xref: /openbmc/linux/mm/slab.c (revision 2c64e9cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/slab.c
4  * Written by Mark Hemment, 1996/97.
5  * (markhe@nextd.demon.co.uk)
6  *
7  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8  *
9  * Major cleanup, different bufctl logic, per-cpu arrays
10  *	(c) 2000 Manfred Spraul
11  *
12  * Cleanup, make the head arrays unconditional, preparation for NUMA
13  * 	(c) 2002 Manfred Spraul
14  *
15  * An implementation of the Slab Allocator as described in outline in;
16  *	UNIX Internals: The New Frontiers by Uresh Vahalia
17  *	Pub: Prentice Hall	ISBN 0-13-101908-2
18  * or with a little more detail in;
19  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
20  *	Jeff Bonwick (Sun Microsystems).
21  *	Presented at: USENIX Summer 1994 Technical Conference
22  *
23  * The memory is organized in caches, one cache for each object type.
24  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25  * Each cache consists out of many slabs (they are small (usually one
26  * page long) and always contiguous), and each slab contains multiple
27  * initialized objects.
28  *
29  * This means, that your constructor is used only for newly allocated
30  * slabs and you must pass objects with the same initializations to
31  * kmem_cache_free.
32  *
33  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34  * normal). If you need a special memory type, then must create a new
35  * cache for that memory type.
36  *
37  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38  *   full slabs with 0 free objects
39  *   partial slabs
40  *   empty slabs with no allocated objects
41  *
42  * If partial slabs exist, then new allocations come from these slabs,
43  * otherwise from empty slabs or new slabs are allocated.
44  *
45  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47  *
48  * Each cache has a short per-cpu head array, most allocs
49  * and frees go into that array, and if that array overflows, then 1/2
50  * of the entries in the array are given back into the global cache.
51  * The head array is strictly LIFO and should improve the cache hit rates.
52  * On SMP, it additionally reduces the spinlock operations.
53  *
54  * The c_cpuarray may not be read with enabled local interrupts -
55  * it's changed with a smp_call_function().
56  *
57  * SMP synchronization:
58  *  constructors and destructors are called without any locking.
59  *  Several members in struct kmem_cache and struct slab never change, they
60  *	are accessed without any locking.
61  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
62  *  	and local interrupts are disabled so slab code is preempt-safe.
63  *  The non-constant members are protected with a per-cache irq spinlock.
64  *
65  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66  * in 2000 - many ideas in the current implementation are derived from
67  * his patch.
68  *
69  * Further notes from the original documentation:
70  *
71  * 11 April '97.  Started multi-threading - markhe
72  *	The global cache-chain is protected by the mutex 'slab_mutex'.
73  *	The sem is only needed when accessing/extending the cache-chain, which
74  *	can never happen inside an interrupt (kmem_cache_create(),
75  *	kmem_cache_shrink() and kmem_cache_reap()).
76  *
77  *	At present, each engine can be growing a cache.  This should be blocked.
78  *
79  * 15 March 2005. NUMA slab allocator.
80  *	Shai Fultheim <shai@scalex86.org>.
81  *	Shobhit Dayal <shobhit@calsoftinc.com>
82  *	Alok N Kataria <alokk@calsoftinc.com>
83  *	Christoph Lameter <christoph@lameter.com>
84  *
85  *	Modified the slab allocator to be node aware on NUMA systems.
86  *	Each node has its own list of partial, free and full slabs.
87  *	All object allocations for a node occur from node specific slab lists.
88  */
89 
90 #include	<linux/slab.h>
91 #include	<linux/mm.h>
92 #include	<linux/poison.h>
93 #include	<linux/swap.h>
94 #include	<linux/cache.h>
95 #include	<linux/interrupt.h>
96 #include	<linux/init.h>
97 #include	<linux/compiler.h>
98 #include	<linux/cpuset.h>
99 #include	<linux/proc_fs.h>
100 #include	<linux/seq_file.h>
101 #include	<linux/notifier.h>
102 #include	<linux/kallsyms.h>
103 #include	<linux/cpu.h>
104 #include	<linux/sysctl.h>
105 #include	<linux/module.h>
106 #include	<linux/rcupdate.h>
107 #include	<linux/string.h>
108 #include	<linux/uaccess.h>
109 #include	<linux/nodemask.h>
110 #include	<linux/kmemleak.h>
111 #include	<linux/mempolicy.h>
112 #include	<linux/mutex.h>
113 #include	<linux/fault-inject.h>
114 #include	<linux/rtmutex.h>
115 #include	<linux/reciprocal_div.h>
116 #include	<linux/debugobjects.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 #include	<linux/sched/task_stack.h>
120 
121 #include	<net/sock.h>
122 
123 #include	<asm/cacheflush.h>
124 #include	<asm/tlbflush.h>
125 #include	<asm/page.h>
126 
127 #include <trace/events/kmem.h>
128 
129 #include	"internal.h"
130 
131 #include	"slab.h"
132 
133 /*
134  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135  *		  0 for faster, smaller code (especially in the critical paths).
136  *
137  * STATS	- 1 to collect stats for /proc/slabinfo.
138  *		  0 for faster, smaller code (especially in the critical paths).
139  *
140  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141  */
142 
143 #ifdef CONFIG_DEBUG_SLAB
144 #define	DEBUG		1
145 #define	STATS		1
146 #define	FORCED_DEBUG	1
147 #else
148 #define	DEBUG		0
149 #define	STATS		0
150 #define	FORCED_DEBUG	0
151 #endif
152 
153 /* Shouldn't this be in a header file somewhere? */
154 #define	BYTES_PER_WORD		sizeof(void *)
155 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160 
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169 
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171 
172 /*
173  * struct array_cache
174  *
175  * Purpose:
176  * - LIFO ordering, to hand out cache-warm objects from _alloc
177  * - reduce the number of linked list operations
178  * - reduce spinlock operations
179  *
180  * The limit is stored in the per-cpu structure to reduce the data cache
181  * footprint.
182  *
183  */
184 struct array_cache {
185 	unsigned int avail;
186 	unsigned int limit;
187 	unsigned int batchcount;
188 	unsigned int touched;
189 	void *entry[];	/*
190 			 * Must have this definition in here for the proper
191 			 * alignment of array_cache. Also simplifies accessing
192 			 * the entries.
193 			 */
194 };
195 
196 struct alien_cache {
197 	spinlock_t lock;
198 	struct array_cache ac;
199 };
200 
201 /*
202  * Need this for bootstrapping a per node allocator.
203  */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define	CACHE_CACHE 0
207 #define	SIZE_NODE (MAX_NUMNODES)
208 
209 static int drain_freelist(struct kmem_cache *cache,
210 			struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 			int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216 
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 						void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 				struct kmem_cache_node *n, struct page *page,
221 				void **list);
222 static int slab_early_init = 1;
223 
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 	INIT_LIST_HEAD(&parent->slabs_full);
229 	INIT_LIST_HEAD(&parent->slabs_partial);
230 	INIT_LIST_HEAD(&parent->slabs_free);
231 	parent->total_slabs = 0;
232 	parent->free_slabs = 0;
233 	parent->shared = NULL;
234 	parent->alien = NULL;
235 	parent->colour_next = 0;
236 	spin_lock_init(&parent->list_lock);
237 	parent->free_objects = 0;
238 	parent->free_touched = 0;
239 }
240 
241 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
242 	do {								\
243 		INIT_LIST_HEAD(listp);					\
244 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 	} while (0)
246 
247 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
248 	do {								\
249 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
250 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
252 	} while (0)
253 
254 #define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
258 
259 #define BATCHREFILL_LIMIT	16
260 /*
261  * Optimization question: fewer reaps means less probability for unnessary
262  * cpucache drain/refill cycles.
263  *
264  * OTOH the cpuarrays can contain lots of objects,
265  * which could lock up otherwise freeable slabs.
266  */
267 #define REAPTIMEOUT_AC		(2*HZ)
268 #define REAPTIMEOUT_NODE	(4*HZ)
269 
270 #if STATS
271 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
272 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
273 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
274 #define	STATS_INC_GROWN(x)	((x)->grown++)
275 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
276 #define	STATS_SET_HIGH(x)						\
277 	do {								\
278 		if ((x)->num_active > (x)->high_mark)			\
279 			(x)->high_mark = (x)->num_active;		\
280 	} while (0)
281 #define	STATS_INC_ERR(x)	((x)->errors++)
282 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
285 #define	STATS_SET_FREEABLE(x, i)					\
286 	do {								\
287 		if ((x)->max_freeable < i)				\
288 			(x)->max_freeable = i;				\
289 	} while (0)
290 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
294 #else
295 #define	STATS_INC_ACTIVE(x)	do { } while (0)
296 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
297 #define	STATS_INC_ALLOCED(x)	do { } while (0)
298 #define	STATS_INC_GROWN(x)	do { } while (0)
299 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
300 #define	STATS_SET_HIGH(x)	do { } while (0)
301 #define	STATS_INC_ERR(x)	do { } while (0)
302 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303 #define	STATS_INC_NODEFREES(x)	do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
305 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
307 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
308 #define STATS_INC_FREEHIT(x)	do { } while (0)
309 #define STATS_INC_FREEMISS(x)	do { } while (0)
310 #endif
311 
312 #if DEBUG
313 
314 /*
315  * memory layout of objects:
316  * 0		: objp
317  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318  * 		the end of an object is aligned with the end of the real
319  * 		allocation. Catches writes behind the end of the allocation.
320  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321  * 		redzone word.
322  * cachep->obj_offset: The real object.
323  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324  * cachep->size - 1* BYTES_PER_WORD: last caller address
325  *					[BYTES_PER_WORD long]
326  */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 	return cachep->obj_offset;
330 }
331 
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 	return (unsigned long long*) (objp + obj_offset(cachep) -
336 				      sizeof(unsigned long long));
337 }
338 
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 	if (cachep->flags & SLAB_STORE_USER)
343 		return (unsigned long long *)(objp + cachep->size -
344 					      sizeof(unsigned long long) -
345 					      REDZONE_ALIGN);
346 	return (unsigned long long *) (objp + cachep->size -
347 				       sizeof(unsigned long long));
348 }
349 
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355 
356 #else
357 
358 #define obj_offset(x)			0
359 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
362 
363 #endif
364 
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366 
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 	return atomic_read(&cachep->store_user_clean) == 1;
370 }
371 
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 	atomic_set(&cachep->store_user_clean, 1);
375 }
376 
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 	if (is_store_user_clean(cachep))
380 		atomic_set(&cachep->store_user_clean, 0);
381 }
382 
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385 
386 #endif
387 
388 /*
389  * Do not go above this order unless 0 objects fit into the slab or
390  * overridden on the command line.
391  */
392 #define	SLAB_MAX_ORDER_HI	1
393 #define	SLAB_MAX_ORDER_LO	0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396 
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 	struct page *page = virt_to_head_page(obj);
400 	return page->slab_cache;
401 }
402 
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 				 unsigned int idx)
405 {
406 	return page->s_mem + cache->size * idx;
407 }
408 
409 #define BOOT_CPUCACHE_ENTRIES	1
410 /* internal cache of cache description objs */
411 static struct kmem_cache kmem_cache_boot = {
412 	.batchcount = 1,
413 	.limit = BOOT_CPUCACHE_ENTRIES,
414 	.shared = 1,
415 	.size = sizeof(struct kmem_cache),
416 	.name = "kmem_cache",
417 };
418 
419 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
420 
421 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
422 {
423 	return this_cpu_ptr(cachep->cpu_cache);
424 }
425 
426 /*
427  * Calculate the number of objects and left-over bytes for a given buffer size.
428  */
429 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
430 		slab_flags_t flags, size_t *left_over)
431 {
432 	unsigned int num;
433 	size_t slab_size = PAGE_SIZE << gfporder;
434 
435 	/*
436 	 * The slab management structure can be either off the slab or
437 	 * on it. For the latter case, the memory allocated for a
438 	 * slab is used for:
439 	 *
440 	 * - @buffer_size bytes for each object
441 	 * - One freelist_idx_t for each object
442 	 *
443 	 * We don't need to consider alignment of freelist because
444 	 * freelist will be at the end of slab page. The objects will be
445 	 * at the correct alignment.
446 	 *
447 	 * If the slab management structure is off the slab, then the
448 	 * alignment will already be calculated into the size. Because
449 	 * the slabs are all pages aligned, the objects will be at the
450 	 * correct alignment when allocated.
451 	 */
452 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
453 		num = slab_size / buffer_size;
454 		*left_over = slab_size % buffer_size;
455 	} else {
456 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
457 		*left_over = slab_size %
458 			(buffer_size + sizeof(freelist_idx_t));
459 	}
460 
461 	return num;
462 }
463 
464 #if DEBUG
465 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
466 
467 static void __slab_error(const char *function, struct kmem_cache *cachep,
468 			char *msg)
469 {
470 	pr_err("slab error in %s(): cache `%s': %s\n",
471 	       function, cachep->name, msg);
472 	dump_stack();
473 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
474 }
475 #endif
476 
477 /*
478  * By default on NUMA we use alien caches to stage the freeing of
479  * objects allocated from other nodes. This causes massive memory
480  * inefficiencies when using fake NUMA setup to split memory into a
481  * large number of small nodes, so it can be disabled on the command
482  * line
483   */
484 
485 static int use_alien_caches __read_mostly = 1;
486 static int __init noaliencache_setup(char *s)
487 {
488 	use_alien_caches = 0;
489 	return 1;
490 }
491 __setup("noaliencache", noaliencache_setup);
492 
493 static int __init slab_max_order_setup(char *str)
494 {
495 	get_option(&str, &slab_max_order);
496 	slab_max_order = slab_max_order < 0 ? 0 :
497 				min(slab_max_order, MAX_ORDER - 1);
498 	slab_max_order_set = true;
499 
500 	return 1;
501 }
502 __setup("slab_max_order=", slab_max_order_setup);
503 
504 #ifdef CONFIG_NUMA
505 /*
506  * Special reaping functions for NUMA systems called from cache_reap().
507  * These take care of doing round robin flushing of alien caches (containing
508  * objects freed on different nodes from which they were allocated) and the
509  * flushing of remote pcps by calling drain_node_pages.
510  */
511 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
512 
513 static void init_reap_node(int cpu)
514 {
515 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
516 						    node_online_map);
517 }
518 
519 static void next_reap_node(void)
520 {
521 	int node = __this_cpu_read(slab_reap_node);
522 
523 	node = next_node_in(node, node_online_map);
524 	__this_cpu_write(slab_reap_node, node);
525 }
526 
527 #else
528 #define init_reap_node(cpu) do { } while (0)
529 #define next_reap_node(void) do { } while (0)
530 #endif
531 
532 /*
533  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
534  * via the workqueue/eventd.
535  * Add the CPU number into the expiration time to minimize the possibility of
536  * the CPUs getting into lockstep and contending for the global cache chain
537  * lock.
538  */
539 static void start_cpu_timer(int cpu)
540 {
541 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
542 
543 	if (reap_work->work.func == NULL) {
544 		init_reap_node(cpu);
545 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
546 		schedule_delayed_work_on(cpu, reap_work,
547 					__round_jiffies_relative(HZ, cpu));
548 	}
549 }
550 
551 static void init_arraycache(struct array_cache *ac, int limit, int batch)
552 {
553 	if (ac) {
554 		ac->avail = 0;
555 		ac->limit = limit;
556 		ac->batchcount = batch;
557 		ac->touched = 0;
558 	}
559 }
560 
561 static struct array_cache *alloc_arraycache(int node, int entries,
562 					    int batchcount, gfp_t gfp)
563 {
564 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
565 	struct array_cache *ac = NULL;
566 
567 	ac = kmalloc_node(memsize, gfp, node);
568 	/*
569 	 * The array_cache structures contain pointers to free object.
570 	 * However, when such objects are allocated or transferred to another
571 	 * cache the pointers are not cleared and they could be counted as
572 	 * valid references during a kmemleak scan. Therefore, kmemleak must
573 	 * not scan such objects.
574 	 */
575 	kmemleak_no_scan(ac);
576 	init_arraycache(ac, entries, batchcount);
577 	return ac;
578 }
579 
580 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
581 					struct page *page, void *objp)
582 {
583 	struct kmem_cache_node *n;
584 	int page_node;
585 	LIST_HEAD(list);
586 
587 	page_node = page_to_nid(page);
588 	n = get_node(cachep, page_node);
589 
590 	spin_lock(&n->list_lock);
591 	free_block(cachep, &objp, 1, page_node, &list);
592 	spin_unlock(&n->list_lock);
593 
594 	slabs_destroy(cachep, &list);
595 }
596 
597 /*
598  * Transfer objects in one arraycache to another.
599  * Locking must be handled by the caller.
600  *
601  * Return the number of entries transferred.
