1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/kfence.h> 104 #include <linux/cpu.h> 105 #include <linux/sysctl.h> 106 #include <linux/module.h> 107 #include <linux/rcupdate.h> 108 #include <linux/string.h> 109 #include <linux/uaccess.h> 110 #include <linux/nodemask.h> 111 #include <linux/kmemleak.h> 112 #include <linux/mempolicy.h> 113 #include <linux/mutex.h> 114 #include <linux/fault-inject.h> 115 #include <linux/rtmutex.h> 116 #include <linux/reciprocal_div.h> 117 #include <linux/debugobjects.h> 118 #include <linux/memory.h> 119 #include <linux/prefetch.h> 120 #include <linux/sched/task_stack.h> 121 122 #include <net/sock.h> 123 124 #include <asm/cacheflush.h> 125 #include <asm/tlbflush.h> 126 #include <asm/page.h> 127 128 #include <trace/events/kmem.h> 129 130 #include "internal.h" 131 132 #include "slab.h" 133 134 /* 135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 136 * 0 for faster, smaller code (especially in the critical paths). 137 * 138 * STATS - 1 to collect stats for /proc/slabinfo. 139 * 0 for faster, smaller code (especially in the critical paths). 140 * 141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 142 */ 143 144 #ifdef CONFIG_DEBUG_SLAB 145 #define DEBUG 1 146 #define STATS 1 147 #define FORCED_DEBUG 1 148 #else 149 #define DEBUG 0 150 #define STATS 0 151 #define FORCED_DEBUG 0 152 #endif 153 154 /* Shouldn't this be in a header file somewhere? */ 155 #define BYTES_PER_WORD sizeof(void *) 156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 157 158 #ifndef ARCH_KMALLOC_FLAGS 159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 160 #endif 161 162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 164 165 #if FREELIST_BYTE_INDEX 166 typedef unsigned char freelist_idx_t; 167 #else 168 typedef unsigned short freelist_idx_t; 169 #endif 170 171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 172 173 /* 174 * struct array_cache 175 * 176 * Purpose: 177 * - LIFO ordering, to hand out cache-warm objects from _alloc 178 * - reduce the number of linked list operations 179 * - reduce spinlock operations 180 * 181 * The limit is stored in the per-cpu structure to reduce the data cache 182 * footprint. 183 * 184 */ 185 struct array_cache { 186 unsigned int avail; 187 unsigned int limit; 188 unsigned int batchcount; 189 unsigned int touched; 190 void *entry[]; /* 191 * Must have this definition in here for the proper 192 * alignment of array_cache. Also simplifies accessing 193 * the entries. 194 */ 195 }; 196 197 struct alien_cache { 198 spinlock_t lock; 199 struct array_cache ac; 200 }; 201 202 /* 203 * Need this for bootstrapping a per node allocator. 204 */ 205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 207 #define CACHE_CACHE 0 208 #define SIZE_NODE (MAX_NUMNODES) 209 210 static int drain_freelist(struct kmem_cache *cache, 211 struct kmem_cache_node *n, int tofree); 212 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 213 int node, struct list_head *list); 214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 216 static void cache_reap(struct work_struct *unused); 217 218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 219 void **list); 220 static inline void fixup_slab_list(struct kmem_cache *cachep, 221 struct kmem_cache_node *n, struct slab *slab, 222 void **list); 223 static int slab_early_init = 1; 224 225 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 226 227 static void kmem_cache_node_init(struct kmem_cache_node *parent) 228 { 229 INIT_LIST_HEAD(&parent->slabs_full); 230 INIT_LIST_HEAD(&parent->slabs_partial); 231 INIT_LIST_HEAD(&parent->slabs_free); 232 parent->total_slabs = 0; 233 parent->free_slabs = 0; 234 parent->shared = NULL; 235 parent->alien = NULL; 236 parent->colour_next = 0; 237 raw_spin_lock_init(&parent->list_lock); 238 parent->free_objects = 0; 239 parent->free_touched = 0; 240 } 241 242 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 243 do { \ 244 INIT_LIST_HEAD(listp); \ 245 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 246 } while (0) 247 248 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 249 do { \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 253 } while (0) 254 255 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 256 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 257 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 258 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 259 260 #define BATCHREFILL_LIMIT 16 261 /* 262 * Optimization question: fewer reaps means less probability for unnecessary 263 * cpucache drain/refill cycles. 264 * 265 * OTOH the cpuarrays can contain lots of objects, 266 * which could lock up otherwise freeable slabs. 267 */ 268 #define REAPTIMEOUT_AC (2*HZ) 269 #define REAPTIMEOUT_NODE (4*HZ) 270 271 #if STATS 272 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 273 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 274 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 275 #define STATS_INC_GROWN(x) ((x)->grown++) 276 #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y)) 277 #define STATS_SET_HIGH(x) \ 278 do { \ 279 if ((x)->num_active > (x)->high_mark) \ 280 (x)->high_mark = (x)->num_active; \ 281 } while (0) 282 #define STATS_INC_ERR(x) ((x)->errors++) 283 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 284 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 285 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 286 #define STATS_SET_FREEABLE(x, i) \ 287 do { \ 288 if ((x)->max_freeable < i) \ 289 (x)->max_freeable = i; \ 290 } while (0) 291 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 292 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 293 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 294 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 295 #else 296 #define STATS_INC_ACTIVE(x) do { } while (0) 297 #define STATS_DEC_ACTIVE(x) do { } while (0) 298 #define STATS_INC_ALLOCED(x) do { } while (0) 299 #define STATS_INC_GROWN(x) do { } while (0) 300 #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0) 301 #define STATS_SET_HIGH(x) do { } while (0) 302 #define STATS_INC_ERR(x) do { } while (0) 303 #define STATS_INC_NODEALLOCS(x) do { } while (0) 304 #define STATS_INC_NODEFREES(x) do { } while (0) 305 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 306 #define STATS_SET_FREEABLE(x, i) do { } while (0) 307 #define STATS_INC_ALLOCHIT(x) do { } while (0) 308 #define STATS_INC_ALLOCMISS(x) do { } while (0) 309 #define STATS_INC_FREEHIT(x) do { } while (0) 310 #define STATS_INC_FREEMISS(x) do { } while (0) 311 #endif 312 313 #if DEBUG 314 315 /* 316 * memory layout of objects: 317 * 0 : objp 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 319 * the end of an object is aligned with the end of the real 320 * allocation. Catches writes behind the end of the allocation. 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 322 * redzone word. 323 * cachep->obj_offset: The real object. 324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 325 * cachep->size - 1* BYTES_PER_WORD: last caller address 326 * [BYTES_PER_WORD long] 327 */ 328 static int obj_offset(struct kmem_cache *cachep) 329 { 330 return cachep->obj_offset; 331 } 332 333 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 334 { 335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 336 return (unsigned long long *) (objp + obj_offset(cachep) - 337 sizeof(unsigned long long)); 338 } 339 340 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 341 { 342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 343 if (cachep->flags & SLAB_STORE_USER) 344 return (unsigned long long *)(objp + cachep->size - 345 sizeof(unsigned long long) - 346 REDZONE_ALIGN); 347 return (unsigned long long *) (objp + cachep->size - 348 sizeof(unsigned long long)); 349 } 350 351 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 352 { 353 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 354 return (void **)(objp + cachep->size - BYTES_PER_WORD); 355 } 356 357 #else 358 359 #define obj_offset(x) 0 360 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 362 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 363 364 #endif 365 366 /* 367 * Do not go above this order unless 0 objects fit into the slab or 368 * overridden on the command line. 369 */ 370 #define SLAB_MAX_ORDER_HI 1 371 #define SLAB_MAX_ORDER_LO 0 372 static int slab_max_order = SLAB_MAX_ORDER_LO; 373 static bool slab_max_order_set __initdata; 374 375 static inline void *index_to_obj(struct kmem_cache *cache, 376 const struct slab *slab, unsigned int idx) 377 { 378 return slab->s_mem + cache->size * idx; 379 } 380 381 #define BOOT_CPUCACHE_ENTRIES 1 382 /* internal cache of cache description objs */ 383 static struct kmem_cache kmem_cache_boot = { 384 .batchcount = 1, 385 .limit = BOOT_CPUCACHE_ENTRIES, 386 .shared = 1, 387 .size = sizeof(struct kmem_cache), 388 .name = "kmem_cache", 389 }; 390 391 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 392 393 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 394 { 395 return this_cpu_ptr(cachep->cpu_cache); 396 } 397 398 /* 399 * Calculate the number of objects and left-over bytes for a given buffer size. 400 */ 401 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 402 slab_flags_t flags, size_t *left_over) 403 { 404 unsigned int num; 405 size_t slab_size = PAGE_SIZE << gfporder; 406 407 /* 408 * The slab management structure can be either off the slab or 409 * on it. For the latter case, the memory allocated for a 410 * slab is used for: 411 * 412 * - @buffer_size bytes for each object 413 * - One freelist_idx_t for each object 414 * 415 * We don't need to consider alignment of freelist because 416 * freelist will be at the end of slab page. The objects will be 417 * at the correct alignment. 418 * 419 * If the slab management structure is off the slab, then the 420 * alignment will already be calculated into the size. Because 421 * the slabs are all pages aligned, the objects will be at the 422 * correct alignment when allocated. 423 */ 424 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 425 num = slab_size / buffer_size; 426 *left_over = slab_size % buffer_size; 427 } else { 428 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 429 *left_over = slab_size % 430 (buffer_size + sizeof(freelist_idx_t)); 431 } 432 433 return num; 434 } 435 436 #if DEBUG 437 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 438 439 static void __slab_error(const char *function, struct kmem_cache *cachep, 440 char *msg) 441 { 442 pr_err("slab error in %s(): cache `%s': %s\n", 443 function, cachep->name, msg); 444 dump_stack(); 445 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 446 } 447 #endif 448 449 /* 450 * By default on NUMA we use alien caches to stage the freeing of 451 * objects allocated from other nodes. This causes massive memory 452 * inefficiencies when using fake NUMA setup to split memory into a 453 * large number of small nodes, so it can be disabled on the command 454 * line 455 */ 456 457 static int use_alien_caches __read_mostly = 1; 458 static int __init noaliencache_setup(char *s) 459 { 460 use_alien_caches = 0; 461 return 1; 462 } 463 __setup("noaliencache", noaliencache_setup); 464 465 static int __init slab_max_order_setup(char *str) 466 { 467 get_option(&str, &slab_max_order); 468 slab_max_order = slab_max_order < 0 ? 0 : 469 min(slab_max_order, MAX_ORDER - 1); 470 slab_max_order_set = true; 471 472 return 1; 473 } 474 __setup("slab_max_order=", slab_max_order_setup); 475 476 #ifdef CONFIG_NUMA 477 /* 478 * Special reaping functions for NUMA systems called from cache_reap(). 479 * These take care of doing round robin flushing of alien caches (containing 480 * objects freed on different nodes from which they were allocated) and the 481 * flushing of remote pcps by calling drain_node_pages. 482 */ 483 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 484 485 static void init_reap_node(int cpu) 486 { 487 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 488 node_online_map); 489 } 490 491 static void next_reap_node(void) 492 { 493 int node = __this_cpu_read(slab_reap_node); 494 495 node = next_node_in(node, node_online_map); 496 __this_cpu_write(slab_reap_node, node); 497 } 498 499 #else 500 #define init_reap_node(cpu) do { } while (0) 501 #define next_reap_node(void) do { } while (0) 502 #endif 503 504 /* 505 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 506 * via the workqueue/eventd. 507 * Add the CPU number into the expiration time to minimize the possibility of 508 * the CPUs getting into lockstep and contending for the global cache chain 509 * lock. 510 */ 511 static void start_cpu_timer(int cpu) 512 { 513 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 514 515 if (reap_work->work.func == NULL) { 516 init_reap_node(cpu); 517 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 518 schedule_delayed_work_on(cpu, reap_work, 519 __round_jiffies_relative(HZ, cpu)); 520 } 521 } 522 523 static void init_arraycache(struct array_cache *ac, int limit, int batch) 524 { 525 if (ac) { 526 ac->avail = 0; 527 ac->limit = limit; 528 ac->batchcount = batch; 529 ac->touched = 0; 530 } 531 } 532 533 static struct array_cache *alloc_arraycache(int node, int entries, 534 int batchcount, gfp_t gfp) 535 { 536 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 537 struct array_cache *ac = NULL; 538 539 ac = kmalloc_node(memsize, gfp, node); 540 /* 541 * The array_cache structures contain pointers to free object. 542 * However, when such objects are allocated or transferred to another 543 * cache the pointers are not cleared and they could be counted as 544 * valid references during a kmemleak scan. Therefore, kmemleak must 545 * not scan such objects. 