1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'slab_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 120 #include <net/sock.h> 121 122 #include <asm/cacheflush.h> 123 #include <asm/tlbflush.h> 124 #include <asm/page.h> 125 126 #include <trace/events/kmem.h> 127 128 #include "internal.h" 129 130 #include "slab.h" 131 132 /* 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 134 * 0 for faster, smaller code (especially in the critical paths). 135 * 136 * STATS - 1 to collect stats for /proc/slabinfo. 137 * 0 for faster, smaller code (especially in the critical paths). 138 * 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 140 */ 141 142 #ifdef CONFIG_DEBUG_SLAB 143 #define DEBUG 1 144 #define STATS 1 145 #define FORCED_DEBUG 1 146 #else 147 #define DEBUG 0 148 #define STATS 0 149 #define FORCED_DEBUG 0 150 #endif 151 152 /* Shouldn't this be in a header file somewhere? */ 153 #define BYTES_PER_WORD sizeof(void *) 154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 155 156 #ifndef ARCH_KMALLOC_FLAGS 157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 158 #endif 159 160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 162 163 #if FREELIST_BYTE_INDEX 164 typedef unsigned char freelist_idx_t; 165 #else 166 typedef unsigned short freelist_idx_t; 167 #endif 168 169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 170 171 /* 172 * struct array_cache 173 * 174 * Purpose: 175 * - LIFO ordering, to hand out cache-warm objects from _alloc 176 * - reduce the number of linked list operations 177 * - reduce spinlock operations 178 * 179 * The limit is stored in the per-cpu structure to reduce the data cache 180 * footprint. 181 * 182 */ 183 struct array_cache { 184 unsigned int avail; 185 unsigned int limit; 186 unsigned int batchcount; 187 unsigned int touched; 188 void *entry[]; /* 189 * Must have this definition in here for the proper 190 * alignment of array_cache. Also simplifies accessing 191 * the entries. 192 */ 193 }; 194 195 struct alien_cache { 196 spinlock_t lock; 197 struct array_cache ac; 198 }; 199 200 /* 201 * Need this for bootstrapping a per node allocator. 202 */ 203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 205 #define CACHE_CACHE 0 206 #define SIZE_NODE (MAX_NUMNODES) 207 208 static int drain_freelist(struct kmem_cache *cache, 209 struct kmem_cache_node *n, int tofree); 210 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 211 int node, struct list_head *list); 212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 214 static void cache_reap(struct work_struct *unused); 215 216 static int slab_early_init = 1; 217 218 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 219 220 static void kmem_cache_node_init(struct kmem_cache_node *parent) 221 { 222 INIT_LIST_HEAD(&parent->slabs_full); 223 INIT_LIST_HEAD(&parent->slabs_partial); 224 INIT_LIST_HEAD(&parent->slabs_free); 225 parent->shared = NULL; 226 parent->alien = NULL; 227 parent->colour_next = 0; 228 spin_lock_init(&parent->list_lock); 229 parent->free_objects = 0; 230 parent->free_touched = 0; 231 } 232 233 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 234 do { \ 235 INIT_LIST_HEAD(listp); \ 236 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 237 } while (0) 238 239 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 240 do { \ 241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 244 } while (0) 245 246 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL) 247 #define CFLGS_OFF_SLAB (0x80000000UL) 248 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 249 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 250 251 #define BATCHREFILL_LIMIT 16 252 /* 253 * Optimization question: fewer reaps means less probability for unnessary 254 * cpucache drain/refill cycles. 255 * 256 * OTOH the cpuarrays can contain lots of objects, 257 * which could lock up otherwise freeable slabs. 258 */ 259 #define REAPTIMEOUT_AC (2*HZ) 260 #define REAPTIMEOUT_NODE (4*HZ) 261 262 #if STATS 263 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 264 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 265 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 266 #define STATS_INC_GROWN(x) ((x)->grown++) 267 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 268 #define STATS_SET_HIGH(x) \ 269 do { \ 270 if ((x)->num_active > (x)->high_mark) \ 271 (x)->high_mark = (x)->num_active; \ 272 } while (0) 273 #define STATS_INC_ERR(x) ((x)->errors++) 274 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 275 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 276 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 277 #define STATS_SET_FREEABLE(x, i) \ 278 do { \ 279 if ((x)->max_freeable < i) \ 280 (x)->max_freeable = i; \ 281 } while (0) 282 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 283 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 284 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 285 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 286 #else 287 #define STATS_INC_ACTIVE(x) do { } while (0) 288 #define STATS_DEC_ACTIVE(x) do { } while (0) 289 #define STATS_INC_ALLOCED(x) do { } while (0) 290 #define STATS_INC_GROWN(x) do { } while (0) 291 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 292 #define STATS_SET_HIGH(x) do { } while (0) 293 #define STATS_INC_ERR(x) do { } while (0) 294 #define STATS_INC_NODEALLOCS(x) do { } while (0) 295 #define STATS_INC_NODEFREES(x) do { } while (0) 296 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 297 #define STATS_SET_FREEABLE(x, i) do { } while (0) 298 #define STATS_INC_ALLOCHIT(x) do { } while (0) 299 #define STATS_INC_ALLOCMISS(x) do { } while (0) 300 #define STATS_INC_FREEHIT(x) do { } while (0) 301 #define STATS_INC_FREEMISS(x) do { } while (0) 302 #endif 303 304 #if DEBUG 305 306 /* 307 * memory layout of objects: 308 * 0 : objp 309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 310 * the end of an object is aligned with the end of the real 311 * allocation. Catches writes behind the end of the allocation. 312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 313 * redzone word. 314 * cachep->obj_offset: The real object. 315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 316 * cachep->size - 1* BYTES_PER_WORD: last caller address 317 * [BYTES_PER_WORD long] 318 */ 319 static int obj_offset(struct kmem_cache *cachep) 320 { 321 return cachep->obj_offset; 322 } 323 324 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 325 { 326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 327 return (unsigned long long*) (objp + obj_offset(cachep) - 328 sizeof(unsigned long long)); 329 } 330 331 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 332 { 333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 334 if (cachep->flags & SLAB_STORE_USER) 335 return (unsigned long long *)(objp + cachep->size - 336 sizeof(unsigned long long) - 337 REDZONE_ALIGN); 338 return (unsigned long long *) (objp + cachep->size - 339 sizeof(unsigned long long)); 340 } 341 342 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 343 { 344 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 345 return (void **)(objp + cachep->size - BYTES_PER_WORD); 346 } 347 348 #else 349 350 #define obj_offset(x) 0 351 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 352 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 353 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 354 355 #endif 356 357 #ifdef CONFIG_DEBUG_SLAB_LEAK 358 359 static inline bool is_store_user_clean(struct kmem_cache *cachep) 360 { 361 return atomic_read(&cachep->store_user_clean) == 1; 362 } 363 364 static inline void set_store_user_clean(struct kmem_cache *cachep) 365 { 366 atomic_set(&cachep->store_user_clean, 1); 367 } 368 369 static inline void set_store_user_dirty(struct kmem_cache *cachep) 370 { 371 if (is_store_user_clean(cachep)) 372 atomic_set(&cachep->store_user_clean, 0); 373 } 374 375 #else 376 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 377 378 #endif 379 380 /* 381 * Do not go above this order unless 0 objects fit into the slab or 382 * overridden on the command line. 383 */ 384 #define SLAB_MAX_ORDER_HI 1 385 #define SLAB_MAX_ORDER_LO 0 386 static int slab_max_order = SLAB_MAX_ORDER_LO; 387 static bool slab_max_order_set __initdata; 388 389 static inline struct kmem_cache *virt_to_cache(const void *obj) 390 { 391 struct page *page = virt_to_head_page(obj); 392 return page->slab_cache; 393 } 394 395 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 396 unsigned int idx) 397 { 398 return page->s_mem + cache->size * idx; 399 } 400 401 /* 402 * We want to avoid an expensive divide : (offset / cache->size) 403 * Using the fact that size is a constant for a particular cache, 404 * we can replace (offset / cache->size) by 405 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 406 */ 407 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 408 const struct page *page, void *obj) 409 { 410 u32 offset = (obj - page->s_mem); 411 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 412 } 413 414 #define BOOT_CPUCACHE_ENTRIES 1 415 /* internal cache of cache description objs */ 416 static struct kmem_cache kmem_cache_boot = { 417 .batchcount = 1, 418 .limit = BOOT_CPUCACHE_ENTRIES, 419 .shared = 1, 420 .size = sizeof(struct kmem_cache), 421 .name = "kmem_cache", 422 }; 423 424 #define BAD_ALIEN_MAGIC 0x01020304ul 425 426 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 427 428 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 429 { 430 return this_cpu_ptr(cachep->cpu_cache); 431 } 432 433 /* 434 * Calculate the number of objects and left-over bytes for a given buffer size. 435 */ 436 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 437 unsigned long flags, size_t *left_over) 438 { 439 unsigned int num; 440 size_t slab_size = PAGE_SIZE << gfporder; 441 442 /* 443 * The slab management structure can be either off the slab or 444 * on it. For the latter case, the memory allocated for a 445 * slab is used for: 446 * 447 * - @buffer_size bytes for each object 448 * - One freelist_idx_t for each object 449 * 450 * We don't need to consider alignment of freelist because 451 * freelist will be at the end of slab page. The objects will be 452 * at the correct alignment. 453 * 454 * If the slab management structure is off the slab, then the 455 * alignment will already be calculated into the size. Because 456 * the slabs are all pages aligned, the objects will be at the 457 * correct alignment when allocated. 458 */ 459 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 460 num = slab_size / buffer_size; 461 *left_over = slab_size % buffer_size; 462 } else { 463 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 464 *left_over = slab_size % 465 (buffer_size + sizeof(freelist_idx_t)); 466 } 467 468 return num; 469 } 470 471 #if DEBUG 472 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 473 474 static void __slab_error(const char *function, struct kmem_cache *cachep, 475 char *msg) 476 { 477 pr_err("slab error in %s(): cache `%s': %s\n", 478 function, cachep->name, msg); 479 dump_stack(); 480 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 481 } 482 #endif 483 484 /* 485 * By default on NUMA we use alien caches to stage the freeing of 486 * objects allocated from other nodes. This causes massive memory 487 * inefficiencies when using fake NUMA setup to split memory into a 488 * large number of small nodes, so it can be disabled on the command 489 * line 490 */ 491 492 static int use_alien_caches __read_mostly = 1; 493 static int __init noaliencache_setup(char *s) 494 { 495 use_alien_caches = 0; 496 return 1; 497 } 498 __setup("noaliencache", noaliencache_setup); 499 500 static int __init slab_max_order_setup(char *str) 501 { 502 get_option(&str, &slab_max_order); 503 slab_max_order = slab_max_order < 0 ? 0 : 504 min(slab_max_order, MAX_ORDER - 1); 505 slab_max_order_set = true; 506 507 return 1; 508 } 509 __setup("slab_max_order=", slab_max_order_setup); 510 511 #ifdef CONFIG_NUMA 512 /* 513 * Special reaping functions for NUMA systems called from cache_reap(). 514 * These take care of doing round robin flushing of alien caches (containing 515 * objects freed on different nodes from which they were allocated) and the 516 * flushing of remote pcps by calling drain_node_pages. 517 */ 518 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 519 520 static void init_reap_node(int cpu) 521 { 522 int node; 523 524 node = next_node(cpu_to_mem(cpu), node_online_map); 525 if (node == MAX_NUMNODES) 526 node = first_node(node_online_map); 527 528 per_cpu(slab_reap_node, cpu) = node; 529 } 530 531 static void next_reap_node(void) 532 { 533 int node = __this_cpu_read(slab_reap_node); 534 535 node = next_node(node, node_online_map); 536 if (unlikely(node >= MAX_NUMNODES)) 537 node = first_node(node_online_map); 538 __this_cpu_write(slab_reap_node, node); 539 } 540 541 #else 542 #define init_reap_node(cpu) do { } while (0) 543 #define next_reap_node(void) do { } while (0) 544 #endif 545 546 /* 547 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 548 * via the workqueue/eventd. 549 * Add the CPU number into the expiration time to minimize the possibility of 550 * the CPUs getting into lockstep and contending for the global cache chain 551 * lock. 552 */ 553 static void start_cpu_timer(int cpu) 554 { 555 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 556 557 /* 558 * When this gets called from do_initcalls via cpucache_init(), 559 * init_workqueues() has already run, so keventd will be setup 560 * at that time. 561 */ 562 if (keventd_up() && reap_work->work.func == NULL) { 563 init_reap_node(cpu); 564 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 565 schedule_delayed_work_on(cpu, reap_work, 566 __round_jiffies_relative(HZ, cpu)); 567 } 568 } 569 570 static void init_arraycache(struct array_cache *ac, int limit, int batch) 571 { 572 /* 573 * The array_cache structures contain pointers to free object. 574 * However, when such objects are allocated or transferred to another 575 * cache the pointers are not cleared and they could be counted as 576 * valid references during a kmemleak scan. Therefore, kmemleak must 577 * not scan such objects. 