602  */
603 static int transfer_objects(struct array_cache *to,
604 		struct array_cache *from, unsigned int max)
605 {
606 	/* Figure out how many entries to transfer */
607 	int nr = min3(from->avail, max, to->limit - to->avail);
608 
609 	if (!nr)
610 		return 0;
611 
612 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
613 			sizeof(void *) *nr);
614 
615 	from->avail -= nr;
616 	to->avail += nr;
617 	return nr;
618 }
619 
620 #ifndef CONFIG_NUMA
621 
622 #define drain_alien_cache(cachep, alien) do { } while (0)
623 #define reap_alien(cachep, n) do { } while (0)
624 
625 static inline struct alien_cache **alloc_alien_cache(int node,
626 						int limit, gfp_t gfp)
627 {
628 	return NULL;
629 }
630 
631 static inline void free_alien_cache(struct alien_cache **ac_ptr)
632 {
633 }
634 
635 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
636 {
637 	return 0;
638 }
639 
640 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
641 		gfp_t flags)
642 {
643 	return NULL;
644 }
645 
646 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
647 		 gfp_t flags, int nodeid)
648 {
649 	return NULL;
650 }
651 
652 static inline gfp_t gfp_exact_node(gfp_t flags)
653 {
654 	return flags & ~__GFP_NOFAIL;
655 }
656 
657 #else	/* CONFIG_NUMA */
658 
659 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
660 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
661 
662 static struct alien_cache *__alloc_alien_cache(int node, int entries,
663 						int batch, gfp_t gfp)
664 {
665 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
666 	struct alien_cache *alc = NULL;
667 
668 	alc = kmalloc_node(memsize, gfp, node);
669 	if (alc) {
670 		kmemleak_no_scan(alc);
671 		init_arraycache(&alc->ac, entries, batch);
672 		spin_lock_init(&alc->lock);
673 	}
674 	return alc;
675 }
676 
677 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
678 {
679 	struct alien_cache **alc_ptr;
680 	int i;
681 
682 	if (limit > 1)
683 		limit = 12;
684 	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
685 	if (!alc_ptr)
686 		return NULL;
687 
688 	for_each_node(i) {
689 		if (i == node || !node_online(i))
690 			continue;
691 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
692 		if (!alc_ptr[i]) {
693 			for (i--; i >= 0; i--)
694 				kfree(alc_ptr[i]);
695 			kfree(alc_ptr);
696 			return NULL;
697 		}
698 	}
699 	return alc_ptr;
700 }
701 
702 static void free_alien_cache(struct alien_cache **alc_ptr)
703 {
704 	int i;
705 
706 	if (!alc_ptr)
707 		return;
708 	for_each_node(i)
709 	    kfree(alc_ptr[i]);
710 	kfree(alc_ptr);
711 }
712 
713 static void __drain_alien_cache(struct kmem_cache *cachep,
714 				struct array_cache *ac, int node,
715 				struct list_head *list)
716 {
717 	struct kmem_cache_node *n = get_node(cachep, node);
718 
719 	if (ac->avail) {
720 		spin_lock(&n->list_lock);
721 		/*
722 		 * Stuff objects into the remote nodes shared array first.
723 		 * That way we could avoid the overhead of putting the objects
724 		 * into the free lists and getting them back later.
725 		 */
726 		if (n->shared)
727 			transfer_objects(n->shared, ac, ac->limit);
728 
729 		free_block(cachep, ac->entry, ac->avail, node, list);
730 		ac->avail = 0;
731 		spin_unlock(&n->list_lock);
732 	}
733 }
734 
735 /*
736  * Called from cache_reap() to regularly drain alien caches round robin.
737  */
738 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
739 {
740 	int node = __this_cpu_read(slab_reap_node);
741 
742 	if (n->alien) {
743 		struct alien_cache *alc = n->alien[node];
744 		struct array_cache *ac;
745 
746 		if (alc) {
747 			ac = &alc->ac;
748 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
749 				LIST_HEAD(list);
750 
751 				__drain_alien_cache(cachep, ac, node, &list);
752 				spin_unlock_irq(&alc->lock);
753 				slabs_destroy(cachep, &list);
754 			}
755 		}
756 	}
757 }
758 
759 static void drain_alien_cache(struct kmem_cache *cachep,
760 				struct alien_cache **alien)
761 {
762 	int i = 0;
763 	struct alien_cache *alc;
764 	struct array_cache *ac;
765 	unsigned long flags;
766 
767 	for_each_online_node(i) {
768 		alc = alien[i];
769 		if (alc) {
770 			LIST_HEAD(list);
771 
772 			ac = &alc->ac;
773 			spin_lock_irqsave(&alc->lock, flags);
774 			__drain_alien_cache(cachep, ac, i, &list);
775 			spin_unlock_irqrestore(&alc->lock, flags);
776 			slabs_destroy(cachep, &list);
777 		}
778 	}
779 }
780 
781 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
782 				int node, int page_node)
783 {
784 	struct kmem_cache_node *n;
785 	struct alien_cache *alien = NULL;
786 	struct array_cache *ac;
787 	LIST_HEAD(list);
788 
789 	n = get_node(cachep, node);
790 	STATS_INC_NODEFREES(cachep);
791 	if (n->alien && n->alien[page_node]) {
792 		alien = n->alien[page_node];
793 		ac = &alien->ac;
794 		spin_lock(&alien->lock);
795 		if (unlikely(ac->avail == ac->limit)) {
796 			STATS_INC_ACOVERFLOW(cachep);
797 			__drain_alien_cache(cachep, ac, page_node, &list);
798 		}
799 		ac->entry[ac->avail++] = objp;
800 		spin_unlock(&alien->lock);
801 		slabs_destroy(cachep, &list);
802 	} else {
803 		n = get_node(cachep, page_node);
804 		spin_lock(&n->list_lock);
805 		free_block(cachep, &objp, 1, page_node, &list);
806 		spin_unlock(&n->list_lock);
807 		slabs_destroy(cachep, &list);
808 	}
809 	return 1;
810 }
811 
812 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
813 {
814 	int page_node = page_to_nid(virt_to_page(objp));
815 	int node = numa_mem_id();
816 	/*
817 	 * Make sure we are not freeing a object from another node to the array
818 	 * cache on this cpu.
819 	 */
820 	if (likely(node == page_node))
821 		return 0;
822 
823 	return __cache_free_alien(cachep, objp, node, page_node);
824 }
825 
826 /*
827  * Construct gfp mask to allocate from a specific node but do not reclaim or
828  * warn about failures.
829  */
830 static inline gfp_t gfp_exact_node(gfp_t flags)
831 {
832 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
833 }
834 #endif
835 
836 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
837 {
838 	struct kmem_cache_node *n;
839 
840 	/*
841 	 * Set up the kmem_cache_node for cpu before we can
842 	 * begin anything. Make sure some other cpu on this
843 	 * node has not already allocated this
844 	 */
845 	n = get_node(cachep, node);
846 	if (n) {
847 		spin_lock_irq(&n->list_lock);
848 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
849 				cachep->num;
850 		spin_unlock_irq(&n->list_lock);
851 
852 		return 0;
853 	}
854 
855 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
856 	if (!n)
857 		return -ENOMEM;
858 
859 	kmem_cache_node_init(n);
860 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
861 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
862 
863 	n->free_limit =
864 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
865 
866 	/*
867 	 * The kmem_cache_nodes don't come and go as CPUs
868 	 * come and go.  slab_mutex is sufficient
869 	 * protection here.
870 	 */
871 	cachep->node[node] = n;
872 
873 	return 0;
874 }
875 
876 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
877 /*
878  * Allocates and initializes node for a node on each slab cache, used for
879  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
880  * will be allocated off-node since memory is not yet online for the new node.
881  * When hotplugging memory or a cpu, existing node are not replaced if
882  * already in use.
883  *
884  * Must hold slab_mutex.
885  */
886 static int init_cache_node_node(int node)
887 {
888 	int ret;
889 	struct kmem_cache *cachep;
890 
891 	list_for_each_entry(cachep, &slab_caches, list) {
892 		ret = init_cache_node(cachep, node, GFP_KERNEL);
893 		if (ret)
894 			return ret;
895 	}
896 
897 	return 0;
898 }
899 #endif
900 
901 static int setup_kmem_cache_node(struct kmem_cache *cachep,
902 				int node, gfp_t gfp, bool force_change)
903 {
904 	int ret = -ENOMEM;
905 	struct kmem_cache_node *n;
906 	struct array_cache *old_shared = NULL;
907 	struct array_cache *new_shared = NULL;
908 	struct alien_cache **new_alien = NULL;
909 	LIST_HEAD(list);
910 
911 	if (use_alien_caches) {
912 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
913 		if (!new_alien)
914 			goto fail;
915 	}
916 
917 	if (cachep->shared) {
918 		new_shared = alloc_arraycache(node,
919 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
920 		if (!new_shared)
921 			goto fail;
922 	}
923 
924 	ret = init_cache_node(cachep, node, gfp);
925 	if (ret)
926 		goto fail;
927 
928 	n = get_node(cachep, node);
929 	spin_lock_irq(&n->list_lock);
930 	if (n->shared && force_change) {
931 		free_block(cachep, n->shared->entry,
932 				n->shared->avail, node, &list);
933 		n->shared->avail = 0;
934 	}
935 
936 	if (!n->shared || force_change) {
937 		old_shared = n->shared;
938 		n->shared = new_shared;
939 		new_shared = NULL;
940 	}
941 
942 	if (!n->alien) {
943 		n->alien = new_alien;
944 		new_alien = NULL;
945 	}
946 
947 	spin_unlock_irq(&n->list_lock);
948 	slabs_destroy(cachep, &list);
949 
950 	/*
951 	 * To protect lockless access to n->shared during irq disabled context.
952 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
953 	 * guaranteed to be valid until irq is re-enabled, because it will be
954 	 * freed after synchronize_rcu().
955 	 */
956 	if (old_shared && force_change)
957 		synchronize_rcu();
958 
959 fail:
960 	kfree(old_shared);
961 	kfree(new_shared);
962 	free_alien_cache(new_alien);
963 
964 	return ret;
965 }
966 
967 #ifdef CONFIG_SMP
968 
969 static void cpuup_canceled(long cpu)
970 {
971 	struct kmem_cache *cachep;
972 	struct kmem_cache_node *n = NULL;
973 	int node = cpu_to_mem(cpu);
974 	const struct cpumask *mask = cpumask_of_node(node);
975 
976 	list_for_each_entry(cachep, &slab_caches, list) {
977 		struct array_cache *nc;
978 		struct array_cache *shared;
979 		struct alien_cache **alien;
980 		LIST_HEAD(list);
981 
982 		n = get_node(cachep, node);
983 		if (!n)
984 			continue;
985 
986 		spin_lock_irq(&n->list_lock);
987 
988 		/* Free limit for this kmem_cache_node */
989 		n->free_limit -= cachep->batchcount;
990 
991 		/* cpu is dead; no one can alloc from it. */
992 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
993 		free_block(cachep, nc->entry, nc->avail, node, &list);
994 		nc->avail = 0;
995 
996 		if (!cpumask_empty(mask)) {
997 			spin_unlock_irq(&n->list_lock);
998 			goto free_slab;
999 		}
1000 
1001 		shared = n->shared;
1002 		if (shared) {
1003 			free_block(cachep, shared->entry,
1004 				   shared->avail, node, &list);
1005 			n->shared = NULL;
1006 		}
1007 
1008 		alien = n->alien;
1009 		n->alien = NULL;
1010 
1011 		spin_unlock_irq(&n->list_lock);
1012 
1013 		kfree(shared);
1014 		if (alien) {
1015 			drain_alien_cache(cachep, alien);
1016 			free_alien_cache(alien);
1017 		}
1018 
1019 free_slab:
1020 		slabs_destroy(cachep, &list);
1021 	}
1022 	/*
1023 	 * In the previous loop, all the objects were freed to
1024 	 * the respective cache's slabs,  now we can go ahead and
1025 	 * shrink each nodelist to its limit.
1026 	 */
1027 	list_for_each_entry(cachep, &slab_caches, list) {
1028 		n = get_node(cachep, node);
1029 		if (!n)
1030 			continue;
1031 		drain_freelist(cachep, n, INT_MAX);
1032 	}
1033 }
1034 
1035 static int cpuup_prepare(long cpu)
1036 {
1037 	struct kmem_cache *cachep;
1038 	int node = cpu_to_mem(cpu);
1039 	int err;
1040 
1041 	/*
1042 	 * We need to do this right in the beginning since
1043 	 * alloc_arraycache's are going to use this list.
1044 	 * kmalloc_node allows us to add the slab to the right
1045 	 * kmem_cache_node and not this cpu's kmem_cache_node
1046 	 */
1047 	err = init_cache_node_node(node);
1048 	if (err < 0)
1049 		goto bad;
1050 
1051 	/*
1052 	 * Now we can go ahead with allocating the shared arrays and
1053 	 * array caches
1054 	 */
1055 	list_for_each_entry(cachep, &slab_caches, list) {
1056 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1057 		if (err)
1058 			goto bad;
1059 	}
1060 
1061 	return 0;
1062 bad:
1063 	cpuup_canceled(cpu);
1064 	return -ENOMEM;
1065 }
1066 
1067 int slab_prepare_cpu(unsigned int cpu)
1068 {
1069 	int err;
1070 
1071 	mutex_lock(&slab_mutex);
1072 	err = cpuup_prepare(cpu);
1073 	mutex_unlock(&slab_mutex);
1074 	return err;
1075 }
1076 
1077 /*
1078  * This is called for a failed online attempt and for a successful
1079  * offline.
1080  *
1081  * Even if all the cpus of a node are down, we don't free the
1082  * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1083  * a kmalloc allocation from another cpu for memory from the node of
1084  * the cpu going down.  The list3 structure is usually allocated from
1085  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1086  */
1087 int slab_dead_cpu(unsigned int cpu)
1088 {
1089 	mutex_lock(&slab_mutex);
1090 	cpuup_canceled(cpu);
1091 	mutex_unlock(&slab_mutex);
1092 	return 0;
1093 }
1094 #endif
1095 
1096 static int slab_online_cpu(unsigned int cpu)
1097 {
1098 	start_cpu_timer(cpu);
1099 	return 0;
1100 }
1101 
1102 static int slab_offline_cpu(unsigned int cpu)
1103 {
1104 	/*
1105 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1106 	 * that if cache_reap() is invoked it cannot do anything
1107 	 * expensive but will only modify reap_work and reschedule the
1108 	 * timer.
1109 	 */
1110 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1111 	/* Now the cache_reaper is guaranteed to be not running. */
1112 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1113 	return 0;
1114 }
1115 
1116 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1117 /*
1118  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1119  * Returns -EBUSY if all objects cannot be drained so that the node is not
1120  * removed.
1121  *
1122  * Must hold slab_mutex.
1123  */
1124 static int __meminit drain_cache_node_node(int node)
1125 {
1126 	struct kmem_cache *cachep;
1127 	int ret = 0;
1128 
1129 	list_for_each_entry(cachep, &slab_caches, list) {
1130 		struct kmem_cache_node *n;
1131 
1132 		n = get_node(cachep, node);
1133 		if (!n)
1134 			continue;
1135 
1136 		drain_freelist(cachep, n, INT_MAX);
1137 
1138 		if (!list_empty(&n->slabs_full) ||
1139 		    !list_empty(&n->slabs_partial)) {
1140 			ret = -EBUSY;
1141 			break;
1142 		}
1143 	}
1144 	return ret;
1145 }
1146 
1147 static int __meminit slab_memory_callback(struct notifier_block *self,
1148 					unsigned long action, void *arg)
1149 {
1150 	struct memory_notify *mnb = arg;
1151 	int ret = 0;
1152 	int nid;
1153 
1154 	nid = mnb->status_change_nid;
1155 	if (nid < 0)
1156 		goto out;
1157 
1158 	switch (action) {
1159 	case MEM_GOING_ONLINE:
1160 		mutex_lock(&slab_mutex);
1161 		ret = init_cache_node_node(nid);
1162 		mutex_unlock(&slab_mutex);
1163 		break;
1164 	case MEM_GOING_OFFLINE:
1165 		mutex_lock(&slab_mutex);
1166 		ret = drain_cache_node_node(nid);
1167 		mutex_unlock(&slab_mutex);
1168 		break;
1169 	case MEM_ONLINE:
1170 	case MEM_OFFLINE:
1171 	case MEM_CANCEL_ONLINE:
1172 	case MEM_CANCEL_OFFLINE:
1173 		break;
1174 	}
1175 out:
1176 	return notifier_from_errno(ret);
1177 }
1178 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1179 
1180 /*
1181  * swap the static kmem_cache_node with kmalloced memory
1182  */
1183 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1184 				int nodeid)
1185 {
1186 	struct kmem_cache_node *ptr;
1187 
1188 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1189 	BUG_ON(!ptr);
1190 
1191 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1192 	/*
1193 	 * Do not assume that spinlocks can be initialized via memcpy:
1194 	 */
1195 	spin_lock_init(&ptr->list_lock);
1196 
1197 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1198 	cachep->node[nodeid] = ptr;
1199 }
1200 
1201 /*
1202  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1203  * size of kmem_cache_node.
