1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'slab_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 120 #include <net/sock.h> 121 122 #include <asm/cacheflush.h> 123 #include <asm/tlbflush.h> 124 #include <asm/page.h> 125 126 #include <trace/events/kmem.h> 127 128 #include "internal.h" 129 130 #include "slab.h" 131 132 /* 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 134 * 0 for faster, smaller code (especially in the critical paths). 135 * 136 * STATS - 1 to collect stats for /proc/slabinfo. 137 * 0 for faster, smaller code (especially in the critical paths). 138 * 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 140 */ 141 142 #ifdef CONFIG_DEBUG_SLAB 143 #define DEBUG 1 144 #define STATS 1 145 #define FORCED_DEBUG 1 146 #else 147 #define DEBUG 0 148 #define STATS 0 149 #define FORCED_DEBUG 0 150 #endif 151 152 /* Shouldn't this be in a header file somewhere? */ 153 #define BYTES_PER_WORD sizeof(void *) 154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 155 156 #ifndef ARCH_KMALLOC_FLAGS 157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 158 #endif 159 160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 162 163 #if FREELIST_BYTE_INDEX 164 typedef unsigned char freelist_idx_t; 165 #else 166 typedef unsigned short freelist_idx_t; 167 #endif 168 169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 170 171 /* 172 * struct array_cache 173 * 174 * Purpose: 175 * - LIFO ordering, to hand out cache-warm objects from _alloc 176 * - reduce the number of linked list operations 177 * - reduce spinlock operations 178 * 179 * The limit is stored in the per-cpu structure to reduce the data cache 180 * footprint. 181 * 182 */ 183 struct array_cache { 184 unsigned int avail; 185 unsigned int limit; 186 unsigned int batchcount; 187 unsigned int touched; 188 void *entry[]; /* 189 * Must have this definition in here for the proper 190 * alignment of array_cache. Also simplifies accessing 191 * the entries. 192 */ 193 }; 194 195 struct alien_cache { 196 spinlock_t lock; 197 struct array_cache ac; 198 }; 199 200 /* 201 * Need this for bootstrapping a per node allocator. 202 */ 203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 205 #define CACHE_CACHE 0 206 #define SIZE_NODE (MAX_NUMNODES) 207 208 static int drain_freelist(struct kmem_cache *cache, 209 struct kmem_cache_node *n, int tofree); 210 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 211 int node, struct list_head *list); 212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 214 static void cache_reap(struct work_struct *unused); 215 216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 217 void **list); 218 static inline void fixup_slab_list(struct kmem_cache *cachep, 219 struct kmem_cache_node *n, struct page *page, 220 void **list); 221 static int slab_early_init = 1; 222 223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 224 225 static void kmem_cache_node_init(struct kmem_cache_node *parent) 226 { 227 INIT_LIST_HEAD(&parent->slabs_full); 228 INIT_LIST_HEAD(&parent->slabs_partial); 229 INIT_LIST_HEAD(&parent->slabs_free); 230 parent->total_slabs = 0; 231 parent->free_slabs = 0; 232 parent->shared = NULL; 233 parent->alien = NULL; 234 parent->colour_next = 0; 235 spin_lock_init(&parent->list_lock); 236 parent->free_objects = 0; 237 parent->free_touched = 0; 238 } 239 240 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 241 do { \ 242 INIT_LIST_HEAD(listp); \ 243 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 244 } while (0) 245 246 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 247 do { \ 248 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 251 } while (0) 252 253 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL) 254 #define CFLGS_OFF_SLAB (0x80000000UL) 255 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 256 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 257 258 #define BATCHREFILL_LIMIT 16 259 /* 260 * Optimization question: fewer reaps means less probability for unnessary 261 * cpucache drain/refill cycles. 262 * 263 * OTOH the cpuarrays can contain lots of objects, 264 * which could lock up otherwise freeable slabs. 265 */ 266 #define REAPTIMEOUT_AC (2*HZ) 267 #define REAPTIMEOUT_NODE (4*HZ) 268 269 #if STATS 270 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 271 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 272 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 273 #define STATS_INC_GROWN(x) ((x)->grown++) 274 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 275 #define STATS_SET_HIGH(x) \ 276 do { \ 277 if ((x)->num_active > (x)->high_mark) \ 278 (x)->high_mark = (x)->num_active; \ 279 } while (0) 280 #define STATS_INC_ERR(x) ((x)->errors++) 281 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 282 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 283 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 284 #define STATS_SET_FREEABLE(x, i) \ 285 do { \ 286 if ((x)->max_freeable < i) \ 287 (x)->max_freeable = i; \ 288 } while (0) 289 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 290 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 291 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 292 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 293 #else 294 #define STATS_INC_ACTIVE(x) do { } while (0) 295 #define STATS_DEC_ACTIVE(x) do { } while (0) 296 #define STATS_INC_ALLOCED(x) do { } while (0) 297 #define STATS_INC_GROWN(x) do { } while (0) 298 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 299 #define STATS_SET_HIGH(x) do { } while (0) 300 #define STATS_INC_ERR(x) do { } while (0) 301 #define STATS_INC_NODEALLOCS(x) do { } while (0) 302 #define STATS_INC_NODEFREES(x) do { } while (0) 303 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 304 #define STATS_SET_FREEABLE(x, i) do { } while (0) 305 #define STATS_INC_ALLOCHIT(x) do { } while (0) 306 #define STATS_INC_ALLOCMISS(x) do { } while (0) 307 #define STATS_INC_FREEHIT(x) do { } while (0) 308 #define STATS_INC_FREEMISS(x) do { } while (0) 309 #endif 310 311 #if DEBUG 312 313 /* 314 * memory layout of objects: 315 * 0 : objp 316 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 317 * the end of an object is aligned with the end of the real 318 * allocation. Catches writes behind the end of the allocation. 319 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 320 * redzone word. 321 * cachep->obj_offset: The real object. 322 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 323 * cachep->size - 1* BYTES_PER_WORD: last caller address 324 * [BYTES_PER_WORD long] 325 */ 326 static int obj_offset(struct kmem_cache *cachep) 327 { 328 return cachep->obj_offset; 329 } 330 331 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 332 { 333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 334 return (unsigned long long*) (objp + obj_offset(cachep) - 335 sizeof(unsigned long long)); 336 } 337 338 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 339 { 340 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 341 if (cachep->flags & SLAB_STORE_USER) 342 return (unsigned long long *)(objp + cachep->size - 343 sizeof(unsigned long long) - 344 REDZONE_ALIGN); 345 return (unsigned long long *) (objp + cachep->size - 346 sizeof(unsigned long long)); 347 } 348 349 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 350 { 351 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 352 return (void **)(objp + cachep->size - BYTES_PER_WORD); 353 } 354 355 #else 356 357 #define obj_offset(x) 0 358 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 359 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 361 362 #endif 363 364 #ifdef CONFIG_DEBUG_SLAB_LEAK 365 366 static inline bool is_store_user_clean(struct kmem_cache *cachep) 367 { 368 return atomic_read(&cachep->store_user_clean) == 1; 369 } 370 371 static inline void set_store_user_clean(struct kmem_cache *cachep) 372 { 373 atomic_set(&cachep->store_user_clean, 1); 374 } 375 376 static inline void set_store_user_dirty(struct kmem_cache *cachep) 377 { 378 if (is_store_user_clean(cachep)) 379 atomic_set(&cachep->store_user_clean, 0); 380 } 381 382 #else 383 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 384 385 #endif 386 387 /* 388 * Do not go above this order unless 0 objects fit into the slab or 389 * overridden on the command line. 390 */ 391 #define SLAB_MAX_ORDER_HI 1 392 #define SLAB_MAX_ORDER_LO 0 393 static int slab_max_order = SLAB_MAX_ORDER_LO; 394 static bool slab_max_order_set __initdata; 395 396 static inline struct kmem_cache *virt_to_cache(const void *obj) 397 { 398 struct page *page = virt_to_head_page(obj); 399 return page->slab_cache; 400 } 401 402 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 403 unsigned int idx) 404 { 405 return page->s_mem + cache->size * idx; 406 } 407 408 /* 409 * We want to avoid an expensive divide : (offset / cache->size) 410 * Using the fact that size is a constant for a particular cache, 411 * we can replace (offset / cache->size) by 412 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 413 */ 414 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 415 const struct page *page, void *obj) 416 { 417 u32 offset = (obj - page->s_mem); 418 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 419 } 420 421 #define BOOT_CPUCACHE_ENTRIES 1 422 /* internal cache of cache description objs */ 423 static struct kmem_cache kmem_cache_boot = { 424 .batchcount = 1, 425 .limit = BOOT_CPUCACHE_ENTRIES, 426 .shared = 1, 427 .size = sizeof(struct kmem_cache), 428 .name = "kmem_cache", 429 }; 430 431 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 432 433 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 434 { 435 return this_cpu_ptr(cachep->cpu_cache); 436 } 437 438 /* 439 * Calculate the number of objects and left-over bytes for a given buffer size. 440 */ 441 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 442 unsigned long flags, size_t *left_over) 443 { 444 unsigned int num; 445 size_t slab_size = PAGE_SIZE << gfporder; 446 447 /* 448 * The slab management structure can be either off the slab or 449 * on it. For the latter case, the memory allocated for a 450 * slab is used for: 451 * 452 * - @buffer_size bytes for each object 453 * - One freelist_idx_t for each object 454 * 455 * We don't need to consider alignment of freelist because 456 * freelist will be at the end of slab page. The objects will be 457 * at the correct alignment. 458 * 459 * If the slab management structure is off the slab, then the 460 * alignment will already be calculated into the size. Because 461 * the slabs are all pages aligned, the objects will be at the 462 * correct alignment when allocated. 463 */ 464 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 465 num = slab_size / buffer_size; 466 *left_over = slab_size % buffer_size; 467 } else { 468 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 469 *left_over = slab_size % 470 (buffer_size + sizeof(freelist_idx_t)); 471 } 472 473 return num; 474 } 475 476 #if DEBUG 477 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 478 479 static void __slab_error(const char *function, struct kmem_cache *cachep, 480 char *msg) 481 { 482 pr_err("slab error in %s(): cache `%s': %s\n", 483 function, cachep->name, msg); 484 dump_stack(); 485 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 486 } 487 #endif 488 489 /* 490 * By default on NUMA we use alien caches to stage the freeing of 491 * objects allocated from other nodes. This causes massive memory 492 * inefficiencies when using fake NUMA setup to split memory into a 493 * large number of small nodes, so it can be disabled on the command 494 * line 495 */ 496 497 static int use_alien_caches __read_mostly = 1; 498 static int __init noaliencache_setup(char *s) 499 { 500 use_alien_caches = 0; 501 return 1; 502 } 503 __setup("noaliencache", noaliencache_setup); 504 505 static int __init slab_max_order_setup(char *str) 506 { 507 get_option(&str, &slab_max_order); 508 slab_max_order = slab_max_order < 0 ? 0 : 509 min(slab_max_order, MAX_ORDER - 1); 510 slab_max_order_set = true; 511 512 return 1; 513 } 514 __setup("slab_max_order=", slab_max_order_setup); 515 516 #ifdef CONFIG_NUMA 517 /* 518 * Special reaping functions for NUMA systems called from cache_reap(). 519 * These take care of doing round robin flushing of alien caches (containing 520 * objects freed on different nodes from which they were allocated) and the 521 * flushing of remote pcps by calling drain_node_pages. 522 */ 523 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 524 525 static void init_reap_node(int cpu) 526 { 527 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 528 node_online_map); 529 } 530 531 static void next_reap_node(void) 532 { 533 int node = __this_cpu_read(slab_reap_node); 534 535 node = next_node_in(node, node_online_map); 536 __this_cpu_write(slab_reap_node, node); 537 } 538 539 #else 540 #define init_reap_node(cpu) do { } while (0) 541 #define next_reap_node(void) do { } while (0) 542 #endif 543 544 /* 545 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 546 * via the workqueue/eventd. 547 * Add the CPU number into the expiration time to minimize the possibility of 548 * the CPUs getting into lockstep and contending for the global cache chain 549 * lock. 550 */ 551 static void start_cpu_timer(int cpu) 552 { 553 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 554 555 if (reap_work->work.func == NULL) { 556 init_reap_node(cpu); 557 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 558 schedule_delayed_work_on(cpu, reap_work, 559 __round_jiffies_relative(HZ, cpu)); 560 } 561 } 562 563 static void init_arraycache(struct array_cache *ac, int limit, int batch) 564 { 565 /* 566 * The array_cache structures contain pointers to free object. 567 * However, when such objects are allocated or transferred to another 568 * cache the pointers are not cleared and they could be counted as 569 * valid references during a kmemleak scan. Therefore, kmemleak must 570 * not scan such objects. 571 */ 572 kmemleak_no_scan(ac); 573 if (ac) { 574 ac->avail = 0; 575 ac->limit = limit; 576 ac->batchcount = batch; 577 ac->touched = 0; 578 } 579 } 580 581 static struct array_cache *alloc_arraycache(int node, int entries, 582 int batchcount, gfp_t gfp) 583 { 584 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 585 struct array_cache *ac = NULL; 586 587 ac = kmalloc_node(memsize, gfp, node); 588 init_arraycache(ac, entries, batchcount); 589 return ac; 590 } 591 592 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 593 struct page *page, void *objp) 594 { 595 struct kmem_cache_node *n; 596 int page_node; 597 LIST_HEAD(list); 598 599 page_node = page_to_nid(page); 600 n = get_node(cachep, page_node); 601 602 spin_lock(&n->list_lock); 603 free_block(cachep, &objp, 1, page_node, &list); 604 spin_unlock(&n->list_lock); 605 606 slabs_destroy(cachep, &list); 607 } 608 609 /* 610 * Transfer objects in one arraycache to another. 611 * Locking must be handled by the caller. 