546 */ 547 kmemleak_no_scan(ac); 548 init_arraycache(ac, entries, batchcount); 549 return ac; 550 } 551 552 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 553 struct slab *slab, void *objp) 554 { 555 struct kmem_cache_node *n; 556 int slab_node; 557 LIST_HEAD(list); 558 559 slab_node = slab_nid(slab); 560 n = get_node(cachep, slab_node); 561 562 raw_spin_lock(&n->list_lock); 563 free_block(cachep, &objp, 1, slab_node, &list); 564 raw_spin_unlock(&n->list_lock); 565 566 slabs_destroy(cachep, &list); 567 } 568 569 /* 570 * Transfer objects in one arraycache to another. 571 * Locking must be handled by the caller. 572 * 573 * Return the number of entries transferred. 574 */ 575 static int transfer_objects(struct array_cache *to, 576 struct array_cache *from, unsigned int max) 577 { 578 /* Figure out how many entries to transfer */ 579 int nr = min3(from->avail, max, to->limit - to->avail); 580 581 if (!nr) 582 return 0; 583 584 memcpy(to->entry + to->avail, from->entry + from->avail - nr, 585 sizeof(void *) *nr); 586 587 from->avail -= nr; 588 to->avail += nr; 589 return nr; 590 } 591 592 /* &alien->lock must be held by alien callers. */ 593 static __always_inline void __free_one(struct array_cache *ac, void *objp) 594 { 595 /* Avoid trivial double-free. */ 596 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 597 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) 598 return; 599 ac->entry[ac->avail++] = objp; 600 } 601 602 #ifndef CONFIG_NUMA 603 604 #define drain_alien_cache(cachep, alien) do { } while (0) 605 #define reap_alien(cachep, n) do { } while (0) 606 607 static inline struct alien_cache **alloc_alien_cache(int node, 608 int limit, gfp_t gfp) 609 { 610 return NULL; 611 } 612 613 static inline void free_alien_cache(struct alien_cache **ac_ptr) 614 { 615 } 616 617 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 618 { 619 return 0; 620 } 621 622 static inline gfp_t gfp_exact_node(gfp_t flags) 623 { 624 return flags & ~__GFP_NOFAIL; 625 } 626 627 #else /* CONFIG_NUMA */ 628 629 static struct alien_cache *__alloc_alien_cache(int node, int entries, 630 int batch, gfp_t gfp) 631 { 632 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 633 struct alien_cache *alc = NULL; 634 635 alc = kmalloc_node(memsize, gfp, node); 636 if (alc) { 637 kmemleak_no_scan(alc); 638 init_arraycache(&alc->ac, entries, batch); 639 spin_lock_init(&alc->lock); 640 } 641 return alc; 642 } 643 644 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 645 { 646 struct alien_cache **alc_ptr; 647 int i; 648 649 if (limit > 1) 650 limit = 12; 651 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 652 if (!alc_ptr) 653 return NULL; 654 655 for_each_node(i) { 656 if (i == node || !node_online(i)) 657 continue; 658 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 659 if (!alc_ptr[i]) { 660 for (i--; i >= 0; i--) 661 kfree(alc_ptr[i]); 662 kfree(alc_ptr); 663 return NULL; 664 } 665 } 666 return alc_ptr; 667 } 668 669 static void free_alien_cache(struct alien_cache **alc_ptr) 670 { 671 int i; 672 673 if (!alc_ptr) 674 return; 675 for_each_node(i) 676 kfree(alc_ptr[i]); 677 kfree(alc_ptr); 678 } 679 680 static void __drain_alien_cache(struct kmem_cache *cachep, 681 struct array_cache *ac, int node, 682 struct list_head *list) 683 { 684 struct kmem_cache_node *n = get_node(cachep, node); 685 686 if (ac->avail) { 687 raw_spin_lock(&n->list_lock); 688 /* 689 * Stuff objects into the remote nodes shared array first. 690 * That way we could avoid the overhead of putting the objects 691 * into the free lists and getting them back later. 692 */ 693 if (n->shared) 694 transfer_objects(n->shared, ac, ac->limit); 695 696 free_block(cachep, ac->entry, ac->avail, node, list); 697 ac->avail = 0; 698 raw_spin_unlock(&n->list_lock); 699 } 700 } 701 702 /* 703 * Called from cache_reap() to regularly drain alien caches round robin. 704 */ 705 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 706 { 707 int node = __this_cpu_read(slab_reap_node); 708 709 if (n->alien) { 710 struct alien_cache *alc = n->alien[node]; 711 struct array_cache *ac; 712 713 if (alc) { 714 ac = &alc->ac; 715 if (ac->avail && spin_trylock_irq(&alc->lock)) { 716 LIST_HEAD(list); 717 718 __drain_alien_cache(cachep, ac, node, &list); 719 spin_unlock_irq(&alc->lock); 720 slabs_destroy(cachep, &list); 721 } 722 } 723 } 724 } 725 726 static void drain_alien_cache(struct kmem_cache *cachep, 727 struct alien_cache **alien) 728 { 729 int i = 0; 730 struct alien_cache *alc; 731 struct array_cache *ac; 732 unsigned long flags; 733 734 for_each_online_node(i) { 735 alc = alien[i]; 736 if (alc) { 737 LIST_HEAD(list); 738 739 ac = &alc->ac; 740 spin_lock_irqsave(&alc->lock, flags); 741 __drain_alien_cache(cachep, ac, i, &list); 742 spin_unlock_irqrestore(&alc->lock, flags); 743 slabs_destroy(cachep, &list); 744 } 745 } 746 } 747 748 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 749 int node, int slab_node) 750 { 751 struct kmem_cache_node *n; 752 struct alien_cache *alien = NULL; 753 struct array_cache *ac; 754 LIST_HEAD(list); 755 756 n = get_node(cachep, node); 757 STATS_INC_NODEFREES(cachep); 758 if (n->alien && n->alien[slab_node]) { 759 alien = n->alien[slab_node]; 760 ac = &alien->ac; 761 spin_lock(&alien->lock); 762 if (unlikely(ac->avail == ac->limit)) { 763 STATS_INC_ACOVERFLOW(cachep); 764 __drain_alien_cache(cachep, ac, slab_node, &list); 765 } 766 __free_one(ac, objp); 767 spin_unlock(&alien->lock); 768 slabs_destroy(cachep, &list); 769 } else { 770 n = get_node(cachep, slab_node); 771 raw_spin_lock(&n->list_lock); 772 free_block(cachep, &objp, 1, slab_node, &list); 773 raw_spin_unlock(&n->list_lock); 774 slabs_destroy(cachep, &list); 775 } 776 return 1; 777 } 778 779 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 780 { 781 int slab_node = slab_nid(virt_to_slab(objp)); 782 int node = numa_mem_id(); 783 /* 784 * Make sure we are not freeing an object from another node to the array 785 * cache on this cpu. 786 */ 787 if (likely(node == slab_node)) 788 return 0; 789 790 return __cache_free_alien(cachep, objp, node, slab_node); 791 } 792 793 /* 794 * Construct gfp mask to allocate from a specific node but do not reclaim or 795 * warn about failures. 796 */ 797 static inline gfp_t gfp_exact_node(gfp_t flags) 798 { 799 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 800 } 801 #endif 802 803 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 804 { 805 struct kmem_cache_node *n; 806 807 /* 808 * Set up the kmem_cache_node for cpu before we can 809 * begin anything. Make sure some other cpu on this 810 * node has not already allocated this 811 */ 812 n = get_node(cachep, node); 813 if (n) { 814 raw_spin_lock_irq(&n->list_lock); 815 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 816 cachep->num; 817 raw_spin_unlock_irq(&n->list_lock); 818 819 return 0; 820 } 821 822 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 823 if (!n) 824 return -ENOMEM; 825 826 kmem_cache_node_init(n); 827 n->next_reap = jiffies + REAPTIMEOUT_NODE + 828 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 829 830 n->free_limit = 831 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 832 833 /* 834 * The kmem_cache_nodes don't come and go as CPUs 835 * come and go. slab_mutex provides sufficient 836 * protection here. 837 */ 838 cachep->node[node] = n; 839 840 return 0; 841 } 842 843 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 844 /* 845 * Allocates and initializes node for a node on each slab cache, used for 846 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 847 * will be allocated off-node since memory is not yet online for the new node. 848 * When hotplugging memory or a cpu, existing nodes are not replaced if 849 * already in use. 850 * 851 * Must hold slab_mutex. 852 */ 853 static int init_cache_node_node(int node) 854 { 855 int ret; 856 struct kmem_cache *cachep; 857 858 list_for_each_entry(cachep, &slab_caches, list) { 859 ret = init_cache_node(cachep, node, GFP_KERNEL); 860 if (ret) 861 return ret; 862 } 863 864 return 0; 865 } 866 #endif 867 868 static int setup_kmem_cache_node(struct kmem_cache *cachep, 869 int node, gfp_t gfp, bool force_change) 870 { 871 int ret = -ENOMEM; 872 struct kmem_cache_node *n; 873 struct array_cache *old_shared = NULL; 874 struct array_cache *new_shared = NULL; 875 struct alien_cache **new_alien = NULL; 876 LIST_HEAD(list); 877 878 if (use_alien_caches) { 879 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 880 if (!new_alien) 881 goto fail; 882 } 883 884 if (cachep->shared) { 885 new_shared = alloc_arraycache(node, 886 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 887 if (!new_shared) 888 goto fail; 889 } 890 891 ret = init_cache_node(cachep, node, gfp); 892 if (ret) 893 goto fail; 894 895 n = get_node(cachep, node); 896 raw_spin_lock_irq(&n->list_lock); 897 if (n->shared && force_change) { 898 free_block(cachep, n->shared->entry, 899 n->shared->avail, node, &list); 900 n->shared->avail = 0; 901 } 902 903 if (!n->shared || force_change) { 904 old_shared = n->shared; 905 n->shared = new_shared; 906 new_shared = NULL; 907 } 908 909 if (!n->alien) { 910 n->alien = new_alien; 911 new_alien = NULL; 912 } 913 914 raw_spin_unlock_irq(&n->list_lock); 915 slabs_destroy(cachep, &list); 916 917 /* 918 * To protect lockless access to n->shared during irq disabled context. 919 * If n->shared isn't NULL in irq disabled context, accessing to it is 920 * guaranteed to be valid until irq is re-enabled, because it will be 921 * freed after synchronize_rcu(). 922 */ 923 if (old_shared && force_change) 924 synchronize_rcu(); 925 926 fail: 927 kfree(old_shared); 928 kfree(new_shared); 929 free_alien_cache(new_alien); 930 931 return ret; 932 } 933 934 #ifdef CONFIG_SMP 935 936 static void cpuup_canceled(long cpu) 937 { 938 struct kmem_cache *cachep; 939 struct kmem_cache_node *n = NULL; 940 int node = cpu_to_mem(cpu); 941 const struct cpumask *mask = cpumask_of_node(node); 942 943 list_for_each_entry(cachep, &slab_caches, list) { 944 struct array_cache *nc; 945 struct array_cache *shared; 946 struct alien_cache **alien; 947 LIST_HEAD(list); 948 949 n = get_node(cachep, node); 950 if (!n) 951 continue; 952 953 raw_spin_lock_irq(&n->list_lock); 954 955 /* Free limit for this kmem_cache_node */ 956 n->free_limit -= cachep->batchcount; 957 958 /* cpu is dead; no one can alloc from it. */ 959 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 960 free_block(cachep, nc->entry, nc->avail, node, &list); 961 nc->avail = 0; 962 963 if (!cpumask_empty(mask)) { 964 raw_spin_unlock_irq(&n->list_lock); 965 goto free_slab; 966 } 967 968 shared = n->shared; 969 if (shared) { 970 free_block(cachep, shared->entry, 971 shared->avail, node, &list); 972 n->shared = NULL; 973 } 974 975 alien = n->alien; 976 n->alien = NULL; 977 978 raw_spin_unlock_irq(&n->list_lock); 979 980 kfree(shared); 981 if (alien) { 982 drain_alien_cache(cachep, alien); 983 free_alien_cache(alien); 984 } 985 986 free_slab: 987 slabs_destroy(cachep, &list); 988 } 989 /* 990 * In the previous loop, all the objects were freed to 991 * the respective cache's slabs, now we can go ahead and 992 * shrink each nodelist to its limit. 993 */ 994 list_for_each_entry(cachep, &slab_caches, list) { 995 n = get_node(cachep, node); 996 if (!n) 997 continue; 998 drain_freelist(cachep, n, INT_MAX); 999 } 1000 } 1001 1002 static int cpuup_prepare(long cpu) 1003 { 1004 struct kmem_cache *cachep; 1005 int node = cpu_to_mem(cpu); 1006 int err; 1007 1008 /* 1009 * We need to do this right in the beginning since 1010 * alloc_arraycache's are going to use this list. 1011 * kmalloc_node allows us to add the slab to the right 1012 * kmem_cache_node and not this cpu's kmem_cache_node 1013 */ 1014 err = init_cache_node_node(node); 1015 if (err < 0) 1016 goto bad; 1017 1018 /* 1019 * Now we can go ahead with allocating the shared arrays and 1020 * array caches 1021 */ 1022 list_for_each_entry(cachep, &slab_caches, list) { 1023 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1024 if (err) 1025 goto bad; 1026 } 1027 1028 return 0; 1029 bad: 1030 cpuup_canceled(cpu); 1031 return -ENOMEM; 1032 } 1033 1034 int slab_prepare_cpu(unsigned int cpu) 1035 { 1036 int err; 1037 1038 mutex_lock(&slab_mutex); 1039 err = cpuup_prepare(cpu); 1040 mutex_unlock(&slab_mutex); 1041 return err; 1042 } 1043 1044 /* 1045 * This is called for a failed online attempt and for a successful 1046 * offline. 1047 * 1048 * Even if all the cpus of a node are down, we don't free the 1049 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and 1050 * a kmalloc allocation from another cpu for memory from the node of 1051 * the cpu going down. The kmem_cache_node structure is usually allocated from 1052 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1053 */ 1054 int slab_dead_cpu(unsigned int cpu) 1055 { 1056 mutex_lock(&slab_mutex); 1057 cpuup_canceled(cpu); 1058 mutex_unlock(&slab_mutex); 1059 return 0; 1060 } 1061 #endif 1062 1063 static int slab_online_cpu(unsigned int cpu) 1064 { 1065 start_cpu_timer(cpu); 1066 return 0; 1067 } 1068 1069 static int slab_offline_cpu(unsigned int cpu) 1070 { 1071 /* 1072 * Shutdown cache reaper. Note that the slab_mutex is held so 1073 * that if cache_reap() is invoked it cannot do anything 1074 * expensive but will only modify reap_work and reschedule the 1075 * timer. 1076 */ 1077 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1078 /* Now the cache_reaper is guaranteed to be not running. */ 1079 per_cpu(slab_reap_work, cpu).work.func = NULL; 1080 return 0; 1081 } 1082 1083 #if defined(CONFIG_NUMA) 1084 /* 1085 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1086 * Returns -EBUSY if all objects cannot be drained so that the node is not 1087 * removed. 1088 * 1089 * Must hold slab_mutex. 