1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/kfence.h> 104 #include <linux/cpu.h> 105 #include <linux/sysctl.h> 106 #include <linux/module.h> 107 #include <linux/rcupdate.h> 108 #include <linux/string.h> 109 #include <linux/uaccess.h> 110 #include <linux/nodemask.h> 111 #include <linux/kmemleak.h> 112 #include <linux/mempolicy.h> 113 #include <linux/mutex.h> 114 #include <linux/fault-inject.h> 115 #include <linux/rtmutex.h> 116 #include <linux/reciprocal_div.h> 117 #include <linux/debugobjects.h> 118 #include <linux/memory.h> 119 #include <linux/prefetch.h> 120 #include <linux/sched/task_stack.h> 121 122 #include <net/sock.h> 123 124 #include <asm/cacheflush.h> 125 #include <asm/tlbflush.h> 126 #include <asm/page.h> 127 128 #include <trace/events/kmem.h> 129 130 #include "internal.h" 131 132 #include "slab.h" 133 134 /* 135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 136 * 0 for faster, smaller code (especially in the critical paths). 137 * 138 * STATS - 1 to collect stats for /proc/slabinfo. 139 * 0 for faster, smaller code (especially in the critical paths). 140 * 141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 142 */ 143 144 #ifdef CONFIG_DEBUG_SLAB 145 #define DEBUG 1 146 #define STATS 1 147 #define FORCED_DEBUG 1 148 #else 149 #define DEBUG 0 150 #define STATS 0 151 #define FORCED_DEBUG 0 152 #endif 153 154 /* Shouldn't this be in a header file somewhere? */ 155 #define BYTES_PER_WORD sizeof(void *) 156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 157 158 #ifndef ARCH_KMALLOC_FLAGS 159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 160 #endif 161 162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 164 165 #if FREELIST_BYTE_INDEX 166 typedef unsigned char freelist_idx_t; 167 #else 168 typedef unsigned short freelist_idx_t; 169 #endif 170 171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 172 173 /* 174 * struct array_cache 175 * 176 * Purpose: 177 * - LIFO ordering, to hand out cache-warm objects from _alloc 178 * - reduce the number of linked list operations 179 * - reduce spinlock operations 180 * 181 * The limit is stored in the per-cpu structure to reduce the data cache 182 * footprint. 183 * 184 */ 185 struct array_cache { 186 unsigned int avail; 187 unsigned int limit; 188 unsigned int batchcount; 189 unsigned int touched; 190 void *entry[]; /* 191 * Must have this definition in here for the proper 192 * alignment of array_cache. Also simplifies accessing 193 * the entries. 194 */ 195 }; 196 197 struct alien_cache { 198 spinlock_t lock; 199 struct array_cache ac; 200 }; 201 202 /* 203 * Need this for bootstrapping a per node allocator. 204 */ 205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 207 #define CACHE_CACHE 0 208 #define SIZE_NODE (MAX_NUMNODES) 209 210 static int drain_freelist(struct kmem_cache *cache, 211 struct kmem_cache_node *n, int tofree); 212 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 213 int node, struct list_head *list); 214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 216 static void cache_reap(struct work_struct *unused); 217 218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 219 void **list); 220 static inline void fixup_slab_list(struct kmem_cache *cachep, 221 struct kmem_cache_node *n, struct slab *slab, 222 void **list); 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 raw_spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnecessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long *) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 /* 366 * Do not go above this order unless 0 objects fit into the slab or 367 * overridden on the command line. 368 */ 369 #define SLAB_MAX_ORDER_HI 1 370 #define SLAB_MAX_ORDER_LO 0 371 static int slab_max_order = SLAB_MAX_ORDER_LO; 372 static bool slab_max_order_set __initdata; 373 374 static inline void *index_to_obj(struct kmem_cache *cache, 375 const struct slab *slab, unsigned int idx) 376 { 377 return slab->s_mem + cache->size * idx; 378 } 379 380 #define BOOT_CPUCACHE_ENTRIES 1 381 /* internal cache of cache description objs */ 382 static struct kmem_cache kmem_cache_boot = { 383 .batchcount = 1, 384 .limit = BOOT_CPUCACHE_ENTRIES, 385 .shared = 1, 386 .size = sizeof(struct kmem_cache), 387 .name = "kmem_cache", 388 }; 389 390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 391 392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 393 { 394 return this_cpu_ptr(cachep->cpu_cache); 395 } 396 397 /* 398 * Calculate the number of objects and left-over bytes for a given buffer size. 399 */ 400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 401 slab_flags_t flags, size_t *left_over) 402 { 403 unsigned int num; 404 size_t slab_size = PAGE_SIZE << gfporder; 405 406 /* 407 * The slab management structure can be either off the slab or 408 * on it. For the latter case, the memory allocated for a 409 * slab is used for: 410 * 411 * - @buffer_size bytes for each object 412 * - One freelist_idx_t for each object 413 * 414 * We don't need to consider alignment of freelist because 415 * freelist will be at the end of slab page. The objects will be 416 * at the correct alignment. 417 * 418 * If the slab management structure is off the slab, then the 419 * alignment will already be calculated into the size. Because 420 * the slabs are all pages aligned, the objects will be at the 421 * correct alignment when allocated. 422 */ 423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 424 num = slab_size / buffer_size; 425 *left_over = slab_size % buffer_size; 426 } else { 427 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 428 *left_over = slab_size % 429 (buffer_size + sizeof(freelist_idx_t)); 430 } 431 432 return num; 433 } 434 435 #if DEBUG 436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 437 438 static void __slab_error(const char *function, struct kmem_cache *cachep, 439 char *msg) 440 { 441 pr_err("slab error in %s(): cache `%s': %s\n", 442 function, cachep->name, msg); 443 dump_stack(); 444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 445 } 446 #endif 447 448 /* 449 * By default on NUMA we use alien caches to stage the freeing of 450 * objects allocated from other nodes. This causes massive memory 451 * inefficiencies when using fake NUMA setup to split memory into a 452 * large number of small nodes, so it can be disabled on the command 453 * line 454 */ 455 456 static int use_alien_caches __read_mostly = 1; 457 static int __init noaliencache_setup(char *s) 458 { 459 use_alien_caches = 0; 460 return 1; 461 } 462 __setup("noaliencache", noaliencache_setup); 463 464 static int __init slab_max_order_setup(char *str) 465 { 466 get_option(&str, &slab_max_order); 467 slab_max_order = slab_max_order < 0 ? 0 : 468 min(slab_max_order, MAX_ORDER - 1); 469 slab_max_order_set = true; 470 471 return 1; 472 } 473 __setup("slab_max_order=", slab_max_order_setup); 474 475 #ifdef CONFIG_NUMA 476 /* 477 * Special reaping functions for NUMA systems called from cache_reap(). 478 * These take care of doing round robin flushing of alien caches (containing 479 * objects freed on different nodes from which they were allocated) and the 480 * flushing of remote pcps by calling drain_node_pages. 481 */ 482 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 483 484 static void init_reap_node(int cpu) 485 { 486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 487 node_online_map); 488 } 489 490 static void next_reap_node(void) 491 { 492 int node = __this_cpu_read(slab_reap_node); 493 494 node = next_node_in(node, node_online_map); 495 __this_cpu_write(slab_reap_node, node); 496 } 497 498 #else 499 #define init_reap_node(cpu) do { } while (0) 500 #define next_reap_node(void) do { } while (0) 501 #endif 502 503 /* 504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 505 * via the workqueue/eventd. 506 * Add the CPU number into the expiration time to minimize the possibility of 507 * the CPUs getting into lockstep and contending for the global cache chain 508 * lock. 509 */ 510 static void start_cpu_timer(int cpu) 511 { 512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 513 514 if (reap_work->work.func == NULL) { 515 init_reap_node(cpu); 516 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 517 schedule_delayed_work_on(cpu, reap_work, 518 __round_jiffies_relative(HZ, cpu)); 519 } 520 } 521 522 static void init_arraycache(struct array_cache *ac, int limit, int batch) 523 { 524 if (ac) { 525 ac->avail = 0; 526 ac->limit = limit; 527 ac->batchcount = batch; 528 ac->touched = 0; 529 } 530 } 531 532 static struct array_cache *alloc_arraycache(int node, int entries, 533 int batchcount, gfp_t gfp) 534 { 535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 536 struct array_cache *ac = NULL; 537 538 ac = kmalloc_node(memsize, gfp, node); 539 /* 540 * The array_cache structures contain pointers to free object. 541 * However, when such objects are allocated or transferred to another 542 * cache the pointers are not cleared and they could be counted as 543 * valid references during a kmemleak scan. Therefore, kmemleak must 544 * not scan such objects. 545 */ 546 kmemleak_no_scan(ac); 547 init_arraycache(ac, entries, batchcount); 548 return ac; 549 } 550 551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 552 struct slab *slab, void *objp) 553 { 554 struct kmem_cache_node *n; 555 int slab_node; 556 LIST_HEAD(list); 557 558 slab_node = slab_nid(slab); 559 n = get_node(cachep, slab_node); 560 561 raw_spin_lock(&n->list_lock); 562 free_block(cachep, &objp, 1, slab_node, &list); 563 raw_spin_unlock(&n->list_lock); 564 565 slabs_destroy(cachep, &list); 566 } 567 568 /* 569 * Transfer objects in one arraycache to another. 570 * Locking must be handled by the caller. 571 * 572 * Return the number of entries transferred. 573 */ 574 static int transfer_objects(struct array_cache *to, 575 struct array_cache *from, unsigned int max) 576 { 577 /* Figure out how many entries to transfer */ 578 int nr = min3(from->avail, max, to->limit - to->avail); 579 580 if (!nr) 581 return 0; 582 583 memcpy(to->entry + to->avail, from->entry + from->avail - nr, 584 sizeof(void *) *nr); 585 586 from->avail -= nr; 587 to->avail += nr; 588 return nr; 589 } 590 591 /* &alien->lock must be held by alien callers. */ 592 static __always_inline void __free_one(struct array_cache *ac, void *objp) 593 { 594 /* Avoid trivial double-free. */ 595 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 596 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) 597 return; 598 ac->entry[ac->avail++] = objp; 599 } 600 601 #ifndef CONFIG_NUMA 602 603 #define drain_alien_cache(cachep, alien) do { } while (0) 604 #define reap_alien(cachep, n) do { } while (0) 605 606 static inline struct alien_cache **alloc_alien_cache(int node, 607 int limit, gfp_t gfp) 608 { 609 return NULL; 610 } 611 612 static inline void free_alien_cache(struct alien_cache **ac_ptr) 613 { 614 } 615 616 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 617 { 618 return 0; 619 } 620 621 static inline gfp_t gfp_exact_node(gfp_t flags) 622 { 623 return flags & ~__GFP_NOFAIL; 624 } 625 626 #else /* CONFIG_NUMA */ 627 628 static struct alien_cache *__alloc_alien_cache(int node, int entries, 629 int batch, gfp_t gfp) 630 { 631 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 632 struct alien_cache *alc = NULL; 633 634 alc = kmalloc_node(memsize, gfp, node); 635 if (alc) { 636 kmemleak_no_scan(alc); 637 init_arraycache(&alc->ac, entries, batch); 638 spin_lock_init(&alc->lock); 639 } 640 return alc; 641 } 642 643 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 644 { 645 struct alien_cache **alc_ptr; 646 int i; 647 648 if (limit > 1) 649 limit = 12; 650 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 651 if (!alc_ptr) 652 return NULL; 653 654 for_each_node(i) { 655 if (i == node || !node_online(i)) 656 continue; 657 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 658 if (!alc_ptr[i]) { 659 for (i--; i >= 0; i--) 660 kfree(alc_ptr[i]); 661 kfree(alc_ptr); 662 return NULL; 663 } 664 } 665 return alc_ptr; 666 } 667 668 static void free_alien_cache(struct alien_cache **alc_ptr) 669 { 670 int i; 671 672 if (!alc_ptr) 673 return; 674 for_each_node(i) 675 kfree(alc_ptr[i]); 676 kfree(alc_ptr); 677 } 678 679 static void __drain_alien_cache(struct kmem_cache *cachep, 680 struct array_cache *ac, int node, 681 struct list_head *list) 682 { 683 struct kmem_cache_node *n = get_node(cachep, node); 684 685 if (ac->avail) { 686 raw_spin_lock(&n->list_lock); 687 /* 688 * Stuff objects into the remote nodes shared array first. 689 * That way we could avoid the overhead of putting the objects 690 * into the free lists and getting them back later. 691 */ 692 if (n->shared) 693 transfer_objects(n->shared, ac, ac->limit); 694 695 free_block(cachep, ac->entry, ac->avail, node, list); 696 ac->avail = 0; 697 raw_spin_unlock(&n->list_lock); 698 } 699 } 700 701 /* 702 * Called from cache_reap() to regularly drain alien caches round robin. 