612 * 613 * Return the number of entries transferred. 614 */ 615 static int transfer_objects(struct array_cache *to, 616 struct array_cache *from, unsigned int max) 617 { 618 /* Figure out how many entries to transfer */ 619 int nr = min3(from->avail, max, to->limit - to->avail); 620 621 if (!nr) 622 return 0; 623 624 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 625 sizeof(void *) *nr); 626 627 from->avail -= nr; 628 to->avail += nr; 629 return nr; 630 } 631 632 #ifndef CONFIG_NUMA 633 634 #define drain_alien_cache(cachep, alien) do { } while (0) 635 #define reap_alien(cachep, n) do { } while (0) 636 637 static inline struct alien_cache **alloc_alien_cache(int node, 638 int limit, gfp_t gfp) 639 { 640 return NULL; 641 } 642 643 static inline void free_alien_cache(struct alien_cache **ac_ptr) 644 { 645 } 646 647 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 648 { 649 return 0; 650 } 651 652 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 653 gfp_t flags) 654 { 655 return NULL; 656 } 657 658 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 659 gfp_t flags, int nodeid) 660 { 661 return NULL; 662 } 663 664 static inline gfp_t gfp_exact_node(gfp_t flags) 665 { 666 return flags & ~__GFP_NOFAIL; 667 } 668 669 #else /* CONFIG_NUMA */ 670 671 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 672 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 673 674 static struct alien_cache *__alloc_alien_cache(int node, int entries, 675 int batch, gfp_t gfp) 676 { 677 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 678 struct alien_cache *alc = NULL; 679 680 alc = kmalloc_node(memsize, gfp, node); 681 init_arraycache(&alc->ac, entries, batch); 682 spin_lock_init(&alc->lock); 683 return alc; 684 } 685 686 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 687 { 688 struct alien_cache **alc_ptr; 689 size_t memsize = sizeof(void *) * nr_node_ids; 690 int i; 691 692 if (limit > 1) 693 limit = 12; 694 alc_ptr = kzalloc_node(memsize, gfp, node); 695 if (!alc_ptr) 696 return NULL; 697 698 for_each_node(i) { 699 if (i == node || !node_online(i)) 700 continue; 701 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 702 if (!alc_ptr[i]) { 703 for (i--; i >= 0; i--) 704 kfree(alc_ptr[i]); 705 kfree(alc_ptr); 706 return NULL; 707 } 708 } 709 return alc_ptr; 710 } 711 712 static void free_alien_cache(struct alien_cache **alc_ptr) 713 { 714 int i; 715 716 if (!alc_ptr) 717 return; 718 for_each_node(i) 719 kfree(alc_ptr[i]); 720 kfree(alc_ptr); 721 } 722 723 static void __drain_alien_cache(struct kmem_cache *cachep, 724 struct array_cache *ac, int node, 725 struct list_head *list) 726 { 727 struct kmem_cache_node *n = get_node(cachep, node); 728 729 if (ac->avail) { 730 spin_lock(&n->list_lock); 731 /* 732 * Stuff objects into the remote nodes shared array first. 733 * That way we could avoid the overhead of putting the objects 734 * into the free lists and getting them back later. 735 */ 736 if (n->shared) 737 transfer_objects(n->shared, ac, ac->limit); 738 739 free_block(cachep, ac->entry, ac->avail, node, list); 740 ac->avail = 0; 741 spin_unlock(&n->list_lock); 742 } 743 } 744 745 /* 746 * Called from cache_reap() to regularly drain alien caches round robin. 747 */ 748 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 749 { 750 int node = __this_cpu_read(slab_reap_node); 751 752 if (n->alien) { 753 struct alien_cache *alc = n->alien[node]; 754 struct array_cache *ac; 755 756 if (alc) { 757 ac = &alc->ac; 758 if (ac->avail && spin_trylock_irq(&alc->lock)) { 759 LIST_HEAD(list); 760 761 __drain_alien_cache(cachep, ac, node, &list); 762 spin_unlock_irq(&alc->lock); 763 slabs_destroy(cachep, &list); 764 } 765 } 766 } 767 } 768 769 static void drain_alien_cache(struct kmem_cache *cachep, 770 struct alien_cache **alien) 771 { 772 int i = 0; 773 struct alien_cache *alc; 774 struct array_cache *ac; 775 unsigned long flags; 776 777 for_each_online_node(i) { 778 alc = alien[i]; 779 if (alc) { 780 LIST_HEAD(list); 781 782 ac = &alc->ac; 783 spin_lock_irqsave(&alc->lock, flags); 784 __drain_alien_cache(cachep, ac, i, &list); 785 spin_unlock_irqrestore(&alc->lock, flags); 786 slabs_destroy(cachep, &list); 787 } 788 } 789 } 790 791 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 792 int node, int page_node) 793 { 794 struct kmem_cache_node *n; 795 struct alien_cache *alien = NULL; 796 struct array_cache *ac; 797 LIST_HEAD(list); 798 799 n = get_node(cachep, node); 800 STATS_INC_NODEFREES(cachep); 801 if (n->alien && n->alien[page_node]) { 802 alien = n->alien[page_node]; 803 ac = &alien->ac; 804 spin_lock(&alien->lock); 805 if (unlikely(ac->avail == ac->limit)) { 806 STATS_INC_ACOVERFLOW(cachep); 807 __drain_alien_cache(cachep, ac, page_node, &list); 808 } 809 ac->entry[ac->avail++] = objp; 810 spin_unlock(&alien->lock); 811 slabs_destroy(cachep, &list); 812 } else { 813 n = get_node(cachep, page_node); 814 spin_lock(&n->list_lock); 815 free_block(cachep, &objp, 1, page_node, &list); 816 spin_unlock(&n->list_lock); 817 slabs_destroy(cachep, &list); 818 } 819 return 1; 820 } 821 822 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 823 { 824 int page_node = page_to_nid(virt_to_page(objp)); 825 int node = numa_mem_id(); 826 /* 827 * Make sure we are not freeing a object from another node to the array 828 * cache on this cpu. 829 */ 830 if (likely(node == page_node)) 831 return 0; 832 833 return __cache_free_alien(cachep, objp, node, page_node); 834 } 835 836 /* 837 * Construct gfp mask to allocate from a specific node but do not reclaim or 838 * warn about failures. 839 */ 840 static inline gfp_t gfp_exact_node(gfp_t flags) 841 { 842 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 843 } 844 #endif 845 846 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 847 { 848 struct kmem_cache_node *n; 849 850 /* 851 * Set up the kmem_cache_node for cpu before we can 852 * begin anything. Make sure some other cpu on this 853 * node has not already allocated this 854 */ 855 n = get_node(cachep, node); 856 if (n) { 857 spin_lock_irq(&n->list_lock); 858 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 859 cachep->num; 860 spin_unlock_irq(&n->list_lock); 861 862 return 0; 863 } 864 865 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 866 if (!n) 867 return -ENOMEM; 868 869 kmem_cache_node_init(n); 870 n->next_reap = jiffies + REAPTIMEOUT_NODE + 871 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 872 873 n->free_limit = 874 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 875 876 /* 877 * The kmem_cache_nodes don't come and go as CPUs 878 * come and go. slab_mutex is sufficient 879 * protection here. 880 */ 881 cachep->node[node] = n; 882 883 return 0; 884 } 885 886 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 887 /* 888 * Allocates and initializes node for a node on each slab cache, used for 889 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 890 * will be allocated off-node since memory is not yet online for the new node. 891 * When hotplugging memory or a cpu, existing node are not replaced if 892 * already in use. 893 * 894 * Must hold slab_mutex. 895 */ 896 static int init_cache_node_node(int node) 897 { 898 int ret; 899 struct kmem_cache *cachep; 900 901 list_for_each_entry(cachep, &slab_caches, list) { 902 ret = init_cache_node(cachep, node, GFP_KERNEL); 903 if (ret) 904 return ret; 905 } 906 907 return 0; 908 } 909 #endif 910 911 static int setup_kmem_cache_node(struct kmem_cache *cachep, 912 int node, gfp_t gfp, bool force_change) 913 { 914 int ret = -ENOMEM; 915 struct kmem_cache_node *n; 916 struct array_cache *old_shared = NULL; 917 struct array_cache *new_shared = NULL; 918 struct alien_cache **new_alien = NULL; 919 LIST_HEAD(list); 920 921 if (use_alien_caches) { 922 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 923 if (!new_alien) 924 goto fail; 925 } 926 927 if (cachep->shared) { 928 new_shared = alloc_arraycache(node, 929 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 930 if (!new_shared) 931 goto fail; 932 } 933 934 ret = init_cache_node(cachep, node, gfp); 935 if (ret) 936 goto fail; 937 938 n = get_node(cachep, node); 939 spin_lock_irq(&n->list_lock); 940 if (n->shared && force_change) { 941 free_block(cachep, n->shared->entry, 942 n->shared->avail, node, &list); 943 n->shared->avail = 0; 944 } 945 946 if (!n->shared || force_change) { 947 old_shared = n->shared; 948 n->shared = new_shared; 949 new_shared = NULL; 950 } 951 952 if (!n->alien) { 953 n->alien = new_alien; 954 new_alien = NULL; 955 } 956 957 spin_unlock_irq(&n->list_lock); 958 slabs_destroy(cachep, &list); 959 960 /* 961 * To protect lockless access to n->shared during irq disabled context. 962 * If n->shared isn't NULL in irq disabled context, accessing to it is 963 * guaranteed to be valid until irq is re-enabled, because it will be 964 * freed after synchronize_sched(). 965 */ 966 if (old_shared && force_change) 967 synchronize_sched(); 968 969 fail: 970 kfree(old_shared); 971 kfree(new_shared); 972 free_alien_cache(new_alien); 973 974 return ret; 975 } 976 977 #ifdef CONFIG_SMP 978 979 static void cpuup_canceled(long cpu) 980 { 981 struct kmem_cache *cachep; 982 struct kmem_cache_node *n = NULL; 983 int node = cpu_to_mem(cpu); 984 const struct cpumask *mask = cpumask_of_node(node); 985 986 list_for_each_entry(cachep, &slab_caches, list) { 987 struct array_cache *nc; 988 struct array_cache *shared; 989 struct alien_cache **alien; 990 LIST_HEAD(list); 991 992 n = get_node(cachep, node); 993 if (!n) 994 continue; 995 996 spin_lock_irq(&n->list_lock); 997 998 /* Free limit for this kmem_cache_node */ 999 n->free_limit -= cachep->batchcount; 1000 1001 /* cpu is dead; no one can alloc from it. */ 1002 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 1003 if (nc) { 1004 free_block(cachep, nc->entry, nc->avail, node, &list); 1005 nc->avail = 0; 1006 } 1007 1008 if (!cpumask_empty(mask)) { 1009 spin_unlock_irq(&n->list_lock); 1010 goto free_slab; 1011 } 1012 1013 shared = n->shared; 1014 if (shared) { 1015 free_block(cachep, shared->entry, 1016 shared->avail, node, &list); 1017 n->shared = NULL; 1018 } 1019 1020 alien = n->alien; 1021 n->alien = NULL; 1022 1023 spin_unlock_irq(&n->list_lock); 1024 1025 kfree(shared); 1026 if (alien) { 1027 drain_alien_cache(cachep, alien); 1028 free_alien_cache(alien); 1029 } 1030 1031 free_slab: 1032 slabs_destroy(cachep, &list); 1033 } 1034 /* 1035 * In the previous loop, all the objects were freed to 1036 * the respective cache's slabs, now we can go ahead and 1037 * shrink each nodelist to its limit. 1038 */ 1039 list_for_each_entry(cachep, &slab_caches, list) { 1040 n = get_node(cachep, node); 1041 if (!n) 1042 continue; 1043 drain_freelist(cachep, n, INT_MAX); 1044 } 1045 } 1046 1047 static int cpuup_prepare(long cpu) 1048 { 1049 struct kmem_cache *cachep; 1050 int node = cpu_to_mem(cpu); 1051 int err; 1052 1053 /* 1054 * We need to do this right in the beginning since 1055 * alloc_arraycache's are going to use this list. 1056 * kmalloc_node allows us to add the slab to the right 1057 * kmem_cache_node and not this cpu's kmem_cache_node 1058 */ 1059 err = init_cache_node_node(node); 1060 if (err < 0) 1061 goto bad; 1062 1063 /* 1064 * Now we can go ahead with allocating the shared arrays and 1065 * array caches 1066 */ 1067 list_for_each_entry(cachep, &slab_caches, list) { 1068 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1069 if (err) 1070 goto bad; 1071 } 1072 1073 return 0; 1074 bad: 1075 cpuup_canceled(cpu); 1076 return -ENOMEM; 1077 } 1078 1079 int slab_prepare_cpu(unsigned int cpu) 1080 { 1081 int err; 1082 1083 mutex_lock(&slab_mutex); 1084 err = cpuup_prepare(cpu); 1085 mutex_unlock(&slab_mutex); 1086 return err; 1087 } 1088 1089 /* 1090 * This is called for a failed online attempt and for a successful 1091 * offline. 1092 * 1093 * Even if all the cpus of a node are down, we don't free the 1094 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1095 * a kmalloc allocation from another cpu for memory from the node of 1096 * the cpu going down. The list3 structure is usually allocated from 1097 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1098 */ 1099 int slab_dead_cpu(unsigned int cpu) 1100 { 1101 mutex_lock(&slab_mutex); 1102 cpuup_canceled(cpu); 1103 mutex_unlock(&slab_mutex); 1104 return 0; 1105 } 1106 #endif 1107 1108 static int slab_online_cpu(unsigned int cpu) 1109 { 1110 start_cpu_timer(cpu); 1111 return 0; 1112 } 1113 1114 static int slab_offline_cpu(unsigned int cpu) 1115 { 1116 /* 1117 * Shutdown cache reaper. Note that the slab_mutex is held so 1118 * that if cache_reap() is invoked it cannot do anything 1119 * expensive but will only modify reap_work and reschedule the 1120 * timer. 1121 */ 1122 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1123 /* Now the cache_reaper is guaranteed to be not running. */ 1124 per_cpu(slab_reap_work, cpu).work.func = NULL; 1125 return 0; 1126 } 1127 1128 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1129 /* 1130 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1131 * Returns -EBUSY if all objects cannot be drained so that the node is not 1132 * removed. 1133 * 1134 * Must hold slab_mutex. 1135 */ 1136 static int __meminit drain_cache_node_node(int node) 1137 { 1138 struct kmem_cache *cachep; 1139 int ret = 0; 1140 1141 list_for_each_entry(cachep, &slab_caches, list) { 1142 struct kmem_cache_node *n; 1143 1144 n = get_node(cachep, node); 1145 if (!n) 1146 continue; 1147 1148 drain_freelist(cachep, n, INT_MAX); 1149 1150 if (!list_empty(&n->slabs_full) || 1151 !list_empty(&n->slabs_partial)) { 1152 ret = -EBUSY; 1153 break; 1154 } 1155 } 1156 return ret; 1157 } 1158 1159 static int __meminit slab_memory_callback(struct notifier_block *self, 1160 unsigned long action, void *arg) 1161 { 1162 struct memory_notify *mnb = arg; 1163 int ret = 0; 1164 int nid; 1165 1166 nid = mnb->status_change_nid; 1167 if (nid < 0) 1168 goto out; 1169 1170 switch (action) { 1171 case MEM_GOING_ONLINE: 1172 mutex_lock(&slab_mutex); 1173 ret = init_cache_node_node(nid); 1174 mutex_unlock(&slab_mutex); 1175 break; 1176 case MEM_GOING_OFFLINE: 1177 mutex_lock(&slab_mutex); 1178 ret = drain_cache_node_node(nid); 1179 mutex_unlock(&slab_mutex); 1180 break; 1181 case MEM_ONLINE: 1182 case MEM_OFFLINE: 1183 case MEM_CANCEL_ONLINE: 1184 case MEM_CANCEL_OFFLINE: 1185 break; 1186 } 1187 out: 1188 return notifier_from_errno(ret); 1189 } 1190 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1191 1192 /* 1193 * swap the static kmem_cache_node with kmalloced memory 1194 */ 1195 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1196 int nodeid) 1197 { 1198 struct kmem_cache_node *ptr; 1199 1200 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1201 BUG_ON(!ptr); 1202 1203 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1204 /* 1205 * Do not assume that spinlocks can be initialized via memcpy: 1206 */ 1207 spin_lock_init(&ptr->list_lock); 1208 1209 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1210 cachep->node[nodeid] = ptr; 1211 } 1212 1213 /* 1214 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1215 * size of kmem_cache_node. 1216 */ 1217 static void __init set_up_node(struct kmem_cache *cachep, int index) 1218 { 1219 int node; 1220 1221 for_each_online_node(node) { 1222 cachep->node[node] = &init_kmem_cache_node[index + node]; 1223 cachep->node[node]->next_reap = jiffies + 1224 REAPTIMEOUT_NODE + 1225 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1226 } 1227 } 1228 1229 /* 1230 * Initialisation. Called after the page allocator have been initialised and 1231 * before smp_init(). 