1204  */
1205 static void __init set_up_node(struct kmem_cache *cachep, int index)
1206 {
1207 	int node;
1208 
1209 	for_each_online_node(node) {
1210 		cachep->node[node] = &init_kmem_cache_node[index + node];
1211 		cachep->node[node]->next_reap = jiffies +
1212 		    REAPTIMEOUT_NODE +
1213 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1214 	}
1215 }
1216 
1217 /*
1218  * Initialisation.  Called after the page allocator have been initialised and
1219  * before smp_init().
1220  */
1221 void __init kmem_cache_init(void)
1222 {
1223 	int i;
1224 
1225 	kmem_cache = &kmem_cache_boot;
1226 
1227 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1228 		use_alien_caches = 0;
1229 
1230 	for (i = 0; i < NUM_INIT_LISTS; i++)
1231 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1232 
1233 	/*
1234 	 * Fragmentation resistance on low memory - only use bigger
1235 	 * page orders on machines with more than 32MB of memory if
1236 	 * not overridden on the command line.
1237 	 */
1238 	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1239 		slab_max_order = SLAB_MAX_ORDER_HI;
1240 
1241 	/* Bootstrap is tricky, because several objects are allocated
1242 	 * from caches that do not exist yet:
1243 	 * 1) initialize the kmem_cache cache: it contains the struct
1244 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1245 	 *    kmem_cache is statically allocated.
1246 	 *    Initially an __init data area is used for the head array and the
1247 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1248 	 *    array at the end of the bootstrap.
1249 	 * 2) Create the first kmalloc cache.
1250 	 *    The struct kmem_cache for the new cache is allocated normally.
1251 	 *    An __init data area is used for the head array.
1252 	 * 3) Create the remaining kmalloc caches, with minimally sized
1253 	 *    head arrays.
1254 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1255 	 *    kmalloc cache with kmalloc allocated arrays.
1256 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1257 	 *    the other cache's with kmalloc allocated memory.
1258 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1259 	 */
1260 
1261 	/* 1) create the kmem_cache */
1262 
1263 	/*
1264 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1265 	 */
1266 	create_boot_cache(kmem_cache, "kmem_cache",
1267 		offsetof(struct kmem_cache, node) +
1268 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1269 				  SLAB_HWCACHE_ALIGN, 0, 0);
1270 	list_add(&kmem_cache->list, &slab_caches);
1271 	memcg_link_cache(kmem_cache);
1272 	slab_state = PARTIAL;
1273 
1274 	/*
1275 	 * Initialize the caches that provide memory for the  kmem_cache_node
1276 	 * structures first.  Without this, further allocations will bug.
1277 	 */
1278 	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1279 				kmalloc_info[INDEX_NODE].name,
1280 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1281 				0, kmalloc_size(INDEX_NODE));
1282 	slab_state = PARTIAL_NODE;
1283 	setup_kmalloc_cache_index_table();
1284 
1285 	slab_early_init = 0;
1286 
1287 	/* 5) Replace the bootstrap kmem_cache_node */
1288 	{
1289 		int nid;
1290 
1291 		for_each_online_node(nid) {
1292 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1293 
1294 			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1295 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1296 		}
1297 	}
1298 
1299 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1300 }
1301 
1302 void __init kmem_cache_init_late(void)
1303 {
1304 	struct kmem_cache *cachep;
1305 
1306 	/* 6) resize the head arrays to their final sizes */
1307 	mutex_lock(&slab_mutex);
1308 	list_for_each_entry(cachep, &slab_caches, list)
1309 		if (enable_cpucache(cachep, GFP_NOWAIT))
1310 			BUG();
1311 	mutex_unlock(&slab_mutex);
1312 
1313 	/* Done! */
1314 	slab_state = FULL;
1315 
1316 #ifdef CONFIG_NUMA
1317 	/*
1318 	 * Register a memory hotplug callback that initializes and frees
1319 	 * node.
1320 	 */
1321 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1322 #endif
1323 
1324 	/*
1325 	 * The reap timers are started later, with a module init call: That part
1326 	 * of the kernel is not yet operational.
1327 	 */
1328 }
1329 
1330 static int __init cpucache_init(void)
1331 {
1332 	int ret;
1333 
1334 	/*
1335 	 * Register the timers that return unneeded pages to the page allocator
1336 	 */
1337 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1338 				slab_online_cpu, slab_offline_cpu);
1339 	WARN_ON(ret < 0);
1340 
1341 	return 0;
1342 }
1343 __initcall(cpucache_init);
1344 
1345 static noinline void
1346 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1347 {
1348 #if DEBUG
1349 	struct kmem_cache_node *n;
1350 	unsigned long flags;
1351 	int node;
1352 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1353 				      DEFAULT_RATELIMIT_BURST);
1354 
1355 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1356 		return;
1357 
1358 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1359 		nodeid, gfpflags, &gfpflags);
1360 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1361 		cachep->name, cachep->size, cachep->gfporder);
1362 
1363 	for_each_kmem_cache_node(cachep, node, n) {
1364 		unsigned long total_slabs, free_slabs, free_objs;
1365 
1366 		spin_lock_irqsave(&n->list_lock, flags);
1367 		total_slabs = n->total_slabs;
1368 		free_slabs = n->free_slabs;
1369 		free_objs = n->free_objects;
1370 		spin_unlock_irqrestore(&n->list_lock, flags);
1371 
1372 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1373 			node, total_slabs - free_slabs, total_slabs,
1374 			(total_slabs * cachep->num) - free_objs,
1375 			total_slabs * cachep->num);
1376 	}
1377 #endif
1378 }
1379 
1380 /*
1381  * Interface to system's page allocator. No need to hold the
1382  * kmem_cache_node ->list_lock.
1383  *
1384  * If we requested dmaable memory, we will get it. Even if we
1385  * did not request dmaable memory, we might get it, but that
1386  * would be relatively rare and ignorable.
1387  */
1388 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1389 								int nodeid)
1390 {
1391 	struct page *page;
1392 	int nr_pages;
1393 
1394 	flags |= cachep->allocflags;
1395 
1396 	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1397 	if (!page) {
1398 		slab_out_of_memory(cachep, flags, nodeid);
1399 		return NULL;
1400 	}
1401 
1402 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1403 		__free_pages(page, cachep->gfporder);
1404 		return NULL;
1405 	}
1406 
1407 	nr_pages = (1 << cachep->gfporder);
1408 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1409 		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1410 	else
1411 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1412 
1413 	__SetPageSlab(page);
1414 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1415 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1416 		SetPageSlabPfmemalloc(page);
1417 
1418 	return page;
1419 }
1420 
1421 /*
1422  * Interface to system's page release.
1423  */
1424 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1425 {
1426 	int order = cachep->gfporder;
1427 	unsigned long nr_freed = (1 << order);
1428 
1429 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1430 		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1431 	else
1432 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1433 
1434 	BUG_ON(!PageSlab(page));
1435 	__ClearPageSlabPfmemalloc(page);
1436 	__ClearPageSlab(page);
1437 	page_mapcount_reset(page);
1438 	page->mapping = NULL;
1439 
1440 	if (current->reclaim_state)
1441 		current->reclaim_state->reclaimed_slab += nr_freed;
1442 	memcg_uncharge_slab(page, order, cachep);
1443 	__free_pages(page, order);
1444 }
1445 
1446 static void kmem_rcu_free(struct rcu_head *head)
1447 {
1448 	struct kmem_cache *cachep;
1449 	struct page *page;
1450 
1451 	page = container_of(head, struct page, rcu_head);
1452 	cachep = page->slab_cache;
1453 
1454 	kmem_freepages(cachep, page);
1455 }
1456 
1457 #if DEBUG
1458 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1459 {
1460 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1461 		(cachep->size % PAGE_SIZE) == 0)
1462 		return true;
1463 
1464 	return false;
1465 }
1466 
1467 #ifdef CONFIG_DEBUG_PAGEALLOC
1468 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1469 {
1470 	if (!is_debug_pagealloc_cache(cachep))
1471 		return;
1472 
1473 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1474 }
1475 
1476 #else
1477 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1478 				int map) {}
1479 
1480 #endif
1481 
1482 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1483 {
1484 	int size = cachep->object_size;
1485 	addr = &((char *)addr)[obj_offset(cachep)];
1486 
1487 	memset(addr, val, size);
1488 	*(unsigned char *)(addr + size - 1) = POISON_END;
1489 }
1490 
1491 static void dump_line(char *data, int offset, int limit)
1492 {
1493 	int i;
1494 	unsigned char error = 0;
1495 	int bad_count = 0;
1496 
1497 	pr_err("%03x: ", offset);
1498 	for (i = 0; i < limit; i++) {
1499 		if (data[offset + i] != POISON_FREE) {
1500 			error = data[offset + i];
1501 			bad_count++;
1502 		}
1503 	}
1504 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1505 			&data[offset], limit, 1);
1506 
1507 	if (bad_count == 1) {
1508 		error ^= POISON_FREE;
1509 		if (!(error & (error - 1))) {
1510 			pr_err("Single bit error detected. Probably bad RAM.\n");
1511 #ifdef CONFIG_X86
1512 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1513 #else
1514 			pr_err("Run a memory test tool.\n");
1515 #endif
1516 		}
1517 	}
1518 }
1519 #endif
1520 
1521 #if DEBUG
1522 
1523 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1524 {
1525 	int i, size;
1526 	char *realobj;
1527 
1528 	if (cachep->flags & SLAB_RED_ZONE) {
1529 		pr_err("Redzone: 0x%llx/0x%llx\n",
1530 		       *dbg_redzone1(cachep, objp),
1531 		       *dbg_redzone2(cachep, objp));
1532 	}
1533 
1534 	if (cachep->flags & SLAB_STORE_USER)
1535 		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1536 	realobj = (char *)objp + obj_offset(cachep);
1537 	size = cachep->object_size;
1538 	for (i = 0; i < size && lines; i += 16, lines--) {
1539 		int limit;
1540 		limit = 16;
1541 		if (i + limit > size)
1542 			limit = size - i;
1543 		dump_line(realobj, i, limit);
1544 	}
1545 }
1546 
1547 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1548 {
1549 	char *realobj;
1550 	int size, i;
1551 	int lines = 0;
1552 
1553 	if (is_debug_pagealloc_cache(cachep))
1554 		return;
1555 
1556 	realobj = (char *)objp + obj_offset(cachep);
1557 	size = cachep->object_size;
1558 
1559 	for (i = 0; i < size; i++) {
1560 		char exp = POISON_FREE;
1561 		if (i == size - 1)
1562 			exp = POISON_END;
1563 		if (realobj[i] != exp) {
1564 			int limit;
1565 			/* Mismatch ! */
1566 			/* Print header */
1567 			if (lines == 0) {
1568 				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1569 				       print_tainted(), cachep->name,
1570 				       realobj, size);
1571 				print_objinfo(cachep, objp, 0);
1572 			}
1573 			/* Hexdump the affected line */
1574 			i = (i / 16) * 16;
1575 			limit = 16;
1576 			if (i + limit > size)
1577 				limit = size - i;
1578 			dump_line(realobj, i, limit);
1579 			i += 16;
1580 			lines++;
1581 			/* Limit to 5 lines */
1582 			if (lines > 5)
1583 				break;
1584 		}
1585 	}
1586 	if (lines != 0) {
1587 		/* Print some data about the neighboring objects, if they
1588 		 * exist:
1589 		 */
1590 		struct page *page = virt_to_head_page(objp);
1591 		unsigned int objnr;
1592 
1593 		objnr = obj_to_index(cachep, page, objp);
1594 		if (objnr) {
1595 			objp = index_to_obj(cachep, page, objnr - 1);
1596 			realobj = (char *)objp + obj_offset(cachep);
1597 			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1598 			print_objinfo(cachep, objp, 2);
1599 		}
1600 		if (objnr + 1 < cachep->num) {
1601 			objp = index_to_obj(cachep, page, objnr + 1);
1602 			realobj = (char *)objp + obj_offset(cachep);
1603 			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1604 			print_objinfo(cachep, objp, 2);
1605 		}
1606 	}
1607 }
1608 #endif
1609 
1610 #if DEBUG
1611 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1612 						struct page *page)
1613 {
1614 	int i;
1615 
1616 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1617 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1618 			POISON_FREE);
1619 	}
1620 
1621 	for (i = 0; i < cachep->num; i++) {
1622 		void *objp = index_to_obj(cachep, page, i);
1623 
1624 		if (cachep->flags & SLAB_POISON) {
1625 			check_poison_obj(cachep, objp);
1626 			slab_kernel_map(cachep, objp, 1);
1627 		}
1628 		if (cachep->flags & SLAB_RED_ZONE) {
1629 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1630 				slab_error(cachep, "start of a freed object was overwritten");
1631 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1632 				slab_error(cachep, "end of a freed object was overwritten");
1633 		}
1634 	}
1635 }
1636 #else
1637 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1638 						struct page *page)
1639 {
1640 }
1641 #endif
1642 
1643 /**
1644  * slab_destroy - destroy and release all objects in a slab
1645  * @cachep: cache pointer being destroyed
1646  * @page: page pointer being destroyed
1647  *
1648  * Destroy all the objs in a slab page, and release the mem back to the system.
1649  * Before calling the slab page must have been unlinked from the cache. The
1650  * kmem_cache_node ->list_lock is not held/needed.
1651  */
1652 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1653 {
1654 	void *freelist;
1655 
1656 	freelist = page->freelist;
1657 	slab_destroy_debugcheck(cachep, page);
1658 	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1659 		call_rcu(&page->rcu_head, kmem_rcu_free);
1660 	else
1661 		kmem_freepages(cachep, page);
1662 
1663 	/*
1664 	 * From now on, we don't use freelist
1665 	 * although actual page can be freed in rcu context
1666 	 */
1667 	if (OFF_SLAB(cachep))
1668 		kmem_cache_free(cachep->freelist_cache, freelist);
1669 }
1670 
1671 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1672 {
1673 	struct page *page, *n;
1674 
1675 	list_for_each_entry_safe(page, n, list, slab_list) {
1676 		list_del(&page->slab_list);
1677 		slab_destroy(cachep, page);
1678 	}
1679 }
1680 
1681 /**
1682  * calculate_slab_order - calculate size (page order) of slabs
1683  * @cachep: pointer to the cache that is being created
1684  * @size: size of objects to be created in this cache.
1685  * @flags: slab allocation flags
1686  *
1687  * Also calculates the number of objects per slab.
1688  *
1689  * This could be made much more intelligent.  For now, try to avoid using
1690  * high order pages for slabs.  When the gfp() functions are more friendly
1691  * towards high-order requests, this should be changed.
1692  *
1693  * Return: number of left-over bytes in a slab
1694  */
1695 static size_t calculate_slab_order(struct kmem_cache *cachep,
1696 				size_t size, slab_flags_t flags)
1697 {
1698 	size_t left_over = 0;
1699 	int gfporder;
1700 
1701 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1702 		unsigned int num;
1703 		size_t remainder;
1704 
1705 		num = cache_estimate(gfporder, size, flags, &remainder);
1706 		if (!num)
1707 			continue;
1708 
1709 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1710 		if (num > SLAB_OBJ_MAX_NUM)
1711 			break;
1712 
1713 		if (flags & CFLGS_OFF_SLAB) {
1714 			struct kmem_cache *freelist_cache;
1715 			size_t freelist_size;
1716 
1717 			freelist_size = num * sizeof(freelist_idx_t);
1718 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1719 			if (!freelist_cache)
1720 				continue;
1721 
1722 			/*
1723 			 * Needed to avoid possible looping condition
1724 			 * in cache_grow_begin()
1725 			 */
1726 			if (OFF_SLAB(freelist_cache))
1727 				continue;
1728 
1729 			/* check if off slab has enough benefit */
1730 			if (freelist_cache->size > cachep->size / 2)
1731 				continue;
1732 		}
1733 
1734 		/* Found something acceptable - save it away */
1735 		cachep->num = num;
1736 		cachep->gfporder = gfporder;
1737 		left_over = remainder;
1738 
1739 		/*
1740 		 * A VFS-reclaimable slab tends to have most allocations
1741 		 * as GFP_NOFS and we really don't want to have to be allocating
1742 		 * higher-order pages when we are unable to shrink dcache.
1743 		 */
1744 		if (flags & SLAB_RECLAIM_ACCOUNT)
1745 			break;
1746 
1747 		/*
1748 		 * Large number of objects is good, but very large slabs are
1749 		 * currently bad for the gfp()s.
