy region. */ 4155 if (offset >= cachep->useroffset && 4156 offset - cachep->useroffset <= cachep->usersize && 4157 n <= cachep->useroffset - offset + cachep->usersize) 4158 return; 4159 4160 /* 4161 * If the copy is still within the allocated object, produce 4162 * a warning instead of rejecting the copy. This is intended 4163 * to be a temporary method to find any missing usercopy 4164 * whitelists. 4165 */ 4166 if (usercopy_fallback && 4167 offset <= cachep->object_size && 4168 n <= cachep->object_size - offset) { 4169 usercopy_warn("SLAB object", cachep->name, to_user, offset, n); 4170 return; 4171 } 4172 4173 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4174 } 4175 #endif /* CONFIG_HARDENED_USERCOPY */ 4176 4177 /** 4178 * __ksize -- Uninstrumented ksize. 4179 * @objp: pointer to the object 4180 * 4181 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same 4182 * safety checks as ksize() with KASAN instrumentation enabled. 4183 * 4184 * Return: size of the actual memory used by @objp in bytes 4185 */ 4186 size_t __ksize(const void *objp) 4187 { 4188 struct kmem_cache *c; 4189 size_t size; 4190 4191 BUG_ON(!objp); 4192 if (unlikely(objp == ZERO_SIZE_PTR)) 4193 return 0; 4194 4195 c = virt_to_cache(objp); 4196 size = c ? c->object_size : 0; 4197 4198 return size; 4199 } 4200 EXPORT_SYMBOL(__ksize); 4201