1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/cpu.h> 104 #include <linux/sysctl.h> 105 #include <linux/module.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 #ifdef CONFIG_DEBUG_SLAB_LEAK 366 367 static inline bool is_store_user_clean(struct kmem_cache *cachep) 368 { 369 return atomic_read(&cachep->store_user_clean) == 1; 370 } 371 372 static inline void set_store_user_clean(struct kmem_cache *cachep) 373 { 374 atomic_set(&cachep->store_user_clean, 1); 375 } 376 377 static inline void set_store_user_dirty(struct kmem_cache *cachep) 378 { 379 if (is_store_user_clean(cachep)) 380 atomic_set(&cachep->store_user_clean, 0); 381 } 382 383 #else 384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {} 385 386 #endif 387 388 /* 389 * Do not go above this order unless 0 objects fit into the slab or 390 * overridden on the command line. 391 */ 392 #define SLAB_MAX_ORDER_HI 1 393 #define SLAB_MAX_ORDER_LO 0 394 static int slab_max_order = SLAB_MAX_ORDER_LO; 395 static bool slab_max_order_set __initdata; 396 397 static inline struct kmem_cache *virt_to_cache(const void *obj) 398 { 399 struct page *page = virt_to_head_page(obj); 400 return page->slab_cache; 401 } 402 403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 404 unsigned int idx) 405 { 406 return page->s_mem + cache->size * idx; 407 } 408 409 #define BOOT_CPUCACHE_ENTRIES 1 410 /* internal cache of cache description objs */ 411 static struct kmem_cache kmem_cache_boot = { 412 .batchcount = 1, 413 .limit = BOOT_CPUCACHE_ENTRIES, 414 .shared = 1, 415 .size = sizeof(struct kmem_cache), 416 .name = "kmem_cache", 417 }; 418 419 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 420 421 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 422 { 423 return this_cpu_ptr(cachep->cpu_cache); 424 } 425 426 /* 427 * Calculate the number of objects and left-over bytes for a given buffer size. 428 */ 429 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 430 slab_flags_t flags, size_t *left_over) 431 { 432 unsigned int num; 433 size_t slab_size = PAGE_SIZE << gfporder; 434 435 /* 436 * The slab management structure can be either off the slab or 437 * on it. For the latter case, the memory allocated for a 438 * slab is used for: 439 * 440 * - @buffer_size bytes for each object 441 * - One freelist_idx_t for each object 442 * 443 * We don't need to consider alignment of freelist because 444 * freelist will be at the end of slab page. The objects will be 445 * at the correct alignment. 446 * 447 * If the slab management structure is off the slab, then the 448 * alignment will already be calculated into the size. Because 449 * the slabs are all pages aligned, the objects will be at the 450 * correct alignment when allocated. 451 */ 452 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 453 num = slab_size / buffer_size; 454 *left_over = slab_size % buffer_size; 455 } else { 456 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 457 *left_over = slab_size % 458 (buffer_size + sizeof(freelist_idx_t)); 459 } 460 461 return num; 462 } 463 464 #if DEBUG 465 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 466 467 static void __slab_error(const char *function, struct kmem_cache *cachep, 468 char *msg) 469 { 470 pr_err("slab error in %s(): cache `%s': %s\n", 471 function, cachep->name, msg); 472 dump_stack(); 473 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 474 } 475 #endif 476 477 /* 478 * By default on NUMA we use alien caches to stage the freeing of 479 * objects allocated from other nodes. This causes massive memory 480 * inefficiencies when using fake NUMA setup to split memory into a 481 * large number of small nodes, so it can be disabled on the command 482 * line 483 */ 484 485 static int use_alien_caches __read_mostly = 1; 486 static int __init noaliencache_setup(char *s) 487 { 488 use_alien_caches = 0; 489 return 1; 490 } 491 __setup("noaliencache", noaliencache_setup); 492 493 static int __init slab_max_order_setup(char *str) 494 { 495 get_option(&str, &slab_max_order); 496 slab_max_order = slab_max_order < 0 ? 0 : 497 min(slab_max_order, MAX_ORDER - 1); 498 slab_max_order_set = true; 499 500 return 1; 501 } 502 __setup("slab_max_order=", slab_max_order_setup); 503 504 #ifdef CONFIG_NUMA 505 /* 506 * Special reaping functions for NUMA systems called from cache_reap(). 507 * These take care of doing round robin flushing of alien caches (containing 508 * objects freed on different nodes from which they were allocated) and the 509 * flushing of remote pcps by calling drain_node_pages. 510 */ 511 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 512 513 static void init_reap_node(int cpu) 514 { 515 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 516 node_online_map); 517 } 518 519 static void next_reap_node(void) 520 { 521 int node = __this_cpu_read(slab_reap_node); 522 523 node = next_node_in(node, node_online_map); 524 __this_cpu_write(slab_reap_node, node); 525 } 526 527 #else 528 #define init_reap_node(cpu) do { } while (0) 529 #define next_reap_node(void) do { } while (0) 530 #endif 531 532 /* 533 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 534 * via the workqueue/eventd. 535 * Add the CPU number into the expiration time to minimize the possibility of 536 * the CPUs getting into lockstep and contending for the global cache chain 537 * lock. 538 */ 539 static void start_cpu_timer(int cpu) 540 { 541 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 542 543 if (reap_work->work.func == NULL) { 544 init_reap_node(cpu); 545 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 546 schedule_delayed_work_on(cpu, reap_work, 547 __round_jiffies_relative(HZ, cpu)); 548 } 549 } 550 551 static void init_arraycache(struct array_cache *ac, int limit, int batch) 552 { 553 if (ac) { 554 ac->avail = 0; 555 ac->limit = limit; 556 ac->batchcount = batch; 557 ac->touched = 0; 558 } 559 } 560 561 static struct array_cache *alloc_arraycache(int node, int entries, 562 int batchcount, gfp_t gfp) 563 { 564 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 565 struct array_cache *ac = NULL; 566 567 ac = kmalloc_node(memsize, gfp, node); 568 /* 569 * The array_cache structures contain pointers to free object. 570 * However, when such objects are allocated or transferred to another 571 * cache the pointers are not cleared and they could be counted as 572 * valid references during a kmemleak scan. Therefore, kmemleak must 573 * not scan such objects. 574 */ 575 kmemleak_no_scan(ac); 576 init_arraycache(ac, entries, batchcount); 577 return ac; 578 } 579 580 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 581 struct page *page, void *objp) 582 { 583 struct kmem_cache_node *n; 584 int page_node; 585 LIST_HEAD(list); 586 587 page_node = page_to_nid(page); 588 n = get_node(cachep, page_node); 589 590 spin_lock(&n->list_lock); 591 free_block(cachep, &objp, 1, page_node, &list); 592 spin_unlock(&n->list_lock); 593 594 slabs_destroy(cachep, &list); 595 } 596 597 /* 598 * Transfer objects in one arraycache to another. 599 * Locking must be handled by the caller. 600 * 601 * Return the number of entries transferred. 602 */ 603 static int transfer_objects(struct array_cache *to, 604 struct array_cache *from, unsigned int max) 605 { 606 /* Figure out how many entries to transfer */ 607 int nr = min3(from->avail, max, to->limit - to->avail); 608 609 if (!nr) 610 return 0; 611 612 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 613 sizeof(void *) *nr); 614 615 from->avail -= nr; 616 to->avail += nr; 617 return nr; 618 } 619 620 #ifndef CONFIG_NUMA 621 622 #define drain_alien_cache(cachep, alien) do { } while (0) 623 #define reap_alien(cachep, n) do { } while (0) 624 625 static inline struct alien_cache **alloc_alien_cache(int node, 626 int limit, gfp_t gfp) 627 { 628 return NULL; 629 } 630 631 static inline void free_alien_cache(struct alien_cache **ac_ptr) 632 { 633 } 634 635 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 636 { 637 return 0; 638 } 639 640 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 641 gfp_t flags) 642 { 643 return NULL; 644 } 645 646 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 647 gfp_t flags, int nodeid) 648 { 649 return NULL; 650 } 651 652 static inline gfp_t gfp_exact_node(gfp_t flags) 653 { 654 return flags & ~__GFP_NOFAIL; 655 } 656 657 #else /* CONFIG_NUMA */ 658 659 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 660 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 661 662 static struct alien_cache *__alloc_alien_cache(int node, int entries, 663 int batch, gfp_t gfp) 664 { 665 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 666 struct alien_cache *alc = NULL; 667 668 alc = kmalloc_node(memsize, gfp, node); 669 if (alc) { 670 kmemleak_no_scan(alc); 671 init_arraycache(&alc->ac, entries, batch); 672 spin_lock_init(&alc->lock); 673 } 674 return alc; 675 } 676 677 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 678 { 679 struct alien_cache **alc_ptr; 680 int i; 681 682 if (limit > 1) 683 limit = 12; 684 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 685 if (!alc_ptr) 686 return NULL; 687 688 for_each_node(i) { 689 if (i == node || !node_online(i)) 690 continue; 691 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 692 if (!alc_ptr[i]) { 693 for (i--; i >= 0; i--) 694 kfree(alc_ptr[i]); 695 kfree(alc_ptr); 696 return NULL; 697 } 698 } 699 return alc_ptr; 700 } 701 702 static void free_alien_cache(struct alien_cache **alc_ptr) 703 { 704 int i; 705 706 if (!alc_ptr) 707 return; 708 for_each_node(i) 709 kfree(alc_ptr[i]); 710 kfree(alc_ptr); 711 } 712 713 static void __drain_alien_cache(struct kmem_cache *cachep, 714 struct array_cache *ac, int node, 715 struct list_head *list) 716 { 717 struct kmem_cache_node *n = get_node(cachep, node); 718 719 if (ac->avail) { 720 spin_lock(&n->list_lock); 721 /* 722 * Stuff objects into the remote nodes shared array first. 723 * That way we could avoid the overhead of putting the objects 724 * into the free lists and getting them back later. 725 */ 726 if (n->shared) 727 transfer_objects(n->shared, ac, ac->limit); 728 729 free_block(cachep, ac->entry, ac->avail, node, list); 730 ac->avail = 0; 731 spin_unlock(&n->list_lock); 732 } 733 } 734 735 /* 736 * Called from cache_reap() to regularly drain alien caches round robin. 737 */ 738 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 739 { 740 int node = __this_cpu_read(slab_reap_node); 741 742 if (n->alien) { 743 struct alien_cache *alc = n->alien[node]; 744 struct array_cache *ac; 745 746 if (alc) { 747 ac = &alc->ac; 748 if (ac->avail && spin_trylock_irq(&alc->lock)) { 749 LIST_HEAD(list); 750 751 __drain_alien_cache(cachep, ac, node, &list); 752 spin_unlock_irq(&alc->lock); 753 slabs_destroy(cachep, &list); 754 } 755 } 756 } 757 } 758 759 static void drain_alien_cache(struct kmem_cache *cachep, 760 struct alien_cache **alien) 761 { 762 int i = 0; 763 struct alien_cache *alc; 764 struct array_cache *ac; 765 unsigned long flags; 766 767 for_each_online_node(i) { 768 alc = alien[i]; 769 if (alc) { 770 LIST_HEAD(list); 771 772 ac = &alc->ac; 773 spin_lock_irqsave(&alc->lock, flags); 774 __drain_alien_cache(cachep, ac, i, &list); 775 spin_unlock_irqrestore(&alc->lock, flags); 776 slabs_destroy(cachep, &list); 777 } 778 } 779 } 780 781 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 782 int node, int page_node) 783 { 784 struct kmem_cache_node *n; 785 struct alien_cache *alien = NULL; 786 struct array_cache *ac; 787 LIST_HEAD(list); 788 789 n = get_node(cachep, node); 790 STATS_INC_NODEFREES(cachep); 791 if (n->alien && n->alien[page_node]) { 792 alien = n->alien[page_node]; 793 ac = &alien->ac; 794 spin_lock(&alien->lock); 795 if (unlikely(ac->avail == ac->limit)) { 796 STATS_INC_ACOVERFLOW(cachep); 797 __drain_alien_cache(cachep, ac, page_node, &list); 798 } 799 ac->entry[ac->avail++] = objp; 800 spin_unlock(&alien->lock); 801 slabs_destroy(cachep, &list); 802 } else { 803 n = get_node(cachep, page_node); 804 spin_lock(&n->list_lock); 805 free_block(cachep, &objp, 1, page_node, &list); 806 spin_unlock(&n->list_lock); 807 slabs_destroy(cachep, &list); 808 } 809 return 1; 810 } 811 812 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 813 { 814 int page_node = page_to_nid(virt_to_page(objp)); 815 int node = numa_mem_id(); 816 /* 817 * Make sure we are not freeing a object from another node to the array 818 * cache on this cpu. 819 */ 820 if (likely(node == page_node)) 821 return 0; 822 823 return __cache_free_alien(cachep, objp, node, page_node); 824 } 825 826 /* 827 * Construct gfp mask to allocate from a specific node but do not reclaim or 828 * warn about failures. 829 */ 830 static inline gfp_t gfp_exact_node(gfp_t flags) 831 { 832 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 833 } 834 #endif 835 836 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 837 { 838 struct kmem_cache_node *n; 839 840 /* 841 * Set up the kmem_cache_node for cpu before we can 842 * begin anything. Make sure some other cpu on this 843 * node has not already allocated this 844 */ 845 n = get_node(cachep, node); 846 if (n) { 847 spin_lock_irq(&n->list_lock); 848 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 849 cachep->num; 850 spin_unlock_irq(&n->list_lock); 851 852 return 0; 853 } 854 855 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 856 if (!n) 857 return -ENOMEM; 858 859 kmem_cache_node_init(n); 860 n->next_reap = jiffies + REAPTIMEOUT_NODE + 861 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 862 863 n->free_limit = 864 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 865 866 /* 867 * The kmem_cache_nodes don't come and go as CPUs 868 * come and go. slab_mutex is sufficient 869 * protection here. 870 */ 871 cachep->node[node] = n; 872 873 return 0; 874 } 875 876 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 877 /* 878 * Allocates and initializes node for a node on each slab cache, used for 879 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 880 * will be allocated off-node since memory is not yet online for the new node. 881 * When hotplugging memory or a cpu, existing node are not replaced if 882 * already in use. 883 * 884 * Must hold slab_mutex. 