1232 */ 1233 void __init kmem_cache_init(void) 1234 { 1235 int i; 1236 1237 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1238 sizeof(struct rcu_head)); 1239 kmem_cache = &kmem_cache_boot; 1240 1241 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1242 use_alien_caches = 0; 1243 1244 for (i = 0; i < NUM_INIT_LISTS; i++) 1245 kmem_cache_node_init(&init_kmem_cache_node[i]); 1246 1247 /* 1248 * Fragmentation resistance on low memory - only use bigger 1249 * page orders on machines with more than 32MB of memory if 1250 * not overridden on the command line. 1251 */ 1252 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1253 slab_max_order = SLAB_MAX_ORDER_HI; 1254 1255 /* Bootstrap is tricky, because several objects are allocated 1256 * from caches that do not exist yet: 1257 * 1) initialize the kmem_cache cache: it contains the struct 1258 * kmem_cache structures of all caches, except kmem_cache itself: 1259 * kmem_cache is statically allocated. 1260 * Initially an __init data area is used for the head array and the 1261 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1262 * array at the end of the bootstrap. 1263 * 2) Create the first kmalloc cache. 1264 * The struct kmem_cache for the new cache is allocated normally. 1265 * An __init data area is used for the head array. 1266 * 3) Create the remaining kmalloc caches, with minimally sized 1267 * head arrays. 1268 * 4) Replace the __init data head arrays for kmem_cache and the first 1269 * kmalloc cache with kmalloc allocated arrays. 1270 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1271 * the other cache's with kmalloc allocated memory. 1272 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1273 */ 1274 1275 /* 1) create the kmem_cache */ 1276 1277 /* 1278 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1279 */ 1280 create_boot_cache(kmem_cache, "kmem_cache", 1281 offsetof(struct kmem_cache, node) + 1282 nr_node_ids * sizeof(struct kmem_cache_node *), 1283 SLAB_HWCACHE_ALIGN); 1284 list_add(&kmem_cache->list, &slab_caches); 1285 slab_state = PARTIAL; 1286 1287 /* 1288 * Initialize the caches that provide memory for the kmem_cache_node 1289 * structures first. Without this, further allocations will bug. 1290 */ 1291 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node", 1292 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1293 slab_state = PARTIAL_NODE; 1294 setup_kmalloc_cache_index_table(); 1295 1296 slab_early_init = 0; 1297 1298 /* 5) Replace the bootstrap kmem_cache_node */ 1299 { 1300 int nid; 1301 1302 for_each_online_node(nid) { 1303 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1304 1305 init_list(kmalloc_caches[INDEX_NODE], 1306 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1307 } 1308 } 1309 1310 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1311 } 1312 1313 void __init kmem_cache_init_late(void) 1314 { 1315 struct kmem_cache *cachep; 1316 1317 slab_state = UP; 1318 1319 /* 6) resize the head arrays to their final sizes */ 1320 mutex_lock(&slab_mutex); 1321 list_for_each_entry(cachep, &slab_caches, list) 1322 if (enable_cpucache(cachep, GFP_NOWAIT)) 1323 BUG(); 1324 mutex_unlock(&slab_mutex); 1325 1326 /* Done! */ 1327 slab_state = FULL; 1328 1329 #ifdef CONFIG_NUMA 1330 /* 1331 * Register a memory hotplug callback that initializes and frees 1332 * node. 1333 */ 1334 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1335 #endif 1336 1337 /* 1338 * The reap timers are started later, with a module init call: That part 1339 * of the kernel is not yet operational. 1340 */ 1341 } 1342 1343 static int __init cpucache_init(void) 1344 { 1345 int ret; 1346 1347 /* 1348 * Register the timers that return unneeded pages to the page allocator 1349 */ 1350 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1351 slab_online_cpu, slab_offline_cpu); 1352 WARN_ON(ret < 0); 1353 1354 /* Done! */ 1355 slab_state = FULL; 1356 return 0; 1357 } 1358 __initcall(cpucache_init); 1359 1360 static noinline void 1361 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1362 { 1363 #if DEBUG 1364 struct kmem_cache_node *n; 1365 unsigned long flags; 1366 int node; 1367 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1368 DEFAULT_RATELIMIT_BURST); 1369 1370 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1371 return; 1372 1373 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1374 nodeid, gfpflags, &gfpflags); 1375 pr_warn(" cache: %s, object size: %d, order: %d\n", 1376 cachep->name, cachep->size, cachep->gfporder); 1377 1378 for_each_kmem_cache_node(cachep, node, n) { 1379 unsigned long total_slabs, free_slabs, free_objs; 1380 1381 spin_lock_irqsave(&n->list_lock, flags); 1382 total_slabs = n->total_slabs; 1383 free_slabs = n->free_slabs; 1384 free_objs = n->free_objects; 1385 spin_unlock_irqrestore(&n->list_lock, flags); 1386 1387 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1388 node, total_slabs - free_slabs, total_slabs, 1389 (total_slabs * cachep->num) - free_objs, 1390 total_slabs * cachep->num); 1391 } 1392 #endif 1393 } 1394 1395 /* 1396 * Interface to system's page allocator. No need to hold the 1397 * kmem_cache_node ->list_lock. 1398 * 1399 * If we requested dmaable memory, we will get it. Even if we 1400 * did not request dmaable memory, we might get it, but that 1401 * would be relatively rare and ignorable. 1402 */ 1403 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1404 int nodeid) 1405 { 1406 struct page *page; 1407 int nr_pages; 1408 1409 flags |= cachep->allocflags; 1410 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1411 flags |= __GFP_RECLAIMABLE; 1412 1413 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1414 if (!page) { 1415 slab_out_of_memory(cachep, flags, nodeid); 1416 return NULL; 1417 } 1418 1419 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1420 __free_pages(page, cachep->gfporder); 1421 return NULL; 1422 } 1423 1424 nr_pages = (1 << cachep->gfporder); 1425 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1426 add_zone_page_state(page_zone(page), 1427 NR_SLAB_RECLAIMABLE, nr_pages); 1428 else 1429 add_zone_page_state(page_zone(page), 1430 NR_SLAB_UNRECLAIMABLE, nr_pages); 1431 1432 __SetPageSlab(page); 1433 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1434 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1435 SetPageSlabPfmemalloc(page); 1436 1437 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1438 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1439 1440 if (cachep->ctor) 1441 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1442 else 1443 kmemcheck_mark_unallocated_pages(page, nr_pages); 1444 } 1445 1446 return page; 1447 } 1448 1449 /* 1450 * Interface to system's page release. 1451 */ 1452 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1453 { 1454 int order = cachep->gfporder; 1455 unsigned long nr_freed = (1 << order); 1456 1457 kmemcheck_free_shadow(page, order); 1458 1459 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1460 sub_zone_page_state(page_zone(page), 1461 NR_SLAB_RECLAIMABLE, nr_freed); 1462 else 1463 sub_zone_page_state(page_zone(page), 1464 NR_SLAB_UNRECLAIMABLE, nr_freed); 1465 1466 BUG_ON(!PageSlab(page)); 1467 __ClearPageSlabPfmemalloc(page); 1468 __ClearPageSlab(page); 1469 page_mapcount_reset(page); 1470 page->mapping = NULL; 1471 1472 if (current->reclaim_state) 1473 current->reclaim_state->reclaimed_slab += nr_freed; 1474 memcg_uncharge_slab(page, order, cachep); 1475 __free_pages(page, order); 1476 } 1477 1478 static void kmem_rcu_free(struct rcu_head *head) 1479 { 1480 struct kmem_cache *cachep; 1481 struct page *page; 1482 1483 page = container_of(head, struct page, rcu_head); 1484 cachep = page->slab_cache; 1485 1486 kmem_freepages(cachep, page); 1487 } 1488 1489 #if DEBUG 1490 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1491 { 1492 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1493 (cachep->size % PAGE_SIZE) == 0) 1494 return true; 1495 1496 return false; 1497 } 1498 1499 #ifdef CONFIG_DEBUG_PAGEALLOC 1500 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1501 unsigned long caller) 1502 { 1503 int size = cachep->object_size; 1504 1505 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1506 1507 if (size < 5 * sizeof(unsigned long)) 1508 return; 1509 1510 *addr++ = 0x12345678; 1511 *addr++ = caller; 1512 *addr++ = smp_processor_id(); 1513 size -= 3 * sizeof(unsigned long); 1514 { 1515 unsigned long *sptr = &caller; 1516 unsigned long svalue; 1517 1518 while (!kstack_end(sptr)) { 1519 svalue = *sptr++; 1520 if (kernel_text_address(svalue)) { 1521 *addr++ = svalue; 1522 size -= sizeof(unsigned long); 1523 if (size <= sizeof(unsigned long)) 1524 break; 1525 } 1526 } 1527 1528 } 1529 *addr++ = 0x87654321; 1530 } 1531 1532 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1533 int map, unsigned long caller) 1534 { 1535 if (!is_debug_pagealloc_cache(cachep)) 1536 return; 1537 1538 if (caller) 1539 store_stackinfo(cachep, objp, caller); 1540 1541 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1542 } 1543 1544 #else 1545 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1546 int map, unsigned long caller) {} 1547 1548 #endif 1549 1550 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1551 { 1552 int size = cachep->object_size; 1553 addr = &((char *)addr)[obj_offset(cachep)]; 1554 1555 memset(addr, val, size); 1556 *(unsigned char *)(addr + size - 1) = POISON_END; 1557 } 1558 1559 static void dump_line(char *data, int offset, int limit) 1560 { 1561 int i; 1562 unsigned char error = 0; 1563 int bad_count = 0; 1564 1565 pr_err("%03x: ", offset); 1566 for (i = 0; i < limit; i++) { 1567 if (data[offset + i] != POISON_FREE) { 1568 error = data[offset + i]; 1569 bad_count++; 1570 } 1571 } 1572 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1573 &data[offset], limit, 1); 1574 1575 if (bad_count == 1) { 1576 error ^= POISON_FREE; 1577 if (!(error & (error - 1))) { 1578 pr_err("Single bit error detected. Probably bad RAM.\n"); 1579 #ifdef CONFIG_X86 1580 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1581 #else 1582 pr_err("Run a memory test tool.\n"); 1583 #endif 1584 } 1585 } 1586 } 1587 #endif 1588 1589 #if DEBUG 1590 1591 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1592 { 1593 int i, size; 1594 char *realobj; 1595 1596 if (cachep->flags & SLAB_RED_ZONE) { 1597 pr_err("Redzone: 0x%llx/0x%llx\n", 1598 *dbg_redzone1(cachep, objp), 1599 *dbg_redzone2(cachep, objp)); 1600 } 1601 1602 if (cachep->flags & SLAB_STORE_USER) { 1603 pr_err("Last user: [<%p>](%pSR)\n", 1604 *dbg_userword(cachep, objp), 1605 *dbg_userword(cachep, objp)); 1606 } 1607 realobj = (char *)objp + obj_offset(cachep); 1608 size = cachep->object_size; 1609 for (i = 0; i < size && lines; i += 16, lines--) { 1610 int limit; 1611 limit = 16; 1612 if (i + limit > size) 1613 limit = size - i; 1614 dump_line(realobj, i, limit); 1615 } 1616 } 1617 1618 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1619 { 1620 char *realobj; 1621 int size, i; 1622 int lines = 0; 1623 1624 if (is_debug_pagealloc_cache(cachep)) 1625 return; 1626 1627 realobj = (char *)objp + obj_offset(cachep); 1628 size = cachep->object_size; 1629 1630 for (i = 0; i < size; i++) { 1631 char exp = POISON_FREE; 1632 if (i == size - 1) 1633 exp = POISON_END; 1634 if (realobj[i] != exp) { 1635 int limit; 1636 /* Mismatch ! */ 1637 /* Print header */ 1638 if (lines == 0) { 1639 pr_err("Slab corruption (%s): %s start=%p, len=%d\n", 1640 print_tainted(), cachep->name, 1641 realobj, size); 1642 print_objinfo(cachep, objp, 0); 1643 } 1644 /* Hexdump the affected line */ 1645 i = (i / 16) * 16; 1646 limit = 16; 1647 if (i + limit > size) 1648 limit = size - i; 1649 dump_line(realobj, i, limit); 1650 i += 16; 1651 lines++; 1652 /* Limit to 5 lines */ 1653 if (lines > 5) 1654 break; 1655 } 1656 } 1657 if (lines != 0) { 1658 /* Print some data about the neighboring objects, if they 1659 * exist: 1660 */ 1661 struct page *page = virt_to_head_page(objp); 1662 unsigned int objnr; 1663 1664 objnr = obj_to_index(cachep, page, objp); 1665 if (objnr) { 1666 objp = index_to_obj(cachep, page, objnr - 1); 1667 realobj = (char *)objp + obj_offset(cachep); 1668 pr_err("Prev obj: start=%p, len=%d\n", realobj, size); 1669 print_objinfo(cachep, objp, 2); 1670 } 1671 if (objnr + 1 < cachep->num) { 1672 objp = index_to_obj(cachep, page, objnr + 1); 1673 realobj = (char *)objp + obj_offset(cachep); 1674 pr_err("Next obj: start=%p, len=%d\n", realobj, size); 1675 print_objinfo(cachep, objp, 2); 1676 } 1677 } 1678 } 1679 #endif 1680 1681 #if DEBUG 1682 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1683 struct page *page) 1684 { 1685 int i; 1686 1687 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1688 poison_obj(cachep, page->freelist - obj_offset(cachep), 1689 POISON_FREE); 1690 } 1691 1692 for (i = 0; i < cachep->num; i++) { 1693 void *objp = index_to_obj(cachep, page, i); 1694 1695 if (cachep->flags & SLAB_POISON) { 1696 check_poison_obj(cachep, objp); 1697 slab_kernel_map(cachep, objp, 1, 0); 1698 } 1699 if (cachep->flags & SLAB_RED_ZONE) { 1700 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1701 slab_error(cachep, "start of a freed object was overwritten"); 1702 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1703 slab_error(cachep, "end of a freed object was overwritten"); 1704 } 1705 } 1706 } 1707 #else 1708 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1709 struct page *page) 1710 { 1711 } 1712 #endif 1713 1714 /** 1715 * slab_destroy - destroy and release all objects in a slab 1716 * @cachep: cache pointer being destroyed 1717 * @page: page pointer being destroyed 1718 * 1719 * Destroy all the objs in a slab page, and release the mem back to the system. 1720 * Before calling the slab page must have been unlinked from the cache. The 1721 * kmem_cache_node ->list_lock is not held/needed. 1722 */ 1723 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1724 { 1725 void *freelist; 1726 1727 freelist = page->freelist; 1728 slab_destroy_debugcheck(cachep, page); 1729 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 1730 call_rcu(&page->rcu_head, kmem_rcu_free); 1731 else 1732 kmem_freepages(cachep, page); 1733 1734 /* 1735 * From now on, we don't use freelist 1736 * although actual page can be freed in rcu context 1737 */ 1738 if (OFF_SLAB(cachep)) 1739 kmem_cache_free(cachep->freelist_cache, freelist); 1740 } 1741 1742 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1743 { 1744 struct page *page, *n; 1745 1746 list_for_each_entry_safe(page, n, list, lru) { 1747 list_del(&page->lru); 1748 slab_destroy(cachep, page); 1749 } 1750 } 1751 1752 /** 1753 * calculate_slab_order - calculate size (page order) of slabs 1754 * @cachep: pointer to the cache that is being created 1755 * @size: size of objects to be created in this cache. 