703 */ 704 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 705 { 706 int node = __this_cpu_read(slab_reap_node); 707 708 if (n->alien) { 709 struct alien_cache *alc = n->alien[node]; 710 struct array_cache *ac; 711 712 if (alc) { 713 ac = &alc->ac; 714 if (ac->avail && spin_trylock_irq(&alc->lock)) { 715 LIST_HEAD(list); 716 717 __drain_alien_cache(cachep, ac, node, &list); 718 spin_unlock_irq(&alc->lock); 719 slabs_destroy(cachep, &list); 720 } 721 } 722 } 723 } 724 725 static void drain_alien_cache(struct kmem_cache *cachep, 726 struct alien_cache **alien) 727 { 728 int i = 0; 729 struct alien_cache *alc; 730 struct array_cache *ac; 731 unsigned long flags; 732 733 for_each_online_node(i) { 734 alc = alien[i]; 735 if (alc) { 736 LIST_HEAD(list); 737 738 ac = &alc->ac; 739 spin_lock_irqsave(&alc->lock, flags); 740 __drain_alien_cache(cachep, ac, i, &list); 741 spin_unlock_irqrestore(&alc->lock, flags); 742 slabs_destroy(cachep, &list); 743 } 744 } 745 } 746 747 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 748 int node, int slab_node) 749 { 750 struct kmem_cache_node *n; 751 struct alien_cache *alien = NULL; 752 struct array_cache *ac; 753 LIST_HEAD(list); 754 755 n = get_node(cachep, node); 756 STATS_INC_NODEFREES(cachep); 757 if (n->alien && n->alien[slab_node]) { 758 alien = n->alien[slab_node]; 759 ac = &alien->ac; 760 spin_lock(&alien->lock); 761 if (unlikely(ac->avail == ac->limit)) { 762 STATS_INC_ACOVERFLOW(cachep); 763 __drain_alien_cache(cachep, ac, slab_node, &list); 764 } 765 __free_one(ac, objp); 766 spin_unlock(&alien->lock); 767 slabs_destroy(cachep, &list); 768 } else { 769 n = get_node(cachep, slab_node); 770 raw_spin_lock(&n->list_lock); 771 free_block(cachep, &objp, 1, slab_node, &list); 772 raw_spin_unlock(&n->list_lock); 773 slabs_destroy(cachep, &list); 774 } 775 return 1; 776 } 777 778 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 779 { 780 int slab_node = slab_nid(virt_to_slab(objp)); 781 int node = numa_mem_id(); 782 /* 783 * Make sure we are not freeing an object from another node to the array 784 * cache on this cpu. 785 */ 786 if (likely(node == slab_node)) 787 return 0; 788 789 return __cache_free_alien(cachep, objp, node, slab_node); 790 } 791 792 /* 793 * Construct gfp mask to allocate from a specific node but do not reclaim or 794 * warn about failures. 795 */ 796 static inline gfp_t gfp_exact_node(gfp_t flags) 797 { 798 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 799 } 800 #endif 801 802 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 803 { 804 struct kmem_cache_node *n; 805 806 /* 807 * Set up the kmem_cache_node for cpu before we can 808 * begin anything. Make sure some other cpu on this 809 * node has not already allocated this 810 */ 811 n = get_node(cachep, node); 812 if (n) { 813 raw_spin_lock_irq(&n->list_lock); 814 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 815 cachep->num; 816 raw_spin_unlock_irq(&n->list_lock); 817 818 return 0; 819 } 820 821 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 822 if (!n) 823 return -ENOMEM; 824 825 kmem_cache_node_init(n); 826 n->next_reap = jiffies + REAPTIMEOUT_NODE + 827 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 828 829 n->free_limit = 830 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 831 832 /* 833 * The kmem_cache_nodes don't come and go as CPUs 834 * come and go. slab_mutex provides sufficient 835 * protection here. 836 */ 837 cachep->node[node] = n; 838 839 return 0; 840 } 841 842 #if defined(CONFIG_NUMA) || defined(CONFIG_SMP) 843 /* 844 * Allocates and initializes node for a node on each slab cache, used for 845 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 846 * will be allocated off-node since memory is not yet online for the new node. 847 * When hotplugging memory or a cpu, existing nodes are not replaced if 848 * already in use. 849 * 850 * Must hold slab_mutex. 851 */ 852 static int init_cache_node_node(int node) 853 { 854 int ret; 855 struct kmem_cache *cachep; 856 857 list_for_each_entry(cachep, &slab_caches, list) { 858 ret = init_cache_node(cachep, node, GFP_KERNEL); 859 if (ret) 860 return ret; 861 } 862 863 return 0; 864 } 865 #endif 866 867 static int setup_kmem_cache_node(struct kmem_cache *cachep, 868 int node, gfp_t gfp, bool force_change) 869 { 870 int ret = -ENOMEM; 871 struct kmem_cache_node *n; 872 struct array_cache *old_shared = NULL; 873 struct array_cache *new_shared = NULL; 874 struct alien_cache **new_alien = NULL; 875 LIST_HEAD(list); 876 877 if (use_alien_caches) { 878 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 879 if (!new_alien) 880 goto fail; 881 } 882 883 if (cachep->shared) { 884 new_shared = alloc_arraycache(node, 885 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 886 if (!new_shared) 887 goto fail; 888 } 889 890 ret = init_cache_node(cachep, node, gfp); 891 if (ret) 892 goto fail; 893 894 n = get_node(cachep, node); 895 raw_spin_lock_irq(&n->list_lock); 896 if (n->shared && force_change) { 897 free_block(cachep, n->shared->entry, 898 n->shared->avail, node, &list); 899 n->shared->avail = 0; 900 } 901 902 if (!n->shared || force_change) { 903 old_shared = n->shared; 904 n->shared = new_shared; 905 new_shared = NULL; 906 } 907 908 if (!n->alien) { 909 n->alien = new_alien; 910 new_alien = NULL; 911 } 912 913 raw_spin_unlock_irq(&n->list_lock); 914 slabs_destroy(cachep, &list); 915 916 /* 917 * To protect lockless access to n->shared during irq disabled context. 918 * If n->shared isn't NULL in irq disabled context, accessing to it is 919 * guaranteed to be valid until irq is re-enabled, because it will be 920 * freed after synchronize_rcu(). 921 */ 922 if (old_shared && force_change) 923 synchronize_rcu(); 924 925 fail: 926 kfree(old_shared); 927 kfree(new_shared); 928 free_alien_cache(new_alien); 929 930 return ret; 931 } 932 933 #ifdef CONFIG_SMP 934 935 static void cpuup_canceled(long cpu) 936 { 937 struct kmem_cache *cachep; 938 struct kmem_cache_node *n = NULL; 939 int node = cpu_to_mem(cpu); 940 const struct cpumask *mask = cpumask_of_node(node); 941 942 list_for_each_entry(cachep, &slab_caches, list) { 943 struct array_cache *nc; 944 struct array_cache *shared; 945 struct alien_cache **alien; 946 LIST_HEAD(list); 947 948 n = get_node(cachep, node); 949 if (!n) 950 continue; 951 952 raw_spin_lock_irq(&n->list_lock); 953 954 /* Free limit for this kmem_cache_node */ 955 n->free_limit -= cachep->batchcount; 956 957 /* cpu is dead; no one can alloc from it. */ 958 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 959 free_block(cachep, nc->entry, nc->avail, node, &list); 960 nc->avail = 0; 961 962 if (!cpumask_empty(mask)) { 963 raw_spin_unlock_irq(&n->list_lock); 964 goto free_slab; 965 } 966 967 shared = n->shared; 968 if (shared) { 969 free_block(cachep, shared->entry, 970 shared->avail, node, &list); 971 n->shared = NULL; 972 } 973 974 alien = n->alien; 975 n->alien = NULL; 976 977 raw_spin_unlock_irq(&n->list_lock); 978 979 kfree(shared); 980 if (alien) { 981 drain_alien_cache(cachep, alien); 982 free_alien_cache(alien); 983 } 984 985 free_slab: 986 slabs_destroy(cachep, &list); 987 } 988 /* 989 * In the previous loop, all the objects were freed to 990 * the respective cache's slabs, now we can go ahead and 991 * shrink each nodelist to its limit. 992 */ 993 list_for_each_entry(cachep, &slab_caches, list) { 994 n = get_node(cachep, node); 995 if (!n) 996 continue; 997 drain_freelist(cachep, n, INT_MAX); 998 } 999 } 1000 1001 static int cpuup_prepare(long cpu) 1002 { 1003 struct kmem_cache *cachep; 1004 int node = cpu_to_mem(cpu); 1005 int err; 1006 1007 /* 1008 * We need to do this right in the beginning since 1009 * alloc_arraycache's are going to use this list. 1010 * kmalloc_node allows us to add the slab to the right 1011 * kmem_cache_node and not this cpu's kmem_cache_node 1012 */ 1013 err = init_cache_node_node(node); 1014 if (err < 0) 1015 goto bad; 1016 1017 /* 1018 * Now we can go ahead with allocating the shared arrays and 1019 * array caches 1020 */ 1021 list_for_each_entry(cachep, &slab_caches, list) { 1022 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1023 if (err) 1024 goto bad; 1025 } 1026 1027 return 0; 1028 bad: 1029 cpuup_canceled(cpu); 1030 return -ENOMEM; 1031 } 1032 1033 int slab_prepare_cpu(unsigned int cpu) 1034 { 1035 int err; 1036 1037 mutex_lock(&slab_mutex); 1038 err = cpuup_prepare(cpu); 1039 mutex_unlock(&slab_mutex); 1040 return err; 1041 } 1042 1043 /* 1044 * This is called for a failed online attempt and for a successful 1045 * offline. 1046 * 1047 * Even if all the cpus of a node are down, we don't free the 1048 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and 1049 * a kmalloc allocation from another cpu for memory from the node of 1050 * the cpu going down. The kmem_cache_node structure is usually allocated from 1051 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1052 */ 1053 int slab_dead_cpu(unsigned int cpu) 1054 { 1055 mutex_lock(&slab_mutex); 1056 cpuup_canceled(cpu); 1057 mutex_unlock(&slab_mutex); 1058 return 0; 1059 } 1060 #endif 1061 1062 static int slab_online_cpu(unsigned int cpu) 1063 { 1064 start_cpu_timer(cpu); 1065 return 0; 1066 } 1067 1068 static int slab_offline_cpu(unsigned int cpu) 1069 { 1070 /* 1071 * Shutdown cache reaper. Note that the slab_mutex is held so 1072 * that if cache_reap() is invoked it cannot do anything 1073 * expensive but will only modify reap_work and reschedule the 1074 * timer. 1075 */ 1076 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1077 /* Now the cache_reaper is guaranteed to be not running. */ 1078 per_cpu(slab_reap_work, cpu).work.func = NULL; 1079 return 0; 1080 } 1081 1082 #if defined(CONFIG_NUMA) 1083 /* 1084 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1085 * Returns -EBUSY if all objects cannot be drained so that the node is not 1086 * removed. 1087 * 1088 * Must hold slab_mutex. 1089 */ 1090 static int __meminit drain_cache_node_node(int node) 1091 { 1092 struct kmem_cache *cachep; 1093 int ret = 0; 1094 1095 list_for_each_entry(cachep, &slab_caches, list) { 1096 struct kmem_cache_node *n; 1097 1098 n = get_node(cachep, node); 1099 if (!n) 1100 continue; 1101 1102 drain_freelist(cachep, n, INT_MAX); 1103 1104 if (!list_empty(&n->slabs_full) || 1105 !list_empty(&n->slabs_partial)) { 1106 ret = -EBUSY; 1107 break; 1108 } 1109 } 1110 return ret; 1111 } 1112 1113 static int __meminit slab_memory_callback(struct notifier_block *self, 1114 unsigned long action, void *arg) 1115 { 1116 struct memory_notify *mnb = arg; 1117 int ret = 0; 1118 int nid; 1119 1120 nid = mnb->status_change_nid; 1121 if (nid < 0) 1122 goto out; 1123 1124 switch (action) { 1125 case MEM_GOING_ONLINE: 1126 mutex_lock(&slab_mutex); 1127 ret = init_cache_node_node(nid); 1128 mutex_unlock(&slab_mutex); 1129 break; 1130 case MEM_GOING_OFFLINE: 1131 mutex_lock(&slab_mutex); 1132 ret = drain_cache_node_node(nid); 1133 mutex_unlock(&slab_mutex); 1134 break; 1135 case MEM_ONLINE: 1136 case MEM_OFFLINE: 1137 case MEM_CANCEL_ONLINE: 1138 case MEM_CANCEL_OFFLINE: 1139 break; 1140 } 1141 out: 1142 return notifier_from_errno(ret); 1143 } 1144 #endif /* CONFIG_NUMA */ 1145 1146 /* 1147 * swap the static kmem_cache_node with kmalloced memory 1148 */ 1149 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1150 int nodeid) 1151 { 1152 struct kmem_cache_node *ptr; 1153 1154 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1155 BUG_ON(!ptr); 1156 1157 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1158 /* 1159 * Do not assume that spinlocks can be initialized via memcpy: 1160 */ 1161 raw_spin_lock_init(&ptr->list_lock); 1162 1163 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1164 cachep->node[nodeid] = ptr; 1165 } 1166 1167 /* 1168 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1169 * size of kmem_cache_node. 1170 */ 1171 static void __init set_up_node(struct kmem_cache *cachep, int index) 1172 { 1173 int node; 1174 1175 for_each_online_node(node) { 1176 cachep->node[node] = &init_kmem_cache_node[index + node]; 1177 cachep->node[node]->next_reap = jiffies + 1178 REAPTIMEOUT_NODE + 1179 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1180 } 1181 } 1182 1183 /* 1184 * Initialisation. Called after the page allocator have been initialised and 1185 * before smp_init(). 1186 */ 1187 void __init kmem_cache_init(void) 1188 { 1189 int i; 1190 1191 kmem_cache = &kmem_cache_boot; 1192 1193 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1194 use_alien_caches = 0; 1195 1196 for (i = 0; i < NUM_INIT_LISTS; i++) 1197 kmem_cache_node_init(&init_kmem_cache_node[i]); 1198 1199 /* 1200 * Fragmentation resistance on low memory - only use bigger 1201 * page orders on machines with more than 32MB of memory if 1202 * not overridden on the command line. 1203 */ 1204 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1205 slab_max_order = SLAB_MAX_ORDER_HI; 1206 1207 /* Bootstrap is tricky, because several objects are allocated 1208 * from caches that do not exist yet: 1209 * 1) initialize the kmem_cache cache: it contains the struct 1210 * kmem_cache structures of all caches, except kmem_cache itself: 1211 * kmem_cache is statically allocated. 1212 * Initially an __init data area is used for the head array and the 1213 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1214 * array at the end of the bootstrap. 1215 * 2) Create the first kmalloc cache. 1216 * The struct kmem_cache for the new cache is allocated normally. 1217 * An __init data area is used for the head array. 1218 * 3) Create the remaining kmalloc caches, with minimally sized 1219 * head arrays. 