xref: /openbmc/linux/mm/slab.c (revision 23c2b932)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * struct array_cache
173  *
174  * Purpose:
175  * - LIFO ordering, to hand out cache-warm objects from _alloc
176  * - reduce the number of linked list operations
177  * - reduce spinlock operations
178  *
179  * The limit is stored in the per-cpu structure to reduce the data cache
180  * footprint.
181  *
182  */
183 struct array_cache {
184 	unsigned int avail;
185 	unsigned int limit;
186 	unsigned int batchcount;
187 	unsigned int touched;
188 	void *entry[];	/*
189 			 * Must have this definition in here for the proper
190 			 * alignment of array_cache. Also simplifies accessing
191 			 * the entries.
192 			 */
193 };
194 
195 struct alien_cache {
196 	spinlock_t lock;
197 	struct array_cache ac;
198 };
199 
200 /*
201  * Need this for bootstrapping a per node allocator.
202  */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define	CACHE_CACHE 0
206 #define	SIZE_NODE (MAX_NUMNODES)
207 
208 static int drain_freelist(struct kmem_cache *cache,
209 			struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 			int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215 
216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 						void **list);
218 static inline void fixup_slab_list(struct kmem_cache *cachep,
219 				struct kmem_cache_node *n, struct page *page,
220 				void **list);
221 static int slab_early_init = 1;
222 
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
224 
225 static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 {
227 	INIT_LIST_HEAD(&parent->slabs_full);
228 	INIT_LIST_HEAD(&parent->slabs_partial);
229 	INIT_LIST_HEAD(&parent->slabs_free);
230 	parent->shared = NULL;
231 	parent->alien = NULL;
232 	parent->colour_next = 0;
233 	spin_lock_init(&parent->list_lock);
234 	parent->free_objects = 0;
235 	parent->free_touched = 0;
236 }
237 
238 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
239 	do {								\
240 		INIT_LIST_HEAD(listp);					\
241 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
242 	} while (0)
243 
244 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
245 	do {								\
246 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
247 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
248 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
249 	} while (0)
250 
251 #define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
252 #define CFLGS_OFF_SLAB		(0x80000000UL)
253 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
254 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
255 
256 #define BATCHREFILL_LIMIT	16
257 /*
258  * Optimization question: fewer reaps means less probability for unnessary
259  * cpucache drain/refill cycles.
260  *
261  * OTOH the cpuarrays can contain lots of objects,
262  * which could lock up otherwise freeable slabs.
263  */
264 #define REAPTIMEOUT_AC		(2*HZ)
265 #define REAPTIMEOUT_NODE	(4*HZ)
266 
267 #if STATS
268 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
269 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
270 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
271 #define	STATS_INC_GROWN(x)	((x)->grown++)
272 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
273 #define	STATS_SET_HIGH(x)						\
274 	do {								\
275 		if ((x)->num_active > (x)->high_mark)			\
276 			(x)->high_mark = (x)->num_active;		\
277 	} while (0)
278 #define	STATS_INC_ERR(x)	((x)->errors++)
279 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
280 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
281 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
282 #define	STATS_SET_FREEABLE(x, i)					\
283 	do {								\
284 		if ((x)->max_freeable < i)				\
285 			(x)->max_freeable = i;				\
286 	} while (0)
287 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
288 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
289 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
290 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
291 #else
292 #define	STATS_INC_ACTIVE(x)	do { } while (0)
293 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
294 #define	STATS_INC_ALLOCED(x)	do { } while (0)
295 #define	STATS_INC_GROWN(x)	do { } while (0)
296 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
297 #define	STATS_SET_HIGH(x)	do { } while (0)
298 #define	STATS_INC_ERR(x)	do { } while (0)
299 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
300 #define	STATS_INC_NODEFREES(x)	do { } while (0)
301 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
302 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
303 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
304 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
305 #define STATS_INC_FREEHIT(x)	do { } while (0)
306 #define STATS_INC_FREEMISS(x)	do { } while (0)
307 #endif
308 
309 #if DEBUG
310 
311 /*
312  * memory layout of objects:
313  * 0		: objp
314  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
315  * 		the end of an object is aligned with the end of the real
316  * 		allocation. Catches writes behind the end of the allocation.
317  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
318  * 		redzone word.
319  * cachep->obj_offset: The real object.
320  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
321  * cachep->size - 1* BYTES_PER_WORD: last caller address
322  *					[BYTES_PER_WORD long]
323  */
324 static int obj_offset(struct kmem_cache *cachep)
325 {
326 	return cachep->obj_offset;
327 }
328 
329 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
330 {
331 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
332 	return (unsigned long long*) (objp + obj_offset(cachep) -
333 				      sizeof(unsigned long long));
334 }
335 
336 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
337 {
338 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
339 	if (cachep->flags & SLAB_STORE_USER)
340 		return (unsigned long long *)(objp + cachep->size -
341 					      sizeof(unsigned long long) -
342 					      REDZONE_ALIGN);
343 	return (unsigned long long *) (objp + cachep->size -
344 				       sizeof(unsigned long long));
345 }
346 
347 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
348 {
349 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
350 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
351 }
352 
353 #else
354 
355 #define obj_offset(x)			0
356 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
357 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
358 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
359 
360 #endif
361 
362 #ifdef CONFIG_DEBUG_SLAB_LEAK
363 
364 static inline bool is_store_user_clean(struct kmem_cache *cachep)
365 {
366 	return atomic_read(&cachep->store_user_clean) == 1;
367 }
368 
369 static inline void set_store_user_clean(struct kmem_cache *cachep)
370 {
371 	atomic_set(&cachep->store_user_clean, 1);
372 }
373 
374 static inline void set_store_user_dirty(struct kmem_cache *cachep)
375 {
376 	if (is_store_user_clean(cachep))
377 		atomic_set(&cachep->store_user_clean, 0);
378 }
379 
380 #else
381 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
382 
383 #endif
384 
385 /*
386  * Do not go above this order unless 0 objects fit into the slab or
387  * overridden on the command line.
388  */
389 #define	SLAB_MAX_ORDER_HI	1
390 #define	SLAB_MAX_ORDER_LO	0
391 static int slab_max_order = SLAB_MAX_ORDER_LO;
392 static bool slab_max_order_set __initdata;
393 
394 static inline struct kmem_cache *virt_to_cache(const void *obj)
395 {
396 	struct page *page = virt_to_head_page(obj);
397 	return page->slab_cache;
398 }
399 
400 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
401 				 unsigned int idx)
402 {
403 	return page->s_mem + cache->size * idx;
404 }
405 
406 /*
407  * We want to avoid an expensive divide : (offset / cache->size)
408  *   Using the fact that size is a constant for a particular cache,
409  *   we can replace (offset / cache->size) by
410  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
411  */
412 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
413 					const struct page *page, void *obj)
414 {
415 	u32 offset = (obj - page->s_mem);
416 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
417 }
418 
419 #define BOOT_CPUCACHE_ENTRIES	1
420 /* internal cache of cache description objs */
421 static struct kmem_cache kmem_cache_boot = {
422 	.batchcount = 1,
423 	.limit = BOOT_CPUCACHE_ENTRIES,
424 	.shared = 1,
425 	.size = sizeof(struct kmem_cache),
426 	.name = "kmem_cache",
427 };
428 
429 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
430 
431 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
432 {
433 	return this_cpu_ptr(cachep->cpu_cache);
434 }
435 
436 /*
437  * Calculate the number of objects and left-over bytes for a given buffer size.
438  */
439 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
440 		unsigned long flags, size_t *left_over)
441 {
442 	unsigned int num;
443 	size_t slab_size = PAGE_SIZE << gfporder;
444 
445 	/*
446 	 * The slab management structure can be either off the slab or
447 	 * on it. For the latter case, the memory allocated for a
448 	 * slab is used for:
449 	 *
450 	 * - @buffer_size bytes for each object
451 	 * - One freelist_idx_t for each object
452 	 *
453 	 * We don't need to consider alignment of freelist because
454 	 * freelist will be at the end of slab page. The objects will be
455 	 * at the correct alignment.
456 	 *
457 	 * If the slab management structure is off the slab, then the
458 	 * alignment will already be calculated into the size. Because
459 	 * the slabs are all pages aligned, the objects will be at the
460 	 * correct alignment when allocated.
461 	 */
462 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
463 		num = slab_size / buffer_size;
464 		*left_over = slab_size % buffer_size;
465 	} else {
466 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
467 		*left_over = slab_size %
468 			(buffer_size + sizeof(freelist_idx_t));
469 	}
470 
471 	return num;
472 }
473 
474 #if DEBUG
475 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
476 
477 static void __slab_error(const char *function, struct kmem_cache *cachep,
478 			char *msg)
479 {
480 	pr_err("slab error in %s(): cache `%s': %s\n",
481 	       function, cachep->name, msg);
482 	dump_stack();
483 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
484 }
485 #endif
486 
487 /*
488  * By default on NUMA we use alien caches to stage the freeing of
489  * objects allocated from other nodes. This causes massive memory
490  * inefficiencies when using fake NUMA setup to split memory into a
491  * large number of small nodes, so it can be disabled on the command
492  * line
493   */
494 
495 static int use_alien_caches __read_mostly = 1;
496 static int __init noaliencache_setup(char *s)
497 {
498 	use_alien_caches = 0;
499 	return 1;
500 }
501 __setup("noaliencache", noaliencache_setup);
502 
503 static int __init slab_max_order_setup(char *str)
504 {
505 	get_option(&str, &slab_max_order);
506 	slab_max_order = slab_max_order < 0 ? 0 :
507 				min(slab_max_order, MAX_ORDER - 1);
508 	slab_max_order_set = true;
509 
510 	return 1;
511 }
512 __setup("slab_max_order=", slab_max_order_setup);
513 
514 #ifdef CONFIG_NUMA
515 /*
516  * Special reaping functions for NUMA systems called from cache_reap().
517  * These take care of doing round robin flushing of alien caches (containing
518  * objects freed on different nodes from which they were allocated) and the
519  * flushing of remote pcps by calling drain_node_pages.
520  */
521 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
522 
523 static void init_reap_node(int cpu)
524 {
525 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
526 						    node_online_map);
527 }
528 
529 static void next_reap_node(void)
530 {
531 	int node = __this_cpu_read(slab_reap_node);
532 
533 	node = next_node_in(node, node_online_map);
534 	__this_cpu_write(slab_reap_node, node);
535 }
536 
537 #else
538 #define init_reap_node(cpu) do { } while (0)
539 #define next_reap_node(void) do { } while (0)
540 #endif
541 
542 /*
543  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
544  * via the workqueue/eventd.
545  * Add the CPU number into the expiration time to minimize the possibility of
546  * the CPUs getting into lockstep and contending for the global cache chain
547  * lock.
548  */
549 static void start_cpu_timer(int cpu)
550 {
551 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
552 
553 	/*
554 	 * When this gets called from do_initcalls via cpucache_init(),
555 	 * init_workqueues() has already run, so keventd will be setup
556 	 * at that time.
557 	 */
558 	if (keventd_up() && reap_work->work.func == NULL) {
559 		init_reap_node(cpu);
560 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
561 		schedule_delayed_work_on(cpu, reap_work,
562 					__round_jiffies_relative(HZ, cpu));
563 	}
564 }
565 
566 static void init_arraycache(struct array_cache *ac, int limit, int batch)
567 {
568 	/*
569 	 * The array_cache structures contain pointers to free object.
570 	 * However, when such objects are allocated or transferred to another
571 	 * cache the pointers are not cleared and they could be counted as
572 	 * valid references during a kmemleak scan. Therefore, kmemleak must
573 	 * not scan such objects.
574 	 */
575 	kmemleak_no_scan(ac);
576 	if (ac) {
577 		ac->avail = 0;
578 		ac->limit = limit;
579 		ac->batchcount = batch;
580 		ac->touched = 0;
581 	}
582 }
583 
584 static struct array_cache *alloc_arraycache(int node, int entries,
585 					    int batchcount, gfp_t gfp)
586 {
587 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
588 	struct array_cache *ac = NULL;
589 
590 	ac = kmalloc_node(memsize, gfp, node);
591 	init_arraycache(ac, entries, batchcount);
592 	return ac;
593 }
594 
595 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
596 					struct page *page, void *objp)
597 {
598 	struct kmem_cache_node *n;
599 	int page_node;
600 	LIST_HEAD(list);
601 
602 	page_node = page_to_nid(page);
603 	n = get_node(cachep, page_node);
604 
605 	spin_lock(&n->list_lock);
606 	free_block(cachep, &objp, 1, page_node, &list);
607 	spin_unlock(&n->list_lock);
608 
609 	slabs_destroy(cachep, &list);
610 }
611 
612 /*
613  * Transfer objects in one arraycache to another.
614  * Locking must be handled by the caller.
615  *
616  * Return the number of entries transferred.