885 */ 886 static int init_cache_node_node(int node) 887 { 888 int ret; 889 struct kmem_cache *cachep; 890 891 list_for_each_entry(cachep, &slab_caches, list) { 892 ret = init_cache_node(cachep, node, GFP_KERNEL); 893 if (ret) 894 return ret; 895 } 896 897 return 0; 898 } 899 #endif 900 901 static int setup_kmem_cache_node(struct kmem_cache *cachep, 902 int node, gfp_t gfp, bool force_change) 903 { 904 int ret = -ENOMEM; 905 struct kmem_cache_node *n; 906 struct array_cache *old_shared = NULL; 907 struct array_cache *new_shared = NULL; 908 struct alien_cache **new_alien = NULL; 909 LIST_HEAD(list); 910 911 if (use_alien_caches) { 912 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 913 if (!new_alien) 914 goto fail; 915 } 916 917 if (cachep->shared) { 918 new_shared = alloc_arraycache(node, 919 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 920 if (!new_shared) 921 goto fail; 922 } 923 924 ret = init_cache_node(cachep, node, gfp); 925 if (ret) 926 goto fail; 927 928 n = get_node(cachep, node); 929 spin_lock_irq(&n->list_lock); 930 if (n->shared && force_change) { 931 free_block(cachep, n->shared->entry, 932 n->shared->avail, node, &list); 933 n->shared->avail = 0; 934 } 935 936 if (!n->shared || force_change) { 937 old_shared = n->shared; 938 n->shared = new_shared; 939 new_shared = NULL; 940 } 941 942 if (!n->alien) { 943 n->alien = new_alien; 944 new_alien = NULL; 945 } 946 947 spin_unlock_irq(&n->list_lock); 948 slabs_destroy(cachep, &list); 949 950 /* 951 * To protect lockless access to n->shared during irq disabled context. 952 * If n->shared isn't NULL in irq disabled context, accessing to it is 953 * guaranteed to be valid until irq is re-enabled, because it will be 954 * freed after synchronize_rcu(). 955 */ 956 if (old_shared && force_change) 957 synchronize_rcu(); 958 959 fail: 960 kfree(old_shared); 961 kfree(new_shared); 962 free_alien_cache(new_alien); 963 964 return ret; 965 } 966 967 #ifdef CONFIG_SMP 968 969 static void cpuup_canceled(long cpu) 970 { 971 struct kmem_cache *cachep; 972 struct kmem_cache_node *n = NULL; 973 int node = cpu_to_mem(cpu); 974 const struct cpumask *mask = cpumask_of_node(node); 975 976 list_for_each_entry(cachep, &slab_caches, list) { 977 struct array_cache *nc; 978 struct array_cache *shared; 979 struct alien_cache **alien; 980 LIST_HEAD(list); 981 982 n = get_node(cachep, node); 983 if (!n) 984 continue; 985 986 spin_lock_irq(&n->list_lock); 987 988 /* Free limit for this kmem_cache_node */ 989 n->free_limit -= cachep->batchcount; 990 991 /* cpu is dead; no one can alloc from it. */ 992 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 993 free_block(cachep, nc->entry, nc->avail, node, &list); 994 nc->avail = 0; 995 996 if (!cpumask_empty(mask)) { 997 spin_unlock_irq(&n->list_lock); 998 goto free_slab; 999 } 1000 1001 shared = n->shared; 1002 if (shared) { 1003 free_block(cachep, shared->entry, 1004 shared->avail, node, &list); 1005 n->shared = NULL; 1006 } 1007 1008 alien = n->alien; 1009 n->alien = NULL; 1010 1011 spin_unlock_irq(&n->list_lock); 1012 1013 kfree(shared); 1014 if (alien) { 1015 drain_alien_cache(cachep, alien); 1016 free_alien_cache(alien); 1017 } 1018 1019 free_slab: 1020 slabs_destroy(cachep, &list); 1021 } 1022 /* 1023 * In the previous loop, all the objects were freed to 1024 * the respective cache's slabs, now we can go ahead and 1025 * shrink each nodelist to its limit. 1026 */ 1027 list_for_each_entry(cachep, &slab_caches, list) { 1028 n = get_node(cachep, node); 1029 if (!n) 1030 continue; 1031 drain_freelist(cachep, n, INT_MAX); 1032 } 1033 } 1034 1035 static int cpuup_prepare(long cpu) 1036 { 1037 struct kmem_cache *cachep; 1038 int node = cpu_to_mem(cpu); 1039 int err; 1040 1041 /* 1042 * We need to do this right in the beginning since 1043 * alloc_arraycache's are going to use this list. 1044 * kmalloc_node allows us to add the slab to the right 1045 * kmem_cache_node and not this cpu's kmem_cache_node 1046 */ 1047 err = init_cache_node_node(node); 1048 if (err < 0) 1049 goto bad; 1050 1051 /* 1052 * Now we can go ahead with allocating the shared arrays and 1053 * array caches 1054 */ 1055 list_for_each_entry(cachep, &slab_caches, list) { 1056 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1057 if (err) 1058 goto bad; 1059 } 1060 1061 return 0; 1062 bad: 1063 cpuup_canceled(cpu); 1064 return -ENOMEM; 1065 } 1066 1067 int slab_prepare_cpu(unsigned int cpu) 1068 { 1069 int err; 1070 1071 mutex_lock(&slab_mutex); 1072 err = cpuup_prepare(cpu); 1073 mutex_unlock(&slab_mutex); 1074 return err; 1075 } 1076 1077 /* 1078 * This is called for a failed online attempt and for a successful 1079 * offline. 1080 * 1081 * Even if all the cpus of a node are down, we don't free the 1082 * kmem_list3 of any cache. This to avoid a race between cpu_down, and 1083 * a kmalloc allocation from another cpu for memory from the node of 1084 * the cpu going down. The list3 structure is usually allocated from 1085 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1086 */ 1087 int slab_dead_cpu(unsigned int cpu) 1088 { 1089 mutex_lock(&slab_mutex); 1090 cpuup_canceled(cpu); 1091 mutex_unlock(&slab_mutex); 1092 return 0; 1093 } 1094 #endif 1095 1096 static int slab_online_cpu(unsigned int cpu) 1097 { 1098 start_cpu_timer(cpu); 1099 return 0; 1100 } 1101 1102 static int slab_offline_cpu(unsigned int cpu) 1103 { 1104 /* 1105 * Shutdown cache reaper. Note that the slab_mutex is held so 1106 * that if cache_reap() is invoked it cannot do anything 1107 * expensive but will only modify reap_work and reschedule the 1108 * timer. 1109 */ 1110 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1111 /* Now the cache_reaper is guaranteed to be not running. */ 1112 per_cpu(slab_reap_work, cpu).work.func = NULL; 1113 return 0; 1114 } 1115 1116 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1117 /* 1118 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1119 * Returns -EBUSY if all objects cannot be drained so that the node is not 1120 * removed. 1121 * 1122 * Must hold slab_mutex. 1123 */ 1124 static int __meminit drain_cache_node_node(int node) 1125 { 1126 struct kmem_cache *cachep; 1127 int ret = 0; 1128 1129 list_for_each_entry(cachep, &slab_caches, list) { 1130 struct kmem_cache_node *n; 1131 1132 n = get_node(cachep, node); 1133 if (!n) 1134 continue; 1135 1136 drain_freelist(cachep, n, INT_MAX); 1137 1138 if (!list_empty(&n->slabs_full) || 1139 !list_empty(&n->slabs_partial)) { 1140 ret = -EBUSY; 1141 break; 1142 } 1143 } 1144 return ret; 1145 } 1146 1147 static int __meminit slab_memory_callback(struct notifier_block *self, 1148 unsigned long action, void *arg) 1149 { 1150 struct memory_notify *mnb = arg; 1151 int ret = 0; 1152 int nid; 1153 1154 nid = mnb->status_change_nid; 1155 if (nid < 0) 1156 goto out; 1157 1158 switch (action) { 1159 case MEM_GOING_ONLINE: 1160 mutex_lock(&slab_mutex); 1161 ret = init_cache_node_node(nid); 1162 mutex_unlock(&slab_mutex); 1163 break; 1164 case MEM_GOING_OFFLINE: 1165 mutex_lock(&slab_mutex); 1166 ret = drain_cache_node_node(nid); 1167 mutex_unlock(&slab_mutex); 1168 break; 1169 case MEM_ONLINE: 1170 case MEM_OFFLINE: 1171 case MEM_CANCEL_ONLINE: 1172 case MEM_CANCEL_OFFLINE: 1173 break; 1174 } 1175 out: 1176 return notifier_from_errno(ret); 1177 } 1178 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1179 1180 /* 1181 * swap the static kmem_cache_node with kmalloced memory 1182 */ 1183 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1184 int nodeid) 1185 { 1186 struct kmem_cache_node *ptr; 1187 1188 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1189 BUG_ON(!ptr); 1190 1191 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1192 /* 1193 * Do not assume that spinlocks can be initialized via memcpy: 1194 */ 1195 spin_lock_init(&ptr->list_lock); 1196 1197 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1198 cachep->node[nodeid] = ptr; 1199 } 1200 1201 /* 1202 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1203 * size of kmem_cache_node. 1204 */ 1205 static void __init set_up_node(struct kmem_cache *cachep, int index) 1206 { 1207 int node; 1208 1209 for_each_online_node(node) { 1210 cachep->node[node] = &init_kmem_cache_node[index + node]; 1211 cachep->node[node]->next_reap = jiffies + 1212 REAPTIMEOUT_NODE + 1213 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1214 } 1215 } 1216 1217 /* 1218 * Initialisation. Called after the page allocator have been initialised and 1219 * before smp_init(). 1220 */ 1221 void __init kmem_cache_init(void) 1222 { 1223 int i; 1224 1225 kmem_cache = &kmem_cache_boot; 1226 1227 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1228 use_alien_caches = 0; 1229 1230 for (i = 0; i < NUM_INIT_LISTS; i++) 1231 kmem_cache_node_init(&init_kmem_cache_node[i]); 1232 1233 /* 1234 * Fragmentation resistance on low memory - only use bigger 1235 * page orders on machines with more than 32MB of memory if 1236 * not overridden on the command line. 1237 */ 1238 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1239 slab_max_order = SLAB_MAX_ORDER_HI; 1240 1241 /* Bootstrap is tricky, because several objects are allocated 1242 * from caches that do not exist yet: 1243 * 1) initialize the kmem_cache cache: it contains the struct 1244 * kmem_cache structures of all caches, except kmem_cache itself: 1245 * kmem_cache is statically allocated. 1246 * Initially an __init data area is used for the head array and the 1247 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1248 * array at the end of the bootstrap. 1249 * 2) Create the first kmalloc cache. 1250 * The struct kmem_cache for the new cache is allocated normally. 1251 * An __init data area is used for the head array. 1252 * 3) Create the remaining kmalloc caches, with minimally sized 1253 * head arrays. 1254 * 4) Replace the __init data head arrays for kmem_cache and the first 1255 * kmalloc cache with kmalloc allocated arrays. 1256 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1257 * the other cache's with kmalloc allocated memory. 1258 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1259 */ 1260 1261 /* 1) create the kmem_cache */ 1262 1263 /* 1264 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1265 */ 1266 create_boot_cache(kmem_cache, "kmem_cache", 1267 offsetof(struct kmem_cache, node) + 1268 nr_node_ids * sizeof(struct kmem_cache_node *), 1269 SLAB_HWCACHE_ALIGN, 0, 0); 1270 list_add(&kmem_cache->list, &slab_caches); 1271 memcg_link_cache(kmem_cache); 1272 slab_state = PARTIAL; 1273 1274 /* 1275 * Initialize the caches that provide memory for the kmem_cache_node 1276 * structures first. Without this, further allocations will bug. 1277 */ 1278 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( 1279 kmalloc_info[INDEX_NODE].name, 1280 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS, 1281 0, kmalloc_size(INDEX_NODE)); 1282 slab_state = PARTIAL_NODE; 1283 setup_kmalloc_cache_index_table(); 1284 1285 slab_early_init = 0; 1286 1287 /* 5) Replace the bootstrap kmem_cache_node */ 1288 { 1289 int nid; 1290 1291 for_each_online_node(nid) { 1292 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1293 1294 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1295 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1296 } 1297 } 1298 1299 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1300 } 1301 1302 void __init kmem_cache_init_late(void) 1303 { 1304 struct kmem_cache *cachep; 1305 1306 /* 6) resize the head arrays to their final sizes */ 1307 mutex_lock(&slab_mutex); 1308 list_for_each_entry(cachep, &slab_caches, list) 1309 if (enable_cpucache(cachep, GFP_NOWAIT)) 1310 BUG(); 1311 mutex_unlock(&slab_mutex); 1312 1313 /* Done! */ 1314 slab_state = FULL; 1315 1316 #ifdef CONFIG_NUMA 1317 /* 1318 * Register a memory hotplug callback that initializes and frees 1319 * node. 1320 */ 1321 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1322 #endif 1323 1324 /* 1325 * The reap timers are started later, with a module init call: That part 1326 * of the kernel is not yet operational. 1327 */ 1328 } 1329 1330 static int __init cpucache_init(void) 1331 { 1332 int ret; 1333 1334 /* 1335 * Register the timers that return unneeded pages to the page allocator 1336 */ 1337 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1338 slab_online_cpu, slab_offline_cpu); 1339 WARN_ON(ret < 0); 1340 1341 return 0; 1342 } 1343 __initcall(cpucache_init); 1344 1345 static noinline void 1346 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1347 { 1348 #if DEBUG 1349 struct kmem_cache_node *n; 1350 unsigned long flags; 1351 int node; 1352 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1353 DEFAULT_RATELIMIT_BURST); 1354 1355 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1356 return; 1357 1358 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1359 nodeid, gfpflags, &gfpflags); 1360 pr_warn(" cache: %s, object size: %d, order: %d\n", 1361 cachep->name, cachep->size, cachep->gfporder); 1362 1363 for_each_kmem_cache_node(cachep, node, n) { 1364 unsigned long total_slabs, free_slabs, free_objs; 1365 1366 spin_lock_irqsave(&n->list_lock, flags); 1367 total_slabs = n->total_slabs; 1368 free_slabs = n->free_slabs; 1369 free_objs = n->free_objects; 1370 spin_unlock_irqrestore(&n->list_lock, flags); 1371 1372 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1373 node, total_slabs - free_slabs, total_slabs, 1374 (total_slabs * cachep->num) - free_objs, 1375 total_slabs * cachep->num); 1376 } 1377 #endif 1378 } 1379 1380 /* 1381 * Interface to system's page allocator. No need to hold the 1382 * kmem_cache_node ->list_lock. 1383 * 1384 * If we requested dmaable memory, we will get it. Even if we 1385 * did not request dmaable memory, we might get it, but that 1386 * would be relatively rare and ignorable. 