1220 * 4) Replace the __init data head arrays for kmem_cache and the first 1221 * kmalloc cache with kmalloc allocated arrays. 1222 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1223 * the other cache's with kmalloc allocated memory. 1224 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1225 */ 1226 1227 /* 1) create the kmem_cache */ 1228 1229 /* 1230 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1231 */ 1232 create_boot_cache(kmem_cache, "kmem_cache", 1233 offsetof(struct kmem_cache, node) + 1234 nr_node_ids * sizeof(struct kmem_cache_node *), 1235 SLAB_HWCACHE_ALIGN, 0, 0); 1236 list_add(&kmem_cache->list, &slab_caches); 1237 slab_state = PARTIAL; 1238 1239 /* 1240 * Initialize the caches that provide memory for the kmem_cache_node 1241 * structures first. Without this, further allocations will bug. 1242 */ 1243 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( 1244 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL], 1245 kmalloc_info[INDEX_NODE].size, 1246 ARCH_KMALLOC_FLAGS, 0, 1247 kmalloc_info[INDEX_NODE].size); 1248 slab_state = PARTIAL_NODE; 1249 setup_kmalloc_cache_index_table(); 1250 1251 /* 5) Replace the bootstrap kmem_cache_node */ 1252 { 1253 int nid; 1254 1255 for_each_online_node(nid) { 1256 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1257 1258 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1259 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1260 } 1261 } 1262 1263 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1264 } 1265 1266 void __init kmem_cache_init_late(void) 1267 { 1268 struct kmem_cache *cachep; 1269 1270 /* 6) resize the head arrays to their final sizes */ 1271 mutex_lock(&slab_mutex); 1272 list_for_each_entry(cachep, &slab_caches, list) 1273 if (enable_cpucache(cachep, GFP_NOWAIT)) 1274 BUG(); 1275 mutex_unlock(&slab_mutex); 1276 1277 /* Done! */ 1278 slab_state = FULL; 1279 1280 #ifdef CONFIG_NUMA 1281 /* 1282 * Register a memory hotplug callback that initializes and frees 1283 * node. 1284 */ 1285 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1286 #endif 1287 1288 /* 1289 * The reap timers are started later, with a module init call: That part 1290 * of the kernel is not yet operational. 1291 */ 1292 } 1293 1294 static int __init cpucache_init(void) 1295 { 1296 int ret; 1297 1298 /* 1299 * Register the timers that return unneeded pages to the page allocator 1300 */ 1301 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1302 slab_online_cpu, slab_offline_cpu); 1303 WARN_ON(ret < 0); 1304 1305 return 0; 1306 } 1307 __initcall(cpucache_init); 1308 1309 static noinline void 1310 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1311 { 1312 #if DEBUG 1313 struct kmem_cache_node *n; 1314 unsigned long flags; 1315 int node; 1316 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1317 DEFAULT_RATELIMIT_BURST); 1318 1319 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1320 return; 1321 1322 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1323 nodeid, gfpflags, &gfpflags); 1324 pr_warn(" cache: %s, object size: %d, order: %d\n", 1325 cachep->name, cachep->size, cachep->gfporder); 1326 1327 for_each_kmem_cache_node(cachep, node, n) { 1328 unsigned long total_slabs, free_slabs, free_objs; 1329 1330 raw_spin_lock_irqsave(&n->list_lock, flags); 1331 total_slabs = n->total_slabs; 1332 free_slabs = n->free_slabs; 1333 free_objs = n->free_objects; 1334 raw_spin_unlock_irqrestore(&n->list_lock, flags); 1335 1336 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1337 node, total_slabs - free_slabs, total_slabs, 1338 (total_slabs * cachep->num) - free_objs, 1339 total_slabs * cachep->num); 1340 } 1341 #endif 1342 } 1343 1344 /* 1345 * Interface to system's page allocator. No need to hold the 1346 * kmem_cache_node ->list_lock. 1347 * 1348 * If we requested dmaable memory, we will get it. Even if we 1349 * did not request dmaable memory, we might get it, but that 1350 * would be relatively rare and ignorable. 1351 */ 1352 static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1353 int nodeid) 1354 { 1355 struct folio *folio; 1356 struct slab *slab; 1357 1358 flags |= cachep->allocflags; 1359 1360 folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder); 1361 if (!folio) { 1362 slab_out_of_memory(cachep, flags, nodeid); 1363 return NULL; 1364 } 1365 1366 slab = folio_slab(folio); 1367 1368 account_slab(slab, cachep->gfporder, cachep, flags); 1369 __folio_set_slab(folio); 1370 /* Make the flag visible before any changes to folio->mapping */ 1371 smp_wmb(); 1372 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1373 if (sk_memalloc_socks() && folio_is_pfmemalloc(folio)) 1374 slab_set_pfmemalloc(slab); 1375 1376 return slab; 1377 } 1378 1379 /* 1380 * Interface to system's page release. 1381 */ 1382 static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab) 1383 { 1384 int order = cachep->gfporder; 1385 struct folio *folio = slab_folio(slab); 1386 1387 BUG_ON(!folio_test_slab(folio)); 1388 __slab_clear_pfmemalloc(slab); 1389 page_mapcount_reset(&folio->page); 1390 folio->mapping = NULL; 1391 /* Make the mapping reset visible before clearing the flag */ 1392 smp_wmb(); 1393 __folio_clear_slab(folio); 1394 1395 if (current->reclaim_state) 1396 current->reclaim_state->reclaimed_slab += 1 << order; 1397 unaccount_slab(slab, order, cachep); 1398 __free_pages(&folio->page, order); 1399 } 1400 1401 static void kmem_rcu_free(struct rcu_head *head) 1402 { 1403 struct kmem_cache *cachep; 1404 struct slab *slab; 1405 1406 slab = container_of(head, struct slab, rcu_head); 1407 cachep = slab->slab_cache; 1408 1409 kmem_freepages(cachep, slab); 1410 } 1411 1412 #if DEBUG 1413 static inline bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1414 { 1415 return debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && 1416 ((cachep->size % PAGE_SIZE) == 0); 1417 } 1418 1419 #ifdef CONFIG_DEBUG_PAGEALLOC 1420 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1421 { 1422 if (!is_debug_pagealloc_cache(cachep)) 1423 return; 1424 1425 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1426 } 1427 1428 #else 1429 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1430 int map) {} 1431 1432 #endif 1433 1434 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1435 { 1436 int size = cachep->object_size; 1437 addr = &((char *)addr)[obj_offset(cachep)]; 1438 1439 memset(addr, val, size); 1440 *(unsigned char *)(addr + size - 1) = POISON_END; 1441 } 1442 1443 static void dump_line(char *data, int offset, int limit) 1444 { 1445 int i; 1446 unsigned char error = 0; 1447 int bad_count = 0; 1448 1449 pr_err("%03x: ", offset); 1450 for (i = 0; i < limit; i++) { 1451 if (data[offset + i] != POISON_FREE) { 1452 error = data[offset + i]; 1453 bad_count++; 1454 } 1455 } 1456 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1457 &data[offset], limit, 1); 1458 1459 if (bad_count == 1) { 1460 error ^= POISON_FREE; 1461 if (!(error & (error - 1))) { 1462 pr_err("Single bit error detected. Probably bad RAM.\n"); 1463 #ifdef CONFIG_X86 1464 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1465 #else 1466 pr_err("Run a memory test tool.\n"); 1467 #endif 1468 } 1469 } 1470 } 1471 #endif 1472 1473 #if DEBUG 1474 1475 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1476 { 1477 int i, size; 1478 char *realobj; 1479 1480 if (cachep->flags & SLAB_RED_ZONE) { 1481 pr_err("Redzone: 0x%llx/0x%llx\n", 1482 *dbg_redzone1(cachep, objp), 1483 *dbg_redzone2(cachep, objp)); 1484 } 1485 1486 if (cachep->flags & SLAB_STORE_USER) 1487 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1488 realobj = (char *)objp + obj_offset(cachep); 1489 size = cachep->object_size; 1490 for (i = 0; i < size && lines; i += 16, lines--) { 1491 int limit; 1492 limit = 16; 1493 if (i + limit > size) 1494 limit = size - i; 1495 dump_line(realobj, i, limit); 1496 } 1497 } 1498 1499 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1500 { 1501 char *realobj; 1502 int size, i; 1503 int lines = 0; 1504 1505 if (is_debug_pagealloc_cache(cachep)) 1506 return; 1507 1508 realobj = (char *)objp + obj_offset(cachep); 1509 size = cachep->object_size; 1510 1511 for (i = 0; i < size; i++) { 1512 char exp = POISON_FREE; 1513 if (i == size - 1) 1514 exp = POISON_END; 1515 if (realobj[i] != exp) { 1516 int limit; 1517 /* Mismatch ! */ 1518 /* Print header */ 1519 if (lines == 0) { 1520 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1521 print_tainted(), cachep->name, 1522 realobj, size); 1523 print_objinfo(cachep, objp, 0); 1524 } 1525 /* Hexdump the affected line */ 1526 i = (i / 16) * 16; 1527 limit = 16; 1528 if (i + limit > size) 1529 limit = size - i; 1530 dump_line(realobj, i, limit); 1531 i += 16; 1532 lines++; 1533 /* Limit to 5 lines */ 1534 if (lines > 5) 1535 break; 1536 } 1537 } 1538 if (lines != 0) { 1539 /* Print some data about the neighboring objects, if they 1540 * exist: 1541 */ 1542 struct slab *slab = virt_to_slab(objp); 1543 unsigned int objnr; 1544 1545 objnr = obj_to_index(cachep, slab, objp); 1546 if (objnr) { 1547 objp = index_to_obj(cachep, slab, objnr - 1); 1548 realobj = (char *)objp + obj_offset(cachep); 1549 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1550 print_objinfo(cachep, objp, 2); 1551 } 1552 if (objnr + 1 < cachep->num) { 1553 objp = index_to_obj(cachep, slab, objnr + 1); 1554 realobj = (char *)objp + obj_offset(cachep); 1555 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1556 print_objinfo(cachep, objp, 2); 1557 } 1558 } 1559 } 1560 #endif 1561 1562 #if DEBUG 1563 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1564 struct slab *slab) 1565 { 1566 int i; 1567 1568 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1569 poison_obj(cachep, slab->freelist - obj_offset(cachep), 1570 POISON_FREE); 1571 } 1572 1573 for (i = 0; i < cachep->num; i++) { 1574 void *objp = index_to_obj(cachep, slab, i); 1575 1576 if (cachep->flags & SLAB_POISON) { 1577 check_poison_obj(cachep, objp); 1578 slab_kernel_map(cachep, objp, 1); 1579 } 1580 if (cachep->flags & SLAB_RED_ZONE) { 1581 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1582 slab_error(cachep, "start of a freed object was overwritten"); 1583 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1584 slab_error(cachep, "end of a freed object was overwritten"); 1585 } 1586 } 1587 } 1588 #else 1589 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1590 struct slab *slab) 1591 { 1592 } 1593 #endif 1594 1595 /** 1596 * slab_destroy - destroy and release all objects in a slab 1597 * @cachep: cache pointer being destroyed 1598 * @slab: slab being destroyed 1599 * 1600 * Destroy all the objs in a slab, and release the mem back to the system. 1601 * Before calling the slab must have been unlinked from the cache. The 1602 * kmem_cache_node ->list_lock is not held/needed. 1603 */ 1604 static void slab_destroy(struct kmem_cache *cachep, struct slab *slab) 1605 { 1606 void *freelist; 1607 1608 freelist = slab->freelist; 1609 slab_destroy_debugcheck(cachep, slab); 1610 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1611 call_rcu(&slab->rcu_head, kmem_rcu_free); 1612 else 1613 kmem_freepages(cachep, slab); 1614 1615 /* 1616 * From now on, we don't use freelist 1617 * although actual page can be freed in rcu context 1618 */ 1619 if (OFF_SLAB(cachep)) 1620 kfree(freelist); 1621 } 1622 1623 /* 1624 * Update the size of the caches before calling slabs_destroy as it may 1625 * recursively call kfree. 1626 */ 1627 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1628 { 1629 struct slab *slab, *n; 1630 1631 list_for_each_entry_safe(slab, n, list, slab_list) { 1632 list_del(&slab->slab_list); 1633 slab_destroy(cachep, slab); 1634 } 1635 } 1636 1637 /** 1638 * calculate_slab_order - calculate size (page order) of slabs 1639 * @cachep: pointer to the cache that is being created 1640 * @size: size of objects to be created in this cache. 1641 * @flags: slab allocation flags 1642 * 1643 * Also calculates the number of objects per slab. 1644 * 1645 * This could be made much more intelligent. For now, try to avoid using 1646 * high order pages for slabs. When the gfp() functions are more friendly 1647 * towards high-order requests, this should be changed. 1648 * 1649 * Return: number of left-over bytes in a slab 1650 */ 1651 static size_t calculate_slab_order(struct kmem_cache *cachep, 1652 size_t size, slab_flags_t flags) 1653 { 1654 size_t left_over = 0; 1655 int gfporder; 1656 1657 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1658 unsigned int num; 1659 size_t remainder; 1660 1661 num = cache_estimate(gfporder, size, flags, &remainder); 1662 if (!num) 1663 continue; 1664 1665 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1666 if (num > SLAB_OBJ_MAX_NUM) 1667 break; 1668 1669 if (flags & CFLGS_OFF_SLAB) { 1670 struct kmem_cache *freelist_cache; 1671 size_t freelist_size; 1672 size_t freelist_cache_size; 1673 1674 freelist_size = num * sizeof(freelist_idx_t); 1675 if (freelist_size > KMALLOC_MAX_CACHE_SIZE) { 1676 freelist_cache_size = PAGE_SIZE << get_order(freelist_size); 1677 } else { 1678 freelist_cache = kmalloc_slab(freelist_size, 0u); 1679 if (!freelist_cache) 1680 continue; 1681 freelist_cache_size = freelist_cache->size; 1682 1683 /* 1684 * Needed to avoid possible looping condition 1685 * in cache_grow_begin() 1686 */ 1687 if (OFF_SLAB(freelist_cache)) 1688 continue; 1689 } 1690 1691 /* check if off slab has enough benefit */ 1692 if (freelist_cache_size > cachep->size / 2) 1693 continue; 1694 } 1695 1696 /* Found something acceptable - save it away */ 1697 cachep->num = num; 1698 cachep->gfporder = gfporder; 1699 left_over = remainder; 1700 1701 /* 1702 * A VFS-reclaimable slab tends to have most allocations 1703 * as GFP_NOFS and we really don't want to have to be allocating 1704 * higher-order pages when we are unable to shrink dcache. 