617  */
618 static int transfer_objects(struct array_cache *to,
619 		struct array_cache *from, unsigned int max)
620 {
621 	/* Figure out how many entries to transfer */
622 	int nr = min3(from->avail, max, to->limit - to->avail);
623 
624 	if (!nr)
625 		return 0;
626 
627 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
628 			sizeof(void *) *nr);
629 
630 	from->avail -= nr;
631 	to->avail += nr;
632 	return nr;
633 }
634 
635 #ifndef CONFIG_NUMA
636 
637 #define drain_alien_cache(cachep, alien) do { } while (0)
638 #define reap_alien(cachep, n) do { } while (0)
639 
640 static inline struct alien_cache **alloc_alien_cache(int node,
641 						int limit, gfp_t gfp)
642 {
643 	return NULL;
644 }
645 
646 static inline void free_alien_cache(struct alien_cache **ac_ptr)
647 {
648 }
649 
650 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
651 {
652 	return 0;
653 }
654 
655 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
656 		gfp_t flags)
657 {
658 	return NULL;
659 }
660 
661 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
662 		 gfp_t flags, int nodeid)
663 {
664 	return NULL;
665 }
666 
667 static inline gfp_t gfp_exact_node(gfp_t flags)
668 {
669 	return flags & ~__GFP_NOFAIL;
670 }
671 
672 #else	/* CONFIG_NUMA */
673 
674 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
675 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
676 
677 static struct alien_cache *__alloc_alien_cache(int node, int entries,
678 						int batch, gfp_t gfp)
679 {
680 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
681 	struct alien_cache *alc = NULL;
682 
683 	alc = kmalloc_node(memsize, gfp, node);
684 	init_arraycache(&alc->ac, entries, batch);
685 	spin_lock_init(&alc->lock);
686 	return alc;
687 }
688 
689 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
690 {
691 	struct alien_cache **alc_ptr;
692 	size_t memsize = sizeof(void *) * nr_node_ids;
693 	int i;
694 
695 	if (limit > 1)
696 		limit = 12;
697 	alc_ptr = kzalloc_node(memsize, gfp, node);
698 	if (!alc_ptr)
699 		return NULL;
700 
701 	for_each_node(i) {
702 		if (i == node || !node_online(i))
703 			continue;
704 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
705 		if (!alc_ptr[i]) {
706 			for (i--; i >= 0; i--)
707 				kfree(alc_ptr[i]);
708 			kfree(alc_ptr);
709 			return NULL;
710 		}
711 	}
712 	return alc_ptr;
713 }
714 
715 static void free_alien_cache(struct alien_cache **alc_ptr)
716 {
717 	int i;
718 
719 	if (!alc_ptr)
720 		return;
721 	for_each_node(i)
722 	    kfree(alc_ptr[i]);
723 	kfree(alc_ptr);
724 }
725 
726 static void __drain_alien_cache(struct kmem_cache *cachep,
727 				struct array_cache *ac, int node,
728 				struct list_head *list)
729 {
730 	struct kmem_cache_node *n = get_node(cachep, node);
731 
732 	if (ac->avail) {
733 		spin_lock(&n->list_lock);
734 		/*
735 		 * Stuff objects into the remote nodes shared array first.
736 		 * That way we could avoid the overhead of putting the objects
737 		 * into the free lists and getting them back later.
738 		 */
739 		if (n->shared)
740 			transfer_objects(n->shared, ac, ac->limit);
741 
742 		free_block(cachep, ac->entry, ac->avail, node, list);
743 		ac->avail = 0;
744 		spin_unlock(&n->list_lock);
745 	}
746 }
747 
748 /*
749  * Called from cache_reap() to regularly drain alien caches round robin.
750  */
751 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
752 {
753 	int node = __this_cpu_read(slab_reap_node);
754 
755 	if (n->alien) {
756 		struct alien_cache *alc = n->alien[node];
757 		struct array_cache *ac;
758 
759 		if (alc) {
760 			ac = &alc->ac;
761 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
762 				LIST_HEAD(list);
763 
764 				__drain_alien_cache(cachep, ac, node, &list);
765 				spin_unlock_irq(&alc->lock);
766 				slabs_destroy(cachep, &list);
767 			}
768 		}
769 	}
770 }
771 
772 static void drain_alien_cache(struct kmem_cache *cachep,
773 				struct alien_cache **alien)
774 {
775 	int i = 0;
776 	struct alien_cache *alc;
777 	struct array_cache *ac;
778 	unsigned long flags;
779 
780 	for_each_online_node(i) {
781 		alc = alien[i];
782 		if (alc) {
783 			LIST_HEAD(list);
784 
785 			ac = &alc->ac;
786 			spin_lock_irqsave(&alc->lock, flags);
787 			__drain_alien_cache(cachep, ac, i, &list);
788 			spin_unlock_irqrestore(&alc->lock, flags);
789 			slabs_destroy(cachep, &list);
790 		}
791 	}
792 }
793 
794 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
795 				int node, int page_node)
796 {
797 	struct kmem_cache_node *n;
798 	struct alien_cache *alien = NULL;
799 	struct array_cache *ac;
800 	LIST_HEAD(list);
801 
802 	n = get_node(cachep, node);
803 	STATS_INC_NODEFREES(cachep);
804 	if (n->alien && n->alien[page_node]) {
805 		alien = n->alien[page_node];
806 		ac = &alien->ac;
807 		spin_lock(&alien->lock);
808 		if (unlikely(ac->avail == ac->limit)) {
809 			STATS_INC_ACOVERFLOW(cachep);
810 			__drain_alien_cache(cachep, ac, page_node, &list);
811 		}
812 		ac->entry[ac->avail++] = objp;
813 		spin_unlock(&alien->lock);
814 		slabs_destroy(cachep, &list);
815 	} else {
816 		n = get_node(cachep, page_node);
817 		spin_lock(&n->list_lock);
818 		free_block(cachep, &objp, 1, page_node, &list);
819 		spin_unlock(&n->list_lock);
820 		slabs_destroy(cachep, &list);
821 	}
822 	return 1;
823 }
824 
825 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
826 {
827 	int page_node = page_to_nid(virt_to_page(objp));
828 	int node = numa_mem_id();
829 	/*
830 	 * Make sure we are not freeing a object from another node to the array
831 	 * cache on this cpu.
832 	 */
833 	if (likely(node == page_node))
834 		return 0;
835 
836 	return __cache_free_alien(cachep, objp, node, page_node);
837 }
838 
839 /*
840  * Construct gfp mask to allocate from a specific node but do not reclaim or
841  * warn about failures.
842  */
843 static inline gfp_t gfp_exact_node(gfp_t flags)
844 {
845 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
846 }
847 #endif
848 
849 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
850 {
851 	struct kmem_cache_node *n;
852 
853 	/*
854 	 * Set up the kmem_cache_node for cpu before we can
855 	 * begin anything. Make sure some other cpu on this
856 	 * node has not already allocated this
857 	 */
858 	n = get_node(cachep, node);
859 	if (n) {
860 		spin_lock_irq(&n->list_lock);
861 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
862 				cachep->num;
863 		spin_unlock_irq(&n->list_lock);
864 
865 		return 0;
866 	}
867 
868 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
869 	if (!n)
870 		return -ENOMEM;
871 
872 	kmem_cache_node_init(n);
873 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
874 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
875 
876 	n->free_limit =
877 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
878 
879 	/*
880 	 * The kmem_cache_nodes don't come and go as CPUs
881 	 * come and go.  slab_mutex is sufficient
882 	 * protection here.
883 	 */
884 	cachep->node[node] = n;
885 
886 	return 0;
887 }
888 
889 /*
890  * Allocates and initializes node for a node on each slab cache, used for
891  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
892  * will be allocated off-node since memory is not yet online for the new node.
893  * When hotplugging memory or a cpu, existing node are not replaced if
894  * already in use.
895  *
896  * Must hold slab_mutex.
897  */
898 static int init_cache_node_node(int node)
899 {
900 	int ret;
901 	struct kmem_cache *cachep;
902 
903 	list_for_each_entry(cachep, &slab_caches, list) {
904 		ret = init_cache_node(cachep, node, GFP_KERNEL);
905 		if (ret)
906 			return ret;
907 	}
908 
909 	return 0;
910 }
911 
912 static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 				int node, gfp_t gfp, bool force_change)
914 {
915 	int ret = -ENOMEM;
916 	struct kmem_cache_node *n;
917 	struct array_cache *old_shared = NULL;
918 	struct array_cache *new_shared = NULL;
919 	struct alien_cache **new_alien = NULL;
920 	LIST_HEAD(list);
921 
922 	if (use_alien_caches) {
923 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 		if (!new_alien)
925 			goto fail;
926 	}
927 
928 	if (cachep->shared) {
929 		new_shared = alloc_arraycache(node,
930 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 		if (!new_shared)
932 			goto fail;
933 	}
934 
935 	ret = init_cache_node(cachep, node, gfp);
936 	if (ret)
937 		goto fail;
938 
939 	n = get_node(cachep, node);
940 	spin_lock_irq(&n->list_lock);
941 	if (n->shared && force_change) {
942 		free_block(cachep, n->shared->entry,
943 				n->shared->avail, node, &list);
944 		n->shared->avail = 0;
945 	}
946 
947 	if (!n->shared || force_change) {
948 		old_shared = n->shared;
949 		n->shared = new_shared;
950 		new_shared = NULL;
951 	}
952 
953 	if (!n->alien) {
954 		n->alien = new_alien;
955 		new_alien = NULL;
956 	}
957 
958 	spin_unlock_irq(&n->list_lock);
959 	slabs_destroy(cachep, &list);
960 
961 	/*
962 	 * To protect lockless access to n->shared during irq disabled context.
963 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 	 * guaranteed to be valid until irq is re-enabled, because it will be
965 	 * freed after synchronize_sched().
966 	 */
967 	if (force_change)
968 		synchronize_sched();
969 
970 fail:
971 	kfree(old_shared);
972 	kfree(new_shared);
973 	free_alien_cache(new_alien);
974 
975 	return ret;
976 }
977 
978 static void cpuup_canceled(long cpu)
979 {
980 	struct kmem_cache *cachep;
981 	struct kmem_cache_node *n = NULL;
982 	int node = cpu_to_mem(cpu);
983 	const struct cpumask *mask = cpumask_of_node(node);
984 
985 	list_for_each_entry(cachep, &slab_caches, list) {
986 		struct array_cache *nc;
987 		struct array_cache *shared;
988 		struct alien_cache **alien;
989 		LIST_HEAD(list);
990 
991 		n = get_node(cachep, node);
992 		if (!n)
993 			continue;
994 
995 		spin_lock_irq(&n->list_lock);
996 
997 		/* Free limit for this kmem_cache_node */
998 		n->free_limit -= cachep->batchcount;
999 
1000 		/* cpu is dead; no one can alloc from it. */
1001 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1002 		if (nc) {
1003 			free_block(cachep, nc->entry, nc->avail, node, &list);
1004 			nc->avail = 0;
1005 		}
1006 
1007 		if (!cpumask_empty(mask)) {
1008 			spin_unlock_irq(&n->list_lock);
1009 			goto free_slab;
1010 		}
1011 
1012 		shared = n->shared;
1013 		if (shared) {
1014 			free_block(cachep, shared->entry,
1015 				   shared->avail, node, &list);
1016 			n->shared = NULL;
1017 		}
1018 
1019 		alien = n->alien;
1020 		n->alien = NULL;
1021 
1022 		spin_unlock_irq(&n->list_lock);
1023 
1024 		kfree(shared);
1025 		if (alien) {
1026 			drain_alien_cache(cachep, alien);
1027 			free_alien_cache(alien);
1028 		}
1029 
1030 free_slab:
1031 		slabs_destroy(cachep, &list);
1032 	}
1033 	/*
1034 	 * In the previous loop, all the objects were freed to
1035 	 * the respective cache's slabs,  now we can go ahead and
1036 	 * shrink each nodelist to its limit.
1037 	 */
1038 	list_for_each_entry(cachep, &slab_caches, list) {
1039 		n = get_node(cachep, node);
1040 		if (!n)
1041 			continue;
1042 		drain_freelist(cachep, n, INT_MAX);
1043 	}
1044 }
1045 
1046 static int cpuup_prepare(long cpu)
1047 {
1048 	struct kmem_cache *cachep;
1049 	int node = cpu_to_mem(cpu);
1050 	int err;
1051 
1052 	/*
1053 	 * We need to do this right in the beginning since
1054 	 * alloc_arraycache's are going to use this list.
1055 	 * kmalloc_node allows us to add the slab to the right
1056 	 * kmem_cache_node and not this cpu's kmem_cache_node
1057 	 */
1058 	err = init_cache_node_node(node);
1059 	if (err < 0)
1060 		goto bad;
1061 
1062 	/*
1063 	 * Now we can go ahead with allocating the shared arrays and
1064 	 * array caches
1065 	 */
1066 	list_for_each_entry(cachep, &slab_caches, list) {
1067 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1068 		if (err)
1069 			goto bad;
1070 	}
1071 
1072 	return 0;
1073 bad:
1074 	cpuup_canceled(cpu);
1075 	return -ENOMEM;
1076 }
1077 
1078 static int cpuup_callback(struct notifier_block *nfb,
1079 				    unsigned long action, void *hcpu)
1080 {
1081 	long cpu = (long)hcpu;
1082 	int err = 0;
1083 
1084 	switch (action) {
1085 	case CPU_UP_PREPARE:
1086 	case CPU_UP_PREPARE_FROZEN:
1087 		mutex_lock(&slab_mutex);
1088 		err = cpuup_prepare(cpu);
1089 		mutex_unlock(&slab_mutex);
1090 		break;
1091 	case CPU_ONLINE:
1092 	case CPU_ONLINE_FROZEN:
1093 		start_cpu_timer(cpu);
1094 		break;
1095 #ifdef CONFIG_HOTPLUG_CPU
1096   	case CPU_DOWN_PREPARE:
1097   	case CPU_DOWN_PREPARE_FROZEN:
1098 		/*
1099 		 * Shutdown cache reaper. Note that the slab_mutex is
1100 		 * held so that if cache_reap() is invoked it cannot do
1101 		 * anything expensive but will only modify reap_work
1102 		 * and reschedule the timer.
1103 		*/
1104 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1105 		/* Now the cache_reaper is guaranteed to be not running. */
1106 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1107   		break;
1108   	case CPU_DOWN_FAILED:
1109   	case CPU_DOWN_FAILED_FROZEN:
1110 		start_cpu_timer(cpu);
1111   		break;
1112 	case CPU_DEAD:
1113 	case CPU_DEAD_FROZEN:
1114 		/*
1115 		 * Even if all the cpus of a node are down, we don't free the
1116 		 * kmem_cache_node of any cache. This to avoid a race between
1117 		 * cpu_down, and a kmalloc allocation from another cpu for
1118 		 * memory from the node of the cpu going down.  The node
1119 		 * structure is usually allocated from kmem_cache_create() and
1120 		 * gets destroyed at kmem_cache_destroy().
1121 		 */
1122 		/* fall through */
1123 #endif
1124 	case CPU_UP_CANCELED:
1125 	case CPU_UP_CANCELED_FROZEN:
1126 		mutex_lock(&slab_mutex);
1127 		cpuup_canceled(cpu);
1128 		mutex_unlock(&slab_mutex);
1129 		break;
1130 	}
1131 	return notifier_from_errno(err);
1132 }
1133 
1134 static struct notifier_block cpucache_notifier = {
1135 	&cpuup_callback, NULL, 0
1136 };
1137 
1138 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1139 /*
1140  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1141  * Returns -EBUSY if all objects cannot be drained so that the node is not
1142  * removed.