1387 */ 1388 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1389 int nodeid) 1390 { 1391 struct page *page; 1392 int nr_pages; 1393 1394 flags |= cachep->allocflags; 1395 1396 page = __alloc_pages_node(nodeid, flags, cachep->gfporder); 1397 if (!page) { 1398 slab_out_of_memory(cachep, flags, nodeid); 1399 return NULL; 1400 } 1401 1402 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { 1403 __free_pages(page, cachep->gfporder); 1404 return NULL; 1405 } 1406 1407 nr_pages = (1 << cachep->gfporder); 1408 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1409 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages); 1410 else 1411 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages); 1412 1413 __SetPageSlab(page); 1414 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1415 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1416 SetPageSlabPfmemalloc(page); 1417 1418 return page; 1419 } 1420 1421 /* 1422 * Interface to system's page release. 1423 */ 1424 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1425 { 1426 int order = cachep->gfporder; 1427 unsigned long nr_freed = (1 << order); 1428 1429 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1430 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed); 1431 else 1432 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed); 1433 1434 BUG_ON(!PageSlab(page)); 1435 __ClearPageSlabPfmemalloc(page); 1436 __ClearPageSlab(page); 1437 page_mapcount_reset(page); 1438 page->mapping = NULL; 1439 1440 if (current->reclaim_state) 1441 current->reclaim_state->reclaimed_slab += nr_freed; 1442 memcg_uncharge_slab(page, order, cachep); 1443 __free_pages(page, order); 1444 } 1445 1446 static void kmem_rcu_free(struct rcu_head *head) 1447 { 1448 struct kmem_cache *cachep; 1449 struct page *page; 1450 1451 page = container_of(head, struct page, rcu_head); 1452 cachep = page->slab_cache; 1453 1454 kmem_freepages(cachep, page); 1455 } 1456 1457 #if DEBUG 1458 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1459 { 1460 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && 1461 (cachep->size % PAGE_SIZE) == 0) 1462 return true; 1463 1464 return false; 1465 } 1466 1467 #ifdef CONFIG_DEBUG_PAGEALLOC 1468 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1469 { 1470 if (!is_debug_pagealloc_cache(cachep)) 1471 return; 1472 1473 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1474 } 1475 1476 #else 1477 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1478 int map) {} 1479 1480 #endif 1481 1482 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1483 { 1484 int size = cachep->object_size; 1485 addr = &((char *)addr)[obj_offset(cachep)]; 1486 1487 memset(addr, val, size); 1488 *(unsigned char *)(addr + size - 1) = POISON_END; 1489 } 1490 1491 static void dump_line(char *data, int offset, int limit) 1492 { 1493 int i; 1494 unsigned char error = 0; 1495 int bad_count = 0; 1496 1497 pr_err("%03x: ", offset); 1498 for (i = 0; i < limit; i++) { 1499 if (data[offset + i] != POISON_FREE) { 1500 error = data[offset + i]; 1501 bad_count++; 1502 } 1503 } 1504 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1505 &data[offset], limit, 1); 1506 1507 if (bad_count == 1) { 1508 error ^= POISON_FREE; 1509 if (!(error & (error - 1))) { 1510 pr_err("Single bit error detected. Probably bad RAM.\n"); 1511 #ifdef CONFIG_X86 1512 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1513 #else 1514 pr_err("Run a memory test tool.\n"); 1515 #endif 1516 } 1517 } 1518 } 1519 #endif 1520 1521 #if DEBUG 1522 1523 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1524 { 1525 int i, size; 1526 char *realobj; 1527 1528 if (cachep->flags & SLAB_RED_ZONE) { 1529 pr_err("Redzone: 0x%llx/0x%llx\n", 1530 *dbg_redzone1(cachep, objp), 1531 *dbg_redzone2(cachep, objp)); 1532 } 1533 1534 if (cachep->flags & SLAB_STORE_USER) 1535 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1536 realobj = (char *)objp + obj_offset(cachep); 1537 size = cachep->object_size; 1538 for (i = 0; i < size && lines; i += 16, lines--) { 1539 int limit; 1540 limit = 16; 1541 if (i + limit > size) 1542 limit = size - i; 1543 dump_line(realobj, i, limit); 1544 } 1545 } 1546 1547 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1548 { 1549 char *realobj; 1550 int size, i; 1551 int lines = 0; 1552 1553 if (is_debug_pagealloc_cache(cachep)) 1554 return; 1555 1556 realobj = (char *)objp + obj_offset(cachep); 1557 size = cachep->object_size; 1558 1559 for (i = 0; i < size; i++) { 1560 char exp = POISON_FREE; 1561 if (i == size - 1) 1562 exp = POISON_END; 1563 if (realobj[i] != exp) { 1564 int limit; 1565 /* Mismatch ! */ 1566 /* Print header */ 1567 if (lines == 0) { 1568 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1569 print_tainted(), cachep->name, 1570 realobj, size); 1571 print_objinfo(cachep, objp, 0); 1572 } 1573 /* Hexdump the affected line */ 1574 i = (i / 16) * 16; 1575 limit = 16; 1576 if (i + limit > size) 1577 limit = size - i; 1578 dump_line(realobj, i, limit); 1579 i += 16; 1580 lines++; 1581 /* Limit to 5 lines */ 1582 if (lines > 5) 1583 break; 1584 } 1585 } 1586 if (lines != 0) { 1587 /* Print some data about the neighboring objects, if they 1588 * exist: 1589 */ 1590 struct page *page = virt_to_head_page(objp); 1591 unsigned int objnr; 1592 1593 objnr = obj_to_index(cachep, page, objp); 1594 if (objnr) { 1595 objp = index_to_obj(cachep, page, objnr - 1); 1596 realobj = (char *)objp + obj_offset(cachep); 1597 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1598 print_objinfo(cachep, objp, 2); 1599 } 1600 if (objnr + 1 < cachep->num) { 1601 objp = index_to_obj(cachep, page, objnr + 1); 1602 realobj = (char *)objp + obj_offset(cachep); 1603 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1604 print_objinfo(cachep, objp, 2); 1605 } 1606 } 1607 } 1608 #endif 1609 1610 #if DEBUG 1611 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1612 struct page *page) 1613 { 1614 int i; 1615 1616 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1617 poison_obj(cachep, page->freelist - obj_offset(cachep), 1618 POISON_FREE); 1619 } 1620 1621 for (i = 0; i < cachep->num; i++) { 1622 void *objp = index_to_obj(cachep, page, i); 1623 1624 if (cachep->flags & SLAB_POISON) { 1625 check_poison_obj(cachep, objp); 1626 slab_kernel_map(cachep, objp, 1); 1627 } 1628 if (cachep->flags & SLAB_RED_ZONE) { 1629 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1630 slab_error(cachep, "start of a freed object was overwritten"); 1631 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1632 slab_error(cachep, "end of a freed object was overwritten"); 1633 } 1634 } 1635 } 1636 #else 1637 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1638 struct page *page) 1639 { 1640 } 1641 #endif 1642 1643 /** 1644 * slab_destroy - destroy and release all objects in a slab 1645 * @cachep: cache pointer being destroyed 1646 * @page: page pointer being destroyed 1647 * 1648 * Destroy all the objs in a slab page, and release the mem back to the system. 1649 * Before calling the slab page must have been unlinked from the cache. The 1650 * kmem_cache_node ->list_lock is not held/needed. 1651 */ 1652 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1653 { 1654 void *freelist; 1655 1656 freelist = page->freelist; 1657 slab_destroy_debugcheck(cachep, page); 1658 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1659 call_rcu(&page->rcu_head, kmem_rcu_free); 1660 else 1661 kmem_freepages(cachep, page); 1662 1663 /* 1664 * From now on, we don't use freelist 1665 * although actual page can be freed in rcu context 1666 */ 1667 if (OFF_SLAB(cachep)) 1668 kmem_cache_free(cachep->freelist_cache, freelist); 1669 } 1670 1671 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1672 { 1673 struct page *page, *n; 1674 1675 list_for_each_entry_safe(page, n, list, slab_list) { 1676 list_del(&page->slab_list); 1677 slab_destroy(cachep, page); 1678 } 1679 } 1680 1681 /** 1682 * calculate_slab_order - calculate size (page order) of slabs 1683 * @cachep: pointer to the cache that is being created 1684 * @size: size of objects to be created in this cache. 1685 * @flags: slab allocation flags 1686 * 1687 * Also calculates the number of objects per slab. 1688 * 1689 * This could be made much more intelligent. For now, try to avoid using 1690 * high order pages for slabs. When the gfp() functions are more friendly 1691 * towards high-order requests, this should be changed. 1692 * 1693 * Return: number of left-over bytes in a slab 1694 */ 1695 static size_t calculate_slab_order(struct kmem_cache *cachep, 1696 size_t size, slab_flags_t flags) 1697 { 1698 size_t left_over = 0; 1699 int gfporder; 1700 1701 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1702 unsigned int num; 1703 size_t remainder; 1704 1705 num = cache_estimate(gfporder, size, flags, &remainder); 1706 if (!num) 1707 continue; 1708 1709 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1710 if (num > SLAB_OBJ_MAX_NUM) 1711 break; 1712 1713 if (flags & CFLGS_OFF_SLAB) { 1714 struct kmem_cache *freelist_cache; 1715 size_t freelist_size; 1716 1717 freelist_size = num * sizeof(freelist_idx_t); 1718 freelist_cache = kmalloc_slab(freelist_size, 0u); 1719 if (!freelist_cache) 1720 continue; 1721 1722 /* 1723 * Needed to avoid possible looping condition 1724 * in cache_grow_begin() 1725 */ 1726 if (OFF_SLAB(freelist_cache)) 1727 continue; 1728 1729 /* check if off slab has enough benefit */ 1730 if (freelist_cache->size > cachep->size / 2) 1731 continue; 1732 } 1733 1734 /* Found something acceptable - save it away */ 1735 cachep->num = num; 1736 cachep->gfporder = gfporder; 1737 left_over = remainder; 1738 1739 /* 1740 * A VFS-reclaimable slab tends to have most allocations 1741 * as GFP_NOFS and we really don't want to have to be allocating 1742 * higher-order pages when we are unable to shrink dcache. 1743 */ 1744 if (flags & SLAB_RECLAIM_ACCOUNT) 1745 break; 1746 1747 /* 1748 * Large number of objects is good, but very large slabs are 1749 * currently bad for the gfp()s. 1750 */ 1751 if (gfporder >= slab_max_order) 1752 break; 1753 1754 /* 1755 * Acceptable internal fragmentation? 1756 */ 1757 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1758 break; 1759 } 1760 return left_over; 1761 } 1762 1763 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1764 struct kmem_cache *cachep, int entries, int batchcount) 1765 { 1766 int cpu; 1767 size_t size; 1768 struct array_cache __percpu *cpu_cache; 1769 1770 size = sizeof(void *) * entries + sizeof(struct array_cache); 1771 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1772 1773 if (!cpu_cache) 1774 return NULL; 1775 1776 for_each_possible_cpu(cpu) { 1777 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1778 entries, batchcount); 1779 } 1780 1781 return cpu_cache; 1782 } 1783 1784 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1785 { 1786 if (slab_state >= FULL) 1787 return enable_cpucache(cachep, gfp); 1788 1789 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1790 if (!cachep->cpu_cache) 1791 return 1; 1792 1793 if (slab_state == DOWN) { 1794 /* Creation of first cache (kmem_cache). */ 1795 set_up_node(kmem_cache, CACHE_CACHE); 1796 } else if (slab_state == PARTIAL) { 1797 /* For kmem_cache_node */ 1798 set_up_node(cachep, SIZE_NODE); 1799 } else { 1800 int node; 1801 1802 for_each_online_node(node) { 1803 cachep->node[node] = kmalloc_node( 1804 sizeof(struct kmem_cache_node), gfp, node); 1805 BUG_ON(!cachep->node[node]); 1806 kmem_cache_node_init(cachep->node[node]); 1807 } 1808 } 1809 1810 cachep->node[numa_mem_id()]->next_reap = 1811 jiffies + REAPTIMEOUT_NODE + 1812 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1813 1814 cpu_cache_get(cachep)->avail = 0; 1815 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1816 cpu_cache_get(cachep)->batchcount = 1; 1817 cpu_cache_get(cachep)->touched = 0; 1818 cachep->batchcount = 1; 1819 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1820 return 0; 1821 } 1822 1823 slab_flags_t kmem_cache_flags(unsigned int object_size, 1824 slab_flags_t flags, const char *name, 1825 void (*ctor)(void *)) 1826 { 1827 return flags; 1828 } 1829 1830 struct kmem_cache * 1831 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1832 slab_flags_t flags, void (*ctor)(void *)) 1833 { 1834 struct kmem_cache *cachep; 1835 1836 cachep = find_mergeable(size, align, flags, name, ctor); 1837 if (cachep) { 1838 cachep->refcount++; 1839 1840 /* 1841 * Adjust the object sizes so that we clear 1842 * the complete object on kzalloc. 1843 */ 1844 cachep->object_size = max_t(int, cachep->object_size, size); 1845 } 1846 return cachep; 1847 } 1848 1849 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1850 size_t size, slab_flags_t flags) 1851 { 1852 size_t left; 1853 1854 cachep->num = 0; 1855 1856 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1857 return false; 1858 1859 left = calculate_slab_order(cachep, size, 1860 flags | CFLGS_OBJFREELIST_SLAB); 1861 if (!cachep->num) 1862 return false; 1863 1864 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1865 return false; 1866 1867 cachep->colour = left / cachep->colour_off; 1868 1869 return true; 1870 } 1871 1872 static bool set_off_slab_cache(struct kmem_cache *cachep, 1873 size_t size, slab_flags_t flags) 1874 { 1875 size_t left; 1876 1877 cachep->num = 0; 1878 1879 /* 1880 * Always use on-slab management when SLAB_NOLEAKTRACE 1881 * to avoid recursive calls into kmemleak. 1882 */ 1883 if (flags & SLAB_NOLEAKTRACE) 1884 return false; 1885 1886 /* 1887 * Size is large, assume best to place the slab management obj 1888 * off-slab (should allow better packing of objs). 1889 */ 1890 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1891 if (!cachep->num) 1892 return false; 1893 1894 /* 1895 * If the slab has been placed off-slab, and we have enough space then 1896 * move it on-slab. This is at the expense of any extra colouring. 1897 */ 1898 if (left >= cachep->num * sizeof(freelist_idx_t)) 1899 return false; 1900 1901 cachep->colour = left / cachep->colour_off; 1902 1903 return true; 1904 } 1905 1906 static bool set_on_slab_cache(struct kmem_cache *cachep, 1907 size_t size, slab_flags_t flags) 1908 { 1909 size_t left; 1910 1911 cachep->num = 0; 1912 1913 left = calculate_slab_order(cachep, size, flags); 1914 if (!cachep->num) 1915 return false; 1916 1917 cachep->colour = left / cachep->colour_off; 1918 1919 return true; 1920 } 1921 1922 /** 1923 * __kmem_cache_create - Create a cache. 