1750 		 */
1751 		if (gfporder >= slab_max_order)
1752 			break;
1753 
1754 		/*
1755 		 * Acceptable internal fragmentation?
1756 		 */
1757 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1758 			break;
1759 	}
1760 	return left_over;
1761 }
1762 
1763 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1764 		struct kmem_cache *cachep, int entries, int batchcount)
1765 {
1766 	int cpu;
1767 	size_t size;
1768 	struct array_cache __percpu *cpu_cache;
1769 
1770 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1771 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1772 
1773 	if (!cpu_cache)
1774 		return NULL;
1775 
1776 	for_each_possible_cpu(cpu) {
1777 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1778 				entries, batchcount);
1779 	}
1780 
1781 	return cpu_cache;
1782 }
1783 
1784 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1785 {
1786 	if (slab_state >= FULL)
1787 		return enable_cpucache(cachep, gfp);
1788 
1789 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1790 	if (!cachep->cpu_cache)
1791 		return 1;
1792 
1793 	if (slab_state == DOWN) {
1794 		/* Creation of first cache (kmem_cache). */
1795 		set_up_node(kmem_cache, CACHE_CACHE);
1796 	} else if (slab_state == PARTIAL) {
1797 		/* For kmem_cache_node */
1798 		set_up_node(cachep, SIZE_NODE);
1799 	} else {
1800 		int node;
1801 
1802 		for_each_online_node(node) {
1803 			cachep->node[node] = kmalloc_node(
1804 				sizeof(struct kmem_cache_node), gfp, node);
1805 			BUG_ON(!cachep->node[node]);
1806 			kmem_cache_node_init(cachep->node[node]);
1807 		}
1808 	}
1809 
1810 	cachep->node[numa_mem_id()]->next_reap =
1811 			jiffies + REAPTIMEOUT_NODE +
1812 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1813 
1814 	cpu_cache_get(cachep)->avail = 0;
1815 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1816 	cpu_cache_get(cachep)->batchcount = 1;
1817 	cpu_cache_get(cachep)->touched = 0;
1818 	cachep->batchcount = 1;
1819 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1820 	return 0;
1821 }
1822 
1823 slab_flags_t kmem_cache_flags(unsigned int object_size,
1824 	slab_flags_t flags, const char *name,
1825 	void (*ctor)(void *))
1826 {
1827 	return flags;
1828 }
1829 
1830 struct kmem_cache *
1831 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1832 		   slab_flags_t flags, void (*ctor)(void *))
1833 {
1834 	struct kmem_cache *cachep;
1835 
1836 	cachep = find_mergeable(size, align, flags, name, ctor);
1837 	if (cachep) {
1838 		cachep->refcount++;
1839 
1840 		/*
1841 		 * Adjust the object sizes so that we clear
1842 		 * the complete object on kzalloc.
1843 		 */
1844 		cachep->object_size = max_t(int, cachep->object_size, size);
1845 	}
1846 	return cachep;
1847 }
1848 
1849 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1850 			size_t size, slab_flags_t flags)
1851 {
1852 	size_t left;
1853 
1854 	cachep->num = 0;
1855 
1856 	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1857 		return false;
1858 
1859 	left = calculate_slab_order(cachep, size,
1860 			flags | CFLGS_OBJFREELIST_SLAB);
1861 	if (!cachep->num)
1862 		return false;
1863 
1864 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1865 		return false;
1866 
1867 	cachep->colour = left / cachep->colour_off;
1868 
1869 	return true;
1870 }
1871 
1872 static bool set_off_slab_cache(struct kmem_cache *cachep,
1873 			size_t size, slab_flags_t flags)
1874 {
1875 	size_t left;
1876 
1877 	cachep->num = 0;
1878 
1879 	/*
1880 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1881 	 * to avoid recursive calls into kmemleak.
1882 	 */
1883 	if (flags & SLAB_NOLEAKTRACE)
1884 		return false;
1885 
1886 	/*
1887 	 * Size is large, assume best to place the slab management obj
1888 	 * off-slab (should allow better packing of objs).
1889 	 */
1890 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1891 	if (!cachep->num)
1892 		return false;
1893 
1894 	/*
1895 	 * If the slab has been placed off-slab, and we have enough space then
1896 	 * move it on-slab. This is at the expense of any extra colouring.
1897 	 */
1898 	if (left >= cachep->num * sizeof(freelist_idx_t))
1899 		return false;
1900 
1901 	cachep->colour = left / cachep->colour_off;
1902 
1903 	return true;
1904 }
1905 
1906 static bool set_on_slab_cache(struct kmem_cache *cachep,
1907 			size_t size, slab_flags_t flags)
1908 {
1909 	size_t left;
1910 
1911 	cachep->num = 0;
1912 
1913 	left = calculate_slab_order(cachep, size, flags);
1914 	if (!cachep->num)
1915 		return false;
1916 
1917 	cachep->colour = left / cachep->colour_off;
1918 
1919 	return true;
1920 }
1921 
1922 /**
1923  * __kmem_cache_create - Create a cache.
1924  * @cachep: cache management descriptor
1925  * @flags: SLAB flags
1926  *
1927  * Returns a ptr to the cache on success, NULL on failure.
1928  * Cannot be called within a int, but can be interrupted.
1929  * The @ctor is run when new pages are allocated by the cache.
1930  *
1931  * The flags are
1932  *
1933  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1934  * to catch references to uninitialised memory.
1935  *
1936  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1937  * for buffer overruns.
1938  *
1939  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1940  * cacheline.  This can be beneficial if you're counting cycles as closely
1941  * as davem.
1942  *
1943  * Return: a pointer to the created cache or %NULL in case of error
1944  */
1945 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1946 {
1947 	size_t ralign = BYTES_PER_WORD;
1948 	gfp_t gfp;
1949 	int err;
1950 	unsigned int size = cachep->size;
1951 
1952 #if DEBUG
1953 #if FORCED_DEBUG
1954 	/*
1955 	 * Enable redzoning and last user accounting, except for caches with
1956 	 * large objects, if the increased size would increase the object size
1957 	 * above the next power of two: caches with object sizes just above a
1958 	 * power of two have a significant amount of internal fragmentation.
1959 	 */
1960 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1961 						2 * sizeof(unsigned long long)))
1962 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1963 	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1964 		flags |= SLAB_POISON;
1965 #endif
1966 #endif
1967 
1968 	/*
1969 	 * Check that size is in terms of words.  This is needed to avoid
1970 	 * unaligned accesses for some archs when redzoning is used, and makes
1971 	 * sure any on-slab bufctl's are also correctly aligned.
1972 	 */
1973 	size = ALIGN(size, BYTES_PER_WORD);
1974 
1975 	if (flags & SLAB_RED_ZONE) {
1976 		ralign = REDZONE_ALIGN;
1977 		/* If redzoning, ensure that the second redzone is suitably
1978 		 * aligned, by adjusting the object size accordingly. */
1979 		size = ALIGN(size, REDZONE_ALIGN);
1980 	}
1981 
1982 	/* 3) caller mandated alignment */
1983 	if (ralign < cachep->align) {
1984 		ralign = cachep->align;
1985 	}
1986 	/* disable debug if necessary */
1987 	if (ralign > __alignof__(unsigned long long))
1988 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1989 	/*
1990 	 * 4) Store it.
1991 	 */
1992 	cachep->align = ralign;
1993 	cachep->colour_off = cache_line_size();
1994 	/* Offset must be a multiple of the alignment. */
1995 	if (cachep->colour_off < cachep->align)
1996 		cachep->colour_off = cachep->align;
1997 
1998 	if (slab_is_available())
1999 		gfp = GFP_KERNEL;
2000 	else
2001 		gfp = GFP_NOWAIT;
2002 
2003 #if DEBUG
2004 
2005 	/*
2006 	 * Both debugging options require word-alignment which is calculated
2007 	 * into align above.
2008 	 */
2009 	if (flags & SLAB_RED_ZONE) {
2010 		/* add space for red zone words */
2011 		cachep->obj_offset += sizeof(unsigned long long);
2012 		size += 2 * sizeof(unsigned long long);
2013 	}
2014 	if (flags & SLAB_STORE_USER) {
2015 		/* user store requires one word storage behind the end of
2016 		 * the real object. But if the second red zone needs to be
2017 		 * aligned to 64 bits, we must allow that much space.
2018 		 */
2019 		if (flags & SLAB_RED_ZONE)
2020 			size += REDZONE_ALIGN;
2021 		else
2022 			size += BYTES_PER_WORD;
2023 	}
2024 #endif
2025 
2026 	kasan_cache_create(cachep, &size, &flags);
2027 
2028 	size = ALIGN(size, cachep->align);
2029 	/*
2030 	 * We should restrict the number of objects in a slab to implement
2031 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2032 	 */
2033 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2034 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2035 
2036 #if DEBUG
2037 	/*
2038 	 * To activate debug pagealloc, off-slab management is necessary
2039 	 * requirement. In early phase of initialization, small sized slab
2040 	 * doesn't get initialized so it would not be possible. So, we need
2041 	 * to check size >= 256. It guarantees that all necessary small
2042 	 * sized slab is initialized in current slab initialization sequence.
2043 	 */
2044 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2045 		size >= 256 && cachep->object_size > cache_line_size()) {
2046 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2047 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2048 
2049 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2050 				flags |= CFLGS_OFF_SLAB;
2051 				cachep->obj_offset += tmp_size - size;
2052 				size = tmp_size;
2053 				goto done;
2054 			}
2055 		}
2056 	}
2057 #endif
2058 
2059 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2060 		flags |= CFLGS_OBJFREELIST_SLAB;
2061 		goto done;
2062 	}
2063 
2064 	if (set_off_slab_cache(cachep, size, flags)) {
2065 		flags |= CFLGS_OFF_SLAB;
2066 		goto done;
2067 	}
2068 
2069 	if (set_on_slab_cache(cachep, size, flags))
2070 		goto done;
2071 
2072 	return -E2BIG;
2073 
2074 done:
2075 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2076 	cachep->flags = flags;
2077 	cachep->allocflags = __GFP_COMP;
2078 	if (flags & SLAB_CACHE_DMA)
2079 		cachep->allocflags |= GFP_DMA;
2080 	if (flags & SLAB_CACHE_DMA32)
2081 		cachep->allocflags |= GFP_DMA32;
2082 	if (flags & SLAB_RECLAIM_ACCOUNT)
2083 		cachep->allocflags |= __GFP_RECLAIMABLE;
2084 	cachep->size = size;
2085 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2086 
2087 #if DEBUG
2088 	/*
2089 	 * If we're going to use the generic kernel_map_pages()
2090 	 * poisoning, then it's going to smash the contents of
2091 	 * the redzone and userword anyhow, so switch them off.
2092 	 */
2093 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2094 		(cachep->flags & SLAB_POISON) &&
2095 		is_debug_pagealloc_cache(cachep))
2096 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2097 #endif
2098 
2099 	if (OFF_SLAB(cachep)) {
2100 		cachep->freelist_cache =
2101 			kmalloc_slab(cachep->freelist_size, 0u);
2102 	}
2103 
2104 	err = setup_cpu_cache(cachep, gfp);
2105 	if (err) {
2106 		__kmem_cache_release(cachep);
2107 		return err;
2108 	}
2109 
2110 	return 0;
2111 }
2112 
2113 #if DEBUG
2114 static void check_irq_off(void)
2115 {
2116 	BUG_ON(!irqs_disabled());
2117 }
2118 
2119 static void check_irq_on(void)
2120 {
2121 	BUG_ON(irqs_disabled());
2122 }
2123 
2124 static void check_mutex_acquired(void)
2125 {
2126 	BUG_ON(!mutex_is_locked(&slab_mutex));
2127 }
2128 
2129 static void check_spinlock_acquired(struct kmem_cache *cachep)
2130 {
2131 #ifdef CONFIG_SMP
2132 	check_irq_off();
2133 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2134 #endif
2135 }
2136 
2137 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2138 {
2139 #ifdef CONFIG_SMP
2140 	check_irq_off();
2141 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2142 #endif
2143 }
2144 
2145 #else
2146 #define check_irq_off()	do { } while(0)
2147 #define check_irq_on()	do { } while(0)
2148 #define check_mutex_acquired()	do { } while(0)
2149 #define check_spinlock_acquired(x) do { } while(0)
2150 #define check_spinlock_acquired_node(x, y) do { } while(0)
2151 #endif
2152 
2153 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2154 				int node, bool free_all, struct list_head *list)
2155 {
2156 	int tofree;
2157 
2158 	if (!ac || !ac->avail)
2159 		return;
2160 
2161 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2162 	if (tofree > ac->avail)
2163 		tofree = (ac->avail + 1) / 2;
2164 
2165 	free_block(cachep, ac->entry, tofree, node, list);
2166 	ac->avail -= tofree;
2167 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2168 }
2169 
2170 static void do_drain(void *arg)
2171 {
2172 	struct kmem_cache *cachep = arg;
2173 	struct array_cache *ac;
2174 	int node = numa_mem_id();
2175 	struct kmem_cache_node *n;
2176 	LIST_HEAD(list);
2177 
2178 	check_irq_off();
2179 	ac = cpu_cache_get(cachep);
2180 	n = get_node(cachep, node);
2181 	spin_lock(&n->list_lock);
2182 	free_block(cachep, ac->entry, ac->avail, node, &list);
2183 	spin_unlock(&n->list_lock);
2184 	slabs_destroy(cachep, &list);
2185 	ac->avail = 0;
2186 }
2187 
2188 static void drain_cpu_caches(struct kmem_cache *cachep)
2189 {
2190 	struct kmem_cache_node *n;
2191 	int node;
2192 	LIST_HEAD(list);
2193 
2194 	on_each_cpu(do_drain, cachep, 1);
2195 	check_irq_on();
2196 	for_each_kmem_cache_node(cachep, node, n)
2197 		if (n->alien)
2198 			drain_alien_cache(cachep, n->alien);
2199 
2200 	for_each_kmem_cache_node(cachep, node, n) {
2201 		spin_lock_irq(&n->list_lock);
2202 		drain_array_locked(cachep, n->shared, node, true, &list);
2203 		spin_unlock_irq(&n->list_lock);
2204 
2205 		slabs_destroy(cachep, &list);
2206 	}
2207 }
2208 
2209 /*
2210  * Remove slabs from the list of free slabs.
2211  * Specify the number of slabs to drain in tofree.
2212  *
2213  * Returns the actual number of slabs released.
2214  */
2215 static int drain_freelist(struct kmem_cache *cache,
2216 			struct kmem_cache_node *n, int tofree)
2217 {
2218 	struct list_head *p;
2219 	int nr_freed;
2220 	struct page *page;
2221 
2222 	nr_freed = 0;
2223 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2224 
2225 		spin_lock_irq(&n->list_lock);
2226 		p = n->slabs_free.prev;
2227 		if (p == &n->slabs_free) {
2228 			spin_unlock_irq(&n->list_lock);
2229 			goto out;
2230 		}
2231 
2232 		page = list_entry(p, struct page, slab_list);
2233 		list_del(&page->slab_list);
2234 		n->free_slabs--;
2235 		n->total_slabs--;
2236 		/*
2237 		 * Safe to drop the lock. The slab is no longer linked
2238 		 * to the cache.
2239 		 */
2240 		n->free_objects -= cache->num;
2241 		spin_unlock_irq(&n->list_lock);
2242 		slab_destroy(cache, page);
2243 		nr_freed++;
2244 	}
2245 out:
2246 	return nr_freed;
2247 }
2248 
2249 bool __kmem_cache_empty(struct kmem_cache *s)
2250 {
2251 	int node;
2252 	struct kmem_cache_node *n;
2253 
2254 	for_each_kmem_cache_node(s, node, n)
2255 		if (!list_empty(&n->slabs_full) ||
2256 		    !list_empty(&n->slabs_partial))
2257 			return false;
2258 	return true;
2259 }
2260 
2261 int __kmem_cache_shrink(struct kmem_cache *cachep)
2262 {
2263 	int ret = 0;
2264 	int node;
2265 	struct kmem_cache_node *n;
2266 
2267 	drain_cpu_caches(cachep);
2268 
2269 	check_irq_on();
2270 	for_each_kmem_cache_node(cachep, node, n) {
2271 		drain_freelist(cachep, n, INT_MAX);
2272 
2273 		ret += !list_empty(&n->slabs_full) ||
2274 			!list_empty(&n->slabs_partial);
2275 	}
2276 	return (ret ? 1 : 0);
2277 }
2278 
2279 #ifdef CONFIG_MEMCG
2280 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2281 {
2282 	__kmem_cache_shrink(cachep);
2283 }
2284 #endif
2285 
2286 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2287 {
2288 	return __kmem_cache_shrink(cachep);
2289 }
2290 
2291 void __kmem_cache_release(struct kmem_cache *cachep)
2292 {
2293 	int i;
2294 	struct kmem_cache_node *n;
2295 
2296 	cache_random_seq_destroy(cachep);
2297 
2298 	free_percpu(cachep->cpu_cache);
2299 
2300 	/* NUMA: free the node structures */
2301 	for_each_kmem_cache_node(cachep, i, n) {
2302 		kfree(n->shared);
2303 		free_alien_cache(n->alien);
2304 		kfree(n);
2305 		cachep->node[i] = NULL;
2306 	}
2307 }
2308 
2309 /*
2310  * Get the memory for a slab management obj.