1143  *
1144  * Must hold slab_mutex.
1145  */
1146 static int __meminit drain_cache_node_node(int node)
1147 {
1148 	struct kmem_cache *cachep;
1149 	int ret = 0;
1150 
1151 	list_for_each_entry(cachep, &slab_caches, list) {
1152 		struct kmem_cache_node *n;
1153 
1154 		n = get_node(cachep, node);
1155 		if (!n)
1156 			continue;
1157 
1158 		drain_freelist(cachep, n, INT_MAX);
1159 
1160 		if (!list_empty(&n->slabs_full) ||
1161 		    !list_empty(&n->slabs_partial)) {
1162 			ret = -EBUSY;
1163 			break;
1164 		}
1165 	}
1166 	return ret;
1167 }
1168 
1169 static int __meminit slab_memory_callback(struct notifier_block *self,
1170 					unsigned long action, void *arg)
1171 {
1172 	struct memory_notify *mnb = arg;
1173 	int ret = 0;
1174 	int nid;
1175 
1176 	nid = mnb->status_change_nid;
1177 	if (nid < 0)
1178 		goto out;
1179 
1180 	switch (action) {
1181 	case MEM_GOING_ONLINE:
1182 		mutex_lock(&slab_mutex);
1183 		ret = init_cache_node_node(nid);
1184 		mutex_unlock(&slab_mutex);
1185 		break;
1186 	case MEM_GOING_OFFLINE:
1187 		mutex_lock(&slab_mutex);
1188 		ret = drain_cache_node_node(nid);
1189 		mutex_unlock(&slab_mutex);
1190 		break;
1191 	case MEM_ONLINE:
1192 	case MEM_OFFLINE:
1193 	case MEM_CANCEL_ONLINE:
1194 	case MEM_CANCEL_OFFLINE:
1195 		break;
1196 	}
1197 out:
1198 	return notifier_from_errno(ret);
1199 }
1200 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1201 
1202 /*
1203  * swap the static kmem_cache_node with kmalloced memory
1204  */
1205 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1206 				int nodeid)
1207 {
1208 	struct kmem_cache_node *ptr;
1209 
1210 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1211 	BUG_ON(!ptr);
1212 
1213 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1214 	/*
1215 	 * Do not assume that spinlocks can be initialized via memcpy:
1216 	 */
1217 	spin_lock_init(&ptr->list_lock);
1218 
1219 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1220 	cachep->node[nodeid] = ptr;
1221 }
1222 
1223 /*
1224  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1225  * size of kmem_cache_node.
1226  */
1227 static void __init set_up_node(struct kmem_cache *cachep, int index)
1228 {
1229 	int node;
1230 
1231 	for_each_online_node(node) {
1232 		cachep->node[node] = &init_kmem_cache_node[index + node];
1233 		cachep->node[node]->next_reap = jiffies +
1234 		    REAPTIMEOUT_NODE +
1235 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1236 	}
1237 }
1238 
1239 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1240 static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
1241 			size_t count)
1242 {
1243 	size_t i;
1244 	unsigned int rand;
1245 
1246 	for (i = 0; i < count; i++)
1247 		list[i] = i;
1248 
1249 	/* Fisher-Yates shuffle */
1250 	for (i = count - 1; i > 0; i--) {
1251 		rand = prandom_u32_state(state);
1252 		rand %= (i + 1);
1253 		swap(list[i], list[rand]);
1254 	}
1255 }
1256 
1257 /* Create a random sequence per cache */
1258 static int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp)
1259 {
1260 	unsigned int seed, count = cachep->num;
1261 	struct rnd_state state;
1262 
1263 	if (count < 2)
1264 		return 0;
1265 
1266 	/* If it fails, we will just use the global lists */
1267 	cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), gfp);
1268 	if (!cachep->random_seq)
1269 		return -ENOMEM;
1270 
1271 	/* Get best entropy at this stage */
1272 	get_random_bytes_arch(&seed, sizeof(seed));
1273 	prandom_seed_state(&state, seed);
1274 
1275 	freelist_randomize(&state, cachep->random_seq, count);
1276 	return 0;
1277 }
1278 
1279 /* Destroy the per-cache random freelist sequence */
1280 static void cache_random_seq_destroy(struct kmem_cache *cachep)
1281 {
1282 	kfree(cachep->random_seq);
1283 	cachep->random_seq = NULL;
1284 }
1285 #else
1286 static inline int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp)
1287 {
1288 	return 0;
1289 }
1290 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
1291 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1292 
1293 
1294 /*
1295  * Initialisation.  Called after the page allocator have been initialised and
1296  * before smp_init().
1297  */
1298 void __init kmem_cache_init(void)
1299 {
1300 	int i;
1301 
1302 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1303 					sizeof(struct rcu_head));
1304 	kmem_cache = &kmem_cache_boot;
1305 
1306 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1307 		use_alien_caches = 0;
1308 
1309 	for (i = 0; i < NUM_INIT_LISTS; i++)
1310 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1311 
1312 	/*
1313 	 * Fragmentation resistance on low memory - only use bigger
1314 	 * page orders on machines with more than 32MB of memory if
1315 	 * not overridden on the command line.
1316 	 */
1317 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1318 		slab_max_order = SLAB_MAX_ORDER_HI;
1319 
1320 	/* Bootstrap is tricky, because several objects are allocated
1321 	 * from caches that do not exist yet:
1322 	 * 1) initialize the kmem_cache cache: it contains the struct
1323 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1324 	 *    kmem_cache is statically allocated.
1325 	 *    Initially an __init data area is used for the head array and the
1326 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1327 	 *    array at the end of the bootstrap.
1328 	 * 2) Create the first kmalloc cache.
1329 	 *    The struct kmem_cache for the new cache is allocated normally.
1330 	 *    An __init data area is used for the head array.
1331 	 * 3) Create the remaining kmalloc caches, with minimally sized
1332 	 *    head arrays.
1333 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1334 	 *    kmalloc cache with kmalloc allocated arrays.
1335 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1336 	 *    the other cache's with kmalloc allocated memory.
1337 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1338 	 */
1339 
1340 	/* 1) create the kmem_cache */
1341 
1342 	/*
1343 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1344 	 */
1345 	create_boot_cache(kmem_cache, "kmem_cache",
1346 		offsetof(struct kmem_cache, node) +
1347 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1348 				  SLAB_HWCACHE_ALIGN);
1349 	list_add(&kmem_cache->list, &slab_caches);
1350 	slab_state = PARTIAL;
1351 
1352 	/*
1353 	 * Initialize the caches that provide memory for the  kmem_cache_node
1354 	 * structures first.  Without this, further allocations will bug.
1355 	 */
1356 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1357 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1358 	slab_state = PARTIAL_NODE;
1359 	setup_kmalloc_cache_index_table();
1360 
1361 	slab_early_init = 0;
1362 
1363 	/* 5) Replace the bootstrap kmem_cache_node */
1364 	{
1365 		int nid;
1366 
1367 		for_each_online_node(nid) {
1368 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1369 
1370 			init_list(kmalloc_caches[INDEX_NODE],
1371 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1372 		}
1373 	}
1374 
1375 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1376 }
1377 
1378 void __init kmem_cache_init_late(void)
1379 {
1380 	struct kmem_cache *cachep;
1381 
1382 	slab_state = UP;
1383 
1384 	/* 6) resize the head arrays to their final sizes */
1385 	mutex_lock(&slab_mutex);
1386 	list_for_each_entry(cachep, &slab_caches, list)
1387 		if (enable_cpucache(cachep, GFP_NOWAIT))
1388 			BUG();
1389 	mutex_unlock(&slab_mutex);
1390 
1391 	/* Done! */
1392 	slab_state = FULL;
1393 
1394 	/*
1395 	 * Register a cpu startup notifier callback that initializes
1396 	 * cpu_cache_get for all new cpus
1397 	 */
1398 	register_cpu_notifier(&cpucache_notifier);
1399 
1400 #ifdef CONFIG_NUMA
1401 	/*
1402 	 * Register a memory hotplug callback that initializes and frees
1403 	 * node.
1404 	 */
1405 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1406 #endif
1407 
1408 	/*
1409 	 * The reap timers are started later, with a module init call: That part
1410 	 * of the kernel is not yet operational.
1411 	 */
1412 }
1413 
1414 static int __init cpucache_init(void)
1415 {
1416 	int cpu;
1417 
1418 	/*
1419 	 * Register the timers that return unneeded pages to the page allocator
1420 	 */
1421 	for_each_online_cpu(cpu)
1422 		start_cpu_timer(cpu);
1423 
1424 	/* Done! */
1425 	slab_state = FULL;
1426 	return 0;
1427 }
1428 __initcall(cpucache_init);
1429 
1430 static noinline void
1431 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1432 {
1433 #if DEBUG
1434 	struct kmem_cache_node *n;
1435 	struct page *page;
1436 	unsigned long flags;
1437 	int node;
1438 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1439 				      DEFAULT_RATELIMIT_BURST);
1440 
1441 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1442 		return;
1443 
1444 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1445 		nodeid, gfpflags, &gfpflags);
1446 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1447 		cachep->name, cachep->size, cachep->gfporder);
1448 
1449 	for_each_kmem_cache_node(cachep, node, n) {
1450 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1451 		unsigned long active_slabs = 0, num_slabs = 0;
1452 
1453 		spin_lock_irqsave(&n->list_lock, flags);
1454 		list_for_each_entry(page, &n->slabs_full, lru) {
1455 			active_objs += cachep->num;
1456 			active_slabs++;
1457 		}
1458 		list_for_each_entry(page, &n->slabs_partial, lru) {
1459 			active_objs += page->active;
1460 			active_slabs++;
1461 		}
1462 		list_for_each_entry(page, &n->slabs_free, lru)
1463 			num_slabs++;
1464 
1465 		free_objects += n->free_objects;
1466 		spin_unlock_irqrestore(&n->list_lock, flags);
1467 
1468 		num_slabs += active_slabs;
1469 		num_objs = num_slabs * cachep->num;
1470 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1471 			node, active_slabs, num_slabs, active_objs, num_objs,
1472 			free_objects);
1473 	}
1474 #endif
1475 }
1476 
1477 /*
1478  * Interface to system's page allocator. No need to hold the
1479  * kmem_cache_node ->list_lock.
1480  *
1481  * If we requested dmaable memory, we will get it. Even if we
1482  * did not request dmaable memory, we might get it, but that
1483  * would be relatively rare and ignorable.
1484  */
1485 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1486 								int nodeid)
1487 {
1488 	struct page *page;
1489 	int nr_pages;
1490 
1491 	flags |= cachep->allocflags;
1492 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1493 		flags |= __GFP_RECLAIMABLE;
1494 
1495 	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1496 	if (!page) {
1497 		slab_out_of_memory(cachep, flags, nodeid);
1498 		return NULL;
1499 	}
1500 
1501 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1502 		__free_pages(page, cachep->gfporder);
1503 		return NULL;
1504 	}
1505 
1506 	nr_pages = (1 << cachep->gfporder);
1507 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1508 		add_zone_page_state(page_zone(page),
1509 			NR_SLAB_RECLAIMABLE, nr_pages);
1510 	else
1511 		add_zone_page_state(page_zone(page),
1512 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1513 
1514 	__SetPageSlab(page);
1515 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1516 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1517 		SetPageSlabPfmemalloc(page);
1518 
1519 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1520 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1521 
1522 		if (cachep->ctor)
1523 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1524 		else
1525 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1526 	}
1527 
1528 	return page;
1529 }
1530 
1531 /*
1532  * Interface to system's page release.