1924 * @cachep: cache management descriptor 1925 * @flags: SLAB flags 1926 * 1927 * Returns a ptr to the cache on success, NULL on failure. 1928 * Cannot be called within a int, but can be interrupted. 1929 * The @ctor is run when new pages are allocated by the cache. 1930 * 1931 * The flags are 1932 * 1933 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1934 * to catch references to uninitialised memory. 1935 * 1936 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1937 * for buffer overruns. 1938 * 1939 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1940 * cacheline. This can be beneficial if you're counting cycles as closely 1941 * as davem. 1942 * 1943 * Return: a pointer to the created cache or %NULL in case of error 1944 */ 1945 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1946 { 1947 size_t ralign = BYTES_PER_WORD; 1948 gfp_t gfp; 1949 int err; 1950 unsigned int size = cachep->size; 1951 1952 #if DEBUG 1953 #if FORCED_DEBUG 1954 /* 1955 * Enable redzoning and last user accounting, except for caches with 1956 * large objects, if the increased size would increase the object size 1957 * above the next power of two: caches with object sizes just above a 1958 * power of two have a significant amount of internal fragmentation. 1959 */ 1960 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1961 2 * sizeof(unsigned long long))) 1962 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1963 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1964 flags |= SLAB_POISON; 1965 #endif 1966 #endif 1967 1968 /* 1969 * Check that size is in terms of words. This is needed to avoid 1970 * unaligned accesses for some archs when redzoning is used, and makes 1971 * sure any on-slab bufctl's are also correctly aligned. 1972 */ 1973 size = ALIGN(size, BYTES_PER_WORD); 1974 1975 if (flags & SLAB_RED_ZONE) { 1976 ralign = REDZONE_ALIGN; 1977 /* If redzoning, ensure that the second redzone is suitably 1978 * aligned, by adjusting the object size accordingly. */ 1979 size = ALIGN(size, REDZONE_ALIGN); 1980 } 1981 1982 /* 3) caller mandated alignment */ 1983 if (ralign < cachep->align) { 1984 ralign = cachep->align; 1985 } 1986 /* disable debug if necessary */ 1987 if (ralign > __alignof__(unsigned long long)) 1988 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1989 /* 1990 * 4) Store it. 1991 */ 1992 cachep->align = ralign; 1993 cachep->colour_off = cache_line_size(); 1994 /* Offset must be a multiple of the alignment. */ 1995 if (cachep->colour_off < cachep->align) 1996 cachep->colour_off = cachep->align; 1997 1998 if (slab_is_available()) 1999 gfp = GFP_KERNEL; 2000 else 2001 gfp = GFP_NOWAIT; 2002 2003 #if DEBUG 2004 2005 /* 2006 * Both debugging options require word-alignment which is calculated 2007 * into align above. 2008 */ 2009 if (flags & SLAB_RED_ZONE) { 2010 /* add space for red zone words */ 2011 cachep->obj_offset += sizeof(unsigned long long); 2012 size += 2 * sizeof(unsigned long long); 2013 } 2014 if (flags & SLAB_STORE_USER) { 2015 /* user store requires one word storage behind the end of 2016 * the real object. But if the second red zone needs to be 2017 * aligned to 64 bits, we must allow that much space. 2018 */ 2019 if (flags & SLAB_RED_ZONE) 2020 size += REDZONE_ALIGN; 2021 else 2022 size += BYTES_PER_WORD; 2023 } 2024 #endif 2025 2026 kasan_cache_create(cachep, &size, &flags); 2027 2028 size = ALIGN(size, cachep->align); 2029 /* 2030 * We should restrict the number of objects in a slab to implement 2031 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2032 */ 2033 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2034 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2035 2036 #if DEBUG 2037 /* 2038 * To activate debug pagealloc, off-slab management is necessary 2039 * requirement. In early phase of initialization, small sized slab 2040 * doesn't get initialized so it would not be possible. So, we need 2041 * to check size >= 256. It guarantees that all necessary small 2042 * sized slab is initialized in current slab initialization sequence. 2043 */ 2044 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && 2045 size >= 256 && cachep->object_size > cache_line_size()) { 2046 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2047 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2048 2049 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2050 flags |= CFLGS_OFF_SLAB; 2051 cachep->obj_offset += tmp_size - size; 2052 size = tmp_size; 2053 goto done; 2054 } 2055 } 2056 } 2057 #endif 2058 2059 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2060 flags |= CFLGS_OBJFREELIST_SLAB; 2061 goto done; 2062 } 2063 2064 if (set_off_slab_cache(cachep, size, flags)) { 2065 flags |= CFLGS_OFF_SLAB; 2066 goto done; 2067 } 2068 2069 if (set_on_slab_cache(cachep, size, flags)) 2070 goto done; 2071 2072 return -E2BIG; 2073 2074 done: 2075 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2076 cachep->flags = flags; 2077 cachep->allocflags = __GFP_COMP; 2078 if (flags & SLAB_CACHE_DMA) 2079 cachep->allocflags |= GFP_DMA; 2080 if (flags & SLAB_CACHE_DMA32) 2081 cachep->allocflags |= GFP_DMA32; 2082 if (flags & SLAB_RECLAIM_ACCOUNT) 2083 cachep->allocflags |= __GFP_RECLAIMABLE; 2084 cachep->size = size; 2085 cachep->reciprocal_buffer_size = reciprocal_value(size); 2086 2087 #if DEBUG 2088 /* 2089 * If we're going to use the generic kernel_map_pages() 2090 * poisoning, then it's going to smash the contents of 2091 * the redzone and userword anyhow, so switch them off. 2092 */ 2093 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2094 (cachep->flags & SLAB_POISON) && 2095 is_debug_pagealloc_cache(cachep)) 2096 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2097 #endif 2098 2099 if (OFF_SLAB(cachep)) { 2100 cachep->freelist_cache = 2101 kmalloc_slab(cachep->freelist_size, 0u); 2102 } 2103 2104 err = setup_cpu_cache(cachep, gfp); 2105 if (err) { 2106 __kmem_cache_release(cachep); 2107 return err; 2108 } 2109 2110 return 0; 2111 } 2112 2113 #if DEBUG 2114 static void check_irq_off(void) 2115 { 2116 BUG_ON(!irqs_disabled()); 2117 } 2118 2119 static void check_irq_on(void) 2120 { 2121 BUG_ON(irqs_disabled()); 2122 } 2123 2124 static void check_mutex_acquired(void) 2125 { 2126 BUG_ON(!mutex_is_locked(&slab_mutex)); 2127 } 2128 2129 static void check_spinlock_acquired(struct kmem_cache *cachep) 2130 { 2131 #ifdef CONFIG_SMP 2132 check_irq_off(); 2133 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2134 #endif 2135 } 2136 2137 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2138 { 2139 #ifdef CONFIG_SMP 2140 check_irq_off(); 2141 assert_spin_locked(&get_node(cachep, node)->list_lock); 2142 #endif 2143 } 2144 2145 #else 2146 #define check_irq_off() do { } while(0) 2147 #define check_irq_on() do { } while(0) 2148 #define check_mutex_acquired() do { } while(0) 2149 #define check_spinlock_acquired(x) do { } while(0) 2150 #define check_spinlock_acquired_node(x, y) do { } while(0) 2151 #endif 2152 2153 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2154 int node, bool free_all, struct list_head *list) 2155 { 2156 int tofree; 2157 2158 if (!ac || !ac->avail) 2159 return; 2160 2161 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2162 if (tofree > ac->avail) 2163 tofree = (ac->avail + 1) / 2; 2164 2165 free_block(cachep, ac->entry, tofree, node, list); 2166 ac->avail -= tofree; 2167 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2168 } 2169 2170 static void do_drain(void *arg) 2171 { 2172 struct kmem_cache *cachep = arg; 2173 struct array_cache *ac; 2174 int node = numa_mem_id(); 2175 struct kmem_cache_node *n; 2176 LIST_HEAD(list); 2177 2178 check_irq_off(); 2179 ac = cpu_cache_get(cachep); 2180 n = get_node(cachep, node); 2181 spin_lock(&n->list_lock); 2182 free_block(cachep, ac->entry, ac->avail, node, &list); 2183 spin_unlock(&n->list_lock); 2184 slabs_destroy(cachep, &list); 2185 ac->avail = 0; 2186 } 2187 2188 static void drain_cpu_caches(struct kmem_cache *cachep) 2189 { 2190 struct kmem_cache_node *n; 2191 int node; 2192 LIST_HEAD(list); 2193 2194 on_each_cpu(do_drain, cachep, 1); 2195 check_irq_on(); 2196 for_each_kmem_cache_node(cachep, node, n) 2197 if (n->alien) 2198 drain_alien_cache(cachep, n->alien); 2199 2200 for_each_kmem_cache_node(cachep, node, n) { 2201 spin_lock_irq(&n->list_lock); 2202 drain_array_locked(cachep, n->shared, node, true, &list); 2203 spin_unlock_irq(&n->list_lock); 2204 2205 slabs_destroy(cachep, &list); 2206 } 2207 } 2208 2209 /* 2210 * Remove slabs from the list of free slabs. 2211 * Specify the number of slabs to drain in tofree. 2212 * 2213 * Returns the actual number of slabs released. 2214 */ 2215 static int drain_freelist(struct kmem_cache *cache, 2216 struct kmem_cache_node *n, int tofree) 2217 { 2218 struct list_head *p; 2219 int nr_freed; 2220 struct page *page; 2221 2222 nr_freed = 0; 2223 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2224 2225 spin_lock_irq(&n->list_lock); 2226 p = n->slabs_free.prev; 2227 if (p == &n->slabs_free) { 2228 spin_unlock_irq(&n->list_lock); 2229 goto out; 2230 } 2231 2232 page = list_entry(p, struct page, slab_list); 2233 list_del(&page->slab_list); 2234 n->free_slabs--; 2235 n->total_slabs--; 2236 /* 2237 * Safe to drop the lock. The slab is no longer linked 2238 * to the cache. 2239 */ 2240 n->free_objects -= cache->num; 2241 spin_unlock_irq(&n->list_lock); 2242 slab_destroy(cache, page); 2243 nr_freed++; 2244 } 2245 out: 2246 return nr_freed; 2247 } 2248 2249 bool __kmem_cache_empty(struct kmem_cache *s) 2250 { 2251 int node; 2252 struct kmem_cache_node *n; 2253 2254 for_each_kmem_cache_node(s, node, n) 2255 if (!list_empty(&n->slabs_full) || 2256 !list_empty(&n->slabs_partial)) 2257 return false; 2258 return true; 2259 } 2260 2261 int __kmem_cache_shrink(struct kmem_cache *cachep) 2262 { 2263 int ret = 0; 2264 int node; 2265 struct kmem_cache_node *n; 2266 2267 drain_cpu_caches(cachep); 2268 2269 check_irq_on(); 2270 for_each_kmem_cache_node(cachep, node, n) { 2271 drain_freelist(cachep, n, INT_MAX); 2272 2273 ret += !list_empty(&n->slabs_full) || 2274 !list_empty(&n->slabs_partial); 2275 } 2276 return (ret ? 1 : 0); 2277 } 2278 2279 #ifdef CONFIG_MEMCG 2280 void __kmemcg_cache_deactivate(struct kmem_cache *cachep) 2281 { 2282 __kmem_cache_shrink(cachep); 2283 } 2284 #endif 2285 2286 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2287 { 2288 return __kmem_cache_shrink(cachep); 2289 } 2290 2291 void __kmem_cache_release(struct kmem_cache *cachep) 2292 { 2293 int i; 2294 struct kmem_cache_node *n; 2295 2296 cache_random_seq_destroy(cachep); 2297 2298 free_percpu(cachep->cpu_cache); 2299 2300 /* NUMA: free the node structures */ 2301 for_each_kmem_cache_node(cachep, i, n) { 2302 kfree(n->shared); 2303 free_alien_cache(n->alien); 2304 kfree(n); 2305 cachep->node[i] = NULL; 2306 } 2307 } 2308 2309 /* 2310 * Get the memory for a slab management obj. 2311 * 2312 * For a slab cache when the slab descriptor is off-slab, the 2313 * slab descriptor can't come from the same cache which is being created, 2314 * Because if it is the case, that means we defer the creation of 2315 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2316 * And we eventually call down to __kmem_cache_create(), which 2317 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2318 * This is a "chicken-and-egg" problem. 2319 * 2320 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2321 * which are all initialized during kmem_cache_init(). 2322 */ 2323 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2324 struct page *page, int colour_off, 2325 gfp_t local_flags, int nodeid) 2326 { 2327 void *freelist; 2328 void *addr = page_address(page); 2329 2330 page->s_mem = addr + colour_off; 2331 page->active = 0; 2332 2333 if (OBJFREELIST_SLAB(cachep)) 2334 freelist = NULL; 2335 else if (OFF_SLAB(cachep)) { 2336 /* Slab management obj is off-slab. */ 2337 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2338 local_flags, nodeid); 2339 if (!freelist) 2340 return NULL; 2341 } else { 2342 /* We will use last bytes at the slab for freelist */ 2343 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2344 cachep->freelist_size; 2345 } 2346 2347 return freelist; 2348 } 2349 2350 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2351 { 2352 return ((freelist_idx_t *)page->freelist)[idx]; 2353 } 2354 2355 static inline void set_free_obj(struct page *page, 2356 unsigned int idx, freelist_idx_t val) 2357 { 2358 ((freelist_idx_t *)(page->freelist))[idx] = val; 2359 } 2360 2361 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2362 { 2363 #if DEBUG 2364 int i; 2365 2366 for (i = 0; i < cachep->num; i++) { 2367 void *objp = index_to_obj(cachep, page, i); 2368 2369 if (cachep->flags & SLAB_STORE_USER) 2370 *dbg_userword(cachep, objp) = NULL; 2371 2372 if (cachep->flags & SLAB_RED_ZONE) { 2373 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2374 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2375 } 2376 /* 2377 * Constructors are not allowed to allocate memory from the same 2378 * cache which they are a constructor for. Otherwise, deadlock. 2379 * They must also be threaded. 2380 */ 2381 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2382 kasan_unpoison_object_data(cachep, 2383 objp + obj_offset(cachep)); 2384 cachep->ctor(objp + obj_offset(cachep)); 2385 kasan_poison_object_data( 2386 cachep, objp + obj_offset(cachep)); 2387 } 2388 2389 if (cachep->flags & SLAB_RED_ZONE) { 2390 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2391 slab_error(cachep, "constructor overwrote the end of an object"); 2392 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2393 slab_error(cachep, "constructor overwrote the start of an object"); 2394 } 2395 /* need to poison the objs? */ 2396 if (cachep->flags & SLAB_POISON) { 2397 poison_obj(cachep, objp, POISON_FREE); 2398 slab_kernel_map(cachep, objp, 0); 2399 } 2400 } 2401 #endif 2402 } 2403 2404 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2405 /* Hold information during a freelist initialization */ 2406 union freelist_init_state { 2407 struct { 2408 unsigned int pos; 2409 unsigned int *list; 2410 unsigned int count; 2411 }; 2412 struct rnd_state rnd_state; 2413 }; 2414 2415 /* 2416 * Initialize the state based on the randomization methode available. 