2311  *
2312  * For a slab cache when the slab descriptor is off-slab, the
2313  * slab descriptor can't come from the same cache which is being created,
2314  * Because if it is the case, that means we defer the creation of
2315  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2316  * And we eventually call down to __kmem_cache_create(), which
2317  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2318  * This is a "chicken-and-egg" problem.
2319  *
2320  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2321  * which are all initialized during kmem_cache_init().
2322  */
2323 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2324 				   struct page *page, int colour_off,
2325 				   gfp_t local_flags, int nodeid)
2326 {
2327 	void *freelist;
2328 	void *addr = page_address(page);
2329 
2330 	page->s_mem = addr + colour_off;
2331 	page->active = 0;
2332 
2333 	if (OBJFREELIST_SLAB(cachep))
2334 		freelist = NULL;
2335 	else if (OFF_SLAB(cachep)) {
2336 		/* Slab management obj is off-slab. */
2337 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2338 					      local_flags, nodeid);
2339 		if (!freelist)
2340 			return NULL;
2341 	} else {
2342 		/* We will use last bytes at the slab for freelist */
2343 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2344 				cachep->freelist_size;
2345 	}
2346 
2347 	return freelist;
2348 }
2349 
2350 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2351 {
2352 	return ((freelist_idx_t *)page->freelist)[idx];
2353 }
2354 
2355 static inline void set_free_obj(struct page *page,
2356 					unsigned int idx, freelist_idx_t val)
2357 {
2358 	((freelist_idx_t *)(page->freelist))[idx] = val;
2359 }
2360 
2361 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2362 {
2363 #if DEBUG
2364 	int i;
2365 
2366 	for (i = 0; i < cachep->num; i++) {
2367 		void *objp = index_to_obj(cachep, page, i);
2368 
2369 		if (cachep->flags & SLAB_STORE_USER)
2370 			*dbg_userword(cachep, objp) = NULL;
2371 
2372 		if (cachep->flags & SLAB_RED_ZONE) {
2373 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2374 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2375 		}
2376 		/*
2377 		 * Constructors are not allowed to allocate memory from the same
2378 		 * cache which they are a constructor for.  Otherwise, deadlock.
2379 		 * They must also be threaded.
2380 		 */
2381 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2382 			kasan_unpoison_object_data(cachep,
2383 						   objp + obj_offset(cachep));
2384 			cachep->ctor(objp + obj_offset(cachep));
2385 			kasan_poison_object_data(
2386 				cachep, objp + obj_offset(cachep));
2387 		}
2388 
2389 		if (cachep->flags & SLAB_RED_ZONE) {
2390 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2391 				slab_error(cachep, "constructor overwrote the end of an object");
2392 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2393 				slab_error(cachep, "constructor overwrote the start of an object");
2394 		}
2395 		/* need to poison the objs? */
2396 		if (cachep->flags & SLAB_POISON) {
2397 			poison_obj(cachep, objp, POISON_FREE);
2398 			slab_kernel_map(cachep, objp, 0);
2399 		}
2400 	}
2401 #endif
2402 }
2403 
2404 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2405 /* Hold information during a freelist initialization */
2406 union freelist_init_state {
2407 	struct {
2408 		unsigned int pos;
2409 		unsigned int *list;
2410 		unsigned int count;
2411 	};
2412 	struct rnd_state rnd_state;
2413 };
2414 
2415 /*
2416  * Initialize the state based on the randomization methode available.
2417  * return true if the pre-computed list is available, false otherwize.
2418  */
2419 static bool freelist_state_initialize(union freelist_init_state *state,
2420 				struct kmem_cache *cachep,
2421 				unsigned int count)
2422 {
2423 	bool ret;
2424 	unsigned int rand;
2425 
2426 	/* Use best entropy available to define a random shift */
2427 	rand = get_random_int();
2428 
2429 	/* Use a random state if the pre-computed list is not available */
2430 	if (!cachep->random_seq) {
2431 		prandom_seed_state(&state->rnd_state, rand);
2432 		ret = false;
2433 	} else {
2434 		state->list = cachep->random_seq;
2435 		state->count = count;
2436 		state->pos = rand % count;
2437 		ret = true;
2438 	}
2439 	return ret;
2440 }
2441 
2442 /* Get the next entry on the list and randomize it using a random shift */
2443 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2444 {
2445 	if (state->pos >= state->count)
2446 		state->pos = 0;
2447 	return state->list[state->pos++];
2448 }
2449 
2450 /* Swap two freelist entries */
2451 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2452 {
2453 	swap(((freelist_idx_t *)page->freelist)[a],
2454 		((freelist_idx_t *)page->freelist)[b]);
2455 }
2456 
2457 /*
2458  * Shuffle the freelist initialization state based on pre-computed lists.
2459  * return true if the list was successfully shuffled, false otherwise.
2460  */
2461 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2462 {
2463 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2464 	union freelist_init_state state;
2465 	bool precomputed;
2466 
2467 	if (count < 2)
2468 		return false;
2469 
2470 	precomputed = freelist_state_initialize(&state, cachep, count);
2471 
2472 	/* Take a random entry as the objfreelist */
2473 	if (OBJFREELIST_SLAB(cachep)) {
2474 		if (!precomputed)
2475 			objfreelist = count - 1;
2476 		else
2477 			objfreelist = next_random_slot(&state);
2478 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2479 						obj_offset(cachep);
2480 		count--;
2481 	}
2482 
2483 	/*
2484 	 * On early boot, generate the list dynamically.
2485 	 * Later use a pre-computed list for speed.
2486 	 */
2487 	if (!precomputed) {
2488 		for (i = 0; i < count; i++)
2489 			set_free_obj(page, i, i);
2490 
2491 		/* Fisher-Yates shuffle */
2492 		for (i = count - 1; i > 0; i--) {
2493 			rand = prandom_u32_state(&state.rnd_state);
2494 			rand %= (i + 1);
2495 			swap_free_obj(page, i, rand);
2496 		}
2497 	} else {
2498 		for (i = 0; i < count; i++)
2499 			set_free_obj(page, i, next_random_slot(&state));
2500 	}
2501 
2502 	if (OBJFREELIST_SLAB(cachep))
2503 		set_free_obj(page, cachep->num - 1, objfreelist);
2504 
2505 	return true;
2506 }
2507 #else
2508 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2509 				struct page *page)
2510 {
2511 	return false;
2512 }
2513 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2514 
2515 static void cache_init_objs(struct kmem_cache *cachep,
2516 			    struct page *page)
2517 {
2518 	int i;
2519 	void *objp;
2520 	bool shuffled;
2521 
2522 	cache_init_objs_debug(cachep, page);
2523 
2524 	/* Try to randomize the freelist if enabled */
2525 	shuffled = shuffle_freelist(cachep, page);
2526 
2527 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2528 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2529 						obj_offset(cachep);
2530 	}
2531 
2532 	for (i = 0; i < cachep->num; i++) {
2533 		objp = index_to_obj(cachep, page, i);
2534 		objp = kasan_init_slab_obj(cachep, objp);
2535 
2536 		/* constructor could break poison info */
2537 		if (DEBUG == 0 && cachep->ctor) {
2538 			kasan_unpoison_object_data(cachep, objp);
2539 			cachep->ctor(objp);
2540 			kasan_poison_object_data(cachep, objp);
2541 		}
2542 
2543 		if (!shuffled)
2544 			set_free_obj(page, i, i);
2545 	}
2546 }
2547 
2548 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2549 {
2550 	void *objp;
2551 
2552 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2553 	page->active++;
2554 
2555 #if DEBUG
2556 	if (cachep->flags & SLAB_STORE_USER)
2557 		set_store_user_dirty(cachep);
2558 #endif
2559 
2560 	return objp;
2561 }
2562 
2563 static void slab_put_obj(struct kmem_cache *cachep,
2564 			struct page *page, void *objp)
2565 {
2566 	unsigned int objnr = obj_to_index(cachep, page, objp);
2567 #if DEBUG
2568 	unsigned int i;
2569 
2570 	/* Verify double free bug */
2571 	for (i = page->active; i < cachep->num; i++) {
2572 		if (get_free_obj(page, i) == objnr) {
2573 			pr_err("slab: double free detected in cache '%s', objp %px\n",
2574 			       cachep->name, objp);
2575 			BUG();
2576 		}
2577 	}
2578 #endif
2579 	page->active--;
2580 	if (!page->freelist)
2581 		page->freelist = objp + obj_offset(cachep);
2582 
2583 	set_free_obj(page, page->active, objnr);
2584 }
2585 
2586 /*
2587  * Map pages beginning at addr to the given cache and slab. This is required
2588  * for the slab allocator to be able to lookup the cache and slab of a
2589  * virtual address for kfree, ksize, and slab debugging.
2590  */
2591 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2592 			   void *freelist)
2593 {
2594 	page->slab_cache = cache;
2595 	page->freelist = freelist;
2596 }
2597 
2598 /*
2599  * Grow (by 1) the number of slabs within a cache.  This is called by
2600  * kmem_cache_alloc() when there are no active objs left in a cache.
2601  */
2602 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2603 				gfp_t flags, int nodeid)
2604 {
2605 	void *freelist;
2606 	size_t offset;
2607 	gfp_t local_flags;
2608 	int page_node;
2609 	struct kmem_cache_node *n;
2610 	struct page *page;
2611 
2612 	/*
2613 	 * Be lazy and only check for valid flags here,  keeping it out of the
2614 	 * critical path in kmem_cache_alloc().
2615 	 */
2616 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2617 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2618 		flags &= ~GFP_SLAB_BUG_MASK;
2619 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2620 				invalid_mask, &invalid_mask, flags, &flags);
2621 		dump_stack();
2622 	}
2623 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2624 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2625 
2626 	check_irq_off();
2627 	if (gfpflags_allow_blocking(local_flags))
2628 		local_irq_enable();
2629 
2630 	/*
2631 	 * Get mem for the objs.  Attempt to allocate a physical page from
2632 	 * 'nodeid'.
2633 	 */
2634 	page = kmem_getpages(cachep, local_flags, nodeid);
2635 	if (!page)
2636 		goto failed;
2637 
2638 	page_node = page_to_nid(page);
2639 	n = get_node(cachep, page_node);
2640 
2641 	/* Get colour for the slab, and cal the next value. */
2642 	n->colour_next++;
2643 	if (n->colour_next >= cachep->colour)
2644 		n->colour_next = 0;
2645 
2646 	offset = n->colour_next;
2647 	if (offset >= cachep->colour)
2648 		offset = 0;
2649 
2650 	offset *= cachep->colour_off;
2651 
2652 	/*
2653 	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2654 	 * page_address() in the latter returns a non-tagged pointer,
2655 	 * as it should be for slab pages.
2656 	 */
2657 	kasan_poison_slab(page);
2658 
2659 	/* Get slab management. */
2660 	freelist = alloc_slabmgmt(cachep, page, offset,
2661 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2662 	if (OFF_SLAB(cachep) && !freelist)
2663 		goto opps1;
2664 
2665 	slab_map_pages(cachep, page, freelist);
2666 
2667 	cache_init_objs(cachep, page);
2668 
2669 	if (gfpflags_allow_blocking(local_flags))
2670 		local_irq_disable();
2671 
2672 	return page;
2673 
2674 opps1:
2675 	kmem_freepages(cachep, page);
2676 failed:
2677 	if (gfpflags_allow_blocking(local_flags))
2678 		local_irq_disable();
2679 	return NULL;
2680 }
2681 
2682 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2683 {
2684 	struct kmem_cache_node *n;
2685 	void *list = NULL;
2686 
2687 	check_irq_off();
2688 
2689 	if (!page)
2690 		return;
2691 
2692 	INIT_LIST_HEAD(&page->slab_list);
2693 	n = get_node(cachep, page_to_nid(page));
2694 
2695 	spin_lock(&n->list_lock);
2696 	n->total_slabs++;
2697 	if (!page->active) {
2698 		list_add_tail(&page->slab_list, &n->slabs_free);
2699 		n->free_slabs++;
2700 	} else
2701 		fixup_slab_list(cachep, n, page, &list);
2702 
2703 	STATS_INC_GROWN(cachep);
2704 	n->free_objects += cachep->num - page->active;
2705 	spin_unlock(&n->list_lock);
2706 
2707 	fixup_objfreelist_debug(cachep, &list);
2708 }
2709 
2710 #if DEBUG
2711 
2712 /*
2713  * Perform extra freeing checks:
2714  * - detect bad pointers.
2715  * - POISON/RED_ZONE checking
2716  */
2717 static void kfree_debugcheck(const void *objp)
2718 {
2719 	if (!virt_addr_valid(objp)) {
2720 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2721 		       (unsigned long)objp);
2722 		BUG();
2723 	}
2724 }
2725 
2726 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2727 {
2728 	unsigned long long redzone1, redzone2;
2729 
2730 	redzone1 = *dbg_redzone1(cache, obj);
2731 	redzone2 = *dbg_redzone2(cache, obj);
2732 
2733 	/*
2734 	 * Redzone is ok.
2735 	 */
2736 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2737 		return;
2738 
2739 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2740 		slab_error(cache, "double free detected");
2741 	else
2742 		slab_error(cache, "memory outside object was overwritten");
2743 
2744 	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2745 	       obj, redzone1, redzone2);
2746 }
2747 
2748 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2749 				   unsigned long caller)
2750 {
2751 	unsigned int objnr;
2752 	struct page *page;
2753 
2754 	BUG_ON(virt_to_cache(objp) != cachep);
2755 
2756 	objp -= obj_offset(cachep);
2757 	kfree_debugcheck(objp);
2758 	page = virt_to_head_page(objp);
2759 
2760 	if (cachep->flags & SLAB_RED_ZONE) {
2761 		verify_redzone_free(cachep, objp);
2762 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2763 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2764 	}
2765 	if (cachep->flags & SLAB_STORE_USER) {
2766 		set_store_user_dirty(cachep);
2767 		*dbg_userword(cachep, objp) = (void *)caller;
2768 	}
2769 
2770 	objnr = obj_to_index(cachep, page, objp);
2771 
2772 	BUG_ON(objnr >= cachep->num);
2773 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2774 
2775 	if (cachep->flags & SLAB_POISON) {
2776 		poison_obj(cachep, objp, POISON_FREE);
2777 		slab_kernel_map(cachep, objp, 0);
2778 	}
2779 	return objp;
2780 }
2781 
2782 #else
2783 #define kfree_debugcheck(x) do { } while(0)
2784 #define cache_free_debugcheck(x,objp,z) (objp)
2785 #endif
2786 
2787 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2788 						void **list)
2789 {
2790 #if DEBUG
2791 	void *next = *list;
2792 	void *objp;
2793 
2794 	while (next) {
2795 		objp = next - obj_offset(cachep);
2796 		next = *(void **)next;
2797 		poison_obj(cachep, objp, POISON_FREE);
2798 	}
2799 #endif
2800 }
2801 
2802 static inline void fixup_slab_list(struct kmem_cache *cachep,
2803 				struct kmem_cache_node *n, struct page *page,
2804 				void **list)
2805 {
2806 	/* move slabp to correct slabp list: */
2807 	list_del(&page->slab_list);
2808 	if (page->active == cachep->num) {
2809 		list_add(&page->slab_list, &n->slabs_full);
2810 		if (OBJFREELIST_SLAB(cachep)) {
2811 #if DEBUG
2812 			/* Poisoning will be done without holding the lock */
2813 			if (cachep->flags & SLAB_POISON) {
2814 				void **objp = page->freelist;
2815 
2816 				*objp = *list;
2817 				*list = objp;
2818 			}
2819 #endif
2820 			page->freelist = NULL;
2821 		}
2822 	} else
2823 		list_add(&page->slab_list, &n->slabs_partial);
2824 }
2825 
2826 /* Try to find non-pfmemalloc slab if needed */
2827 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2828 					struct page *page, bool pfmemalloc)
2829 {
2830 	if (!page)
2831 		return NULL;
2832 
2833 	if (pfmemalloc)
2834 		return page;
2835 
2836 	if (!PageSlabPfmemalloc(page))
2837 		return page;
2838 
2839 	/* No need to keep pfmemalloc slab if we have enough free objects */
2840 	if (n->free_objects > n->free_limit) {
2841 		ClearPageSlabPfmemalloc(page);
2842 		return page;
2843 	}
2844 
2845 	/* Move pfmemalloc slab to the end of list to speed up next search */
2846 	list_del(&page->slab_list);
2847 	if (!page->active) {
2848 		list_add_tail(&page->slab_list, &n->slabs_free);
2849 		n->free_slabs++;
2850 	} else
2851 		list_add_tail(&page->slab_list, &n->slabs_partial);
2852 
2853 	list_for_each_entry(page, &n->slabs_partial, slab_list) {
2854 		if (!PageSlabPfmemalloc(page))
2855 			return page;
2856 	}
2857 
2858 	n->free_touched = 1;
2859 	list_for_each_entry(page, &n->slabs_free, slab_list) {
2860 		if (!PageSlabPfmemalloc(page)) {
2861 			n->free_slabs--;
2862 			return page;
2863 		}
2864 	}
2865 
2866 	return NULL;
2867 }
2868 
2869 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2870 {
2871 	struct page *page;
2872 
2873 	assert_spin_locked(&n->list_lock);
2874 	page = list_first_entry_or_null(&n->slabs_partial, struct page,
2875 					slab_list);
2876 	if (!page) {
2877 		n->free_touched = 1;
2878 		page = list_first_entry_or_null(&n->slabs_free, struct page,
2879 						slab_list);
2880 		if (page)
2881 			n->free_slabs--;
2882 	}
2883 
2884 	if (sk_memalloc_socks())
2885 		page = get_valid_first_slab(n, page, pfmemalloc);
2886 
2887 	return page;
2888 }
2889 
2890 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2891 				struct kmem_cache_node *n, gfp_t flags)
2892 {
2893 	struct page *page;
2894 	void *obj;
2895 	void *list = NULL;
2896 
2897 	if (!gfp_pfmemalloc_allowed(flags))
2898 		return NULL;
2899 
2900 	spin_lock(&n->list_lock);
2901 	page = get_first_slab(n, true);
2902 	if (!page) {
2903 		spin_unlock(&n->list_lock);
2904 		return NULL;
2905 	}
2906 
2907 	obj = slab_get_obj(cachep, page);
2908 	n->free_objects--;
2909 
2910 	fixup_slab_list(cachep, n, page, &list);
2911 
2912 	spin_unlock(&n->list_lock);
2913 	fixup_objfreelist_debug(cachep, &list);
2914 
2915 	return obj;
2916 }
2917 
2918 /*
2919  * Slab list should be fixed up by fixup_slab_list() for existing slab
2920  * or cache_grow_end() for new slab
2921  */
2922 static __always_inline int alloc_block(struct kmem_cache *cachep,
2923 		struct array_cache *ac, struct page *page, int batchcount)
2924 {
2925 	/*
2926 	 * There must be at least one object available for
2927 	 * allocation.