1533  */
1534 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1535 {
1536 	int order = cachep->gfporder;
1537 	unsigned long nr_freed = (1 << order);
1538 
1539 	kmemcheck_free_shadow(page, order);
1540 
1541 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1542 		sub_zone_page_state(page_zone(page),
1543 				NR_SLAB_RECLAIMABLE, nr_freed);
1544 	else
1545 		sub_zone_page_state(page_zone(page),
1546 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1547 
1548 	BUG_ON(!PageSlab(page));
1549 	__ClearPageSlabPfmemalloc(page);
1550 	__ClearPageSlab(page);
1551 	page_mapcount_reset(page);
1552 	page->mapping = NULL;
1553 
1554 	if (current->reclaim_state)
1555 		current->reclaim_state->reclaimed_slab += nr_freed;
1556 	memcg_uncharge_slab(page, order, cachep);
1557 	__free_pages(page, order);
1558 }
1559 
1560 static void kmem_rcu_free(struct rcu_head *head)
1561 {
1562 	struct kmem_cache *cachep;
1563 	struct page *page;
1564 
1565 	page = container_of(head, struct page, rcu_head);
1566 	cachep = page->slab_cache;
1567 
1568 	kmem_freepages(cachep, page);
1569 }
1570 
1571 #if DEBUG
1572 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1573 {
1574 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1575 		(cachep->size % PAGE_SIZE) == 0)
1576 		return true;
1577 
1578 	return false;
1579 }
1580 
1581 #ifdef CONFIG_DEBUG_PAGEALLOC
1582 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1583 			    unsigned long caller)
1584 {
1585 	int size = cachep->object_size;
1586 
1587 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1588 
1589 	if (size < 5 * sizeof(unsigned long))
1590 		return;
1591 
1592 	*addr++ = 0x12345678;
1593 	*addr++ = caller;
1594 	*addr++ = smp_processor_id();
1595 	size -= 3 * sizeof(unsigned long);
1596 	{
1597 		unsigned long *sptr = &caller;
1598 		unsigned long svalue;
1599 
1600 		while (!kstack_end(sptr)) {
1601 			svalue = *sptr++;
1602 			if (kernel_text_address(svalue)) {
1603 				*addr++ = svalue;
1604 				size -= sizeof(unsigned long);
1605 				if (size <= sizeof(unsigned long))
1606 					break;
1607 			}
1608 		}
1609 
1610 	}
1611 	*addr++ = 0x87654321;
1612 }
1613 
1614 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1615 				int map, unsigned long caller)
1616 {
1617 	if (!is_debug_pagealloc_cache(cachep))
1618 		return;
1619 
1620 	if (caller)
1621 		store_stackinfo(cachep, objp, caller);
1622 
1623 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1624 }
1625 
1626 #else
1627 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1628 				int map, unsigned long caller) {}
1629 
1630 #endif
1631 
1632 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1633 {
1634 	int size = cachep->object_size;
1635 	addr = &((char *)addr)[obj_offset(cachep)];
1636 
1637 	memset(addr, val, size);
1638 	*(unsigned char *)(addr + size - 1) = POISON_END;
1639 }
1640 
1641 static void dump_line(char *data, int offset, int limit)
1642 {
1643 	int i;
1644 	unsigned char error = 0;
1645 	int bad_count = 0;
1646 
1647 	pr_err("%03x: ", offset);
1648 	for (i = 0; i < limit; i++) {
1649 		if (data[offset + i] != POISON_FREE) {
1650 			error = data[offset + i];
1651 			bad_count++;
1652 		}
1653 	}
1654 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1655 			&data[offset], limit, 1);
1656 
1657 	if (bad_count == 1) {
1658 		error ^= POISON_FREE;
1659 		if (!(error & (error - 1))) {
1660 			pr_err("Single bit error detected. Probably bad RAM.\n");
1661 #ifdef CONFIG_X86
1662 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1663 #else
1664 			pr_err("Run a memory test tool.\n");
1665 #endif
1666 		}
1667 	}
1668 }
1669 #endif
1670 
1671 #if DEBUG
1672 
1673 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1674 {
1675 	int i, size;
1676 	char *realobj;
1677 
1678 	if (cachep->flags & SLAB_RED_ZONE) {
1679 		pr_err("Redzone: 0x%llx/0x%llx\n",
1680 		       *dbg_redzone1(cachep, objp),
1681 		       *dbg_redzone2(cachep, objp));
1682 	}
1683 
1684 	if (cachep->flags & SLAB_STORE_USER) {
1685 		pr_err("Last user: [<%p>](%pSR)\n",
1686 		       *dbg_userword(cachep, objp),
1687 		       *dbg_userword(cachep, objp));
1688 	}
1689 	realobj = (char *)objp + obj_offset(cachep);
1690 	size = cachep->object_size;
1691 	for (i = 0; i < size && lines; i += 16, lines--) {
1692 		int limit;
1693 		limit = 16;
1694 		if (i + limit > size)
1695 			limit = size - i;
1696 		dump_line(realobj, i, limit);
1697 	}
1698 }
1699 
1700 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1701 {
1702 	char *realobj;
1703 	int size, i;
1704 	int lines = 0;
1705 
1706 	if (is_debug_pagealloc_cache(cachep))
1707 		return;
1708 
1709 	realobj = (char *)objp + obj_offset(cachep);
1710 	size = cachep->object_size;
1711 
1712 	for (i = 0; i < size; i++) {
1713 		char exp = POISON_FREE;
1714 		if (i == size - 1)
1715 			exp = POISON_END;
1716 		if (realobj[i] != exp) {
1717 			int limit;
1718 			/* Mismatch ! */
1719 			/* Print header */
1720 			if (lines == 0) {
1721 				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1722 				       print_tainted(), cachep->name,
1723 				       realobj, size);
1724 				print_objinfo(cachep, objp, 0);
1725 			}
1726 			/* Hexdump the affected line */
1727 			i = (i / 16) * 16;
1728 			limit = 16;
1729 			if (i + limit > size)
1730 				limit = size - i;
1731 			dump_line(realobj, i, limit);
1732 			i += 16;
1733 			lines++;
1734 			/* Limit to 5 lines */
1735 			if (lines > 5)
1736 				break;
1737 		}
1738 	}
1739 	if (lines != 0) {
1740 		/* Print some data about the neighboring objects, if they
1741 		 * exist:
1742 		 */
1743 		struct page *page = virt_to_head_page(objp);
1744 		unsigned int objnr;
1745 
1746 		objnr = obj_to_index(cachep, page, objp);
1747 		if (objnr) {
1748 			objp = index_to_obj(cachep, page, objnr - 1);
1749 			realobj = (char *)objp + obj_offset(cachep);
1750 			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1751 			print_objinfo(cachep, objp, 2);
1752 		}
1753 		if (objnr + 1 < cachep->num) {
1754 			objp = index_to_obj(cachep, page, objnr + 1);
1755 			realobj = (char *)objp + obj_offset(cachep);
1756 			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1757 			print_objinfo(cachep, objp, 2);
1758 		}
1759 	}
1760 }
1761 #endif
1762 
1763 #if DEBUG
1764 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1765 						struct page *page)
1766 {
1767 	int i;
1768 
1769 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1770 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1771 			POISON_FREE);
1772 	}
1773 
1774 	for (i = 0; i < cachep->num; i++) {
1775 		void *objp = index_to_obj(cachep, page, i);
1776 
1777 		if (cachep->flags & SLAB_POISON) {
1778 			check_poison_obj(cachep, objp);
1779 			slab_kernel_map(cachep, objp, 1, 0);
1780 		}
1781 		if (cachep->flags & SLAB_RED_ZONE) {
1782 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1783 				slab_error(cachep, "start of a freed object was overwritten");
1784 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1785 				slab_error(cachep, "end of a freed object was overwritten");
1786 		}
1787 	}
1788 }
1789 #else
1790 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1791 						struct page *page)
1792 {
1793 }
1794 #endif
1795 
1796 /**
1797  * slab_destroy - destroy and release all objects in a slab
1798  * @cachep: cache pointer being destroyed
1799  * @page: page pointer being destroyed
1800  *
1801  * Destroy all the objs in a slab page, and release the mem back to the system.
1802  * Before calling the slab page must have been unlinked from the cache. The
1803  * kmem_cache_node ->list_lock is not held/needed.
1804  */
1805 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1806 {
1807 	void *freelist;
1808 
1809 	freelist = page->freelist;
1810 	slab_destroy_debugcheck(cachep, page);
1811 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1812 		call_rcu(&page->rcu_head, kmem_rcu_free);
1813 	else
1814 		kmem_freepages(cachep, page);
1815 
1816 	/*
1817 	 * From now on, we don't use freelist
1818 	 * although actual page can be freed in rcu context
1819 	 */
1820 	if (OFF_SLAB(cachep))
1821 		kmem_cache_free(cachep->freelist_cache, freelist);
1822 }
1823 
1824 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1825 {
1826 	struct page *page, *n;
1827 
1828 	list_for_each_entry_safe(page, n, list, lru) {
1829 		list_del(&page->lru);
1830 		slab_destroy(cachep, page);
1831 	}
1832 }
1833 
1834 /**
1835  * calculate_slab_order - calculate size (page order) of slabs
1836  * @cachep: pointer to the cache that is being created
1837  * @size: size of objects to be created in this cache.
1838  * @flags: slab allocation flags
1839  *
1840  * Also calculates the number of objects per slab.
1841  *
1842  * This could be made much more intelligent.  For now, try to avoid using
1843  * high order pages for slabs.  When the gfp() functions are more friendly
1844  * towards high-order requests, this should be changed.
1845  */
1846 static size_t calculate_slab_order(struct kmem_cache *cachep,
1847 				size_t size, unsigned long flags)
1848 {
1849 	size_t left_over = 0;
1850 	int gfporder;
1851 
1852 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1853 		unsigned int num;
1854 		size_t remainder;
1855 
1856 		num = cache_estimate(gfporder, size, flags, &remainder);
1857 		if (!num)
1858 			continue;
1859 
1860 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1861 		if (num > SLAB_OBJ_MAX_NUM)
1862 			break;
1863 
1864 		if (flags & CFLGS_OFF_SLAB) {
1865 			struct kmem_cache *freelist_cache;
1866 			size_t freelist_size;
1867 
1868 			freelist_size = num * sizeof(freelist_idx_t);
1869 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1870 			if (!freelist_cache)
1871 				continue;
1872 
1873 			/*
1874 			 * Needed to avoid possible looping condition
1875 			 * in cache_grow_begin()
1876 			 */
1877 			if (OFF_SLAB(freelist_cache))
1878 				continue;
1879 
1880 			/* check if off slab has enough benefit */
1881 			if (freelist_cache->size > cachep->size / 2)
1882 				continue;
1883 		}
1884 
1885 		/* Found something acceptable - save it away */
1886 		cachep->num = num;
1887 		cachep->gfporder = gfporder;
1888 		left_over = remainder;
1889 
1890 		/*
1891 		 * A VFS-reclaimable slab tends to have most allocations
1892 		 * as GFP_NOFS and we really don't want to have to be allocating
1893 		 * higher-order pages when we are unable to shrink dcache.
1894 		 */
1895 		if (flags & SLAB_RECLAIM_ACCOUNT)
1896 			break;
1897 
1898 		/*
1899 		 * Large number of objects is good, but very large slabs are
1900 		 * currently bad for the gfp()s.
1901 		 */
1902 		if (gfporder >= slab_max_order)
1903 			break;
1904 
1905 		/*
1906 		 * Acceptable internal fragmentation?
1907 		 */
1908 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1909 			break;
1910 	}
1911 	return left_over;
1912 }
1913 
1914 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1915 		struct kmem_cache *cachep, int entries, int batchcount)
1916 {
1917 	int cpu;
1918 	size_t size;
1919 	struct array_cache __percpu *cpu_cache;
1920 
1921 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1922 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1923 
1924 	if (!cpu_cache)
1925 		return NULL;
1926 
1927 	for_each_possible_cpu(cpu) {
1928 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1929 				entries, batchcount);
1930 	}
1931 
1932 	return cpu_cache;
1933 }
1934 
1935 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1936 {
1937 	if (slab_state >= FULL)
1938 		return enable_cpucache(cachep, gfp);
1939 
1940 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1941 	if (!cachep->cpu_cache)
1942 		return 1;
1943 
1944 	if (slab_state == DOWN) {
1945 		/* Creation of first cache (kmem_cache). */
1946 		set_up_node(kmem_cache, CACHE_CACHE);
1947 	} else if (slab_state == PARTIAL) {
1948 		/* For kmem_cache_node */
1949 		set_up_node(cachep, SIZE_NODE);
1950 	} else {
1951 		int node;
1952 
1953 		for_each_online_node(node) {
1954 			cachep->node[node] = kmalloc_node(
1955 				sizeof(struct kmem_cache_node), gfp, node);
1956 			BUG_ON(!cachep->node[node]);
1957 			kmem_cache_node_init(cachep->node[node]);
1958 		}
1959 	}
1960 
1961 	cachep->node[numa_mem_id()]->next_reap =
1962 			jiffies + REAPTIMEOUT_NODE +
1963 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1964 
1965 	cpu_cache_get(cachep)->avail = 0;
1966 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1967 	cpu_cache_get(cachep)->batchcount = 1;
1968 	cpu_cache_get(cachep)->touched = 0;
1969 	cachep->batchcount = 1;
1970 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1971 	return 0;
1972 }
1973 
1974 unsigned long kmem_cache_flags(unsigned long object_size,
1975 	unsigned long flags, const char *name,
1976 	void (*ctor)(void *))
1977 {
1978 	return flags;
1979 }
1980 
1981 struct kmem_cache *
1982 __kmem_cache_alias(const char *name, size_t size, size_t align,
1983 		   unsigned long flags, void (*ctor)(void *))
1984 {
1985 	struct kmem_cache *cachep;
1986 
1987 	cachep = find_mergeable(size, align, flags, name, ctor);
1988 	if (cachep) {
1989 		cachep->refcount++;
1990 
1991 		/*
1992 		 * Adjust the object sizes so that we clear
1993 		 * the complete object on kzalloc.
1994 		 */
1995 		cachep->object_size = max_t(int, cachep->object_size, size);
1996 	}
1997 	return cachep;
1998 }
1999 
2000 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
2001 			size_t size, unsigned long flags)
2002 {
2003 	size_t left;
2004 
2005 	cachep->num = 0;
2006 
2007 	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
2008 		return false;
2009 
2010 	left = calculate_slab_order(cachep, size,
2011 			flags | CFLGS_OBJFREELIST_SLAB);
2012 	if (!cachep->num)
2013 		return false;
2014 
2015 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
2016 		return false;
2017 
2018 	cachep->colour = left / cachep->colour_off;
2019 
2020 	return true;
2021 }
2022 
2023 static bool set_off_slab_cache(struct kmem_cache *cachep,
2024 			size_t size, unsigned long flags)
2025 {
2026 	size_t left;
2027 
2028 	cachep->num = 0;
2029 
2030 	/*
2031 	 * Always use on-slab management when SLAB_NOLEAKTRACE
2032 	 * to avoid recursive calls into kmemleak.
2033 	 */
2034 	if (flags & SLAB_NOLEAKTRACE)
2035 		return false;
2036 
2037 	/*
2038 	 * Size is large, assume best to place the slab management obj
2039 	 * off-slab (should allow better packing of objs).
2040 	 */
2041 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
2042 	if (!cachep->num)
2043 		return false;
2044 
2045 	/*
2046 	 * If the slab has been placed off-slab, and we have enough space then
2047 	 * move it on-slab. This is at the expense of any extra colouring.
2048 	 */
2049 	if (left >= cachep->num * sizeof(freelist_idx_t))
2050 		return false;
2051 
2052 	cachep->colour = left / cachep->colour_off;
2053 
2054 	return true;
2055 }
2056 
2057 static bool set_on_slab_cache(struct kmem_cache *cachep,
2058 			size_t size, unsigned long flags)
2059 {
2060 	size_t left;
2061 
2062 	cachep->num = 0;
2063 
2064 	left = calculate_slab_order(cachep, size, flags);
2065 	if (!cachep->num)
2066 		return false;
2067 
2068 	cachep->colour = left / cachep->colour_off;
2069 
2070 	return true;
2071 }
2072 
2073 /**
2074  * __kmem_cache_create - Create a cache.
2075  * @cachep: cache management descriptor
2076  * @flags: SLAB flags
2077  *
2078  * Returns a ptr to the cache on success, NULL on failure.