1756 * @flags: slab allocation flags 1757 * 1758 * Also calculates the number of objects per slab. 1759 * 1760 * This could be made much more intelligent. For now, try to avoid using 1761 * high order pages for slabs. When the gfp() functions are more friendly 1762 * towards high-order requests, this should be changed. 1763 */ 1764 static size_t calculate_slab_order(struct kmem_cache *cachep, 1765 size_t size, unsigned long flags) 1766 { 1767 size_t left_over = 0; 1768 int gfporder; 1769 1770 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1771 unsigned int num; 1772 size_t remainder; 1773 1774 num = cache_estimate(gfporder, size, flags, &remainder); 1775 if (!num) 1776 continue; 1777 1778 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1779 if (num > SLAB_OBJ_MAX_NUM) 1780 break; 1781 1782 if (flags & CFLGS_OFF_SLAB) { 1783 struct kmem_cache *freelist_cache; 1784 size_t freelist_size; 1785 1786 freelist_size = num * sizeof(freelist_idx_t); 1787 freelist_cache = kmalloc_slab(freelist_size, 0u); 1788 if (!freelist_cache) 1789 continue; 1790 1791 /* 1792 * Needed to avoid possible looping condition 1793 * in cache_grow_begin() 1794 */ 1795 if (OFF_SLAB(freelist_cache)) 1796 continue; 1797 1798 /* check if off slab has enough benefit */ 1799 if (freelist_cache->size > cachep->size / 2) 1800 continue; 1801 } 1802 1803 /* Found something acceptable - save it away */ 1804 cachep->num = num; 1805 cachep->gfporder = gfporder; 1806 left_over = remainder; 1807 1808 /* 1809 * A VFS-reclaimable slab tends to have most allocations 1810 * as GFP_NOFS and we really don't want to have to be allocating 1811 * higher-order pages when we are unable to shrink dcache. 1812 */ 1813 if (flags & SLAB_RECLAIM_ACCOUNT) 1814 break; 1815 1816 /* 1817 * Large number of objects is good, but very large slabs are 1818 * currently bad for the gfp()s. 1819 */ 1820 if (gfporder >= slab_max_order) 1821 break; 1822 1823 /* 1824 * Acceptable internal fragmentation? 1825 */ 1826 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1827 break; 1828 } 1829 return left_over; 1830 } 1831 1832 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1833 struct kmem_cache *cachep, int entries, int batchcount) 1834 { 1835 int cpu; 1836 size_t size; 1837 struct array_cache __percpu *cpu_cache; 1838 1839 size = sizeof(void *) * entries + sizeof(struct array_cache); 1840 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1841 1842 if (!cpu_cache) 1843 return NULL; 1844 1845 for_each_possible_cpu(cpu) { 1846 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1847 entries, batchcount); 1848 } 1849 1850 return cpu_cache; 1851 } 1852 1853 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1854 { 1855 if (slab_state >= FULL) 1856 return enable_cpucache(cachep, gfp); 1857 1858 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1859 if (!cachep->cpu_cache) 1860 return 1; 1861 1862 if (slab_state == DOWN) { 1863 /* Creation of first cache (kmem_cache). */ 1864 set_up_node(kmem_cache, CACHE_CACHE); 1865 } else if (slab_state == PARTIAL) { 1866 /* For kmem_cache_node */ 1867 set_up_node(cachep, SIZE_NODE); 1868 } else { 1869 int node; 1870 1871 for_each_online_node(node) { 1872 cachep->node[node] = kmalloc_node( 1873 sizeof(struct kmem_cache_node), gfp, node); 1874 BUG_ON(!cachep->node[node]); 1875 kmem_cache_node_init(cachep->node[node]); 1876 } 1877 } 1878 1879 cachep->node[numa_mem_id()]->next_reap = 1880 jiffies + REAPTIMEOUT_NODE + 1881 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1882 1883 cpu_cache_get(cachep)->avail = 0; 1884 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1885 cpu_cache_get(cachep)->batchcount = 1; 1886 cpu_cache_get(cachep)->touched = 0; 1887 cachep->batchcount = 1; 1888 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1889 return 0; 1890 } 1891 1892 unsigned long kmem_cache_flags(unsigned long object_size, 1893 unsigned long flags, const char *name, 1894 void (*ctor)(void *)) 1895 { 1896 return flags; 1897 } 1898 1899 struct kmem_cache * 1900 __kmem_cache_alias(const char *name, size_t size, size_t align, 1901 unsigned long flags, void (*ctor)(void *)) 1902 { 1903 struct kmem_cache *cachep; 1904 1905 cachep = find_mergeable(size, align, flags, name, ctor); 1906 if (cachep) { 1907 cachep->refcount++; 1908 1909 /* 1910 * Adjust the object sizes so that we clear 1911 * the complete object on kzalloc. 1912 */ 1913 cachep->object_size = max_t(int, cachep->object_size, size); 1914 } 1915 return cachep; 1916 } 1917 1918 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1919 size_t size, unsigned long flags) 1920 { 1921 size_t left; 1922 1923 cachep->num = 0; 1924 1925 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU) 1926 return false; 1927 1928 left = calculate_slab_order(cachep, size, 1929 flags | CFLGS_OBJFREELIST_SLAB); 1930 if (!cachep->num) 1931 return false; 1932 1933 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1934 return false; 1935 1936 cachep->colour = left / cachep->colour_off; 1937 1938 return true; 1939 } 1940 1941 static bool set_off_slab_cache(struct kmem_cache *cachep, 1942 size_t size, unsigned long flags) 1943 { 1944 size_t left; 1945 1946 cachep->num = 0; 1947 1948 /* 1949 * Always use on-slab management when SLAB_NOLEAKTRACE 1950 * to avoid recursive calls into kmemleak. 1951 */ 1952 if (flags & SLAB_NOLEAKTRACE) 1953 return false; 1954 1955 /* 1956 * Size is large, assume best to place the slab management obj 1957 * off-slab (should allow better packing of objs). 1958 */ 1959 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1960 if (!cachep->num) 1961 return false; 1962 1963 /* 1964 * If the slab has been placed off-slab, and we have enough space then 1965 * move it on-slab. This is at the expense of any extra colouring. 1966 */ 1967 if (left >= cachep->num * sizeof(freelist_idx_t)) 1968 return false; 1969 1970 cachep->colour = left / cachep->colour_off; 1971 1972 return true; 1973 } 1974 1975 static bool set_on_slab_cache(struct kmem_cache *cachep, 1976 size_t size, unsigned long flags) 1977 { 1978 size_t left; 1979 1980 cachep->num = 0; 1981 1982 left = calculate_slab_order(cachep, size, flags); 1983 if (!cachep->num) 1984 return false; 1985 1986 cachep->colour = left / cachep->colour_off; 1987 1988 return true; 1989 } 1990 1991 /** 1992 * __kmem_cache_create - Create a cache. 1993 * @cachep: cache management descriptor 1994 * @flags: SLAB flags 1995 * 1996 * Returns a ptr to the cache on success, NULL on failure. 1997 * Cannot be called within a int, but can be interrupted. 1998 * The @ctor is run when new pages are allocated by the cache. 1999 * 2000 * The flags are 2001 * 2002 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2003 * to catch references to uninitialised memory. 2004 * 2005 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2006 * for buffer overruns. 2007 * 2008 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2009 * cacheline. This can be beneficial if you're counting cycles as closely 2010 * as davem. 2011 */ 2012 int 2013 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2014 { 2015 size_t ralign = BYTES_PER_WORD; 2016 gfp_t gfp; 2017 int err; 2018 size_t size = cachep->size; 2019 2020 #if DEBUG 2021 #if FORCED_DEBUG 2022 /* 2023 * Enable redzoning and last user accounting, except for caches with 2024 * large objects, if the increased size would increase the object size 2025 * above the next power of two: caches with object sizes just above a 2026 * power of two have a significant amount of internal fragmentation. 2027 */ 2028 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2029 2 * sizeof(unsigned long long))) 2030 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2031 if (!(flags & SLAB_DESTROY_BY_RCU)) 2032 flags |= SLAB_POISON; 2033 #endif 2034 #endif 2035 2036 /* 2037 * Check that size is in terms of words. This is needed to avoid 2038 * unaligned accesses for some archs when redzoning is used, and makes 2039 * sure any on-slab bufctl's are also correctly aligned. 2040 */ 2041 if (size & (BYTES_PER_WORD - 1)) { 2042 size += (BYTES_PER_WORD - 1); 2043 size &= ~(BYTES_PER_WORD - 1); 2044 } 2045 2046 if (flags & SLAB_RED_ZONE) { 2047 ralign = REDZONE_ALIGN; 2048 /* If redzoning, ensure that the second redzone is suitably 2049 * aligned, by adjusting the object size accordingly. */ 2050 size += REDZONE_ALIGN - 1; 2051 size &= ~(REDZONE_ALIGN - 1); 2052 } 2053 2054 /* 3) caller mandated alignment */ 2055 if (ralign < cachep->align) { 2056 ralign = cachep->align; 2057 } 2058 /* disable debug if necessary */ 2059 if (ralign > __alignof__(unsigned long long)) 2060 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2061 /* 2062 * 4) Store it. 2063 */ 2064 cachep->align = ralign; 2065 cachep->colour_off = cache_line_size(); 2066 /* Offset must be a multiple of the alignment. */ 2067 if (cachep->colour_off < cachep->align) 2068 cachep->colour_off = cachep->align; 2069 2070 if (slab_is_available()) 2071 gfp = GFP_KERNEL; 2072 else 2073 gfp = GFP_NOWAIT; 2074 2075 #if DEBUG 2076 2077 /* 2078 * Both debugging options require word-alignment which is calculated 2079 * into align above. 2080 */ 2081 if (flags & SLAB_RED_ZONE) { 2082 /* add space for red zone words */ 2083 cachep->obj_offset += sizeof(unsigned long long); 2084 size += 2 * sizeof(unsigned long long); 2085 } 2086 if (flags & SLAB_STORE_USER) { 2087 /* user store requires one word storage behind the end of 2088 * the real object. But if the second red zone needs to be 2089 * aligned to 64 bits, we must allow that much space. 2090 */ 2091 if (flags & SLAB_RED_ZONE) 2092 size += REDZONE_ALIGN; 2093 else 2094 size += BYTES_PER_WORD; 2095 } 2096 #endif 2097 2098 kasan_cache_create(cachep, &size, &flags); 2099 2100 size = ALIGN(size, cachep->align); 2101 /* 2102 * We should restrict the number of objects in a slab to implement 2103 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2104 */ 2105 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2106 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2107 2108 #if DEBUG 2109 /* 2110 * To activate debug pagealloc, off-slab management is necessary 2111 * requirement. In early phase of initialization, small sized slab 2112 * doesn't get initialized so it would not be possible. So, we need 2113 * to check size >= 256. It guarantees that all necessary small 2114 * sized slab is initialized in current slab initialization sequence. 2115 */ 2116 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2117 size >= 256 && cachep->object_size > cache_line_size()) { 2118 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2119 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2120 2121 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2122 flags |= CFLGS_OFF_SLAB; 2123 cachep->obj_offset += tmp_size - size; 2124 size = tmp_size; 2125 goto done; 2126 } 2127 } 2128 } 2129 #endif 2130 2131 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2132 flags |= CFLGS_OBJFREELIST_SLAB; 2133 goto done; 2134 } 2135 2136 if (set_off_slab_cache(cachep, size, flags)) { 2137 flags |= CFLGS_OFF_SLAB; 2138 goto done; 2139 } 2140 2141 if (set_on_slab_cache(cachep, size, flags)) 2142 goto done; 2143 2144 return -E2BIG; 2145 2146 done: 2147 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2148 cachep->flags = flags; 2149 cachep->allocflags = __GFP_COMP; 2150 if (flags & SLAB_CACHE_DMA) 2151 cachep->allocflags |= GFP_DMA; 2152 cachep->size = size; 2153 cachep->reciprocal_buffer_size = reciprocal_value(size); 2154 2155 #if DEBUG 2156 /* 2157 * If we're going to use the generic kernel_map_pages() 2158 * poisoning, then it's going to smash the contents of 2159 * the redzone and userword anyhow, so switch them off. 2160 */ 2161 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2162 (cachep->flags & SLAB_POISON) && 2163 is_debug_pagealloc_cache(cachep)) 2164 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2165 #endif 2166 2167 if (OFF_SLAB(cachep)) { 2168 cachep->freelist_cache = 2169 kmalloc_slab(cachep->freelist_size, 0u); 2170 } 2171 2172 err = setup_cpu_cache(cachep, gfp); 2173 if (err) { 2174 __kmem_cache_release(cachep); 2175 return err; 2176 } 2177 2178 return 0; 2179 } 2180 2181 #if DEBUG 2182 static void check_irq_off(void) 2183 { 2184 BUG_ON(!irqs_disabled()); 2185 } 2186 2187 static void check_irq_on(void) 2188 { 2189 BUG_ON(irqs_disabled()); 2190 } 2191 2192 static void check_mutex_acquired(void) 2193 { 2194 BUG_ON(!mutex_is_locked(&slab_mutex)); 2195 } 2196 2197 static void check_spinlock_acquired(struct kmem_cache *cachep) 2198 { 2199 #ifdef CONFIG_SMP 2200 check_irq_off(); 2201 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2202 #endif 2203 } 2204 2205 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2206 { 2207 #ifdef CONFIG_SMP 2208 check_irq_off(); 2209 assert_spin_locked(&get_node(cachep, node)->list_lock); 2210 #endif 2211 } 2212 2213 #else 2214 #define check_irq_off() do { } while(0) 2215 #define check_irq_on() do { } while(0) 2216 #define check_mutex_acquired() do { } while(0) 2217 #define check_spinlock_acquired(x) do { } while(0) 2218 #define check_spinlock_acquired_node(x, y) do { } while(0) 2219 #endif 2220 2221 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2222 int node, bool free_all, struct list_head *list) 2223 { 2224 int tofree; 2225 2226 if (!ac || !ac->avail) 2227 return; 2228 2229 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2230 if (tofree > ac->avail) 2231 tofree = (ac->avail + 1) / 2; 2232 2233 free_block(cachep, ac->entry, tofree, node, list); 2234 ac->avail -= tofree; 2235 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2236 } 2237 2238 static void do_drain(void *arg) 2239 { 2240 struct kmem_cache *cachep = arg; 2241 struct array_cache *ac; 2242 int node = numa_mem_id(); 2243 struct kmem_cache_node *n; 2244 LIST_HEAD(list); 2245 2246 check_irq_off(); 2247 ac = cpu_cache_get(cachep); 2248 n = get_node(cachep, node); 2249 spin_lock(&n->list_lock); 2250 free_block(cachep, ac->entry, ac->avail, node, &list); 2251 spin_unlock(&n->list_lock); 2252 slabs_destroy(cachep, &list); 2253 ac->avail = 0; 2254 } 2255 2256 static void drain_cpu_caches(struct kmem_cache *cachep) 2257 { 2258 struct kmem_cache_node *n; 2259 int node; 2260 LIST_HEAD(list); 2261 2262 on_each_cpu(do_drain, cachep, 1); 2263 check_irq_on(); 2264 for_each_kmem_cache_node(cachep, node, n) 2265 if (n->alien) 2266 drain_alien_cache(cachep, n->alien); 2267 2268 for_each_kmem_cache_node(cachep, node, n) { 2269 spin_lock_irq(&n->list_lock); 2270 drain_array_locked(cachep, n->shared, node, true, &list); 2271 spin_unlock_irq(&n->list_lock); 2272 2273 slabs_destroy(cachep, &list); 2274 } 2275 } 2276 2277 /* 2278 * Remove slabs from the list of free slabs. 