2928 	 */
2929 	BUG_ON(page->active >= cachep->num);
2930 
2931 	while (page->active < cachep->num && batchcount--) {
2932 		STATS_INC_ALLOCED(cachep);
2933 		STATS_INC_ACTIVE(cachep);
2934 		STATS_SET_HIGH(cachep);
2935 
2936 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2937 	}
2938 
2939 	return batchcount;
2940 }
2941 
2942 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2943 {
2944 	int batchcount;
2945 	struct kmem_cache_node *n;
2946 	struct array_cache *ac, *shared;
2947 	int node;
2948 	void *list = NULL;
2949 	struct page *page;
2950 
2951 	check_irq_off();
2952 	node = numa_mem_id();
2953 
2954 	ac = cpu_cache_get(cachep);
2955 	batchcount = ac->batchcount;
2956 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2957 		/*
2958 		 * If there was little recent activity on this cache, then
2959 		 * perform only a partial refill.  Otherwise we could generate
2960 		 * refill bouncing.
2961 		 */
2962 		batchcount = BATCHREFILL_LIMIT;
2963 	}
2964 	n = get_node(cachep, node);
2965 
2966 	BUG_ON(ac->avail > 0 || !n);
2967 	shared = READ_ONCE(n->shared);
2968 	if (!n->free_objects && (!shared || !shared->avail))
2969 		goto direct_grow;
2970 
2971 	spin_lock(&n->list_lock);
2972 	shared = READ_ONCE(n->shared);
2973 
2974 	/* See if we can refill from the shared array */
2975 	if (shared && transfer_objects(ac, shared, batchcount)) {
2976 		shared->touched = 1;
2977 		goto alloc_done;
2978 	}
2979 
2980 	while (batchcount > 0) {
2981 		/* Get slab alloc is to come from. */
2982 		page = get_first_slab(n, false);
2983 		if (!page)
2984 			goto must_grow;
2985 
2986 		check_spinlock_acquired(cachep);
2987 
2988 		batchcount = alloc_block(cachep, ac, page, batchcount);
2989 		fixup_slab_list(cachep, n, page, &list);
2990 	}
2991 
2992 must_grow:
2993 	n->free_objects -= ac->avail;
2994 alloc_done:
2995 	spin_unlock(&n->list_lock);
2996 	fixup_objfreelist_debug(cachep, &list);
2997 
2998 direct_grow:
2999 	if (unlikely(!ac->avail)) {
3000 		/* Check if we can use obj in pfmemalloc slab */
3001 		if (sk_memalloc_socks()) {
3002 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3003 
3004 			if (obj)
3005 				return obj;
3006 		}
3007 
3008 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3009 
3010 		/*
3011 		 * cache_grow_begin() can reenable interrupts,
3012 		 * then ac could change.
3013 		 */
3014 		ac = cpu_cache_get(cachep);
3015 		if (!ac->avail && page)
3016 			alloc_block(cachep, ac, page, batchcount);
3017 		cache_grow_end(cachep, page);
3018 
3019 		if (!ac->avail)
3020 			return NULL;
3021 	}
3022 	ac->touched = 1;
3023 
3024 	return ac->entry[--ac->avail];
3025 }
3026 
3027 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3028 						gfp_t flags)
3029 {
3030 	might_sleep_if(gfpflags_allow_blocking(flags));
3031 }
3032 
3033 #if DEBUG
3034 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3035 				gfp_t flags, void *objp, unsigned long caller)
3036 {
3037 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3038 	if (!objp)
3039 		return objp;
3040 	if (cachep->flags & SLAB_POISON) {
3041 		check_poison_obj(cachep, objp);
3042 		slab_kernel_map(cachep, objp, 1);
3043 		poison_obj(cachep, objp, POISON_INUSE);
3044 	}
3045 	if (cachep->flags & SLAB_STORE_USER)
3046 		*dbg_userword(cachep, objp) = (void *)caller;
3047 
3048 	if (cachep->flags & SLAB_RED_ZONE) {
3049 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3050 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3051 			slab_error(cachep, "double free, or memory outside object was overwritten");
3052 			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3053 			       objp, *dbg_redzone1(cachep, objp),
3054 			       *dbg_redzone2(cachep, objp));
3055 		}
3056 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3057 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3058 	}
3059 
3060 	objp += obj_offset(cachep);
3061 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3062 		cachep->ctor(objp);
3063 	if (ARCH_SLAB_MINALIGN &&
3064 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3065 		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3066 		       objp, (int)ARCH_SLAB_MINALIGN);
3067 	}
3068 	return objp;
3069 }
3070 #else
3071 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3072 #endif
3073 
3074 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3075 {
3076 	void *objp;
3077 	struct array_cache *ac;
3078 
3079 	check_irq_off();
3080 
3081 	ac = cpu_cache_get(cachep);
3082 	if (likely(ac->avail)) {
3083 		ac->touched = 1;
3084 		objp = ac->entry[--ac->avail];
3085 
3086 		STATS_INC_ALLOCHIT(cachep);
3087 		goto out;
3088 	}
3089 
3090 	STATS_INC_ALLOCMISS(cachep);
3091 	objp = cache_alloc_refill(cachep, flags);
3092 	/*
3093 	 * the 'ac' may be updated by cache_alloc_refill(),
3094 	 * and kmemleak_erase() requires its correct value.
3095 	 */
3096 	ac = cpu_cache_get(cachep);
3097 
3098 out:
3099 	/*
3100 	 * To avoid a false negative, if an object that is in one of the
3101 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3102 	 * treat the array pointers as a reference to the object.
3103 	 */
3104 	if (objp)
3105 		kmemleak_erase(&ac->entry[ac->avail]);
3106 	return objp;
3107 }
3108 
3109 #ifdef CONFIG_NUMA
3110 /*
3111  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3112  *
3113  * If we are in_interrupt, then process context, including cpusets and
3114  * mempolicy, may not apply and should not be used for allocation policy.
3115  */
3116 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3117 {
3118 	int nid_alloc, nid_here;
3119 
3120 	if (in_interrupt() || (flags & __GFP_THISNODE))
3121 		return NULL;
3122 	nid_alloc = nid_here = numa_mem_id();
3123 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3124 		nid_alloc = cpuset_slab_spread_node();
3125 	else if (current->mempolicy)
3126 		nid_alloc = mempolicy_slab_node();
3127 	if (nid_alloc != nid_here)
3128 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3129 	return NULL;
3130 }
3131 
3132 /*
3133  * Fallback function if there was no memory available and no objects on a
3134  * certain node and fall back is permitted. First we scan all the
3135  * available node for available objects. If that fails then we
3136  * perform an allocation without specifying a node. This allows the page
3137  * allocator to do its reclaim / fallback magic. We then insert the
3138  * slab into the proper nodelist and then allocate from it.
3139  */
3140 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3141 {
3142 	struct zonelist *zonelist;
3143 	struct zoneref *z;
3144 	struct zone *zone;
3145 	enum zone_type high_zoneidx = gfp_zone(flags);
3146 	void *obj = NULL;
3147 	struct page *page;
3148 	int nid;
3149 	unsigned int cpuset_mems_cookie;
3150 
3151 	if (flags & __GFP_THISNODE)
3152 		return NULL;
3153 
3154 retry_cpuset:
3155 	cpuset_mems_cookie = read_mems_allowed_begin();
3156 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3157 
3158 retry:
3159 	/*
3160 	 * Look through allowed nodes for objects available
3161 	 * from existing per node queues.
3162 	 */
3163 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3164 		nid = zone_to_nid(zone);
3165 
3166 		if (cpuset_zone_allowed(zone, flags) &&
3167 			get_node(cache, nid) &&
3168 			get_node(cache, nid)->free_objects) {
3169 				obj = ____cache_alloc_node(cache,
3170 					gfp_exact_node(flags), nid);
3171 				if (obj)
3172 					break;
3173 		}
3174 	}
3175 
3176 	if (!obj) {
3177 		/*
3178 		 * This allocation will be performed within the constraints
3179 		 * of the current cpuset / memory policy requirements.
3180 		 * We may trigger various forms of reclaim on the allowed
3181 		 * set and go into memory reserves if necessary.
3182 		 */
3183 		page = cache_grow_begin(cache, flags, numa_mem_id());
3184 		cache_grow_end(cache, page);
3185 		if (page) {
3186 			nid = page_to_nid(page);
3187 			obj = ____cache_alloc_node(cache,
3188 				gfp_exact_node(flags), nid);
3189 
3190 			/*
3191 			 * Another processor may allocate the objects in
3192 			 * the slab since we are not holding any locks.
3193 			 */
3194 			if (!obj)
3195 				goto retry;
3196 		}
3197 	}
3198 
3199 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3200 		goto retry_cpuset;
3201 	return obj;
3202 }
3203 
3204 /*
3205  * A interface to enable slab creation on nodeid
3206  */
3207 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3208 				int nodeid)
3209 {
3210 	struct page *page;
3211 	struct kmem_cache_node *n;
3212 	void *obj = NULL;
3213 	void *list = NULL;
3214 
3215 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3216 	n = get_node(cachep, nodeid);
3217 	BUG_ON(!n);
3218 
3219 	check_irq_off();
3220 	spin_lock(&n->list_lock);
3221 	page = get_first_slab(n, false);
3222 	if (!page)
3223 		goto must_grow;
3224 
3225 	check_spinlock_acquired_node(cachep, nodeid);
3226 
3227 	STATS_INC_NODEALLOCS(cachep);
3228 	STATS_INC_ACTIVE(cachep);
3229 	STATS_SET_HIGH(cachep);
3230 
3231 	BUG_ON(page->active == cachep->num);
3232 
3233 	obj = slab_get_obj(cachep, page);
3234 	n->free_objects--;
3235 
3236 	fixup_slab_list(cachep, n, page, &list);
3237 
3238 	spin_unlock(&n->list_lock);
3239 	fixup_objfreelist_debug(cachep, &list);
3240 	return obj;
3241 
3242 must_grow:
3243 	spin_unlock(&n->list_lock);
3244 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3245 	if (page) {
3246 		/* This slab isn't counted yet so don't update free_objects */
3247 		obj = slab_get_obj(cachep, page);
3248 	}
3249 	cache_grow_end(cachep, page);
3250 
3251 	return obj ? obj : fallback_alloc(cachep, flags);
3252 }
3253 
3254 static __always_inline void *
3255 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3256 		   unsigned long caller)
3257 {
3258 	unsigned long save_flags;
3259 	void *ptr;
3260 	int slab_node = numa_mem_id();
3261 
3262 	flags &= gfp_allowed_mask;
3263 	cachep = slab_pre_alloc_hook(cachep, flags);
3264 	if (unlikely(!cachep))
3265 		return NULL;
3266 
3267 	cache_alloc_debugcheck_before(cachep, flags);
3268 	local_irq_save(save_flags);
3269 
3270 	if (nodeid == NUMA_NO_NODE)
3271 		nodeid = slab_node;
3272 
3273 	if (unlikely(!get_node(cachep, nodeid))) {
3274 		/* Node not bootstrapped yet */
3275 		ptr = fallback_alloc(cachep, flags);
3276 		goto out;
3277 	}
3278 
3279 	if (nodeid == slab_node) {
3280 		/*
3281 		 * Use the locally cached objects if possible.
3282 		 * However ____cache_alloc does not allow fallback
3283 		 * to other nodes. It may fail while we still have
3284 		 * objects on other nodes available.
3285 		 */
3286 		ptr = ____cache_alloc(cachep, flags);
3287 		if (ptr)
3288 			goto out;
3289 	}
3290 	/* ___cache_alloc_node can fall back to other nodes */
3291 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3292   out:
3293 	local_irq_restore(save_flags);
3294 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3295 
3296 	if (unlikely(flags & __GFP_ZERO) && ptr)
3297 		memset(ptr, 0, cachep->object_size);
3298 
3299 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3300 	return ptr;
3301 }
3302 
3303 static __always_inline void *
3304 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3305 {
3306 	void *objp;
3307 
3308 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3309 		objp = alternate_node_alloc(cache, flags);
3310 		if (objp)
3311 			goto out;
3312 	}
3313 	objp = ____cache_alloc(cache, flags);
3314 
3315 	/*
3316 	 * We may just have run out of memory on the local node.
3317 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3318 	 */
3319 	if (!objp)
3320 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3321 
3322   out:
3323 	return objp;
3324 }
3325 #else
3326 
3327 static __always_inline void *
3328 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3329 {
3330 	return ____cache_alloc(cachep, flags);
3331 }
3332 
3333 #endif /* CONFIG_NUMA */
3334 
3335 static __always_inline void *
3336 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3337 {
3338 	unsigned long save_flags;
3339 	void *objp;
3340 
3341 	flags &= gfp_allowed_mask;
3342 	cachep = slab_pre_alloc_hook(cachep, flags);
3343 	if (unlikely(!cachep))
3344 		return NULL;
3345 
3346 	cache_alloc_debugcheck_before(cachep, flags);
3347 	local_irq_save(save_flags);
3348 	objp = __do_cache_alloc(cachep, flags);
3349 	local_irq_restore(save_flags);
3350 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3351 	prefetchw(objp);
3352 
3353 	if (unlikely(flags & __GFP_ZERO) && objp)
3354 		memset(objp, 0, cachep->object_size);
3355 
3356 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3357 	return objp;
3358 }
3359 
3360 /*
3361  * Caller needs to acquire correct kmem_cache_node's list_lock
3362  * @list: List of detached free slabs should be freed by caller
3363  */
3364 static void free_block(struct kmem_cache *cachep, void **objpp,
3365 			int nr_objects, int node, struct list_head *list)
3366 {
3367 	int i;
3368 	struct kmem_cache_node *n = get_node(cachep, node);
3369 	struct page *page;
3370 
3371 	n->free_objects += nr_objects;
3372 
3373 	for (i = 0; i < nr_objects; i++) {
3374 		void *objp;
3375 		struct page *page;
3376 
3377 		objp = objpp[i];
3378 
3379 		page = virt_to_head_page(objp);
3380 		list_del(&page->slab_list);
3381 		check_spinlock_acquired_node(cachep, node);
3382 		slab_put_obj(cachep, page, objp);
3383 		STATS_DEC_ACTIVE(cachep);
3384 
3385 		/* fixup slab chains */
3386 		if (page->active == 0) {
3387 			list_add(&page->slab_list, &n->slabs_free);
3388 			n->free_slabs++;
3389 		} else {
3390 			/* Unconditionally move a slab to the end of the
3391 			 * partial list on free - maximum time for the
3392 			 * other objects to be freed, too.