1705 */ 1706 if (flags & SLAB_RECLAIM_ACCOUNT) 1707 break; 1708 1709 /* 1710 * Large number of objects is good, but very large slabs are 1711 * currently bad for the gfp()s. 1712 */ 1713 if (gfporder >= slab_max_order) 1714 break; 1715 1716 /* 1717 * Acceptable internal fragmentation? 1718 */ 1719 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1720 break; 1721 } 1722 return left_over; 1723 } 1724 1725 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1726 struct kmem_cache *cachep, int entries, int batchcount) 1727 { 1728 int cpu; 1729 size_t size; 1730 struct array_cache __percpu *cpu_cache; 1731 1732 size = sizeof(void *) * entries + sizeof(struct array_cache); 1733 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1734 1735 if (!cpu_cache) 1736 return NULL; 1737 1738 for_each_possible_cpu(cpu) { 1739 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1740 entries, batchcount); 1741 } 1742 1743 return cpu_cache; 1744 } 1745 1746 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1747 { 1748 if (slab_state >= FULL) 1749 return enable_cpucache(cachep, gfp); 1750 1751 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1752 if (!cachep->cpu_cache) 1753 return 1; 1754 1755 if (slab_state == DOWN) { 1756 /* Creation of first cache (kmem_cache). */ 1757 set_up_node(kmem_cache, CACHE_CACHE); 1758 } else if (slab_state == PARTIAL) { 1759 /* For kmem_cache_node */ 1760 set_up_node(cachep, SIZE_NODE); 1761 } else { 1762 int node; 1763 1764 for_each_online_node(node) { 1765 cachep->node[node] = kmalloc_node( 1766 sizeof(struct kmem_cache_node), gfp, node); 1767 BUG_ON(!cachep->node[node]); 1768 kmem_cache_node_init(cachep->node[node]); 1769 } 1770 } 1771 1772 cachep->node[numa_mem_id()]->next_reap = 1773 jiffies + REAPTIMEOUT_NODE + 1774 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1775 1776 cpu_cache_get(cachep)->avail = 0; 1777 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1778 cpu_cache_get(cachep)->batchcount = 1; 1779 cpu_cache_get(cachep)->touched = 0; 1780 cachep->batchcount = 1; 1781 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1782 return 0; 1783 } 1784 1785 slab_flags_t kmem_cache_flags(unsigned int object_size, 1786 slab_flags_t flags, const char *name) 1787 { 1788 return flags; 1789 } 1790 1791 struct kmem_cache * 1792 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1793 slab_flags_t flags, void (*ctor)(void *)) 1794 { 1795 struct kmem_cache *cachep; 1796 1797 cachep = find_mergeable(size, align, flags, name, ctor); 1798 if (cachep) { 1799 cachep->refcount++; 1800 1801 /* 1802 * Adjust the object sizes so that we clear 1803 * the complete object on kzalloc. 1804 */ 1805 cachep->object_size = max_t(int, cachep->object_size, size); 1806 } 1807 return cachep; 1808 } 1809 1810 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1811 size_t size, slab_flags_t flags) 1812 { 1813 size_t left; 1814 1815 cachep->num = 0; 1816 1817 /* 1818 * If slab auto-initialization on free is enabled, store the freelist 1819 * off-slab, so that its contents don't end up in one of the allocated 1820 * objects. 1821 */ 1822 if (unlikely(slab_want_init_on_free(cachep))) 1823 return false; 1824 1825 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1826 return false; 1827 1828 left = calculate_slab_order(cachep, size, 1829 flags | CFLGS_OBJFREELIST_SLAB); 1830 if (!cachep->num) 1831 return false; 1832 1833 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1834 return false; 1835 1836 cachep->colour = left / cachep->colour_off; 1837 1838 return true; 1839 } 1840 1841 static bool set_off_slab_cache(struct kmem_cache *cachep, 1842 size_t size, slab_flags_t flags) 1843 { 1844 size_t left; 1845 1846 cachep->num = 0; 1847 1848 /* 1849 * Always use on-slab management when SLAB_NOLEAKTRACE 1850 * to avoid recursive calls into kmemleak. 1851 */ 1852 if (flags & SLAB_NOLEAKTRACE) 1853 return false; 1854 1855 /* 1856 * Size is large, assume best to place the slab management obj 1857 * off-slab (should allow better packing of objs). 1858 */ 1859 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1860 if (!cachep->num) 1861 return false; 1862 1863 /* 1864 * If the slab has been placed off-slab, and we have enough space then 1865 * move it on-slab. This is at the expense of any extra colouring. 1866 */ 1867 if (left >= cachep->num * sizeof(freelist_idx_t)) 1868 return false; 1869 1870 cachep->colour = left / cachep->colour_off; 1871 1872 return true; 1873 } 1874 1875 static bool set_on_slab_cache(struct kmem_cache *cachep, 1876 size_t size, slab_flags_t flags) 1877 { 1878 size_t left; 1879 1880 cachep->num = 0; 1881 1882 left = calculate_slab_order(cachep, size, flags); 1883 if (!cachep->num) 1884 return false; 1885 1886 cachep->colour = left / cachep->colour_off; 1887 1888 return true; 1889 } 1890 1891 /** 1892 * __kmem_cache_create - Create a cache. 1893 * @cachep: cache management descriptor 1894 * @flags: SLAB flags 1895 * 1896 * Returns a ptr to the cache on success, NULL on failure. 1897 * Cannot be called within an int, but can be interrupted. 1898 * The @ctor is run when new pages are allocated by the cache. 1899 * 1900 * The flags are 1901 * 1902 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1903 * to catch references to uninitialised memory. 1904 * 1905 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1906 * for buffer overruns. 1907 * 1908 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1909 * cacheline. This can be beneficial if you're counting cycles as closely 1910 * as davem. 1911 * 1912 * Return: a pointer to the created cache or %NULL in case of error 1913 */ 1914 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1915 { 1916 size_t ralign = BYTES_PER_WORD; 1917 gfp_t gfp; 1918 int err; 1919 unsigned int size = cachep->size; 1920 1921 #if DEBUG 1922 #if FORCED_DEBUG 1923 /* 1924 * Enable redzoning and last user accounting, except for caches with 1925 * large objects, if the increased size would increase the object size 1926 * above the next power of two: caches with object sizes just above a 1927 * power of two have a significant amount of internal fragmentation. 1928 */ 1929 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1930 2 * sizeof(unsigned long long))) 1931 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1932 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1933 flags |= SLAB_POISON; 1934 #endif 1935 #endif 1936 1937 /* 1938 * Check that size is in terms of words. This is needed to avoid 1939 * unaligned accesses for some archs when redzoning is used, and makes 1940 * sure any on-slab bufctl's are also correctly aligned. 1941 */ 1942 size = ALIGN(size, BYTES_PER_WORD); 1943 1944 if (flags & SLAB_RED_ZONE) { 1945 ralign = REDZONE_ALIGN; 1946 /* If redzoning, ensure that the second redzone is suitably 1947 * aligned, by adjusting the object size accordingly. */ 1948 size = ALIGN(size, REDZONE_ALIGN); 1949 } 1950 1951 /* 3) caller mandated alignment */ 1952 if (ralign < cachep->align) { 1953 ralign = cachep->align; 1954 } 1955 /* disable debug if necessary */ 1956 if (ralign > __alignof__(unsigned long long)) 1957 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1958 /* 1959 * 4) Store it. 1960 */ 1961 cachep->align = ralign; 1962 cachep->colour_off = cache_line_size(); 1963 /* Offset must be a multiple of the alignment. */ 1964 if (cachep->colour_off < cachep->align) 1965 cachep->colour_off = cachep->align; 1966 1967 if (slab_is_available()) 1968 gfp = GFP_KERNEL; 1969 else 1970 gfp = GFP_NOWAIT; 1971 1972 #if DEBUG 1973 1974 /* 1975 * Both debugging options require word-alignment which is calculated 1976 * into align above. 1977 */ 1978 if (flags & SLAB_RED_ZONE) { 1979 /* add space for red zone words */ 1980 cachep->obj_offset += sizeof(unsigned long long); 1981 size += 2 * sizeof(unsigned long long); 1982 } 1983 if (flags & SLAB_STORE_USER) { 1984 /* user store requires one word storage behind the end of 1985 * the real object. But if the second red zone needs to be 1986 * aligned to 64 bits, we must allow that much space. 1987 */ 1988 if (flags & SLAB_RED_ZONE) 1989 size += REDZONE_ALIGN; 1990 else 1991 size += BYTES_PER_WORD; 1992 } 1993 #endif 1994 1995 kasan_cache_create(cachep, &size, &flags); 1996 1997 size = ALIGN(size, cachep->align); 1998 /* 1999 * We should restrict the number of objects in a slab to implement 2000 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2001 */ 2002 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2003 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2004 2005 #if DEBUG 2006 /* 2007 * To activate debug pagealloc, off-slab management is necessary 2008 * requirement. In early phase of initialization, small sized slab 2009 * doesn't get initialized so it would not be possible. So, we need 2010 * to check size >= 256. It guarantees that all necessary small 2011 * sized slab is initialized in current slab initialization sequence. 2012 */ 2013 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && 2014 size >= 256 && cachep->object_size > cache_line_size()) { 2015 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2016 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2017 2018 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2019 flags |= CFLGS_OFF_SLAB; 2020 cachep->obj_offset += tmp_size - size; 2021 size = tmp_size; 2022 goto done; 2023 } 2024 } 2025 } 2026 #endif 2027 2028 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2029 flags |= CFLGS_OBJFREELIST_SLAB; 2030 goto done; 2031 } 2032 2033 if (set_off_slab_cache(cachep, size, flags)) { 2034 flags |= CFLGS_OFF_SLAB; 2035 goto done; 2036 } 2037 2038 if (set_on_slab_cache(cachep, size, flags)) 2039 goto done; 2040 2041 return -E2BIG; 2042 2043 done: 2044 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2045 cachep->flags = flags; 2046 cachep->allocflags = __GFP_COMP; 2047 if (flags & SLAB_CACHE_DMA) 2048 cachep->allocflags |= GFP_DMA; 2049 if (flags & SLAB_CACHE_DMA32) 2050 cachep->allocflags |= GFP_DMA32; 2051 if (flags & SLAB_RECLAIM_ACCOUNT) 2052 cachep->allocflags |= __GFP_RECLAIMABLE; 2053 cachep->size = size; 2054 cachep->reciprocal_buffer_size = reciprocal_value(size); 2055 2056 #if DEBUG 2057 /* 2058 * If we're going to use the generic kernel_map_pages() 2059 * poisoning, then it's going to smash the contents of 2060 * the redzone and userword anyhow, so switch them off. 2061 */ 2062 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2063 (cachep->flags & SLAB_POISON) && 2064 is_debug_pagealloc_cache(cachep)) 2065 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2066 #endif 2067 2068 err = setup_cpu_cache(cachep, gfp); 2069 if (err) { 2070 __kmem_cache_release(cachep); 2071 return err; 2072 } 2073 2074 return 0; 2075 } 2076 2077 #if DEBUG 2078 static void check_irq_off(void) 2079 { 2080 BUG_ON(!irqs_disabled()); 2081 } 2082 2083 static void check_irq_on(void) 2084 { 2085 BUG_ON(irqs_disabled()); 2086 } 2087 2088 static void check_mutex_acquired(void) 2089 { 2090 BUG_ON(!mutex_is_locked(&slab_mutex)); 2091 } 2092 2093 static void check_spinlock_acquired(struct kmem_cache *cachep) 2094 { 2095 #ifdef CONFIG_SMP 2096 check_irq_off(); 2097 assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2098 #endif 2099 } 2100 2101 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2102 { 2103 #ifdef CONFIG_SMP 2104 check_irq_off(); 2105 assert_raw_spin_locked(&get_node(cachep, node)->list_lock); 2106 #endif 2107 } 2108 2109 #else 2110 #define check_irq_off() do { } while(0) 2111 #define check_irq_on() do { } while(0) 2112 #define check_mutex_acquired() do { } while(0) 2113 #define check_spinlock_acquired(x) do { } while(0) 2114 #define check_spinlock_acquired_node(x, y) do { } while(0) 2115 #endif 2116 2117 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2118 int node, bool free_all, struct list_head *list) 2119 { 2120 int tofree; 2121 2122 if (!ac || !ac->avail) 2123 return; 2124 2125 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2126 if (tofree > ac->avail) 2127 tofree = (ac->avail + 1) / 2; 2128 2129 free_block(cachep, ac->entry, tofree, node, list); 2130 ac->avail -= tofree; 2131 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2132 } 2133 2134 static void do_drain(void *arg) 2135 { 2136 struct kmem_cache *cachep = arg; 2137 struct array_cache *ac; 2138 int node = numa_mem_id(); 2139 struct kmem_cache_node *n; 2140 LIST_HEAD(list); 2141 2142 check_irq_off(); 2143 ac = cpu_cache_get(cachep); 2144 n = get_node(cachep, node); 2145 raw_spin_lock(&n->list_lock); 2146 free_block(cachep, ac->entry, ac->avail, node, &list); 2147 raw_spin_unlock(&n->list_lock); 2148 ac->avail = 0; 2149 slabs_destroy(cachep, &list); 2150 } 2151 2152 static void drain_cpu_caches(struct kmem_cache *cachep) 2153 { 2154 struct kmem_cache_node *n; 2155 int node; 2156 LIST_HEAD(list); 2157 2158 on_each_cpu(do_drain, cachep, 1); 2159 check_irq_on(); 2160 for_each_kmem_cache_node(cachep, node, n) 2161 if (n->alien) 2162 drain_alien_cache(cachep, n->alien); 2163 2164 for_each_kmem_cache_node(cachep, node, n) { 2165 raw_spin_lock_irq(&n->list_lock); 2166 drain_array_locked(cachep, n->shared, node, true, &list); 2167 raw_spin_unlock_irq(&n->list_lock); 2168 2169 slabs_destroy(cachep, &list); 2170 } 2171 } 2172 2173 /* 2174 * Remove slabs from the list of free slabs. 