2079  * Cannot be called within a int, but can be interrupted.
2080  * The @ctor is run when new pages are allocated by the cache.
2081  *
2082  * The flags are
2083  *
2084  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2085  * to catch references to uninitialised memory.
2086  *
2087  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2088  * for buffer overruns.
2089  *
2090  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2091  * cacheline.  This can be beneficial if you're counting cycles as closely
2092  * as davem.
2093  */
2094 int
2095 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2096 {
2097 	size_t ralign = BYTES_PER_WORD;
2098 	gfp_t gfp;
2099 	int err;
2100 	size_t size = cachep->size;
2101 
2102 #if DEBUG
2103 #if FORCED_DEBUG
2104 	/*
2105 	 * Enable redzoning and last user accounting, except for caches with
2106 	 * large objects, if the increased size would increase the object size
2107 	 * above the next power of two: caches with object sizes just above a
2108 	 * power of two have a significant amount of internal fragmentation.
2109 	 */
2110 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2111 						2 * sizeof(unsigned long long)))
2112 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2113 	if (!(flags & SLAB_DESTROY_BY_RCU))
2114 		flags |= SLAB_POISON;
2115 #endif
2116 #endif
2117 
2118 	/*
2119 	 * Check that size is in terms of words.  This is needed to avoid
2120 	 * unaligned accesses for some archs when redzoning is used, and makes
2121 	 * sure any on-slab bufctl's are also correctly aligned.
2122 	 */
2123 	if (size & (BYTES_PER_WORD - 1)) {
2124 		size += (BYTES_PER_WORD - 1);
2125 		size &= ~(BYTES_PER_WORD - 1);
2126 	}
2127 
2128 	if (flags & SLAB_RED_ZONE) {
2129 		ralign = REDZONE_ALIGN;
2130 		/* If redzoning, ensure that the second redzone is suitably
2131 		 * aligned, by adjusting the object size accordingly. */
2132 		size += REDZONE_ALIGN - 1;
2133 		size &= ~(REDZONE_ALIGN - 1);
2134 	}
2135 
2136 	/* 3) caller mandated alignment */
2137 	if (ralign < cachep->align) {
2138 		ralign = cachep->align;
2139 	}
2140 	/* disable debug if necessary */
2141 	if (ralign > __alignof__(unsigned long long))
2142 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2143 	/*
2144 	 * 4) Store it.
2145 	 */
2146 	cachep->align = ralign;
2147 	cachep->colour_off = cache_line_size();
2148 	/* Offset must be a multiple of the alignment. */
2149 	if (cachep->colour_off < cachep->align)
2150 		cachep->colour_off = cachep->align;
2151 
2152 	if (slab_is_available())
2153 		gfp = GFP_KERNEL;
2154 	else
2155 		gfp = GFP_NOWAIT;
2156 
2157 #if DEBUG
2158 
2159 	/*
2160 	 * Both debugging options require word-alignment which is calculated
2161 	 * into align above.
2162 	 */
2163 	if (flags & SLAB_RED_ZONE) {
2164 		/* add space for red zone words */
2165 		cachep->obj_offset += sizeof(unsigned long long);
2166 		size += 2 * sizeof(unsigned long long);
2167 	}
2168 	if (flags & SLAB_STORE_USER) {
2169 		/* user store requires one word storage behind the end of
2170 		 * the real object. But if the second red zone needs to be
2171 		 * aligned to 64 bits, we must allow that much space.
2172 		 */
2173 		if (flags & SLAB_RED_ZONE)
2174 			size += REDZONE_ALIGN;
2175 		else
2176 			size += BYTES_PER_WORD;
2177 	}
2178 #endif
2179 
2180 	kasan_cache_create(cachep, &size, &flags);
2181 
2182 	size = ALIGN(size, cachep->align);
2183 	/*
2184 	 * We should restrict the number of objects in a slab to implement
2185 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2186 	 */
2187 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2188 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2189 
2190 #if DEBUG
2191 	/*
2192 	 * To activate debug pagealloc, off-slab management is necessary
2193 	 * requirement. In early phase of initialization, small sized slab
2194 	 * doesn't get initialized so it would not be possible. So, we need
2195 	 * to check size >= 256. It guarantees that all necessary small
2196 	 * sized slab is initialized in current slab initialization sequence.
2197 	 */
2198 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2199 		size >= 256 && cachep->object_size > cache_line_size()) {
2200 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2201 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2202 
2203 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2204 				flags |= CFLGS_OFF_SLAB;
2205 				cachep->obj_offset += tmp_size - size;
2206 				size = tmp_size;
2207 				goto done;
2208 			}
2209 		}
2210 	}
2211 #endif
2212 
2213 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2214 		flags |= CFLGS_OBJFREELIST_SLAB;
2215 		goto done;
2216 	}
2217 
2218 	if (set_off_slab_cache(cachep, size, flags)) {
2219 		flags |= CFLGS_OFF_SLAB;
2220 		goto done;
2221 	}
2222 
2223 	if (set_on_slab_cache(cachep, size, flags))
2224 		goto done;
2225 
2226 	return -E2BIG;
2227 
2228 done:
2229 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2230 	cachep->flags = flags;
2231 	cachep->allocflags = __GFP_COMP;
2232 	if (flags & SLAB_CACHE_DMA)
2233 		cachep->allocflags |= GFP_DMA;
2234 	cachep->size = size;
2235 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2236 
2237 #if DEBUG
2238 	/*
2239 	 * If we're going to use the generic kernel_map_pages()
2240 	 * poisoning, then it's going to smash the contents of
2241 	 * the redzone and userword anyhow, so switch them off.
2242 	 */
2243 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2244 		(cachep->flags & SLAB_POISON) &&
2245 		is_debug_pagealloc_cache(cachep))
2246 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2247 #endif
2248 
2249 	if (OFF_SLAB(cachep)) {
2250 		cachep->freelist_cache =
2251 			kmalloc_slab(cachep->freelist_size, 0u);
2252 	}
2253 
2254 	err = setup_cpu_cache(cachep, gfp);
2255 	if (err) {
2256 		__kmem_cache_release(cachep);
2257 		return err;
2258 	}
2259 
2260 	return 0;
2261 }
2262 
2263 #if DEBUG
2264 static void check_irq_off(void)
2265 {
2266 	BUG_ON(!irqs_disabled());
2267 }
2268 
2269 static void check_irq_on(void)
2270 {
2271 	BUG_ON(irqs_disabled());
2272 }
2273 
2274 static void check_mutex_acquired(void)
2275 {
2276 	BUG_ON(!mutex_is_locked(&slab_mutex));
2277 }
2278 
2279 static void check_spinlock_acquired(struct kmem_cache *cachep)
2280 {
2281 #ifdef CONFIG_SMP
2282 	check_irq_off();
2283 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2284 #endif
2285 }
2286 
2287 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2288 {
2289 #ifdef CONFIG_SMP
2290 	check_irq_off();
2291 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2292 #endif
2293 }
2294 
2295 #else
2296 #define check_irq_off()	do { } while(0)
2297 #define check_irq_on()	do { } while(0)
2298 #define check_mutex_acquired()	do { } while(0)
2299 #define check_spinlock_acquired(x) do { } while(0)
2300 #define check_spinlock_acquired_node(x, y) do { } while(0)
2301 #endif
2302 
2303 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2304 				int node, bool free_all, struct list_head *list)
2305 {
2306 	int tofree;
2307 
2308 	if (!ac || !ac->avail)
2309 		return;
2310 
2311 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2312 	if (tofree > ac->avail)
2313 		tofree = (ac->avail + 1) / 2;
2314 
2315 	free_block(cachep, ac->entry, tofree, node, list);
2316 	ac->avail -= tofree;
2317 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2318 }
2319 
2320 static void do_drain(void *arg)
2321 {
2322 	struct kmem_cache *cachep = arg;
2323 	struct array_cache *ac;
2324 	int node = numa_mem_id();
2325 	struct kmem_cache_node *n;
2326 	LIST_HEAD(list);
2327 
2328 	check_irq_off();
2329 	ac = cpu_cache_get(cachep);
2330 	n = get_node(cachep, node);
2331 	spin_lock(&n->list_lock);
2332 	free_block(cachep, ac->entry, ac->avail, node, &list);
2333 	spin_unlock(&n->list_lock);
2334 	slabs_destroy(cachep, &list);
2335 	ac->avail = 0;
2336 }
2337 
2338 static void drain_cpu_caches(struct kmem_cache *cachep)
2339 {
2340 	struct kmem_cache_node *n;
2341 	int node;
2342 	LIST_HEAD(list);
2343 
2344 	on_each_cpu(do_drain, cachep, 1);
2345 	check_irq_on();
2346 	for_each_kmem_cache_node(cachep, node, n)
2347 		if (n->alien)
2348 			drain_alien_cache(cachep, n->alien);
2349 
2350 	for_each_kmem_cache_node(cachep, node, n) {
2351 		spin_lock_irq(&n->list_lock);
2352 		drain_array_locked(cachep, n->shared, node, true, &list);
2353 		spin_unlock_irq(&n->list_lock);
2354 
2355 		slabs_destroy(cachep, &list);
2356 	}
2357 }
2358 
2359 /*
2360  * Remove slabs from the list of free slabs.
2361  * Specify the number of slabs to drain in tofree.
2362  *
2363  * Returns the actual number of slabs released.
2364  */
2365 static int drain_freelist(struct kmem_cache *cache,
2366 			struct kmem_cache_node *n, int tofree)
2367 {
2368 	struct list_head *p;
2369 	int nr_freed;
2370 	struct page *page;
2371 
2372 	nr_freed = 0;
2373 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2374 
2375 		spin_lock_irq(&n->list_lock);
2376 		p = n->slabs_free.prev;
2377 		if (p == &n->slabs_free) {
2378 			spin_unlock_irq(&n->list_lock);
2379 			goto out;
2380 		}
2381 
2382 		page = list_entry(p, struct page, lru);
2383 		list_del(&page->lru);
2384 		/*
2385 		 * Safe to drop the lock. The slab is no longer linked
2386 		 * to the cache.
2387 		 */
2388 		n->free_objects -= cache->num;
2389 		spin_unlock_irq(&n->list_lock);
2390 		slab_destroy(cache, page);
2391 		nr_freed++;
2392 	}
2393 out:
2394 	return nr_freed;
2395 }
2396 
2397 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2398 {
2399 	int ret = 0;
2400 	int node;
2401 	struct kmem_cache_node *n;
2402 
2403 	drain_cpu_caches(cachep);
2404 
2405 	check_irq_on();
2406 	for_each_kmem_cache_node(cachep, node, n) {
2407 		drain_freelist(cachep, n, INT_MAX);
2408 
2409 		ret += !list_empty(&n->slabs_full) ||
2410 			!list_empty(&n->slabs_partial);
2411 	}
2412 	return (ret ? 1 : 0);
2413 }
2414 
2415 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2416 {
2417 	return __kmem_cache_shrink(cachep, false);
2418 }
2419 
2420 void __kmem_cache_release(struct kmem_cache *cachep)
2421 {
2422 	int i;
2423 	struct kmem_cache_node *n;
2424 
2425 	cache_random_seq_destroy(cachep);
2426 
2427 	free_percpu(cachep->cpu_cache);
2428 
2429 	/* NUMA: free the node structures */
2430 	for_each_kmem_cache_node(cachep, i, n) {
2431 		kfree(n->shared);
2432 		free_alien_cache(n->alien);
2433 		kfree(n);
2434 		cachep->node[i] = NULL;
2435 	}
2436 }
2437 
2438 /*
2439  * Get the memory for a slab management obj.
2440  *
2441  * For a slab cache when the slab descriptor is off-slab, the
2442  * slab descriptor can't come from the same cache which is being created,
2443  * Because if it is the case, that means we defer the creation of
2444  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2445  * And we eventually call down to __kmem_cache_create(), which
2446  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2447  * This is a "chicken-and-egg" problem.
2448  *
2449  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2450  * which are all initialized during kmem_cache_init().
2451  */
2452 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2453 				   struct page *page, int colour_off,
2454 				   gfp_t local_flags, int nodeid)
2455 {
2456 	void *freelist;
2457 	void *addr = page_address(page);
2458 
2459 	page->s_mem = addr + colour_off;
2460 	page->active = 0;
2461 
2462 	if (OBJFREELIST_SLAB(cachep))
2463 		freelist = NULL;
2464 	else if (OFF_SLAB(cachep)) {
2465 		/* Slab management obj is off-slab. */
2466 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2467 					      local_flags, nodeid);
2468 		if (!freelist)
2469 			return NULL;
2470 	} else {
2471 		/* We will use last bytes at the slab for freelist */
2472 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2473 				cachep->freelist_size;
2474 	}
2475 
2476 	return freelist;
2477 }
2478 
2479 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2480 {
2481 	return ((freelist_idx_t *)page->freelist)[idx];
2482 }
2483 
2484 static inline void set_free_obj(struct page *page,
2485 					unsigned int idx, freelist_idx_t val)
2486 {
2487 	((freelist_idx_t *)(page->freelist))[idx] = val;
2488 }
2489 
2490 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2491 {
2492 #if DEBUG
2493 	int i;
2494 
2495 	for (i = 0; i < cachep->num; i++) {
2496 		void *objp = index_to_obj(cachep, page, i);
2497 
2498 		if (cachep->flags & SLAB_STORE_USER)
2499 			*dbg_userword(cachep, objp) = NULL;
2500 
2501 		if (cachep->flags & SLAB_RED_ZONE) {
2502 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2503 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2504 		}
2505 		/*
2506 		 * Constructors are not allowed to allocate memory from the same
2507 		 * cache which they are a constructor for.  Otherwise, deadlock.
2508 		 * They must also be threaded.