3393 			 */
3394 			list_add_tail(&page->slab_list, &n->slabs_partial);
3395 		}
3396 	}
3397 
3398 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3399 		n->free_objects -= cachep->num;
3400 
3401 		page = list_last_entry(&n->slabs_free, struct page, slab_list);
3402 		list_move(&page->slab_list, list);
3403 		n->free_slabs--;
3404 		n->total_slabs--;
3405 	}
3406 }
3407 
3408 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3409 {
3410 	int batchcount;
3411 	struct kmem_cache_node *n;
3412 	int node = numa_mem_id();
3413 	LIST_HEAD(list);
3414 
3415 	batchcount = ac->batchcount;
3416 
3417 	check_irq_off();
3418 	n = get_node(cachep, node);
3419 	spin_lock(&n->list_lock);
3420 	if (n->shared) {
3421 		struct array_cache *shared_array = n->shared;
3422 		int max = shared_array->limit - shared_array->avail;
3423 		if (max) {
3424 			if (batchcount > max)
3425 				batchcount = max;
3426 			memcpy(&(shared_array->entry[shared_array->avail]),
3427 			       ac->entry, sizeof(void *) * batchcount);
3428 			shared_array->avail += batchcount;
3429 			goto free_done;
3430 		}
3431 	}
3432 
3433 	free_block(cachep, ac->entry, batchcount, node, &list);
3434 free_done:
3435 #if STATS
3436 	{
3437 		int i = 0;
3438 		struct page *page;
3439 
3440 		list_for_each_entry(page, &n->slabs_free, slab_list) {
3441 			BUG_ON(page->active);
3442 
3443 			i++;
3444 		}
3445 		STATS_SET_FREEABLE(cachep, i);
3446 	}
3447 #endif
3448 	spin_unlock(&n->list_lock);
3449 	slabs_destroy(cachep, &list);
3450 	ac->avail -= batchcount;
3451 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3452 }
3453 
3454 /*
3455  * Release an obj back to its cache. If the obj has a constructed state, it must
3456  * be in this state _before_ it is released.  Called with disabled ints.
3457  */
3458 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3459 					 unsigned long caller)
3460 {
3461 	/* Put the object into the quarantine, don't touch it for now. */
3462 	if (kasan_slab_free(cachep, objp, _RET_IP_))
3463 		return;
3464 
3465 	___cache_free(cachep, objp, caller);
3466 }
3467 
3468 void ___cache_free(struct kmem_cache *cachep, void *objp,
3469 		unsigned long caller)
3470 {
3471 	struct array_cache *ac = cpu_cache_get(cachep);
3472 
3473 	check_irq_off();
3474 	kmemleak_free_recursive(objp, cachep->flags);
3475 	objp = cache_free_debugcheck(cachep, objp, caller);
3476 
3477 	/*
3478 	 * Skip calling cache_free_alien() when the platform is not numa.
3479 	 * This will avoid cache misses that happen while accessing slabp (which
3480 	 * is per page memory  reference) to get nodeid. Instead use a global
3481 	 * variable to skip the call, which is mostly likely to be present in
3482 	 * the cache.
3483 	 */
3484 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3485 		return;
3486 
3487 	if (ac->avail < ac->limit) {
3488 		STATS_INC_FREEHIT(cachep);
3489 	} else {
3490 		STATS_INC_FREEMISS(cachep);
3491 		cache_flusharray(cachep, ac);
3492 	}
3493 
3494 	if (sk_memalloc_socks()) {
3495 		struct page *page = virt_to_head_page(objp);
3496 
3497 		if (unlikely(PageSlabPfmemalloc(page))) {
3498 			cache_free_pfmemalloc(cachep, page, objp);
3499 			return;
3500 		}
3501 	}
3502 
3503 	ac->entry[ac->avail++] = objp;
3504 }
3505 
3506 /**
3507  * kmem_cache_alloc - Allocate an object
3508  * @cachep: The cache to allocate from.
3509  * @flags: See kmalloc().
3510  *
3511  * Allocate an object from this cache.  The flags are only relevant
3512  * if the cache has no available objects.
3513  *
3514  * Return: pointer to the new object or %NULL in case of error
3515  */
3516 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3517 {
3518 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3519 
3520 	trace_kmem_cache_alloc(_RET_IP_, ret,
3521 			       cachep->object_size, cachep->size, flags);
3522 
3523 	return ret;
3524 }
3525 EXPORT_SYMBOL(kmem_cache_alloc);
3526 
3527 static __always_inline void
3528 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3529 				  size_t size, void **p, unsigned long caller)
3530 {
3531 	size_t i;
3532 
3533 	for (i = 0; i < size; i++)
3534 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3535 }
3536 
3537 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3538 			  void **p)
3539 {
3540 	size_t i;
3541 
3542 	s = slab_pre_alloc_hook(s, flags);
3543 	if (!s)
3544 		return 0;
3545 
3546 	cache_alloc_debugcheck_before(s, flags);
3547 
3548 	local_irq_disable();
3549 	for (i = 0; i < size; i++) {
3550 		void *objp = __do_cache_alloc(s, flags);
3551 
3552 		if (unlikely(!objp))
3553 			goto error;
3554 		p[i] = objp;
3555 	}
3556 	local_irq_enable();
3557 
3558 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3559 
3560 	/* Clear memory outside IRQ disabled section */
3561 	if (unlikely(flags & __GFP_ZERO))
3562 		for (i = 0; i < size; i++)
3563 			memset(p[i], 0, s->object_size);
3564 
3565 	slab_post_alloc_hook(s, flags, size, p);
3566 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3567 	return size;
3568 error:
3569 	local_irq_enable();
3570 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3571 	slab_post_alloc_hook(s, flags, i, p);
3572 	__kmem_cache_free_bulk(s, i, p);
3573 	return 0;
3574 }
3575 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3576 
3577 #ifdef CONFIG_TRACING
3578 void *
3579 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3580 {
3581 	void *ret;
3582 
3583 	ret = slab_alloc(cachep, flags, _RET_IP_);
3584 
3585 	ret = kasan_kmalloc(cachep, ret, size, flags);
3586 	trace_kmalloc(_RET_IP_, ret,
3587 		      size, cachep->size, flags);
3588 	return ret;
3589 }
3590 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3591 #endif
3592 
3593 #ifdef CONFIG_NUMA
3594 /**
3595  * kmem_cache_alloc_node - Allocate an object on the specified node
3596  * @cachep: The cache to allocate from.
3597  * @flags: See kmalloc().
3598  * @nodeid: node number of the target node.
3599  *
3600  * Identical to kmem_cache_alloc but it will allocate memory on the given
3601  * node, which can improve the performance for cpu bound structures.
3602  *
3603  * Fallback to other node is possible if __GFP_THISNODE is not set.
3604  *
3605  * Return: pointer to the new object or %NULL in case of error
3606  */
3607 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3608 {
3609 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3610 
3611 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3612 				    cachep->object_size, cachep->size,
3613 				    flags, nodeid);
3614 
3615 	return ret;
3616 }
3617 EXPORT_SYMBOL(kmem_cache_alloc_node);
3618 
3619 #ifdef CONFIG_TRACING
3620 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3621 				  gfp_t flags,
3622 				  int nodeid,
3623 				  size_t size)
3624 {
3625 	void *ret;
3626 
3627 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3628 
3629 	ret = kasan_kmalloc(cachep, ret, size, flags);
3630 	trace_kmalloc_node(_RET_IP_, ret,
3631 			   size, cachep->size,
3632 			   flags, nodeid);
3633 	return ret;
3634 }
3635 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3636 #endif
3637 
3638 static __always_inline void *
3639 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3640 {
3641 	struct kmem_cache *cachep;
3642 	void *ret;
3643 
3644 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3645 		return NULL;
3646 	cachep = kmalloc_slab(size, flags);
3647 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3648 		return cachep;
3649 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3650 	ret = kasan_kmalloc(cachep, ret, size, flags);
3651 
3652 	return ret;
3653 }
3654 
3655 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3656 {
3657 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3658 }
3659 EXPORT_SYMBOL(__kmalloc_node);
3660 
3661 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3662 		int node, unsigned long caller)
3663 {
3664 	return __do_kmalloc_node(size, flags, node, caller);
3665 }
3666 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3667 #endif /* CONFIG_NUMA */
3668 
3669 /**
3670  * __do_kmalloc - allocate memory
3671  * @size: how many bytes of memory are required.
3672  * @flags: the type of memory to allocate (see kmalloc).
3673  * @caller: function caller for debug tracking of the caller
3674  *
3675  * Return: pointer to the allocated memory or %NULL in case of error
3676  */
3677 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3678 					  unsigned long caller)
3679 {
3680 	struct kmem_cache *cachep;
3681 	void *ret;
3682 
3683 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3684 		return NULL;
3685 	cachep = kmalloc_slab(size, flags);
3686 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3687 		return cachep;
3688 	ret = slab_alloc(cachep, flags, caller);
3689 
3690 	ret = kasan_kmalloc(cachep, ret, size, flags);
3691 	trace_kmalloc(caller, ret,
3692 		      size, cachep->size, flags);
3693 
3694 	return ret;
3695 }
3696 
3697 void *__kmalloc(size_t size, gfp_t flags)
3698 {
3699 	return __do_kmalloc(size, flags, _RET_IP_);
3700 }
3701 EXPORT_SYMBOL(__kmalloc);
3702 
3703 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3704 {
3705 	return __do_kmalloc(size, flags, caller);
3706 }
3707 EXPORT_SYMBOL(__kmalloc_track_caller);
3708 
3709 /**
3710  * kmem_cache_free - Deallocate an object
3711  * @cachep: The cache the allocation was from.
3712  * @objp: The previously allocated object.
3713  *
3714  * Free an object which was previously allocated from this
3715  * cache.
3716  */
3717 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3718 {
3719 	unsigned long flags;
3720 	cachep = cache_from_obj(cachep, objp);
3721 	if (!cachep)
3722 		return;
3723 
3724 	local_irq_save(flags);
3725 	debug_check_no_locks_freed(objp, cachep->object_size);
3726 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3727 		debug_check_no_obj_freed(objp, cachep->object_size);
3728 	__cache_free(cachep, objp, _RET_IP_);
3729 	local_irq_restore(flags);
3730 
3731 	trace_kmem_cache_free(_RET_IP_, objp);
3732 }
3733 EXPORT_SYMBOL(kmem_cache_free);
3734 
3735 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3736 {
3737 	struct kmem_cache *s;
3738 	size_t i;
3739 
3740 	local_irq_disable();
3741 	for (i = 0; i < size; i++) {
3742 		void *objp = p[i];
3743 
3744 		if (!orig_s) /* called via kfree_bulk */
3745 			s = virt_to_cache(objp);
3746 		else
3747 			s = cache_from_obj(orig_s, objp);
3748 
3749 		debug_check_no_locks_freed(objp, s->object_size);
3750 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3751 			debug_check_no_obj_freed(objp, s->object_size);
3752 
3753 		__cache_free(s, objp, _RET_IP_);
3754 	}
3755 	local_irq_enable();
3756 
3757 	/* FIXME: add tracing */
3758 }
3759 EXPORT_SYMBOL(kmem_cache_free_bulk);
3760 
3761 /**
3762  * kfree - free previously allocated memory
3763  * @objp: pointer returned by kmalloc.
3764  *
3765  * If @objp is NULL, no operation is performed.
3766  *
3767  * Don't free memory not originally allocated by kmalloc()
3768  * or you will run into trouble.
3769  */
3770 void kfree(const void *objp)
3771 {
3772 	struct kmem_cache *c;
3773 	unsigned long flags;
3774 
3775 	trace_kfree(_RET_IP_, objp);
3776 
3777 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3778 		return;
3779 	local_irq_save(flags);
3780 	kfree_debugcheck(objp);
3781 	c = virt_to_cache(objp);
3782 	debug_check_no_locks_freed(objp, c->object_size);
3783 
3784 	debug_check_no_obj_freed(objp, c->object_size);
3785 	__cache_free(c, (void *)objp, _RET_IP_);
3786 	local_irq_restore(flags);
3787 }
3788 EXPORT_SYMBOL(kfree);
3789 
3790 /*
3791  * This initializes kmem_cache_node or resizes various caches for all nodes.
3792  */
3793 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3794 {
3795 	int ret;
3796 	int node;
3797 	struct kmem_cache_node *n;
3798 
3799 	for_each_online_node(node) {
3800 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3801 		if (ret)
3802 			goto fail;
3803 
3804 	}
3805 
3806 	return 0;
3807 
3808 fail:
3809 	if (!cachep->list.next) {
3810 		/* Cache is not active yet. Roll back what we did */
3811 		node--;
3812 		while (node >= 0) {
3813 			n = get_node(cachep, node);
3814 			if (n) {
3815 				kfree(n->shared);
3816 				free_alien_cache(n->alien);
3817 				kfree(n);
3818 				cachep->node[node] = NULL;
3819 			}
3820 			node--;
3821 		}
3822 	}
3823 	return -ENOMEM;
3824 }
3825 
3826 /* Always called with the slab_mutex held */
3827 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3828 				int batchcount, int shared, gfp_t gfp)
3829 {
3830 	struct array_cache __percpu *cpu_cache, *prev;
3831 	int cpu;
3832 
3833 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3834 	if (!cpu_cache)
3835 		return -ENOMEM;
3836 
3837 	prev = cachep->cpu_cache;
3838 	cachep->cpu_cache = cpu_cache;
3839 	/*
3840 	 * Without a previous cpu_cache there's no need to synchronize remote
3841 	 * cpus, so skip the IPIs.
3842 	 */
3843 	if (prev)
3844 		kick_all_cpus_sync();
3845 
3846 	check_irq_on();
3847 	cachep->batchcount = batchcount;
3848 	cachep->limit = limit;
3849 	cachep->shared = shared;
3850 
3851 	if (!prev)
3852 		goto setup_node;
3853 
3854 	for_each_online_cpu(cpu) {
3855 		LIST_HEAD(list);
3856 		int node;
3857 		struct kmem_cache_node *n;
3858 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3859 
3860 		node = cpu_to_mem(cpu);
3861 		n = get_node(cachep, node);
3862 		spin_lock_irq(&n->list_lock);
3863 		free_block(cachep, ac->entry, ac->avail, node, &list);
3864 		spin_unlock_irq(&n->list_lock);
3865 		slabs_destroy(cachep, &list);
3866 	}
3867 	free_percpu(prev);
3868 
3869 setup_node:
3870 	return setup_kmem_cache_nodes(cachep, gfp);
3871 }
3872 
3873 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3874 				int batchcount, int shared, gfp_t gfp)
3875 {
3876 	int ret;
3877 	struct kmem_cache *c;
3878 
3879 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3880 
3881 	if (slab_state < FULL)
3882 		return ret;
3883 
3884 	if ((ret < 0) || !is_root_cache(cachep))
3885 		return ret;
3886 
3887 	lockdep_assert_held(&slab_mutex);
3888 	for_each_memcg_cache(c, cachep) {
3889 		/* return value determined by the root cache only */
3890 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3891 	}
3892 
3893 	return ret;
3894 }
3895 
3896 /* Called with slab_mutex held always */
3897 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3898 {
3899 	int err;
3900 	int limit = 0;
3901 	int shared = 0;
3902 	int batchcount = 0;
3903 
3904 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3905 	if (err)
3906 		goto end;
3907 
3908 	if (!is_root_cache(cachep)) {
3909 		struct kmem_cache *root = memcg_root_cache(cachep);
3910 		limit = root->limit;
3911 		shared = root->shared;
3912 		batchcount = root->batchcount;
3913 	}
3914 
3915 	if (limit && shared && batchcount)
3916 		goto skip_setup;
3917 	/*
3918 	 * The head array serves three purposes:
3919 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3920 	 * - reduce the number of spinlock operations.
3921 	 * - reduce the number of linked list operations on the slab and
3922 	 *   bufctl chains: array operations are cheaper.
3923 	 * The numbers are guessed, we should auto-tune as described by
3924 	 * Bonwick.