1090 */ 1091 static int __meminit drain_cache_node_node(int node) 1092 { 1093 struct kmem_cache *cachep; 1094 int ret = 0; 1095 1096 list_for_each_entry(cachep, &slab_caches, list) { 1097 struct kmem_cache_node *n; 1098 1099 n = get_node(cachep, node); 1100 if (!n) 1101 continue; 1102 1103 drain_freelist(cachep, n, INT_MAX); 1104 1105 if (!list_empty(&n->slabs_full) || 1106 !list_empty(&n->slabs_partial)) { 1107 ret = -EBUSY; 1108 break; 1109 } 1110 } 1111 return ret; 1112 } 1113 1114 static int __meminit slab_memory_callback(struct notifier_block *self, 1115 unsigned long action, void *arg) 1116 { 1117 struct memory_notify *mnb = arg; 1118 int ret = 0; 1119 int nid; 1120 1121 nid = mnb->status_change_nid; 1122 if (nid < 0) 1123 goto out; 1124 1125 switch (action) { 1126 case MEM_GOING_ONLINE: 1127 mutex_lock(&slab_mutex); 1128 ret = init_cache_node_node(nid); 1129 mutex_unlock(&slab_mutex); 1130 break; 1131 case MEM_GOING_OFFLINE: 1132 mutex_lock(&slab_mutex); 1133 ret = drain_cache_node_node(nid); 1134 mutex_unlock(&slab_mutex); 1135 break; 1136 case MEM_ONLINE: 1137 case MEM_OFFLINE: 1138 case MEM_CANCEL_ONLINE: 1139 case MEM_CANCEL_OFFLINE: 1140 break; 1141 } 1142 out: 1143 return notifier_from_errno(ret); 1144 } 1145 #endif /* CONFIG_NUMA */ 1146 1147 /* 1148 * swap the static kmem_cache_node with kmalloced memory 1149 */ 1150 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1151 int nodeid) 1152 { 1153 struct kmem_cache_node *ptr; 1154 1155 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1156 BUG_ON(!ptr); 1157 1158 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1159 /* 1160 * Do not assume that spinlocks can be initialized via memcpy: 1161 */ 1162 raw_spin_lock_init(&ptr->list_lock); 1163 1164 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1165 cachep->node[nodeid] = ptr; 1166 } 1167 1168 /* 1169 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1170 * size of kmem_cache_node. 1171 */ 1172 static void __init set_up_node(struct kmem_cache *cachep, int index) 1173 { 1174 int node; 1175 1176 for_each_online_node(node) { 1177 cachep->node[node] = &init_kmem_cache_node[index + node]; 1178 cachep->node[node]->next_reap = jiffies + 1179 REAPTIMEOUT_NODE + 1180 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1181 } 1182 } 1183 1184 /* 1185 * Initialisation. Called after the page allocator have been initialised and 1186 * before smp_init(). 1187 */ 1188 void __init kmem_cache_init(void) 1189 { 1190 int i; 1191 1192 kmem_cache = &kmem_cache_boot; 1193 1194 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1195 use_alien_caches = 0; 1196 1197 for (i = 0; i < NUM_INIT_LISTS; i++) 1198 kmem_cache_node_init(&init_kmem_cache_node[i]); 1199 1200 /* 1201 * Fragmentation resistance on low memory - only use bigger 1202 * page orders on machines with more than 32MB of memory if 1203 * not overridden on the command line. 1204 */ 1205 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1206 slab_max_order = SLAB_MAX_ORDER_HI; 1207 1208 /* Bootstrap is tricky, because several objects are allocated 1209 * from caches that do not exist yet: 1210 * 1) initialize the kmem_cache cache: it contains the struct 1211 * kmem_cache structures of all caches, except kmem_cache itself: 1212 * kmem_cache is statically allocated. 1213 * Initially an __init data area is used for the head array and the 1214 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1215 * array at the end of the bootstrap. 1216 * 2) Create the first kmalloc cache. 1217 * The struct kmem_cache for the new cache is allocated normally. 1218 * An __init data area is used for the head array. 1219 * 3) Create the remaining kmalloc caches, with minimally sized 1220 * head arrays. 1221 * 4) Replace the __init data head arrays for kmem_cache and the first 1222 * kmalloc cache with kmalloc allocated arrays. 1223 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1224 * the other cache's with kmalloc allocated memory. 1225 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1226 */ 1227 1228 /* 1) create the kmem_cache */ 1229 1230 /* 1231 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1232 */ 1233 create_boot_cache(kmem_cache, "kmem_cache", 1234 offsetof(struct kmem_cache, node) + 1235 nr_node_ids * sizeof(struct kmem_cache_node *), 1236 SLAB_HWCACHE_ALIGN, 0, 0); 1237 list_add(&kmem_cache->list, &slab_caches); 1238 slab_state = PARTIAL; 1239 1240 /* 1241 * Initialize the caches that provide memory for the kmem_cache_node 1242 * structures first. Without this, further allocations will bug. 1243 */ 1244 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( 1245 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL], 1246 kmalloc_info[INDEX_NODE].size, 1247 ARCH_KMALLOC_FLAGS, 0, 1248 kmalloc_info[INDEX_NODE].size); 1249 slab_state = PARTIAL_NODE; 1250 setup_kmalloc_cache_index_table(); 1251 1252 slab_early_init = 0; 1253 1254 /* 5) Replace the bootstrap kmem_cache_node */ 1255 { 1256 int nid; 1257 1258 for_each_online_node(nid) { 1259 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1260 1261 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1262 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1263 } 1264 } 1265 1266 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1267 } 1268 1269 void __init kmem_cache_init_late(void) 1270 { 1271 struct kmem_cache *cachep; 1272 1273 /* 6) resize the head arrays to their final sizes */ 1274 mutex_lock(&slab_mutex); 1275 list_for_each_entry(cachep, &slab_caches, list) 1276 if (enable_cpucache(cachep, GFP_NOWAIT)) 1277 BUG(); 1278 mutex_unlock(&slab_mutex); 1279 1280 /* Done! */ 1281 slab_state = FULL; 1282 1283 #ifdef CONFIG_NUMA 1284 /* 1285 * Register a memory hotplug callback that initializes and frees 1286 * node. 1287 */ 1288 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1289 #endif 1290 1291 /* 1292 * The reap timers are started later, with a module init call: That part 1293 * of the kernel is not yet operational. 1294 */ 1295 } 1296 1297 static int __init cpucache_init(void) 1298 { 1299 int ret; 1300 1301 /* 1302 * Register the timers that return unneeded pages to the page allocator 1303 */ 1304 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1305 slab_online_cpu, slab_offline_cpu); 1306 WARN_ON(ret < 0); 1307 1308 return 0; 1309 } 1310 __initcall(cpucache_init); 1311 1312 static noinline void 1313 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1314 { 1315 #if DEBUG 1316 struct kmem_cache_node *n; 1317 unsigned long flags; 1318 int node; 1319 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1320 DEFAULT_RATELIMIT_BURST); 1321 1322 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1323 return; 1324 1325 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1326 nodeid, gfpflags, &gfpflags); 1327 pr_warn(" cache: %s, object size: %d, order: %d\n", 1328 cachep->name, cachep->size, cachep->gfporder); 1329 1330 for_each_kmem_cache_node(cachep, node, n) { 1331 unsigned long total_slabs, free_slabs, free_objs; 1332 1333 raw_spin_lock_irqsave(&n->list_lock, flags); 1334 total_slabs = n->total_slabs; 1335 free_slabs = n->free_slabs; 1336 free_objs = n->free_objects; 1337 raw_spin_unlock_irqrestore(&n->list_lock, flags); 1338 1339 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1340 node, total_slabs - free_slabs, total_slabs, 1341 (total_slabs * cachep->num) - free_objs, 1342 total_slabs * cachep->num); 1343 } 1344 #endif 1345 } 1346 1347 /* 1348 * Interface to system's page allocator. No need to hold the 1349 * kmem_cache_node ->list_lock. 1350 * 1351 * If we requested dmaable memory, we will get it. Even if we 1352 * did not request dmaable memory, we might get it, but that 1353 * would be relatively rare and ignorable. 1354 */ 1355 static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1356 int nodeid) 1357 { 1358 struct folio *folio; 1359 struct slab *slab; 1360 1361 flags |= cachep->allocflags; 1362 1363 folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder); 1364 if (!folio) { 1365 slab_out_of_memory(cachep, flags, nodeid); 1366 return NULL; 1367 } 1368 1369 slab = folio_slab(folio); 1370 1371 account_slab(slab, cachep->gfporder, cachep, flags); 1372 __folio_set_slab(folio); 1373 /* Make the flag visible before any changes to folio->mapping */ 1374 smp_wmb(); 1375 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1376 if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0))) 1377 slab_set_pfmemalloc(slab); 1378 1379 return slab; 1380 } 1381 1382 /* 1383 * Interface to system's page release. 1384 */ 1385 static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab) 1386 { 1387 int order = cachep->gfporder; 1388 struct folio *folio = slab_folio(slab); 1389 1390 BUG_ON(!folio_test_slab(folio)); 1391 __slab_clear_pfmemalloc(slab); 1392 page_mapcount_reset(folio_page(folio, 0)); 1393 folio->mapping = NULL; 1394 /* Make the mapping reset visible before clearing the flag */ 1395 smp_wmb(); 1396 __folio_clear_slab(folio); 1397 1398 if (current->reclaim_state) 1399 current->reclaim_state->reclaimed_slab += 1 << order; 1400 unaccount_slab(slab, order, cachep); 1401 __free_pages(folio_page(folio, 0), order); 1402 } 1403 1404 static void kmem_rcu_free(struct rcu_head *head) 1405 { 1406 struct kmem_cache *cachep; 1407 struct slab *slab; 1408 1409 slab = container_of(head, struct slab, rcu_head); 1410 cachep = slab->slab_cache; 1411 1412 kmem_freepages(cachep, slab); 1413 } 1414 1415 #if DEBUG 1416 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1417 { 1418 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && 1419 (cachep->size % PAGE_SIZE) == 0) 1420 return true; 1421 1422 return false; 1423 } 1424 1425 #ifdef CONFIG_DEBUG_PAGEALLOC 1426 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1427 { 1428 if (!is_debug_pagealloc_cache(cachep)) 1429 return; 1430 1431 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1432 } 1433 1434 #else 1435 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1436 int map) {} 1437 1438 #endif 1439 1440 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1441 { 1442 int size = cachep->object_size; 1443 addr = &((char *)addr)[obj_offset(cachep)]; 1444 1445 memset(addr, val, size); 1446 *(unsigned char *)(addr + size - 1) = POISON_END; 1447 } 1448 1449 static void dump_line(char *data, int offset, int limit) 1450 { 1451 int i; 1452 unsigned char error = 0; 1453 int bad_count = 0; 1454 1455 pr_err("%03x: ", offset); 1456 for (i = 0; i < limit; i++) { 1457 if (data[offset + i] != POISON_FREE) { 1458 error = data[offset + i]; 1459 bad_count++; 1460 } 1461 } 1462 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1463 &data[offset], limit, 1); 1464 1465 if (bad_count == 1) { 1466 error ^= POISON_FREE; 1467 if (!(error & (error - 1))) { 1468 pr_err("Single bit error detected. Probably bad RAM.\n"); 1469 #ifdef CONFIG_X86 1470 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1471 #else 1472 pr_err("Run a memory test tool.\n"); 1473 #endif 1474 } 1475 } 1476 } 1477 #endif 1478 1479 #if DEBUG 1480 1481 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1482 { 1483 int i, size; 1484 char *realobj; 1485 1486 if (cachep->flags & SLAB_RED_ZONE) { 1487 pr_err("Redzone: 0x%llx/0x%llx\n", 1488 *dbg_redzone1(cachep, objp), 1489 *dbg_redzone2(cachep, objp)); 1490 } 1491 1492 if (cachep->flags & SLAB_STORE_USER) 1493 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1494 realobj = (char *)objp + obj_offset(cachep); 1495 size = cachep->object_size; 1496 for (i = 0; i < size && lines; i += 16, lines--) { 1497 int limit; 1498 limit = 16; 1499 if (i + limit > size) 1500 limit = size - i; 1501 dump_line(realobj, i, limit); 1502 } 1503 } 1504 1505 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1506 { 1507 char *realobj; 1508 int size, i; 1509 int lines = 0; 1510 1511 if (is_debug_pagealloc_cache(cachep)) 1512 return; 1513 1514 realobj = (char *)objp + obj_offset(cachep); 1515 size = cachep->object_size; 1516 1517 for (i = 0; i < size; i++) { 1518 char exp = POISON_FREE; 1519 if (i == size - 1) 1520 exp = POISON_END; 1521 if (realobj[i] != exp) { 1522 int limit; 1523 /* Mismatch ! */ 1524 /* Print header */ 1525 if (lines == 0) { 1526 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1527 print_tainted(), cachep->name, 1528 realobj, size); 1529 print_objinfo(cachep, objp, 0); 1530 } 1531 /* Hexdump the affected line */ 1532 i = (i / 16) * 16; 1533 limit = 16; 1534 if (i + limit > size) 1535 limit = size - i; 1536 dump_line(realobj, i, limit); 1537 i += 16; 1538 lines++; 1539 /* Limit to 5 lines */ 1540 if (lines > 5) 1541 break; 1542 } 1543 } 1544 if (lines != 0) { 1545 /* Print some data about the neighboring objects, if they 1546 * exist: 1547 */ 1548 struct slab *slab = virt_to_slab(objp); 1549 unsigned int objnr; 1550 1551 objnr = obj_to_index(cachep, slab, objp); 1552 if (objnr) { 1553 objp = index_to_obj(cachep, slab, objnr - 1); 1554 realobj = (char *)objp + obj_offset(cachep); 1555 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1556 print_objinfo(cachep, objp, 2); 1557 } 1558 if (objnr + 1 < cachep->num) { 1559 objp = index_to_obj(cachep, slab, objnr + 1); 1560 realobj = (char *)objp + obj_offset(cachep); 1561 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1562 print_objinfo(cachep, objp, 2); 1563 } 1564 } 1565 } 1566 #endif 1567 1568 #if DEBUG 1569 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1570 struct slab *slab) 1571 { 1572 int i; 1573 1574 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1575 poison_obj(cachep, slab->freelist - obj_offset(cachep), 1576 POISON_FREE); 1577 } 1578 1579 for (i = 0; i < cachep->num; i++) { 1580 void *objp = index_to_obj(cachep, slab, i); 1581 1582 if (cachep->flags & SLAB_POISON) { 1583 check_poison_obj(cachep, objp); 1584 slab_kernel_map(cachep, objp, 1); 1585 } 1586 if (cachep->flags & SLAB_RED_ZONE) { 1587 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1588 slab_error(cachep, "start of a freed object was overwritten"); 1589 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1590 slab_error(cachep, "end of a freed object was overwritten"); 1591 } 1592 } 1593 } 1594 #else 1595 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1596 struct slab *slab) 1597 { 1598 } 1599 #endif 1600 1601 /** 1602 * slab_destroy - destroy and release all objects in a slab 1603 * @cachep: cache pointer being destroyed 1604 * @slab: slab being destroyed 1605 * 1606 * Destroy all the objs in a slab, and release the mem back to the system. 