578 */ 579 kmemleak_no_scan(ac); 580 if (ac) { 581 ac->avail = 0; 582 ac->limit = limit; 583 ac->batchcount = batch; 584 ac->touched = 0; 585 } 586 } 587 588 static struct array_cache *alloc_arraycache(int node, int entries, 589 int batchcount, gfp_t gfp) 590 { 591 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 592 struct array_cache *ac = NULL; 593 594 ac = kmalloc_node(memsize, gfp, node); 595 init_arraycache(ac, entries, batchcount); 596 return ac; 597 } 598 599 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 600 struct page *page, void *objp) 601 { 602 struct kmem_cache_node *n; 603 int page_node; 604 LIST_HEAD(list); 605 606 page_node = page_to_nid(page); 607 n = get_node(cachep, page_node); 608 609 spin_lock(&n->list_lock); 610 free_block(cachep, &objp, 1, page_node, &list); 611 spin_unlock(&n->list_lock); 612 613 slabs_destroy(cachep, &list); 614 } 615 616 /* 617 * Transfer objects in one arraycache to another. 618 * Locking must be handled by the caller. 619 * 620 * Return the number of entries transferred. 621 */ 622 static int transfer_objects(struct array_cache *to, 623 struct array_cache *from, unsigned int max) 624 { 625 /* Figure out how many entries to transfer */ 626 int nr = min3(from->avail, max, to->limit - to->avail); 627 628 if (!nr) 629 return 0; 630 631 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 632 sizeof(void *) *nr); 633 634 from->avail -= nr; 635 to->avail += nr; 636 return nr; 637 } 638 639 #ifndef CONFIG_NUMA 640 641 #define drain_alien_cache(cachep, alien) do { } while (0) 642 #define reap_alien(cachep, n) do { } while (0) 643 644 static inline struct alien_cache **alloc_alien_cache(int node, 645 int limit, gfp_t gfp) 646 { 647 return (struct alien_cache **)BAD_ALIEN_MAGIC; 648 } 649 650 static inline void free_alien_cache(struct alien_cache **ac_ptr) 651 { 652 } 653 654 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 655 { 656 return 0; 657 } 658 659 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 660 gfp_t flags) 661 { 662 return NULL; 663 } 664 665 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 666 gfp_t flags, int nodeid) 667 { 668 return NULL; 669 } 670 671 static inline gfp_t gfp_exact_node(gfp_t flags) 672 { 673 return flags & ~__GFP_NOFAIL; 674 } 675 676 #else /* CONFIG_NUMA */ 677 678 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 679 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 680 681 static struct alien_cache *__alloc_alien_cache(int node, int entries, 682 int batch, gfp_t gfp) 683 { 684 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 685 struct alien_cache *alc = NULL; 686 687 alc = kmalloc_node(memsize, gfp, node); 688 init_arraycache(&alc->ac, entries, batch); 689 spin_lock_init(&alc->lock); 690 return alc; 691 } 692 693 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 694 { 695 struct alien_cache **alc_ptr; 696 size_t memsize = sizeof(void *) * nr_node_ids; 697 int i; 698 699 if (limit > 1) 700 limit = 12; 701 alc_ptr = kzalloc_node(memsize, gfp, node); 702 if (!alc_ptr) 703 return NULL; 704 705 for_each_node(i) { 706 if (i == node || !node_online(i)) 707 continue; 708 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 709 if (!alc_ptr[i]) { 710 for (i--; i >= 0; i--) 711 kfree(alc_ptr[i]); 712 kfree(alc_ptr); 713 return NULL; 714 } 715 } 716 return alc_ptr; 717 } 718 719 static void free_alien_cache(struct alien_cache **alc_ptr) 720 { 721 int i; 722 723 if (!alc_ptr) 724 return; 725 for_each_node(i) 726 kfree(alc_ptr[i]); 727 kfree(alc_ptr); 728 } 729 730 static void __drain_alien_cache(struct kmem_cache *cachep, 731 struct array_cache *ac, int node, 732 struct list_head *list) 733 { 734 struct kmem_cache_node *n = get_node(cachep, node); 735 736 if (ac->avail) { 737 spin_lock(&n->list_lock); 738 /* 739 * Stuff objects into the remote nodes shared array first. 740 * That way we could avoid the overhead of putting the objects 741 * into the free lists and getting them back later. 742 */ 743 if (n->shared) 744 transfer_objects(n->shared, ac, ac->limit); 745 746 free_block(cachep, ac->entry, ac->avail, node, list); 747 ac->avail = 0; 748 spin_unlock(&n->list_lock); 749 } 750 } 751 752 /* 753 * Called from cache_reap() to regularly drain alien caches round robin. 754 */ 755 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 756 { 757 int node = __this_cpu_read(slab_reap_node); 758 759 if (n->alien) { 760 struct alien_cache *alc = n->alien[node]; 761 struct array_cache *ac; 762 763 if (alc) { 764 ac = &alc->ac; 765 if (ac->avail && spin_trylock_irq(&alc->lock)) { 766 LIST_HEAD(list); 767 768 __drain_alien_cache(cachep, ac, node, &list); 769 spin_unlock_irq(&alc->lock); 770 slabs_destroy(cachep, &list); 771 } 772 } 773 } 774 } 775 776 static void drain_alien_cache(struct kmem_cache *cachep, 777 struct alien_cache **alien) 778 { 779 int i = 0; 780 struct alien_cache *alc; 781 struct array_cache *ac; 782 unsigned long flags; 783 784 for_each_online_node(i) { 785 alc = alien[i]; 786 if (alc) { 787 LIST_HEAD(list); 788 789 ac = &alc->ac; 790 spin_lock_irqsave(&alc->lock, flags); 791 __drain_alien_cache(cachep, ac, i, &list); 792 spin_unlock_irqrestore(&alc->lock, flags); 793 slabs_destroy(cachep, &list); 794 } 795 } 796 } 797 798 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 799 int node, int page_node) 800 { 801 struct kmem_cache_node *n; 802 struct alien_cache *alien = NULL; 803 struct array_cache *ac; 804 LIST_HEAD(list); 805 806 n = get_node(cachep, node); 807 STATS_INC_NODEFREES(cachep); 808 if (n->alien && n->alien[page_node]) { 809 alien = n->alien[page_node]; 810 ac = &alien->ac; 811 spin_lock(&alien->lock); 812 if (unlikely(ac->avail == ac->limit)) { 813 STATS_INC_ACOVERFLOW(cachep); 814 __drain_alien_cache(cachep, ac, page_node, &list); 815 } 816 ac->entry[ac->avail++] = objp; 817 spin_unlock(&alien->lock); 818 slabs_destroy(cachep, &list); 819 } else { 820 n = get_node(cachep, page_node); 821 spin_lock(&n->list_lock); 822 free_block(cachep, &objp, 1, page_node, &list); 823 spin_unlock(&n->list_lock); 824 slabs_destroy(cachep, &list); 825 } 826 return 1; 827 } 828 829 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 830 { 831 int page_node = page_to_nid(virt_to_page(objp)); 832 int node = numa_mem_id(); 833 /* 834 * Make sure we are not freeing a object from another node to the array 835 * cache on this cpu. 836 */ 837 if (likely(node == page_node)) 838 return 0; 839 840 return __cache_free_alien(cachep, objp, node, page_node); 841 } 842 843 /* 844 * Construct gfp mask to allocate from a specific node but do not reclaim or 845 * warn about failures. 846 */ 847 static inline gfp_t gfp_exact_node(gfp_t flags) 848 { 849 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 850 } 851 #endif 852 853 /* 854 * Allocates and initializes node for a node on each slab cache, used for 855 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 856 * will be allocated off-node since memory is not yet online for the new node. 857 * When hotplugging memory or a cpu, existing node are not replaced if 858 * already in use. 859 * 860 * Must hold slab_mutex. 861 */ 862 static int init_cache_node_node(int node) 863 { 864 struct kmem_cache *cachep; 865 struct kmem_cache_node *n; 866 const size_t memsize = sizeof(struct kmem_cache_node); 867 868 list_for_each_entry(cachep, &slab_caches, list) { 869 /* 870 * Set up the kmem_cache_node for cpu before we can 871 * begin anything. Make sure some other cpu on this 872 * node has not already allocated this 873 */ 874 n = get_node(cachep, node); 875 if (!n) { 876 n = kmalloc_node(memsize, GFP_KERNEL, node); 877 if (!n) 878 return -ENOMEM; 879 kmem_cache_node_init(n); 880 n->next_reap = jiffies + REAPTIMEOUT_NODE + 881 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 882 883 /* 884 * The kmem_cache_nodes don't come and go as CPUs 885 * come and go. slab_mutex is sufficient 886 * protection here. 887 */ 888 cachep->node[node] = n; 889 } 890 891 spin_lock_irq(&n->list_lock); 892 n->free_limit = 893 (1 + nr_cpus_node(node)) * 894 cachep->batchcount + cachep->num; 895 spin_unlock_irq(&n->list_lock); 896 } 897 return 0; 898 } 899 900 static inline int slabs_tofree(struct kmem_cache *cachep, 901 struct kmem_cache_node *n) 902 { 903 return (n->free_objects + cachep->num - 1) / cachep->num; 904 } 905 906 static void cpuup_canceled(long cpu) 907 { 908 struct kmem_cache *cachep; 909 struct kmem_cache_node *n = NULL; 910 int node = cpu_to_mem(cpu); 911 const struct cpumask *mask = cpumask_of_node(node); 912 913 list_for_each_entry(cachep, &slab_caches, list) { 914 struct array_cache *nc; 915 struct array_cache *shared; 916 struct alien_cache **alien; 917 LIST_HEAD(list); 918 919 n = get_node(cachep, node); 920 if (!n) 921 continue; 922 923 spin_lock_irq(&n->list_lock); 924 925 /* Free limit for this kmem_cache_node */ 926 n->free_limit -= cachep->batchcount; 927 928 /* cpu is dead; no one can alloc from it. */ 929 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 930 if (nc) { 931 free_block(cachep, nc->entry, nc->avail, node, &list); 932 nc->avail = 0; 933 } 934 935 if (!cpumask_empty(mask)) { 936 spin_unlock_irq(&n->list_lock); 937 goto free_slab; 938 } 939 940 shared = n->shared; 941 if (shared) { 942 free_block(cachep, shared->entry, 943 shared->avail, node, &list); 944 n->shared = NULL; 945 } 946 947 alien = n->alien; 948 n->alien = NULL; 949 950 spin_unlock_irq(&n->list_lock); 951 952 kfree(shared); 953 if (alien) { 954 drain_alien_cache(cachep, alien); 955 free_alien_cache(alien); 956 } 957 958 free_slab: 959 slabs_destroy(cachep, &list); 960 } 961 /* 962 * In the previous loop, all the objects were freed to 963 * the respective cache's slabs, now we can go ahead and 964 * shrink each nodelist to its limit. 965 */ 966 list_for_each_entry(cachep, &slab_caches, list) { 967 n = get_node(cachep, node); 968 if (!n) 969 continue; 970 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 971 } 972 } 973 974 static int cpuup_prepare(long cpu) 975 { 976 struct kmem_cache *cachep; 977 struct kmem_cache_node *n = NULL; 978 int node = cpu_to_mem(cpu); 979 int err; 980 981 /* 982 * We need to do this right in the beginning since 983 * alloc_arraycache's are going to use this list. 984 * kmalloc_node allows us to add the slab to the right 985 * kmem_cache_node and not this cpu's kmem_cache_node 986 */ 987 err = init_cache_node_node(node); 988 if (err < 0) 989 goto bad; 990 991 /* 992 * Now we can go ahead with allocating the shared arrays and 993 * array caches 994 */ 995 list_for_each_entry(cachep, &slab_caches, list) { 996 struct array_cache *shared = NULL; 997 struct alien_cache **alien = NULL; 998 999 if (cachep->shared) { 1000 shared = alloc_arraycache(node, 1001 cachep->shared * cachep->batchcount, 1002 0xbaadf00d, GFP_KERNEL); 1003 if (!shared) 1004 goto bad; 1005 } 1006 if (use_alien_caches) { 1007 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); 1008 if (!alien) { 1009 kfree(shared); 1010 goto bad; 1011 } 1012 } 1013 n = get_node(cachep, node); 1014 BUG_ON(!n); 1015 1016 spin_lock_irq(&n->list_lock); 1017 if (!n->shared) { 1018 /* 1019 * We are serialised from CPU_DEAD or 1020 * CPU_UP_CANCELLED by the cpucontrol lock 1021 */ 1022 n->shared = shared; 1023 shared = NULL; 1024 } 1025 #ifdef CONFIG_NUMA 1026 if (!n->alien) { 1027 n->alien = alien; 1028 alien = NULL; 1029 } 1030 #endif 1031 spin_unlock_irq(&n->list_lock); 1032 kfree(shared); 1033 free_alien_cache(alien); 1034 } 1035 1036 return 0; 1037 bad: 1038 cpuup_canceled(cpu); 1039 return -ENOMEM; 1040 } 1041 1042 static int cpuup_callback(struct notifier_block *nfb, 1043 unsigned long action, void *hcpu) 1044 { 1045 long cpu = (long)hcpu; 1046 int err = 0; 1047 1048 switch (action) { 1049 case CPU_UP_PREPARE: 1050 case CPU_UP_PREPARE_FROZEN: 1051 mutex_lock(&slab_mutex); 1052 err = cpuup_prepare(cpu); 1053 mutex_unlock(&slab_mutex); 1054 break; 1055 case CPU_ONLINE: 1056 case CPU_ONLINE_FROZEN: 1057 start_cpu_timer(cpu); 1058 break; 1059 #ifdef CONFIG_HOTPLUG_CPU 1060 case CPU_DOWN_PREPARE: 1061 case CPU_DOWN_PREPARE_FROZEN: 1062 /* 1063 * Shutdown cache reaper. Note that the slab_mutex is 1064 * held so that if cache_reap() is invoked it cannot do 1065 * anything expensive but will only modify reap_work 1066 * and reschedule the timer. 1067 */ 1068 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1069 /* Now the cache_reaper is guaranteed to be not running. */ 1070 per_cpu(slab_reap_work, cpu).work.func = NULL; 1071 break; 1072 case CPU_DOWN_FAILED: 1073 case CPU_DOWN_FAILED_FROZEN: 1074 start_cpu_timer(cpu); 1075 break; 1076 case CPU_DEAD: 1077 case CPU_DEAD_FROZEN: 1078 /* 1079 * Even if all the cpus of a node are down, we don't free the 1080 * kmem_cache_node of any cache. This to avoid a race between 1081 * cpu_down, and a kmalloc allocation from another cpu for 1082 * memory from the node of the cpu going down. The node 1083 * structure is usually allocated from kmem_cache_create() and 1084 * gets destroyed at kmem_cache_destroy(). 1085 */ 1086 /* fall through */ 1087 #endif 1088 case CPU_UP_CANCELED: 1089 case CPU_UP_CANCELED_FROZEN: 1090 mutex_lock(&slab_mutex); 1091 cpuup_canceled(cpu); 1092 mutex_unlock(&slab_mutex); 1093 break; 1094 } 1095 return notifier_from_errno(err); 1096 } 1097 1098 static struct notifier_block cpucache_notifier = { 1099 &cpuup_callback, NULL, 0 1100 }; 1101 1102 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1103 /* 1104 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1105 * Returns -EBUSY if all objects cannot be drained so that the node is not 1106 * removed. 1107 * 1108 * Must hold slab_mutex. 1109 */ 1110 static int __meminit drain_cache_node_node(int node) 1111 { 1112 struct kmem_cache *cachep; 1113 int ret = 0; 1114 1115 list_for_each_entry(cachep, &slab_caches, list) { 1116 struct kmem_cache_node *n; 1117 1118 n = get_node(cachep, node); 1119 if (!n) 1120 continue; 1121 1122 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 1123 1124 if (!list_empty(&n->slabs_full) || 1125 !list_empty(&n->slabs_partial)) { 1126 ret = -EBUSY; 1127 break; 1128 } 1129 } 1130 return ret; 1131 } 1132 1133 static int __meminit slab_memory_callback(struct notifier_block *self, 1134 unsigned long action, void *arg) 1135 { 1136 struct memory_notify *mnb = arg; 1137 int ret = 0; 1138 int nid; 1139 1140 nid = mnb->status_change_nid; 1141 if (nid < 0) 1142 goto out; 1143 1144 switch (action) { 1145 case MEM_GOING_ONLINE: 1146 mutex_lock(&slab_mutex); 1147 ret = init_cache_node_node(nid); 1148 mutex_unlock(&slab_mutex); 1149 break; 1150 case MEM_GOING_OFFLINE: 1151 mutex_lock(&slab_mutex); 1152 ret = drain_cache_node_node(nid); 1153 mutex_unlock(&slab_mutex); 1154 break; 1155 case MEM_ONLINE: 1156 case MEM_OFFLINE: 1157 case MEM_CANCEL_ONLINE: 1158 case MEM_CANCEL_OFFLINE: 1159 break; 1160 } 1161 out: 1162 return notifier_from_errno(ret); 1163 } 1164 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1165 1166 /* 1167 * swap the static kmem_cache_node with kmalloced memory 1168 */ 1169 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1170 int nodeid) 1171 { 1172 struct kmem_cache_node *ptr; 1173 1174 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1175 BUG_ON(!ptr); 1176 1177 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1178 /* 1179 * Do not assume that spinlocks can be initialized via memcpy: 1180 */ 1181 spin_lock_init(&ptr->list_lock); 1182 1183 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1184 cachep->node[nodeid] = ptr; 1185 } 1186 1187 /* 1188 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1189 * size of kmem_cache_node. 1190 */ 1191 static void __init set_up_node(struct kmem_cache *cachep, int index) 1192 { 1193 int node; 1194 1195 for_each_online_node(node) { 1196 cachep->node[node] = &init_kmem_cache_node[index + node]; 1197 cachep->node[node]->next_reap = jiffies + 1198 REAPTIMEOUT_NODE + 1199 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1200 } 1201 } 1202 1203 /* 1204 * Initialisation. Called after the page allocator have been initialised and 1205 * before smp_init(). 