2279 * Specify the number of slabs to drain in tofree. 2280 * 2281 * Returns the actual number of slabs released. 2282 */ 2283 static int drain_freelist(struct kmem_cache *cache, 2284 struct kmem_cache_node *n, int tofree) 2285 { 2286 struct list_head *p; 2287 int nr_freed; 2288 struct page *page; 2289 2290 nr_freed = 0; 2291 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2292 2293 spin_lock_irq(&n->list_lock); 2294 p = n->slabs_free.prev; 2295 if (p == &n->slabs_free) { 2296 spin_unlock_irq(&n->list_lock); 2297 goto out; 2298 } 2299 2300 page = list_entry(p, struct page, lru); 2301 list_del(&page->lru); 2302 n->free_slabs--; 2303 n->total_slabs--; 2304 /* 2305 * Safe to drop the lock. The slab is no longer linked 2306 * to the cache. 2307 */ 2308 n->free_objects -= cache->num; 2309 spin_unlock_irq(&n->list_lock); 2310 slab_destroy(cache, page); 2311 nr_freed++; 2312 } 2313 out: 2314 return nr_freed; 2315 } 2316 2317 int __kmem_cache_shrink(struct kmem_cache *cachep) 2318 { 2319 int ret = 0; 2320 int node; 2321 struct kmem_cache_node *n; 2322 2323 drain_cpu_caches(cachep); 2324 2325 check_irq_on(); 2326 for_each_kmem_cache_node(cachep, node, n) { 2327 drain_freelist(cachep, n, INT_MAX); 2328 2329 ret += !list_empty(&n->slabs_full) || 2330 !list_empty(&n->slabs_partial); 2331 } 2332 return (ret ? 1 : 0); 2333 } 2334 2335 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2336 { 2337 return __kmem_cache_shrink(cachep); 2338 } 2339 2340 void __kmem_cache_release(struct kmem_cache *cachep) 2341 { 2342 int i; 2343 struct kmem_cache_node *n; 2344 2345 cache_random_seq_destroy(cachep); 2346 2347 free_percpu(cachep->cpu_cache); 2348 2349 /* NUMA: free the node structures */ 2350 for_each_kmem_cache_node(cachep, i, n) { 2351 kfree(n->shared); 2352 free_alien_cache(n->alien); 2353 kfree(n); 2354 cachep->node[i] = NULL; 2355 } 2356 } 2357 2358 /* 2359 * Get the memory for a slab management obj. 2360 * 2361 * For a slab cache when the slab descriptor is off-slab, the 2362 * slab descriptor can't come from the same cache which is being created, 2363 * Because if it is the case, that means we defer the creation of 2364 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2365 * And we eventually call down to __kmem_cache_create(), which 2366 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2367 * This is a "chicken-and-egg" problem. 2368 * 2369 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2370 * which are all initialized during kmem_cache_init(). 2371 */ 2372 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2373 struct page *page, int colour_off, 2374 gfp_t local_flags, int nodeid) 2375 { 2376 void *freelist; 2377 void *addr = page_address(page); 2378 2379 page->s_mem = addr + colour_off; 2380 page->active = 0; 2381 2382 if (OBJFREELIST_SLAB(cachep)) 2383 freelist = NULL; 2384 else if (OFF_SLAB(cachep)) { 2385 /* Slab management obj is off-slab. */ 2386 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2387 local_flags, nodeid); 2388 if (!freelist) 2389 return NULL; 2390 } else { 2391 /* We will use last bytes at the slab for freelist */ 2392 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2393 cachep->freelist_size; 2394 } 2395 2396 return freelist; 2397 } 2398 2399 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2400 { 2401 return ((freelist_idx_t *)page->freelist)[idx]; 2402 } 2403 2404 static inline void set_free_obj(struct page *page, 2405 unsigned int idx, freelist_idx_t val) 2406 { 2407 ((freelist_idx_t *)(page->freelist))[idx] = val; 2408 } 2409 2410 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2411 { 2412 #if DEBUG 2413 int i; 2414 2415 for (i = 0; i < cachep->num; i++) { 2416 void *objp = index_to_obj(cachep, page, i); 2417 2418 if (cachep->flags & SLAB_STORE_USER) 2419 *dbg_userword(cachep, objp) = NULL; 2420 2421 if (cachep->flags & SLAB_RED_ZONE) { 2422 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2423 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2424 } 2425 /* 2426 * Constructors are not allowed to allocate memory from the same 2427 * cache which they are a constructor for. Otherwise, deadlock. 2428 * They must also be threaded. 2429 */ 2430 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2431 kasan_unpoison_object_data(cachep, 2432 objp + obj_offset(cachep)); 2433 cachep->ctor(objp + obj_offset(cachep)); 2434 kasan_poison_object_data( 2435 cachep, objp + obj_offset(cachep)); 2436 } 2437 2438 if (cachep->flags & SLAB_RED_ZONE) { 2439 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2440 slab_error(cachep, "constructor overwrote the end of an object"); 2441 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2442 slab_error(cachep, "constructor overwrote the start of an object"); 2443 } 2444 /* need to poison the objs? */ 2445 if (cachep->flags & SLAB_POISON) { 2446 poison_obj(cachep, objp, POISON_FREE); 2447 slab_kernel_map(cachep, objp, 0, 0); 2448 } 2449 } 2450 #endif 2451 } 2452 2453 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2454 /* Hold information during a freelist initialization */ 2455 union freelist_init_state { 2456 struct { 2457 unsigned int pos; 2458 unsigned int *list; 2459 unsigned int count; 2460 }; 2461 struct rnd_state rnd_state; 2462 }; 2463 2464 /* 2465 * Initialize the state based on the randomization methode available. 2466 * return true if the pre-computed list is available, false otherwize. 2467 */ 2468 static bool freelist_state_initialize(union freelist_init_state *state, 2469 struct kmem_cache *cachep, 2470 unsigned int count) 2471 { 2472 bool ret; 2473 unsigned int rand; 2474 2475 /* Use best entropy available to define a random shift */ 2476 rand = get_random_int(); 2477 2478 /* Use a random state if the pre-computed list is not available */ 2479 if (!cachep->random_seq) { 2480 prandom_seed_state(&state->rnd_state, rand); 2481 ret = false; 2482 } else { 2483 state->list = cachep->random_seq; 2484 state->count = count; 2485 state->pos = rand % count; 2486 ret = true; 2487 } 2488 return ret; 2489 } 2490 2491 /* Get the next entry on the list and randomize it using a random shift */ 2492 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2493 { 2494 if (state->pos >= state->count) 2495 state->pos = 0; 2496 return state->list[state->pos++]; 2497 } 2498 2499 /* Swap two freelist entries */ 2500 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2501 { 2502 swap(((freelist_idx_t *)page->freelist)[a], 2503 ((freelist_idx_t *)page->freelist)[b]); 2504 } 2505 2506 /* 2507 * Shuffle the freelist initialization state based on pre-computed lists. 2508 * return true if the list was successfully shuffled, false otherwise. 2509 */ 2510 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2511 { 2512 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2513 union freelist_init_state state; 2514 bool precomputed; 2515 2516 if (count < 2) 2517 return false; 2518 2519 precomputed = freelist_state_initialize(&state, cachep, count); 2520 2521 /* Take a random entry as the objfreelist */ 2522 if (OBJFREELIST_SLAB(cachep)) { 2523 if (!precomputed) 2524 objfreelist = count - 1; 2525 else 2526 objfreelist = next_random_slot(&state); 2527 page->freelist = index_to_obj(cachep, page, objfreelist) + 2528 obj_offset(cachep); 2529 count--; 2530 } 2531 2532 /* 2533 * On early boot, generate the list dynamically. 2534 * Later use a pre-computed list for speed. 2535 */ 2536 if (!precomputed) { 2537 for (i = 0; i < count; i++) 2538 set_free_obj(page, i, i); 2539 2540 /* Fisher-Yates shuffle */ 2541 for (i = count - 1; i > 0; i--) { 2542 rand = prandom_u32_state(&state.rnd_state); 2543 rand %= (i + 1); 2544 swap_free_obj(page, i, rand); 2545 } 2546 } else { 2547 for (i = 0; i < count; i++) 2548 set_free_obj(page, i, next_random_slot(&state)); 2549 } 2550 2551 if (OBJFREELIST_SLAB(cachep)) 2552 set_free_obj(page, cachep->num - 1, objfreelist); 2553 2554 return true; 2555 } 2556 #else 2557 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2558 struct page *page) 2559 { 2560 return false; 2561 } 2562 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2563 2564 static void cache_init_objs(struct kmem_cache *cachep, 2565 struct page *page) 2566 { 2567 int i; 2568 void *objp; 2569 bool shuffled; 2570 2571 cache_init_objs_debug(cachep, page); 2572 2573 /* Try to randomize the freelist if enabled */ 2574 shuffled = shuffle_freelist(cachep, page); 2575 2576 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2577 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2578 obj_offset(cachep); 2579 } 2580 2581 for (i = 0; i < cachep->num; i++) { 2582 objp = index_to_obj(cachep, page, i); 2583 kasan_init_slab_obj(cachep, objp); 2584 2585 /* constructor could break poison info */ 2586 if (DEBUG == 0 && cachep->ctor) { 2587 kasan_unpoison_object_data(cachep, objp); 2588 cachep->ctor(objp); 2589 kasan_poison_object_data(cachep, objp); 2590 } 2591 2592 if (!shuffled) 2593 set_free_obj(page, i, i); 2594 } 2595 } 2596 2597 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2598 { 2599 void *objp; 2600 2601 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2602 page->active++; 2603 2604 #if DEBUG 2605 if (cachep->flags & SLAB_STORE_USER) 2606 set_store_user_dirty(cachep); 2607 #endif 2608 2609 return objp; 2610 } 2611 2612 static void slab_put_obj(struct kmem_cache *cachep, 2613 struct page *page, void *objp) 2614 { 2615 unsigned int objnr = obj_to_index(cachep, page, objp); 2616 #if DEBUG 2617 unsigned int i; 2618 2619 /* Verify double free bug */ 2620 for (i = page->active; i < cachep->num; i++) { 2621 if (get_free_obj(page, i) == objnr) { 2622 pr_err("slab: double free detected in cache '%s', objp %p\n", 2623 cachep->name, objp); 2624 BUG(); 2625 } 2626 } 2627 #endif 2628 page->active--; 2629 if (!page->freelist) 2630 page->freelist = objp + obj_offset(cachep); 2631 2632 set_free_obj(page, page->active, objnr); 2633 } 2634 2635 /* 2636 * Map pages beginning at addr to the given cache and slab. This is required 2637 * for the slab allocator to be able to lookup the cache and slab of a 2638 * virtual address for kfree, ksize, and slab debugging. 2639 */ 2640 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2641 void *freelist) 2642 { 2643 page->slab_cache = cache; 2644 page->freelist = freelist; 2645 } 2646 2647 /* 2648 * Grow (by 1) the number of slabs within a cache. This is called by 2649 * kmem_cache_alloc() when there are no active objs left in a cache. 2650 */ 2651 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2652 gfp_t flags, int nodeid) 2653 { 2654 void *freelist; 2655 size_t offset; 2656 gfp_t local_flags; 2657 int page_node; 2658 struct kmem_cache_node *n; 2659 struct page *page; 2660 2661 /* 2662 * Be lazy and only check for valid flags here, keeping it out of the 2663 * critical path in kmem_cache_alloc(). 2664 */ 2665 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2666 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2667 flags &= ~GFP_SLAB_BUG_MASK; 2668 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2669 invalid_mask, &invalid_mask, flags, &flags); 2670 dump_stack(); 2671 } 2672 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2673 2674 check_irq_off(); 2675 if (gfpflags_allow_blocking(local_flags)) 2676 local_irq_enable(); 2677 2678 /* 2679 * Get mem for the objs. Attempt to allocate a physical page from 2680 * 'nodeid'. 2681 */ 2682 page = kmem_getpages(cachep, local_flags, nodeid); 2683 if (!page) 2684 goto failed; 2685 2686 page_node = page_to_nid(page); 2687 n = get_node(cachep, page_node); 2688 2689 /* Get colour for the slab, and cal the next value. */ 2690 n->colour_next++; 2691 if (n->colour_next >= cachep->colour) 2692 n->colour_next = 0; 2693 2694 offset = n->colour_next; 2695 if (offset >= cachep->colour) 2696 offset = 0; 2697 2698 offset *= cachep->colour_off; 2699 2700 /* Get slab management. */ 2701 freelist = alloc_slabmgmt(cachep, page, offset, 2702 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2703 if (OFF_SLAB(cachep) && !freelist) 2704 goto opps1; 2705 2706 slab_map_pages(cachep, page, freelist); 2707 2708 kasan_poison_slab(page); 2709 cache_init_objs(cachep, page); 2710 2711 if (gfpflags_allow_blocking(local_flags)) 2712 local_irq_disable(); 2713 2714 return page; 2715 2716 opps1: 2717 kmem_freepages(cachep, page); 2718 failed: 2719 if (gfpflags_allow_blocking(local_flags)) 2720 local_irq_disable(); 2721 return NULL; 2722 } 2723 2724 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2725 { 2726 struct kmem_cache_node *n; 2727 void *list = NULL; 2728 2729 check_irq_off(); 2730 2731 if (!page) 2732 return; 2733 2734 INIT_LIST_HEAD(&page->lru); 2735 n = get_node(cachep, page_to_nid(page)); 2736 2737 spin_lock(&n->list_lock); 2738 n->total_slabs++; 2739 if (!page->active) { 2740 list_add_tail(&page->lru, &(n->slabs_free)); 2741 n->free_slabs++; 2742 } else 2743 fixup_slab_list(cachep, n, page, &list); 2744 2745 STATS_INC_GROWN(cachep); 2746 n->free_objects += cachep->num - page->active; 2747 spin_unlock(&n->list_lock); 2748 2749 fixup_objfreelist_debug(cachep, &list); 2750 } 2751 2752 #if DEBUG 2753 2754 /* 2755 * Perform extra freeing checks: 2756 * - detect bad pointers. 