1607 * Before calling the slab must have been unlinked from the cache. The 1608 * kmem_cache_node ->list_lock is not held/needed. 1609 */ 1610 static void slab_destroy(struct kmem_cache *cachep, struct slab *slab) 1611 { 1612 void *freelist; 1613 1614 freelist = slab->freelist; 1615 slab_destroy_debugcheck(cachep, slab); 1616 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1617 call_rcu(&slab->rcu_head, kmem_rcu_free); 1618 else 1619 kmem_freepages(cachep, slab); 1620 1621 /* 1622 * From now on, we don't use freelist 1623 * although actual page can be freed in rcu context 1624 */ 1625 if (OFF_SLAB(cachep)) 1626 kfree(freelist); 1627 } 1628 1629 /* 1630 * Update the size of the caches before calling slabs_destroy as it may 1631 * recursively call kfree. 1632 */ 1633 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1634 { 1635 struct slab *slab, *n; 1636 1637 list_for_each_entry_safe(slab, n, list, slab_list) { 1638 list_del(&slab->slab_list); 1639 slab_destroy(cachep, slab); 1640 } 1641 } 1642 1643 /** 1644 * calculate_slab_order - calculate size (page order) of slabs 1645 * @cachep: pointer to the cache that is being created 1646 * @size: size of objects to be created in this cache. 1647 * @flags: slab allocation flags 1648 * 1649 * Also calculates the number of objects per slab. 1650 * 1651 * This could be made much more intelligent. For now, try to avoid using 1652 * high order pages for slabs. When the gfp() functions are more friendly 1653 * towards high-order requests, this should be changed. 1654 * 1655 * Return: number of left-over bytes in a slab 1656 */ 1657 static size_t calculate_slab_order(struct kmem_cache *cachep, 1658 size_t size, slab_flags_t flags) 1659 { 1660 size_t left_over = 0; 1661 int gfporder; 1662 1663 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1664 unsigned int num; 1665 size_t remainder; 1666 1667 num = cache_estimate(gfporder, size, flags, &remainder); 1668 if (!num) 1669 continue; 1670 1671 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1672 if (num > SLAB_OBJ_MAX_NUM) 1673 break; 1674 1675 if (flags & CFLGS_OFF_SLAB) { 1676 struct kmem_cache *freelist_cache; 1677 size_t freelist_size; 1678 size_t freelist_cache_size; 1679 1680 freelist_size = num * sizeof(freelist_idx_t); 1681 if (freelist_size > KMALLOC_MAX_CACHE_SIZE) { 1682 freelist_cache_size = PAGE_SIZE << get_order(freelist_size); 1683 } else { 1684 freelist_cache = kmalloc_slab(freelist_size, 0u); 1685 if (!freelist_cache) 1686 continue; 1687 freelist_cache_size = freelist_cache->size; 1688 1689 /* 1690 * Needed to avoid possible looping condition 1691 * in cache_grow_begin() 1692 */ 1693 if (OFF_SLAB(freelist_cache)) 1694 continue; 1695 } 1696 1697 /* check if off slab has enough benefit */ 1698 if (freelist_cache_size > cachep->size / 2) 1699 continue; 1700 } 1701 1702 /* Found something acceptable - save it away */ 1703 cachep->num = num; 1704 cachep->gfporder = gfporder; 1705 left_over = remainder; 1706 1707 /* 1708 * A VFS-reclaimable slab tends to have most allocations 1709 * as GFP_NOFS and we really don't want to have to be allocating 1710 * higher-order pages when we are unable to shrink dcache. 1711 */ 1712 if (flags & SLAB_RECLAIM_ACCOUNT) 1713 break; 1714 1715 /* 1716 * Large number of objects is good, but very large slabs are 1717 * currently bad for the gfp()s. 1718 */ 1719 if (gfporder >= slab_max_order) 1720 break; 1721 1722 /* 1723 * Acceptable internal fragmentation? 1724 */ 1725 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1726 break; 1727 } 1728 return left_over; 1729 } 1730 1731 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1732 struct kmem_cache *cachep, int entries, int batchcount) 1733 { 1734 int cpu; 1735 size_t size; 1736 struct array_cache __percpu *cpu_cache; 1737 1738 size = sizeof(void *) * entries + sizeof(struct array_cache); 1739 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1740 1741 if (!cpu_cache) 1742 return NULL; 1743 1744 for_each_possible_cpu(cpu) { 1745 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1746 entries, batchcount); 1747 } 1748 1749 return cpu_cache; 1750 } 1751 1752 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1753 { 1754 if (slab_state >= FULL) 1755 return enable_cpucache(cachep, gfp); 1756 1757 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1758 if (!cachep->cpu_cache) 1759 return 1; 1760 1761 if (slab_state == DOWN) { 1762 /* Creation of first cache (kmem_cache). */ 1763 set_up_node(kmem_cache, CACHE_CACHE); 1764 } else if (slab_state == PARTIAL) { 1765 /* For kmem_cache_node */ 1766 set_up_node(cachep, SIZE_NODE); 1767 } else { 1768 int node; 1769 1770 for_each_online_node(node) { 1771 cachep->node[node] = kmalloc_node( 1772 sizeof(struct kmem_cache_node), gfp, node); 1773 BUG_ON(!cachep->node[node]); 1774 kmem_cache_node_init(cachep->node[node]); 1775 } 1776 } 1777 1778 cachep->node[numa_mem_id()]->next_reap = 1779 jiffies + REAPTIMEOUT_NODE + 1780 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1781 1782 cpu_cache_get(cachep)->avail = 0; 1783 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1784 cpu_cache_get(cachep)->batchcount = 1; 1785 cpu_cache_get(cachep)->touched = 0; 1786 cachep->batchcount = 1; 1787 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1788 return 0; 1789 } 1790 1791 slab_flags_t kmem_cache_flags(unsigned int object_size, 1792 slab_flags_t flags, const char *name) 1793 { 1794 return flags; 1795 } 1796 1797 struct kmem_cache * 1798 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1799 slab_flags_t flags, void (*ctor)(void *)) 1800 { 1801 struct kmem_cache *cachep; 1802 1803 cachep = find_mergeable(size, align, flags, name, ctor); 1804 if (cachep) { 1805 cachep->refcount++; 1806 1807 /* 1808 * Adjust the object sizes so that we clear 1809 * the complete object on kzalloc. 1810 */ 1811 cachep->object_size = max_t(int, cachep->object_size, size); 1812 } 1813 return cachep; 1814 } 1815 1816 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1817 size_t size, slab_flags_t flags) 1818 { 1819 size_t left; 1820 1821 cachep->num = 0; 1822 1823 /* 1824 * If slab auto-initialization on free is enabled, store the freelist 1825 * off-slab, so that its contents don't end up in one of the allocated 1826 * objects. 1827 */ 1828 if (unlikely(slab_want_init_on_free(cachep))) 1829 return false; 1830 1831 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1832 return false; 1833 1834 left = calculate_slab_order(cachep, size, 1835 flags | CFLGS_OBJFREELIST_SLAB); 1836 if (!cachep->num) 1837 return false; 1838 1839 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1840 return false; 1841 1842 cachep->colour = left / cachep->colour_off; 1843 1844 return true; 1845 } 1846 1847 static bool set_off_slab_cache(struct kmem_cache *cachep, 1848 size_t size, slab_flags_t flags) 1849 { 1850 size_t left; 1851 1852 cachep->num = 0; 1853 1854 /* 1855 * Always use on-slab management when SLAB_NOLEAKTRACE 1856 * to avoid recursive calls into kmemleak. 1857 */ 1858 if (flags & SLAB_NOLEAKTRACE) 1859 return false; 1860 1861 /* 1862 * Size is large, assume best to place the slab management obj 1863 * off-slab (should allow better packing of objs). 1864 */ 1865 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1866 if (!cachep->num) 1867 return false; 1868 1869 /* 1870 * If the slab has been placed off-slab, and we have enough space then 1871 * move it on-slab. This is at the expense of any extra colouring. 1872 */ 1873 if (left >= cachep->num * sizeof(freelist_idx_t)) 1874 return false; 1875 1876 cachep->colour = left / cachep->colour_off; 1877 1878 return true; 1879 } 1880 1881 static bool set_on_slab_cache(struct kmem_cache *cachep, 1882 size_t size, slab_flags_t flags) 1883 { 1884 size_t left; 1885 1886 cachep->num = 0; 1887 1888 left = calculate_slab_order(cachep, size, flags); 1889 if (!cachep->num) 1890 return false; 1891 1892 cachep->colour = left / cachep->colour_off; 1893 1894 return true; 1895 } 1896 1897 /** 1898 * __kmem_cache_create - Create a cache. 1899 * @cachep: cache management descriptor 1900 * @flags: SLAB flags 1901 * 1902 * Returns a ptr to the cache on success, NULL on failure. 1903 * Cannot be called within an int, but can be interrupted. 1904 * The @ctor is run when new pages are allocated by the cache. 1905 * 1906 * The flags are 1907 * 1908 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1909 * to catch references to uninitialised memory. 1910 * 1911 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1912 * for buffer overruns. 1913 * 1914 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1915 * cacheline. This can be beneficial if you're counting cycles as closely 1916 * as davem. 1917 * 1918 * Return: a pointer to the created cache or %NULL in case of error 1919 */ 1920 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1921 { 1922 size_t ralign = BYTES_PER_WORD; 1923 gfp_t gfp; 1924 int err; 1925 unsigned int size = cachep->size; 1926 1927 #if DEBUG 1928 #if FORCED_DEBUG 1929 /* 1930 * Enable redzoning and last user accounting, except for caches with 1931 * large objects, if the increased size would increase the object size 1932 * above the next power of two: caches with object sizes just above a 1933 * power of two have a significant amount of internal fragmentation. 1934 */ 1935 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1936 2 * sizeof(unsigned long long))) 1937 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1938 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1939 flags |= SLAB_POISON; 1940 #endif 1941 #endif 1942 1943 /* 1944 * Check that size is in terms of words. This is needed to avoid 1945 * unaligned accesses for some archs when redzoning is used, and makes 1946 * sure any on-slab bufctl's are also correctly aligned. 1947 */ 1948 size = ALIGN(size, BYTES_PER_WORD); 1949 1950 if (flags & SLAB_RED_ZONE) { 1951 ralign = REDZONE_ALIGN; 1952 /* If redzoning, ensure that the second redzone is suitably 1953 * aligned, by adjusting the object size accordingly. */ 1954 size = ALIGN(size, REDZONE_ALIGN); 1955 } 1956 1957 /* 3) caller mandated alignment */ 1958 if (ralign < cachep->align) { 1959 ralign = cachep->align; 1960 } 1961 /* disable debug if necessary */ 1962 if (ralign > __alignof__(unsigned long long)) 1963 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1964 /* 1965 * 4) Store it. 1966 */ 1967 cachep->align = ralign; 1968 cachep->colour_off = cache_line_size(); 1969 /* Offset must be a multiple of the alignment. */ 1970 if (cachep->colour_off < cachep->align) 1971 cachep->colour_off = cachep->align; 1972 1973 if (slab_is_available()) 1974 gfp = GFP_KERNEL; 1975 else 1976 gfp = GFP_NOWAIT; 1977 1978 #if DEBUG 1979 1980 /* 1981 * Both debugging options require word-alignment which is calculated 1982 * into align above. 1983 */ 1984 if (flags & SLAB_RED_ZONE) { 1985 /* add space for red zone words */ 1986 cachep->obj_offset += sizeof(unsigned long long); 1987 size += 2 * sizeof(unsigned long long); 1988 } 1989 if (flags & SLAB_STORE_USER) { 1990 /* user store requires one word storage behind the end of 1991 * the real object. But if the second red zone needs to be 1992 * aligned to 64 bits, we must allow that much space. 1993 */ 1994 if (flags & SLAB_RED_ZONE) 1995 size += REDZONE_ALIGN; 1996 else 1997 size += BYTES_PER_WORD; 1998 } 1999 #endif 2000 2001 kasan_cache_create(cachep, &size, &flags); 2002 2003 size = ALIGN(size, cachep->align); 2004 /* 2005 * We should restrict the number of objects in a slab to implement 2006 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2007 */ 2008 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2009 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2010 2011 #if DEBUG 2012 /* 2013 * To activate debug pagealloc, off-slab management is necessary 2014 * requirement. In early phase of initialization, small sized slab 2015 * doesn't get initialized so it would not be possible. So, we need 2016 * to check size >= 256. It guarantees that all necessary small 2017 * sized slab is initialized in current slab initialization sequence. 