2417 * return true if the pre-computed list is available, false otherwize. 2418 */ 2419 static bool freelist_state_initialize(union freelist_init_state *state, 2420 struct kmem_cache *cachep, 2421 unsigned int count) 2422 { 2423 bool ret; 2424 unsigned int rand; 2425 2426 /* Use best entropy available to define a random shift */ 2427 rand = get_random_int(); 2428 2429 /* Use a random state if the pre-computed list is not available */ 2430 if (!cachep->random_seq) { 2431 prandom_seed_state(&state->rnd_state, rand); 2432 ret = false; 2433 } else { 2434 state->list = cachep->random_seq; 2435 state->count = count; 2436 state->pos = rand % count; 2437 ret = true; 2438 } 2439 return ret; 2440 } 2441 2442 /* Get the next entry on the list and randomize it using a random shift */ 2443 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2444 { 2445 if (state->pos >= state->count) 2446 state->pos = 0; 2447 return state->list[state->pos++]; 2448 } 2449 2450 /* Swap two freelist entries */ 2451 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2452 { 2453 swap(((freelist_idx_t *)page->freelist)[a], 2454 ((freelist_idx_t *)page->freelist)[b]); 2455 } 2456 2457 /* 2458 * Shuffle the freelist initialization state based on pre-computed lists. 2459 * return true if the list was successfully shuffled, false otherwise. 2460 */ 2461 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2462 { 2463 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2464 union freelist_init_state state; 2465 bool precomputed; 2466 2467 if (count < 2) 2468 return false; 2469 2470 precomputed = freelist_state_initialize(&state, cachep, count); 2471 2472 /* Take a random entry as the objfreelist */ 2473 if (OBJFREELIST_SLAB(cachep)) { 2474 if (!precomputed) 2475 objfreelist = count - 1; 2476 else 2477 objfreelist = next_random_slot(&state); 2478 page->freelist = index_to_obj(cachep, page, objfreelist) + 2479 obj_offset(cachep); 2480 count--; 2481 } 2482 2483 /* 2484 * On early boot, generate the list dynamically. 2485 * Later use a pre-computed list for speed. 2486 */ 2487 if (!precomputed) { 2488 for (i = 0; i < count; i++) 2489 set_free_obj(page, i, i); 2490 2491 /* Fisher-Yates shuffle */ 2492 for (i = count - 1; i > 0; i--) { 2493 rand = prandom_u32_state(&state.rnd_state); 2494 rand %= (i + 1); 2495 swap_free_obj(page, i, rand); 2496 } 2497 } else { 2498 for (i = 0; i < count; i++) 2499 set_free_obj(page, i, next_random_slot(&state)); 2500 } 2501 2502 if (OBJFREELIST_SLAB(cachep)) 2503 set_free_obj(page, cachep->num - 1, objfreelist); 2504 2505 return true; 2506 } 2507 #else 2508 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2509 struct page *page) 2510 { 2511 return false; 2512 } 2513 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2514 2515 static void cache_init_objs(struct kmem_cache *cachep, 2516 struct page *page) 2517 { 2518 int i; 2519 void *objp; 2520 bool shuffled; 2521 2522 cache_init_objs_debug(cachep, page); 2523 2524 /* Try to randomize the freelist if enabled */ 2525 shuffled = shuffle_freelist(cachep, page); 2526 2527 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2528 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2529 obj_offset(cachep); 2530 } 2531 2532 for (i = 0; i < cachep->num; i++) { 2533 objp = index_to_obj(cachep, page, i); 2534 objp = kasan_init_slab_obj(cachep, objp); 2535 2536 /* constructor could break poison info */ 2537 if (DEBUG == 0 && cachep->ctor) { 2538 kasan_unpoison_object_data(cachep, objp); 2539 cachep->ctor(objp); 2540 kasan_poison_object_data(cachep, objp); 2541 } 2542 2543 if (!shuffled) 2544 set_free_obj(page, i, i); 2545 } 2546 } 2547 2548 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2549 { 2550 void *objp; 2551 2552 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2553 page->active++; 2554 2555 #if DEBUG 2556 if (cachep->flags & SLAB_STORE_USER) 2557 set_store_user_dirty(cachep); 2558 #endif 2559 2560 return objp; 2561 } 2562 2563 static void slab_put_obj(struct kmem_cache *cachep, 2564 struct page *page, void *objp) 2565 { 2566 unsigned int objnr = obj_to_index(cachep, page, objp); 2567 #if DEBUG 2568 unsigned int i; 2569 2570 /* Verify double free bug */ 2571 for (i = page->active; i < cachep->num; i++) { 2572 if (get_free_obj(page, i) == objnr) { 2573 pr_err("slab: double free detected in cache '%s', objp %px\n", 2574 cachep->name, objp); 2575 BUG(); 2576 } 2577 } 2578 #endif 2579 page->active--; 2580 if (!page->freelist) 2581 page->freelist = objp + obj_offset(cachep); 2582 2583 set_free_obj(page, page->active, objnr); 2584 } 2585 2586 /* 2587 * Map pages beginning at addr to the given cache and slab. This is required 2588 * for the slab allocator to be able to lookup the cache and slab of a 2589 * virtual address for kfree, ksize, and slab debugging. 2590 */ 2591 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2592 void *freelist) 2593 { 2594 page->slab_cache = cache; 2595 page->freelist = freelist; 2596 } 2597 2598 /* 2599 * Grow (by 1) the number of slabs within a cache. This is called by 2600 * kmem_cache_alloc() when there are no active objs left in a cache. 2601 */ 2602 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2603 gfp_t flags, int nodeid) 2604 { 2605 void *freelist; 2606 size_t offset; 2607 gfp_t local_flags; 2608 int page_node; 2609 struct kmem_cache_node *n; 2610 struct page *page; 2611 2612 /* 2613 * Be lazy and only check for valid flags here, keeping it out of the 2614 * critical path in kmem_cache_alloc(). 2615 */ 2616 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2617 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 2618 flags &= ~GFP_SLAB_BUG_MASK; 2619 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 2620 invalid_mask, &invalid_mask, flags, &flags); 2621 dump_stack(); 2622 } 2623 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2624 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2625 2626 check_irq_off(); 2627 if (gfpflags_allow_blocking(local_flags)) 2628 local_irq_enable(); 2629 2630 /* 2631 * Get mem for the objs. Attempt to allocate a physical page from 2632 * 'nodeid'. 2633 */ 2634 page = kmem_getpages(cachep, local_flags, nodeid); 2635 if (!page) 2636 goto failed; 2637 2638 page_node = page_to_nid(page); 2639 n = get_node(cachep, page_node); 2640 2641 /* Get colour for the slab, and cal the next value. */ 2642 n->colour_next++; 2643 if (n->colour_next >= cachep->colour) 2644 n->colour_next = 0; 2645 2646 offset = n->colour_next; 2647 if (offset >= cachep->colour) 2648 offset = 0; 2649 2650 offset *= cachep->colour_off; 2651 2652 /* 2653 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2654 * page_address() in the latter returns a non-tagged pointer, 2655 * as it should be for slab pages. 2656 */ 2657 kasan_poison_slab(page); 2658 2659 /* Get slab management. */ 2660 freelist = alloc_slabmgmt(cachep, page, offset, 2661 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2662 if (OFF_SLAB(cachep) && !freelist) 2663 goto opps1; 2664 2665 slab_map_pages(cachep, page, freelist); 2666 2667 cache_init_objs(cachep, page); 2668 2669 if (gfpflags_allow_blocking(local_flags)) 2670 local_irq_disable(); 2671 2672 return page; 2673 2674 opps1: 2675 kmem_freepages(cachep, page); 2676 failed: 2677 if (gfpflags_allow_blocking(local_flags)) 2678 local_irq_disable(); 2679 return NULL; 2680 } 2681 2682 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2683 { 2684 struct kmem_cache_node *n; 2685 void *list = NULL; 2686 2687 check_irq_off(); 2688 2689 if (!page) 2690 return; 2691 2692 INIT_LIST_HEAD(&page->slab_list); 2693 n = get_node(cachep, page_to_nid(page)); 2694 2695 spin_lock(&n->list_lock); 2696 n->total_slabs++; 2697 if (!page->active) { 2698 list_add_tail(&page->slab_list, &n->slabs_free); 2699 n->free_slabs++; 2700 } else 2701 fixup_slab_list(cachep, n, page, &list); 2702 2703 STATS_INC_GROWN(cachep); 2704 n->free_objects += cachep->num - page->active; 2705 spin_unlock(&n->list_lock); 2706 2707 fixup_objfreelist_debug(cachep, &list); 2708 } 2709 2710 #if DEBUG 2711 2712 /* 2713 * Perform extra freeing checks: 2714 * - detect bad pointers. 2715 * - POISON/RED_ZONE checking 2716 */ 2717 static void kfree_debugcheck(const void *objp) 2718 { 2719 if (!virt_addr_valid(objp)) { 2720 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2721 (unsigned long)objp); 2722 BUG(); 2723 } 2724 } 2725 2726 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2727 { 2728 unsigned long long redzone1, redzone2; 2729 2730 redzone1 = *dbg_redzone1(cache, obj); 2731 redzone2 = *dbg_redzone2(cache, obj); 2732 2733 /* 2734 * Redzone is ok. 2735 */ 2736 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2737 return; 2738 2739 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2740 slab_error(cache, "double free detected"); 2741 else 2742 slab_error(cache, "memory outside object was overwritten"); 2743 2744 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2745 obj, redzone1, redzone2); 2746 } 2747 2748 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2749 unsigned long caller) 2750 { 2751 unsigned int objnr; 2752 struct page *page; 2753 2754 BUG_ON(virt_to_cache(objp) != cachep); 2755 2756 objp -= obj_offset(cachep); 2757 kfree_debugcheck(objp); 2758 page = virt_to_head_page(objp); 2759 2760 if (cachep->flags & SLAB_RED_ZONE) { 2761 verify_redzone_free(cachep, objp); 2762 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2763 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2764 } 2765 if (cachep->flags & SLAB_STORE_USER) { 2766 set_store_user_dirty(cachep); 2767 *dbg_userword(cachep, objp) = (void *)caller; 2768 } 2769 2770 objnr = obj_to_index(cachep, page, objp); 2771 2772 BUG_ON(objnr >= cachep->num); 2773 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2774 2775 if (cachep->flags & SLAB_POISON) { 2776 poison_obj(cachep, objp, POISON_FREE); 2777 slab_kernel_map(cachep, objp, 0); 2778 } 2779 return objp; 2780 } 2781 2782 #else 2783 #define kfree_debugcheck(x) do { } while(0) 2784 #define cache_free_debugcheck(x,objp,z) (objp) 2785 #endif 2786 2787 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2788 void **list) 2789 { 2790 #if DEBUG 2791 void *next = *list; 2792 void *objp; 2793 2794 while (next) { 2795 objp = next - obj_offset(cachep); 2796 next = *(void **)next; 2797 poison_obj(cachep, objp, POISON_FREE); 2798 } 2799 #endif 2800 } 2801 2802 static inline void fixup_slab_list(struct kmem_cache *cachep, 2803 struct kmem_cache_node *n, struct page *page, 2804 void **list) 2805 { 2806 /* move slabp to correct slabp list: */ 2807 list_del(&page->slab_list); 2808 if (page->active == cachep->num) { 2809 list_add(&page->slab_list, &n->slabs_full); 2810 if (OBJFREELIST_SLAB(cachep)) { 2811 #if DEBUG 2812 /* Poisoning will be done without holding the lock */ 2813 if (cachep->flags & SLAB_POISON) { 2814 void **objp = page->freelist; 2815 2816 *objp = *list; 2817 *list = objp; 2818 } 2819 #endif 2820 page->freelist = NULL; 2821 } 2822 } else 2823 list_add(&page->slab_list, &n->slabs_partial); 2824 } 2825 2826 /* Try to find non-pfmemalloc slab if needed */ 2827 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2828 struct page *page, bool pfmemalloc) 2829 { 2830 if (!page) 2831 return NULL; 2832 2833 if (pfmemalloc) 2834 return page; 2835 2836 if (!PageSlabPfmemalloc(page)) 2837 return page; 2838 2839 /* No need to keep pfmemalloc slab if we have enough free objects */ 2840 if (n->free_objects > n->free_limit) { 2841 ClearPageSlabPfmemalloc(page); 2842 return page; 2843 } 2844 2845 /* Move pfmemalloc slab to the end of list to speed up next search */ 2846 list_del(&page->slab_list); 2847 if (!page->active) { 2848 list_add_tail(&page->slab_list, &n->slabs_free); 2849 n->free_slabs++; 2850 } else 2851 list_add_tail(&page->slab_list, &n->slabs_partial); 2852 2853 list_for_each_entry(page, &n->slabs_partial, slab_list) { 2854 if (!PageSlabPfmemalloc(page)) 2855 return page; 2856 } 2857 2858 n->free_touched = 1; 2859 list_for_each_entry(page, &n->slabs_free, slab_list) { 2860 if (!PageSlabPfmemalloc(page)) { 2861 n->free_slabs--; 2862 return page; 2863 } 2864 } 2865 2866 return NULL; 2867 } 2868 2869 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2870 { 2871 struct page *page; 2872 2873 assert_spin_locked(&n->list_lock); 2874 page = list_first_entry_or_null(&n->slabs_partial, struct page, 2875 slab_list); 2876 if (!page) { 2877 n->free_touched = 1; 2878 page = list_first_entry_or_null(&n->slabs_free, struct page, 2879 slab_list); 2880 if (page) 2881 n->free_slabs--; 2882 } 2883 2884 if (sk_memalloc_socks()) 2885 page = get_valid_first_slab(n, page, pfmemalloc); 2886 2887 return page; 2888 } 2889 2890 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2891 struct kmem_cache_node *n, gfp_t flags) 2892 { 2893 struct page *page; 2894 void *obj; 2895 void *list = NULL; 2896 2897 if (!gfp_pfmemalloc_allowed(flags)) 2898 return NULL; 2899 2900 spin_lock(&n->list_lock); 2901 page = get_first_slab(n, true); 2902 if (!page) { 2903 spin_unlock(&n->list_lock); 2904 return NULL; 2905 } 2906 2907 obj = slab_get_obj(cachep, page); 2908 n->free_objects--; 2909 2910 fixup_slab_list(cachep, n, page, &list); 2911 2912 spin_unlock(&n->list_lock); 2913 fixup_objfreelist_debug(cachep, &list); 2914 2915 return obj; 2916 } 2917 2918 /* 2919 * Slab list should be fixed up by fixup_slab_list() for existing slab 2920 * or cache_grow_end() for new slab 2921 */ 2922 static __always_inline int alloc_block(struct kmem_cache *cachep, 2923 struct array_cache *ac, struct page *page, int batchcount) 2924 { 2925 /* 2926 * There must be at least one object available for 2927 * allocation. 