2757 * - POISON/RED_ZONE checking 2758 */ 2759 static void kfree_debugcheck(const void *objp) 2760 { 2761 if (!virt_addr_valid(objp)) { 2762 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2763 (unsigned long)objp); 2764 BUG(); 2765 } 2766 } 2767 2768 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2769 { 2770 unsigned long long redzone1, redzone2; 2771 2772 redzone1 = *dbg_redzone1(cache, obj); 2773 redzone2 = *dbg_redzone2(cache, obj); 2774 2775 /* 2776 * Redzone is ok. 2777 */ 2778 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2779 return; 2780 2781 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2782 slab_error(cache, "double free detected"); 2783 else 2784 slab_error(cache, "memory outside object was overwritten"); 2785 2786 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2787 obj, redzone1, redzone2); 2788 } 2789 2790 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2791 unsigned long caller) 2792 { 2793 unsigned int objnr; 2794 struct page *page; 2795 2796 BUG_ON(virt_to_cache(objp) != cachep); 2797 2798 objp -= obj_offset(cachep); 2799 kfree_debugcheck(objp); 2800 page = virt_to_head_page(objp); 2801 2802 if (cachep->flags & SLAB_RED_ZONE) { 2803 verify_redzone_free(cachep, objp); 2804 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2805 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2806 } 2807 if (cachep->flags & SLAB_STORE_USER) { 2808 set_store_user_dirty(cachep); 2809 *dbg_userword(cachep, objp) = (void *)caller; 2810 } 2811 2812 objnr = obj_to_index(cachep, page, objp); 2813 2814 BUG_ON(objnr >= cachep->num); 2815 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2816 2817 if (cachep->flags & SLAB_POISON) { 2818 poison_obj(cachep, objp, POISON_FREE); 2819 slab_kernel_map(cachep, objp, 0, caller); 2820 } 2821 return objp; 2822 } 2823 2824 #else 2825 #define kfree_debugcheck(x) do { } while(0) 2826 #define cache_free_debugcheck(x,objp,z) (objp) 2827 #endif 2828 2829 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2830 void **list) 2831 { 2832 #if DEBUG 2833 void *next = *list; 2834 void *objp; 2835 2836 while (next) { 2837 objp = next - obj_offset(cachep); 2838 next = *(void **)next; 2839 poison_obj(cachep, objp, POISON_FREE); 2840 } 2841 #endif 2842 } 2843 2844 static inline void fixup_slab_list(struct kmem_cache *cachep, 2845 struct kmem_cache_node *n, struct page *page, 2846 void **list) 2847 { 2848 /* move slabp to correct slabp list: */ 2849 list_del(&page->lru); 2850 if (page->active == cachep->num) { 2851 list_add(&page->lru, &n->slabs_full); 2852 if (OBJFREELIST_SLAB(cachep)) { 2853 #if DEBUG 2854 /* Poisoning will be done without holding the lock */ 2855 if (cachep->flags & SLAB_POISON) { 2856 void **objp = page->freelist; 2857 2858 *objp = *list; 2859 *list = objp; 2860 } 2861 #endif 2862 page->freelist = NULL; 2863 } 2864 } else 2865 list_add(&page->lru, &n->slabs_partial); 2866 } 2867 2868 /* Try to find non-pfmemalloc slab if needed */ 2869 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2870 struct page *page, bool pfmemalloc) 2871 { 2872 if (!page) 2873 return NULL; 2874 2875 if (pfmemalloc) 2876 return page; 2877 2878 if (!PageSlabPfmemalloc(page)) 2879 return page; 2880 2881 /* No need to keep pfmemalloc slab if we have enough free objects */ 2882 if (n->free_objects > n->free_limit) { 2883 ClearPageSlabPfmemalloc(page); 2884 return page; 2885 } 2886 2887 /* Move pfmemalloc slab to the end of list to speed up next search */ 2888 list_del(&page->lru); 2889 if (!page->active) { 2890 list_add_tail(&page->lru, &n->slabs_free); 2891 n->free_slabs++; 2892 } else 2893 list_add_tail(&page->lru, &n->slabs_partial); 2894 2895 list_for_each_entry(page, &n->slabs_partial, lru) { 2896 if (!PageSlabPfmemalloc(page)) 2897 return page; 2898 } 2899 2900 n->free_touched = 1; 2901 list_for_each_entry(page, &n->slabs_free, lru) { 2902 if (!PageSlabPfmemalloc(page)) { 2903 n->free_slabs--; 2904 return page; 2905 } 2906 } 2907 2908 return NULL; 2909 } 2910 2911 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2912 { 2913 struct page *page; 2914 2915 assert_spin_locked(&n->list_lock); 2916 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru); 2917 if (!page) { 2918 n->free_touched = 1; 2919 page = list_first_entry_or_null(&n->slabs_free, struct page, 2920 lru); 2921 if (page) 2922 n->free_slabs--; 2923 } 2924 2925 if (sk_memalloc_socks()) 2926 page = get_valid_first_slab(n, page, pfmemalloc); 2927 2928 return page; 2929 } 2930 2931 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2932 struct kmem_cache_node *n, gfp_t flags) 2933 { 2934 struct page *page; 2935 void *obj; 2936 void *list = NULL; 2937 2938 if (!gfp_pfmemalloc_allowed(flags)) 2939 return NULL; 2940 2941 spin_lock(&n->list_lock); 2942 page = get_first_slab(n, true); 2943 if (!page) { 2944 spin_unlock(&n->list_lock); 2945 return NULL; 2946 } 2947 2948 obj = slab_get_obj(cachep, page); 2949 n->free_objects--; 2950 2951 fixup_slab_list(cachep, n, page, &list); 2952 2953 spin_unlock(&n->list_lock); 2954 fixup_objfreelist_debug(cachep, &list); 2955 2956 return obj; 2957 } 2958 2959 /* 2960 * Slab list should be fixed up by fixup_slab_list() for existing slab 2961 * or cache_grow_end() for new slab 2962 */ 2963 static __always_inline int alloc_block(struct kmem_cache *cachep, 2964 struct array_cache *ac, struct page *page, int batchcount) 2965 { 2966 /* 2967 * There must be at least one object available for 2968 * allocation. 2969 */ 2970 BUG_ON(page->active >= cachep->num); 2971 2972 while (page->active < cachep->num && batchcount--) { 2973 STATS_INC_ALLOCED(cachep); 2974 STATS_INC_ACTIVE(cachep); 2975 STATS_SET_HIGH(cachep); 2976 2977 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2978 } 2979 2980 return batchcount; 2981 } 2982 2983 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2984 { 2985 int batchcount; 2986 struct kmem_cache_node *n; 2987 struct array_cache *ac, *shared; 2988 int node; 2989 void *list = NULL; 2990 struct page *page; 2991 2992 check_irq_off(); 2993 node = numa_mem_id(); 2994 2995 ac = cpu_cache_get(cachep); 2996 batchcount = ac->batchcount; 2997 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2998 /* 2999 * If there was little recent activity on this cache, then 3000 * perform only a partial refill. Otherwise we could generate 3001 * refill bouncing. 3002 */ 3003 batchcount = BATCHREFILL_LIMIT; 3004 } 3005 n = get_node(cachep, node); 3006 3007 BUG_ON(ac->avail > 0 || !n); 3008 shared = READ_ONCE(n->shared); 3009 if (!n->free_objects && (!shared || !shared->avail)) 3010 goto direct_grow; 3011 3012 spin_lock(&n->list_lock); 3013 shared = READ_ONCE(n->shared); 3014 3015 /* See if we can refill from the shared array */ 3016 if (shared && transfer_objects(ac, shared, batchcount)) { 3017 shared->touched = 1; 3018 goto alloc_done; 3019 } 3020 3021 while (batchcount > 0) { 3022 /* Get slab alloc is to come from. */ 3023 page = get_first_slab(n, false); 3024 if (!page) 3025 goto must_grow; 3026 3027 check_spinlock_acquired(cachep); 3028 3029 batchcount = alloc_block(cachep, ac, page, batchcount); 3030 fixup_slab_list(cachep, n, page, &list); 3031 } 3032 3033 must_grow: 3034 n->free_objects -= ac->avail; 3035 alloc_done: 3036 spin_unlock(&n->list_lock); 3037 fixup_objfreelist_debug(cachep, &list); 3038 3039 direct_grow: 3040 if (unlikely(!ac->avail)) { 3041 /* Check if we can use obj in pfmemalloc slab */ 3042 if (sk_memalloc_socks()) { 3043 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 3044 3045 if (obj) 3046 return obj; 3047 } 3048 3049 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 3050 3051 /* 3052 * cache_grow_begin() can reenable interrupts, 3053 * then ac could change. 3054 */ 3055 ac = cpu_cache_get(cachep); 3056 if (!ac->avail && page) 3057 alloc_block(cachep, ac, page, batchcount); 3058 cache_grow_end(cachep, page); 3059 3060 if (!ac->avail) 3061 return NULL; 3062 } 3063 ac->touched = 1; 3064 3065 return ac->entry[--ac->avail]; 3066 } 3067 3068 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3069 gfp_t flags) 3070 { 3071 might_sleep_if(gfpflags_allow_blocking(flags)); 3072 } 3073 3074 #if DEBUG 3075 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3076 gfp_t flags, void *objp, unsigned long caller) 3077 { 3078 if (!objp) 3079 return objp; 3080 if (cachep->flags & SLAB_POISON) { 3081 check_poison_obj(cachep, objp); 3082 slab_kernel_map(cachep, objp, 1, 0); 3083 poison_obj(cachep, objp, POISON_INUSE); 3084 } 3085 if (cachep->flags & SLAB_STORE_USER) 3086 *dbg_userword(cachep, objp) = (void *)caller; 3087 3088 if (cachep->flags & SLAB_RED_ZONE) { 3089 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3090 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3091 slab_error(cachep, "double free, or memory outside object was overwritten"); 3092 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3093 objp, *dbg_redzone1(cachep, objp), 3094 *dbg_redzone2(cachep, objp)); 3095 } 3096 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3097 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3098 } 3099 3100 objp += obj_offset(cachep); 3101 if (cachep->ctor && cachep->flags & SLAB_POISON) 3102 cachep->ctor(objp); 3103 if (ARCH_SLAB_MINALIGN && 3104 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3105 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3106 objp, (int)ARCH_SLAB_MINALIGN); 3107 } 3108 return objp; 3109 } 3110 #else 3111 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3112 #endif 3113 3114 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3115 { 3116 void *objp; 3117 struct array_cache *ac; 3118 3119 check_irq_off(); 3120 3121 ac = cpu_cache_get(cachep); 3122 if (likely(ac->avail)) { 3123 ac->touched = 1; 3124 objp = ac->entry[--ac->avail]; 3125 3126 STATS_INC_ALLOCHIT(cachep); 3127 goto out; 3128 } 3129 3130 STATS_INC_ALLOCMISS(cachep); 3131 objp = cache_alloc_refill(cachep, flags); 3132 /* 3133 * the 'ac' may be updated by cache_alloc_refill(), 3134 * and kmemleak_erase() requires its correct value. 3135 */ 3136 ac = cpu_cache_get(cachep); 3137 3138 out: 3139 /* 3140 * To avoid a false negative, if an object that is in one of the 3141 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3142 * treat the array pointers as a reference to the object. 3143 */ 3144 if (objp) 3145 kmemleak_erase(&ac->entry[ac->avail]); 3146 return objp; 3147 } 3148 3149 #ifdef CONFIG_NUMA 3150 /* 3151 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3152 * 3153 * If we are in_interrupt, then process context, including cpusets and 3154 * mempolicy, may not apply and should not be used for allocation policy. 3155 */ 3156 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3157 { 3158 int nid_alloc, nid_here; 3159 3160 if (in_interrupt() || (flags & __GFP_THISNODE)) 3161 return NULL; 3162 nid_alloc = nid_here = numa_mem_id(); 3163 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3164 nid_alloc = cpuset_slab_spread_node(); 3165 else if (current->mempolicy) 3166 nid_alloc = mempolicy_slab_node(); 3167 if (nid_alloc != nid_here) 3168 return ____cache_alloc_node(cachep, flags, nid_alloc); 3169 return NULL; 3170 } 3171 3172 /* 3173 * Fallback function if there was no memory available and no objects on a 3174 * certain node and fall back is permitted. First we scan all the 3175 * available node for available objects. If that fails then we 3176 * perform an allocation without specifying a node. This allows the page 3177 * allocator to do its reclaim / fallback magic. We then insert the 3178 * slab into the proper nodelist and then allocate from it. 3179 */ 3180 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3181 { 3182 struct zonelist *zonelist; 3183 struct zoneref *z; 3184 struct zone *zone; 3185 enum zone_type high_zoneidx = gfp_zone(flags); 3186 void *obj = NULL; 3187 struct page *page; 3188 int nid; 3189 unsigned int cpuset_mems_cookie; 3190 3191 if (flags & __GFP_THISNODE) 3192 return NULL; 3193 3194 retry_cpuset: 3195 cpuset_mems_cookie = read_mems_allowed_begin(); 3196 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3197 3198 retry: 3199 /* 3200 * Look through allowed nodes for objects available 3201 * from existing per node queues. 3202 */ 3203 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3204 nid = zone_to_nid(zone); 3205 3206 if (cpuset_zone_allowed(zone, flags) && 3207 get_node(cache, nid) && 3208 get_node(cache, nid)->free_objects) { 3209 obj = ____cache_alloc_node(cache, 3210 gfp_exact_node(flags), nid); 3211 if (obj) 3212 break; 3213 } 3214 } 3215 3216 if (!obj) { 3217 /* 3218 * This allocation will be performed within the constraints 3219 * of the current cpuset / memory policy requirements. 3220 * We may trigger various forms of reclaim on the allowed 3221 * set and go into memory reserves if necessary. 3222 */ 3223 page = cache_grow_begin(cache, flags, numa_mem_id()); 3224 cache_grow_end(cache, page); 3225 if (page) { 3226 nid = page_to_nid(page); 3227 obj = ____cache_alloc_node(cache, 3228 gfp_exact_node(flags), nid); 3229 3230 /* 3231 * Another processor may allocate the objects in 3232 * the slab since we are not holding any locks. 3233 */ 3234 if (!obj) 3235 goto retry; 3236 } 3237 } 3238 3239 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3240 goto retry_cpuset; 3241 return obj; 3242 } 3243 3244 /* 3245 * A interface to enable slab creation on nodeid 3246 */ 3247 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3248 int nodeid) 3249 { 3250 struct page *page; 3251 struct kmem_cache_node *n; 3252 void *obj = NULL; 3253 void *list = NULL; 3254 3255 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3256 n = get_node(cachep, nodeid); 3257 BUG_ON(!n); 3258 3259 check_irq_off(); 3260 spin_lock(&n->list_lock); 3261 page = get_first_slab(n, false); 3262 if (!page) 3263 goto must_grow; 3264 3265 check_spinlock_acquired_node(cachep, nodeid); 3266 3267 STATS_INC_NODEALLOCS(cachep); 3268 STATS_INC_ACTIVE(cachep); 3269 STATS_SET_HIGH(cachep); 3270 3271 BUG_ON(page->active == cachep->num); 3272 3273 obj = slab_get_obj(cachep, page); 3274 n->free_objects--; 3275 3276 fixup_slab_list(cachep, n, page, &list); 3277 3278 spin_unlock(&n->list_lock); 3279 fixup_objfreelist_debug(cachep, &list); 3280 return obj; 3281 3282 must_grow: 3283 spin_unlock(&n->list_lock); 3284 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3285 if (page) { 3286 /* This slab isn't counted yet so don't update free_objects */ 3287 obj = slab_get_obj(cachep, page); 3288 } 3289 cache_grow_end(cachep, page); 3290 3291 return obj ? obj : fallback_alloc(cachep, flags); 3292 } 3293 3294 static __always_inline void * 3295 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3296 unsigned long caller) 3297 { 3298 unsigned long save_flags; 3299 void *ptr; 3300 int slab_node = numa_mem_id(); 3301 3302 flags &= gfp_allowed_mask; 3303 cachep = slab_pre_alloc_hook(cachep, flags); 3304 if (unlikely(!cachep)) 3305 return NULL; 3306 3307 cache_alloc_debugcheck_before(cachep, flags); 3308 local_irq_save(save_flags); 3309 3310 if (nodeid == NUMA_NO_NODE) 3311 nodeid = slab_node; 3312 3313 if (unlikely(!get_node(cachep, nodeid))) { 3314 /* Node not bootstrapped yet */ 3315 ptr = fallback_alloc(cachep, flags); 3316 goto out; 3317 } 3318 3319 if (nodeid == slab_node) { 3320 /* 3321 * Use the locally cached objects if possible. 3322 * However ____cache_alloc does not allow fallback 3323 * to other nodes. It may fail while we still have 3324 * objects on other nodes available. 