1206 */ 1207 void __init kmem_cache_init(void) 1208 { 1209 int i; 1210 1211 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1212 sizeof(struct rcu_head)); 1213 kmem_cache = &kmem_cache_boot; 1214 1215 if (num_possible_nodes() == 1) 1216 use_alien_caches = 0; 1217 1218 for (i = 0; i < NUM_INIT_LISTS; i++) 1219 kmem_cache_node_init(&init_kmem_cache_node[i]); 1220 1221 /* 1222 * Fragmentation resistance on low memory - only use bigger 1223 * page orders on machines with more than 32MB of memory if 1224 * not overridden on the command line. 1225 */ 1226 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1227 slab_max_order = SLAB_MAX_ORDER_HI; 1228 1229 /* Bootstrap is tricky, because several objects are allocated 1230 * from caches that do not exist yet: 1231 * 1) initialize the kmem_cache cache: it contains the struct 1232 * kmem_cache structures of all caches, except kmem_cache itself: 1233 * kmem_cache is statically allocated. 1234 * Initially an __init data area is used for the head array and the 1235 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1236 * array at the end of the bootstrap. 1237 * 2) Create the first kmalloc cache. 1238 * The struct kmem_cache for the new cache is allocated normally. 1239 * An __init data area is used for the head array. 1240 * 3) Create the remaining kmalloc caches, with minimally sized 1241 * head arrays. 1242 * 4) Replace the __init data head arrays for kmem_cache and the first 1243 * kmalloc cache with kmalloc allocated arrays. 1244 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1245 * the other cache's with kmalloc allocated memory. 1246 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1247 */ 1248 1249 /* 1) create the kmem_cache */ 1250 1251 /* 1252 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1253 */ 1254 create_boot_cache(kmem_cache, "kmem_cache", 1255 offsetof(struct kmem_cache, node) + 1256 nr_node_ids * sizeof(struct kmem_cache_node *), 1257 SLAB_HWCACHE_ALIGN); 1258 list_add(&kmem_cache->list, &slab_caches); 1259 slab_state = PARTIAL; 1260 1261 /* 1262 * Initialize the caches that provide memory for the kmem_cache_node 1263 * structures first. Without this, further allocations will bug. 1264 */ 1265 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node", 1266 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1267 slab_state = PARTIAL_NODE; 1268 setup_kmalloc_cache_index_table(); 1269 1270 slab_early_init = 0; 1271 1272 /* 5) Replace the bootstrap kmem_cache_node */ 1273 { 1274 int nid; 1275 1276 for_each_online_node(nid) { 1277 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1278 1279 init_list(kmalloc_caches[INDEX_NODE], 1280 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1281 } 1282 } 1283 1284 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1285 } 1286 1287 void __init kmem_cache_init_late(void) 1288 { 1289 struct kmem_cache *cachep; 1290 1291 slab_state = UP; 1292 1293 /* 6) resize the head arrays to their final sizes */ 1294 mutex_lock(&slab_mutex); 1295 list_for_each_entry(cachep, &slab_caches, list) 1296 if (enable_cpucache(cachep, GFP_NOWAIT)) 1297 BUG(); 1298 mutex_unlock(&slab_mutex); 1299 1300 /* Done! */ 1301 slab_state = FULL; 1302 1303 /* 1304 * Register a cpu startup notifier callback that initializes 1305 * cpu_cache_get for all new cpus 1306 */ 1307 register_cpu_notifier(&cpucache_notifier); 1308 1309 #ifdef CONFIG_NUMA 1310 /* 1311 * Register a memory hotplug callback that initializes and frees 1312 * node. 1313 */ 1314 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1315 #endif 1316 1317 /* 1318 * The reap timers are started later, with a module init call: That part 1319 * of the kernel is not yet operational. 1320 */ 1321 } 1322 1323 static int __init cpucache_init(void) 1324 { 1325 int cpu; 1326 1327 /* 1328 * Register the timers that return unneeded pages to the page allocator 1329 */ 1330 for_each_online_cpu(cpu) 1331 start_cpu_timer(cpu); 1332 1333 /* Done! */ 1334 slab_state = FULL; 1335 return 0; 1336 } 1337 __initcall(cpucache_init); 1338 1339 static noinline void 1340 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1341 { 1342 #if DEBUG 1343 struct kmem_cache_node *n; 1344 struct page *page; 1345 unsigned long flags; 1346 int node; 1347 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1348 DEFAULT_RATELIMIT_BURST); 1349 1350 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1351 return; 1352 1353 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1354 nodeid, gfpflags, &gfpflags); 1355 pr_warn(" cache: %s, object size: %d, order: %d\n", 1356 cachep->name, cachep->size, cachep->gfporder); 1357 1358 for_each_kmem_cache_node(cachep, node, n) { 1359 unsigned long active_objs = 0, num_objs = 0, free_objects = 0; 1360 unsigned long active_slabs = 0, num_slabs = 0; 1361 1362 spin_lock_irqsave(&n->list_lock, flags); 1363 list_for_each_entry(page, &n->slabs_full, lru) { 1364 active_objs += cachep->num; 1365 active_slabs++; 1366 } 1367 list_for_each_entry(page, &n->slabs_partial, lru) { 1368 active_objs += page->active; 1369 active_slabs++; 1370 } 1371 list_for_each_entry(page, &n->slabs_free, lru) 1372 num_slabs++; 1373 1374 free_objects += n->free_objects; 1375 spin_unlock_irqrestore(&n->list_lock, flags); 1376 1377 num_slabs += active_slabs; 1378 num_objs = num_slabs * cachep->num; 1379 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", 1380 node, active_slabs, num_slabs, active_objs, num_objs, 1381 free_objects); 1382 } 1383 #endif 1384 } 1385 1386 /* 1387 * Interface to system's page allocator. No need to hold the 1388 * kmem_cache_node ->list_lock. 1389 * 1390 * If we requested dmaable memory, we will get it. Even if we 1391 * did not request dmaable memory, we might get it, but that 1392 * would be relatively rare and ignorable. 1393 */ 1394 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1395 int nodeid) 1396 { 1397 struct page *page; 1398 int nr_pages; 1399 1400 flags |= cachep->allocflags; 1401 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1402 flags |= __GFP_RECLAIMABLE; 1403 1404 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1405 if (!page) { 1406 slab_out_of_memory(cachep, flags, nodeid); 1407 return NULL; 1408 } 1409 1410 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1411 __free_pages(page, cachep->gfporder); 1412 return NULL; 1413 } 1414 1415 nr_pages = (1 << cachep->gfporder); 1416 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1417 add_zone_page_state(page_zone(page), 1418 NR_SLAB_RECLAIMABLE, nr_pages); 1419 else 1420 add_zone_page_state(page_zone(page), 1421 NR_SLAB_UNRECLAIMABLE, nr_pages); 1422 1423 __SetPageSlab(page); 1424 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1425 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1426 SetPageSlabPfmemalloc(page); 1427 1428 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1429 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1430 1431 if (cachep->ctor) 1432 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1433 else 1434 kmemcheck_mark_unallocated_pages(page, nr_pages); 1435 } 1436 1437 return page; 1438 } 1439 1440 /* 1441 * Interface to system's page release. 1442 */ 1443 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1444 { 1445 int order = cachep->gfporder; 1446 unsigned long nr_freed = (1 << order); 1447 1448 kmemcheck_free_shadow(page, order); 1449 1450 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1451 sub_zone_page_state(page_zone(page), 1452 NR_SLAB_RECLAIMABLE, nr_freed); 1453 else 1454 sub_zone_page_state(page_zone(page), 1455 NR_SLAB_UNRECLAIMABLE, nr_freed); 1456 1457 BUG_ON(!PageSlab(page)); 1458 __ClearPageSlabPfmemalloc(page); 1459 __ClearPageSlab(page); 1460 page_mapcount_reset(page); 1461 page->mapping = NULL; 1462 1463 if (current->reclaim_state) 1464 current->reclaim_state->reclaimed_slab += nr_freed; 1465 memcg_uncharge_slab(page, order, cachep); 1466 __free_pages(page, order); 1467 } 1468 1469 static void kmem_rcu_free(struct rcu_head *head) 1470 { 1471 struct kmem_cache *cachep; 1472 struct page *page; 1473 1474 page = container_of(head, struct page, rcu_head); 1475 cachep = page->slab_cache; 1476 1477 kmem_freepages(cachep, page); 1478 } 1479 1480 #if DEBUG 1481 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1482 { 1483 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1484 (cachep->size % PAGE_SIZE) == 0) 1485 return true; 1486 1487 return false; 1488 } 1489 1490 #ifdef CONFIG_DEBUG_PAGEALLOC 1491 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1492 unsigned long caller) 1493 { 1494 int size = cachep->object_size; 1495 1496 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1497 1498 if (size < 5 * sizeof(unsigned long)) 1499 return; 1500 1501 *addr++ = 0x12345678; 1502 *addr++ = caller; 1503 *addr++ = smp_processor_id(); 1504 size -= 3 * sizeof(unsigned long); 1505 { 1506 unsigned long *sptr = &caller; 1507 unsigned long svalue; 1508 1509 while (!kstack_end(sptr)) { 1510 svalue = *sptr++; 1511 if (kernel_text_address(svalue)) { 1512 *addr++ = svalue; 1513 size -= sizeof(unsigned long); 1514 if (size <= sizeof(unsigned long)) 1515 break; 1516 } 1517 } 1518 1519 } 1520 *addr++ = 0x87654321; 1521 } 1522 1523 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1524 int map, unsigned long caller) 1525 { 1526 if (!is_debug_pagealloc_cache(cachep)) 1527 return; 1528 1529 if (caller) 1530 store_stackinfo(cachep, objp, caller); 1531 1532 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1533 } 1534 1535 #else 1536 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1537 int map, unsigned long caller) {} 1538 1539 #endif 1540 1541 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1542 { 1543 int size = cachep->object_size; 1544 addr = &((char *)addr)[obj_offset(cachep)]; 1545 1546 memset(addr, val, size); 1547 *(unsigned char *)(addr + size - 1) = POISON_END; 1548 } 1549 1550 static void dump_line(char *data, int offset, int limit) 1551 { 1552 int i; 1553 unsigned char error = 0; 1554 int bad_count = 0; 1555 1556 pr_err("%03x: ", offset); 1557 for (i = 0; i < limit; i++) { 1558 if (data[offset + i] != POISON_FREE) { 1559 error = data[offset + i]; 1560 bad_count++; 1561 } 1562 } 1563 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1564 &data[offset], limit, 1); 1565 1566 if (bad_count == 1) { 1567 error ^= POISON_FREE; 1568 if (!(error & (error - 1))) { 1569 pr_err("Single bit error detected. Probably bad RAM.\n"); 1570 #ifdef CONFIG_X86 1571 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1572 #else 1573 pr_err("Run a memory test tool.\n"); 1574 #endif 1575 } 1576 } 1577 } 1578 #endif 1579 1580 #if DEBUG 1581 1582 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1583 { 1584 int i, size; 1585 char *realobj; 1586 1587 if (cachep->flags & SLAB_RED_ZONE) { 1588 pr_err("Redzone: 0x%llx/0x%llx\n", 1589 *dbg_redzone1(cachep, objp), 1590 *dbg_redzone2(cachep, objp)); 1591 } 1592 1593 if (cachep->flags & SLAB_STORE_USER) { 1594 pr_err("Last user: [<%p>](%pSR)\n", 1595 *dbg_userword(cachep, objp), 1596 *dbg_userword(cachep, objp)); 1597 } 1598 realobj = (char *)objp + obj_offset(cachep); 1599 size = cachep->object_size; 1600 for (i = 0; i < size && lines; i += 16, lines--) { 1601 int limit; 1602 limit = 16; 1603 if (i + limit > size) 1604 limit = size - i; 1605 dump_line(realobj, i, limit); 1606 } 1607 } 1608 1609 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1610 { 1611 char *realobj; 1612 int size, i; 1613 int lines = 0; 1614 1615 if (is_debug_pagealloc_cache(cachep)) 1616 return; 1617 1618 realobj = (char *)objp + obj_offset(cachep); 1619 size = cachep->object_size; 1620 1621 for (i = 0; i < size; i++) { 1622 char exp = POISON_FREE; 1623 if (i == size - 1) 1624 exp = POISON_END; 1625 if (realobj[i] != exp) { 1626 int limit; 1627 /* Mismatch ! */ 1628 /* Print header */ 1629 if (lines == 0) { 1630 pr_err("Slab corruption (%s): %s start=%p, len=%d\n", 1631 print_tainted(), cachep->name, 1632 realobj, size); 1633 print_objinfo(cachep, objp, 0); 1634 } 1635 /* Hexdump the affected line */ 1636 i = (i / 16) * 16; 1637 limit = 16; 1638 if (i + limit > size) 1639 limit = size - i; 1640 dump_line(realobj, i, limit); 1641 i += 16; 1642 lines++; 1643 /* Limit to 5 lines */ 1644 if (lines > 5) 1645 break; 1646 } 1647 } 1648 if (lines != 0) { 1649 /* Print some data about the neighboring objects, if they 1650 * exist: 1651 */ 1652 struct page *page = virt_to_head_page(objp); 1653 unsigned int objnr; 1654 1655 objnr = obj_to_index(cachep, page, objp); 1656 if (objnr) { 1657 objp = index_to_obj(cachep, page, objnr - 1); 1658 realobj = (char *)objp + obj_offset(cachep); 1659 pr_err("Prev obj: start=%p, len=%d\n", realobj, size); 1660 print_objinfo(cachep, objp, 2); 1661 } 1662 if (objnr + 1 < cachep->num) { 1663 objp = index_to_obj(cachep, page, objnr + 1); 1664 realobj = (char *)objp + obj_offset(cachep); 1665 pr_err("Next obj: start=%p, len=%d\n", realobj, size); 1666 print_objinfo(cachep, objp, 2); 1667 } 1668 } 1669 } 1670 #endif 1671 1672 #if DEBUG 1673 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1674 struct page *page) 1675 { 1676 int i; 1677 1678 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1679 poison_obj(cachep, page->freelist - obj_offset(cachep), 1680 POISON_FREE); 1681 } 1682 1683 for (i = 0; i < cachep->num; i++) { 1684 void *objp = index_to_obj(cachep, page, i); 1685 1686 if (cachep->flags & SLAB_POISON) { 1687 check_poison_obj(cachep, objp); 1688 slab_kernel_map(cachep, objp, 1, 0); 1689 } 1690 if (cachep->flags & SLAB_RED_ZONE) { 1691 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1692 slab_error(cachep, "start of a freed object was overwritten"); 1693 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1694 slab_error(cachep, "end of a freed object was overwritten"); 1695 } 1696 } 1697 } 1698 #else 1699 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1700 struct page *page) 1701 { 1702 } 1703 #endif 1704 1705 /** 1706 * slab_destroy - destroy and release all objects in a slab 1707 * @cachep: cache pointer being destroyed 1708 * @page: page pointer being destroyed 1709 * 1710 * Destroy all the objs in a slab page, and release the mem back to the system. 