2509 		 */
2510 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2511 			kasan_unpoison_object_data(cachep,
2512 						   objp + obj_offset(cachep));
2513 			cachep->ctor(objp + obj_offset(cachep));
2514 			kasan_poison_object_data(
2515 				cachep, objp + obj_offset(cachep));
2516 		}
2517 
2518 		if (cachep->flags & SLAB_RED_ZONE) {
2519 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2520 				slab_error(cachep, "constructor overwrote the end of an object");
2521 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2522 				slab_error(cachep, "constructor overwrote the start of an object");
2523 		}
2524 		/* need to poison the objs? */
2525 		if (cachep->flags & SLAB_POISON) {
2526 			poison_obj(cachep, objp, POISON_FREE);
2527 			slab_kernel_map(cachep, objp, 0, 0);
2528 		}
2529 	}
2530 #endif
2531 }
2532 
2533 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2534 /* Hold information during a freelist initialization */
2535 union freelist_init_state {
2536 	struct {
2537 		unsigned int pos;
2538 		freelist_idx_t *list;
2539 		unsigned int count;
2540 		unsigned int rand;
2541 	};
2542 	struct rnd_state rnd_state;
2543 };
2544 
2545 /*
2546  * Initialize the state based on the randomization methode available.
2547  * return true if the pre-computed list is available, false otherwize.
2548  */
2549 static bool freelist_state_initialize(union freelist_init_state *state,
2550 				struct kmem_cache *cachep,
2551 				unsigned int count)
2552 {
2553 	bool ret;
2554 	unsigned int rand;
2555 
2556 	/* Use best entropy available to define a random shift */
2557 	get_random_bytes_arch(&rand, sizeof(rand));
2558 
2559 	/* Use a random state if the pre-computed list is not available */
2560 	if (!cachep->random_seq) {
2561 		prandom_seed_state(&state->rnd_state, rand);
2562 		ret = false;
2563 	} else {
2564 		state->list = cachep->random_seq;
2565 		state->count = count;
2566 		state->pos = 0;
2567 		state->rand = rand;
2568 		ret = true;
2569 	}
2570 	return ret;
2571 }
2572 
2573 /* Get the next entry on the list and randomize it using a random shift */
2574 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2575 {
2576 	return (state->list[state->pos++] + state->rand) % state->count;
2577 }
2578 
2579 /*
2580  * Shuffle the freelist initialization state based on pre-computed lists.
2581  * return true if the list was successfully shuffled, false otherwise.
2582  */
2583 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2584 {
2585 	unsigned int objfreelist = 0, i, count = cachep->num;
2586 	union freelist_init_state state;
2587 	bool precomputed;
2588 
2589 	if (count < 2)
2590 		return false;
2591 
2592 	precomputed = freelist_state_initialize(&state, cachep, count);
2593 
2594 	/* Take a random entry as the objfreelist */
2595 	if (OBJFREELIST_SLAB(cachep)) {
2596 		if (!precomputed)
2597 			objfreelist = count - 1;
2598 		else
2599 			objfreelist = next_random_slot(&state);
2600 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2601 						obj_offset(cachep);
2602 		count--;
2603 	}
2604 
2605 	/*
2606 	 * On early boot, generate the list dynamically.
2607 	 * Later use a pre-computed list for speed.
2608 	 */
2609 	if (!precomputed) {
2610 		freelist_randomize(&state.rnd_state, page->freelist, count);
2611 	} else {
2612 		for (i = 0; i < count; i++)
2613 			set_free_obj(page, i, next_random_slot(&state));
2614 	}
2615 
2616 	if (OBJFREELIST_SLAB(cachep))
2617 		set_free_obj(page, cachep->num - 1, objfreelist);
2618 
2619 	return true;
2620 }
2621 #else
2622 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2623 				struct page *page)
2624 {
2625 	return false;
2626 }
2627 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2628 
2629 static void cache_init_objs(struct kmem_cache *cachep,
2630 			    struct page *page)
2631 {
2632 	int i;
2633 	void *objp;
2634 	bool shuffled;
2635 
2636 	cache_init_objs_debug(cachep, page);
2637 
2638 	/* Try to randomize the freelist if enabled */
2639 	shuffled = shuffle_freelist(cachep, page);
2640 
2641 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2642 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2643 						obj_offset(cachep);
2644 	}
2645 
2646 	for (i = 0; i < cachep->num; i++) {
2647 		/* constructor could break poison info */
2648 		if (DEBUG == 0 && cachep->ctor) {
2649 			objp = index_to_obj(cachep, page, i);
2650 			kasan_unpoison_object_data(cachep, objp);
2651 			cachep->ctor(objp);
2652 			kasan_poison_object_data(cachep, objp);
2653 		}
2654 
2655 		if (!shuffled)
2656 			set_free_obj(page, i, i);
2657 	}
2658 }
2659 
2660 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2661 {
2662 	void *objp;
2663 
2664 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2665 	page->active++;
2666 
2667 #if DEBUG
2668 	if (cachep->flags & SLAB_STORE_USER)
2669 		set_store_user_dirty(cachep);
2670 #endif
2671 
2672 	return objp;
2673 }
2674 
2675 static void slab_put_obj(struct kmem_cache *cachep,
2676 			struct page *page, void *objp)
2677 {
2678 	unsigned int objnr = obj_to_index(cachep, page, objp);
2679 #if DEBUG
2680 	unsigned int i;
2681 
2682 	/* Verify double free bug */
2683 	for (i = page->active; i < cachep->num; i++) {
2684 		if (get_free_obj(page, i) == objnr) {
2685 			pr_err("slab: double free detected in cache '%s', objp %p\n",
2686 			       cachep->name, objp);
2687 			BUG();
2688 		}
2689 	}
2690 #endif
2691 	page->active--;
2692 	if (!page->freelist)
2693 		page->freelist = objp + obj_offset(cachep);
2694 
2695 	set_free_obj(page, page->active, objnr);
2696 }
2697 
2698 /*
2699  * Map pages beginning at addr to the given cache and slab. This is required
2700  * for the slab allocator to be able to lookup the cache and slab of a
2701  * virtual address for kfree, ksize, and slab debugging.
2702  */
2703 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2704 			   void *freelist)
2705 {
2706 	page->slab_cache = cache;
2707 	page->freelist = freelist;
2708 }
2709 
2710 /*
2711  * Grow (by 1) the number of slabs within a cache.  This is called by
2712  * kmem_cache_alloc() when there are no active objs left in a cache.
2713  */
2714 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2715 				gfp_t flags, int nodeid)
2716 {
2717 	void *freelist;
2718 	size_t offset;
2719 	gfp_t local_flags;
2720 	int page_node;
2721 	struct kmem_cache_node *n;
2722 	struct page *page;
2723 
2724 	/*
2725 	 * Be lazy and only check for valid flags here,  keeping it out of the
2726 	 * critical path in kmem_cache_alloc().
2727 	 */
2728 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2729 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2730 		BUG();
2731 	}
2732 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2733 
2734 	check_irq_off();
2735 	if (gfpflags_allow_blocking(local_flags))
2736 		local_irq_enable();
2737 
2738 	/*
2739 	 * Get mem for the objs.  Attempt to allocate a physical page from
2740 	 * 'nodeid'.
2741 	 */
2742 	page = kmem_getpages(cachep, local_flags, nodeid);
2743 	if (!page)
2744 		goto failed;
2745 
2746 	page_node = page_to_nid(page);
2747 	n = get_node(cachep, page_node);
2748 
2749 	/* Get colour for the slab, and cal the next value. */
2750 	n->colour_next++;
2751 	if (n->colour_next >= cachep->colour)
2752 		n->colour_next = 0;
2753 
2754 	offset = n->colour_next;
2755 	if (offset >= cachep->colour)
2756 		offset = 0;
2757 
2758 	offset *= cachep->colour_off;
2759 
2760 	/* Get slab management. */
2761 	freelist = alloc_slabmgmt(cachep, page, offset,
2762 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2763 	if (OFF_SLAB(cachep) && !freelist)
2764 		goto opps1;
2765 
2766 	slab_map_pages(cachep, page, freelist);
2767 
2768 	kasan_poison_slab(page);
2769 	cache_init_objs(cachep, page);
2770 
2771 	if (gfpflags_allow_blocking(local_flags))
2772 		local_irq_disable();
2773 
2774 	return page;
2775 
2776 opps1:
2777 	kmem_freepages(cachep, page);
2778 failed:
2779 	if (gfpflags_allow_blocking(local_flags))
2780 		local_irq_disable();
2781 	return NULL;
2782 }
2783 
2784 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2785 {
2786 	struct kmem_cache_node *n;
2787 	void *list = NULL;
2788 
2789 	check_irq_off();
2790 
2791 	if (!page)
2792 		return;
2793 
2794 	INIT_LIST_HEAD(&page->lru);
2795 	n = get_node(cachep, page_to_nid(page));
2796 
2797 	spin_lock(&n->list_lock);
2798 	if (!page->active)
2799 		list_add_tail(&page->lru, &(n->slabs_free));
2800 	else
2801 		fixup_slab_list(cachep, n, page, &list);
2802 	STATS_INC_GROWN(cachep);
2803 	n->free_objects += cachep->num - page->active;
2804 	spin_unlock(&n->list_lock);
2805 
2806 	fixup_objfreelist_debug(cachep, &list);
2807 }
2808 
2809 #if DEBUG
2810 
2811 /*
2812  * Perform extra freeing checks:
2813  * - detect bad pointers.
2814  * - POISON/RED_ZONE checking
2815  */
2816 static void kfree_debugcheck(const void *objp)
2817 {
2818 	if (!virt_addr_valid(objp)) {
2819 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2820 		       (unsigned long)objp);
2821 		BUG();
2822 	}
2823 }
2824 
2825 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2826 {
2827 	unsigned long long redzone1, redzone2;
2828 
2829 	redzone1 = *dbg_redzone1(cache, obj);
2830 	redzone2 = *dbg_redzone2(cache, obj);
2831 
2832 	/*
2833 	 * Redzone is ok.
2834 	 */
2835 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2836 		return;
2837 
2838 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2839 		slab_error(cache, "double free detected");
2840 	else
2841 		slab_error(cache, "memory outside object was overwritten");
2842 
2843 	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2844 	       obj, redzone1, redzone2);
2845 }
2846 
2847 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2848 				   unsigned long caller)
2849 {
2850 	unsigned int objnr;
2851 	struct page *page;
2852 
2853 	BUG_ON(virt_to_cache(objp) != cachep);
2854 
2855 	objp -= obj_offset(cachep);
2856 	kfree_debugcheck(objp);
2857 	page = virt_to_head_page(objp);
2858 
2859 	if (cachep->flags & SLAB_RED_ZONE) {
2860 		verify_redzone_free(cachep, objp);
2861 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2862 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2863 	}
2864 	if (cachep->flags & SLAB_STORE_USER) {
2865 		set_store_user_dirty(cachep);
2866 		*dbg_userword(cachep, objp) = (void *)caller;
2867 	}
2868 
2869 	objnr = obj_to_index(cachep, page, objp);
2870 
2871 	BUG_ON(objnr >= cachep->num);
2872 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2873 
2874 	if (cachep->flags & SLAB_POISON) {
2875 		poison_obj(cachep, objp, POISON_FREE);
2876 		slab_kernel_map(cachep, objp, 0, caller);
2877 	}
2878 	return objp;
2879 }
2880 
2881 #else
2882 #define kfree_debugcheck(x) do { } while(0)
2883 #define cache_free_debugcheck(x,objp,z) (objp)
2884 #endif
2885 
2886 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2887 						void **list)
2888 {
2889 #if DEBUG
2890 	void *next = *list;
2891 	void *objp;
2892 
2893 	while (next) {
2894 		objp = next - obj_offset(cachep);
2895 		next = *(void **)next;
2896 		poison_obj(cachep, objp, POISON_FREE);
2897 	}
2898 #endif
2899 }
2900 
2901 static inline void fixup_slab_list(struct kmem_cache *cachep,
2902 				struct kmem_cache_node *n, struct page *page,
2903 				void **list)
2904 {
2905 	/* move slabp to correct slabp list: */
2906 	list_del(&page->lru);
2907 	if (page->active == cachep->num) {
2908 		list_add(&page->lru, &n->slabs_full);
2909 		if (OBJFREELIST_SLAB(cachep)) {
2910 #if DEBUG
2911 			/* Poisoning will be done without holding the lock */
2912 			if (cachep->flags & SLAB_POISON) {
2913 				void **objp = page->freelist;
2914 
2915 				*objp = *list;
2916 				*list = objp;
2917 			}
2918 #endif
2919 			page->freelist = NULL;
2920 		}
2921 	} else
2922 		list_add(&page->lru, &n->slabs_partial);
2923 }
2924 
2925 /* Try to find non-pfmemalloc slab if needed */
2926 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2927 					struct page *page, bool pfmemalloc)
2928 {
2929 	if (!page)
2930 		return NULL;
2931 
2932 	if (pfmemalloc)
2933 		return page;
2934 
2935 	if (!PageSlabPfmemalloc(page))
2936 		return page;
2937 
2938 	/* No need to keep pfmemalloc slab if we have enough free objects */
2939 	if (n->free_objects > n->free_limit) {
2940 		ClearPageSlabPfmemalloc(page);
2941 		return page;
2942 	}
2943 
2944 	/* Move pfmemalloc slab to the end of list to speed up next search */
2945 	list_del(&page->lru);
2946 	if (!page->active)
2947 		list_add_tail(&page->lru, &n->slabs_free);
2948 	else
2949 		list_add_tail(&page->lru, &n->slabs_partial);
2950 
2951 	list_for_each_entry(page, &n->slabs_partial, lru) {
2952 		if (!PageSlabPfmemalloc(page))
2953 			return page;
2954 	}
2955 
2956 	list_for_each_entry(page, &n->slabs_free, lru) {
2957 		if (!PageSlabPfmemalloc(page))
2958 			return page;
2959 	}
2960 
2961 	return NULL;
2962 }
2963 
2964 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2965 {
2966 	struct page *page;
2967 
2968 	page = list_first_entry_or_null(&n->slabs_partial,
2969 			struct page, lru);
2970 	if (!page) {
2971 		n->free_touched = 1;
2972 		page = list_first_entry_or_null(&n->slabs_free,
2973 				struct page, lru);
2974 	}
2975 
2976 	if (sk_memalloc_socks())
2977 		return get_valid_first_slab(n, page, pfmemalloc);
2978 
2979 	return page;
2980 }
2981 
2982 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2983 				struct kmem_cache_node *n, gfp_t flags)
2984 {
2985 	struct page *page;
2986 	void *obj;
2987 	void *list = NULL;
2988 
2989 	if (!gfp_pfmemalloc_allowed(flags))
2990 		return NULL;
2991 
2992 	spin_lock(&n->list_lock);
2993 	page = get_first_slab(n, true);
2994 	if (!page) {
2995 		spin_unlock(&n->list_lock);
2996 		return NULL;
2997 	}
2998 
2999 	obj = slab_get_obj(cachep, page);
3000 	n->free_objects--;
3001 
3002 	fixup_slab_list(cachep, n, page, &list);
3003 
3004 	spin_unlock(&n->list_lock);
3005 	fixup_objfreelist_debug(cachep, &list);
3006 
3007 	return obj;
3008 }
3009 
3010 /*
3011  * Slab list should be fixed up by fixup_slab_list() for existing slab
3012  * or cache_grow_end() for new slab
3013  */
3014 static __always_inline int alloc_block(struct kmem_cache *cachep,
3015 		struct array_cache *ac, struct page *page, int batchcount)
3016 {
3017 	/*
3018 	 * There must be at least one object available for
3019 	 * allocation.