2175 * Specify the number of slabs to drain in tofree. 2176 * 2177 * Returns the actual number of slabs released. 2178 */ 2179 static int drain_freelist(struct kmem_cache *cache, 2180 struct kmem_cache_node *n, int tofree) 2181 { 2182 struct list_head *p; 2183 int nr_freed; 2184 struct slab *slab; 2185 2186 nr_freed = 0; 2187 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2188 2189 raw_spin_lock_irq(&n->list_lock); 2190 p = n->slabs_free.prev; 2191 if (p == &n->slabs_free) { 2192 raw_spin_unlock_irq(&n->list_lock); 2193 goto out; 2194 } 2195 2196 slab = list_entry(p, struct slab, slab_list); 2197 list_del(&slab->slab_list); 2198 n->free_slabs--; 2199 n->total_slabs--; 2200 /* 2201 * Safe to drop the lock. The slab is no longer linked 2202 * to the cache. 2203 */ 2204 n->free_objects -= cache->num; 2205 raw_spin_unlock_irq(&n->list_lock); 2206 slab_destroy(cache, slab); 2207 nr_freed++; 2208 2209 cond_resched(); 2210 } 2211 out: 2212 return nr_freed; 2213 } 2214 2215 bool __kmem_cache_empty(struct kmem_cache *s) 2216 { 2217 int node; 2218 struct kmem_cache_node *n; 2219 2220 for_each_kmem_cache_node(s, node, n) 2221 if (!list_empty(&n->slabs_full) || 2222 !list_empty(&n->slabs_partial)) 2223 return false; 2224 return true; 2225 } 2226 2227 int __kmem_cache_shrink(struct kmem_cache *cachep) 2228 { 2229 int ret = 0; 2230 int node; 2231 struct kmem_cache_node *n; 2232 2233 drain_cpu_caches(cachep); 2234 2235 check_irq_on(); 2236 for_each_kmem_cache_node(cachep, node, n) { 2237 drain_freelist(cachep, n, INT_MAX); 2238 2239 ret += !list_empty(&n->slabs_full) || 2240 !list_empty(&n->slabs_partial); 2241 } 2242 return (ret ? 1 : 0); 2243 } 2244 2245 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2246 { 2247 return __kmem_cache_shrink(cachep); 2248 } 2249 2250 void __kmem_cache_release(struct kmem_cache *cachep) 2251 { 2252 int i; 2253 struct kmem_cache_node *n; 2254 2255 cache_random_seq_destroy(cachep); 2256 2257 free_percpu(cachep->cpu_cache); 2258 2259 /* NUMA: free the node structures */ 2260 for_each_kmem_cache_node(cachep, i, n) { 2261 kfree(n->shared); 2262 free_alien_cache(n->alien); 2263 kfree(n); 2264 cachep->node[i] = NULL; 2265 } 2266 } 2267 2268 /* 2269 * Get the memory for a slab management obj. 2270 * 2271 * For a slab cache when the slab descriptor is off-slab, the 2272 * slab descriptor can't come from the same cache which is being created, 2273 * Because if it is the case, that means we defer the creation of 2274 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2275 * And we eventually call down to __kmem_cache_create(), which 2276 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one. 2277 * This is a "chicken-and-egg" problem. 2278 * 2279 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2280 * which are all initialized during kmem_cache_init(). 2281 */ 2282 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2283 struct slab *slab, int colour_off, 2284 gfp_t local_flags, int nodeid) 2285 { 2286 void *freelist; 2287 void *addr = slab_address(slab); 2288 2289 slab->s_mem = addr + colour_off; 2290 slab->active = 0; 2291 2292 if (OBJFREELIST_SLAB(cachep)) 2293 freelist = NULL; 2294 else if (OFF_SLAB(cachep)) { 2295 /* Slab management obj is off-slab. */ 2296 freelist = kmalloc_node(cachep->freelist_size, 2297 local_flags, nodeid); 2298 } else { 2299 /* We will use last bytes at the slab for freelist */ 2300 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2301 cachep->freelist_size; 2302 } 2303 2304 return freelist; 2305 } 2306 2307 static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx) 2308 { 2309 return ((freelist_idx_t *) slab->freelist)[idx]; 2310 } 2311 2312 static inline void set_free_obj(struct slab *slab, 2313 unsigned int idx, freelist_idx_t val) 2314 { 2315 ((freelist_idx_t *)(slab->freelist))[idx] = val; 2316 } 2317 2318 static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab) 2319 { 2320 #if DEBUG 2321 int i; 2322 2323 for (i = 0; i < cachep->num; i++) { 2324 void *objp = index_to_obj(cachep, slab, i); 2325 2326 if (cachep->flags & SLAB_STORE_USER) 2327 *dbg_userword(cachep, objp) = NULL; 2328 2329 if (cachep->flags & SLAB_RED_ZONE) { 2330 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2331 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2332 } 2333 /* 2334 * Constructors are not allowed to allocate memory from the same 2335 * cache which they are a constructor for. Otherwise, deadlock. 2336 * They must also be threaded. 2337 */ 2338 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2339 kasan_unpoison_object_data(cachep, 2340 objp + obj_offset(cachep)); 2341 cachep->ctor(objp + obj_offset(cachep)); 2342 kasan_poison_object_data( 2343 cachep, objp + obj_offset(cachep)); 2344 } 2345 2346 if (cachep->flags & SLAB_RED_ZONE) { 2347 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2348 slab_error(cachep, "constructor overwrote the end of an object"); 2349 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2350 slab_error(cachep, "constructor overwrote the start of an object"); 2351 } 2352 /* need to poison the objs? */ 2353 if (cachep->flags & SLAB_POISON) { 2354 poison_obj(cachep, objp, POISON_FREE); 2355 slab_kernel_map(cachep, objp, 0); 2356 } 2357 } 2358 #endif 2359 } 2360 2361 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2362 /* Hold information during a freelist initialization */ 2363 union freelist_init_state { 2364 struct { 2365 unsigned int pos; 2366 unsigned int *list; 2367 unsigned int count; 2368 }; 2369 struct rnd_state rnd_state; 2370 }; 2371 2372 /* 2373 * Initialize the state based on the randomization method available. 2374 * return true if the pre-computed list is available, false otherwise. 2375 */ 2376 static bool freelist_state_initialize(union freelist_init_state *state, 2377 struct kmem_cache *cachep, 2378 unsigned int count) 2379 { 2380 bool ret; 2381 unsigned int rand; 2382 2383 /* Use best entropy available to define a random shift */ 2384 rand = get_random_u32(); 2385 2386 /* Use a random state if the pre-computed list is not available */ 2387 if (!cachep->random_seq) { 2388 prandom_seed_state(&state->rnd_state, rand); 2389 ret = false; 2390 } else { 2391 state->list = cachep->random_seq; 2392 state->count = count; 2393 state->pos = rand % count; 2394 ret = true; 2395 } 2396 return ret; 2397 } 2398 2399 /* Get the next entry on the list and randomize it using a random shift */ 2400 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2401 { 2402 if (state->pos >= state->count) 2403 state->pos = 0; 2404 return state->list[state->pos++]; 2405 } 2406 2407 /* Swap two freelist entries */ 2408 static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b) 2409 { 2410 swap(((freelist_idx_t *) slab->freelist)[a], 2411 ((freelist_idx_t *) slab->freelist)[b]); 2412 } 2413 2414 /* 2415 * Shuffle the freelist initialization state based on pre-computed lists. 2416 * return true if the list was successfully shuffled, false otherwise. 2417 */ 2418 static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab) 2419 { 2420 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2421 union freelist_init_state state; 2422 bool precomputed; 2423 2424 if (count < 2) 2425 return false; 2426 2427 precomputed = freelist_state_initialize(&state, cachep, count); 2428 2429 /* Take a random entry as the objfreelist */ 2430 if (OBJFREELIST_SLAB(cachep)) { 2431 if (!precomputed) 2432 objfreelist = count - 1; 2433 else 2434 objfreelist = next_random_slot(&state); 2435 slab->freelist = index_to_obj(cachep, slab, objfreelist) + 2436 obj_offset(cachep); 2437 count--; 2438 } 2439 2440 /* 2441 * On early boot, generate the list dynamically. 2442 * Later use a pre-computed list for speed. 2443 */ 2444 if (!precomputed) { 2445 for (i = 0; i < count; i++) 2446 set_free_obj(slab, i, i); 2447 2448 /* Fisher-Yates shuffle */ 2449 for (i = count - 1; i > 0; i--) { 2450 rand = prandom_u32_state(&state.rnd_state); 2451 rand %= (i + 1); 2452 swap_free_obj(slab, i, rand); 2453 } 2454 } else { 2455 for (i = 0; i < count; i++) 2456 set_free_obj(slab, i, next_random_slot(&state)); 2457 } 2458 2459 if (OBJFREELIST_SLAB(cachep)) 2460 set_free_obj(slab, cachep->num - 1, objfreelist); 2461 2462 return true; 2463 } 2464 #else 2465 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2466 struct slab *slab) 2467 { 2468 return false; 2469 } 2470 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2471 2472 static void cache_init_objs(struct kmem_cache *cachep, 2473 struct slab *slab) 2474 { 2475 int i; 2476 void *objp; 2477 bool shuffled; 2478 2479 cache_init_objs_debug(cachep, slab); 2480 2481 /* Try to randomize the freelist if enabled */ 2482 shuffled = shuffle_freelist(cachep, slab); 2483 2484 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2485 slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) + 2486 obj_offset(cachep); 2487 } 2488 2489 for (i = 0; i < cachep->num; i++) { 2490 objp = index_to_obj(cachep, slab, i); 2491 objp = kasan_init_slab_obj(cachep, objp); 2492 2493 /* constructor could break poison info */ 2494 if (DEBUG == 0 && cachep->ctor) { 2495 kasan_unpoison_object_data(cachep, objp); 2496 cachep->ctor(objp); 2497 kasan_poison_object_data(cachep, objp); 2498 } 2499 2500 if (!shuffled) 2501 set_free_obj(slab, i, i); 2502 } 2503 } 2504 2505 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab) 2506 { 2507 void *objp; 2508 2509 objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active)); 2510 slab->active++; 2511 2512 return objp; 2513 } 2514 2515 static void slab_put_obj(struct kmem_cache *cachep, 2516 struct slab *slab, void *objp) 2517 { 2518 unsigned int objnr = obj_to_index(cachep, slab, objp); 2519 #if DEBUG 2520 unsigned int i; 2521 2522 /* Verify double free bug */ 2523 for (i = slab->active; i < cachep->num; i++) { 2524 if (get_free_obj(slab, i) == objnr) { 2525 pr_err("slab: double free detected in cache '%s', objp %px\n", 2526 cachep->name, objp); 2527 BUG(); 2528 } 2529 } 2530 #endif 2531 slab->active--; 2532 if (!slab->freelist) 2533 slab->freelist = objp + obj_offset(cachep); 2534 2535 set_free_obj(slab, slab->active, objnr); 2536 } 2537 2538 /* 2539 * Grow (by 1) the number of slabs within a cache. This is called by 2540 * kmem_cache_alloc() when there are no active objs left in a cache. 2541 */ 2542 static struct slab *cache_grow_begin(struct kmem_cache *cachep, 2543 gfp_t flags, int nodeid) 2544 { 2545 void *freelist; 2546 size_t offset; 2547 gfp_t local_flags; 2548 int slab_node; 2549 struct kmem_cache_node *n; 2550 struct slab *slab; 2551 2552 /* 2553 * Be lazy and only check for valid flags here, keeping it out of the 2554 * critical path in kmem_cache_alloc(). 2555 */ 2556 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2557 flags = kmalloc_fix_flags(flags); 2558 2559 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2560 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2561 2562 check_irq_off(); 2563 if (gfpflags_allow_blocking(local_flags)) 2564 local_irq_enable(); 2565 2566 /* 2567 * Get mem for the objs. Attempt to allocate a physical page from 2568 * 'nodeid'. 2569 */ 2570 slab = kmem_getpages(cachep, local_flags, nodeid); 2571 if (!slab) 2572 goto failed; 2573 2574 slab_node = slab_nid(slab); 2575 n = get_node(cachep, slab_node); 2576 2577 /* Get colour for the slab, and cal the next value. */ 2578 n->colour_next++; 2579 if (n->colour_next >= cachep->colour) 2580 n->colour_next = 0; 2581 2582 offset = n->colour_next; 2583 if (offset >= cachep->colour) 2584 offset = 0; 2585 2586 offset *= cachep->colour_off; 2587 2588 /* 2589 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2590 * page_address() in the latter returns a non-tagged pointer, 2591 * as it should be for slab pages. 2592 */ 2593 kasan_poison_slab(slab); 2594 2595 /* Get slab management. */ 2596 freelist = alloc_slabmgmt(cachep, slab, offset, 2597 local_flags & ~GFP_CONSTRAINT_MASK, slab_node); 2598 if (OFF_SLAB(cachep) && !freelist) 2599 goto opps1; 2600 2601 slab->slab_cache = cachep; 2602 slab->freelist = freelist; 2603 2604 cache_init_objs(cachep, slab); 2605 2606 if (gfpflags_allow_blocking(local_flags)) 2607 local_irq_disable(); 2608 2609 return slab; 2610 2611 opps1: 2612 kmem_freepages(cachep, slab); 2613 failed: 2614 if (gfpflags_allow_blocking(local_flags)) 2615 local_irq_disable(); 2616 return NULL; 2617 } 2618 2619 static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab) 2620 { 2621 struct kmem_cache_node *n; 2622 void *list = NULL; 2623 2624 check_irq_off(); 2625 2626 if (!slab) 2627 return; 2628 2629 INIT_LIST_HEAD(&slab->slab_list); 2630 n = get_node(cachep, slab_nid(slab)); 2631 2632 raw_spin_lock(&n->list_lock); 2633 n->total_slabs++; 2634 if (!slab->active) { 2635 list_add_tail(&slab->slab_list, &n->slabs_free); 2636 n->free_slabs++; 2637 } else 2638 fixup_slab_list(cachep, n, slab, &list); 2639 2640 STATS_INC_GROWN(cachep); 2641 n->free_objects += cachep->num - slab->active; 2642 raw_spin_unlock(&n->list_lock); 2643 2644 fixup_objfreelist_debug(cachep, &list); 2645 } 2646 2647 #if DEBUG 2648 2649 /* 2650 * Perform extra freeing checks: 2651 * - detect bad pointers. 