1711 * Before calling the slab page must have been unlinked from the cache. The 1712 * kmem_cache_node ->list_lock is not held/needed. 1713 */ 1714 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1715 { 1716 void *freelist; 1717 1718 freelist = page->freelist; 1719 slab_destroy_debugcheck(cachep, page); 1720 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 1721 call_rcu(&page->rcu_head, kmem_rcu_free); 1722 else 1723 kmem_freepages(cachep, page); 1724 1725 /* 1726 * From now on, we don't use freelist 1727 * although actual page can be freed in rcu context 1728 */ 1729 if (OFF_SLAB(cachep)) 1730 kmem_cache_free(cachep->freelist_cache, freelist); 1731 } 1732 1733 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1734 { 1735 struct page *page, *n; 1736 1737 list_for_each_entry_safe(page, n, list, lru) { 1738 list_del(&page->lru); 1739 slab_destroy(cachep, page); 1740 } 1741 } 1742 1743 /** 1744 * calculate_slab_order - calculate size (page order) of slabs 1745 * @cachep: pointer to the cache that is being created 1746 * @size: size of objects to be created in this cache. 1747 * @flags: slab allocation flags 1748 * 1749 * Also calculates the number of objects per slab. 1750 * 1751 * This could be made much more intelligent. For now, try to avoid using 1752 * high order pages for slabs. When the gfp() functions are more friendly 1753 * towards high-order requests, this should be changed. 1754 */ 1755 static size_t calculate_slab_order(struct kmem_cache *cachep, 1756 size_t size, unsigned long flags) 1757 { 1758 size_t left_over = 0; 1759 int gfporder; 1760 1761 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1762 unsigned int num; 1763 size_t remainder; 1764 1765 num = cache_estimate(gfporder, size, flags, &remainder); 1766 if (!num) 1767 continue; 1768 1769 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1770 if (num > SLAB_OBJ_MAX_NUM) 1771 break; 1772 1773 if (flags & CFLGS_OFF_SLAB) { 1774 struct kmem_cache *freelist_cache; 1775 size_t freelist_size; 1776 1777 freelist_size = num * sizeof(freelist_idx_t); 1778 freelist_cache = kmalloc_slab(freelist_size, 0u); 1779 if (!freelist_cache) 1780 continue; 1781 1782 /* 1783 * Needed to avoid possible looping condition 1784 * in cache_grow() 1785 */ 1786 if (OFF_SLAB(freelist_cache)) 1787 continue; 1788 1789 /* check if off slab has enough benefit */ 1790 if (freelist_cache->size > cachep->size / 2) 1791 continue; 1792 } 1793 1794 /* Found something acceptable - save it away */ 1795 cachep->num = num; 1796 cachep->gfporder = gfporder; 1797 left_over = remainder; 1798 1799 /* 1800 * A VFS-reclaimable slab tends to have most allocations 1801 * as GFP_NOFS and we really don't want to have to be allocating 1802 * higher-order pages when we are unable to shrink dcache. 1803 */ 1804 if (flags & SLAB_RECLAIM_ACCOUNT) 1805 break; 1806 1807 /* 1808 * Large number of objects is good, but very large slabs are 1809 * currently bad for the gfp()s. 1810 */ 1811 if (gfporder >= slab_max_order) 1812 break; 1813 1814 /* 1815 * Acceptable internal fragmentation? 1816 */ 1817 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1818 break; 1819 } 1820 return left_over; 1821 } 1822 1823 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1824 struct kmem_cache *cachep, int entries, int batchcount) 1825 { 1826 int cpu; 1827 size_t size; 1828 struct array_cache __percpu *cpu_cache; 1829 1830 size = sizeof(void *) * entries + sizeof(struct array_cache); 1831 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1832 1833 if (!cpu_cache) 1834 return NULL; 1835 1836 for_each_possible_cpu(cpu) { 1837 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1838 entries, batchcount); 1839 } 1840 1841 return cpu_cache; 1842 } 1843 1844 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1845 { 1846 if (slab_state >= FULL) 1847 return enable_cpucache(cachep, gfp); 1848 1849 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1850 if (!cachep->cpu_cache) 1851 return 1; 1852 1853 if (slab_state == DOWN) { 1854 /* Creation of first cache (kmem_cache). */ 1855 set_up_node(kmem_cache, CACHE_CACHE); 1856 } else if (slab_state == PARTIAL) { 1857 /* For kmem_cache_node */ 1858 set_up_node(cachep, SIZE_NODE); 1859 } else { 1860 int node; 1861 1862 for_each_online_node(node) { 1863 cachep->node[node] = kmalloc_node( 1864 sizeof(struct kmem_cache_node), gfp, node); 1865 BUG_ON(!cachep->node[node]); 1866 kmem_cache_node_init(cachep->node[node]); 1867 } 1868 } 1869 1870 cachep->node[numa_mem_id()]->next_reap = 1871 jiffies + REAPTIMEOUT_NODE + 1872 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1873 1874 cpu_cache_get(cachep)->avail = 0; 1875 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1876 cpu_cache_get(cachep)->batchcount = 1; 1877 cpu_cache_get(cachep)->touched = 0; 1878 cachep->batchcount = 1; 1879 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1880 return 0; 1881 } 1882 1883 unsigned long kmem_cache_flags(unsigned long object_size, 1884 unsigned long flags, const char *name, 1885 void (*ctor)(void *)) 1886 { 1887 return flags; 1888 } 1889 1890 struct kmem_cache * 1891 __kmem_cache_alias(const char *name, size_t size, size_t align, 1892 unsigned long flags, void (*ctor)(void *)) 1893 { 1894 struct kmem_cache *cachep; 1895 1896 cachep = find_mergeable(size, align, flags, name, ctor); 1897 if (cachep) { 1898 cachep->refcount++; 1899 1900 /* 1901 * Adjust the object sizes so that we clear 1902 * the complete object on kzalloc. 1903 */ 1904 cachep->object_size = max_t(int, cachep->object_size, size); 1905 } 1906 return cachep; 1907 } 1908 1909 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1910 size_t size, unsigned long flags) 1911 { 1912 size_t left; 1913 1914 cachep->num = 0; 1915 1916 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU) 1917 return false; 1918 1919 left = calculate_slab_order(cachep, size, 1920 flags | CFLGS_OBJFREELIST_SLAB); 1921 if (!cachep->num) 1922 return false; 1923 1924 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1925 return false; 1926 1927 cachep->colour = left / cachep->colour_off; 1928 1929 return true; 1930 } 1931 1932 static bool set_off_slab_cache(struct kmem_cache *cachep, 1933 size_t size, unsigned long flags) 1934 { 1935 size_t left; 1936 1937 cachep->num = 0; 1938 1939 /* 1940 * Always use on-slab management when SLAB_NOLEAKTRACE 1941 * to avoid recursive calls into kmemleak. 1942 */ 1943 if (flags & SLAB_NOLEAKTRACE) 1944 return false; 1945 1946 /* 1947 * Size is large, assume best to place the slab management obj 1948 * off-slab (should allow better packing of objs). 1949 */ 1950 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1951 if (!cachep->num) 1952 return false; 1953 1954 /* 1955 * If the slab has been placed off-slab, and we have enough space then 1956 * move it on-slab. This is at the expense of any extra colouring. 1957 */ 1958 if (left >= cachep->num * sizeof(freelist_idx_t)) 1959 return false; 1960 1961 cachep->colour = left / cachep->colour_off; 1962 1963 return true; 1964 } 1965 1966 static bool set_on_slab_cache(struct kmem_cache *cachep, 1967 size_t size, unsigned long flags) 1968 { 1969 size_t left; 1970 1971 cachep->num = 0; 1972 1973 left = calculate_slab_order(cachep, size, flags); 1974 if (!cachep->num) 1975 return false; 1976 1977 cachep->colour = left / cachep->colour_off; 1978 1979 return true; 1980 } 1981 1982 /** 1983 * __kmem_cache_create - Create a cache. 1984 * @cachep: cache management descriptor 1985 * @flags: SLAB flags 1986 * 1987 * Returns a ptr to the cache on success, NULL on failure. 1988 * Cannot be called within a int, but can be interrupted. 1989 * The @ctor is run when new pages are allocated by the cache. 1990 * 1991 * The flags are 1992 * 1993 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1994 * to catch references to uninitialised memory. 1995 * 1996 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1997 * for buffer overruns. 1998 * 1999 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2000 * cacheline. This can be beneficial if you're counting cycles as closely 2001 * as davem. 2002 */ 2003 int 2004 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2005 { 2006 size_t ralign = BYTES_PER_WORD; 2007 gfp_t gfp; 2008 int err; 2009 size_t size = cachep->size; 2010 2011 #if DEBUG 2012 #if FORCED_DEBUG 2013 /* 2014 * Enable redzoning and last user accounting, except for caches with 2015 * large objects, if the increased size would increase the object size 2016 * above the next power of two: caches with object sizes just above a 2017 * power of two have a significant amount of internal fragmentation. 2018 */ 2019 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2020 2 * sizeof(unsigned long long))) 2021 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2022 if (!(flags & SLAB_DESTROY_BY_RCU)) 2023 flags |= SLAB_POISON; 2024 #endif 2025 #endif 2026 2027 /* 2028 * Check that size is in terms of words. This is needed to avoid 2029 * unaligned accesses for some archs when redzoning is used, and makes 2030 * sure any on-slab bufctl's are also correctly aligned. 2031 */ 2032 if (size & (BYTES_PER_WORD - 1)) { 2033 size += (BYTES_PER_WORD - 1); 2034 size &= ~(BYTES_PER_WORD - 1); 2035 } 2036 2037 if (flags & SLAB_RED_ZONE) { 2038 ralign = REDZONE_ALIGN; 2039 /* If redzoning, ensure that the second redzone is suitably 2040 * aligned, by adjusting the object size accordingly. */ 2041 size += REDZONE_ALIGN - 1; 2042 size &= ~(REDZONE_ALIGN - 1); 2043 } 2044 2045 /* 3) caller mandated alignment */ 2046 if (ralign < cachep->align) { 2047 ralign = cachep->align; 2048 } 2049 /* disable debug if necessary */ 2050 if (ralign > __alignof__(unsigned long long)) 2051 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2052 /* 2053 * 4) Store it. 2054 */ 2055 cachep->align = ralign; 2056 cachep->colour_off = cache_line_size(); 2057 /* Offset must be a multiple of the alignment. */ 2058 if (cachep->colour_off < cachep->align) 2059 cachep->colour_off = cachep->align; 2060 2061 if (slab_is_available()) 2062 gfp = GFP_KERNEL; 2063 else 2064 gfp = GFP_NOWAIT; 2065 2066 #if DEBUG 2067 2068 /* 2069 * Both debugging options require word-alignment which is calculated 2070 * into align above. 2071 */ 2072 if (flags & SLAB_RED_ZONE) { 2073 /* add space for red zone words */ 2074 cachep->obj_offset += sizeof(unsigned long long); 2075 size += 2 * sizeof(unsigned long long); 2076 } 2077 if (flags & SLAB_STORE_USER) { 2078 /* user store requires one word storage behind the end of 2079 * the real object. But if the second red zone needs to be 2080 * aligned to 64 bits, we must allow that much space. 2081 */ 2082 if (flags & SLAB_RED_ZONE) 2083 size += REDZONE_ALIGN; 2084 else 2085 size += BYTES_PER_WORD; 2086 } 2087 #endif 2088 2089 kasan_cache_create(cachep, &size, &flags); 2090 2091 size = ALIGN(size, cachep->align); 2092 /* 2093 * We should restrict the number of objects in a slab to implement 2094 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2095 */ 2096 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2097 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2098 2099 #if DEBUG 2100 /* 2101 * To activate debug pagealloc, off-slab management is necessary 2102 * requirement. In early phase of initialization, small sized slab 2103 * doesn't get initialized so it would not be possible. So, we need 2104 * to check size >= 256. It guarantees that all necessary small 2105 * sized slab is initialized in current slab initialization sequence. 2106 */ 2107 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2108 size >= 256 && cachep->object_size > cache_line_size()) { 2109 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2110 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2111 2112 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2113 flags |= CFLGS_OFF_SLAB; 2114 cachep->obj_offset += tmp_size - size; 2115 size = tmp_size; 2116 goto done; 2117 } 2118 } 2119 } 2120 #endif 2121 2122 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2123 flags |= CFLGS_OBJFREELIST_SLAB; 2124 goto done; 2125 } 2126 2127 if (set_off_slab_cache(cachep, size, flags)) { 2128 flags |= CFLGS_OFF_SLAB; 2129 goto done; 2130 } 2131 2132 if (set_on_slab_cache(cachep, size, flags)) 2133 goto done; 2134 2135 return -E2BIG; 2136 2137 done: 2138 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2139 cachep->flags = flags; 2140 cachep->allocflags = __GFP_COMP; 2141 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2142 cachep->allocflags |= GFP_DMA; 2143 cachep->size = size; 2144 cachep->reciprocal_buffer_size = reciprocal_value(size); 2145 2146 #if DEBUG 2147 /* 2148 * If we're going to use the generic kernel_map_pages() 2149 * poisoning, then it's going to smash the contents of 2150 * the redzone and userword anyhow, so switch them off. 2151 */ 2152 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2153 (cachep->flags & SLAB_POISON) && 2154 is_debug_pagealloc_cache(cachep)) 2155 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2156 #endif 2157 2158 if (OFF_SLAB(cachep)) { 2159 cachep->freelist_cache = 2160 kmalloc_slab(cachep->freelist_size, 0u); 2161 } 2162 2163 err = setup_cpu_cache(cachep, gfp); 2164 if (err) { 2165 __kmem_cache_release(cachep); 2166 return err; 2167 } 2168 2169 return 0; 2170 } 2171 2172 #if DEBUG 2173 static void check_irq_off(void) 2174 { 2175 BUG_ON(!irqs_disabled()); 2176 } 2177 2178 static void check_irq_on(void) 2179 { 2180 BUG_ON(irqs_disabled()); 2181 } 2182 2183 static void check_spinlock_acquired(struct kmem_cache *cachep) 2184 { 2185 #ifdef CONFIG_SMP 2186 check_irq_off(); 2187 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2188 #endif 2189 } 2190 2191 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2192 { 2193 #ifdef CONFIG_SMP 2194 check_irq_off(); 2195 assert_spin_locked(&get_node(cachep, node)->list_lock); 2196 #endif 2197 } 2198 2199 #else 2200 #define check_irq_off() do { } while(0) 2201 #define check_irq_on() do { } while(0) 2202 #define check_spinlock_acquired(x) do { } while(0) 2203 #define check_spinlock_acquired_node(x, y) do { } while(0) 2204 #endif 2205 2206 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 2207 struct array_cache *ac, 2208 int force, int node); 2209 2210 static void do_drain(void *arg) 2211 { 2212 struct kmem_cache *cachep = arg; 2213 struct array_cache *ac; 2214 int node = numa_mem_id(); 2215 struct kmem_cache_node *n; 2216 LIST_HEAD(list); 2217 2218 check_irq_off(); 2219 ac = cpu_cache_get(cachep); 2220 n = get_node(cachep, node); 2221 spin_lock(&n->list_lock); 2222 free_block(cachep, ac->entry, ac->avail, node, &list); 2223 spin_unlock(&n->list_lock); 2224 slabs_destroy(cachep, &list); 2225 ac->avail = 0; 2226 } 2227 2228 static void drain_cpu_caches(struct kmem_cache *cachep) 2229 { 2230 struct kmem_cache_node *n; 2231 int node; 2232 2233 on_each_cpu(do_drain, cachep, 1); 2234 check_irq_on(); 2235 for_each_kmem_cache_node(cachep, node, n) 2236 if (n->alien) 2237 drain_alien_cache(cachep, n->alien); 2238 2239 for_each_kmem_cache_node(cachep, node, n) 2240 drain_array(cachep, n, n->shared, 1, node); 2241 } 2242 2243 /* 2244 * Remove slabs from the list of free slabs. 