2018 */ 2019 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && 2020 size >= 256 && cachep->object_size > cache_line_size()) { 2021 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2022 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2023 2024 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2025 flags |= CFLGS_OFF_SLAB; 2026 cachep->obj_offset += tmp_size - size; 2027 size = tmp_size; 2028 goto done; 2029 } 2030 } 2031 } 2032 #endif 2033 2034 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2035 flags |= CFLGS_OBJFREELIST_SLAB; 2036 goto done; 2037 } 2038 2039 if (set_off_slab_cache(cachep, size, flags)) { 2040 flags |= CFLGS_OFF_SLAB; 2041 goto done; 2042 } 2043 2044 if (set_on_slab_cache(cachep, size, flags)) 2045 goto done; 2046 2047 return -E2BIG; 2048 2049 done: 2050 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2051 cachep->flags = flags; 2052 cachep->allocflags = __GFP_COMP; 2053 if (flags & SLAB_CACHE_DMA) 2054 cachep->allocflags |= GFP_DMA; 2055 if (flags & SLAB_CACHE_DMA32) 2056 cachep->allocflags |= GFP_DMA32; 2057 if (flags & SLAB_RECLAIM_ACCOUNT) 2058 cachep->allocflags |= __GFP_RECLAIMABLE; 2059 cachep->size = size; 2060 cachep->reciprocal_buffer_size = reciprocal_value(size); 2061 2062 #if DEBUG 2063 /* 2064 * If we're going to use the generic kernel_map_pages() 2065 * poisoning, then it's going to smash the contents of 2066 * the redzone and userword anyhow, so switch them off. 2067 */ 2068 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2069 (cachep->flags & SLAB_POISON) && 2070 is_debug_pagealloc_cache(cachep)) 2071 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2072 #endif 2073 2074 err = setup_cpu_cache(cachep, gfp); 2075 if (err) { 2076 __kmem_cache_release(cachep); 2077 return err; 2078 } 2079 2080 return 0; 2081 } 2082 2083 #if DEBUG 2084 static void check_irq_off(void) 2085 { 2086 BUG_ON(!irqs_disabled()); 2087 } 2088 2089 static void check_irq_on(void) 2090 { 2091 BUG_ON(irqs_disabled()); 2092 } 2093 2094 static void check_mutex_acquired(void) 2095 { 2096 BUG_ON(!mutex_is_locked(&slab_mutex)); 2097 } 2098 2099 static void check_spinlock_acquired(struct kmem_cache *cachep) 2100 { 2101 #ifdef CONFIG_SMP 2102 check_irq_off(); 2103 assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2104 #endif 2105 } 2106 2107 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2108 { 2109 #ifdef CONFIG_SMP 2110 check_irq_off(); 2111 assert_raw_spin_locked(&get_node(cachep, node)->list_lock); 2112 #endif 2113 } 2114 2115 #else 2116 #define check_irq_off() do { } while(0) 2117 #define check_irq_on() do { } while(0) 2118 #define check_mutex_acquired() do { } while(0) 2119 #define check_spinlock_acquired(x) do { } while(0) 2120 #define check_spinlock_acquired_node(x, y) do { } while(0) 2121 #endif 2122 2123 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2124 int node, bool free_all, struct list_head *list) 2125 { 2126 int tofree; 2127 2128 if (!ac || !ac->avail) 2129 return; 2130 2131 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2132 if (tofree > ac->avail) 2133 tofree = (ac->avail + 1) / 2; 2134 2135 free_block(cachep, ac->entry, tofree, node, list); 2136 ac->avail -= tofree; 2137 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2138 } 2139 2140 static void do_drain(void *arg) 2141 { 2142 struct kmem_cache *cachep = arg; 2143 struct array_cache *ac; 2144 int node = numa_mem_id(); 2145 struct kmem_cache_node *n; 2146 LIST_HEAD(list); 2147 2148 check_irq_off(); 2149 ac = cpu_cache_get(cachep); 2150 n = get_node(cachep, node); 2151 raw_spin_lock(&n->list_lock); 2152 free_block(cachep, ac->entry, ac->avail, node, &list); 2153 raw_spin_unlock(&n->list_lock); 2154 ac->avail = 0; 2155 slabs_destroy(cachep, &list); 2156 } 2157 2158 static void drain_cpu_caches(struct kmem_cache *cachep) 2159 { 2160 struct kmem_cache_node *n; 2161 int node; 2162 LIST_HEAD(list); 2163 2164 on_each_cpu(do_drain, cachep, 1); 2165 check_irq_on(); 2166 for_each_kmem_cache_node(cachep, node, n) 2167 if (n->alien) 2168 drain_alien_cache(cachep, n->alien); 2169 2170 for_each_kmem_cache_node(cachep, node, n) { 2171 raw_spin_lock_irq(&n->list_lock); 2172 drain_array_locked(cachep, n->shared, node, true, &list); 2173 raw_spin_unlock_irq(&n->list_lock); 2174 2175 slabs_destroy(cachep, &list); 2176 } 2177 } 2178 2179 /* 2180 * Remove slabs from the list of free slabs. 2181 * Specify the number of slabs to drain in tofree. 2182 * 2183 * Returns the actual number of slabs released. 2184 */ 2185 static int drain_freelist(struct kmem_cache *cache, 2186 struct kmem_cache_node *n, int tofree) 2187 { 2188 struct list_head *p; 2189 int nr_freed; 2190 struct slab *slab; 2191 2192 nr_freed = 0; 2193 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2194 2195 raw_spin_lock_irq(&n->list_lock); 2196 p = n->slabs_free.prev; 2197 if (p == &n->slabs_free) { 2198 raw_spin_unlock_irq(&n->list_lock); 2199 goto out; 2200 } 2201 2202 slab = list_entry(p, struct slab, slab_list); 2203 list_del(&slab->slab_list); 2204 n->free_slabs--; 2205 n->total_slabs--; 2206 /* 2207 * Safe to drop the lock. The slab is no longer linked 2208 * to the cache. 2209 */ 2210 n->free_objects -= cache->num; 2211 raw_spin_unlock_irq(&n->list_lock); 2212 slab_destroy(cache, slab); 2213 nr_freed++; 2214 } 2215 out: 2216 return nr_freed; 2217 } 2218 2219 bool __kmem_cache_empty(struct kmem_cache *s) 2220 { 2221 int node; 2222 struct kmem_cache_node *n; 2223 2224 for_each_kmem_cache_node(s, node, n) 2225 if (!list_empty(&n->slabs_full) || 2226 !list_empty(&n->slabs_partial)) 2227 return false; 2228 return true; 2229 } 2230 2231 int __kmem_cache_shrink(struct kmem_cache *cachep) 2232 { 2233 int ret = 0; 2234 int node; 2235 struct kmem_cache_node *n; 2236 2237 drain_cpu_caches(cachep); 2238 2239 check_irq_on(); 2240 for_each_kmem_cache_node(cachep, node, n) { 2241 drain_freelist(cachep, n, INT_MAX); 2242 2243 ret += !list_empty(&n->slabs_full) || 2244 !list_empty(&n->slabs_partial); 2245 } 2246 return (ret ? 1 : 0); 2247 } 2248 2249 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2250 { 2251 return __kmem_cache_shrink(cachep); 2252 } 2253 2254 void __kmem_cache_release(struct kmem_cache *cachep) 2255 { 2256 int i; 2257 struct kmem_cache_node *n; 2258 2259 cache_random_seq_destroy(cachep); 2260 2261 free_percpu(cachep->cpu_cache); 2262 2263 /* NUMA: free the node structures */ 2264 for_each_kmem_cache_node(cachep, i, n) { 2265 kfree(n->shared); 2266 free_alien_cache(n->alien); 2267 kfree(n); 2268 cachep->node[i] = NULL; 2269 } 2270 } 2271 2272 /* 2273 * Get the memory for a slab management obj. 2274 * 2275 * For a slab cache when the slab descriptor is off-slab, the 2276 * slab descriptor can't come from the same cache which is being created, 2277 * Because if it is the case, that means we defer the creation of 2278 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2279 * And we eventually call down to __kmem_cache_create(), which 2280 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one. 2281 * This is a "chicken-and-egg" problem. 2282 * 2283 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2284 * which are all initialized during kmem_cache_init(). 2285 */ 2286 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2287 struct slab *slab, int colour_off, 2288 gfp_t local_flags, int nodeid) 2289 { 2290 void *freelist; 2291 void *addr = slab_address(slab); 2292 2293 slab->s_mem = addr + colour_off; 2294 slab->active = 0; 2295 2296 if (OBJFREELIST_SLAB(cachep)) 2297 freelist = NULL; 2298 else if (OFF_SLAB(cachep)) { 2299 /* Slab management obj is off-slab. */ 2300 freelist = kmalloc_node(cachep->freelist_size, 2301 local_flags, nodeid); 2302 } else { 2303 /* We will use last bytes at the slab for freelist */ 2304 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2305 cachep->freelist_size; 2306 } 2307 2308 return freelist; 2309 } 2310 2311 static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx) 2312 { 2313 return ((freelist_idx_t *) slab->freelist)[idx]; 2314 } 2315 2316 static inline void set_free_obj(struct slab *slab, 2317 unsigned int idx, freelist_idx_t val) 2318 { 2319 ((freelist_idx_t *)(slab->freelist))[idx] = val; 2320 } 2321 2322 static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab) 2323 { 2324 #if DEBUG 2325 int i; 2326 2327 for (i = 0; i < cachep->num; i++) { 2328 void *objp = index_to_obj(cachep, slab, i); 2329 2330 if (cachep->flags & SLAB_STORE_USER) 2331 *dbg_userword(cachep, objp) = NULL; 2332 2333 if (cachep->flags & SLAB_RED_ZONE) { 2334 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2335 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2336 } 2337 /* 2338 * Constructors are not allowed to allocate memory from the same 2339 * cache which they are a constructor for. Otherwise, deadlock. 2340 * They must also be threaded. 2341 */ 2342 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2343 kasan_unpoison_object_data(cachep, 2344 objp + obj_offset(cachep)); 2345 cachep->ctor(objp + obj_offset(cachep)); 2346 kasan_poison_object_data( 2347 cachep, objp + obj_offset(cachep)); 2348 } 2349 2350 if (cachep->flags & SLAB_RED_ZONE) { 2351 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2352 slab_error(cachep, "constructor overwrote the end of an object"); 2353 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2354 slab_error(cachep, "constructor overwrote the start of an object"); 2355 } 2356 /* need to poison the objs? */ 2357 if (cachep->flags & SLAB_POISON) { 2358 poison_obj(cachep, objp, POISON_FREE); 2359 slab_kernel_map(cachep, objp, 0); 2360 } 2361 } 2362 #endif 2363 } 2364 2365 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2366 /* Hold information during a freelist initialization */ 2367 union freelist_init_state { 2368 struct { 2369 unsigned int pos; 2370 unsigned int *list; 2371 unsigned int count; 2372 }; 2373 struct rnd_state rnd_state; 2374 }; 2375 2376 /* 2377 * Initialize the state based on the randomization method available. 2378 * return true if the pre-computed list is available, false otherwise. 2379 */ 2380 static bool freelist_state_initialize(union freelist_init_state *state, 2381 struct kmem_cache *cachep, 2382 unsigned int count) 2383 { 2384 bool ret; 2385 unsigned int rand; 2386 2387 /* Use best entropy available to define a random shift */ 2388 rand = get_random_u32(); 2389 2390 /* Use a random state if the pre-computed list is not available */ 2391 if (!cachep->random_seq) { 2392 prandom_seed_state(&state->rnd_state, rand); 2393 ret = false; 2394 } else { 2395 state->list = cachep->random_seq; 2396 state->count = count; 2397 state->pos = rand % count; 2398 ret = true; 2399 } 2400 return ret; 2401 } 2402 2403 /* Get the next entry on the list and randomize it using a random shift */ 2404 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2405 { 2406 if (state->pos >= state->count) 2407 state->pos = 0; 2408 return state->list[state->pos++]; 2409 } 2410 2411 /* Swap two freelist entries */ 2412 static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b) 2413 { 2414 swap(((freelist_idx_t *) slab->freelist)[a], 2415 ((freelist_idx_t *) slab->freelist)[b]); 2416 } 2417 2418 /* 2419 * Shuffle the freelist initialization state based on pre-computed lists. 2420 * return true if the list was successfully shuffled, false otherwise. 2421 */ 2422 static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab) 2423 { 2424 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2425 union freelist_init_state state; 2426 bool precomputed; 2427 2428 if (count < 2) 2429 return false; 2430 2431 precomputed = freelist_state_initialize(&state, cachep, count); 2432 2433 /* Take a random entry as the objfreelist */ 2434 if (OBJFREELIST_SLAB(cachep)) { 2435 if (!precomputed) 2436 objfreelist = count - 1; 2437 else 2438 objfreelist = next_random_slot(&state); 2439 slab->freelist = index_to_obj(cachep, slab, objfreelist) + 2440 obj_offset(cachep); 2441 count--; 2442 } 2443 2444 /* 2445 * On early boot, generate the list dynamically. 2446 * Later use a pre-computed list for speed. 2447 */ 2448 if (!precomputed) { 2449 for (i = 0; i < count; i++) 2450 set_free_obj(slab, i, i); 2451 2452 /* Fisher-Yates shuffle */ 2453 for (i = count - 1; i > 0; i--) { 2454 rand = prandom_u32_state(&state.rnd_state); 2455 rand %= (i + 1); 2456 swap_free_obj(slab, i, rand); 2457 } 2458 } else { 2459 for (i = 0; i < count; i++) 2460 set_free_obj(slab, i, next_random_slot(&state)); 2461 } 2462 2463 if (OBJFREELIST_SLAB(cachep)) 2464 set_free_obj(slab, cachep->num - 1, objfreelist); 2465 2466 return true; 2467 } 2468 #else 2469 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2470 struct slab *slab) 2471 { 2472 return false; 2473 } 2474 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2475 2476 static void cache_init_objs(struct kmem_cache *cachep, 2477 struct slab *slab) 2478 { 2479 int i; 2480 void *objp; 2481 bool shuffled; 2482 2483 cache_init_objs_debug(cachep, slab); 2484 2485 /* Try to randomize the freelist if enabled */ 2486 shuffled = shuffle_freelist(cachep, slab); 2487 2488 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2489 slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) + 2490 obj_offset(cachep); 2491 } 2492 2493 for (i = 0; i < cachep->num; i++) { 2494 objp = index_to_obj(cachep, slab, i); 2495 objp = kasan_init_slab_obj(cachep, objp); 2496 2497 /* constructor could break poison info */ 2498 if (DEBUG == 0 && cachep->ctor) { 2499 kasan_unpoison_object_data(cachep, objp); 2500 cachep->ctor(objp); 2501 kasan_poison_object_data(cachep, objp); 2502 } 2503 2504 if (!shuffled) 2505 set_free_obj(slab, i, i); 2506 } 2507 } 2508 2509 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab) 2510 { 2511 void *objp; 2512 2513 objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active)); 2514 slab->active++; 2515 2516 return objp; 2517 } 2518 2519 static void slab_put_obj(struct kmem_cache *cachep, 2520 struct slab *slab, void *objp) 2521 { 2522 unsigned int objnr = obj_to_index(cachep, slab, objp); 2523 #if DEBUG 2524 unsigned int i; 2525 2526 /* Verify double free bug */ 2527 for (i = slab->active; i < cachep->num; i++) { 2528 if (get_free_obj(slab, i) == objnr) { 2529 pr_err("slab: double free detected in cache '%s', objp %px\n", 2530 cachep->name, objp); 2531 BUG(); 2532 } 2533 } 2534 #endif 2535 slab->active--; 2536 if (!slab->freelist) 2537 slab->freelist = objp + obj_offset(cachep); 2538 2539 set_free_obj(slab, slab->active, objnr); 2540 } 2541 2542 /* 2543 * Grow (by 1) the number of slabs within a cache. This is called by 2544 * kmem_cache_alloc() when there are no active objs left in a cache. 2545 */ 2546 static struct slab *cache_grow_begin(struct kmem_cache *cachep, 2547 gfp_t flags, int nodeid) 2548 { 2549 void *freelist; 2550 size_t offset; 2551 gfp_t local_flags; 2552 int slab_node; 2553 struct kmem_cache_node *n; 2554 struct slab *slab; 2555 2556 /* 2557 * Be lazy and only check for valid flags here, keeping it out of the 2558 * critical path in kmem_cache_alloc(). 2559 */ 2560 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2561 flags = kmalloc_fix_flags(flags); 2562 2563 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2564 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2565 2566 check_irq_off(); 2567 if (gfpflags_allow_blocking(local_flags)) 2568 local_irq_enable(); 2569 2570 /* 2571 * Get mem for the objs. Attempt to allocate a physical page from 2572 * 'nodeid'. 