2928 */ 2929 BUG_ON(page->active >= cachep->num); 2930 2931 while (page->active < cachep->num && batchcount--) { 2932 STATS_INC_ALLOCED(cachep); 2933 STATS_INC_ACTIVE(cachep); 2934 STATS_SET_HIGH(cachep); 2935 2936 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2937 } 2938 2939 return batchcount; 2940 } 2941 2942 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2943 { 2944 int batchcount; 2945 struct kmem_cache_node *n; 2946 struct array_cache *ac, *shared; 2947 int node; 2948 void *list = NULL; 2949 struct page *page; 2950 2951 check_irq_off(); 2952 node = numa_mem_id(); 2953 2954 ac = cpu_cache_get(cachep); 2955 batchcount = ac->batchcount; 2956 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2957 /* 2958 * If there was little recent activity on this cache, then 2959 * perform only a partial refill. Otherwise we could generate 2960 * refill bouncing. 2961 */ 2962 batchcount = BATCHREFILL_LIMIT; 2963 } 2964 n = get_node(cachep, node); 2965 2966 BUG_ON(ac->avail > 0 || !n); 2967 shared = READ_ONCE(n->shared); 2968 if (!n->free_objects && (!shared || !shared->avail)) 2969 goto direct_grow; 2970 2971 spin_lock(&n->list_lock); 2972 shared = READ_ONCE(n->shared); 2973 2974 /* See if we can refill from the shared array */ 2975 if (shared && transfer_objects(ac, shared, batchcount)) { 2976 shared->touched = 1; 2977 goto alloc_done; 2978 } 2979 2980 while (batchcount > 0) { 2981 /* Get slab alloc is to come from. */ 2982 page = get_first_slab(n, false); 2983 if (!page) 2984 goto must_grow; 2985 2986 check_spinlock_acquired(cachep); 2987 2988 batchcount = alloc_block(cachep, ac, page, batchcount); 2989 fixup_slab_list(cachep, n, page, &list); 2990 } 2991 2992 must_grow: 2993 n->free_objects -= ac->avail; 2994 alloc_done: 2995 spin_unlock(&n->list_lock); 2996 fixup_objfreelist_debug(cachep, &list); 2997 2998 direct_grow: 2999 if (unlikely(!ac->avail)) { 3000 /* Check if we can use obj in pfmemalloc slab */ 3001 if (sk_memalloc_socks()) { 3002 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 3003 3004 if (obj) 3005 return obj; 3006 } 3007 3008 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 3009 3010 /* 3011 * cache_grow_begin() can reenable interrupts, 3012 * then ac could change. 3013 */ 3014 ac = cpu_cache_get(cachep); 3015 if (!ac->avail && page) 3016 alloc_block(cachep, ac, page, batchcount); 3017 cache_grow_end(cachep, page); 3018 3019 if (!ac->avail) 3020 return NULL; 3021 } 3022 ac->touched = 1; 3023 3024 return ac->entry[--ac->avail]; 3025 } 3026 3027 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3028 gfp_t flags) 3029 { 3030 might_sleep_if(gfpflags_allow_blocking(flags)); 3031 } 3032 3033 #if DEBUG 3034 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3035 gfp_t flags, void *objp, unsigned long caller) 3036 { 3037 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 3038 if (!objp) 3039 return objp; 3040 if (cachep->flags & SLAB_POISON) { 3041 check_poison_obj(cachep, objp); 3042 slab_kernel_map(cachep, objp, 1); 3043 poison_obj(cachep, objp, POISON_INUSE); 3044 } 3045 if (cachep->flags & SLAB_STORE_USER) 3046 *dbg_userword(cachep, objp) = (void *)caller; 3047 3048 if (cachep->flags & SLAB_RED_ZONE) { 3049 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3050 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3051 slab_error(cachep, "double free, or memory outside object was overwritten"); 3052 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 3053 objp, *dbg_redzone1(cachep, objp), 3054 *dbg_redzone2(cachep, objp)); 3055 } 3056 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3057 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3058 } 3059 3060 objp += obj_offset(cachep); 3061 if (cachep->ctor && cachep->flags & SLAB_POISON) 3062 cachep->ctor(objp); 3063 if (ARCH_SLAB_MINALIGN && 3064 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3065 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3066 objp, (int)ARCH_SLAB_MINALIGN); 3067 } 3068 return objp; 3069 } 3070 #else 3071 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3072 #endif 3073 3074 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3075 { 3076 void *objp; 3077 struct array_cache *ac; 3078 3079 check_irq_off(); 3080 3081 ac = cpu_cache_get(cachep); 3082 if (likely(ac->avail)) { 3083 ac->touched = 1; 3084 objp = ac->entry[--ac->avail]; 3085 3086 STATS_INC_ALLOCHIT(cachep); 3087 goto out; 3088 } 3089 3090 STATS_INC_ALLOCMISS(cachep); 3091 objp = cache_alloc_refill(cachep, flags); 3092 /* 3093 * the 'ac' may be updated by cache_alloc_refill(), 3094 * and kmemleak_erase() requires its correct value. 3095 */ 3096 ac = cpu_cache_get(cachep); 3097 3098 out: 3099 /* 3100 * To avoid a false negative, if an object that is in one of the 3101 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3102 * treat the array pointers as a reference to the object. 3103 */ 3104 if (objp) 3105 kmemleak_erase(&ac->entry[ac->avail]); 3106 return objp; 3107 } 3108 3109 #ifdef CONFIG_NUMA 3110 /* 3111 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3112 * 3113 * If we are in_interrupt, then process context, including cpusets and 3114 * mempolicy, may not apply and should not be used for allocation policy. 3115 */ 3116 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3117 { 3118 int nid_alloc, nid_here; 3119 3120 if (in_interrupt() || (flags & __GFP_THISNODE)) 3121 return NULL; 3122 nid_alloc = nid_here = numa_mem_id(); 3123 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3124 nid_alloc = cpuset_slab_spread_node(); 3125 else if (current->mempolicy) 3126 nid_alloc = mempolicy_slab_node(); 3127 if (nid_alloc != nid_here) 3128 return ____cache_alloc_node(cachep, flags, nid_alloc); 3129 return NULL; 3130 } 3131 3132 /* 3133 * Fallback function if there was no memory available and no objects on a 3134 * certain node and fall back is permitted. First we scan all the 3135 * available node for available objects. If that fails then we 3136 * perform an allocation without specifying a node. This allows the page 3137 * allocator to do its reclaim / fallback magic. We then insert the 3138 * slab into the proper nodelist and then allocate from it. 3139 */ 3140 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3141 { 3142 struct zonelist *zonelist; 3143 struct zoneref *z; 3144 struct zone *zone; 3145 enum zone_type high_zoneidx = gfp_zone(flags); 3146 void *obj = NULL; 3147 struct page *page; 3148 int nid; 3149 unsigned int cpuset_mems_cookie; 3150 3151 if (flags & __GFP_THISNODE) 3152 return NULL; 3153 3154 retry_cpuset: 3155 cpuset_mems_cookie = read_mems_allowed_begin(); 3156 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3157 3158 retry: 3159 /* 3160 * Look through allowed nodes for objects available 3161 * from existing per node queues. 3162 */ 3163 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3164 nid = zone_to_nid(zone); 3165 3166 if (cpuset_zone_allowed(zone, flags) && 3167 get_node(cache, nid) && 3168 get_node(cache, nid)->free_objects) { 3169 obj = ____cache_alloc_node(cache, 3170 gfp_exact_node(flags), nid); 3171 if (obj) 3172 break; 3173 } 3174 } 3175 3176 if (!obj) { 3177 /* 3178 * This allocation will be performed within the constraints 3179 * of the current cpuset / memory policy requirements. 3180 * We may trigger various forms of reclaim on the allowed 3181 * set and go into memory reserves if necessary. 3182 */ 3183 page = cache_grow_begin(cache, flags, numa_mem_id()); 3184 cache_grow_end(cache, page); 3185 if (page) { 3186 nid = page_to_nid(page); 3187 obj = ____cache_alloc_node(cache, 3188 gfp_exact_node(flags), nid); 3189 3190 /* 3191 * Another processor may allocate the objects in 3192 * the slab since we are not holding any locks. 3193 */ 3194 if (!obj) 3195 goto retry; 3196 } 3197 } 3198 3199 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3200 goto retry_cpuset; 3201 return obj; 3202 } 3203 3204 /* 3205 * A interface to enable slab creation on nodeid 3206 */ 3207 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3208 int nodeid) 3209 { 3210 struct page *page; 3211 struct kmem_cache_node *n; 3212 void *obj = NULL; 3213 void *list = NULL; 3214 3215 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3216 n = get_node(cachep, nodeid); 3217 BUG_ON(!n); 3218 3219 check_irq_off(); 3220 spin_lock(&n->list_lock); 3221 page = get_first_slab(n, false); 3222 if (!page) 3223 goto must_grow; 3224 3225 check_spinlock_acquired_node(cachep, nodeid); 3226 3227 STATS_INC_NODEALLOCS(cachep); 3228 STATS_INC_ACTIVE(cachep); 3229 STATS_SET_HIGH(cachep); 3230 3231 BUG_ON(page->active == cachep->num); 3232 3233 obj = slab_get_obj(cachep, page); 3234 n->free_objects--; 3235 3236 fixup_slab_list(cachep, n, page, &list); 3237 3238 spin_unlock(&n->list_lock); 3239 fixup_objfreelist_debug(cachep, &list); 3240 return obj; 3241 3242 must_grow: 3243 spin_unlock(&n->list_lock); 3244 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3245 if (page) { 3246 /* This slab isn't counted yet so don't update free_objects */ 3247 obj = slab_get_obj(cachep, page); 3248 } 3249 cache_grow_end(cachep, page); 3250 3251 return obj ? obj : fallback_alloc(cachep, flags); 3252 } 3253 3254 static __always_inline void * 3255 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3256 unsigned long caller) 3257 { 3258 unsigned long save_flags; 3259 void *ptr; 3260 int slab_node = numa_mem_id(); 3261 3262 flags &= gfp_allowed_mask; 3263 cachep = slab_pre_alloc_hook(cachep, flags); 3264 if (unlikely(!cachep)) 3265 return NULL; 3266 3267 cache_alloc_debugcheck_before(cachep, flags); 3268 local_irq_save(save_flags); 3269 3270 if (nodeid == NUMA_NO_NODE) 3271 nodeid = slab_node; 3272 3273 if (unlikely(!get_node(cachep, nodeid))) { 3274 /* Node not bootstrapped yet */ 3275 ptr = fallback_alloc(cachep, flags); 3276 goto out; 3277 } 3278 3279 if (nodeid == slab_node) { 3280 /* 3281 * Use the locally cached objects if possible. 3282 * However ____cache_alloc does not allow fallback 3283 * to other nodes. It may fail while we still have 3284 * objects on other nodes available. 3285 */ 3286 ptr = ____cache_alloc(cachep, flags); 3287 if (ptr) 3288 goto out; 3289 } 3290 /* ___cache_alloc_node can fall back to other nodes */ 3291 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3292 out: 3293 local_irq_restore(save_flags); 3294 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3295 3296 if (unlikely(flags & __GFP_ZERO) && ptr) 3297 memset(ptr, 0, cachep->object_size); 3298 3299 slab_post_alloc_hook(cachep, flags, 1, &ptr); 3300 return ptr; 3301 } 3302 3303 static __always_inline void * 3304 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3305 { 3306 void *objp; 3307 3308 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3309 objp = alternate_node_alloc(cache, flags); 3310 if (objp) 3311 goto out; 3312 } 3313 objp = ____cache_alloc(cache, flags); 3314 3315 /* 3316 * We may just have run out of memory on the local node. 3317 * ____cache_alloc_node() knows how to locate memory on other nodes 3318 */ 3319 if (!objp) 3320 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3321 3322 out: 3323 return objp; 3324 } 3325 #else 3326 3327 static __always_inline void * 3328 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3329 { 3330 return ____cache_alloc(cachep, flags); 3331 } 3332 3333 #endif /* CONFIG_NUMA */ 3334 3335 static __always_inline void * 3336 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3337 { 3338 unsigned long save_flags; 3339 void *objp; 3340 3341 flags &= gfp_allowed_mask; 3342 cachep = slab_pre_alloc_hook(cachep, flags); 3343 if (unlikely(!cachep)) 3344 return NULL; 3345 3346 cache_alloc_debugcheck_before(cachep, flags); 3347 local_irq_save(save_flags); 3348 objp = __do_cache_alloc(cachep, flags); 3349 local_irq_restore(save_flags); 3350 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3351 prefetchw(objp); 3352 3353 if (unlikely(flags & __GFP_ZERO) && objp) 3354 memset(objp, 0, cachep->object_size); 3355 3356 slab_post_alloc_hook(cachep, flags, 1, &objp); 3357 return objp; 3358 } 3359 3360 /* 3361 * Caller needs to acquire correct kmem_cache_node's list_lock 3362 * @list: List of detached free slabs should be freed by caller 3363 */ 3364 static void free_block(struct kmem_cache *cachep, void **objpp, 3365 int nr_objects, int node, struct list_head *list) 3366 { 3367 int i; 3368 struct kmem_cache_node *n = get_node(cachep, node); 3369 struct page *page; 3370 3371 n->free_objects += nr_objects; 3372 3373 for (i = 0; i < nr_objects; i++) { 3374 void *objp; 3375 struct page *page; 3376 3377 objp = objpp[i]; 3378 3379 page = virt_to_head_page(objp); 3380 list_del(&page->slab_list); 3381 check_spinlock_acquired_node(cachep, node); 3382 slab_put_obj(cachep, page, objp); 3383 STATS_DEC_ACTIVE(cachep); 3384 3385 /* fixup slab chains */ 3386 if (page->active == 0) { 3387 list_add(&page->slab_list, &n->slabs_free); 3388 n->free_slabs++; 3389 } else { 3390 /* Unconditionally move a slab to the end of the 3391 * partial list on free - maximum time for the 3392 * other objects to be freed, too. 3393 */ 3394 list_add_tail(&page->slab_list, &n->slabs_partial); 3395 } 3396 } 3397 3398 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3399 n->free_objects -= cachep->num; 3400 3401 page = list_last_entry(&n->slabs_free, struct page, slab_list); 3402 list_move(&page->slab_list, list); 3403 n->free_slabs--; 3404 n->total_slabs--; 3405 } 3406 } 3407 3408 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3409 { 3410 int batchcount; 3411 struct kmem_cache_node *n; 3412 int node = numa_mem_id(); 3413 LIST_HEAD(list); 3414 3415 batchcount = ac->batchcount; 3416 3417 check_irq_off(); 3418 n = get_node(cachep, node); 3419 spin_lock(&n->list_lock); 3420 if (n->shared) { 3421 struct array_cache *shared_array = n->shared; 3422 int max = shared_array->limit - shared_array->avail; 3423 if (max) { 3424 if (batchcount > max) 3425 batchcount = max; 3426 memcpy(&(shared_array->entry[shared_array->avail]), 3427 ac->entry, sizeof(void *) * batchcount); 3428 shared_array->avail += batchcount; 3429 goto free_done; 3430 } 3431 } 3432 3433 free_block(cachep, ac->entry, batchcount, node, &list); 3434 free_done: 3435 #if STATS 3436 { 3437 int i = 0; 3438 struct page *page; 3439 3440 list_for_each_entry(page, &n->slabs_free, slab_list) { 3441 BUG_ON(page->active); 3442 3443 i++; 3444 } 3445 STATS_SET_FREEABLE(cachep, i); 3446 } 3447 #endif 3448 spin_unlock(&n->list_lock); 3449 slabs_destroy(cachep, &list); 3450 ac->avail -= batchcount; 3451 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3452 } 3453 3454 /* 3455 * Release an obj back to its cache. If the obj has a constructed state, it must 3456 * be in this state _before_ it is released. Called with disabled ints. 3457 */ 3458 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3459 unsigned long caller) 3460 { 3461 /* Put the object into the quarantine, don't touch it for now. */ 3462 if (kasan_slab_free(cachep, objp, _RET_IP_)) 3463 return; 3464 3465 ___cache_free(cachep, objp, caller); 3466 } 3467 3468 void ___cache_free(struct kmem_cache *cachep, void *objp, 3469 unsigned long caller) 3470 { 3471 struct array_cache *ac = cpu_cache_get(cachep); 3472 3473 check_irq_off(); 3474 kmemleak_free_recursive(objp, cachep->flags); 3475 objp = cache_free_debugcheck(cachep, objp, caller); 3476 3477 /* 3478 * Skip calling cache_free_alien() when the platform is not numa. 3479 * This will avoid cache misses that happen while accessing slabp (which 3480 * is per page memory reference) to get nodeid. Instead use a global 3481 * variable to skip the call, which is mostly likely to be present in 3482 * the cache. 