2245 * Specify the number of slabs to drain in tofree. 2246 * 2247 * Returns the actual number of slabs released. 2248 */ 2249 static int drain_freelist(struct kmem_cache *cache, 2250 struct kmem_cache_node *n, int tofree) 2251 { 2252 struct list_head *p; 2253 int nr_freed; 2254 struct page *page; 2255 2256 nr_freed = 0; 2257 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2258 2259 spin_lock_irq(&n->list_lock); 2260 p = n->slabs_free.prev; 2261 if (p == &n->slabs_free) { 2262 spin_unlock_irq(&n->list_lock); 2263 goto out; 2264 } 2265 2266 page = list_entry(p, struct page, lru); 2267 list_del(&page->lru); 2268 /* 2269 * Safe to drop the lock. The slab is no longer linked 2270 * to the cache. 2271 */ 2272 n->free_objects -= cache->num; 2273 spin_unlock_irq(&n->list_lock); 2274 slab_destroy(cache, page); 2275 nr_freed++; 2276 } 2277 out: 2278 return nr_freed; 2279 } 2280 2281 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate) 2282 { 2283 int ret = 0; 2284 int node; 2285 struct kmem_cache_node *n; 2286 2287 drain_cpu_caches(cachep); 2288 2289 check_irq_on(); 2290 for_each_kmem_cache_node(cachep, node, n) { 2291 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 2292 2293 ret += !list_empty(&n->slabs_full) || 2294 !list_empty(&n->slabs_partial); 2295 } 2296 return (ret ? 1 : 0); 2297 } 2298 2299 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2300 { 2301 return __kmem_cache_shrink(cachep, false); 2302 } 2303 2304 void __kmem_cache_release(struct kmem_cache *cachep) 2305 { 2306 int i; 2307 struct kmem_cache_node *n; 2308 2309 free_percpu(cachep->cpu_cache); 2310 2311 /* NUMA: free the node structures */ 2312 for_each_kmem_cache_node(cachep, i, n) { 2313 kfree(n->shared); 2314 free_alien_cache(n->alien); 2315 kfree(n); 2316 cachep->node[i] = NULL; 2317 } 2318 } 2319 2320 /* 2321 * Get the memory for a slab management obj. 2322 * 2323 * For a slab cache when the slab descriptor is off-slab, the 2324 * slab descriptor can't come from the same cache which is being created, 2325 * Because if it is the case, that means we defer the creation of 2326 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2327 * And we eventually call down to __kmem_cache_create(), which 2328 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2329 * This is a "chicken-and-egg" problem. 2330 * 2331 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2332 * which are all initialized during kmem_cache_init(). 2333 */ 2334 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2335 struct page *page, int colour_off, 2336 gfp_t local_flags, int nodeid) 2337 { 2338 void *freelist; 2339 void *addr = page_address(page); 2340 2341 page->s_mem = addr + colour_off; 2342 page->active = 0; 2343 2344 if (OBJFREELIST_SLAB(cachep)) 2345 freelist = NULL; 2346 else if (OFF_SLAB(cachep)) { 2347 /* Slab management obj is off-slab. */ 2348 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2349 local_flags, nodeid); 2350 if (!freelist) 2351 return NULL; 2352 } else { 2353 /* We will use last bytes at the slab for freelist */ 2354 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2355 cachep->freelist_size; 2356 } 2357 2358 return freelist; 2359 } 2360 2361 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2362 { 2363 return ((freelist_idx_t *)page->freelist)[idx]; 2364 } 2365 2366 static inline void set_free_obj(struct page *page, 2367 unsigned int idx, freelist_idx_t val) 2368 { 2369 ((freelist_idx_t *)(page->freelist))[idx] = val; 2370 } 2371 2372 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2373 { 2374 #if DEBUG 2375 int i; 2376 2377 for (i = 0; i < cachep->num; i++) { 2378 void *objp = index_to_obj(cachep, page, i); 2379 2380 if (cachep->flags & SLAB_STORE_USER) 2381 *dbg_userword(cachep, objp) = NULL; 2382 2383 if (cachep->flags & SLAB_RED_ZONE) { 2384 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2385 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2386 } 2387 /* 2388 * Constructors are not allowed to allocate memory from the same 2389 * cache which they are a constructor for. Otherwise, deadlock. 2390 * They must also be threaded. 2391 */ 2392 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2393 kasan_unpoison_object_data(cachep, 2394 objp + obj_offset(cachep)); 2395 cachep->ctor(objp + obj_offset(cachep)); 2396 kasan_poison_object_data( 2397 cachep, objp + obj_offset(cachep)); 2398 } 2399 2400 if (cachep->flags & SLAB_RED_ZONE) { 2401 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2402 slab_error(cachep, "constructor overwrote the end of an object"); 2403 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2404 slab_error(cachep, "constructor overwrote the start of an object"); 2405 } 2406 /* need to poison the objs? */ 2407 if (cachep->flags & SLAB_POISON) { 2408 poison_obj(cachep, objp, POISON_FREE); 2409 slab_kernel_map(cachep, objp, 0, 0); 2410 } 2411 } 2412 #endif 2413 } 2414 2415 static void cache_init_objs(struct kmem_cache *cachep, 2416 struct page *page) 2417 { 2418 int i; 2419 void *objp; 2420 2421 cache_init_objs_debug(cachep, page); 2422 2423 if (OBJFREELIST_SLAB(cachep)) { 2424 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2425 obj_offset(cachep); 2426 } 2427 2428 for (i = 0; i < cachep->num; i++) { 2429 /* constructor could break poison info */ 2430 if (DEBUG == 0 && cachep->ctor) { 2431 objp = index_to_obj(cachep, page, i); 2432 kasan_unpoison_object_data(cachep, objp); 2433 cachep->ctor(objp); 2434 kasan_poison_object_data(cachep, objp); 2435 } 2436 2437 set_free_obj(page, i, i); 2438 } 2439 } 2440 2441 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2442 { 2443 if (CONFIG_ZONE_DMA_FLAG) { 2444 if (flags & GFP_DMA) 2445 BUG_ON(!(cachep->allocflags & GFP_DMA)); 2446 else 2447 BUG_ON(cachep->allocflags & GFP_DMA); 2448 } 2449 } 2450 2451 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2452 { 2453 void *objp; 2454 2455 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2456 page->active++; 2457 2458 #if DEBUG 2459 if (cachep->flags & SLAB_STORE_USER) 2460 set_store_user_dirty(cachep); 2461 #endif 2462 2463 return objp; 2464 } 2465 2466 static void slab_put_obj(struct kmem_cache *cachep, 2467 struct page *page, void *objp) 2468 { 2469 unsigned int objnr = obj_to_index(cachep, page, objp); 2470 #if DEBUG 2471 unsigned int i; 2472 2473 /* Verify double free bug */ 2474 for (i = page->active; i < cachep->num; i++) { 2475 if (get_free_obj(page, i) == objnr) { 2476 pr_err("slab: double free detected in cache '%s', objp %p\n", 2477 cachep->name, objp); 2478 BUG(); 2479 } 2480 } 2481 #endif 2482 page->active--; 2483 if (!page->freelist) 2484 page->freelist = objp + obj_offset(cachep); 2485 2486 set_free_obj(page, page->active, objnr); 2487 } 2488 2489 /* 2490 * Map pages beginning at addr to the given cache and slab. This is required 2491 * for the slab allocator to be able to lookup the cache and slab of a 2492 * virtual address for kfree, ksize, and slab debugging. 2493 */ 2494 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2495 void *freelist) 2496 { 2497 page->slab_cache = cache; 2498 page->freelist = freelist; 2499 } 2500 2501 /* 2502 * Grow (by 1) the number of slabs within a cache. This is called by 2503 * kmem_cache_alloc() when there are no active objs left in a cache. 2504 */ 2505 static int cache_grow(struct kmem_cache *cachep, 2506 gfp_t flags, int nodeid, struct page *page) 2507 { 2508 void *freelist; 2509 size_t offset; 2510 gfp_t local_flags; 2511 struct kmem_cache_node *n; 2512 2513 /* 2514 * Be lazy and only check for valid flags here, keeping it out of the 2515 * critical path in kmem_cache_alloc(). 2516 */ 2517 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2518 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 2519 BUG(); 2520 } 2521 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2522 2523 /* Take the node list lock to change the colour_next on this node */ 2524 check_irq_off(); 2525 n = get_node(cachep, nodeid); 2526 spin_lock(&n->list_lock); 2527 2528 /* Get colour for the slab, and cal the next value. */ 2529 offset = n->colour_next; 2530 n->colour_next++; 2531 if (n->colour_next >= cachep->colour) 2532 n->colour_next = 0; 2533 spin_unlock(&n->list_lock); 2534 2535 offset *= cachep->colour_off; 2536 2537 if (gfpflags_allow_blocking(local_flags)) 2538 local_irq_enable(); 2539 2540 /* 2541 * The test for missing atomic flag is performed here, rather than 2542 * the more obvious place, simply to reduce the critical path length 2543 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2544 * will eventually be caught here (where it matters). 2545 */ 2546 kmem_flagcheck(cachep, flags); 2547 2548 /* 2549 * Get mem for the objs. Attempt to allocate a physical page from 2550 * 'nodeid'. 2551 */ 2552 if (!page) 2553 page = kmem_getpages(cachep, local_flags, nodeid); 2554 if (!page) 2555 goto failed; 2556 2557 /* Get slab management. */ 2558 freelist = alloc_slabmgmt(cachep, page, offset, 2559 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2560 if (OFF_SLAB(cachep) && !freelist) 2561 goto opps1; 2562 2563 slab_map_pages(cachep, page, freelist); 2564 2565 kasan_poison_slab(page); 2566 cache_init_objs(cachep, page); 2567 2568 if (gfpflags_allow_blocking(local_flags)) 2569 local_irq_disable(); 2570 check_irq_off(); 2571 spin_lock(&n->list_lock); 2572 2573 /* Make slab active. */ 2574 list_add_tail(&page->lru, &(n->slabs_free)); 2575 STATS_INC_GROWN(cachep); 2576 n->free_objects += cachep->num; 2577 spin_unlock(&n->list_lock); 2578 return 1; 2579 opps1: 2580 kmem_freepages(cachep, page); 2581 failed: 2582 if (gfpflags_allow_blocking(local_flags)) 2583 local_irq_disable(); 2584 return 0; 2585 } 2586 2587 #if DEBUG 2588 2589 /* 2590 * Perform extra freeing checks: 2591 * - detect bad pointers. 2592 * - POISON/RED_ZONE checking 2593 */ 2594 static void kfree_debugcheck(const void *objp) 2595 { 2596 if (!virt_addr_valid(objp)) { 2597 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2598 (unsigned long)objp); 2599 BUG(); 2600 } 2601 } 2602 2603 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2604 { 2605 unsigned long long redzone1, redzone2; 2606 2607 redzone1 = *dbg_redzone1(cache, obj); 2608 redzone2 = *dbg_redzone2(cache, obj); 2609 2610 /* 2611 * Redzone is ok. 2612 */ 2613 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2614 return; 2615 2616 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2617 slab_error(cache, "double free detected"); 2618 else 2619 slab_error(cache, "memory outside object was overwritten"); 2620 2621 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2622 obj, redzone1, redzone2); 2623 } 2624 2625 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2626 unsigned long caller) 2627 { 2628 unsigned int objnr; 2629 struct page *page; 2630 2631 BUG_ON(virt_to_cache(objp) != cachep); 2632 2633 objp -= obj_offset(cachep); 2634 kfree_debugcheck(objp); 2635 page = virt_to_head_page(objp); 2636 2637 if (cachep->flags & SLAB_RED_ZONE) { 2638 verify_redzone_free(cachep, objp); 2639 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2640 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2641 } 2642 if (cachep->flags & SLAB_STORE_USER) { 2643 set_store_user_dirty(cachep); 2644 *dbg_userword(cachep, objp) = (void *)caller; 2645 } 2646 2647 objnr = obj_to_index(cachep, page, objp); 2648 2649 BUG_ON(objnr >= cachep->num); 2650 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2651 2652 if (cachep->flags & SLAB_POISON) { 2653 poison_obj(cachep, objp, POISON_FREE); 2654 slab_kernel_map(cachep, objp, 0, caller); 2655 } 2656 return objp; 2657 } 2658 2659 #else 2660 #define kfree_debugcheck(x) do { } while(0) 2661 #define cache_free_debugcheck(x,objp,z) (objp) 2662 #endif 2663 2664 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2665 void **list) 2666 { 2667 #if DEBUG 2668 void *next = *list; 2669 void *objp; 2670 2671 while (next) { 2672 objp = next - obj_offset(cachep); 2673 next = *(void **)next; 2674 poison_obj(cachep, objp, POISON_FREE); 2675 } 2676 #endif 2677 } 2678 2679 static inline void fixup_slab_list(struct kmem_cache *cachep, 2680 struct kmem_cache_node *n, struct page *page, 2681 void **list) 2682 { 2683 /* move slabp to correct slabp list: */ 2684 list_del(&page->lru); 2685 if (page->active == cachep->num) { 2686 list_add(&page->lru, &n->slabs_full); 2687 if (OBJFREELIST_SLAB(cachep)) { 2688 #if DEBUG 2689 /* Poisoning will be done without holding the lock */ 2690 if (cachep->flags & SLAB_POISON) { 2691 void **objp = page->freelist; 2692 2693 *objp = *list; 2694 *list = objp; 2695 } 2696 #endif 2697 page->freelist = NULL; 2698 } 2699 } else 2700 list_add(&page->lru, &n->slabs_partial); 2701 } 2702 2703 /* Try to find non-pfmemalloc slab if needed */ 2704 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2705 struct page *page, bool pfmemalloc) 2706 { 2707 if (!page) 2708 return NULL; 2709 2710 if (pfmemalloc) 2711 return page; 2712 2713 if (!PageSlabPfmemalloc(page)) 2714 return page; 2715 2716 /* No need to keep pfmemalloc slab if we have enough free objects */ 2717 if (n->free_objects > n->free_limit) { 2718 ClearPageSlabPfmemalloc(page); 2719 return page; 2720 } 2721 2722 /* Move pfmemalloc slab to the end of list to speed up next search */ 2723 list_del(&page->lru); 2724 if (!page->active) 2725 list_add_tail(&page->lru, &n->slabs_free); 2726 else 2727 list_add_tail(&page->lru, &n->slabs_partial); 2728 2729 list_for_each_entry(page, &n->slabs_partial, lru) { 2730 if (!PageSlabPfmemalloc(page)) 2731 return page; 2732 } 2733 2734 list_for_each_entry(page, &n->slabs_free, lru) { 2735 if (!PageSlabPfmemalloc(page)) 2736 return page; 2737 } 2738 2739 return NULL; 2740 } 2741 2742 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2743 { 2744 struct page *page; 2745 2746 page = list_first_entry_or_null(&n->slabs_partial, 2747 struct page, lru); 2748 if (!page) { 2749 n->free_touched = 1; 2750 page = list_first_entry_or_null(&n->slabs_free, 2751 struct page, lru); 2752 } 2753 2754 if (sk_memalloc_socks()) 2755 return get_valid_first_slab(n, page, pfmemalloc); 2756 2757 return page; 2758 } 2759 2760 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2761 struct kmem_cache_node *n, gfp_t flags) 2762 { 2763 struct page *page; 2764 void *obj; 2765 void *list = NULL; 2766 2767 if (!gfp_pfmemalloc_allowed(flags)) 2768 return NULL; 2769 2770 spin_lock(&n->list_lock); 2771 page = get_first_slab(n, true); 2772 if (!page) { 2773 spin_unlock(&n->list_lock); 2774 return NULL; 2775 } 2776 2777 obj = slab_get_obj(cachep, page); 2778 n->free_objects--; 2779 2780 fixup_slab_list(cachep, n, page, &list); 2781 2782 spin_unlock(&n->list_lock); 2783 fixup_objfreelist_debug(cachep, &list); 2784 2785 return obj; 2786 } 2787 2788 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2789 { 2790 int batchcount; 2791 struct kmem_cache_node *n; 2792 struct array_cache *ac; 2793 int node; 2794 void *list = NULL; 2795 2796 check_irq_off(); 2797 node = numa_mem_id(); 2798 2799 retry: 2800 ac = cpu_cache_get(cachep); 2801 batchcount = ac->batchcount; 2802 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2803 /* 2804 * If there was little recent activity on this cache, then 2805 * perform only a partial refill. Otherwise we could generate 2806 * refill bouncing. 