2573 */ 2574 slab = kmem_getpages(cachep, local_flags, nodeid); 2575 if (!slab) 2576 goto failed; 2577 2578 slab_node = slab_nid(slab); 2579 n = get_node(cachep, slab_node); 2580 2581 /* Get colour for the slab, and cal the next value. */ 2582 n->colour_next++; 2583 if (n->colour_next >= cachep->colour) 2584 n->colour_next = 0; 2585 2586 offset = n->colour_next; 2587 if (offset >= cachep->colour) 2588 offset = 0; 2589 2590 offset *= cachep->colour_off; 2591 2592 /* 2593 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2594 * page_address() in the latter returns a non-tagged pointer, 2595 * as it should be for slab pages. 2596 */ 2597 kasan_poison_slab(slab); 2598 2599 /* Get slab management. */ 2600 freelist = alloc_slabmgmt(cachep, slab, offset, 2601 local_flags & ~GFP_CONSTRAINT_MASK, slab_node); 2602 if (OFF_SLAB(cachep) && !freelist) 2603 goto opps1; 2604 2605 slab->slab_cache = cachep; 2606 slab->freelist = freelist; 2607 2608 cache_init_objs(cachep, slab); 2609 2610 if (gfpflags_allow_blocking(local_flags)) 2611 local_irq_disable(); 2612 2613 return slab; 2614 2615 opps1: 2616 kmem_freepages(cachep, slab); 2617 failed: 2618 if (gfpflags_allow_blocking(local_flags)) 2619 local_irq_disable(); 2620 return NULL; 2621 } 2622 2623 static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab) 2624 { 2625 struct kmem_cache_node *n; 2626 void *list = NULL; 2627 2628 check_irq_off(); 2629 2630 if (!slab) 2631 return; 2632 2633 INIT_LIST_HEAD(&slab->slab_list); 2634 n = get_node(cachep, slab_nid(slab)); 2635 2636 raw_spin_lock(&n->list_lock); 2637 n->total_slabs++; 2638 if (!slab->active) { 2639 list_add_tail(&slab->slab_list, &n->slabs_free); 2640 n->free_slabs++; 2641 } else 2642 fixup_slab_list(cachep, n, slab, &list); 2643 2644 STATS_INC_GROWN(cachep); 2645 n->free_objects += cachep->num - slab->active; 2646 raw_spin_unlock(&n->list_lock); 2647 2648 fixup_objfreelist_debug(cachep, &list); 2649 } 2650 2651 #if DEBUG 2652 2653 /* 2654 * Perform extra freeing checks: 2655 * - detect bad pointers. 2656 * - POISON/RED_ZONE checking 2657 */ 2658 static void kfree_debugcheck(const void *objp) 2659 { 2660 if (!virt_addr_valid(objp)) { 2661 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2662 (unsigned long)objp); 2663 BUG(); 2664 } 2665 } 2666 2667 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2668 { 2669 unsigned long long redzone1, redzone2; 2670 2671 redzone1 = *dbg_redzone1(cache, obj); 2672 redzone2 = *dbg_redzone2(cache, obj); 2673 2674 /* 2675 * Redzone is ok. 2676 */ 2677 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2678 return; 2679 2680 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2681 slab_error(cache, "double free detected"); 2682 else 2683 slab_error(cache, "memory outside object was overwritten"); 2684 2685 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2686 obj, redzone1, redzone2); 2687 } 2688 2689 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2690 unsigned long caller) 2691 { 2692 unsigned int objnr; 2693 struct slab *slab; 2694 2695 BUG_ON(virt_to_cache(objp) != cachep); 2696 2697 objp -= obj_offset(cachep); 2698 kfree_debugcheck(objp); 2699 slab = virt_to_slab(objp); 2700 2701 if (cachep->flags & SLAB_RED_ZONE) { 2702 verify_redzone_free(cachep, objp); 2703 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2704 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2705 } 2706 if (cachep->flags & SLAB_STORE_USER) 2707 *dbg_userword(cachep, objp) = (void *)caller; 2708 2709 objnr = obj_to_index(cachep, slab, objp); 2710 2711 BUG_ON(objnr >= cachep->num); 2712 BUG_ON(objp != index_to_obj(cachep, slab, objnr)); 2713 2714 if (cachep->flags & SLAB_POISON) { 2715 poison_obj(cachep, objp, POISON_FREE); 2716 slab_kernel_map(cachep, objp, 0); 2717 } 2718 return objp; 2719 } 2720 2721 #else 2722 #define kfree_debugcheck(x) do { } while(0) 2723 #define cache_free_debugcheck(x, objp, z) (objp) 2724 #endif 2725 2726 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2727 void **list) 2728 { 2729 #if DEBUG 2730 void *next = *list; 2731 void *objp; 2732 2733 while (next) { 2734 objp = next - obj_offset(cachep); 2735 next = *(void **)next; 2736 poison_obj(cachep, objp, POISON_FREE); 2737 } 2738 #endif 2739 } 2740 2741 static inline void fixup_slab_list(struct kmem_cache *cachep, 2742 struct kmem_cache_node *n, struct slab *slab, 2743 void **list) 2744 { 2745 /* move slabp to correct slabp list: */ 2746 list_del(&slab->slab_list); 2747 if (slab->active == cachep->num) { 2748 list_add(&slab->slab_list, &n->slabs_full); 2749 if (OBJFREELIST_SLAB(cachep)) { 2750 #if DEBUG 2751 /* Poisoning will be done without holding the lock */ 2752 if (cachep->flags & SLAB_POISON) { 2753 void **objp = slab->freelist; 2754 2755 *objp = *list; 2756 *list = objp; 2757 } 2758 #endif 2759 slab->freelist = NULL; 2760 } 2761 } else 2762 list_add(&slab->slab_list, &n->slabs_partial); 2763 } 2764 2765 /* Try to find non-pfmemalloc slab if needed */ 2766 static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n, 2767 struct slab *slab, bool pfmemalloc) 2768 { 2769 if (!slab) 2770 return NULL; 2771 2772 if (pfmemalloc) 2773 return slab; 2774 2775 if (!slab_test_pfmemalloc(slab)) 2776 return slab; 2777 2778 /* No need to keep pfmemalloc slab if we have enough free objects */ 2779 if (n->free_objects > n->free_limit) { 2780 slab_clear_pfmemalloc(slab); 2781 return slab; 2782 } 2783 2784 /* Move pfmemalloc slab to the end of list to speed up next search */ 2785 list_del(&slab->slab_list); 2786 if (!slab->active) { 2787 list_add_tail(&slab->slab_list, &n->slabs_free); 2788 n->free_slabs++; 2789 } else 2790 list_add_tail(&slab->slab_list, &n->slabs_partial); 2791 2792 list_for_each_entry(slab, &n->slabs_partial, slab_list) { 2793 if (!slab_test_pfmemalloc(slab)) 2794 return slab; 2795 } 2796 2797 n->free_touched = 1; 2798 list_for_each_entry(slab, &n->slabs_free, slab_list) { 2799 if (!slab_test_pfmemalloc(slab)) { 2800 n->free_slabs--; 2801 return slab; 2802 } 2803 } 2804 2805 return NULL; 2806 } 2807 2808 static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2809 { 2810 struct slab *slab; 2811 2812 assert_raw_spin_locked(&n->list_lock); 2813 slab = list_first_entry_or_null(&n->slabs_partial, struct slab, 2814 slab_list); 2815 if (!slab) { 2816 n->free_touched = 1; 2817 slab = list_first_entry_or_null(&n->slabs_free, struct slab, 2818 slab_list); 2819 if (slab) 2820 n->free_slabs--; 2821 } 2822 2823 if (sk_memalloc_socks()) 2824 slab = get_valid_first_slab(n, slab, pfmemalloc); 2825 2826 return slab; 2827 } 2828 2829 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2830 struct kmem_cache_node *n, gfp_t flags) 2831 { 2832 struct slab *slab; 2833 void *obj; 2834 void *list = NULL; 2835 2836 if (!gfp_pfmemalloc_allowed(flags)) 2837 return NULL; 2838 2839 raw_spin_lock(&n->list_lock); 2840 slab = get_first_slab(n, true); 2841 if (!slab) { 2842 raw_spin_unlock(&n->list_lock); 2843 return NULL; 2844 } 2845 2846 obj = slab_get_obj(cachep, slab); 2847 n->free_objects--; 2848 2849 fixup_slab_list(cachep, n, slab, &list); 2850 2851 raw_spin_unlock(&n->list_lock); 2852 fixup_objfreelist_debug(cachep, &list); 2853 2854 return obj; 2855 } 2856 2857 /* 2858 * Slab list should be fixed up by fixup_slab_list() for existing slab 2859 * or cache_grow_end() for new slab 2860 */ 2861 static __always_inline int alloc_block(struct kmem_cache *cachep, 2862 struct array_cache *ac, struct slab *slab, int batchcount) 2863 { 2864 /* 2865 * There must be at least one object available for 2866 * allocation. 2867 */ 2868 BUG_ON(slab->active >= cachep->num); 2869 2870 while (slab->active < cachep->num && batchcount--) { 2871 STATS_INC_ALLOCED(cachep); 2872 STATS_INC_ACTIVE(cachep); 2873 STATS_SET_HIGH(cachep); 2874 2875 ac->entry[ac->avail++] = slab_get_obj(cachep, slab); 2876 } 2877 2878 return batchcount; 2879 } 2880 2881 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2882 { 2883 int batchcount; 2884 struct kmem_cache_node *n; 2885 struct array_cache *ac, *shared; 2886 int node; 2887 void *list = NULL; 2888 struct slab *slab; 2889 2890 check_irq_off(); 2891 node = numa_mem_id(); 2892 2893 ac = cpu_cache_get(cachep); 2894 batchcount = ac->batchcount; 2895 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2896 /* 2897 * If there was little recent activity on this cache, then 2898 * perform only a partial refill. Otherwise we could generate 2899 * refill bouncing. 2900 */ 2901 batchcount = BATCHREFILL_LIMIT; 2902 } 2903 n = get_node(cachep, node); 2904 2905 BUG_ON(ac->avail > 0 || !n); 2906 shared = READ_ONCE(n->shared); 2907 if (!n->free_objects && (!shared || !shared->avail)) 2908 goto direct_grow; 2909 2910 raw_spin_lock(&n->list_lock); 2911 shared = READ_ONCE(n->shared); 2912 2913 /* See if we can refill from the shared array */ 2914 if (shared && transfer_objects(ac, shared, batchcount)) { 2915 shared->touched = 1; 2916 goto alloc_done; 2917 } 2918 2919 while (batchcount > 0) { 2920 /* Get slab alloc is to come from. */ 2921 slab = get_first_slab(n, false); 2922 if (!slab) 2923 goto must_grow; 2924 2925 check_spinlock_acquired(cachep); 2926 2927 batchcount = alloc_block(cachep, ac, slab, batchcount); 2928 fixup_slab_list(cachep, n, slab, &list); 2929 } 2930 2931 must_grow: 2932 n->free_objects -= ac->avail; 2933 alloc_done: 2934 raw_spin_unlock(&n->list_lock); 2935 fixup_objfreelist_debug(cachep, &list); 2936 2937 direct_grow: 2938 if (unlikely(!ac->avail)) { 2939 /* Check if we can use obj in pfmemalloc slab */ 2940 if (sk_memalloc_socks()) { 2941 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2942 2943 if (obj) 2944 return obj; 2945 } 2946 2947 slab = cache_grow_begin(cachep, gfp_exact_node(flags), node); 2948 2949 /* 2950 * cache_grow_begin() can reenable interrupts, 2951 * then ac could change. 2952 */ 2953 ac = cpu_cache_get(cachep); 2954 if (!ac->avail && slab) 2955 alloc_block(cachep, ac, slab, batchcount); 2956 cache_grow_end(cachep, slab); 2957 2958 if (!ac->avail) 2959 return NULL; 2960 } 2961 ac->touched = 1; 2962 2963 return ac->entry[--ac->avail]; 2964 } 2965 2966 #if DEBUG 2967 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2968 gfp_t flags, void *objp, unsigned long caller) 2969 { 2970 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2971 if (!objp || is_kfence_address(objp)) 2972 return objp; 2973 if (cachep->flags & SLAB_POISON) { 2974 check_poison_obj(cachep, objp); 2975 slab_kernel_map(cachep, objp, 1); 2976 poison_obj(cachep, objp, POISON_INUSE); 2977 } 2978 if (cachep->flags & SLAB_STORE_USER) 2979 *dbg_userword(cachep, objp) = (void *)caller; 2980 2981 if (cachep->flags & SLAB_RED_ZONE) { 2982 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 2983 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 2984 slab_error(cachep, "double free, or memory outside object was overwritten"); 2985 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2986 objp, *dbg_redzone1(cachep, objp), 2987 *dbg_redzone2(cachep, objp)); 2988 } 2989 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2990 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2991 } 2992 2993 objp += obj_offset(cachep); 2994 if (cachep->ctor && cachep->flags & SLAB_POISON) 2995 cachep->ctor(objp); 2996 if ((unsigned long)objp & (arch_slab_minalign() - 1)) { 2997 pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp, 2998 arch_slab_minalign()); 2999 } 3000 return objp; 3001 } 3002 #else 3003 #define cache_alloc_debugcheck_after(a, b, objp, d) (objp) 3004 #endif 3005 3006 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3007 { 3008 void *objp; 3009 struct array_cache *ac; 3010 3011 check_irq_off(); 3012 3013 ac = cpu_cache_get(cachep); 3014 if (likely(ac->avail)) { 3015 ac->touched = 1; 3016 objp = ac->entry[--ac->avail]; 3017 3018 STATS_INC_ALLOCHIT(cachep); 3019 goto out; 3020 } 3021 3022 STATS_INC_ALLOCMISS(cachep); 3023 objp = cache_alloc_refill(cachep, flags); 3024 /* 3025 * the 'ac' may be updated by cache_alloc_refill(), 3026 * and kmemleak_erase() requires its correct value. 3027 */ 3028 ac = cpu_cache_get(cachep); 3029 3030 out: 3031 /* 3032 * To avoid a false negative, if an object that is in one of the 3033 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3034 * treat the array pointers as a reference to the object. 3035 */ 3036 if (objp) 3037 kmemleak_erase(&ac->entry[ac->avail]); 3038 return objp; 3039 } 3040 3041 #ifdef CONFIG_NUMA 3042 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 3043 3044 /* 3045 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3046 * 3047 * If we are in_interrupt, then process context, including cpusets and 3048 * mempolicy, may not apply and should not be used for allocation policy. 3049 */ 3050 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3051 { 3052 int nid_alloc, nid_here; 3053 3054 if (in_interrupt() || (flags & __GFP_THISNODE)) 3055 return NULL; 3056 nid_alloc = nid_here = numa_mem_id(); 3057 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3058 nid_alloc = cpuset_slab_spread_node(); 3059 else if (current->mempolicy) 3060 nid_alloc = mempolicy_slab_node(); 3061 if (nid_alloc != nid_here) 3062 return ____cache_alloc_node(cachep, flags, nid_alloc); 3063 return NULL; 3064 } 3065 3066 /* 3067 * Fallback function if there was no memory available and no objects on a 3068 * certain node and fall back is permitted. First we scan all the 3069 * available node for available objects. If that fails then we 3070 * perform an allocation without specifying a node. This allows the page 3071 * allocator to do its reclaim / fallback magic. We then insert the 3072 * slab into the proper nodelist and then allocate from it. 3073 */ 3074 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3075 { 3076 struct zonelist *zonelist; 3077 struct zoneref *z; 3078 struct zone *zone; 3079 enum zone_type highest_zoneidx = gfp_zone(flags); 3080 void *obj = NULL; 3081 struct slab *slab; 3082 int nid; 3083 unsigned int cpuset_mems_cookie; 3084 3085 if (flags & __GFP_THISNODE) 3086 return NULL; 3087 3088 retry_cpuset: 3089 cpuset_mems_cookie = read_mems_allowed_begin(); 3090 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3091 3092 retry: 3093 /* 3094 * Look through allowed nodes for objects available 3095 * from existing per node queues. 