3325 */ 3326 ptr = ____cache_alloc(cachep, flags); 3327 if (ptr) 3328 goto out; 3329 } 3330 /* ___cache_alloc_node can fall back to other nodes */ 3331 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3332 out: 3333 local_irq_restore(save_flags); 3334 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3335 3336 if (unlikely(flags & __GFP_ZERO) && ptr) 3337 memset(ptr, 0, cachep->object_size); 3338 3339 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3340 return ptr; 3341 } 3342 3343 static __always_inline void * 3344 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3345 { 3346 void *objp; 3347 3348 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3349 objp = alternate_node_alloc(cache, flags); 3350 if (objp) 3351 goto out; 3352 } 3353 objp = ____cache_alloc(cache, flags); 3354 3355 /* 3356 * We may just have run out of memory on the local node. 3357 * ____cache_alloc_node() knows how to locate memory on other nodes 3358 */ 3359 if (!objp) 3360 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3361 3362 out: 3363 return objp; 3364 } 3365 #else 3366 3367 static __always_inline void * 3368 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3369 { 3370 return ____cache_alloc(cachep, flags); 3371 } 3372 3373 #endif /* CONFIG_NUMA */ 3374 3375 static __always_inline void * 3376 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3377 { 3378 unsigned long save_flags; 3379 void *objp; 3380 3381 flags &= gfp_allowed_mask; 3382 cachep = slab_pre_alloc_hook(cachep, flags); 3383 if (unlikely(!cachep)) 3384 return NULL; 3385 3386 cache_alloc_debugcheck_before(cachep, flags); 3387 local_irq_save(save_flags); 3388 objp = __do_cache_alloc(cachep, flags); 3389 local_irq_restore(save_flags); 3390 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3391 prefetchw(objp); 3392 3393 if (unlikely(flags & __GFP_ZERO) && objp) 3394 memset(objp, 0, cachep->object_size); 3395 3396 slab_post_alloc_hook(cachep, flags, 1, &objp); 3397 return objp; 3398 } 3399 3400 /* 3401 * Caller needs to acquire correct kmem_cache_node's list_lock 3402 * @list: List of detached free slabs should be freed by caller 3403 */ 3404 static void free_block(struct kmem_cache *cachep, void **objpp, 3405 int nr_objects, int node, struct list_head *list) 3406 { 3407 int i; 3408 struct kmem_cache_node *n = get_node(cachep, node); 3409 struct page *page; 3410 3411 n->free_objects += nr_objects; 3412 3413 for (i = 0; i < nr_objects; i++) { 3414 void *objp; 3415 struct page *page; 3416 3417 objp = objpp[i]; 3418 3419 page = virt_to_head_page(objp); 3420 list_del(&page->lru); 3421 check_spinlock_acquired_node(cachep, node); 3422 slab_put_obj(cachep, page, objp); 3423 STATS_DEC_ACTIVE(cachep); 3424 3425 /* fixup slab chains */ 3426 if (page->active == 0) { 3427 list_add(&page->lru, &n->slabs_free); 3428 n->free_slabs++; 3429 } else { 3430 /* Unconditionally move a slab to the end of the 3431 * partial list on free - maximum time for the 3432 * other objects to be freed, too. 3433 */ 3434 list_add_tail(&page->lru, &n->slabs_partial); 3435 } 3436 } 3437 3438 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3439 n->free_objects -= cachep->num; 3440 3441 page = list_last_entry(&n->slabs_free, struct page, lru); 3442 list_move(&page->lru, list); 3443 n->free_slabs--; 3444 n->total_slabs--; 3445 } 3446 } 3447 3448 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3449 { 3450 int batchcount; 3451 struct kmem_cache_node *n; 3452 int node = numa_mem_id(); 3453 LIST_HEAD(list); 3454 3455 batchcount = ac->batchcount; 3456 3457 check_irq_off(); 3458 n = get_node(cachep, node); 3459 spin_lock(&n->list_lock); 3460 if (n->shared) { 3461 struct array_cache *shared_array = n->shared; 3462 int max = shared_array->limit - shared_array->avail; 3463 if (max) { 3464 if (batchcount > max) 3465 batchcount = max; 3466 memcpy(&(shared_array->entry[shared_array->avail]), 3467 ac->entry, sizeof(void *) * batchcount); 3468 shared_array->avail += batchcount; 3469 goto free_done; 3470 } 3471 } 3472 3473 free_block(cachep, ac->entry, batchcount, node, &list); 3474 free_done: 3475 #if STATS 3476 { 3477 int i = 0; 3478 struct page *page; 3479 3480 list_for_each_entry(page, &n->slabs_free, lru) { 3481 BUG_ON(page->active); 3482 3483 i++; 3484 } 3485 STATS_SET_FREEABLE(cachep, i); 3486 } 3487 #endif 3488 spin_unlock(&n->list_lock); 3489 slabs_destroy(cachep, &list); 3490 ac->avail -= batchcount; 3491 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3492 } 3493 3494 /* 3495 * Release an obj back to its cache. If the obj has a constructed state, it must 3496 * be in this state _before_ it is released. Called with disabled ints. 3497 */ 3498 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3499 unsigned long caller) 3500 { 3501 /* Put the object into the quarantine, don't touch it for now. */ 3502 if (kasan_slab_free(cachep, objp)) 3503 return; 3504 3505 ___cache_free(cachep, objp, caller); 3506 } 3507 3508 void ___cache_free(struct kmem_cache *cachep, void *objp, 3509 unsigned long caller) 3510 { 3511 struct array_cache *ac = cpu_cache_get(cachep); 3512 3513 check_irq_off(); 3514 kmemleak_free_recursive(objp, cachep->flags); 3515 objp = cache_free_debugcheck(cachep, objp, caller); 3516 3517 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3518 3519 /* 3520 * Skip calling cache_free_alien() when the platform is not numa. 3521 * This will avoid cache misses that happen while accessing slabp (which 3522 * is per page memory reference) to get nodeid. Instead use a global 3523 * variable to skip the call, which is mostly likely to be present in 3524 * the cache. 3525 */ 3526 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3527 return; 3528 3529 if (ac->avail < ac->limit) { 3530 STATS_INC_FREEHIT(cachep); 3531 } else { 3532 STATS_INC_FREEMISS(cachep); 3533 cache_flusharray(cachep, ac); 3534 } 3535 3536 if (sk_memalloc_socks()) { 3537 struct page *page = virt_to_head_page(objp); 3538 3539 if (unlikely(PageSlabPfmemalloc(page))) { 3540 cache_free_pfmemalloc(cachep, page, objp); 3541 return; 3542 } 3543 } 3544 3545 ac->entry[ac->avail++] = objp; 3546 } 3547 3548 /** 3549 * kmem_cache_alloc - Allocate an object 3550 * @cachep: The cache to allocate from. 3551 * @flags: See kmalloc(). 3552 * 3553 * Allocate an object from this cache. The flags are only relevant 3554 * if the cache has no available objects. 3555 */ 3556 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3557 { 3558 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3559 3560 kasan_slab_alloc(cachep, ret, flags); 3561 trace_kmem_cache_alloc(_RET_IP_, ret, 3562 cachep->object_size, cachep->size, flags); 3563 3564 return ret; 3565 } 3566 EXPORT_SYMBOL(kmem_cache_alloc); 3567 3568 static __always_inline void 3569 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3570 size_t size, void **p, unsigned long caller) 3571 { 3572 size_t i; 3573 3574 for (i = 0; i < size; i++) 3575 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3576 } 3577 3578 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3579 void **p) 3580 { 3581 size_t i; 3582 3583 s = slab_pre_alloc_hook(s, flags); 3584 if (!s) 3585 return 0; 3586 3587 cache_alloc_debugcheck_before(s, flags); 3588 3589 local_irq_disable(); 3590 for (i = 0; i < size; i++) { 3591 void *objp = __do_cache_alloc(s, flags); 3592 3593 if (unlikely(!objp)) 3594 goto error; 3595 p[i] = objp; 3596 } 3597 local_irq_enable(); 3598 3599 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3600 3601 /* Clear memory outside IRQ disabled section */ 3602 if (unlikely(flags & __GFP_ZERO)) 3603 for (i = 0; i < size; i++) 3604 memset(p[i], 0, s->object_size); 3605 3606 slab_post_alloc_hook(s, flags, size, p); 3607 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3608 return size; 3609 error: 3610 local_irq_enable(); 3611 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3612 slab_post_alloc_hook(s, flags, i, p); 3613 __kmem_cache_free_bulk(s, i, p); 3614 return 0; 3615 } 3616 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3617 3618 #ifdef CONFIG_TRACING 3619 void * 3620 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3621 { 3622 void *ret; 3623 3624 ret = slab_alloc(cachep, flags, _RET_IP_); 3625 3626 kasan_kmalloc(cachep, ret, size, flags); 3627 trace_kmalloc(_RET_IP_, ret, 3628 size, cachep->size, flags); 3629 return ret; 3630 } 3631 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3632 #endif 3633 3634 #ifdef CONFIG_NUMA 3635 /** 3636 * kmem_cache_alloc_node - Allocate an object on the specified node 3637 * @cachep: The cache to allocate from. 3638 * @flags: See kmalloc(). 3639 * @nodeid: node number of the target node. 3640 * 3641 * Identical to kmem_cache_alloc but it will allocate memory on the given 3642 * node, which can improve the performance for cpu bound structures. 3643 * 3644 * Fallback to other node is possible if __GFP_THISNODE is not set. 3645 */ 3646 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3647 { 3648 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3649 3650 kasan_slab_alloc(cachep, ret, flags); 3651 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3652 cachep->object_size, cachep->size, 3653 flags, nodeid); 3654 3655 return ret; 3656 } 3657 EXPORT_SYMBOL(kmem_cache_alloc_node); 3658 3659 #ifdef CONFIG_TRACING 3660 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3661 gfp_t flags, 3662 int nodeid, 3663 size_t size) 3664 { 3665 void *ret; 3666 3667 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3668 3669 kasan_kmalloc(cachep, ret, size, flags); 3670 trace_kmalloc_node(_RET_IP_, ret, 3671 size, cachep->size, 3672 flags, nodeid); 3673 return ret; 3674 } 3675 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3676 #endif 3677 3678 static __always_inline void * 3679 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3680 { 3681 struct kmem_cache *cachep; 3682 void *ret; 3683 3684 cachep = kmalloc_slab(size, flags); 3685 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3686 return cachep; 3687 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3688 kasan_kmalloc(cachep, ret, size, flags); 3689 3690 return ret; 3691 } 3692 3693 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3694 { 3695 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3696 } 3697 EXPORT_SYMBOL(__kmalloc_node); 3698 3699 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3700 int node, unsigned long caller) 3701 { 3702 return __do_kmalloc_node(size, flags, node, caller); 3703 } 3704 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3705 #endif /* CONFIG_NUMA */ 3706 3707 /** 3708 * __do_kmalloc - allocate memory 3709 * @size: how many bytes of memory are required. 3710 * @flags: the type of memory to allocate (see kmalloc). 3711 * @caller: function caller for debug tracking of the caller 3712 */ 3713 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3714 unsigned long caller) 3715 { 3716 struct kmem_cache *cachep; 3717 void *ret; 3718 3719 cachep = kmalloc_slab(size, flags); 3720 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3721 return cachep; 3722 ret = slab_alloc(cachep, flags, caller); 3723 3724 kasan_kmalloc(cachep, ret, size, flags); 3725 trace_kmalloc(caller, ret, 3726 size, cachep->size, flags); 3727 3728 return ret; 3729 } 3730 3731 void *__kmalloc(size_t size, gfp_t flags) 3732 { 3733 return __do_kmalloc(size, flags, _RET_IP_); 3734 } 3735 EXPORT_SYMBOL(__kmalloc); 3736 3737 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3738 { 3739 return __do_kmalloc(size, flags, caller); 3740 } 3741 EXPORT_SYMBOL(__kmalloc_track_caller); 3742 3743 /** 3744 * kmem_cache_free - Deallocate an object 3745 * @cachep: The cache the allocation was from. 3746 * @objp: The previously allocated object. 3747 * 3748 * Free an object which was previously allocated from this 3749 * cache. 3750 */ 3751 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3752 { 3753 unsigned long flags; 3754 cachep = cache_from_obj(cachep, objp); 3755 if (!cachep) 3756 return; 3757 3758 local_irq_save(flags); 3759 debug_check_no_locks_freed(objp, cachep->object_size); 3760 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3761 debug_check_no_obj_freed(objp, cachep->object_size); 3762 __cache_free(cachep, objp, _RET_IP_); 3763 local_irq_restore(flags); 3764 3765 trace_kmem_cache_free(_RET_IP_, objp); 3766 } 3767 EXPORT_SYMBOL(kmem_cache_free); 3768 3769 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3770 { 3771 struct kmem_cache *s; 3772 size_t i; 3773 3774 local_irq_disable(); 3775 for (i = 0; i < size; i++) { 3776 void *objp = p[i]; 3777 3778 if (!orig_s) /* called via kfree_bulk */ 3779 s = virt_to_cache(objp); 3780 else 3781 s = cache_from_obj(orig_s, objp); 3782 3783 debug_check_no_locks_freed(objp, s->object_size); 3784 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3785 debug_check_no_obj_freed(objp, s->object_size); 3786 3787 __cache_free(s, objp, _RET_IP_); 3788 } 3789 local_irq_enable(); 3790 3791 /* FIXME: add tracing */ 3792 } 3793 EXPORT_SYMBOL(kmem_cache_free_bulk); 3794 3795 /** 3796 * kfree - free previously allocated memory 3797 * @objp: pointer returned by kmalloc. 3798 * 3799 * If @objp is NULL, no operation is performed. 3800 * 3801 * Don't free memory not originally allocated by kmalloc() 3802 * or you will run into trouble. 3803 */ 3804 void kfree(const void *objp) 3805 { 3806 struct kmem_cache *c; 3807 unsigned long flags; 3808 3809 trace_kfree(_RET_IP_, objp); 3810 3811 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3812 return; 3813 local_irq_save(flags); 3814 kfree_debugcheck(objp); 3815 c = virt_to_cache(objp); 3816 debug_check_no_locks_freed(objp, c->object_size); 3817 3818 debug_check_no_obj_freed(objp, c->object_size); 3819 __cache_free(c, (void *)objp, _RET_IP_); 3820 local_irq_restore(flags); 3821 } 3822 EXPORT_SYMBOL(kfree); 3823 3824 /* 3825 * This initializes kmem_cache_node or resizes various caches for all nodes. 3826 */ 3827 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3828 { 3829 int ret; 3830 int node; 3831 struct kmem_cache_node *n; 3832 3833 for_each_online_node(node) { 3834 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3835 if (ret) 3836 goto fail; 3837 3838 } 3839 3840 return 0; 3841 3842 fail: 3843 if (!cachep->list.next) { 3844 /* Cache is not active yet. Roll back what we did */ 3845 node--; 3846 while (node >= 0) { 3847 n = get_node(cachep, node); 3848 if (n) { 3849 kfree(n->shared); 3850 free_alien_cache(n->alien); 3851 kfree(n); 3852 cachep->node[node] = NULL; 3853 } 3854 node--; 3855 } 3856 } 3857 return -ENOMEM; 3858 } 3859 3860 /* Always called with the slab_mutex held */ 3861 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3862 int batchcount, int shared, gfp_t gfp) 3863 { 3864 struct array_cache __percpu *cpu_cache, *prev; 3865 int cpu; 3866 3867 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3868 if (!cpu_cache) 3869 return -ENOMEM; 3870 3871 prev = cachep->cpu_cache; 3872 cachep->cpu_cache = cpu_cache; 3873 kick_all_cpus_sync(); 3874 3875 check_irq_on(); 3876 cachep->batchcount = batchcount; 3877 cachep->limit = limit; 3878 cachep->shared = shared; 3879 3880 if (!prev) 3881 goto setup_node; 3882 3883 for_each_online_cpu(cpu) { 3884 LIST_HEAD(list); 3885 int node; 3886 struct kmem_cache_node *n; 3887 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3888 3889 node = cpu_to_mem(cpu); 3890 n = get_node(cachep, node); 3891 spin_lock_irq(&n->list_lock); 3892 free_block(cachep, ac->entry, ac->avail, node, &list); 3893 spin_unlock_irq(&n->list_lock); 3894 slabs_destroy(cachep, &list); 3895 } 3896 free_percpu(prev); 3897 3898 setup_node: 3899 return setup_kmem_cache_nodes(cachep, gfp); 3900 } 3901 3902 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3903 int batchcount, int shared, gfp_t gfp) 3904 { 3905 int ret; 3906 struct kmem_cache *c; 3907 3908 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3909 3910 if (slab_state < FULL) 3911 return ret; 3912 3913 if ((ret < 0) || !is_root_cache(cachep)) 3914 return ret; 3915 3916 lockdep_assert_held(&slab_mutex); 3917 for_each_memcg_cache(c, cachep) { 3918 /* return value determined by the root cache only */ 3919 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3920 } 3921 3922 return ret; 3923 } 3924 3925 /* Called with slab_mutex held always */ 3926 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3927 { 3928 int err; 3929 int limit = 0; 3930 int shared = 0; 3931 int batchcount = 0; 3932 3933 err = cache_random_seq_create(cachep, cachep->num, gfp); 3934 if (err) 3935 goto end; 3936 3937 if (!is_root_cache(cachep)) { 3938 struct kmem_cache *root = memcg_root_cache(cachep); 3939 limit = root->limit; 3940 shared = root->shared; 3941 batchcount = root->batchcount; 3942 } 3943 3944 if (limit && shared && batchcount) 3945 goto skip_setup; 3946 /* 3947 * The head array serves three purposes: 3948 * - create a LIFO ordering, i.e. return objects that are cache-warm 3949 * - reduce the number of spinlock operations. 