2807 */ 2808 batchcount = BATCHREFILL_LIMIT; 2809 } 2810 n = get_node(cachep, node); 2811 2812 BUG_ON(ac->avail > 0 || !n); 2813 spin_lock(&n->list_lock); 2814 2815 /* See if we can refill from the shared array */ 2816 if (n->shared && transfer_objects(ac, n->shared, batchcount)) { 2817 n->shared->touched = 1; 2818 goto alloc_done; 2819 } 2820 2821 while (batchcount > 0) { 2822 struct page *page; 2823 /* Get slab alloc is to come from. */ 2824 page = get_first_slab(n, false); 2825 if (!page) 2826 goto must_grow; 2827 2828 check_spinlock_acquired(cachep); 2829 2830 /* 2831 * The slab was either on partial or free list so 2832 * there must be at least one object available for 2833 * allocation. 2834 */ 2835 BUG_ON(page->active >= cachep->num); 2836 2837 while (page->active < cachep->num && batchcount--) { 2838 STATS_INC_ALLOCED(cachep); 2839 STATS_INC_ACTIVE(cachep); 2840 STATS_SET_HIGH(cachep); 2841 2842 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2843 } 2844 2845 fixup_slab_list(cachep, n, page, &list); 2846 } 2847 2848 must_grow: 2849 n->free_objects -= ac->avail; 2850 alloc_done: 2851 spin_unlock(&n->list_lock); 2852 fixup_objfreelist_debug(cachep, &list); 2853 2854 if (unlikely(!ac->avail)) { 2855 int x; 2856 2857 /* Check if we can use obj in pfmemalloc slab */ 2858 if (sk_memalloc_socks()) { 2859 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2860 2861 if (obj) 2862 return obj; 2863 } 2864 2865 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL); 2866 2867 /* cache_grow can reenable interrupts, then ac could change. */ 2868 ac = cpu_cache_get(cachep); 2869 node = numa_mem_id(); 2870 2871 /* no objects in sight? abort */ 2872 if (!x && ac->avail == 0) 2873 return NULL; 2874 2875 if (!ac->avail) /* objects refilled by interrupt? */ 2876 goto retry; 2877 } 2878 ac->touched = 1; 2879 2880 return ac->entry[--ac->avail]; 2881 } 2882 2883 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 2884 gfp_t flags) 2885 { 2886 might_sleep_if(gfpflags_allow_blocking(flags)); 2887 #if DEBUG 2888 kmem_flagcheck(cachep, flags); 2889 #endif 2890 } 2891 2892 #if DEBUG 2893 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2894 gfp_t flags, void *objp, unsigned long caller) 2895 { 2896 if (!objp) 2897 return objp; 2898 if (cachep->flags & SLAB_POISON) { 2899 check_poison_obj(cachep, objp); 2900 slab_kernel_map(cachep, objp, 1, 0); 2901 poison_obj(cachep, objp, POISON_INUSE); 2902 } 2903 if (cachep->flags & SLAB_STORE_USER) 2904 *dbg_userword(cachep, objp) = (void *)caller; 2905 2906 if (cachep->flags & SLAB_RED_ZONE) { 2907 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 2908 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 2909 slab_error(cachep, "double free, or memory outside object was overwritten"); 2910 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2911 objp, *dbg_redzone1(cachep, objp), 2912 *dbg_redzone2(cachep, objp)); 2913 } 2914 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2915 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2916 } 2917 2918 objp += obj_offset(cachep); 2919 if (cachep->ctor && cachep->flags & SLAB_POISON) 2920 cachep->ctor(objp); 2921 if (ARCH_SLAB_MINALIGN && 2922 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 2923 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 2924 objp, (int)ARCH_SLAB_MINALIGN); 2925 } 2926 return objp; 2927 } 2928 #else 2929 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 2930 #endif 2931 2932 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 2933 { 2934 void *objp; 2935 struct array_cache *ac; 2936 2937 check_irq_off(); 2938 2939 ac = cpu_cache_get(cachep); 2940 if (likely(ac->avail)) { 2941 ac->touched = 1; 2942 objp = ac->entry[--ac->avail]; 2943 2944 STATS_INC_ALLOCHIT(cachep); 2945 goto out; 2946 } 2947 2948 STATS_INC_ALLOCMISS(cachep); 2949 objp = cache_alloc_refill(cachep, flags); 2950 /* 2951 * the 'ac' may be updated by cache_alloc_refill(), 2952 * and kmemleak_erase() requires its correct value. 2953 */ 2954 ac = cpu_cache_get(cachep); 2955 2956 out: 2957 /* 2958 * To avoid a false negative, if an object that is in one of the 2959 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 2960 * treat the array pointers as a reference to the object. 2961 */ 2962 if (objp) 2963 kmemleak_erase(&ac->entry[ac->avail]); 2964 return objp; 2965 } 2966 2967 #ifdef CONFIG_NUMA 2968 /* 2969 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 2970 * 2971 * If we are in_interrupt, then process context, including cpusets and 2972 * mempolicy, may not apply and should not be used for allocation policy. 2973 */ 2974 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 2975 { 2976 int nid_alloc, nid_here; 2977 2978 if (in_interrupt() || (flags & __GFP_THISNODE)) 2979 return NULL; 2980 nid_alloc = nid_here = numa_mem_id(); 2981 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 2982 nid_alloc = cpuset_slab_spread_node(); 2983 else if (current->mempolicy) 2984 nid_alloc = mempolicy_slab_node(); 2985 if (nid_alloc != nid_here) 2986 return ____cache_alloc_node(cachep, flags, nid_alloc); 2987 return NULL; 2988 } 2989 2990 /* 2991 * Fallback function if there was no memory available and no objects on a 2992 * certain node and fall back is permitted. First we scan all the 2993 * available node for available objects. If that fails then we 2994 * perform an allocation without specifying a node. This allows the page 2995 * allocator to do its reclaim / fallback magic. We then insert the 2996 * slab into the proper nodelist and then allocate from it. 2997 */ 2998 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 2999 { 3000 struct zonelist *zonelist; 3001 gfp_t local_flags; 3002 struct zoneref *z; 3003 struct zone *zone; 3004 enum zone_type high_zoneidx = gfp_zone(flags); 3005 void *obj = NULL; 3006 int nid; 3007 unsigned int cpuset_mems_cookie; 3008 3009 if (flags & __GFP_THISNODE) 3010 return NULL; 3011 3012 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3013 3014 retry_cpuset: 3015 cpuset_mems_cookie = read_mems_allowed_begin(); 3016 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3017 3018 retry: 3019 /* 3020 * Look through allowed nodes for objects available 3021 * from existing per node queues. 3022 */ 3023 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3024 nid = zone_to_nid(zone); 3025 3026 if (cpuset_zone_allowed(zone, flags) && 3027 get_node(cache, nid) && 3028 get_node(cache, nid)->free_objects) { 3029 obj = ____cache_alloc_node(cache, 3030 gfp_exact_node(flags), nid); 3031 if (obj) 3032 break; 3033 } 3034 } 3035 3036 if (!obj) { 3037 /* 3038 * This allocation will be performed within the constraints 3039 * of the current cpuset / memory policy requirements. 3040 * We may trigger various forms of reclaim on the allowed 3041 * set and go into memory reserves if necessary. 3042 */ 3043 struct page *page; 3044 3045 if (gfpflags_allow_blocking(local_flags)) 3046 local_irq_enable(); 3047 kmem_flagcheck(cache, flags); 3048 page = kmem_getpages(cache, local_flags, numa_mem_id()); 3049 if (gfpflags_allow_blocking(local_flags)) 3050 local_irq_disable(); 3051 if (page) { 3052 /* 3053 * Insert into the appropriate per node queues 3054 */ 3055 nid = page_to_nid(page); 3056 if (cache_grow(cache, flags, nid, page)) { 3057 obj = ____cache_alloc_node(cache, 3058 gfp_exact_node(flags), nid); 3059 if (!obj) 3060 /* 3061 * Another processor may allocate the 3062 * objects in the slab since we are 3063 * not holding any locks. 3064 */ 3065 goto retry; 3066 } else { 3067 /* cache_grow already freed obj */ 3068 obj = NULL; 3069 } 3070 } 3071 } 3072 3073 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3074 goto retry_cpuset; 3075 return obj; 3076 } 3077 3078 /* 3079 * A interface to enable slab creation on nodeid 3080 */ 3081 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3082 int nodeid) 3083 { 3084 struct page *page; 3085 struct kmem_cache_node *n; 3086 void *obj; 3087 void *list = NULL; 3088 int x; 3089 3090 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3091 n = get_node(cachep, nodeid); 3092 BUG_ON(!n); 3093 3094 retry: 3095 check_irq_off(); 3096 spin_lock(&n->list_lock); 3097 page = get_first_slab(n, false); 3098 if (!page) 3099 goto must_grow; 3100 3101 check_spinlock_acquired_node(cachep, nodeid); 3102 3103 STATS_INC_NODEALLOCS(cachep); 3104 STATS_INC_ACTIVE(cachep); 3105 STATS_SET_HIGH(cachep); 3106 3107 BUG_ON(page->active == cachep->num); 3108 3109 obj = slab_get_obj(cachep, page); 3110 n->free_objects--; 3111 3112 fixup_slab_list(cachep, n, page, &list); 3113 3114 spin_unlock(&n->list_lock); 3115 fixup_objfreelist_debug(cachep, &list); 3116 goto done; 3117 3118 must_grow: 3119 spin_unlock(&n->list_lock); 3120 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL); 3121 if (x) 3122 goto retry; 3123 3124 return fallback_alloc(cachep, flags); 3125 3126 done: 3127 return obj; 3128 } 3129 3130 static __always_inline void * 3131 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3132 unsigned long caller) 3133 { 3134 unsigned long save_flags; 3135 void *ptr; 3136 int slab_node = numa_mem_id(); 3137 3138 flags &= gfp_allowed_mask; 3139 cachep = slab_pre_alloc_hook(cachep, flags); 3140 if (unlikely(!cachep)) 3141 return NULL; 3142 3143 cache_alloc_debugcheck_before(cachep, flags); 3144 local_irq_save(save_flags); 3145 3146 if (nodeid == NUMA_NO_NODE) 3147 nodeid = slab_node; 3148 3149 if (unlikely(!get_node(cachep, nodeid))) { 3150 /* Node not bootstrapped yet */ 3151 ptr = fallback_alloc(cachep, flags); 3152 goto out; 3153 } 3154 3155 if (nodeid == slab_node) { 3156 /* 3157 * Use the locally cached objects if possible. 3158 * However ____cache_alloc does not allow fallback 3159 * to other nodes. It may fail while we still have 3160 * objects on other nodes available. 3161 */ 3162 ptr = ____cache_alloc(cachep, flags); 3163 if (ptr) 3164 goto out; 3165 } 3166 /* ___cache_alloc_node can fall back to other nodes */ 3167 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3168 out: 3169 local_irq_restore(save_flags); 3170 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3171 3172 if (unlikely(flags & __GFP_ZERO) && ptr) 3173 memset(ptr, 0, cachep->object_size); 3174 3175 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3176 return ptr; 3177 } 3178 3179 static __always_inline void * 3180 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3181 { 3182 void *objp; 3183 3184 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3185 objp = alternate_node_alloc(cache, flags); 3186 if (objp) 3187 goto out; 3188 } 3189 objp = ____cache_alloc(cache, flags); 3190 3191 /* 3192 * We may just have run out of memory on the local node. 3193 * ____cache_alloc_node() knows how to locate memory on other nodes 3194 */ 3195 if (!objp) 3196 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3197 3198 out: 3199 return objp; 3200 } 3201 #else 3202 3203 static __always_inline void * 3204 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3205 { 3206 return ____cache_alloc(cachep, flags); 3207 } 3208 3209 #endif /* CONFIG_NUMA */ 3210 3211 static __always_inline void * 3212 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3213 { 3214 unsigned long save_flags; 3215 void *objp; 3216 3217 flags &= gfp_allowed_mask; 3218 cachep = slab_pre_alloc_hook(cachep, flags); 3219 if (unlikely(!cachep)) 3220 return NULL; 3221 3222 cache_alloc_debugcheck_before(cachep, flags); 3223 local_irq_save(save_flags); 3224 objp = __do_cache_alloc(cachep, flags); 3225 local_irq_restore(save_flags); 3226 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3227 prefetchw(objp); 3228 3229 if (unlikely(flags & __GFP_ZERO) && objp) 3230 memset(objp, 0, cachep->object_size); 3231 3232 slab_post_alloc_hook(cachep, flags, 1, &objp); 3233 return objp; 3234 } 3235 3236 /* 3237 * Caller needs to acquire correct kmem_cache_node's list_lock 3238 * @list: List of detached free slabs should be freed by caller 3239 */ 3240 static void free_block(struct kmem_cache *cachep, void **objpp, 3241 int nr_objects, int node, struct list_head *list) 3242 { 3243 int i; 3244 struct kmem_cache_node *n = get_node(cachep, node); 3245 3246 for (i = 0; i < nr_objects; i++) { 3247 void *objp; 3248 struct page *page; 3249 3250 objp = objpp[i]; 3251 3252 page = virt_to_head_page(objp); 3253 list_del(&page->lru); 3254 check_spinlock_acquired_node(cachep, node); 3255 slab_put_obj(cachep, page, objp); 3256 STATS_DEC_ACTIVE(cachep); 3257 n->free_objects++; 3258 3259 /* fixup slab chains */ 3260 if (page->active == 0) { 3261 if (n->free_objects > n->free_limit) { 3262 n->free_objects -= cachep->num; 3263 list_add_tail(&page->lru, list); 3264 } else { 3265 list_add(&page->lru, &n->slabs_free); 3266 } 3267 } else { 3268 /* Unconditionally move a slab to the end of the 3269 * partial list on free - maximum time for the 3270 * other objects to be freed, too. 3271 */ 3272 list_add_tail(&page->lru, &n->slabs_partial); 3273 } 3274 } 3275 } 3276 3277 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3278 { 3279 int batchcount; 3280 struct kmem_cache_node *n; 3281 int node = numa_mem_id(); 3282 LIST_HEAD(list); 3283 3284 batchcount = ac->batchcount; 3285 3286 check_irq_off(); 3287 n = get_node(cachep, node); 3288 spin_lock(&n->list_lock); 3289 if (n->shared) { 3290 struct array_cache *shared_array = n->shared; 3291 int max = shared_array->limit - shared_array->avail; 3292 if (max) { 3293 if (batchcount > max) 3294 batchcount = max; 3295 memcpy(&(shared_array->entry[shared_array->avail]), 3296 ac->entry, sizeof(void *) * batchcount); 3297 shared_array->avail += batchcount; 3298 goto free_done; 3299 } 3300 } 3301 3302 free_block(cachep, ac->entry, batchcount, node, &list); 3303 free_done: 3304 #if STATS 3305 { 3306 int i = 0; 3307 struct page *page; 3308 3309 list_for_each_entry(page, &n->slabs_free, lru) { 3310 BUG_ON(page->active); 3311 3312 i++; 3313 } 3314 STATS_SET_FREEABLE(cachep, i); 3315 } 3316 #endif 3317 spin_unlock(&n->list_lock); 3318 slabs_destroy(cachep, &list); 3319 ac->avail -= batchcount; 3320 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3321 } 3322 3323 /* 3324 * Release an obj back to its cache. If the obj has a constructed state, it must 3325 * be in this state _before_ it is released. Called with disabled ints. 3326 */ 3327 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3328 unsigned long caller) 3329 { 3330 struct array_cache *ac = cpu_cache_get(cachep); 3331 3332 kasan_slab_free(cachep, objp); 3333 3334 check_irq_off(); 3335 kmemleak_free_recursive(objp, cachep->flags); 3336 objp = cache_free_debugcheck(cachep, objp, caller); 3337 3338 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3339 3340 /* 3341 * Skip calling cache_free_alien() when the platform is not numa. 3342 * This will avoid cache misses that happen while accessing slabp (which 3343 * is per page memory reference) to get nodeid. Instead use a global 3344 * variable to skip the call, which is mostly likely to be present in 3345 * the cache. 