3096 */ 3097 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 3098 nid = zone_to_nid(zone); 3099 3100 if (cpuset_zone_allowed(zone, flags) && 3101 get_node(cache, nid) && 3102 get_node(cache, nid)->free_objects) { 3103 obj = ____cache_alloc_node(cache, 3104 gfp_exact_node(flags), nid); 3105 if (obj) 3106 break; 3107 } 3108 } 3109 3110 if (!obj) { 3111 /* 3112 * This allocation will be performed within the constraints 3113 * of the current cpuset / memory policy requirements. 3114 * We may trigger various forms of reclaim on the allowed 3115 * set and go into memory reserves if necessary. 3116 */ 3117 slab = cache_grow_begin(cache, flags, numa_mem_id()); 3118 cache_grow_end(cache, slab); 3119 if (slab) { 3120 nid = slab_nid(slab); 3121 obj = ____cache_alloc_node(cache, 3122 gfp_exact_node(flags), nid); 3123 3124 /* 3125 * Another processor may allocate the objects in 3126 * the slab since we are not holding any locks. 3127 */ 3128 if (!obj) 3129 goto retry; 3130 } 3131 } 3132 3133 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3134 goto retry_cpuset; 3135 return obj; 3136 } 3137 3138 /* 3139 * An interface to enable slab creation on nodeid 3140 */ 3141 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3142 int nodeid) 3143 { 3144 struct slab *slab; 3145 struct kmem_cache_node *n; 3146 void *obj = NULL; 3147 void *list = NULL; 3148 3149 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3150 n = get_node(cachep, nodeid); 3151 BUG_ON(!n); 3152 3153 check_irq_off(); 3154 raw_spin_lock(&n->list_lock); 3155 slab = get_first_slab(n, false); 3156 if (!slab) 3157 goto must_grow; 3158 3159 check_spinlock_acquired_node(cachep, nodeid); 3160 3161 STATS_INC_NODEALLOCS(cachep); 3162 STATS_INC_ACTIVE(cachep); 3163 STATS_SET_HIGH(cachep); 3164 3165 BUG_ON(slab->active == cachep->num); 3166 3167 obj = slab_get_obj(cachep, slab); 3168 n->free_objects--; 3169 3170 fixup_slab_list(cachep, n, slab, &list); 3171 3172 raw_spin_unlock(&n->list_lock); 3173 fixup_objfreelist_debug(cachep, &list); 3174 return obj; 3175 3176 must_grow: 3177 raw_spin_unlock(&n->list_lock); 3178 slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3179 if (slab) { 3180 /* This slab isn't counted yet so don't update free_objects */ 3181 obj = slab_get_obj(cachep, slab); 3182 } 3183 cache_grow_end(cachep, slab); 3184 3185 return obj ? obj : fallback_alloc(cachep, flags); 3186 } 3187 3188 static __always_inline void * 3189 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3190 { 3191 void *objp = NULL; 3192 int slab_node = numa_mem_id(); 3193 3194 if (nodeid == NUMA_NO_NODE) { 3195 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3196 objp = alternate_node_alloc(cachep, flags); 3197 if (objp) 3198 goto out; 3199 } 3200 /* 3201 * Use the locally cached objects if possible. 3202 * However ____cache_alloc does not allow fallback 3203 * to other nodes. It may fail while we still have 3204 * objects on other nodes available. 3205 */ 3206 objp = ____cache_alloc(cachep, flags); 3207 nodeid = slab_node; 3208 } else if (nodeid == slab_node) { 3209 objp = ____cache_alloc(cachep, flags); 3210 } else if (!get_node(cachep, nodeid)) { 3211 /* Node not bootstrapped yet */ 3212 objp = fallback_alloc(cachep, flags); 3213 goto out; 3214 } 3215 3216 /* 3217 * We may just have run out of memory on the local node. 3218 * ____cache_alloc_node() knows how to locate memory on other nodes 3219 */ 3220 if (!objp) 3221 objp = ____cache_alloc_node(cachep, flags, nodeid); 3222 out: 3223 return objp; 3224 } 3225 #else 3226 3227 static __always_inline void * 3228 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused) 3229 { 3230 return ____cache_alloc(cachep, flags); 3231 } 3232 3233 #endif /* CONFIG_NUMA */ 3234 3235 static __always_inline void * 3236 slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, 3237 int nodeid, size_t orig_size, unsigned long caller) 3238 { 3239 unsigned long save_flags; 3240 void *objp; 3241 struct obj_cgroup *objcg = NULL; 3242 bool init = false; 3243 3244 flags &= gfp_allowed_mask; 3245 cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags); 3246 if (unlikely(!cachep)) 3247 return NULL; 3248 3249 objp = kfence_alloc(cachep, orig_size, flags); 3250 if (unlikely(objp)) 3251 goto out; 3252 3253 local_irq_save(save_flags); 3254 objp = __do_cache_alloc(cachep, flags, nodeid); 3255 local_irq_restore(save_flags); 3256 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3257 prefetchw(objp); 3258 init = slab_want_init_on_alloc(flags, cachep); 3259 3260 out: 3261 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init, 3262 cachep->object_size); 3263 return objp; 3264 } 3265 3266 static __always_inline void * 3267 slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, 3268 size_t orig_size, unsigned long caller) 3269 { 3270 return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size, 3271 caller); 3272 } 3273 3274 /* 3275 * Caller needs to acquire correct kmem_cache_node's list_lock 3276 * @list: List of detached free slabs should be freed by caller 3277 */ 3278 static void free_block(struct kmem_cache *cachep, void **objpp, 3279 int nr_objects, int node, struct list_head *list) 3280 { 3281 int i; 3282 struct kmem_cache_node *n = get_node(cachep, node); 3283 struct slab *slab; 3284 3285 n->free_objects += nr_objects; 3286 3287 for (i = 0; i < nr_objects; i++) { 3288 void *objp; 3289 struct slab *slab; 3290 3291 objp = objpp[i]; 3292 3293 slab = virt_to_slab(objp); 3294 list_del(&slab->slab_list); 3295 check_spinlock_acquired_node(cachep, node); 3296 slab_put_obj(cachep, slab, objp); 3297 STATS_DEC_ACTIVE(cachep); 3298 3299 /* fixup slab chains */ 3300 if (slab->active == 0) { 3301 list_add(&slab->slab_list, &n->slabs_free); 3302 n->free_slabs++; 3303 } else { 3304 /* Unconditionally move a slab to the end of the 3305 * partial list on free - maximum time for the 3306 * other objects to be freed, too. 3307 */ 3308 list_add_tail(&slab->slab_list, &n->slabs_partial); 3309 } 3310 } 3311 3312 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3313 n->free_objects -= cachep->num; 3314 3315 slab = list_last_entry(&n->slabs_free, struct slab, slab_list); 3316 list_move(&slab->slab_list, list); 3317 n->free_slabs--; 3318 n->total_slabs--; 3319 } 3320 } 3321 3322 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3323 { 3324 int batchcount; 3325 struct kmem_cache_node *n; 3326 int node = numa_mem_id(); 3327 LIST_HEAD(list); 3328 3329 batchcount = ac->batchcount; 3330 3331 check_irq_off(); 3332 n = get_node(cachep, node); 3333 raw_spin_lock(&n->list_lock); 3334 if (n->shared) { 3335 struct array_cache *shared_array = n->shared; 3336 int max = shared_array->limit - shared_array->avail; 3337 if (max) { 3338 if (batchcount > max) 3339 batchcount = max; 3340 memcpy(&(shared_array->entry[shared_array->avail]), 3341 ac->entry, sizeof(void *) * batchcount); 3342 shared_array->avail += batchcount; 3343 goto free_done; 3344 } 3345 } 3346 3347 free_block(cachep, ac->entry, batchcount, node, &list); 3348 free_done: 3349 #if STATS 3350 { 3351 int i = 0; 3352 struct slab *slab; 3353 3354 list_for_each_entry(slab, &n->slabs_free, slab_list) { 3355 BUG_ON(slab->active); 3356 3357 i++; 3358 } 3359 STATS_SET_FREEABLE(cachep, i); 3360 } 3361 #endif 3362 raw_spin_unlock(&n->list_lock); 3363 ac->avail -= batchcount; 3364 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3365 slabs_destroy(cachep, &list); 3366 } 3367 3368 /* 3369 * Release an obj back to its cache. If the obj has a constructed state, it must 3370 * be in this state _before_ it is released. Called with disabled ints. 3371 */ 3372 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3373 unsigned long caller) 3374 { 3375 bool init; 3376 3377 memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1); 3378 3379 if (is_kfence_address(objp)) { 3380 kmemleak_free_recursive(objp, cachep->flags); 3381 __kfence_free(objp); 3382 return; 3383 } 3384 3385 /* 3386 * As memory initialization might be integrated into KASAN, 3387 * kasan_slab_free and initialization memset must be 3388 * kept together to avoid discrepancies in behavior. 3389 */ 3390 init = slab_want_init_on_free(cachep); 3391 if (init && !kasan_has_integrated_init()) 3392 memset(objp, 0, cachep->object_size); 3393 /* KASAN might put objp into memory quarantine, delaying its reuse. */ 3394 if (kasan_slab_free(cachep, objp, init)) 3395 return; 3396 3397 /* Use KCSAN to help debug racy use-after-free. */ 3398 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 3399 __kcsan_check_access(objp, cachep->object_size, 3400 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 3401 3402 ___cache_free(cachep, objp, caller); 3403 } 3404 3405 void ___cache_free(struct kmem_cache *cachep, void *objp, 3406 unsigned long caller) 3407 { 3408 struct array_cache *ac = cpu_cache_get(cachep); 3409 3410 check_irq_off(); 3411 kmemleak_free_recursive(objp, cachep->flags); 3412 objp = cache_free_debugcheck(cachep, objp, caller); 3413 3414 /* 3415 * Skip calling cache_free_alien() when the platform is not numa. 3416 * This will avoid cache misses that happen while accessing slabp (which 3417 * is per page memory reference) to get nodeid. Instead use a global 3418 * variable to skip the call, which is mostly likely to be present in 3419 * the cache. 3420 */ 3421 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3422 return; 3423 3424 if (ac->avail < ac->limit) { 3425 STATS_INC_FREEHIT(cachep); 3426 } else { 3427 STATS_INC_FREEMISS(cachep); 3428 cache_flusharray(cachep, ac); 3429 } 3430 3431 if (sk_memalloc_socks()) { 3432 struct slab *slab = virt_to_slab(objp); 3433 3434 if (unlikely(slab_test_pfmemalloc(slab))) { 3435 cache_free_pfmemalloc(cachep, slab, objp); 3436 return; 3437 } 3438 } 3439 3440 __free_one(ac, objp); 3441 } 3442 3443 static __always_inline 3444 void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3445 gfp_t flags) 3446 { 3447 void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_); 3448 3449 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE); 3450 3451 return ret; 3452 } 3453 3454 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3455 { 3456 return __kmem_cache_alloc_lru(cachep, NULL, flags); 3457 } 3458 EXPORT_SYMBOL(kmem_cache_alloc); 3459 3460 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3461 gfp_t flags) 3462 { 3463 return __kmem_cache_alloc_lru(cachep, lru, flags); 3464 } 3465 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3466 3467 static __always_inline void 3468 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3469 size_t size, void **p, unsigned long caller) 3470 { 3471 size_t i; 3472 3473 for (i = 0; i < size; i++) 3474 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3475 } 3476 3477 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3478 void **p) 3479 { 3480 size_t i; 3481 struct obj_cgroup *objcg = NULL; 3482 3483 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3484 if (!s) 3485 return 0; 3486 3487 local_irq_disable(); 3488 for (i = 0; i < size; i++) { 3489 void *objp = kfence_alloc(s, s->object_size, flags) ?: 3490 __do_cache_alloc(s, flags, NUMA_NO_NODE); 3491 3492 if (unlikely(!objp)) 3493 goto error; 3494 p[i] = objp; 3495 } 3496 local_irq_enable(); 3497 3498 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3499 3500 /* 3501 * memcg and kmem_cache debug support and memory initialization. 3502 * Done outside of the IRQ disabled section. 3503 */ 3504 slab_post_alloc_hook(s, objcg, flags, size, p, 3505 slab_want_init_on_alloc(flags, s), s->object_size); 3506 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3507 return size; 3508 error: 3509 local_irq_enable(); 3510 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3511 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 3512 kmem_cache_free_bulk(s, i, p); 3513 return 0; 3514 } 3515 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3516 3517 /** 3518 * kmem_cache_alloc_node - Allocate an object on the specified node 3519 * @cachep: The cache to allocate from. 3520 * @flags: See kmalloc(). 3521 * @nodeid: node number of the target node. 3522 * 3523 * Identical to kmem_cache_alloc but it will allocate memory on the given 3524 * node, which can improve the performance for cpu bound structures. 3525 * 3526 * Fallback to other node is possible if __GFP_THISNODE is not set. 3527 * 3528 * Return: pointer to the new object or %NULL in case of error 3529 */ 3530 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3531 { 3532 void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_); 3533 3534 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid); 3535 3536 return ret; 3537 } 3538 EXPORT_SYMBOL(kmem_cache_alloc_node); 3539 3540 void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3541 int nodeid, size_t orig_size, 3542 unsigned long caller) 3543 { 3544 return slab_alloc_node(cachep, NULL, flags, nodeid, 3545 orig_size, caller); 3546 } 3547 3548 #ifdef CONFIG_PRINTK 3549 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 3550 { 3551 struct kmem_cache *cachep; 3552 unsigned int objnr; 3553 void *objp; 3554 3555 kpp->kp_ptr = object; 3556 kpp->kp_slab = slab; 3557 cachep = slab->slab_cache; 3558 kpp->kp_slab_cache = cachep; 3559 objp = object - obj_offset(cachep); 3560 kpp->kp_data_offset = obj_offset(cachep); 3561 slab = virt_to_slab(objp); 3562 objnr = obj_to_index(cachep, slab, objp); 3563 objp = index_to_obj(cachep, slab, objnr); 3564 kpp->kp_objp = objp; 3565 if (DEBUG && cachep->flags & SLAB_STORE_USER) 3566 kpp->kp_ret = *dbg_userword(cachep, objp); 3567 } 3568 #endif 3569 3570 static __always_inline 3571 void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp, 3572 unsigned long caller) 3573 { 3574 unsigned long flags; 3575 3576 local_irq_save(flags); 3577 debug_check_no_locks_freed(objp, cachep->object_size); 3578 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3579 debug_check_no_obj_freed(objp, cachep->object_size); 3580 __cache_free(cachep, objp, caller); 3581 local_irq_restore(flags); 3582 } 3583 3584 void __kmem_cache_free(struct kmem_cache *cachep, void *objp, 3585 unsigned long caller) 3586 { 3587 __do_kmem_cache_free(cachep, objp, caller); 3588 } 3589 3590 /** 3591 * kmem_cache_free - Deallocate an object 3592 * @cachep: The cache the allocation was from. 3593 * @objp: The previously allocated object. 