2652 * - POISON/RED_ZONE checking 2653 */ 2654 static void kfree_debugcheck(const void *objp) 2655 { 2656 if (!virt_addr_valid(objp)) { 2657 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2658 (unsigned long)objp); 2659 BUG(); 2660 } 2661 } 2662 2663 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2664 { 2665 unsigned long long redzone1, redzone2; 2666 2667 redzone1 = *dbg_redzone1(cache, obj); 2668 redzone2 = *dbg_redzone2(cache, obj); 2669 2670 /* 2671 * Redzone is ok. 2672 */ 2673 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2674 return; 2675 2676 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2677 slab_error(cache, "double free detected"); 2678 else 2679 slab_error(cache, "memory outside object was overwritten"); 2680 2681 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2682 obj, redzone1, redzone2); 2683 } 2684 2685 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2686 unsigned long caller) 2687 { 2688 unsigned int objnr; 2689 struct slab *slab; 2690 2691 BUG_ON(virt_to_cache(objp) != cachep); 2692 2693 objp -= obj_offset(cachep); 2694 kfree_debugcheck(objp); 2695 slab = virt_to_slab(objp); 2696 2697 if (cachep->flags & SLAB_RED_ZONE) { 2698 verify_redzone_free(cachep, objp); 2699 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2700 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2701 } 2702 if (cachep->flags & SLAB_STORE_USER) 2703 *dbg_userword(cachep, objp) = (void *)caller; 2704 2705 objnr = obj_to_index(cachep, slab, objp); 2706 2707 BUG_ON(objnr >= cachep->num); 2708 BUG_ON(objp != index_to_obj(cachep, slab, objnr)); 2709 2710 if (cachep->flags & SLAB_POISON) { 2711 poison_obj(cachep, objp, POISON_FREE); 2712 slab_kernel_map(cachep, objp, 0); 2713 } 2714 return objp; 2715 } 2716 2717 #else 2718 #define kfree_debugcheck(x) do { } while(0) 2719 #define cache_free_debugcheck(x, objp, z) (objp) 2720 #endif 2721 2722 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2723 void **list) 2724 { 2725 #if DEBUG 2726 void *next = *list; 2727 void *objp; 2728 2729 while (next) { 2730 objp = next - obj_offset(cachep); 2731 next = *(void **)next; 2732 poison_obj(cachep, objp, POISON_FREE); 2733 } 2734 #endif 2735 } 2736 2737 static inline void fixup_slab_list(struct kmem_cache *cachep, 2738 struct kmem_cache_node *n, struct slab *slab, 2739 void **list) 2740 { 2741 /* move slabp to correct slabp list: */ 2742 list_del(&slab->slab_list); 2743 if (slab->active == cachep->num) { 2744 list_add(&slab->slab_list, &n->slabs_full); 2745 if (OBJFREELIST_SLAB(cachep)) { 2746 #if DEBUG 2747 /* Poisoning will be done without holding the lock */ 2748 if (cachep->flags & SLAB_POISON) { 2749 void **objp = slab->freelist; 2750 2751 *objp = *list; 2752 *list = objp; 2753 } 2754 #endif 2755 slab->freelist = NULL; 2756 } 2757 } else 2758 list_add(&slab->slab_list, &n->slabs_partial); 2759 } 2760 2761 /* Try to find non-pfmemalloc slab if needed */ 2762 static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n, 2763 struct slab *slab, bool pfmemalloc) 2764 { 2765 if (!slab) 2766 return NULL; 2767 2768 if (pfmemalloc) 2769 return slab; 2770 2771 if (!slab_test_pfmemalloc(slab)) 2772 return slab; 2773 2774 /* No need to keep pfmemalloc slab if we have enough free objects */ 2775 if (n->free_objects > n->free_limit) { 2776 slab_clear_pfmemalloc(slab); 2777 return slab; 2778 } 2779 2780 /* Move pfmemalloc slab to the end of list to speed up next search */ 2781 list_del(&slab->slab_list); 2782 if (!slab->active) { 2783 list_add_tail(&slab->slab_list, &n->slabs_free); 2784 n->free_slabs++; 2785 } else 2786 list_add_tail(&slab->slab_list, &n->slabs_partial); 2787 2788 list_for_each_entry(slab, &n->slabs_partial, slab_list) { 2789 if (!slab_test_pfmemalloc(slab)) 2790 return slab; 2791 } 2792 2793 n->free_touched = 1; 2794 list_for_each_entry(slab, &n->slabs_free, slab_list) { 2795 if (!slab_test_pfmemalloc(slab)) { 2796 n->free_slabs--; 2797 return slab; 2798 } 2799 } 2800 2801 return NULL; 2802 } 2803 2804 static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2805 { 2806 struct slab *slab; 2807 2808 assert_raw_spin_locked(&n->list_lock); 2809 slab = list_first_entry_or_null(&n->slabs_partial, struct slab, 2810 slab_list); 2811 if (!slab) { 2812 n->free_touched = 1; 2813 slab = list_first_entry_or_null(&n->slabs_free, struct slab, 2814 slab_list); 2815 if (slab) 2816 n->free_slabs--; 2817 } 2818 2819 if (sk_memalloc_socks()) 2820 slab = get_valid_first_slab(n, slab, pfmemalloc); 2821 2822 return slab; 2823 } 2824 2825 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2826 struct kmem_cache_node *n, gfp_t flags) 2827 { 2828 struct slab *slab; 2829 void *obj; 2830 void *list = NULL; 2831 2832 if (!gfp_pfmemalloc_allowed(flags)) 2833 return NULL; 2834 2835 raw_spin_lock(&n->list_lock); 2836 slab = get_first_slab(n, true); 2837 if (!slab) { 2838 raw_spin_unlock(&n->list_lock); 2839 return NULL; 2840 } 2841 2842 obj = slab_get_obj(cachep, slab); 2843 n->free_objects--; 2844 2845 fixup_slab_list(cachep, n, slab, &list); 2846 2847 raw_spin_unlock(&n->list_lock); 2848 fixup_objfreelist_debug(cachep, &list); 2849 2850 return obj; 2851 } 2852 2853 /* 2854 * Slab list should be fixed up by fixup_slab_list() for existing slab 2855 * or cache_grow_end() for new slab 2856 */ 2857 static __always_inline int alloc_block(struct kmem_cache *cachep, 2858 struct array_cache *ac, struct slab *slab, int batchcount) 2859 { 2860 /* 2861 * There must be at least one object available for 2862 * allocation. 2863 */ 2864 BUG_ON(slab->active >= cachep->num); 2865 2866 while (slab->active < cachep->num && batchcount--) { 2867 STATS_INC_ALLOCED(cachep); 2868 STATS_INC_ACTIVE(cachep); 2869 STATS_SET_HIGH(cachep); 2870 2871 ac->entry[ac->avail++] = slab_get_obj(cachep, slab); 2872 } 2873 2874 return batchcount; 2875 } 2876 2877 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2878 { 2879 int batchcount; 2880 struct kmem_cache_node *n; 2881 struct array_cache *ac, *shared; 2882 int node; 2883 void *list = NULL; 2884 struct slab *slab; 2885 2886 check_irq_off(); 2887 node = numa_mem_id(); 2888 2889 ac = cpu_cache_get(cachep); 2890 batchcount = ac->batchcount; 2891 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2892 /* 2893 * If there was little recent activity on this cache, then 2894 * perform only a partial refill. Otherwise we could generate 2895 * refill bouncing. 2896 */ 2897 batchcount = BATCHREFILL_LIMIT; 2898 } 2899 n = get_node(cachep, node); 2900 2901 BUG_ON(ac->avail > 0 || !n); 2902 shared = READ_ONCE(n->shared); 2903 if (!n->free_objects && (!shared || !shared->avail)) 2904 goto direct_grow; 2905 2906 raw_spin_lock(&n->list_lock); 2907 shared = READ_ONCE(n->shared); 2908 2909 /* See if we can refill from the shared array */ 2910 if (shared && transfer_objects(ac, shared, batchcount)) { 2911 shared->touched = 1; 2912 goto alloc_done; 2913 } 2914 2915 while (batchcount > 0) { 2916 /* Get slab alloc is to come from. */ 2917 slab = get_first_slab(n, false); 2918 if (!slab) 2919 goto must_grow; 2920 2921 check_spinlock_acquired(cachep); 2922 2923 batchcount = alloc_block(cachep, ac, slab, batchcount); 2924 fixup_slab_list(cachep, n, slab, &list); 2925 } 2926 2927 must_grow: 2928 n->free_objects -= ac->avail; 2929 alloc_done: 2930 raw_spin_unlock(&n->list_lock); 2931 fixup_objfreelist_debug(cachep, &list); 2932 2933 direct_grow: 2934 if (unlikely(!ac->avail)) { 2935 /* Check if we can use obj in pfmemalloc slab */ 2936 if (sk_memalloc_socks()) { 2937 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2938 2939 if (obj) 2940 return obj; 2941 } 2942 2943 slab = cache_grow_begin(cachep, gfp_exact_node(flags), node); 2944 2945 /* 2946 * cache_grow_begin() can reenable interrupts, 2947 * then ac could change. 2948 */ 2949 ac = cpu_cache_get(cachep); 2950 if (!ac->avail && slab) 2951 alloc_block(cachep, ac, slab, batchcount); 2952 cache_grow_end(cachep, slab); 2953 2954 if (!ac->avail) 2955 return NULL; 2956 } 2957 ac->touched = 1; 2958 2959 return ac->entry[--ac->avail]; 2960 } 2961 2962 #if DEBUG 2963 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2964 gfp_t flags, void *objp, unsigned long caller) 2965 { 2966 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2967 if (!objp || is_kfence_address(objp)) 2968 return objp; 2969 if (cachep->flags & SLAB_POISON) { 2970 check_poison_obj(cachep, objp); 2971 slab_kernel_map(cachep, objp, 1); 2972 poison_obj(cachep, objp, POISON_INUSE); 2973 } 2974 if (cachep->flags & SLAB_STORE_USER) 2975 *dbg_userword(cachep, objp) = (void *)caller; 2976 2977 if (cachep->flags & SLAB_RED_ZONE) { 2978 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 2979 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 2980 slab_error(cachep, "double free, or memory outside object was overwritten"); 2981 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2982 objp, *dbg_redzone1(cachep, objp), 2983 *dbg_redzone2(cachep, objp)); 2984 } 2985 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2986 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2987 } 2988 2989 objp += obj_offset(cachep); 2990 if (cachep->ctor && cachep->flags & SLAB_POISON) 2991 cachep->ctor(objp); 2992 if ((unsigned long)objp & (arch_slab_minalign() - 1)) { 2993 pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp, 2994 arch_slab_minalign()); 2995 } 2996 return objp; 2997 } 2998 #else 2999 #define cache_alloc_debugcheck_after(a, b, objp, d) (objp) 3000 #endif 3001 3002 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3003 { 3004 void *objp; 3005 struct array_cache *ac; 3006 3007 check_irq_off(); 3008 3009 ac = cpu_cache_get(cachep); 3010 if (likely(ac->avail)) { 3011 ac->touched = 1; 3012 objp = ac->entry[--ac->avail]; 3013 3014 STATS_INC_ALLOCHIT(cachep); 3015 goto out; 3016 } 3017 3018 STATS_INC_ALLOCMISS(cachep); 3019 objp = cache_alloc_refill(cachep, flags); 3020 /* 3021 * the 'ac' may be updated by cache_alloc_refill(), 3022 * and kmemleak_erase() requires its correct value. 3023 */ 3024 ac = cpu_cache_get(cachep); 3025 3026 out: 3027 /* 3028 * To avoid a false negative, if an object that is in one of the 3029 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3030 * treat the array pointers as a reference to the object. 3031 */ 3032 if (objp) 3033 kmemleak_erase(&ac->entry[ac->avail]); 3034 return objp; 3035 } 3036 3037 #ifdef CONFIG_NUMA 3038 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 3039 3040 /* 3041 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3042 * 3043 * If we are in_interrupt, then process context, including cpusets and 3044 * mempolicy, may not apply and should not be used for allocation policy. 3045 */ 3046 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3047 { 3048 int nid_alloc, nid_here; 3049 3050 if (in_interrupt() || (flags & __GFP_THISNODE)) 3051 return NULL; 3052 nid_alloc = nid_here = numa_mem_id(); 3053 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3054 nid_alloc = cpuset_slab_spread_node(); 3055 else if (current->mempolicy) 3056 nid_alloc = mempolicy_slab_node(); 3057 if (nid_alloc != nid_here) 3058 return ____cache_alloc_node(cachep, flags, nid_alloc); 3059 return NULL; 3060 } 3061 3062 /* 3063 * Fallback function if there was no memory available and no objects on a 3064 * certain node and fall back is permitted. First we scan all the 3065 * available node for available objects. If that fails then we 3066 * perform an allocation without specifying a node. This allows the page 3067 * allocator to do its reclaim / fallback magic. We then insert the 3068 * slab into the proper nodelist and then allocate from it. 3069 */ 3070 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3071 { 3072 struct zonelist *zonelist; 3073 struct zoneref *z; 3074 struct zone *zone; 3075 enum zone_type highest_zoneidx = gfp_zone(flags); 3076 void *obj = NULL; 3077 struct slab *slab; 3078 int nid; 3079 unsigned int cpuset_mems_cookie; 3080 3081 if (flags & __GFP_THISNODE) 3082 return NULL; 3083 3084 retry_cpuset: 3085 cpuset_mems_cookie = read_mems_allowed_begin(); 3086 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3087 3088 retry: 3089 /* 3090 * Look through allowed nodes for objects available 3091 * from existing per node queues. 3092 */ 3093 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 3094 nid = zone_to_nid(zone); 3095 3096 if (cpuset_zone_allowed(zone, flags) && 3097 get_node(cache, nid) && 3098 get_node(cache, nid)->free_objects) { 3099 obj = ____cache_alloc_node(cache, 3100 gfp_exact_node(flags), nid); 3101 if (obj) 3102 break; 3103 } 3104 } 3105 3106 if (!obj) { 3107 /* 3108 * This allocation will be performed within the constraints 3109 * of the current cpuset / memory policy requirements. 3110 * We may trigger various forms of reclaim on the allowed 3111 * set and go into memory reserves if necessary. 