3950 * - reduce the number of linked list operations on the slab and 3951 * bufctl chains: array operations are cheaper. 3952 * The numbers are guessed, we should auto-tune as described by 3953 * Bonwick. 3954 */ 3955 if (cachep->size > 131072) 3956 limit = 1; 3957 else if (cachep->size > PAGE_SIZE) 3958 limit = 8; 3959 else if (cachep->size > 1024) 3960 limit = 24; 3961 else if (cachep->size > 256) 3962 limit = 54; 3963 else 3964 limit = 120; 3965 3966 /* 3967 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3968 * allocation behaviour: Most allocs on one cpu, most free operations 3969 * on another cpu. For these cases, an efficient object passing between 3970 * cpus is necessary. This is provided by a shared array. The array 3971 * replaces Bonwick's magazine layer. 3972 * On uniprocessor, it's functionally equivalent (but less efficient) 3973 * to a larger limit. Thus disabled by default. 3974 */ 3975 shared = 0; 3976 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3977 shared = 8; 3978 3979 #if DEBUG 3980 /* 3981 * With debugging enabled, large batchcount lead to excessively long 3982 * periods with disabled local interrupts. Limit the batchcount 3983 */ 3984 if (limit > 32) 3985 limit = 32; 3986 #endif 3987 batchcount = (limit + 1) / 2; 3988 skip_setup: 3989 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3990 end: 3991 if (err) 3992 pr_err("enable_cpucache failed for %s, error %d\n", 3993 cachep->name, -err); 3994 return err; 3995 } 3996 3997 /* 3998 * Drain an array if it contains any elements taking the node lock only if 3999 * necessary. Note that the node listlock also protects the array_cache 4000 * if drain_array() is used on the shared array. 4001 */ 4002 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 4003 struct array_cache *ac, int node) 4004 { 4005 LIST_HEAD(list); 4006 4007 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 4008 check_mutex_acquired(); 4009 4010 if (!ac || !ac->avail) 4011 return; 4012 4013 if (ac->touched) { 4014 ac->touched = 0; 4015 return; 4016 } 4017 4018 spin_lock_irq(&n->list_lock); 4019 drain_array_locked(cachep, ac, node, false, &list); 4020 spin_unlock_irq(&n->list_lock); 4021 4022 slabs_destroy(cachep, &list); 4023 } 4024 4025 /** 4026 * cache_reap - Reclaim memory from caches. 4027 * @w: work descriptor 4028 * 4029 * Called from workqueue/eventd every few seconds. 4030 * Purpose: 4031 * - clear the per-cpu caches for this CPU. 4032 * - return freeable pages to the main free memory pool. 4033 * 4034 * If we cannot acquire the cache chain mutex then just give up - we'll try 4035 * again on the next iteration. 4036 */ 4037 static void cache_reap(struct work_struct *w) 4038 { 4039 struct kmem_cache *searchp; 4040 struct kmem_cache_node *n; 4041 int node = numa_mem_id(); 4042 struct delayed_work *work = to_delayed_work(w); 4043 4044 if (!mutex_trylock(&slab_mutex)) 4045 /* Give up. Setup the next iteration. */ 4046 goto out; 4047 4048 list_for_each_entry(searchp, &slab_caches, list) { 4049 check_irq_on(); 4050 4051 /* 4052 * We only take the node lock if absolutely necessary and we 4053 * have established with reasonable certainty that 4054 * we can do some work if the lock was obtained. 4055 */ 4056 n = get_node(searchp, node); 4057 4058 reap_alien(searchp, n); 4059 4060 drain_array(searchp, n, cpu_cache_get(searchp), node); 4061 4062 /* 4063 * These are racy checks but it does not matter 4064 * if we skip one check or scan twice. 4065 */ 4066 if (time_after(n->next_reap, jiffies)) 4067 goto next; 4068 4069 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4070 4071 drain_array(searchp, n, n->shared, node); 4072 4073 if (n->free_touched) 4074 n->free_touched = 0; 4075 else { 4076 int freed; 4077 4078 freed = drain_freelist(searchp, n, (n->free_limit + 4079 5 * searchp->num - 1) / (5 * searchp->num)); 4080 STATS_ADD_REAPED(searchp, freed); 4081 } 4082 next: 4083 cond_resched(); 4084 } 4085 check_irq_on(); 4086 mutex_unlock(&slab_mutex); 4087 next_reap_node(); 4088 out: 4089 /* Set up the next iteration */ 4090 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 4091 } 4092 4093 #ifdef CONFIG_SLABINFO 4094 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4095 { 4096 unsigned long active_objs, num_objs, active_slabs; 4097 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4098 unsigned long free_slabs = 0; 4099 int node; 4100 struct kmem_cache_node *n; 4101 4102 for_each_kmem_cache_node(cachep, node, n) { 4103 check_irq_on(); 4104 spin_lock_irq(&n->list_lock); 4105 4106 total_slabs += n->total_slabs; 4107 free_slabs += n->free_slabs; 4108 free_objs += n->free_objects; 4109 4110 if (n->shared) 4111 shared_avail += n->shared->avail; 4112 4113 spin_unlock_irq(&n->list_lock); 4114 } 4115 num_objs = total_slabs * cachep->num; 4116 active_slabs = total_slabs - free_slabs; 4117 active_objs = num_objs - free_objs; 4118 4119 sinfo->active_objs = active_objs; 4120 sinfo->num_objs = num_objs; 4121 sinfo->active_slabs = active_slabs; 4122 sinfo->num_slabs = total_slabs; 4123 sinfo->shared_avail = shared_avail; 4124 sinfo->limit = cachep->limit; 4125 sinfo->batchcount = cachep->batchcount; 4126 sinfo->shared = cachep->shared; 4127 sinfo->objects_per_slab = cachep->num; 4128 sinfo->cache_order = cachep->gfporder; 4129 } 4130 4131 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4132 { 4133 #if STATS 4134 { /* node stats */ 4135 unsigned long high = cachep->high_mark; 4136 unsigned long allocs = cachep->num_allocations; 4137 unsigned long grown = cachep->grown; 4138 unsigned long reaped = cachep->reaped; 4139 unsigned long errors = cachep->errors; 4140 unsigned long max_freeable = cachep->max_freeable; 4141 unsigned long node_allocs = cachep->node_allocs; 4142 unsigned long node_frees = cachep->node_frees; 4143 unsigned long overflows = cachep->node_overflow; 4144 4145 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4146 allocs, high, grown, 4147 reaped, errors, max_freeable, node_allocs, 4148 node_frees, overflows); 4149 } 4150 /* cpu stats */ 4151 { 4152 unsigned long allochit = atomic_read(&cachep->allochit); 4153 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4154 unsigned long freehit = atomic_read(&cachep->freehit); 4155 unsigned long freemiss = atomic_read(&cachep->freemiss); 4156 4157 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4158 allochit, allocmiss, freehit, freemiss); 4159 } 4160 #endif 4161 } 4162 4163 #define MAX_SLABINFO_WRITE 128 4164 /** 4165 * slabinfo_write - Tuning for the slab allocator 4166 * @file: unused 4167 * @buffer: user buffer 4168 * @count: data length 4169 * @ppos: unused 4170 */ 4171 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4172 size_t count, loff_t *ppos) 4173 { 4174 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4175 int limit, batchcount, shared, res; 4176 struct kmem_cache *cachep; 4177 4178 if (count > MAX_SLABINFO_WRITE) 4179 return -EINVAL; 4180 if (copy_from_user(&kbuf, buffer, count)) 4181 return -EFAULT; 4182 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4183 4184 tmp = strchr(kbuf, ' '); 4185 if (!tmp) 4186 return -EINVAL; 4187 *tmp = '\0'; 4188 tmp++; 4189 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4190 return -EINVAL; 4191 4192 /* Find the cache in the chain of caches. */ 4193 mutex_lock(&slab_mutex); 4194 res = -EINVAL; 4195 list_for_each_entry(cachep, &slab_caches, list) { 4196 if (!strcmp(cachep->name, kbuf)) { 4197 if (limit < 1 || batchcount < 1 || 4198 batchcount > limit || shared < 0) { 4199 res = 0; 4200 } else { 4201 res = do_tune_cpucache(cachep, limit, 4202 batchcount, shared, 4203 GFP_KERNEL); 4204 } 4205 break; 4206 } 4207 } 4208 mutex_unlock(&slab_mutex); 4209 if (res >= 0) 4210 res = count; 4211 return res; 4212 } 4213 4214 #ifdef CONFIG_DEBUG_SLAB_LEAK 4215 4216 static inline int add_caller(unsigned long *n, unsigned long v) 4217 { 4218 unsigned long *p; 4219 int l; 4220 if (!v) 4221 return 1; 4222 l = n[1]; 4223 p = n + 2; 4224 while (l) { 4225 int i = l/2; 4226 unsigned long *q = p + 2 * i; 4227 if (*q == v) { 4228 q[1]++; 4229 return 1; 4230 } 4231 if (*q > v) { 4232 l = i; 4233 } else { 4234 p = q + 2; 4235 l -= i + 1; 4236 } 4237 } 4238 if (++n[1] == n[0]) 4239 return 0; 4240 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4241 p[0] = v; 4242 p[1] = 1; 4243 return 1; 4244 } 4245 4246 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4247 struct page *page) 4248 { 4249 void *p; 4250 int i, j; 4251 unsigned long v; 4252 4253 if (n[0] == n[1]) 4254 return; 4255 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4256 bool active = true; 4257 4258 for (j = page->active; j < c->num; j++) { 4259 if (get_free_obj(page, j) == i) { 4260 active = false; 4261 break; 4262 } 4263 } 4264 4265 if (!active) 4266 continue; 4267 4268 /* 4269 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4270 * mapping is established when actual object allocation and 4271 * we could mistakenly access the unmapped object in the cpu 4272 * cache. 4273 */ 4274 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4275 continue; 4276 4277 if (!add_caller(n, v)) 4278 return; 4279 } 4280 } 4281 4282 static void show_symbol(struct seq_file *m, unsigned long address) 4283 { 4284 #ifdef CONFIG_KALLSYMS 4285 unsigned long offset, size; 4286 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4287 4288 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4289 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4290 if (modname[0]) 4291 seq_printf(m, " [%s]", modname); 4292 return; 4293 } 4294 #endif 4295 seq_printf(m, "%p", (void *)address); 4296 } 4297 4298 static int leaks_show(struct seq_file *m, void *p) 4299 { 4300 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4301 struct page *page; 4302 struct kmem_cache_node *n; 4303 const char *name; 4304 unsigned long *x = m->private; 4305 int node; 4306 int i; 4307 4308 if (!(cachep->flags & SLAB_STORE_USER)) 4309 return 0; 4310 if (!(cachep->flags & SLAB_RED_ZONE)) 4311 return 0; 4312 4313 /* 4314 * Set store_user_clean and start to grab stored user information 4315 * for all objects on this cache. If some alloc/free requests comes 4316 * during the processing, information would be wrong so restart 4317 * whole processing. 4318 */ 4319 do { 4320 set_store_user_clean(cachep); 4321 drain_cpu_caches(cachep); 4322 4323 x[1] = 0; 4324 4325 for_each_kmem_cache_node(cachep, node, n) { 4326 4327 check_irq_on(); 4328 spin_lock_irq(&n->list_lock); 4329 4330 list_for_each_entry(page, &n->slabs_full, lru) 4331 handle_slab(x, cachep, page); 4332 list_for_each_entry(page, &n->slabs_partial, lru) 4333 handle_slab(x, cachep, page); 4334 spin_unlock_irq(&n->list_lock); 4335 } 4336 } while (!is_store_user_clean(cachep)); 4337 4338 name = cachep->name; 4339 if (x[0] == x[1]) { 4340 /* Increase the buffer size */ 4341 mutex_unlock(&slab_mutex); 4342 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4343 if (!m->private) { 4344 /* Too bad, we are really out */ 4345 m->private = x; 4346 mutex_lock(&slab_mutex); 4347 return -ENOMEM; 4348 } 4349 *(unsigned long *)m->private = x[0] * 2; 4350 kfree(x); 4351 mutex_lock(&slab_mutex); 4352 /* Now make sure this entry will be retried */ 4353 m->count = m->size; 4354 return 0; 4355 } 4356 for (i = 0; i < x[1]; i++) { 4357 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4358 show_symbol(m, x[2*i+2]); 4359 seq_putc(m, '\n'); 4360 } 4361 4362 return 0; 4363 } 4364 4365 static const struct seq_operations slabstats_op = { 4366 .start = slab_start, 4367 .next = slab_next, 4368 .stop = slab_stop, 4369 .show = leaks_show, 4370 }; 4371 4372 static int slabstats_open(struct inode *inode, struct file *file) 4373 { 4374 unsigned long *n; 4375 4376 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4377 if (!n) 4378 return -ENOMEM; 4379 4380 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4381 4382 return 0; 4383 } 4384 4385 static const struct file_operations proc_slabstats_operations = { 4386 .open = slabstats_open, 4387 .read = seq_read, 4388 .llseek = seq_lseek, 4389 .release = seq_release_private, 4390 }; 4391 #endif 4392 4393 static int __init slab_proc_init(void) 4394 { 4395 #ifdef CONFIG_DEBUG_SLAB_LEAK 4396 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4397 #endif 4398 return 0; 4399 } 4400 module_init(slab_proc_init); 4401 #endif 4402 4403 #ifdef CONFIG_HARDENED_USERCOPY 4404 /* 4405 * Rejects objects that are incorrectly sized. 4406 * 4407 * Returns NULL if check passes, otherwise const char * to name of cache 4408 * to indicate an error. 4409 */ 4410 const char *__check_heap_object(const void *ptr, unsigned long n, 4411 struct page *page) 4412 { 4413 struct kmem_cache *cachep; 4414 unsigned int objnr; 4415 unsigned long offset; 4416 4417 /* Find and validate object. */ 4418 cachep = page->slab_cache; 4419 objnr = obj_to_index(cachep, page, (void *)ptr); 4420 BUG_ON(objnr >= cachep->num); 4421 4422 /* Find offset within object. */ 4423 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4424 4425 /* Allow address range falling entirely within object size. */ 4426 if (offset <= cachep->object_size && n <= cachep->object_size - offset) 4427 return NULL; 4428 4429 return cachep->name; 4430 } 4431 #endif /* CONFIG_HARDENED_USERCOPY */ 4432 4433 /** 4434 * ksize - get the actual amount of memory allocated for a given object 4435 * @objp: Pointer to the object 4436 * 4437 * kmalloc may internally round up allocations and return more memory 4438 * than requested. ksize() can be used to determine the actual amount of 4439 * memory allocated. The caller may use this additional memory, even though 4440 * a smaller amount of memory was initially specified with the kmalloc call. 4441 * The caller must guarantee that objp points to a valid object previously 4442 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4443 * must not be freed during the duration of the call. 4444 */ 4445 size_t ksize(const void *objp) 4446 { 4447 size_t size; 4448 4449 BUG_ON(!objp); 4450 if (unlikely(objp == ZERO_SIZE_PTR)) 4451 return 0; 4452 4453 size = virt_to_cache(objp)->object_size; 4454 /* We assume that ksize callers could use the whole allocated area, 4455 * so we need to unpoison this area. 4456 */ 4457 kasan_unpoison_shadow(objp, size); 4458 4459 return size; 4460 } 4461 EXPORT_SYMBOL(ksize); 4462