3594 * 3595 * Free an object which was previously allocated from this 3596 * cache. 3597 */ 3598 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3599 { 3600 cachep = cache_from_obj(cachep, objp); 3601 if (!cachep) 3602 return; 3603 3604 trace_kmem_cache_free(_RET_IP_, objp, cachep); 3605 __do_kmem_cache_free(cachep, objp, _RET_IP_); 3606 } 3607 EXPORT_SYMBOL(kmem_cache_free); 3608 3609 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3610 { 3611 3612 local_irq_disable(); 3613 for (int i = 0; i < size; i++) { 3614 void *objp = p[i]; 3615 struct kmem_cache *s; 3616 3617 if (!orig_s) { 3618 struct folio *folio = virt_to_folio(objp); 3619 3620 /* called via kfree_bulk */ 3621 if (!folio_test_slab(folio)) { 3622 local_irq_enable(); 3623 free_large_kmalloc(folio, objp); 3624 local_irq_disable(); 3625 continue; 3626 } 3627 s = folio_slab(folio)->slab_cache; 3628 } else { 3629 s = cache_from_obj(orig_s, objp); 3630 } 3631 3632 if (!s) 3633 continue; 3634 3635 debug_check_no_locks_freed(objp, s->object_size); 3636 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3637 debug_check_no_obj_freed(objp, s->object_size); 3638 3639 __cache_free(s, objp, _RET_IP_); 3640 } 3641 local_irq_enable(); 3642 3643 /* FIXME: add tracing */ 3644 } 3645 EXPORT_SYMBOL(kmem_cache_free_bulk); 3646 3647 /* 3648 * This initializes kmem_cache_node or resizes various caches for all nodes. 3649 */ 3650 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3651 { 3652 int ret; 3653 int node; 3654 struct kmem_cache_node *n; 3655 3656 for_each_online_node(node) { 3657 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3658 if (ret) 3659 goto fail; 3660 3661 } 3662 3663 return 0; 3664 3665 fail: 3666 if (!cachep->list.next) { 3667 /* Cache is not active yet. Roll back what we did */ 3668 node--; 3669 while (node >= 0) { 3670 n = get_node(cachep, node); 3671 if (n) { 3672 kfree(n->shared); 3673 free_alien_cache(n->alien); 3674 kfree(n); 3675 cachep->node[node] = NULL; 3676 } 3677 node--; 3678 } 3679 } 3680 return -ENOMEM; 3681 } 3682 3683 /* Always called with the slab_mutex held */ 3684 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3685 int batchcount, int shared, gfp_t gfp) 3686 { 3687 struct array_cache __percpu *cpu_cache, *prev; 3688 int cpu; 3689 3690 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3691 if (!cpu_cache) 3692 return -ENOMEM; 3693 3694 prev = cachep->cpu_cache; 3695 cachep->cpu_cache = cpu_cache; 3696 /* 3697 * Without a previous cpu_cache there's no need to synchronize remote 3698 * cpus, so skip the IPIs. 3699 */ 3700 if (prev) 3701 kick_all_cpus_sync(); 3702 3703 check_irq_on(); 3704 cachep->batchcount = batchcount; 3705 cachep->limit = limit; 3706 cachep->shared = shared; 3707 3708 if (!prev) 3709 goto setup_node; 3710 3711 for_each_online_cpu(cpu) { 3712 LIST_HEAD(list); 3713 int node; 3714 struct kmem_cache_node *n; 3715 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3716 3717 node = cpu_to_mem(cpu); 3718 n = get_node(cachep, node); 3719 raw_spin_lock_irq(&n->list_lock); 3720 free_block(cachep, ac->entry, ac->avail, node, &list); 3721 raw_spin_unlock_irq(&n->list_lock); 3722 slabs_destroy(cachep, &list); 3723 } 3724 free_percpu(prev); 3725 3726 setup_node: 3727 return setup_kmem_cache_nodes(cachep, gfp); 3728 } 3729 3730 /* Called with slab_mutex held always */ 3731 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3732 { 3733 int err; 3734 int limit = 0; 3735 int shared = 0; 3736 int batchcount = 0; 3737 3738 err = cache_random_seq_create(cachep, cachep->num, gfp); 3739 if (err) 3740 goto end; 3741 3742 /* 3743 * The head array serves three purposes: 3744 * - create a LIFO ordering, i.e. return objects that are cache-warm 3745 * - reduce the number of spinlock operations. 3746 * - reduce the number of linked list operations on the slab and 3747 * bufctl chains: array operations are cheaper. 3748 * The numbers are guessed, we should auto-tune as described by 3749 * Bonwick. 3750 */ 3751 if (cachep->size > 131072) 3752 limit = 1; 3753 else if (cachep->size > PAGE_SIZE) 3754 limit = 8; 3755 else if (cachep->size > 1024) 3756 limit = 24; 3757 else if (cachep->size > 256) 3758 limit = 54; 3759 else 3760 limit = 120; 3761 3762 /* 3763 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3764 * allocation behaviour: Most allocs on one cpu, most free operations 3765 * on another cpu. For these cases, an efficient object passing between 3766 * cpus is necessary. This is provided by a shared array. The array 3767 * replaces Bonwick's magazine layer. 3768 * On uniprocessor, it's functionally equivalent (but less efficient) 3769 * to a larger limit. Thus disabled by default. 3770 */ 3771 shared = 0; 3772 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3773 shared = 8; 3774 3775 #if DEBUG 3776 /* 3777 * With debugging enabled, large batchcount lead to excessively long 3778 * periods with disabled local interrupts. Limit the batchcount 3779 */ 3780 if (limit > 32) 3781 limit = 32; 3782 #endif 3783 batchcount = (limit + 1) / 2; 3784 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3785 end: 3786 if (err) 3787 pr_err("enable_cpucache failed for %s, error %d\n", 3788 cachep->name, -err); 3789 return err; 3790 } 3791 3792 /* 3793 * Drain an array if it contains any elements taking the node lock only if 3794 * necessary. Note that the node listlock also protects the array_cache 3795 * if drain_array() is used on the shared array. 3796 */ 3797 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3798 struct array_cache *ac, int node) 3799 { 3800 LIST_HEAD(list); 3801 3802 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3803 check_mutex_acquired(); 3804 3805 if (!ac || !ac->avail) 3806 return; 3807 3808 if (ac->touched) { 3809 ac->touched = 0; 3810 return; 3811 } 3812 3813 raw_spin_lock_irq(&n->list_lock); 3814 drain_array_locked(cachep, ac, node, false, &list); 3815 raw_spin_unlock_irq(&n->list_lock); 3816 3817 slabs_destroy(cachep, &list); 3818 } 3819 3820 /** 3821 * cache_reap - Reclaim memory from caches. 3822 * @w: work descriptor 3823 * 3824 * Called from workqueue/eventd every few seconds. 3825 * Purpose: 3826 * - clear the per-cpu caches for this CPU. 3827 * - return freeable pages to the main free memory pool. 3828 * 3829 * If we cannot acquire the cache chain mutex then just give up - we'll try 3830 * again on the next iteration. 3831 */ 3832 static void cache_reap(struct work_struct *w) 3833 { 3834 struct kmem_cache *searchp; 3835 struct kmem_cache_node *n; 3836 int node = numa_mem_id(); 3837 struct delayed_work *work = to_delayed_work(w); 3838 3839 if (!mutex_trylock(&slab_mutex)) 3840 /* Give up. Setup the next iteration. */ 3841 goto out; 3842 3843 list_for_each_entry(searchp, &slab_caches, list) { 3844 check_irq_on(); 3845 3846 /* 3847 * We only take the node lock if absolutely necessary and we 3848 * have established with reasonable certainty that 3849 * we can do some work if the lock was obtained. 3850 */ 3851 n = get_node(searchp, node); 3852 3853 reap_alien(searchp, n); 3854 3855 drain_array(searchp, n, cpu_cache_get(searchp), node); 3856 3857 /* 3858 * These are racy checks but it does not matter 3859 * if we skip one check or scan twice. 3860 */ 3861 if (time_after(n->next_reap, jiffies)) 3862 goto next; 3863 3864 n->next_reap = jiffies + REAPTIMEOUT_NODE; 3865 3866 drain_array(searchp, n, n->shared, node); 3867 3868 if (n->free_touched) 3869 n->free_touched = 0; 3870 else { 3871 int freed; 3872 3873 freed = drain_freelist(searchp, n, (n->free_limit + 3874 5 * searchp->num - 1) / (5 * searchp->num)); 3875 STATS_ADD_REAPED(searchp, freed); 3876 } 3877 next: 3878 cond_resched(); 3879 } 3880 check_irq_on(); 3881 mutex_unlock(&slab_mutex); 3882 next_reap_node(); 3883 out: 3884 /* Set up the next iteration */ 3885 schedule_delayed_work_on(smp_processor_id(), work, 3886 round_jiffies_relative(REAPTIMEOUT_AC)); 3887 } 3888 3889 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 3890 { 3891 unsigned long active_objs, num_objs, active_slabs; 3892 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 3893 unsigned long free_slabs = 0; 3894 int node; 3895 struct kmem_cache_node *n; 3896 3897 for_each_kmem_cache_node(cachep, node, n) { 3898 check_irq_on(); 3899 raw_spin_lock_irq(&n->list_lock); 3900 3901 total_slabs += n->total_slabs; 3902 free_slabs += n->free_slabs; 3903 free_objs += n->free_objects; 3904 3905 if (n->shared) 3906 shared_avail += n->shared->avail; 3907 3908 raw_spin_unlock_irq(&n->list_lock); 3909 } 3910 num_objs = total_slabs * cachep->num; 3911 active_slabs = total_slabs - free_slabs; 3912 active_objs = num_objs - free_objs; 3913 3914 sinfo->active_objs = active_objs; 3915 sinfo->num_objs = num_objs; 3916 sinfo->active_slabs = active_slabs; 3917 sinfo->num_slabs = total_slabs; 3918 sinfo->shared_avail = shared_avail; 3919 sinfo->limit = cachep->limit; 3920 sinfo->batchcount = cachep->batchcount; 3921 sinfo->shared = cachep->shared; 3922 sinfo->objects_per_slab = cachep->num; 3923 sinfo->cache_order = cachep->gfporder; 3924 } 3925 3926 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 3927 { 3928 #if STATS 3929 { /* node stats */ 3930 unsigned long high = cachep->high_mark; 3931 unsigned long allocs = cachep->num_allocations; 3932 unsigned long grown = cachep->grown; 3933 unsigned long reaped = cachep->reaped; 3934 unsigned long errors = cachep->errors; 3935 unsigned long max_freeable = cachep->max_freeable; 3936 unsigned long node_allocs = cachep->node_allocs; 3937 unsigned long node_frees = cachep->node_frees; 3938 unsigned long overflows = cachep->node_overflow; 3939 3940 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 3941 allocs, high, grown, 3942 reaped, errors, max_freeable, node_allocs, 3943 node_frees, overflows); 3944 } 3945 /* cpu stats */ 3946 { 3947 unsigned long allochit = atomic_read(&cachep->allochit); 3948 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 3949 unsigned long freehit = atomic_read(&cachep->freehit); 3950 unsigned long freemiss = atomic_read(&cachep->freemiss); 3951 3952 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 3953 allochit, allocmiss, freehit, freemiss); 3954 } 3955 #endif 3956 } 3957 3958 #define MAX_SLABINFO_WRITE 128 3959 /** 3960 * slabinfo_write - Tuning for the slab allocator 3961 * @file: unused 3962 * @buffer: user buffer 3963 * @count: data length 3964 * @ppos: unused 3965 * 3966 * Return: %0 on success, negative error code otherwise. 3967 */ 3968 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 3969 size_t count, loff_t *ppos) 3970 { 3971 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 3972 int limit, batchcount, shared, res; 3973 struct kmem_cache *cachep; 3974 3975 if (count > MAX_SLABINFO_WRITE) 3976 return -EINVAL; 3977 if (copy_from_user(&kbuf, buffer, count)) 3978 return -EFAULT; 3979 kbuf[MAX_SLABINFO_WRITE] = '\0'; 3980 3981 tmp = strchr(kbuf, ' '); 3982 if (!tmp) 3983 return -EINVAL; 3984 *tmp = '\0'; 3985 tmp++; 3986 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 3987 return -EINVAL; 3988 3989 /* Find the cache in the chain of caches. */ 3990 mutex_lock(&slab_mutex); 3991 res = -EINVAL; 3992 list_for_each_entry(cachep, &slab_caches, list) { 3993 if (!strcmp(cachep->name, kbuf)) { 3994 if (limit < 1 || batchcount < 1 || 3995 batchcount > limit || shared < 0) { 3996 res = 0; 3997 } else { 3998 res = do_tune_cpucache(cachep, limit, 3999 batchcount, shared, 4000 GFP_KERNEL); 4001 } 4002 break; 4003 } 4004 } 4005 mutex_unlock(&slab_mutex); 4006 if (res >= 0) 4007 res = count; 4008 return res; 4009 } 4010 4011 #ifdef CONFIG_HARDENED_USERCOPY 4012 /* 4013 * Rejects incorrectly sized objects and objects that are to be copied 4014 * to/from userspace but do not fall entirely within the containing slab 4015 * cache's usercopy region. 4016 * 4017 * Returns NULL if check passes, otherwise const char * to name of cache 4018 * to indicate an error. 4019 */ 4020 void __check_heap_object(const void *ptr, unsigned long n, 4021 const struct slab *slab, bool to_user) 4022 { 4023 struct kmem_cache *cachep; 4024 unsigned int objnr; 4025 unsigned long offset; 4026 4027 ptr = kasan_reset_tag(ptr); 4028 4029 /* Find and validate object. */ 4030 cachep = slab->slab_cache; 4031 objnr = obj_to_index(cachep, slab, (void *)ptr); 4032 BUG_ON(objnr >= cachep->num); 4033 4034 /* Find offset within object. */ 4035 if (is_kfence_address(ptr)) 4036 offset = ptr - kfence_object_start(ptr); 4037 else 4038 offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep); 4039 4040 /* Allow address range falling entirely within usercopy region. */ 4041 if (offset >= cachep->useroffset && 4042 offset - cachep->useroffset <= cachep->usersize && 4043 n <= cachep->useroffset - offset + cachep->usersize) 4044 return; 4045 4046 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4047 } 4048 #endif /* CONFIG_HARDENED_USERCOPY */ 4049