3112 */ 3113 slab = cache_grow_begin(cache, flags, numa_mem_id()); 3114 cache_grow_end(cache, slab); 3115 if (slab) { 3116 nid = slab_nid(slab); 3117 obj = ____cache_alloc_node(cache, 3118 gfp_exact_node(flags), nid); 3119 3120 /* 3121 * Another processor may allocate the objects in 3122 * the slab since we are not holding any locks. 3123 */ 3124 if (!obj) 3125 goto retry; 3126 } 3127 } 3128 3129 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3130 goto retry_cpuset; 3131 return obj; 3132 } 3133 3134 /* 3135 * An interface to enable slab creation on nodeid 3136 */ 3137 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3138 int nodeid) 3139 { 3140 struct slab *slab; 3141 struct kmem_cache_node *n; 3142 void *obj = NULL; 3143 void *list = NULL; 3144 3145 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3146 n = get_node(cachep, nodeid); 3147 BUG_ON(!n); 3148 3149 check_irq_off(); 3150 raw_spin_lock(&n->list_lock); 3151 slab = get_first_slab(n, false); 3152 if (!slab) 3153 goto must_grow; 3154 3155 check_spinlock_acquired_node(cachep, nodeid); 3156 3157 STATS_INC_NODEALLOCS(cachep); 3158 STATS_INC_ACTIVE(cachep); 3159 STATS_SET_HIGH(cachep); 3160 3161 BUG_ON(slab->active == cachep->num); 3162 3163 obj = slab_get_obj(cachep, slab); 3164 n->free_objects--; 3165 3166 fixup_slab_list(cachep, n, slab, &list); 3167 3168 raw_spin_unlock(&n->list_lock); 3169 fixup_objfreelist_debug(cachep, &list); 3170 return obj; 3171 3172 must_grow: 3173 raw_spin_unlock(&n->list_lock); 3174 slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3175 if (slab) { 3176 /* This slab isn't counted yet so don't update free_objects */ 3177 obj = slab_get_obj(cachep, slab); 3178 } 3179 cache_grow_end(cachep, slab); 3180 3181 return obj ? obj : fallback_alloc(cachep, flags); 3182 } 3183 3184 static __always_inline void * 3185 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3186 { 3187 void *objp = NULL; 3188 int slab_node = numa_mem_id(); 3189 3190 if (nodeid == NUMA_NO_NODE) { 3191 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3192 objp = alternate_node_alloc(cachep, flags); 3193 if (objp) 3194 goto out; 3195 } 3196 /* 3197 * Use the locally cached objects if possible. 3198 * However ____cache_alloc does not allow fallback 3199 * to other nodes. It may fail while we still have 3200 * objects on other nodes available. 3201 */ 3202 objp = ____cache_alloc(cachep, flags); 3203 nodeid = slab_node; 3204 } else if (nodeid == slab_node) { 3205 objp = ____cache_alloc(cachep, flags); 3206 } else if (!get_node(cachep, nodeid)) { 3207 /* Node not bootstrapped yet */ 3208 objp = fallback_alloc(cachep, flags); 3209 goto out; 3210 } 3211 3212 /* 3213 * We may just have run out of memory on the local node. 3214 * ____cache_alloc_node() knows how to locate memory on other nodes 3215 */ 3216 if (!objp) 3217 objp = ____cache_alloc_node(cachep, flags, nodeid); 3218 out: 3219 return objp; 3220 } 3221 #else 3222 3223 static __always_inline void * 3224 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused) 3225 { 3226 return ____cache_alloc(cachep, flags); 3227 } 3228 3229 #endif /* CONFIG_NUMA */ 3230 3231 static __always_inline void * 3232 slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, 3233 int nodeid, size_t orig_size, unsigned long caller) 3234 { 3235 unsigned long save_flags; 3236 void *objp; 3237 struct obj_cgroup *objcg = NULL; 3238 bool init = false; 3239 3240 flags &= gfp_allowed_mask; 3241 cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags); 3242 if (unlikely(!cachep)) 3243 return NULL; 3244 3245 objp = kfence_alloc(cachep, orig_size, flags); 3246 if (unlikely(objp)) 3247 goto out; 3248 3249 local_irq_save(save_flags); 3250 objp = __do_cache_alloc(cachep, flags, nodeid); 3251 local_irq_restore(save_flags); 3252 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3253 prefetchw(objp); 3254 init = slab_want_init_on_alloc(flags, cachep); 3255 3256 out: 3257 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init, 3258 cachep->object_size); 3259 return objp; 3260 } 3261 3262 static __always_inline void * 3263 slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, 3264 size_t orig_size, unsigned long caller) 3265 { 3266 return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size, 3267 caller); 3268 } 3269 3270 /* 3271 * Caller needs to acquire correct kmem_cache_node's list_lock 3272 * @list: List of detached free slabs should be freed by caller 3273 */ 3274 static void free_block(struct kmem_cache *cachep, void **objpp, 3275 int nr_objects, int node, struct list_head *list) 3276 { 3277 int i; 3278 struct kmem_cache_node *n = get_node(cachep, node); 3279 struct slab *slab; 3280 3281 n->free_objects += nr_objects; 3282 3283 for (i = 0; i < nr_objects; i++) { 3284 void *objp; 3285 struct slab *slab; 3286 3287 objp = objpp[i]; 3288 3289 slab = virt_to_slab(objp); 3290 list_del(&slab->slab_list); 3291 check_spinlock_acquired_node(cachep, node); 3292 slab_put_obj(cachep, slab, objp); 3293 STATS_DEC_ACTIVE(cachep); 3294 3295 /* fixup slab chains */ 3296 if (slab->active == 0) { 3297 list_add(&slab->slab_list, &n->slabs_free); 3298 n->free_slabs++; 3299 } else { 3300 /* Unconditionally move a slab to the end of the 3301 * partial list on free - maximum time for the 3302 * other objects to be freed, too. 3303 */ 3304 list_add_tail(&slab->slab_list, &n->slabs_partial); 3305 } 3306 } 3307 3308 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3309 n->free_objects -= cachep->num; 3310 3311 slab = list_last_entry(&n->slabs_free, struct slab, slab_list); 3312 list_move(&slab->slab_list, list); 3313 n->free_slabs--; 3314 n->total_slabs--; 3315 } 3316 } 3317 3318 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3319 { 3320 int batchcount; 3321 struct kmem_cache_node *n; 3322 int node = numa_mem_id(); 3323 LIST_HEAD(list); 3324 3325 batchcount = ac->batchcount; 3326 3327 check_irq_off(); 3328 n = get_node(cachep, node); 3329 raw_spin_lock(&n->list_lock); 3330 if (n->shared) { 3331 struct array_cache *shared_array = n->shared; 3332 int max = shared_array->limit - shared_array->avail; 3333 if (max) { 3334 if (batchcount > max) 3335 batchcount = max; 3336 memcpy(&(shared_array->entry[shared_array->avail]), 3337 ac->entry, sizeof(void *) * batchcount); 3338 shared_array->avail += batchcount; 3339 goto free_done; 3340 } 3341 } 3342 3343 free_block(cachep, ac->entry, batchcount, node, &list); 3344 free_done: 3345 #if STATS 3346 { 3347 int i = 0; 3348 struct slab *slab; 3349 3350 list_for_each_entry(slab, &n->slabs_free, slab_list) { 3351 BUG_ON(slab->active); 3352 3353 i++; 3354 } 3355 STATS_SET_FREEABLE(cachep, i); 3356 } 3357 #endif 3358 raw_spin_unlock(&n->list_lock); 3359 ac->avail -= batchcount; 3360 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3361 slabs_destroy(cachep, &list); 3362 } 3363 3364 /* 3365 * Release an obj back to its cache. If the obj has a constructed state, it must 3366 * be in this state _before_ it is released. Called with disabled ints. 3367 */ 3368 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3369 unsigned long caller) 3370 { 3371 bool init; 3372 3373 memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1); 3374 3375 if (is_kfence_address(objp)) { 3376 kmemleak_free_recursive(objp, cachep->flags); 3377 __kfence_free(objp); 3378 return; 3379 } 3380 3381 /* 3382 * As memory initialization might be integrated into KASAN, 3383 * kasan_slab_free and initialization memset must be 3384 * kept together to avoid discrepancies in behavior. 3385 */ 3386 init = slab_want_init_on_free(cachep); 3387 if (init && !kasan_has_integrated_init()) 3388 memset(objp, 0, cachep->object_size); 3389 /* KASAN might put objp into memory quarantine, delaying its reuse. */ 3390 if (kasan_slab_free(cachep, objp, init)) 3391 return; 3392 3393 /* Use KCSAN to help debug racy use-after-free. */ 3394 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 3395 __kcsan_check_access(objp, cachep->object_size, 3396 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 3397 3398 ___cache_free(cachep, objp, caller); 3399 } 3400 3401 void ___cache_free(struct kmem_cache *cachep, void *objp, 3402 unsigned long caller) 3403 { 3404 struct array_cache *ac = cpu_cache_get(cachep); 3405 3406 check_irq_off(); 3407 kmemleak_free_recursive(objp, cachep->flags); 3408 objp = cache_free_debugcheck(cachep, objp, caller); 3409 3410 /* 3411 * Skip calling cache_free_alien() when the platform is not numa. 3412 * This will avoid cache misses that happen while accessing slabp (which 3413 * is per page memory reference) to get nodeid. Instead use a global 3414 * variable to skip the call, which is mostly likely to be present in 3415 * the cache. 3416 */ 3417 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3418 return; 3419 3420 if (ac->avail < ac->limit) { 3421 STATS_INC_FREEHIT(cachep); 3422 } else { 3423 STATS_INC_FREEMISS(cachep); 3424 cache_flusharray(cachep, ac); 3425 } 3426 3427 if (sk_memalloc_socks()) { 3428 struct slab *slab = virt_to_slab(objp); 3429 3430 if (unlikely(slab_test_pfmemalloc(slab))) { 3431 cache_free_pfmemalloc(cachep, slab, objp); 3432 return; 3433 } 3434 } 3435 3436 __free_one(ac, objp); 3437 } 3438 3439 static __always_inline 3440 void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3441 gfp_t flags) 3442 { 3443 void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_); 3444 3445 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE); 3446 3447 return ret; 3448 } 3449 3450 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3451 { 3452 return __kmem_cache_alloc_lru(cachep, NULL, flags); 3453 } 3454 EXPORT_SYMBOL(kmem_cache_alloc); 3455 3456 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3457 gfp_t flags) 3458 { 3459 return __kmem_cache_alloc_lru(cachep, lru, flags); 3460 } 3461 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3462 3463 static __always_inline void 3464 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3465 size_t size, void **p, unsigned long caller) 3466 { 3467 size_t i; 3468 3469 for (i = 0; i < size; i++) 3470 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3471 } 3472 3473 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3474 void **p) 3475 { 3476 struct obj_cgroup *objcg = NULL; 3477 unsigned long irqflags; 3478 size_t i; 3479 3480 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3481 if (!s) 3482 return 0; 3483 3484 local_irq_save(irqflags); 3485 for (i = 0; i < size; i++) { 3486 void *objp = kfence_alloc(s, s->object_size, flags) ?: 3487 __do_cache_alloc(s, flags, NUMA_NO_NODE); 3488 3489 if (unlikely(!objp)) 3490 goto error; 3491 p[i] = objp; 3492 } 3493 local_irq_restore(irqflags); 3494 3495 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3496 3497 /* 3498 * memcg and kmem_cache debug support and memory initialization. 3499 * Done outside of the IRQ disabled section. 3500 */ 3501 slab_post_alloc_hook(s, objcg, flags, size, p, 3502 slab_want_init_on_alloc(flags, s), s->object_size); 3503 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3504 return size; 3505 error: 3506 local_irq_restore(irqflags); 3507 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3508 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 3509 kmem_cache_free_bulk(s, i, p); 3510 return 0; 3511 } 3512 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3513 3514 /** 3515 * kmem_cache_alloc_node - Allocate an object on the specified node 3516 * @cachep: The cache to allocate from. 3517 * @flags: See kmalloc(). 3518 * @nodeid: node number of the target node. 3519 * 3520 * Identical to kmem_cache_alloc but it will allocate memory on the given 3521 * node, which can improve the performance for cpu bound structures. 3522 * 3523 * Fallback to other node is possible if __GFP_THISNODE is not set. 3524 * 3525 * Return: pointer to the new object or %NULL in case of error 3526 */ 3527 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3528 { 3529 void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_); 3530 3531 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid); 3532 3533 return ret; 3534 } 3535 EXPORT_SYMBOL(kmem_cache_alloc_node); 3536 3537 void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3538 int nodeid, size_t orig_size, 3539 unsigned long caller) 3540 { 3541 return slab_alloc_node(cachep, NULL, flags, nodeid, 3542 orig_size, caller); 3543 } 3544 3545 #ifdef CONFIG_PRINTK 3546 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 3547 { 3548 struct kmem_cache *cachep; 3549 unsigned int objnr; 3550 void *objp; 3551 3552 kpp->kp_ptr = object; 3553 kpp->kp_slab = slab; 3554 cachep = slab->slab_cache; 3555 kpp->kp_slab_cache = cachep; 3556 objp = object - obj_offset(cachep); 3557 kpp->kp_data_offset = obj_offset(cachep); 3558 slab = virt_to_slab(objp); 3559 objnr = obj_to_index(cachep, slab, objp); 3560 objp = index_to_obj(cachep, slab, objnr); 3561 kpp->kp_objp = objp; 3562 if (DEBUG && cachep->flags & SLAB_STORE_USER) 3563 kpp->kp_ret = *dbg_userword(cachep, objp); 3564 } 3565 #endif 3566 3567 static __always_inline 3568 void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp, 3569 unsigned long caller) 3570 { 3571 unsigned long flags; 3572 3573 local_irq_save(flags); 3574 debug_check_no_locks_freed(objp, cachep->object_size); 3575 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3576 debug_check_no_obj_freed(objp, cachep->object_size); 3577 __cache_free(cachep, objp, caller); 3578 local_irq_restore(flags); 3579 } 3580 3581 void __kmem_cache_free(struct kmem_cache *cachep, void *objp, 3582 unsigned long caller) 3583 { 3584 __do_kmem_cache_free(cachep, objp, caller); 3585 } 3586 3587 /** 3588 * kmem_cache_free - Deallocate an object 3589 * @cachep: The cache the allocation was from. 3590 * @objp: The previously allocated object. 