3483 */ 3484 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3485 return; 3486 3487 if (ac->avail < ac->limit) { 3488 STATS_INC_FREEHIT(cachep); 3489 } else { 3490 STATS_INC_FREEMISS(cachep); 3491 cache_flusharray(cachep, ac); 3492 } 3493 3494 if (sk_memalloc_socks()) { 3495 struct page *page = virt_to_head_page(objp); 3496 3497 if (unlikely(PageSlabPfmemalloc(page))) { 3498 cache_free_pfmemalloc(cachep, page, objp); 3499 return; 3500 } 3501 } 3502 3503 ac->entry[ac->avail++] = objp; 3504 } 3505 3506 /** 3507 * kmem_cache_alloc - Allocate an object 3508 * @cachep: The cache to allocate from. 3509 * @flags: See kmalloc(). 3510 * 3511 * Allocate an object from this cache. The flags are only relevant 3512 * if the cache has no available objects. 3513 * 3514 * Return: pointer to the new object or %NULL in case of error 3515 */ 3516 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3517 { 3518 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3519 3520 trace_kmem_cache_alloc(_RET_IP_, ret, 3521 cachep->object_size, cachep->size, flags); 3522 3523 return ret; 3524 } 3525 EXPORT_SYMBOL(kmem_cache_alloc); 3526 3527 static __always_inline void 3528 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3529 size_t size, void **p, unsigned long caller) 3530 { 3531 size_t i; 3532 3533 for (i = 0; i < size; i++) 3534 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3535 } 3536 3537 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3538 void **p) 3539 { 3540 size_t i; 3541 3542 s = slab_pre_alloc_hook(s, flags); 3543 if (!s) 3544 return 0; 3545 3546 cache_alloc_debugcheck_before(s, flags); 3547 3548 local_irq_disable(); 3549 for (i = 0; i < size; i++) { 3550 void *objp = __do_cache_alloc(s, flags); 3551 3552 if (unlikely(!objp)) 3553 goto error; 3554 p[i] = objp; 3555 } 3556 local_irq_enable(); 3557 3558 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3559 3560 /* Clear memory outside IRQ disabled section */ 3561 if (unlikely(flags & __GFP_ZERO)) 3562 for (i = 0; i < size; i++) 3563 memset(p[i], 0, s->object_size); 3564 3565 slab_post_alloc_hook(s, flags, size, p); 3566 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3567 return size; 3568 error: 3569 local_irq_enable(); 3570 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3571 slab_post_alloc_hook(s, flags, i, p); 3572 __kmem_cache_free_bulk(s, i, p); 3573 return 0; 3574 } 3575 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3576 3577 #ifdef CONFIG_TRACING 3578 void * 3579 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3580 { 3581 void *ret; 3582 3583 ret = slab_alloc(cachep, flags, _RET_IP_); 3584 3585 ret = kasan_kmalloc(cachep, ret, size, flags); 3586 trace_kmalloc(_RET_IP_, ret, 3587 size, cachep->size, flags); 3588 return ret; 3589 } 3590 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3591 #endif 3592 3593 #ifdef CONFIG_NUMA 3594 /** 3595 * kmem_cache_alloc_node - Allocate an object on the specified node 3596 * @cachep: The cache to allocate from. 3597 * @flags: See kmalloc(). 3598 * @nodeid: node number of the target node. 3599 * 3600 * Identical to kmem_cache_alloc but it will allocate memory on the given 3601 * node, which can improve the performance for cpu bound structures. 3602 * 3603 * Fallback to other node is possible if __GFP_THISNODE is not set. 3604 * 3605 * Return: pointer to the new object or %NULL in case of error 3606 */ 3607 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3608 { 3609 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3610 3611 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3612 cachep->object_size, cachep->size, 3613 flags, nodeid); 3614 3615 return ret; 3616 } 3617 EXPORT_SYMBOL(kmem_cache_alloc_node); 3618 3619 #ifdef CONFIG_TRACING 3620 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3621 gfp_t flags, 3622 int nodeid, 3623 size_t size) 3624 { 3625 void *ret; 3626 3627 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3628 3629 ret = kasan_kmalloc(cachep, ret, size, flags); 3630 trace_kmalloc_node(_RET_IP_, ret, 3631 size, cachep->size, 3632 flags, nodeid); 3633 return ret; 3634 } 3635 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3636 #endif 3637 3638 static __always_inline void * 3639 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3640 { 3641 struct kmem_cache *cachep; 3642 void *ret; 3643 3644 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3645 return NULL; 3646 cachep = kmalloc_slab(size, flags); 3647 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3648 return cachep; 3649 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3650 ret = kasan_kmalloc(cachep, ret, size, flags); 3651 3652 return ret; 3653 } 3654 3655 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3656 { 3657 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3658 } 3659 EXPORT_SYMBOL(__kmalloc_node); 3660 3661 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3662 int node, unsigned long caller) 3663 { 3664 return __do_kmalloc_node(size, flags, node, caller); 3665 } 3666 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3667 #endif /* CONFIG_NUMA */ 3668 3669 /** 3670 * __do_kmalloc - allocate memory 3671 * @size: how many bytes of memory are required. 3672 * @flags: the type of memory to allocate (see kmalloc). 3673 * @caller: function caller for debug tracking of the caller 3674 * 3675 * Return: pointer to the allocated memory or %NULL in case of error 3676 */ 3677 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3678 unsigned long caller) 3679 { 3680 struct kmem_cache *cachep; 3681 void *ret; 3682 3683 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3684 return NULL; 3685 cachep = kmalloc_slab(size, flags); 3686 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3687 return cachep; 3688 ret = slab_alloc(cachep, flags, caller); 3689 3690 ret = kasan_kmalloc(cachep, ret, size, flags); 3691 trace_kmalloc(caller, ret, 3692 size, cachep->size, flags); 3693 3694 return ret; 3695 } 3696 3697 void *__kmalloc(size_t size, gfp_t flags) 3698 { 3699 return __do_kmalloc(size, flags, _RET_IP_); 3700 } 3701 EXPORT_SYMBOL(__kmalloc); 3702 3703 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3704 { 3705 return __do_kmalloc(size, flags, caller); 3706 } 3707 EXPORT_SYMBOL(__kmalloc_track_caller); 3708 3709 /** 3710 * kmem_cache_free - Deallocate an object 3711 * @cachep: The cache the allocation was from. 3712 * @objp: The previously allocated object. 3713 * 3714 * Free an object which was previously allocated from this 3715 * cache. 3716 */ 3717 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3718 { 3719 unsigned long flags; 3720 cachep = cache_from_obj(cachep, objp); 3721 if (!cachep) 3722 return; 3723 3724 local_irq_save(flags); 3725 debug_check_no_locks_freed(objp, cachep->object_size); 3726 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3727 debug_check_no_obj_freed(objp, cachep->object_size); 3728 __cache_free(cachep, objp, _RET_IP_); 3729 local_irq_restore(flags); 3730 3731 trace_kmem_cache_free(_RET_IP_, objp); 3732 } 3733 EXPORT_SYMBOL(kmem_cache_free); 3734 3735 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3736 { 3737 struct kmem_cache *s; 3738 size_t i; 3739 3740 local_irq_disable(); 3741 for (i = 0; i < size; i++) { 3742 void *objp = p[i]; 3743 3744 if (!orig_s) /* called via kfree_bulk */ 3745 s = virt_to_cache(objp); 3746 else 3747 s = cache_from_obj(orig_s, objp); 3748 3749 debug_check_no_locks_freed(objp, s->object_size); 3750 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3751 debug_check_no_obj_freed(objp, s->object_size); 3752 3753 __cache_free(s, objp, _RET_IP_); 3754 } 3755 local_irq_enable(); 3756 3757 /* FIXME: add tracing */ 3758 } 3759 EXPORT_SYMBOL(kmem_cache_free_bulk); 3760 3761 /** 3762 * kfree - free previously allocated memory 3763 * @objp: pointer returned by kmalloc. 3764 * 3765 * If @objp is NULL, no operation is performed. 3766 * 3767 * Don't free memory not originally allocated by kmalloc() 3768 * or you will run into trouble. 3769 */ 3770 void kfree(const void *objp) 3771 { 3772 struct kmem_cache *c; 3773 unsigned long flags; 3774 3775 trace_kfree(_RET_IP_, objp); 3776 3777 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3778 return; 3779 local_irq_save(flags); 3780 kfree_debugcheck(objp); 3781 c = virt_to_cache(objp); 3782 debug_check_no_locks_freed(objp, c->object_size); 3783 3784 debug_check_no_obj_freed(objp, c->object_size); 3785 __cache_free(c, (void *)objp, _RET_IP_); 3786 local_irq_restore(flags); 3787 } 3788 EXPORT_SYMBOL(kfree); 3789 3790 /* 3791 * This initializes kmem_cache_node or resizes various caches for all nodes. 3792 */ 3793 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3794 { 3795 int ret; 3796 int node; 3797 struct kmem_cache_node *n; 3798 3799 for_each_online_node(node) { 3800 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3801 if (ret) 3802 goto fail; 3803 3804 } 3805 3806 return 0; 3807 3808 fail: 3809 if (!cachep->list.next) { 3810 /* Cache is not active yet. Roll back what we did */ 3811 node--; 3812 while (node >= 0) { 3813 n = get_node(cachep, node); 3814 if (n) { 3815 kfree(n->shared); 3816 free_alien_cache(n->alien); 3817 kfree(n); 3818 cachep->node[node] = NULL; 3819 } 3820 node--; 3821 } 3822 } 3823 return -ENOMEM; 3824 } 3825 3826 /* Always called with the slab_mutex held */ 3827 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3828 int batchcount, int shared, gfp_t gfp) 3829 { 3830 struct array_cache __percpu *cpu_cache, *prev; 3831 int cpu; 3832 3833 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3834 if (!cpu_cache) 3835 return -ENOMEM; 3836 3837 prev = cachep->cpu_cache; 3838 cachep->cpu_cache = cpu_cache; 3839 /* 3840 * Without a previous cpu_cache there's no need to synchronize remote 3841 * cpus, so skip the IPIs. 3842 */ 3843 if (prev) 3844 kick_all_cpus_sync(); 3845 3846 check_irq_on(); 3847 cachep->batchcount = batchcount; 3848 cachep->limit = limit; 3849 cachep->shared = shared; 3850 3851 if (!prev) 3852 goto setup_node; 3853 3854 for_each_online_cpu(cpu) { 3855 LIST_HEAD(list); 3856 int node; 3857 struct kmem_cache_node *n; 3858 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3859 3860 node = cpu_to_mem(cpu); 3861 n = get_node(cachep, node); 3862 spin_lock_irq(&n->list_lock); 3863 free_block(cachep, ac->entry, ac->avail, node, &list); 3864 spin_unlock_irq(&n->list_lock); 3865 slabs_destroy(cachep, &list); 3866 } 3867 free_percpu(prev); 3868 3869 setup_node: 3870 return setup_kmem_cache_nodes(cachep, gfp); 3871 } 3872 3873 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3874 int batchcount, int shared, gfp_t gfp) 3875 { 3876 int ret; 3877 struct kmem_cache *c; 3878 3879 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3880 3881 if (slab_state < FULL) 3882 return ret; 3883 3884 if ((ret < 0) || !is_root_cache(cachep)) 3885 return ret; 3886 3887 lockdep_assert_held(&slab_mutex); 3888 for_each_memcg_cache(c, cachep) { 3889 /* return value determined by the root cache only */ 3890 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3891 } 3892 3893 return ret; 3894 } 3895 3896 /* Called with slab_mutex held always */ 3897 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3898 { 3899 int err; 3900 int limit = 0; 3901 int shared = 0; 3902 int batchcount = 0; 3903 3904 err = cache_random_seq_create(cachep, cachep->num, gfp); 3905 if (err) 3906 goto end; 3907 3908 if (!is_root_cache(cachep)) { 3909 struct kmem_cache *root = memcg_root_cache(cachep); 3910 limit = root->limit; 3911 shared = root->shared; 3912 batchcount = root->batchcount; 3913 } 3914 3915 if (limit && shared && batchcount) 3916 goto skip_setup; 3917 /* 3918 * The head array serves three purposes: 3919 * - create a LIFO ordering, i.e. return objects that are cache-warm 3920 * - reduce the number of spinlock operations. 3921 * - reduce the number of linked list operations on the slab and 3922 * bufctl chains: array operations are cheaper. 3923 * The numbers are guessed, we should auto-tune as described by 3924 * Bonwick. 3925 */ 3926 if (cachep->size > 131072) 3927 limit = 1; 3928 else if (cachep->size > PAGE_SIZE) 3929 limit = 8; 3930 else if (cachep->size > 1024) 3931 limit = 24; 3932 else if (cachep->size > 256) 3933 limit = 54; 3934 else 3935 limit = 120; 3936 3937 /* 3938 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3939 * allocation behaviour: Most allocs on one cpu, most free operations 3940 * on another cpu. For these cases, an efficient object passing between 3941 * cpus is necessary. This is provided by a shared array. The array 3942 * replaces Bonwick's magazine layer. 3943 * On uniprocessor, it's functionally equivalent (but less efficient) 3944 * to a larger limit. Thus disabled by default. 