3346 */ 3347 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3348 return; 3349 3350 if (ac->avail < ac->limit) { 3351 STATS_INC_FREEHIT(cachep); 3352 } else { 3353 STATS_INC_FREEMISS(cachep); 3354 cache_flusharray(cachep, ac); 3355 } 3356 3357 if (sk_memalloc_socks()) { 3358 struct page *page = virt_to_head_page(objp); 3359 3360 if (unlikely(PageSlabPfmemalloc(page))) { 3361 cache_free_pfmemalloc(cachep, page, objp); 3362 return; 3363 } 3364 } 3365 3366 ac->entry[ac->avail++] = objp; 3367 } 3368 3369 /** 3370 * kmem_cache_alloc - Allocate an object 3371 * @cachep: The cache to allocate from. 3372 * @flags: See kmalloc(). 3373 * 3374 * Allocate an object from this cache. The flags are only relevant 3375 * if the cache has no available objects. 3376 */ 3377 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3378 { 3379 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3380 3381 kasan_slab_alloc(cachep, ret, flags); 3382 trace_kmem_cache_alloc(_RET_IP_, ret, 3383 cachep->object_size, cachep->size, flags); 3384 3385 return ret; 3386 } 3387 EXPORT_SYMBOL(kmem_cache_alloc); 3388 3389 static __always_inline void 3390 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3391 size_t size, void **p, unsigned long caller) 3392 { 3393 size_t i; 3394 3395 for (i = 0; i < size; i++) 3396 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3397 } 3398 3399 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3400 void **p) 3401 { 3402 size_t i; 3403 3404 s = slab_pre_alloc_hook(s, flags); 3405 if (!s) 3406 return 0; 3407 3408 cache_alloc_debugcheck_before(s, flags); 3409 3410 local_irq_disable(); 3411 for (i = 0; i < size; i++) { 3412 void *objp = __do_cache_alloc(s, flags); 3413 3414 if (unlikely(!objp)) 3415 goto error; 3416 p[i] = objp; 3417 } 3418 local_irq_enable(); 3419 3420 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3421 3422 /* Clear memory outside IRQ disabled section */ 3423 if (unlikely(flags & __GFP_ZERO)) 3424 for (i = 0; i < size; i++) 3425 memset(p[i], 0, s->object_size); 3426 3427 slab_post_alloc_hook(s, flags, size, p); 3428 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3429 return size; 3430 error: 3431 local_irq_enable(); 3432 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3433 slab_post_alloc_hook(s, flags, i, p); 3434 __kmem_cache_free_bulk(s, i, p); 3435 return 0; 3436 } 3437 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3438 3439 #ifdef CONFIG_TRACING 3440 void * 3441 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3442 { 3443 void *ret; 3444 3445 ret = slab_alloc(cachep, flags, _RET_IP_); 3446 3447 kasan_kmalloc(cachep, ret, size, flags); 3448 trace_kmalloc(_RET_IP_, ret, 3449 size, cachep->size, flags); 3450 return ret; 3451 } 3452 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3453 #endif 3454 3455 #ifdef CONFIG_NUMA 3456 /** 3457 * kmem_cache_alloc_node - Allocate an object on the specified node 3458 * @cachep: The cache to allocate from. 3459 * @flags: See kmalloc(). 3460 * @nodeid: node number of the target node. 3461 * 3462 * Identical to kmem_cache_alloc but it will allocate memory on the given 3463 * node, which can improve the performance for cpu bound structures. 3464 * 3465 * Fallback to other node is possible if __GFP_THISNODE is not set. 3466 */ 3467 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3468 { 3469 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3470 3471 kasan_slab_alloc(cachep, ret, flags); 3472 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3473 cachep->object_size, cachep->size, 3474 flags, nodeid); 3475 3476 return ret; 3477 } 3478 EXPORT_SYMBOL(kmem_cache_alloc_node); 3479 3480 #ifdef CONFIG_TRACING 3481 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3482 gfp_t flags, 3483 int nodeid, 3484 size_t size) 3485 { 3486 void *ret; 3487 3488 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3489 3490 kasan_kmalloc(cachep, ret, size, flags); 3491 trace_kmalloc_node(_RET_IP_, ret, 3492 size, cachep->size, 3493 flags, nodeid); 3494 return ret; 3495 } 3496 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3497 #endif 3498 3499 static __always_inline void * 3500 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3501 { 3502 struct kmem_cache *cachep; 3503 void *ret; 3504 3505 cachep = kmalloc_slab(size, flags); 3506 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3507 return cachep; 3508 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3509 kasan_kmalloc(cachep, ret, size, flags); 3510 3511 return ret; 3512 } 3513 3514 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3515 { 3516 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3517 } 3518 EXPORT_SYMBOL(__kmalloc_node); 3519 3520 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3521 int node, unsigned long caller) 3522 { 3523 return __do_kmalloc_node(size, flags, node, caller); 3524 } 3525 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3526 #endif /* CONFIG_NUMA */ 3527 3528 /** 3529 * __do_kmalloc - allocate memory 3530 * @size: how many bytes of memory are required. 3531 * @flags: the type of memory to allocate (see kmalloc). 3532 * @caller: function caller for debug tracking of the caller 3533 */ 3534 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3535 unsigned long caller) 3536 { 3537 struct kmem_cache *cachep; 3538 void *ret; 3539 3540 cachep = kmalloc_slab(size, flags); 3541 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3542 return cachep; 3543 ret = slab_alloc(cachep, flags, caller); 3544 3545 kasan_kmalloc(cachep, ret, size, flags); 3546 trace_kmalloc(caller, ret, 3547 size, cachep->size, flags); 3548 3549 return ret; 3550 } 3551 3552 void *__kmalloc(size_t size, gfp_t flags) 3553 { 3554 return __do_kmalloc(size, flags, _RET_IP_); 3555 } 3556 EXPORT_SYMBOL(__kmalloc); 3557 3558 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3559 { 3560 return __do_kmalloc(size, flags, caller); 3561 } 3562 EXPORT_SYMBOL(__kmalloc_track_caller); 3563 3564 /** 3565 * kmem_cache_free - Deallocate an object 3566 * @cachep: The cache the allocation was from. 3567 * @objp: The previously allocated object. 3568 * 3569 * Free an object which was previously allocated from this 3570 * cache. 3571 */ 3572 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3573 { 3574 unsigned long flags; 3575 cachep = cache_from_obj(cachep, objp); 3576 if (!cachep) 3577 return; 3578 3579 local_irq_save(flags); 3580 debug_check_no_locks_freed(objp, cachep->object_size); 3581 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3582 debug_check_no_obj_freed(objp, cachep->object_size); 3583 __cache_free(cachep, objp, _RET_IP_); 3584 local_irq_restore(flags); 3585 3586 trace_kmem_cache_free(_RET_IP_, objp); 3587 } 3588 EXPORT_SYMBOL(kmem_cache_free); 3589 3590 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3591 { 3592 struct kmem_cache *s; 3593 size_t i; 3594 3595 local_irq_disable(); 3596 for (i = 0; i < size; i++) { 3597 void *objp = p[i]; 3598 3599 if (!orig_s) /* called via kfree_bulk */ 3600 s = virt_to_cache(objp); 3601 else 3602 s = cache_from_obj(orig_s, objp); 3603 3604 debug_check_no_locks_freed(objp, s->object_size); 3605 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3606 debug_check_no_obj_freed(objp, s->object_size); 3607 3608 __cache_free(s, objp, _RET_IP_); 3609 } 3610 local_irq_enable(); 3611 3612 /* FIXME: add tracing */ 3613 } 3614 EXPORT_SYMBOL(kmem_cache_free_bulk); 3615 3616 /** 3617 * kfree - free previously allocated memory 3618 * @objp: pointer returned by kmalloc. 3619 * 3620 * If @objp is NULL, no operation is performed. 3621 * 3622 * Don't free memory not originally allocated by kmalloc() 3623 * or you will run into trouble. 3624 */ 3625 void kfree(const void *objp) 3626 { 3627 struct kmem_cache *c; 3628 unsigned long flags; 3629 3630 trace_kfree(_RET_IP_, objp); 3631 3632 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3633 return; 3634 local_irq_save(flags); 3635 kfree_debugcheck(objp); 3636 c = virt_to_cache(objp); 3637 debug_check_no_locks_freed(objp, c->object_size); 3638 3639 debug_check_no_obj_freed(objp, c->object_size); 3640 __cache_free(c, (void *)objp, _RET_IP_); 3641 local_irq_restore(flags); 3642 } 3643 EXPORT_SYMBOL(kfree); 3644 3645 /* 3646 * This initializes kmem_cache_node or resizes various caches for all nodes. 3647 */ 3648 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp) 3649 { 3650 int node; 3651 struct kmem_cache_node *n; 3652 struct array_cache *new_shared; 3653 struct alien_cache **new_alien = NULL; 3654 3655 for_each_online_node(node) { 3656 3657 if (use_alien_caches) { 3658 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 3659 if (!new_alien) 3660 goto fail; 3661 } 3662 3663 new_shared = NULL; 3664 if (cachep->shared) { 3665 new_shared = alloc_arraycache(node, 3666 cachep->shared*cachep->batchcount, 3667 0xbaadf00d, gfp); 3668 if (!new_shared) { 3669 free_alien_cache(new_alien); 3670 goto fail; 3671 } 3672 } 3673 3674 n = get_node(cachep, node); 3675 if (n) { 3676 struct array_cache *shared = n->shared; 3677 LIST_HEAD(list); 3678 3679 spin_lock_irq(&n->list_lock); 3680 3681 if (shared) 3682 free_block(cachep, shared->entry, 3683 shared->avail, node, &list); 3684 3685 n->shared = new_shared; 3686 if (!n->alien) { 3687 n->alien = new_alien; 3688 new_alien = NULL; 3689 } 3690 n->free_limit = (1 + nr_cpus_node(node)) * 3691 cachep->batchcount + cachep->num; 3692 spin_unlock_irq(&n->list_lock); 3693 slabs_destroy(cachep, &list); 3694 kfree(shared); 3695 free_alien_cache(new_alien); 3696 continue; 3697 } 3698 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 3699 if (!n) { 3700 free_alien_cache(new_alien); 3701 kfree(new_shared); 3702 goto fail; 3703 } 3704 3705 kmem_cache_node_init(n); 3706 n->next_reap = jiffies + REAPTIMEOUT_NODE + 3707 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 3708 n->shared = new_shared; 3709 n->alien = new_alien; 3710 n->free_limit = (1 + nr_cpus_node(node)) * 3711 cachep->batchcount + cachep->num; 3712 cachep->node[node] = n; 3713 } 3714 return 0; 3715 3716 fail: 3717 if (!cachep->list.next) { 3718 /* Cache is not active yet. Roll back what we did */ 3719 node--; 3720 while (node >= 0) { 3721 n = get_node(cachep, node); 3722 if (n) { 3723 kfree(n->shared); 3724 free_alien_cache(n->alien); 3725 kfree(n); 3726 cachep->node[node] = NULL; 3727 } 3728 node--; 3729 } 3730 } 3731 return -ENOMEM; 3732 } 3733 3734 /* Always called with the slab_mutex held */ 3735 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3736 int batchcount, int shared, gfp_t gfp) 3737 { 3738 struct array_cache __percpu *cpu_cache, *prev; 3739 int cpu; 3740 3741 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3742 if (!cpu_cache) 3743 return -ENOMEM; 3744 3745 prev = cachep->cpu_cache; 3746 cachep->cpu_cache = cpu_cache; 3747 kick_all_cpus_sync(); 3748 3749 check_irq_on(); 3750 cachep->batchcount = batchcount; 3751 cachep->limit = limit; 3752 cachep->shared = shared; 3753 3754 if (!prev) 3755 goto alloc_node; 3756 3757 for_each_online_cpu(cpu) { 3758 LIST_HEAD(list); 3759 int node; 3760 struct kmem_cache_node *n; 3761 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3762 3763 node = cpu_to_mem(cpu); 3764 n = get_node(cachep, node); 3765 spin_lock_irq(&n->list_lock); 3766 free_block(cachep, ac->entry, ac->avail, node, &list); 3767 spin_unlock_irq(&n->list_lock); 3768 slabs_destroy(cachep, &list); 3769 } 3770 free_percpu(prev); 3771 3772 alloc_node: 3773 return alloc_kmem_cache_node(cachep, gfp); 3774 } 3775 3776 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3777 int batchcount, int shared, gfp_t gfp) 3778 { 3779 int ret; 3780 struct kmem_cache *c; 3781 3782 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3783 3784 if (slab_state < FULL) 3785 return ret; 3786 3787 if ((ret < 0) || !is_root_cache(cachep)) 3788 return ret; 3789 3790 lockdep_assert_held(&slab_mutex); 3791 for_each_memcg_cache(c, cachep) { 3792 /* return value determined by the root cache only */ 3793 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3794 } 3795 3796 return ret; 3797 } 3798 3799 /* Called with slab_mutex held always */ 3800 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3801 { 3802 int err; 3803 int limit = 0; 3804 int shared = 0; 3805 int batchcount = 0; 3806 3807 if (!is_root_cache(cachep)) { 3808 struct kmem_cache *root = memcg_root_cache(cachep); 3809 limit = root->limit; 3810 shared = root->shared; 3811 batchcount = root->batchcount; 3812 } 3813 3814 if (limit && shared && batchcount) 3815 goto skip_setup; 3816 /* 3817 * The head array serves three purposes: 3818 * - create a LIFO ordering, i.e. return objects that are cache-warm 3819 * - reduce the number of spinlock operations. 