3020 	 */
3021 	BUG_ON(page->active >= cachep->num);
3022 
3023 	while (page->active < cachep->num && batchcount--) {
3024 		STATS_INC_ALLOCED(cachep);
3025 		STATS_INC_ACTIVE(cachep);
3026 		STATS_SET_HIGH(cachep);
3027 
3028 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
3029 	}
3030 
3031 	return batchcount;
3032 }
3033 
3034 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3035 {
3036 	int batchcount;
3037 	struct kmem_cache_node *n;
3038 	struct array_cache *ac, *shared;
3039 	int node;
3040 	void *list = NULL;
3041 	struct page *page;
3042 
3043 	check_irq_off();
3044 	node = numa_mem_id();
3045 
3046 	ac = cpu_cache_get(cachep);
3047 	batchcount = ac->batchcount;
3048 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3049 		/*
3050 		 * If there was little recent activity on this cache, then
3051 		 * perform only a partial refill.  Otherwise we could generate
3052 		 * refill bouncing.
3053 		 */
3054 		batchcount = BATCHREFILL_LIMIT;
3055 	}
3056 	n = get_node(cachep, node);
3057 
3058 	BUG_ON(ac->avail > 0 || !n);
3059 	shared = READ_ONCE(n->shared);
3060 	if (!n->free_objects && (!shared || !shared->avail))
3061 		goto direct_grow;
3062 
3063 	spin_lock(&n->list_lock);
3064 	shared = READ_ONCE(n->shared);
3065 
3066 	/* See if we can refill from the shared array */
3067 	if (shared && transfer_objects(ac, shared, batchcount)) {
3068 		shared->touched = 1;
3069 		goto alloc_done;
3070 	}
3071 
3072 	while (batchcount > 0) {
3073 		/* Get slab alloc is to come from. */
3074 		page = get_first_slab(n, false);
3075 		if (!page)
3076 			goto must_grow;
3077 
3078 		check_spinlock_acquired(cachep);
3079 
3080 		batchcount = alloc_block(cachep, ac, page, batchcount);
3081 		fixup_slab_list(cachep, n, page, &list);
3082 	}
3083 
3084 must_grow:
3085 	n->free_objects -= ac->avail;
3086 alloc_done:
3087 	spin_unlock(&n->list_lock);
3088 	fixup_objfreelist_debug(cachep, &list);
3089 
3090 direct_grow:
3091 	if (unlikely(!ac->avail)) {
3092 		/* Check if we can use obj in pfmemalloc slab */
3093 		if (sk_memalloc_socks()) {
3094 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3095 
3096 			if (obj)
3097 				return obj;
3098 		}
3099 
3100 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3101 
3102 		/*
3103 		 * cache_grow_begin() can reenable interrupts,
3104 		 * then ac could change.
3105 		 */
3106 		ac = cpu_cache_get(cachep);
3107 		if (!ac->avail && page)
3108 			alloc_block(cachep, ac, page, batchcount);
3109 		cache_grow_end(cachep, page);
3110 
3111 		if (!ac->avail)
3112 			return NULL;
3113 	}
3114 	ac->touched = 1;
3115 
3116 	return ac->entry[--ac->avail];
3117 }
3118 
3119 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3120 						gfp_t flags)
3121 {
3122 	might_sleep_if(gfpflags_allow_blocking(flags));
3123 }
3124 
3125 #if DEBUG
3126 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3127 				gfp_t flags, void *objp, unsigned long caller)
3128 {
3129 	if (!objp)
3130 		return objp;
3131 	if (cachep->flags & SLAB_POISON) {
3132 		check_poison_obj(cachep, objp);
3133 		slab_kernel_map(cachep, objp, 1, 0);
3134 		poison_obj(cachep, objp, POISON_INUSE);
3135 	}
3136 	if (cachep->flags & SLAB_STORE_USER)
3137 		*dbg_userword(cachep, objp) = (void *)caller;
3138 
3139 	if (cachep->flags & SLAB_RED_ZONE) {
3140 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3141 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3142 			slab_error(cachep, "double free, or memory outside object was overwritten");
3143 			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3144 			       objp, *dbg_redzone1(cachep, objp),
3145 			       *dbg_redzone2(cachep, objp));
3146 		}
3147 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3148 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3149 	}
3150 
3151 	objp += obj_offset(cachep);
3152 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3153 		cachep->ctor(objp);
3154 	if (ARCH_SLAB_MINALIGN &&
3155 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3156 		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3157 		       objp, (int)ARCH_SLAB_MINALIGN);
3158 	}
3159 	return objp;
3160 }
3161 #else
3162 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3163 #endif
3164 
3165 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3166 {
3167 	void *objp;
3168 	struct array_cache *ac;
3169 
3170 	check_irq_off();
3171 
3172 	ac = cpu_cache_get(cachep);
3173 	if (likely(ac->avail)) {
3174 		ac->touched = 1;
3175 		objp = ac->entry[--ac->avail];
3176 
3177 		STATS_INC_ALLOCHIT(cachep);
3178 		goto out;
3179 	}
3180 
3181 	STATS_INC_ALLOCMISS(cachep);
3182 	objp = cache_alloc_refill(cachep, flags);
3183 	/*
3184 	 * the 'ac' may be updated by cache_alloc_refill(),
3185 	 * and kmemleak_erase() requires its correct value.
3186 	 */
3187 	ac = cpu_cache_get(cachep);
3188 
3189 out:
3190 	/*
3191 	 * To avoid a false negative, if an object that is in one of the
3192 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3193 	 * treat the array pointers as a reference to the object.
3194 	 */
3195 	if (objp)
3196 		kmemleak_erase(&ac->entry[ac->avail]);
3197 	return objp;
3198 }
3199 
3200 #ifdef CONFIG_NUMA
3201 /*
3202  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3203  *
3204  * If we are in_interrupt, then process context, including cpusets and
3205  * mempolicy, may not apply and should not be used for allocation policy.
3206  */
3207 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3208 {
3209 	int nid_alloc, nid_here;
3210 
3211 	if (in_interrupt() || (flags & __GFP_THISNODE))
3212 		return NULL;
3213 	nid_alloc = nid_here = numa_mem_id();
3214 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3215 		nid_alloc = cpuset_slab_spread_node();
3216 	else if (current->mempolicy)
3217 		nid_alloc = mempolicy_slab_node();
3218 	if (nid_alloc != nid_here)
3219 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3220 	return NULL;
3221 }
3222 
3223 /*
3224  * Fallback function if there was no memory available and no objects on a
3225  * certain node and fall back is permitted. First we scan all the
3226  * available node for available objects. If that fails then we
3227  * perform an allocation without specifying a node. This allows the page
3228  * allocator to do its reclaim / fallback magic. We then insert the
3229  * slab into the proper nodelist and then allocate from it.
3230  */
3231 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3232 {
3233 	struct zonelist *zonelist;
3234 	struct zoneref *z;
3235 	struct zone *zone;
3236 	enum zone_type high_zoneidx = gfp_zone(flags);
3237 	void *obj = NULL;
3238 	struct page *page;
3239 	int nid;
3240 	unsigned int cpuset_mems_cookie;
3241 
3242 	if (flags & __GFP_THISNODE)
3243 		return NULL;
3244 
3245 retry_cpuset:
3246 	cpuset_mems_cookie = read_mems_allowed_begin();
3247 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3248 
3249 retry:
3250 	/*
3251 	 * Look through allowed nodes for objects available
3252 	 * from existing per node queues.
3253 	 */
3254 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3255 		nid = zone_to_nid(zone);
3256 
3257 		if (cpuset_zone_allowed(zone, flags) &&
3258 			get_node(cache, nid) &&
3259 			get_node(cache, nid)->free_objects) {
3260 				obj = ____cache_alloc_node(cache,
3261 					gfp_exact_node(flags), nid);
3262 				if (obj)
3263 					break;
3264 		}
3265 	}
3266 
3267 	if (!obj) {
3268 		/*
3269 		 * This allocation will be performed within the constraints
3270 		 * of the current cpuset / memory policy requirements.
3271 		 * We may trigger various forms of reclaim on the allowed
3272 		 * set and go into memory reserves if necessary.
3273 		 */
3274 		page = cache_grow_begin(cache, flags, numa_mem_id());
3275 		cache_grow_end(cache, page);
3276 		if (page) {
3277 			nid = page_to_nid(page);
3278 			obj = ____cache_alloc_node(cache,
3279 				gfp_exact_node(flags), nid);
3280 
3281 			/*
3282 			 * Another processor may allocate the objects in
3283 			 * the slab since we are not holding any locks.
3284 			 */
3285 			if (!obj)
3286 				goto retry;
3287 		}
3288 	}
3289 
3290 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3291 		goto retry_cpuset;
3292 	return obj;
3293 }
3294 
3295 /*
3296  * A interface to enable slab creation on nodeid
3297  */
3298 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3299 				int nodeid)
3300 {
3301 	struct page *page;
3302 	struct kmem_cache_node *n;
3303 	void *obj = NULL;
3304 	void *list = NULL;
3305 
3306 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3307 	n = get_node(cachep, nodeid);
3308 	BUG_ON(!n);
3309 
3310 	check_irq_off();
3311 	spin_lock(&n->list_lock);
3312 	page = get_first_slab(n, false);
3313 	if (!page)
3314 		goto must_grow;
3315 
3316 	check_spinlock_acquired_node(cachep, nodeid);
3317 
3318 	STATS_INC_NODEALLOCS(cachep);
3319 	STATS_INC_ACTIVE(cachep);
3320 	STATS_SET_HIGH(cachep);
3321 
3322 	BUG_ON(page->active == cachep->num);
3323 
3324 	obj = slab_get_obj(cachep, page);
3325 	n->free_objects--;
3326 
3327 	fixup_slab_list(cachep, n, page, &list);
3328 
3329 	spin_unlock(&n->list_lock);
3330 	fixup_objfreelist_debug(cachep, &list);
3331 	return obj;
3332 
3333 must_grow:
3334 	spin_unlock(&n->list_lock);
3335 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3336 	if (page) {
3337 		/* This slab isn't counted yet so don't update free_objects */
3338 		obj = slab_get_obj(cachep, page);
3339 	}
3340 	cache_grow_end(cachep, page);
3341 
3342 	return obj ? obj : fallback_alloc(cachep, flags);
3343 }
3344 
3345 static __always_inline void *
3346 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3347 		   unsigned long caller)
3348 {
3349 	unsigned long save_flags;
3350 	void *ptr;
3351 	int slab_node = numa_mem_id();
3352 
3353 	flags &= gfp_allowed_mask;
3354 	cachep = slab_pre_alloc_hook(cachep, flags);
3355 	if (unlikely(!cachep))
3356 		return NULL;
3357 
3358 	cache_alloc_debugcheck_before(cachep, flags);
3359 	local_irq_save(save_flags);
3360 
3361 	if (nodeid == NUMA_NO_NODE)
3362 		nodeid = slab_node;
3363 
3364 	if (unlikely(!get_node(cachep, nodeid))) {
3365 		/* Node not bootstrapped yet */
3366 		ptr = fallback_alloc(cachep, flags);
3367 		goto out;
3368 	}
3369 
3370 	if (nodeid == slab_node) {
3371 		/*
3372 		 * Use the locally cached objects if possible.
3373 		 * However ____cache_alloc does not allow fallback
3374 		 * to other nodes. It may fail while we still have
3375 		 * objects on other nodes available.
3376 		 */
3377 		ptr = ____cache_alloc(cachep, flags);
3378 		if (ptr)
3379 			goto out;
3380 	}
3381 	/* ___cache_alloc_node can fall back to other nodes */
3382 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3383   out:
3384 	local_irq_restore(save_flags);
3385 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3386 
3387 	if (unlikely(flags & __GFP_ZERO) && ptr)
3388 		memset(ptr, 0, cachep->object_size);
3389 
3390 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3391 	return ptr;
3392 }
3393 
3394 static __always_inline void *
3395 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3396 {
3397 	void *objp;
3398 
3399 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3400 		objp = alternate_node_alloc(cache, flags);
3401 		if (objp)
3402 			goto out;
3403 	}
3404 	objp = ____cache_alloc(cache, flags);
3405 
3406 	/*
3407 	 * We may just have run out of memory on the local node.