3945 */ 3946 shared = 0; 3947 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3948 shared = 8; 3949 3950 #if DEBUG 3951 /* 3952 * With debugging enabled, large batchcount lead to excessively long 3953 * periods with disabled local interrupts. Limit the batchcount 3954 */ 3955 if (limit > 32) 3956 limit = 32; 3957 #endif 3958 batchcount = (limit + 1) / 2; 3959 skip_setup: 3960 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3961 end: 3962 if (err) 3963 pr_err("enable_cpucache failed for %s, error %d\n", 3964 cachep->name, -err); 3965 return err; 3966 } 3967 3968 /* 3969 * Drain an array if it contains any elements taking the node lock only if 3970 * necessary. Note that the node listlock also protects the array_cache 3971 * if drain_array() is used on the shared array. 3972 */ 3973 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3974 struct array_cache *ac, int node) 3975 { 3976 LIST_HEAD(list); 3977 3978 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3979 check_mutex_acquired(); 3980 3981 if (!ac || !ac->avail) 3982 return; 3983 3984 if (ac->touched) { 3985 ac->touched = 0; 3986 return; 3987 } 3988 3989 spin_lock_irq(&n->list_lock); 3990 drain_array_locked(cachep, ac, node, false, &list); 3991 spin_unlock_irq(&n->list_lock); 3992 3993 slabs_destroy(cachep, &list); 3994 } 3995 3996 /** 3997 * cache_reap - Reclaim memory from caches. 3998 * @w: work descriptor 3999 * 4000 * Called from workqueue/eventd every few seconds. 4001 * Purpose: 4002 * - clear the per-cpu caches for this CPU. 4003 * - return freeable pages to the main free memory pool. 4004 * 4005 * If we cannot acquire the cache chain mutex then just give up - we'll try 4006 * again on the next iteration. 4007 */ 4008 static void cache_reap(struct work_struct *w) 4009 { 4010 struct kmem_cache *searchp; 4011 struct kmem_cache_node *n; 4012 int node = numa_mem_id(); 4013 struct delayed_work *work = to_delayed_work(w); 4014 4015 if (!mutex_trylock(&slab_mutex)) 4016 /* Give up. Setup the next iteration. */ 4017 goto out; 4018 4019 list_for_each_entry(searchp, &slab_caches, list) { 4020 check_irq_on(); 4021 4022 /* 4023 * We only take the node lock if absolutely necessary and we 4024 * have established with reasonable certainty that 4025 * we can do some work if the lock was obtained. 4026 */ 4027 n = get_node(searchp, node); 4028 4029 reap_alien(searchp, n); 4030 4031 drain_array(searchp, n, cpu_cache_get(searchp), node); 4032 4033 /* 4034 * These are racy checks but it does not matter 4035 * if we skip one check or scan twice. 4036 */ 4037 if (time_after(n->next_reap, jiffies)) 4038 goto next; 4039 4040 n->next_reap = jiffies + REAPTIMEOUT_NODE; 4041 4042 drain_array(searchp, n, n->shared, node); 4043 4044 if (n->free_touched) 4045 n->free_touched = 0; 4046 else { 4047 int freed; 4048 4049 freed = drain_freelist(searchp, n, (n->free_limit + 4050 5 * searchp->num - 1) / (5 * searchp->num)); 4051 STATS_ADD_REAPED(searchp, freed); 4052 } 4053 next: 4054 cond_resched(); 4055 } 4056 check_irq_on(); 4057 mutex_unlock(&slab_mutex); 4058 next_reap_node(); 4059 out: 4060 /* Set up the next iteration */ 4061 schedule_delayed_work_on(smp_processor_id(), work, 4062 round_jiffies_relative(REAPTIMEOUT_AC)); 4063 } 4064 4065 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4066 { 4067 unsigned long active_objs, num_objs, active_slabs; 4068 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4069 unsigned long free_slabs = 0; 4070 int node; 4071 struct kmem_cache_node *n; 4072 4073 for_each_kmem_cache_node(cachep, node, n) { 4074 check_irq_on(); 4075 spin_lock_irq(&n->list_lock); 4076 4077 total_slabs += n->total_slabs; 4078 free_slabs += n->free_slabs; 4079 free_objs += n->free_objects; 4080 4081 if (n->shared) 4082 shared_avail += n->shared->avail; 4083 4084 spin_unlock_irq(&n->list_lock); 4085 } 4086 num_objs = total_slabs * cachep->num; 4087 active_slabs = total_slabs - free_slabs; 4088 active_objs = num_objs - free_objs; 4089 4090 sinfo->active_objs = active_objs; 4091 sinfo->num_objs = num_objs; 4092 sinfo->active_slabs = active_slabs; 4093 sinfo->num_slabs = total_slabs; 4094 sinfo->shared_avail = shared_avail; 4095 sinfo->limit = cachep->limit; 4096 sinfo->batchcount = cachep->batchcount; 4097 sinfo->shared = cachep->shared; 4098 sinfo->objects_per_slab = cachep->num; 4099 sinfo->cache_order = cachep->gfporder; 4100 } 4101 4102 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4103 { 4104 #if STATS 4105 { /* node stats */ 4106 unsigned long high = cachep->high_mark; 4107 unsigned long allocs = cachep->num_allocations; 4108 unsigned long grown = cachep->grown; 4109 unsigned long reaped = cachep->reaped; 4110 unsigned long errors = cachep->errors; 4111 unsigned long max_freeable = cachep->max_freeable; 4112 unsigned long node_allocs = cachep->node_allocs; 4113 unsigned long node_frees = cachep->node_frees; 4114 unsigned long overflows = cachep->node_overflow; 4115 4116 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4117 allocs, high, grown, 4118 reaped, errors, max_freeable, node_allocs, 4119 node_frees, overflows); 4120 } 4121 /* cpu stats */ 4122 { 4123 unsigned long allochit = atomic_read(&cachep->allochit); 4124 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4125 unsigned long freehit = atomic_read(&cachep->freehit); 4126 unsigned long freemiss = atomic_read(&cachep->freemiss); 4127 4128 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4129 allochit, allocmiss, freehit, freemiss); 4130 } 4131 #endif 4132 } 4133 4134 #define MAX_SLABINFO_WRITE 128 4135 /** 4136 * slabinfo_write - Tuning for the slab allocator 4137 * @file: unused 4138 * @buffer: user buffer 4139 * @count: data length 4140 * @ppos: unused 4141 * 4142 * Return: %0 on success, negative error code otherwise. 4143 */ 4144 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4145 size_t count, loff_t *ppos) 4146 { 4147 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4148 int limit, batchcount, shared, res; 4149 struct kmem_cache *cachep; 4150 4151 if (count > MAX_SLABINFO_WRITE) 4152 return -EINVAL; 4153 if (copy_from_user(&kbuf, buffer, count)) 4154 return -EFAULT; 4155 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4156 4157 tmp = strchr(kbuf, ' '); 4158 if (!tmp) 4159 return -EINVAL; 4160 *tmp = '\0'; 4161 tmp++; 4162 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4163 return -EINVAL; 4164 4165 /* Find the cache in the chain of caches. */ 4166 mutex_lock(&slab_mutex); 4167 res = -EINVAL; 4168 list_for_each_entry(cachep, &slab_caches, list) { 4169 if (!strcmp(cachep->name, kbuf)) { 4170 if (limit < 1 || batchcount < 1 || 4171 batchcount > limit || shared < 0) { 4172 res = 0; 4173 } else { 4174 res = do_tune_cpucache(cachep, limit, 4175 batchcount, shared, 4176 GFP_KERNEL); 4177 } 4178 break; 4179 } 4180 } 4181 mutex_unlock(&slab_mutex); 4182 if (res >= 0) 4183 res = count; 4184 return res; 4185 } 4186 4187 #ifdef CONFIG_DEBUG_SLAB_LEAK 4188 4189 static inline int add_caller(unsigned long *n, unsigned long v) 4190 { 4191 unsigned long *p; 4192 int l; 4193 if (!v) 4194 return 1; 4195 l = n[1]; 4196 p = n + 2; 4197 while (l) { 4198 int i = l/2; 4199 unsigned long *q = p + 2 * i; 4200 if (*q == v) { 4201 q[1]++; 4202 return 1; 4203 } 4204 if (*q > v) { 4205 l = i; 4206 } else { 4207 p = q + 2; 4208 l -= i + 1; 4209 } 4210 } 4211 if (++n[1] == n[0]) 4212 return 0; 4213 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4214 p[0] = v; 4215 p[1] = 1; 4216 return 1; 4217 } 4218 4219 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4220 struct page *page) 4221 { 4222 void *p; 4223 int i, j; 4224 unsigned long v; 4225 4226 if (n[0] == n[1]) 4227 return; 4228 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4229 bool active = true; 4230 4231 for (j = page->active; j < c->num; j++) { 4232 if (get_free_obj(page, j) == i) { 4233 active = false; 4234 break; 4235 } 4236 } 4237 4238 if (!active) 4239 continue; 4240 4241 /* 4242 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table 4243 * mapping is established when actual object allocation and 4244 * we could mistakenly access the unmapped object in the cpu 4245 * cache. 4246 */ 4247 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) 4248 continue; 4249 4250 if (!add_caller(n, v)) 4251 return; 4252 } 4253 } 4254 4255 static void show_symbol(struct seq_file *m, unsigned long address) 4256 { 4257 #ifdef CONFIG_KALLSYMS 4258 unsigned long offset, size; 4259 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4260 4261 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4262 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4263 if (modname[0]) 4264 seq_printf(m, " [%s]", modname); 4265 return; 4266 } 4267 #endif 4268 seq_printf(m, "%px", (void *)address); 4269 } 4270 4271 static int leaks_show(struct seq_file *m, void *p) 4272 { 4273 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, 4274 root_caches_node); 4275 struct page *page; 4276 struct kmem_cache_node *n; 4277 const char *name; 4278 unsigned long *x = m->private; 4279 int node; 4280 int i; 4281 4282 if (!(cachep->flags & SLAB_STORE_USER)) 4283 return 0; 4284 if (!(cachep->flags & SLAB_RED_ZONE)) 4285 return 0; 4286 4287 /* 4288 * Set store_user_clean and start to grab stored user information 4289 * for all objects on this cache. If some alloc/free requests comes 4290 * during the processing, information would be wrong so restart 4291 * whole processing. 4292 */ 4293 do { 4294 drain_cpu_caches(cachep); 4295 /* 4296 * drain_cpu_caches() could make kmemleak_object and 4297 * debug_objects_cache dirty, so reset afterwards. 4298 */ 4299 set_store_user_clean(cachep); 4300 4301 x[1] = 0; 4302 4303 for_each_kmem_cache_node(cachep, node, n) { 4304 4305 check_irq_on(); 4306 spin_lock_irq(&n->list_lock); 4307 4308 list_for_each_entry(page, &n->slabs_full, slab_list) 4309 handle_slab(x, cachep, page); 4310 list_for_each_entry(page, &n->slabs_partial, slab_list) 4311 handle_slab(x, cachep, page); 4312 spin_unlock_irq(&n->list_lock); 4313 } 4314 } while (!is_store_user_clean(cachep)); 4315 4316 name = cachep->name; 4317 if (x[0] == x[1]) { 4318 /* Increase the buffer size */ 4319 mutex_unlock(&slab_mutex); 4320 m->private = kcalloc(x[0] * 4, sizeof(unsigned long), 4321 GFP_KERNEL); 4322 if (!m->private) { 4323 /* Too bad, we are really out */ 4324 m->private = x; 4325 mutex_lock(&slab_mutex); 4326 return -ENOMEM; 4327 } 4328 *(unsigned long *)m->private = x[0] * 2; 4329 kfree(x); 4330 mutex_lock(&slab_mutex); 4331 /* Now make sure this entry will be retried */ 4332 m->count = m->size; 4333 return 0; 4334 } 4335 for (i = 0; i < x[1]; i++) { 4336 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4337 show_symbol(m, x[2*i+2]); 4338 seq_putc(m, '\n'); 4339 } 4340 4341 return 0; 4342 } 4343 4344 static const struct seq_operations slabstats_op = { 4345 .start = slab_start, 4346 .next = slab_next, 4347 .stop = slab_stop, 4348 .show = leaks_show, 4349 }; 4350 4351 static int slabstats_open(struct inode *inode, struct file *file) 4352 { 4353 unsigned long *n; 4354 4355 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4356 if (!n) 4357 return -ENOMEM; 4358 4359 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4360 4361 return 0; 4362 } 4363 4364 static const struct file_operations proc_slabstats_operations = { 4365 .open = slabstats_open, 4366 .read = seq_read, 4367 .llseek = seq_lseek, 4368 .release = seq_release_private, 4369 }; 4370 #endif 4371 4372 static int __init slab_proc_init(void) 4373 { 4374 #ifdef CONFIG_DEBUG_SLAB_LEAK 4375 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4376 #endif 4377 return 0; 4378 } 4379 module_init(slab_proc_init); 4380 4381 #ifdef CONFIG_HARDENED_USERCOPY 4382 /* 4383 * Rejects incorrectly sized objects and objects that are to be copied 4384 * to/from userspace but do not fall entirely within the containing slab 4385 * cache's usercopy region. 4386 * 4387 * Returns NULL if check passes, otherwise const char * to name of cache 4388 * to indicate an error. 4389 */ 4390 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4391 bool to_user) 4392 { 4393 struct kmem_cache *cachep; 4394 unsigned int objnr; 4395 unsigned long offset; 4396 4397 ptr = kasan_reset_tag(ptr); 4398 4399 /* Find and validate object. */ 4400 cachep = page->slab_cache; 4401 objnr = obj_to_index(cachep, page, (void *)ptr); 4402 BUG_ON(objnr >= cachep->num); 4403 4404 /* Find offset within object. */ 4405 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4406 4407 /* Allow address range falling entirely within usercopy region. */ 4408 if (offset >= cachep->useroffset && 4409 offset - cachep->useroffset <= cachep->usersize && 4410 n <= cachep->useroffset - offset + cachep->usersize) 4411 return; 4412 4413 /* 4414 * If the copy is still within the allocated object, produce 4415 * a warning instead of rejecting the copy. This is intended 4416 * to be a temporary method to find any missing usercopy 4417 * whitelists. 4418 */ 4419 if (usercopy_fallback && 4420 offset <= cachep->object_size && 4421 n <= cachep->object_size - offset) { 4422 usercopy_warn("SLAB object", cachep->name, to_user, offset, n); 4423 return; 4424 } 4425 4426 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4427 } 4428 #endif /* CONFIG_HARDENED_USERCOPY */ 4429 4430 /** 4431 * ksize - get the actual amount of memory allocated for a given object 4432 * @objp: Pointer to the object 4433 * 4434 * kmalloc may internally round up allocations and return more memory 4435 * than requested. ksize() can be used to determine the actual amount of 4436 * memory allocated. The caller may use this additional memory, even though 4437 * a smaller amount of memory was initially specified with the kmalloc call. 4438 * The caller must guarantee that objp points to a valid object previously 4439 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4440 * must not be freed during the duration of the call. 4441 * 4442 * Return: size of the actual memory used by @objp in bytes 4443 */ 4444 size_t ksize(const void *objp) 4445 { 4446 size_t size; 4447 4448 BUG_ON(!objp); 4449 if (unlikely(objp == ZERO_SIZE_PTR)) 4450 return 0; 4451 4452 size = virt_to_cache(objp)->object_size; 4453 /* We assume that ksize callers could use the whole allocated area, 4454 * so we need to unpoison this area. 4455 */ 4456 kasan_unpoison_shadow(objp, size); 4457 4458 return size; 4459 } 4460 EXPORT_SYMBOL(ksize); 4461