3591 * 3592 * Free an object which was previously allocated from this 3593 * cache. 3594 */ 3595 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3596 { 3597 cachep = cache_from_obj(cachep, objp); 3598 if (!cachep) 3599 return; 3600 3601 trace_kmem_cache_free(_RET_IP_, objp, cachep); 3602 __do_kmem_cache_free(cachep, objp, _RET_IP_); 3603 } 3604 EXPORT_SYMBOL(kmem_cache_free); 3605 3606 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3607 { 3608 unsigned long flags; 3609 3610 local_irq_save(flags); 3611 for (int i = 0; i < size; i++) { 3612 void *objp = p[i]; 3613 struct kmem_cache *s; 3614 3615 if (!orig_s) { 3616 struct folio *folio = virt_to_folio(objp); 3617 3618 /* called via kfree_bulk */ 3619 if (!folio_test_slab(folio)) { 3620 local_irq_restore(flags); 3621 free_large_kmalloc(folio, objp); 3622 local_irq_save(flags); 3623 continue; 3624 } 3625 s = folio_slab(folio)->slab_cache; 3626 } else { 3627 s = cache_from_obj(orig_s, objp); 3628 } 3629 3630 if (!s) 3631 continue; 3632 3633 debug_check_no_locks_freed(objp, s->object_size); 3634 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3635 debug_check_no_obj_freed(objp, s->object_size); 3636 3637 __cache_free(s, objp, _RET_IP_); 3638 } 3639 local_irq_restore(flags); 3640 3641 /* FIXME: add tracing */ 3642 } 3643 EXPORT_SYMBOL(kmem_cache_free_bulk); 3644 3645 /* 3646 * This initializes kmem_cache_node or resizes various caches for all nodes. 3647 */ 3648 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3649 { 3650 int ret; 3651 int node; 3652 struct kmem_cache_node *n; 3653 3654 for_each_online_node(node) { 3655 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3656 if (ret) 3657 goto fail; 3658 3659 } 3660 3661 return 0; 3662 3663 fail: 3664 if (!cachep->list.next) { 3665 /* Cache is not active yet. Roll back what we did */ 3666 node--; 3667 while (node >= 0) { 3668 n = get_node(cachep, node); 3669 if (n) { 3670 kfree(n->shared); 3671 free_alien_cache(n->alien); 3672 kfree(n); 3673 cachep->node[node] = NULL; 3674 } 3675 node--; 3676 } 3677 } 3678 return -ENOMEM; 3679 } 3680 3681 /* Always called with the slab_mutex held */ 3682 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3683 int batchcount, int shared, gfp_t gfp) 3684 { 3685 struct array_cache __percpu *cpu_cache, *prev; 3686 int cpu; 3687 3688 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3689 if (!cpu_cache) 3690 return -ENOMEM; 3691 3692 prev = cachep->cpu_cache; 3693 cachep->cpu_cache = cpu_cache; 3694 /* 3695 * Without a previous cpu_cache there's no need to synchronize remote 3696 * cpus, so skip the IPIs. 3697 */ 3698 if (prev) 3699 kick_all_cpus_sync(); 3700 3701 check_irq_on(); 3702 cachep->batchcount = batchcount; 3703 cachep->limit = limit; 3704 cachep->shared = shared; 3705 3706 if (!prev) 3707 goto setup_node; 3708 3709 for_each_online_cpu(cpu) { 3710 LIST_HEAD(list); 3711 int node; 3712 struct kmem_cache_node *n; 3713 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3714 3715 node = cpu_to_mem(cpu); 3716 n = get_node(cachep, node); 3717 raw_spin_lock_irq(&n->list_lock); 3718 free_block(cachep, ac->entry, ac->avail, node, &list); 3719 raw_spin_unlock_irq(&n->list_lock); 3720 slabs_destroy(cachep, &list); 3721 } 3722 free_percpu(prev); 3723 3724 setup_node: 3725 return setup_kmem_cache_nodes(cachep, gfp); 3726 } 3727 3728 /* Called with slab_mutex held always */ 3729 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3730 { 3731 int err; 3732 int limit = 0; 3733 int shared = 0; 3734 int batchcount = 0; 3735 3736 err = cache_random_seq_create(cachep, cachep->num, gfp); 3737 if (err) 3738 goto end; 3739 3740 /* 3741 * The head array serves three purposes: 3742 * - create a LIFO ordering, i.e. return objects that are cache-warm 3743 * - reduce the number of spinlock operations. 3744 * - reduce the number of linked list operations on the slab and 3745 * bufctl chains: array operations are cheaper. 3746 * The numbers are guessed, we should auto-tune as described by 3747 * Bonwick. 3748 */ 3749 if (cachep->size > 131072) 3750 limit = 1; 3751 else if (cachep->size > PAGE_SIZE) 3752 limit = 8; 3753 else if (cachep->size > 1024) 3754 limit = 24; 3755 else if (cachep->size > 256) 3756 limit = 54; 3757 else 3758 limit = 120; 3759 3760 /* 3761 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3762 * allocation behaviour: Most allocs on one cpu, most free operations 3763 * on another cpu. For these cases, an efficient object passing between 3764 * cpus is necessary. This is provided by a shared array. The array 3765 * replaces Bonwick's magazine layer. 3766 * On uniprocessor, it's functionally equivalent (but less efficient) 3767 * to a larger limit. Thus disabled by default. 3768 */ 3769 shared = 0; 3770 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3771 shared = 8; 3772 3773 #if DEBUG 3774 /* 3775 * With debugging enabled, large batchcount lead to excessively long 3776 * periods with disabled local interrupts. Limit the batchcount 3777 */ 3778 if (limit > 32) 3779 limit = 32; 3780 #endif 3781 batchcount = (limit + 1) / 2; 3782 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3783 end: 3784 if (err) 3785 pr_err("enable_cpucache failed for %s, error %d\n", 3786 cachep->name, -err); 3787 return err; 3788 } 3789 3790 /* 3791 * Drain an array if it contains any elements taking the node lock only if 3792 * necessary. Note that the node listlock also protects the array_cache 3793 * if drain_array() is used on the shared array. 3794 */ 3795 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3796 struct array_cache *ac, int node) 3797 { 3798 LIST_HEAD(list); 3799 3800 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3801 check_mutex_acquired(); 3802 3803 if (!ac || !ac->avail) 3804 return; 3805 3806 if (ac->touched) { 3807 ac->touched = 0; 3808 return; 3809 } 3810 3811 raw_spin_lock_irq(&n->list_lock); 3812 drain_array_locked(cachep, ac, node, false, &list); 3813 raw_spin_unlock_irq(&n->list_lock); 3814 3815 slabs_destroy(cachep, &list); 3816 } 3817 3818 /** 3819 * cache_reap - Reclaim memory from caches. 3820 * @w: work descriptor 3821 * 3822 * Called from workqueue/eventd every few seconds. 3823 * Purpose: 3824 * - clear the per-cpu caches for this CPU. 3825 * - return freeable pages to the main free memory pool. 3826 * 3827 * If we cannot acquire the cache chain mutex then just give up - we'll try 3828 * again on the next iteration. 3829 */ 3830 static void cache_reap(struct work_struct *w) 3831 { 3832 struct kmem_cache *searchp; 3833 struct kmem_cache_node *n; 3834 int node = numa_mem_id(); 3835 struct delayed_work *work = to_delayed_work(w); 3836 3837 if (!mutex_trylock(&slab_mutex)) 3838 /* Give up. Setup the next iteration. */ 3839 goto out; 3840 3841 list_for_each_entry(searchp, &slab_caches, list) { 3842 check_irq_on(); 3843 3844 /* 3845 * We only take the node lock if absolutely necessary and we 3846 * have established with reasonable certainty that 3847 * we can do some work if the lock was obtained. 3848 */ 3849 n = get_node(searchp, node); 3850 3851 reap_alien(searchp, n); 3852 3853 drain_array(searchp, n, cpu_cache_get(searchp), node); 3854 3855 /* 3856 * These are racy checks but it does not matter 3857 * if we skip one check or scan twice. 3858 */ 3859 if (time_after(n->next_reap, jiffies)) 3860 goto next; 3861 3862 n->next_reap = jiffies + REAPTIMEOUT_NODE; 3863 3864 drain_array(searchp, n, n->shared, node); 3865 3866 if (n->free_touched) 3867 n->free_touched = 0; 3868 else { 3869 int freed; 3870 3871 freed = drain_freelist(searchp, n, (n->free_limit + 3872 5 * searchp->num - 1) / (5 * searchp->num)); 3873 STATS_ADD_REAPED(searchp, freed); 3874 } 3875 next: 3876 cond_resched(); 3877 } 3878 check_irq_on(); 3879 mutex_unlock(&slab_mutex); 3880 next_reap_node(); 3881 out: 3882 /* Set up the next iteration */ 3883 schedule_delayed_work_on(smp_processor_id(), work, 3884 round_jiffies_relative(REAPTIMEOUT_AC)); 3885 } 3886 3887 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 3888 { 3889 unsigned long active_objs, num_objs, active_slabs; 3890 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 3891 unsigned long free_slabs = 0; 3892 int node; 3893 struct kmem_cache_node *n; 3894 3895 for_each_kmem_cache_node(cachep, node, n) { 3896 check_irq_on(); 3897 raw_spin_lock_irq(&n->list_lock); 3898 3899 total_slabs += n->total_slabs; 3900 free_slabs += n->free_slabs; 3901 free_objs += n->free_objects; 3902 3903 if (n->shared) 3904 shared_avail += n->shared->avail; 3905 3906 raw_spin_unlock_irq(&n->list_lock); 3907 } 3908 num_objs = total_slabs * cachep->num; 3909 active_slabs = total_slabs - free_slabs; 3910 active_objs = num_objs - free_objs; 3911 3912 sinfo->active_objs = active_objs; 3913 sinfo->num_objs = num_objs; 3914 sinfo->active_slabs = active_slabs; 3915 sinfo->num_slabs = total_slabs; 3916 sinfo->shared_avail = shared_avail; 3917 sinfo->limit = cachep->limit; 3918 sinfo->batchcount = cachep->batchcount; 3919 sinfo->shared = cachep->shared; 3920 sinfo->objects_per_slab = cachep->num; 3921 sinfo->cache_order = cachep->gfporder; 3922 } 3923 3924 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 3925 { 3926 #if STATS 3927 { /* node stats */ 3928 unsigned long high = cachep->high_mark; 3929 unsigned long allocs = cachep->num_allocations; 3930 unsigned long grown = cachep->grown; 3931 unsigned long reaped = cachep->reaped; 3932 unsigned long errors = cachep->errors; 3933 unsigned long max_freeable = cachep->max_freeable; 3934 unsigned long node_allocs = cachep->node_allocs; 3935 unsigned long node_frees = cachep->node_frees; 3936 unsigned long overflows = cachep->node_overflow; 3937 3938 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 3939 allocs, high, grown, 3940 reaped, errors, max_freeable, node_allocs, 3941 node_frees, overflows); 3942 } 3943 /* cpu stats */ 3944 { 3945 unsigned long allochit = atomic_read(&cachep->allochit); 3946 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 3947 unsigned long freehit = atomic_read(&cachep->freehit); 3948 unsigned long freemiss = atomic_read(&cachep->freemiss); 3949 3950 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 3951 allochit, allocmiss, freehit, freemiss); 3952 } 3953 #endif 3954 } 3955 3956 #define MAX_SLABINFO_WRITE 128 3957 /** 3958 * slabinfo_write - Tuning for the slab allocator 3959 * @file: unused 3960 * @buffer: user buffer 3961 * @count: data length 3962 * @ppos: unused 3963 * 3964 * Return: %0 on success, negative error code otherwise. 3965 */ 3966 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 3967 size_t count, loff_t *ppos) 3968 { 3969 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 3970 int limit, batchcount, shared, res; 3971 struct kmem_cache *cachep; 3972 3973 if (count > MAX_SLABINFO_WRITE) 3974 return -EINVAL; 3975 if (copy_from_user(&kbuf, buffer, count)) 3976 return -EFAULT; 3977 kbuf[MAX_SLABINFO_WRITE] = '\0'; 3978 3979 tmp = strchr(kbuf, ' '); 3980 if (!tmp) 3981 return -EINVAL; 3982 *tmp = '\0'; 3983 tmp++; 3984 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 3985 return -EINVAL; 3986 3987 /* Find the cache in the chain of caches. */ 3988 mutex_lock(&slab_mutex); 3989 res = -EINVAL; 3990 list_for_each_entry(cachep, &slab_caches, list) { 3991 if (!strcmp(cachep->name, kbuf)) { 3992 if (limit < 1 || batchcount < 1 || 3993 batchcount > limit || shared < 0) { 3994 res = 0; 3995 } else { 3996 res = do_tune_cpucache(cachep, limit, 3997 batchcount, shared, 3998 GFP_KERNEL); 3999 } 4000 break; 4001 } 4002 } 4003 mutex_unlock(&slab_mutex); 4004 if (res >= 0) 4005 res = count; 4006 return res; 4007 } 4008 4009 #ifdef CONFIG_HARDENED_USERCOPY 4010 /* 4011 * Rejects incorrectly sized objects and objects that are to be copied 4012 * to/from userspace but do not fall entirely within the containing slab 4013 * cache's usercopy region. 4014 * 4015 * Returns NULL if check passes, otherwise const char * to name of cache 4016 * to indicate an error. 4017 */ 4018 void __check_heap_object(const void *ptr, unsigned long n, 4019 const struct slab *slab, bool to_user) 4020 { 4021 struct kmem_cache *cachep; 4022 unsigned int objnr; 4023 unsigned long offset; 4024 4025 ptr = kasan_reset_tag(ptr); 4026 4027 /* Find and validate object. */ 4028 cachep = slab->slab_cache; 4029 objnr = obj_to_index(cachep, slab, (void *)ptr); 4030 BUG_ON(objnr >= cachep->num); 4031 4032 /* Find offset within object. */ 4033 if (is_kfence_address(ptr)) 4034 offset = ptr - kfence_object_start(ptr); 4035 else 4036 offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep); 4037 4038 /* Allow address range falling entirely within usercopy region. */ 4039 if (offset >= cachep->useroffset && 4040 offset - cachep->useroffset <= cachep->usersize && 4041 n <= cachep->useroffset - offset + cachep->usersize) 4042 return; 4043 4044 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4045 } 4046 #endif /* CONFIG_HARDENED_USERCOPY */ 4047