3820 * - reduce the number of linked list operations on the slab and 3821 * bufctl chains: array operations are cheaper. 3822 * The numbers are guessed, we should auto-tune as described by 3823 * Bonwick. 3824 */ 3825 if (cachep->size > 131072) 3826 limit = 1; 3827 else if (cachep->size > PAGE_SIZE) 3828 limit = 8; 3829 else if (cachep->size > 1024) 3830 limit = 24; 3831 else if (cachep->size > 256) 3832 limit = 54; 3833 else 3834 limit = 120; 3835 3836 /* 3837 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3838 * allocation behaviour: Most allocs on one cpu, most free operations 3839 * on another cpu. For these cases, an efficient object passing between 3840 * cpus is necessary. This is provided by a shared array. The array 3841 * replaces Bonwick's magazine layer. 3842 * On uniprocessor, it's functionally equivalent (but less efficient) 3843 * to a larger limit. Thus disabled by default. 3844 */ 3845 shared = 0; 3846 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3847 shared = 8; 3848 3849 #if DEBUG 3850 /* 3851 * With debugging enabled, large batchcount lead to excessively long 3852 * periods with disabled local interrupts. Limit the batchcount 3853 */ 3854 if (limit > 32) 3855 limit = 32; 3856 #endif 3857 batchcount = (limit + 1) / 2; 3858 skip_setup: 3859 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3860 if (err) 3861 pr_err("enable_cpucache failed for %s, error %d\n", 3862 cachep->name, -err); 3863 return err; 3864 } 3865 3866 /* 3867 * Drain an array if it contains any elements taking the node lock only if 3868 * necessary. Note that the node listlock also protects the array_cache 3869 * if drain_array() is used on the shared array. 3870 */ 3871 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3872 struct array_cache *ac, int force, int node) 3873 { 3874 LIST_HEAD(list); 3875 int tofree; 3876 3877 if (!ac || !ac->avail) 3878 return; 3879 if (ac->touched && !force) { 3880 ac->touched = 0; 3881 } else { 3882 spin_lock_irq(&n->list_lock); 3883 if (ac->avail) { 3884 tofree = force ? ac->avail : (ac->limit + 4) / 5; 3885 if (tofree > ac->avail) 3886 tofree = (ac->avail + 1) / 2; 3887 free_block(cachep, ac->entry, tofree, node, &list); 3888 ac->avail -= tofree; 3889 memmove(ac->entry, &(ac->entry[tofree]), 3890 sizeof(void *) * ac->avail); 3891 } 3892 spin_unlock_irq(&n->list_lock); 3893 slabs_destroy(cachep, &list); 3894 } 3895 } 3896 3897 /** 3898 * cache_reap - Reclaim memory from caches. 3899 * @w: work descriptor 3900 * 3901 * Called from workqueue/eventd every few seconds. 3902 * Purpose: 3903 * - clear the per-cpu caches for this CPU. 3904 * - return freeable pages to the main free memory pool. 3905 * 3906 * If we cannot acquire the cache chain mutex then just give up - we'll try 3907 * again on the next iteration. 3908 */ 3909 static void cache_reap(struct work_struct *w) 3910 { 3911 struct kmem_cache *searchp; 3912 struct kmem_cache_node *n; 3913 int node = numa_mem_id(); 3914 struct delayed_work *work = to_delayed_work(w); 3915 3916 if (!mutex_trylock(&slab_mutex)) 3917 /* Give up. Setup the next iteration. */ 3918 goto out; 3919 3920 list_for_each_entry(searchp, &slab_caches, list) { 3921 check_irq_on(); 3922 3923 /* 3924 * We only take the node lock if absolutely necessary and we 3925 * have established with reasonable certainty that 3926 * we can do some work if the lock was obtained. 3927 */ 3928 n = get_node(searchp, node); 3929 3930 reap_alien(searchp, n); 3931 3932 drain_array(searchp, n, cpu_cache_get(searchp), 0, node); 3933 3934 /* 3935 * These are racy checks but it does not matter 3936 * if we skip one check or scan twice. 3937 */ 3938 if (time_after(n->next_reap, jiffies)) 3939 goto next; 3940 3941 n->next_reap = jiffies + REAPTIMEOUT_NODE; 3942 3943 drain_array(searchp, n, n->shared, 0, node); 3944 3945 if (n->free_touched) 3946 n->free_touched = 0; 3947 else { 3948 int freed; 3949 3950 freed = drain_freelist(searchp, n, (n->free_limit + 3951 5 * searchp->num - 1) / (5 * searchp->num)); 3952 STATS_ADD_REAPED(searchp, freed); 3953 } 3954 next: 3955 cond_resched(); 3956 } 3957 check_irq_on(); 3958 mutex_unlock(&slab_mutex); 3959 next_reap_node(); 3960 out: 3961 /* Set up the next iteration */ 3962 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 3963 } 3964 3965 #ifdef CONFIG_SLABINFO 3966 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 3967 { 3968 struct page *page; 3969 unsigned long active_objs; 3970 unsigned long num_objs; 3971 unsigned long active_slabs = 0; 3972 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 3973 const char *name; 3974 char *error = NULL; 3975 int node; 3976 struct kmem_cache_node *n; 3977 3978 active_objs = 0; 3979 num_slabs = 0; 3980 for_each_kmem_cache_node(cachep, node, n) { 3981 3982 check_irq_on(); 3983 spin_lock_irq(&n->list_lock); 3984 3985 list_for_each_entry(page, &n->slabs_full, lru) { 3986 if (page->active != cachep->num && !error) 3987 error = "slabs_full accounting error"; 3988 active_objs += cachep->num; 3989 active_slabs++; 3990 } 3991 list_for_each_entry(page, &n->slabs_partial, lru) { 3992 if (page->active == cachep->num && !error) 3993 error = "slabs_partial accounting error"; 3994 if (!page->active && !error) 3995 error = "slabs_partial accounting error"; 3996 active_objs += page->active; 3997 active_slabs++; 3998 } 3999 list_for_each_entry(page, &n->slabs_free, lru) { 4000 if (page->active && !error) 4001 error = "slabs_free accounting error"; 4002 num_slabs++; 4003 } 4004 free_objects += n->free_objects; 4005 if (n->shared) 4006 shared_avail += n->shared->avail; 4007 4008 spin_unlock_irq(&n->list_lock); 4009 } 4010 num_slabs += active_slabs; 4011 num_objs = num_slabs * cachep->num; 4012 if (num_objs - active_objs != free_objects && !error) 4013 error = "free_objects accounting error"; 4014 4015 name = cachep->name; 4016 if (error) 4017 pr_err("slab: cache %s error: %s\n", name, error); 4018 4019 sinfo->active_objs = active_objs; 4020 sinfo->num_objs = num_objs; 4021 sinfo->active_slabs = active_slabs; 4022 sinfo->num_slabs = num_slabs; 4023 sinfo->shared_avail = shared_avail; 4024 sinfo->limit = cachep->limit; 4025 sinfo->batchcount = cachep->batchcount; 4026 sinfo->shared = cachep->shared; 4027 sinfo->objects_per_slab = cachep->num; 4028 sinfo->cache_order = cachep->gfporder; 4029 } 4030 4031 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4032 { 4033 #if STATS 4034 { /* node stats */ 4035 unsigned long high = cachep->high_mark; 4036 unsigned long allocs = cachep->num_allocations; 4037 unsigned long grown = cachep->grown; 4038 unsigned long reaped = cachep->reaped; 4039 unsigned long errors = cachep->errors; 4040 unsigned long max_freeable = cachep->max_freeable; 4041 unsigned long node_allocs = cachep->node_allocs; 4042 unsigned long node_frees = cachep->node_frees; 4043 unsigned long overflows = cachep->node_overflow; 4044 4045 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4046 allocs, high, grown, 4047 reaped, errors, max_freeable, node_allocs, 4048 node_frees, overflows); 4049 } 4050 /* cpu stats */ 4051 { 4052 unsigned long allochit = atomic_read(&cachep->allochit); 4053 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4054 unsigned long freehit = atomic_read(&cachep->freehit); 4055 unsigned long freemiss = atomic_read(&cachep->freemiss); 4056 4057 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4058 allochit, allocmiss, freehit, freemiss); 4059 } 4060 #endif 4061 } 4062 4063 #define MAX_SLABINFO_WRITE 128 4064 /** 4065 * slabinfo_write - Tuning for the slab allocator 4066 * @file: unused 4067 * @buffer: user buffer 4068 * @count: data length 4069 * @ppos: unused 4070 */ 4071 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4072 size_t count, loff_t *ppos) 4073 { 4074 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4075 int limit, batchcount, shared, res; 4076 struct kmem_cache *cachep; 4077 4078 if (count > MAX_SLABINFO_WRITE) 4079 return -EINVAL; 4080 if (copy_from_user(&kbuf, buffer, count)) 4081 return -EFAULT; 4082 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4083 4084 tmp = strchr(kbuf, ' '); 4085 if (!tmp) 4086 return -EINVAL; 4087 *tmp = '\0'; 4088 tmp++; 4089 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4090 return -EINVAL; 4091 4092 /* Find the cache in the chain of caches. */ 4093 mutex_lock(&slab_mutex); 4094 res = -EINVAL; 4095 list_for_each_entry(cachep, &slab_caches, list) { 4096 if (!strcmp(cachep->name, kbuf)) { 4097 if (limit < 1 || batchcount < 1 || 4098 batchcount > limit || shared < 0) { 4099 res = 0; 4100 } else { 4101 res = do_tune_cpucache(cachep, limit, 4102 batchcount, shared, 4103 GFP_KERNEL); 4104 } 4105 break; 4106 } 4107 } 4108 mutex_unlock(&slab_mutex); 4109 if (res >= 0) 4110 res = count; 4111 return res; 4112 } 4113 4114 #ifdef CONFIG_DEBUG_SLAB_LEAK 4115 4116 static inline int add_caller(unsigned long *n, unsigned long v) 4117 { 4118 unsigned long *p; 4119 int l; 4120 if (!v) 4121 return 1; 4122 l = n[1]; 4123 p = n + 2; 4124 while (l) { 4125 int i = l/2; 4126 unsigned long *q = p + 2 * i; 4127 if (*q == v) { 4128 q[1]++; 4129 return 1; 4130 } 4131 if (*q > v) { 4132 l = i; 4133 } else { 4134 p = q + 2; 4135 l -= i + 1; 4136 } 4137 } 4138 if (++n[1] == n[0]) 4139 return 0; 4140 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4141 p[0] = v; 4142 p[1] = 1; 4143 return 1; 4144 } 4145 4146 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4147 struct page *page) 4148 { 4149 void *p; 4150 int i, j; 4151 unsigned long v; 4152 4153 if (n[0] == n[1]) 4154 return; 4155 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4156 bool active = true; 4157 4158 for (j = page->active; j < c->num; j++) { 4159 if (get_free_obj(page, j) == i) { 4160 active = false; 4161 break; 4162 } 4163 } 4164 4165 if (!active) 4166 continue; 4167 4168 /* 4169 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4170 * mapping is established when actual object allocation and 4171 * we could mistakenly access the unmapped object in the cpu 4172 * cache. 4173 */ 4174 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4175 continue; 4176 4177 if (!add_caller(n, v)) 4178 return; 4179 } 4180 } 4181 4182 static void show_symbol(struct seq_file *m, unsigned long address) 4183 { 4184 #ifdef CONFIG_KALLSYMS 4185 unsigned long offset, size; 4186 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4187 4188 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4189 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4190 if (modname[0]) 4191 seq_printf(m, " [%s]", modname); 4192 return; 4193 } 4194 #endif 4195 seq_printf(m, "%p", (void *)address); 4196 } 4197 4198 static int leaks_show(struct seq_file *m, void *p) 4199 { 4200 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4201 struct page *page; 4202 struct kmem_cache_node *n; 4203 const char *name; 4204 unsigned long *x = m->private; 4205 int node; 4206 int i; 4207 4208 if (!(cachep->flags & SLAB_STORE_USER)) 4209 return 0; 4210 if (!(cachep->flags & SLAB_RED_ZONE)) 4211 return 0; 4212 4213 /* 4214 * Set store_user_clean and start to grab stored user information 4215 * for all objects on this cache. If some alloc/free requests comes 4216 * during the processing, information would be wrong so restart 4217 * whole processing. 4218 */ 4219 do { 4220 set_store_user_clean(cachep); 4221 drain_cpu_caches(cachep); 4222 4223 x[1] = 0; 4224 4225 for_each_kmem_cache_node(cachep, node, n) { 4226 4227 check_irq_on(); 4228 spin_lock_irq(&n->list_lock); 4229 4230 list_for_each_entry(page, &n->slabs_full, lru) 4231 handle_slab(x, cachep, page); 4232 list_for_each_entry(page, &n->slabs_partial, lru) 4233 handle_slab(x, cachep, page); 4234 spin_unlock_irq(&n->list_lock); 4235 } 4236 } while (!is_store_user_clean(cachep)); 4237 4238 name = cachep->name; 4239 if (x[0] == x[1]) { 4240 /* Increase the buffer size */ 4241 mutex_unlock(&slab_mutex); 4242 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4243 if (!m->private) { 4244 /* Too bad, we are really out */ 4245 m->private = x; 4246 mutex_lock(&slab_mutex); 4247 return -ENOMEM; 4248 } 4249 *(unsigned long *)m->private = x[0] * 2; 4250 kfree(x); 4251 mutex_lock(&slab_mutex); 4252 /* Now make sure this entry will be retried */ 4253 m->count = m->size; 4254 return 0; 4255 } 4256 for (i = 0; i < x[1]; i++) { 4257 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4258 show_symbol(m, x[2*i+2]); 4259 seq_putc(m, '\n'); 4260 } 4261 4262 return 0; 4263 } 4264 4265 static const struct seq_operations slabstats_op = { 4266 .start = slab_start, 4267 .next = slab_next, 4268 .stop = slab_stop, 4269 .show = leaks_show, 4270 }; 4271 4272 static int slabstats_open(struct inode *inode, struct file *file) 4273 { 4274 unsigned long *n; 4275 4276 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4277 if (!n) 4278 return -ENOMEM; 4279 4280 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4281 4282 return 0; 4283 } 4284 4285 static const struct file_operations proc_slabstats_operations = { 4286 .open = slabstats_open, 4287 .read = seq_read, 4288 .llseek = seq_lseek, 4289 .release = seq_release_private, 4290 }; 4291 #endif 4292 4293 static int __init slab_proc_init(void) 4294 { 4295 #ifdef CONFIG_DEBUG_SLAB_LEAK 4296 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4297 #endif 4298 return 0; 4299 } 4300 module_init(slab_proc_init); 4301 #endif 4302 4303 /** 4304 * ksize - get the actual amount of memory allocated for a given object 4305 * @objp: Pointer to the object 4306 * 4307 * kmalloc may internally round up allocations and return more memory 4308 * than requested. ksize() can be used to determine the actual amount of 4309 * memory allocated. The caller may use this additional memory, even though 4310 * a smaller amount of memory was initially specified with the kmalloc call. 4311 * The caller must guarantee that objp points to a valid object previously 4312 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4313 * must not be freed during the duration of the call. 4314 */ 4315 size_t ksize(const void *objp) 4316 { 4317 size_t size; 4318 4319 BUG_ON(!objp); 4320 if (unlikely(objp == ZERO_SIZE_PTR)) 4321 return 0; 4322 4323 size = virt_to_cache(objp)->object_size; 4324 /* We assume that ksize callers could use the whole allocated area, 4325 * so we need to unpoison this area. 4326 */ 4327 kasan_krealloc(objp, size, GFP_NOWAIT); 4328 4329 return size; 4330 } 4331 EXPORT_SYMBOL(ksize); 4332