3925 	 */
3926 	if (cachep->size > 131072)
3927 		limit = 1;
3928 	else if (cachep->size > PAGE_SIZE)
3929 		limit = 8;
3930 	else if (cachep->size > 1024)
3931 		limit = 24;
3932 	else if (cachep->size > 256)
3933 		limit = 54;
3934 	else
3935 		limit = 120;
3936 
3937 	/*
3938 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3939 	 * allocation behaviour: Most allocs on one cpu, most free operations
3940 	 * on another cpu. For these cases, an efficient object passing between
3941 	 * cpus is necessary. This is provided by a shared array. The array
3942 	 * replaces Bonwick's magazine layer.
3943 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3944 	 * to a larger limit. Thus disabled by default.
3945 	 */
3946 	shared = 0;
3947 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3948 		shared = 8;
3949 
3950 #if DEBUG
3951 	/*
3952 	 * With debugging enabled, large batchcount lead to excessively long
3953 	 * periods with disabled local interrupts. Limit the batchcount
3954 	 */
3955 	if (limit > 32)
3956 		limit = 32;
3957 #endif
3958 	batchcount = (limit + 1) / 2;
3959 skip_setup:
3960 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3961 end:
3962 	if (err)
3963 		pr_err("enable_cpucache failed for %s, error %d\n",
3964 		       cachep->name, -err);
3965 	return err;
3966 }
3967 
3968 /*
3969  * Drain an array if it contains any elements taking the node lock only if
3970  * necessary. Note that the node listlock also protects the array_cache
3971  * if drain_array() is used on the shared array.
3972  */
3973 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3974 			 struct array_cache *ac, int node)
3975 {
3976 	LIST_HEAD(list);
3977 
3978 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3979 	check_mutex_acquired();
3980 
3981 	if (!ac || !ac->avail)
3982 		return;
3983 
3984 	if (ac->touched) {
3985 		ac->touched = 0;
3986 		return;
3987 	}
3988 
3989 	spin_lock_irq(&n->list_lock);
3990 	drain_array_locked(cachep, ac, node, false, &list);
3991 	spin_unlock_irq(&n->list_lock);
3992 
3993 	slabs_destroy(cachep, &list);
3994 }
3995 
3996 /**
3997  * cache_reap - Reclaim memory from caches.
3998  * @w: work descriptor
3999  *
4000  * Called from workqueue/eventd every few seconds.
4001  * Purpose:
4002  * - clear the per-cpu caches for this CPU.
4003  * - return freeable pages to the main free memory pool.
4004  *
4005  * If we cannot acquire the cache chain mutex then just give up - we'll try
4006  * again on the next iteration.
4007  */
4008 static void cache_reap(struct work_struct *w)
4009 {
4010 	struct kmem_cache *searchp;
4011 	struct kmem_cache_node *n;
4012 	int node = numa_mem_id();
4013 	struct delayed_work *work = to_delayed_work(w);
4014 
4015 	if (!mutex_trylock(&slab_mutex))
4016 		/* Give up. Setup the next iteration. */
4017 		goto out;
4018 
4019 	list_for_each_entry(searchp, &slab_caches, list) {
4020 		check_irq_on();
4021 
4022 		/*
4023 		 * We only take the node lock if absolutely necessary and we
4024 		 * have established with reasonable certainty that
4025 		 * we can do some work if the lock was obtained.
4026 		 */
4027 		n = get_node(searchp, node);
4028 
4029 		reap_alien(searchp, n);
4030 
4031 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4032 
4033 		/*
4034 		 * These are racy checks but it does not matter
4035 		 * if we skip one check or scan twice.
4036 		 */
4037 		if (time_after(n->next_reap, jiffies))
4038 			goto next;
4039 
4040 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4041 
4042 		drain_array(searchp, n, n->shared, node);
4043 
4044 		if (n->free_touched)
4045 			n->free_touched = 0;
4046 		else {
4047 			int freed;
4048 
4049 			freed = drain_freelist(searchp, n, (n->free_limit +
4050 				5 * searchp->num - 1) / (5 * searchp->num));
4051 			STATS_ADD_REAPED(searchp, freed);
4052 		}
4053 next:
4054 		cond_resched();
4055 	}
4056 	check_irq_on();
4057 	mutex_unlock(&slab_mutex);
4058 	next_reap_node();
4059 out:
4060 	/* Set up the next iteration */
4061 	schedule_delayed_work_on(smp_processor_id(), work,
4062 				round_jiffies_relative(REAPTIMEOUT_AC));
4063 }
4064 
4065 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4066 {
4067 	unsigned long active_objs, num_objs, active_slabs;
4068 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4069 	unsigned long free_slabs = 0;
4070 	int node;
4071 	struct kmem_cache_node *n;
4072 
4073 	for_each_kmem_cache_node(cachep, node, n) {
4074 		check_irq_on();
4075 		spin_lock_irq(&n->list_lock);
4076 
4077 		total_slabs += n->total_slabs;
4078 		free_slabs += n->free_slabs;
4079 		free_objs += n->free_objects;
4080 
4081 		if (n->shared)
4082 			shared_avail += n->shared->avail;
4083 
4084 		spin_unlock_irq(&n->list_lock);
4085 	}
4086 	num_objs = total_slabs * cachep->num;
4087 	active_slabs = total_slabs - free_slabs;
4088 	active_objs = num_objs - free_objs;
4089 
4090 	sinfo->active_objs = active_objs;
4091 	sinfo->num_objs = num_objs;
4092 	sinfo->active_slabs = active_slabs;
4093 	sinfo->num_slabs = total_slabs;
4094 	sinfo->shared_avail = shared_avail;
4095 	sinfo->limit = cachep->limit;
4096 	sinfo->batchcount = cachep->batchcount;
4097 	sinfo->shared = cachep->shared;
4098 	sinfo->objects_per_slab = cachep->num;
4099 	sinfo->cache_order = cachep->gfporder;
4100 }
4101 
4102 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4103 {
4104 #if STATS
4105 	{			/* node stats */
4106 		unsigned long high = cachep->high_mark;
4107 		unsigned long allocs = cachep->num_allocations;
4108 		unsigned long grown = cachep->grown;
4109 		unsigned long reaped = cachep->reaped;
4110 		unsigned long errors = cachep->errors;
4111 		unsigned long max_freeable = cachep->max_freeable;
4112 		unsigned long node_allocs = cachep->node_allocs;
4113 		unsigned long node_frees = cachep->node_frees;
4114 		unsigned long overflows = cachep->node_overflow;
4115 
4116 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4117 			   allocs, high, grown,
4118 			   reaped, errors, max_freeable, node_allocs,
4119 			   node_frees, overflows);
4120 	}
4121 	/* cpu stats */
4122 	{
4123 		unsigned long allochit = atomic_read(&cachep->allochit);
4124 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4125 		unsigned long freehit = atomic_read(&cachep->freehit);
4126 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4127 
4128 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4129 			   allochit, allocmiss, freehit, freemiss);
4130 	}
4131 #endif
4132 }
4133 
4134 #define MAX_SLABINFO_WRITE 128
4135 /**
4136  * slabinfo_write - Tuning for the slab allocator
4137  * @file: unused
4138  * @buffer: user buffer
4139  * @count: data length
4140  * @ppos: unused
4141  *
4142  * Return: %0 on success, negative error code otherwise.
4143  */
4144 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4145 		       size_t count, loff_t *ppos)
4146 {
4147 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4148 	int limit, batchcount, shared, res;
4149 	struct kmem_cache *cachep;
4150 
4151 	if (count > MAX_SLABINFO_WRITE)
4152 		return -EINVAL;
4153 	if (copy_from_user(&kbuf, buffer, count))
4154 		return -EFAULT;
4155 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4156 
4157 	tmp = strchr(kbuf, ' ');
4158 	if (!tmp)
4159 		return -EINVAL;
4160 	*tmp = '\0';
4161 	tmp++;
4162 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4163 		return -EINVAL;
4164 
4165 	/* Find the cache in the chain of caches. */
4166 	mutex_lock(&slab_mutex);
4167 	res = -EINVAL;
4168 	list_for_each_entry(cachep, &slab_caches, list) {
4169 		if (!strcmp(cachep->name, kbuf)) {
4170 			if (limit < 1 || batchcount < 1 ||
4171 					batchcount > limit || shared < 0) {
4172 				res = 0;
4173 			} else {
4174 				res = do_tune_cpucache(cachep, limit,
4175 						       batchcount, shared,
4176 						       GFP_KERNEL);
4177 			}
4178 			break;
4179 		}
4180 	}
4181 	mutex_unlock(&slab_mutex);
4182 	if (res >= 0)
4183 		res = count;
4184 	return res;
4185 }
4186 
4187 #ifdef CONFIG_DEBUG_SLAB_LEAK
4188 
4189 static inline int add_caller(unsigned long *n, unsigned long v)
4190 {
4191 	unsigned long *p;
4192 	int l;
4193 	if (!v)
4194 		return 1;
4195 	l = n[1];
4196 	p = n + 2;
4197 	while (l) {
4198 		int i = l/2;
4199 		unsigned long *q = p + 2 * i;
4200 		if (*q == v) {
4201 			q[1]++;
4202 			return 1;
4203 		}
4204 		if (*q > v) {
4205 			l = i;
4206 		} else {
4207 			p = q + 2;
4208 			l -= i + 1;
4209 		}
4210 	}
4211 	if (++n[1] == n[0])
4212 		return 0;
4213 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4214 	p[0] = v;
4215 	p[1] = 1;
4216 	return 1;
4217 }
4218 
4219 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4220 						struct page *page)
4221 {
4222 	void *p;
4223 	int i, j;
4224 	unsigned long v;
4225 
4226 	if (n[0] == n[1])
4227 		return;
4228 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4229 		bool active = true;
4230 
4231 		for (j = page->active; j < c->num; j++) {
4232 			if (get_free_obj(page, j) == i) {
4233 				active = false;
4234 				break;
4235 			}
4236 		}
4237 
4238 		if (!active)
4239 			continue;
4240 
4241 		/*
4242 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4243 		 * mapping is established when actual object allocation and
4244 		 * we could mistakenly access the unmapped object in the cpu
4245 		 * cache.
4246 		 */
4247 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4248 			continue;
4249 
4250 		if (!add_caller(n, v))
4251 			return;
4252 	}
4253 }
4254 
4255 static void show_symbol(struct seq_file *m, unsigned long address)
4256 {
4257 #ifdef CONFIG_KALLSYMS
4258 	unsigned long offset, size;
4259 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4260 
4261 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4262 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4263 		if (modname[0])
4264 			seq_printf(m, " [%s]", modname);
4265 		return;
4266 	}
4267 #endif
4268 	seq_printf(m, "%px", (void *)address);
4269 }
4270 
4271 static int leaks_show(struct seq_file *m, void *p)
4272 {
4273 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
4274 					       root_caches_node);
4275 	struct page *page;
4276 	struct kmem_cache_node *n;
4277 	const char *name;
4278 	unsigned long *x = m->private;
4279 	int node;
4280 	int i;
4281 
4282 	if (!(cachep->flags & SLAB_STORE_USER))
4283 		return 0;
4284 	if (!(cachep->flags & SLAB_RED_ZONE))
4285 		return 0;
4286 
4287 	/*
4288 	 * Set store_user_clean and start to grab stored user information
4289 	 * for all objects on this cache. If some alloc/free requests comes
4290 	 * during the processing, information would be wrong so restart
4291 	 * whole processing.
4292 	 */
4293 	do {
4294 		drain_cpu_caches(cachep);
4295 		/*
4296 		 * drain_cpu_caches() could make kmemleak_object and
4297 		 * debug_objects_cache dirty, so reset afterwards.
4298 		 */
4299 		set_store_user_clean(cachep);
4300 
4301 		x[1] = 0;
4302 
4303 		for_each_kmem_cache_node(cachep, node, n) {
4304 
4305 			check_irq_on();
4306 			spin_lock_irq(&n->list_lock);
4307 
4308 			list_for_each_entry(page, &n->slabs_full, slab_list)
4309 				handle_slab(x, cachep, page);
4310 			list_for_each_entry(page, &n->slabs_partial, slab_list)
4311 				handle_slab(x, cachep, page);
4312 			spin_unlock_irq(&n->list_lock);
4313 		}
4314 	} while (!is_store_user_clean(cachep));
4315 
4316 	name = cachep->name;
4317 	if (x[0] == x[1]) {
4318 		/* Increase the buffer size */
4319 		mutex_unlock(&slab_mutex);
4320 		m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
4321 				     GFP_KERNEL);
4322 		if (!m->private) {
4323 			/* Too bad, we are really out */
4324 			m->private = x;
4325 			mutex_lock(&slab_mutex);
4326 			return -ENOMEM;
4327 		}
4328 		*(unsigned long *)m->private = x[0] * 2;
4329 		kfree(x);
4330 		mutex_lock(&slab_mutex);
4331 		/* Now make sure this entry will be retried */
4332 		m->count = m->size;
4333 		return 0;
4334 	}
4335 	for (i = 0; i < x[1]; i++) {
4336 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4337 		show_symbol(m, x[2*i+2]);
4338 		seq_putc(m, '\n');
4339 	}
4340 
4341 	return 0;
4342 }
4343 
4344 static const struct seq_operations slabstats_op = {
4345 	.start = slab_start,
4346 	.next = slab_next,
4347 	.stop = slab_stop,
4348 	.show = leaks_show,
4349 };
4350 
4351 static int slabstats_open(struct inode *inode, struct file *file)
4352 {
4353 	unsigned long *n;
4354 
4355 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4356 	if (!n)
4357 		return -ENOMEM;
4358 
4359 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4360 
4361 	return 0;
4362 }
4363 
4364 static const struct file_operations proc_slabstats_operations = {
4365 	.open		= slabstats_open,
4366 	.read		= seq_read,
4367 	.llseek		= seq_lseek,
4368 	.release	= seq_release_private,
4369 };
4370 #endif
4371 
4372 static int __init slab_proc_init(void)
4373 {
4374 #ifdef CONFIG_DEBUG_SLAB_LEAK
4375 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4376 #endif
4377 	return 0;
4378 }
4379 module_init(slab_proc_init);
4380 
4381 #ifdef CONFIG_HARDENED_USERCOPY
4382 /*
4383  * Rejects incorrectly sized objects and objects that are to be copied
4384  * to/from userspace but do not fall entirely within the containing slab
4385  * cache's usercopy region.
4386  *
4387  * Returns NULL if check passes, otherwise const char * to name of cache
4388  * to indicate an error.
4389  */
4390 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4391 			 bool to_user)
4392 {
4393 	struct kmem_cache *cachep;
4394 	unsigned int objnr;
4395 	unsigned long offset;
4396 
4397 	ptr = kasan_reset_tag(ptr);
4398 
4399 	/* Find and validate object. */
4400 	cachep = page->slab_cache;
4401 	objnr = obj_to_index(cachep, page, (void *)ptr);
4402 	BUG_ON(objnr >= cachep->num);
4403 
4404 	/* Find offset within object. */
4405 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4406 
4407 	/* Allow address range falling entirely within usercopy region. */
4408 	if (offset >= cachep->useroffset &&
4409 	    offset - cachep->useroffset <= cachep->usersize &&
4410 	    n <= cachep->useroffset - offset + cachep->usersize)
4411 		return;
4412 
4413 	/*
4414 	 * If the copy is still within the allocated object, produce
4415 	 * a warning instead of rejecting the copy. This is intended
4416 	 * to be a temporary method to find any missing usercopy
4417 	 * whitelists.
4418 	 */
4419 	if (usercopy_fallback &&
4420 	    offset <= cachep->object_size &&
4421 	    n <= cachep->object_size - offset) {
4422 		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4423 		return;
4424 	}
4425 
4426 	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4427 }
4428 #endif /* CONFIG_HARDENED_USERCOPY */
4429 
4430 /**
4431  * ksize - get the actual amount of memory allocated for a given object
4432  * @objp: Pointer to the object
4433  *
4434  * kmalloc may internally round up allocations and return more memory
4435  * than requested. ksize() can be used to determine the actual amount of
4436  * memory allocated. The caller may use this additional memory, even though
4437  * a smaller amount of memory was initially specified with the kmalloc call.
4438  * The caller must guarantee that objp points to a valid object previously
4439  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4440  * must not be freed during the duration of the call.
4441  *
4442  * Return: size of the actual memory used by @objp in bytes
4443  */
4444 size_t ksize(const void *objp)
4445 {
4446 	size_t size;
4447 
4448 	BUG_ON(!objp);
4449 	if (unlikely(objp == ZERO_SIZE_PTR))
4450 		return 0;
4451 
4452 	size = virt_to_cache(objp)->object_size;
4453 	/* We assume that ksize callers could use the whole allocated area,
4454 	 * so we need to unpoison this area.
4455 	 */
4456 	kasan_unpoison_shadow(objp, size);
4457 
4458 	return size;
4459 }
4460 EXPORT_SYMBOL(ksize);
4461