3408 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3409 	 */
3410 	if (!objp)
3411 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3412 
3413   out:
3414 	return objp;
3415 }
3416 #else
3417 
3418 static __always_inline void *
3419 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3420 {
3421 	return ____cache_alloc(cachep, flags);
3422 }
3423 
3424 #endif /* CONFIG_NUMA */
3425 
3426 static __always_inline void *
3427 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3428 {
3429 	unsigned long save_flags;
3430 	void *objp;
3431 
3432 	flags &= gfp_allowed_mask;
3433 	cachep = slab_pre_alloc_hook(cachep, flags);
3434 	if (unlikely(!cachep))
3435 		return NULL;
3436 
3437 	cache_alloc_debugcheck_before(cachep, flags);
3438 	local_irq_save(save_flags);
3439 	objp = __do_cache_alloc(cachep, flags);
3440 	local_irq_restore(save_flags);
3441 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3442 	prefetchw(objp);
3443 
3444 	if (unlikely(flags & __GFP_ZERO) && objp)
3445 		memset(objp, 0, cachep->object_size);
3446 
3447 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3448 	return objp;
3449 }
3450 
3451 /*
3452  * Caller needs to acquire correct kmem_cache_node's list_lock
3453  * @list: List of detached free slabs should be freed by caller
3454  */
3455 static void free_block(struct kmem_cache *cachep, void **objpp,
3456 			int nr_objects, int node, struct list_head *list)
3457 {
3458 	int i;
3459 	struct kmem_cache_node *n = get_node(cachep, node);
3460 	struct page *page;
3461 
3462 	n->free_objects += nr_objects;
3463 
3464 	for (i = 0; i < nr_objects; i++) {
3465 		void *objp;
3466 		struct page *page;
3467 
3468 		objp = objpp[i];
3469 
3470 		page = virt_to_head_page(objp);
3471 		list_del(&page->lru);
3472 		check_spinlock_acquired_node(cachep, node);
3473 		slab_put_obj(cachep, page, objp);
3474 		STATS_DEC_ACTIVE(cachep);
3475 
3476 		/* fixup slab chains */
3477 		if (page->active == 0)
3478 			list_add(&page->lru, &n->slabs_free);
3479 		else {
3480 			/* Unconditionally move a slab to the end of the
3481 			 * partial list on free - maximum time for the
3482 			 * other objects to be freed, too.
3483 			 */
3484 			list_add_tail(&page->lru, &n->slabs_partial);
3485 		}
3486 	}
3487 
3488 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3489 		n->free_objects -= cachep->num;
3490 
3491 		page = list_last_entry(&n->slabs_free, struct page, lru);
3492 		list_del(&page->lru);
3493 		list_add(&page->lru, list);
3494 	}
3495 }
3496 
3497 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3498 {
3499 	int batchcount;
3500 	struct kmem_cache_node *n;
3501 	int node = numa_mem_id();
3502 	LIST_HEAD(list);
3503 
3504 	batchcount = ac->batchcount;
3505 
3506 	check_irq_off();
3507 	n = get_node(cachep, node);
3508 	spin_lock(&n->list_lock);
3509 	if (n->shared) {
3510 		struct array_cache *shared_array = n->shared;
3511 		int max = shared_array->limit - shared_array->avail;
3512 		if (max) {
3513 			if (batchcount > max)
3514 				batchcount = max;
3515 			memcpy(&(shared_array->entry[shared_array->avail]),
3516 			       ac->entry, sizeof(void *) * batchcount);
3517 			shared_array->avail += batchcount;
3518 			goto free_done;
3519 		}
3520 	}
3521 
3522 	free_block(cachep, ac->entry, batchcount, node, &list);
3523 free_done:
3524 #if STATS
3525 	{
3526 		int i = 0;
3527 		struct page *page;
3528 
3529 		list_for_each_entry(page, &n->slabs_free, lru) {
3530 			BUG_ON(page->active);
3531 
3532 			i++;
3533 		}
3534 		STATS_SET_FREEABLE(cachep, i);
3535 	}
3536 #endif
3537 	spin_unlock(&n->list_lock);
3538 	slabs_destroy(cachep, &list);
3539 	ac->avail -= batchcount;
3540 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3541 }
3542 
3543 /*
3544  * Release an obj back to its cache. If the obj has a constructed state, it must
3545  * be in this state _before_ it is released.  Called with disabled ints.
3546  */
3547 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3548 				unsigned long caller)
3549 {
3550 	/* Put the object into the quarantine, don't touch it for now. */
3551 	if (kasan_slab_free(cachep, objp))
3552 		return;
3553 
3554 	___cache_free(cachep, objp, caller);
3555 }
3556 
3557 void ___cache_free(struct kmem_cache *cachep, void *objp,
3558 		unsigned long caller)
3559 {
3560 	struct array_cache *ac = cpu_cache_get(cachep);
3561 
3562 	check_irq_off();
3563 	kmemleak_free_recursive(objp, cachep->flags);
3564 	objp = cache_free_debugcheck(cachep, objp, caller);
3565 
3566 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3567 
3568 	/*
3569 	 * Skip calling cache_free_alien() when the platform is not numa.
3570 	 * This will avoid cache misses that happen while accessing slabp (which
3571 	 * is per page memory  reference) to get nodeid. Instead use a global
3572 	 * variable to skip the call, which is mostly likely to be present in
3573 	 * the cache.
3574 	 */
3575 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3576 		return;
3577 
3578 	if (ac->avail < ac->limit) {
3579 		STATS_INC_FREEHIT(cachep);
3580 	} else {
3581 		STATS_INC_FREEMISS(cachep);
3582 		cache_flusharray(cachep, ac);
3583 	}
3584 
3585 	if (sk_memalloc_socks()) {
3586 		struct page *page = virt_to_head_page(objp);
3587 
3588 		if (unlikely(PageSlabPfmemalloc(page))) {
3589 			cache_free_pfmemalloc(cachep, page, objp);
3590 			return;
3591 		}
3592 	}
3593 
3594 	ac->entry[ac->avail++] = objp;
3595 }
3596 
3597 /**
3598  * kmem_cache_alloc - Allocate an object
3599  * @cachep: The cache to allocate from.
3600  * @flags: See kmalloc().
3601  *
3602  * Allocate an object from this cache.  The flags are only relevant
3603  * if the cache has no available objects.
3604  */
3605 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3606 {
3607 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3608 
3609 	kasan_slab_alloc(cachep, ret, flags);
3610 	trace_kmem_cache_alloc(_RET_IP_, ret,
3611 			       cachep->object_size, cachep->size, flags);
3612 
3613 	return ret;
3614 }
3615 EXPORT_SYMBOL(kmem_cache_alloc);
3616 
3617 static __always_inline void
3618 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3619 				  size_t size, void **p, unsigned long caller)
3620 {
3621 	size_t i;
3622 
3623 	for (i = 0; i < size; i++)
3624 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3625 }
3626 
3627 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3628 			  void **p)
3629 {
3630 	size_t i;
3631 
3632 	s = slab_pre_alloc_hook(s, flags);
3633 	if (!s)
3634 		return 0;
3635 
3636 	cache_alloc_debugcheck_before(s, flags);
3637 
3638 	local_irq_disable();
3639 	for (i = 0; i < size; i++) {
3640 		void *objp = __do_cache_alloc(s, flags);
3641 
3642 		if (unlikely(!objp))
3643 			goto error;
3644 		p[i] = objp;
3645 	}
3646 	local_irq_enable();
3647 
3648 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3649 
3650 	/* Clear memory outside IRQ disabled section */
3651 	if (unlikely(flags & __GFP_ZERO))
3652 		for (i = 0; i < size; i++)
3653 			memset(p[i], 0, s->object_size);
3654 
3655 	slab_post_alloc_hook(s, flags, size, p);
3656 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3657 	return size;
3658 error:
3659 	local_irq_enable();
3660 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3661 	slab_post_alloc_hook(s, flags, i, p);
3662 	__kmem_cache_free_bulk(s, i, p);
3663 	return 0;
3664 }
3665 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3666 
3667 #ifdef CONFIG_TRACING
3668 void *
3669 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3670 {
3671 	void *ret;
3672 
3673 	ret = slab_alloc(cachep, flags, _RET_IP_);
3674 
3675 	kasan_kmalloc(cachep, ret, size, flags);
3676 	trace_kmalloc(_RET_IP_, ret,
3677 		      size, cachep->size, flags);
3678 	return ret;
3679 }
3680 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3681 #endif
3682 
3683 #ifdef CONFIG_NUMA
3684 /**
3685  * kmem_cache_alloc_node - Allocate an object on the specified node
3686  * @cachep: The cache to allocate from.
3687  * @flags: See kmalloc().
3688  * @nodeid: node number of the target node.
3689  *
3690  * Identical to kmem_cache_alloc but it will allocate memory on the given
3691  * node, which can improve the performance for cpu bound structures.
3692  *
3693  * Fallback to other node is possible if __GFP_THISNODE is not set.
3694  */
3695 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3696 {
3697 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3698 
3699 	kasan_slab_alloc(cachep, ret, flags);
3700 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3701 				    cachep->object_size, cachep->size,
3702 				    flags, nodeid);
3703 
3704 	return ret;
3705 }
3706 EXPORT_SYMBOL(kmem_cache_alloc_node);
3707 
3708 #ifdef CONFIG_TRACING
3709 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3710 				  gfp_t flags,
3711 				  int nodeid,
3712 				  size_t size)
3713 {
3714 	void *ret;
3715 
3716 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3717 
3718 	kasan_kmalloc(cachep, ret, size, flags);
3719 	trace_kmalloc_node(_RET_IP_, ret,
3720 			   size, cachep->size,
3721 			   flags, nodeid);
3722 	return ret;
3723 }
3724 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3725 #endif
3726 
3727 static __always_inline void *
3728 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3729 {
3730 	struct kmem_cache *cachep;
3731 	void *ret;
3732 
3733 	cachep = kmalloc_slab(size, flags);
3734 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3735 		return cachep;
3736 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3737 	kasan_kmalloc(cachep, ret, size, flags);
3738 
3739 	return ret;
3740 }
3741 
3742 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3743 {
3744 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3745 }
3746 EXPORT_SYMBOL(__kmalloc_node);
3747 
3748 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3749 		int node, unsigned long caller)
3750 {
3751 	return __do_kmalloc_node(size, flags, node, caller);
3752 }
3753 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3754 #endif /* CONFIG_NUMA */
3755 
3756 /**
3757  * __do_kmalloc - allocate memory
3758  * @size: how many bytes of memory are required.
3759  * @flags: the type of memory to allocate (see kmalloc).
3760  * @caller: function caller for debug tracking of the caller
3761  */
3762 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3763 					  unsigned long caller)
3764 {
3765 	struct kmem_cache *cachep;
3766 	void *ret;
3767 
3768 	cachep = kmalloc_slab(size, flags);
3769 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3770 		return cachep;
3771 	ret = slab_alloc(cachep, flags, caller);
3772 
3773 	kasan_kmalloc(cachep, ret, size, flags);
3774 	trace_kmalloc(caller, ret,
3775 		      size, cachep->size, flags);
3776 
3777 	return ret;
3778 }
3779 
3780 void *__kmalloc(size_t size, gfp_t flags)
3781 {
3782 	return __do_kmalloc(size, flags, _RET_IP_);
3783 }
3784 EXPORT_SYMBOL(__kmalloc);
3785 
3786 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3787 {
3788 	return __do_kmalloc(size, flags, caller);
3789 }
3790 EXPORT_SYMBOL(__kmalloc_track_caller);
3791 
3792 /**
3793  * kmem_cache_free - Deallocate an object
3794  * @cachep: The cache the allocation was from.
3795  * @objp: The previously allocated object.
3796  *
3797  * Free an object which was previously allocated from this
3798  * cache.
3799  */
3800 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3801 {
3802 	unsigned long flags;
3803 	cachep = cache_from_obj(cachep, objp);
3804 	if (!cachep)
3805 		return;
3806 
3807 	local_irq_save(flags);
3808 	debug_check_no_locks_freed(objp, cachep->object_size);
3809 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3810 		debug_check_no_obj_freed(objp, cachep->object_size);
3811 	__cache_free(cachep, objp, _RET_IP_);
3812 	local_irq_restore(flags);
3813 
3814 	trace_kmem_cache_free(_RET_IP_, objp);
3815 }
3816 EXPORT_SYMBOL(kmem_cache_free);
3817 
3818 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3819 {
3820 	struct kmem_cache *s;
3821 	size_t i;
3822 
3823 	local_irq_disable();
3824 	for (i = 0; i < size; i++) {
3825 		void *objp = p[i];
3826 
3827 		if (!orig_s) /* called via kfree_bulk */
3828 			s = virt_to_cache(objp);
3829 		else
3830 			s = cache_from_obj(orig_s, objp);
3831 
3832 		debug_check_no_locks_freed(objp, s->object_size);
3833 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3834 			debug_check_no_obj_freed(objp, s->object_size);
3835 
3836 		__cache_free(s, objp, _RET_IP_);
3837 	}
3838 	local_irq_enable();
3839 
3840 	/* FIXME: add tracing */
3841 }
3842 EXPORT_SYMBOL(kmem_cache_free_bulk);
3843 
3844 /**
3845  * kfree - free previously allocated memory
3846  * @objp: pointer returned by kmalloc.
3847  *
3848  * If @objp is NULL, no operation is performed.
3849  *
3850  * Don't free memory not originally allocated by kmalloc()
3851  * or you will run into trouble.
3852  */
3853 void kfree(const void *objp)
3854 {
3855 	struct kmem_cache *c;
3856 	unsigned long flags;
3857 
3858 	trace_kfree(_RET_IP_, objp);
3859 
3860 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3861 		return;
3862 	local_irq_save(flags);
3863 	kfree_debugcheck(objp);
3864 	c = virt_to_cache(objp);
3865 	debug_check_no_locks_freed(objp, c->object_size);
3866 
3867 	debug_check_no_obj_freed(objp, c->object_size);
3868 	__cache_free(c, (void *)objp, _RET_IP_);
3869 	local_irq_restore(flags);
3870 }
3871 EXPORT_SYMBOL(kfree);
3872 
3873 /*
3874  * This initializes kmem_cache_node or resizes various caches for all nodes.
3875  */
3876 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3877 {
3878 	int ret;
3879 	int node;
3880 	struct kmem_cache_node *n;
3881 
3882 	for_each_online_node(node) {
3883 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3884 		if (ret)
3885 			goto fail;
3886 
3887 	}
3888 
3889 	return 0;
3890 
3891 fail:
3892 	if (!cachep->list.next) {
3893 		/* Cache is not active yet. Roll back what we did */
3894 		node--;
3895 		while (node >= 0) {
3896 			n = get_node(cachep, node);
3897 			if (n) {
3898 				kfree(n->shared);
3899 				free_alien_cache(n->alien);
3900 				kfree(n);
3901 				cachep->node[node] = NULL;
3902 			}
3903 			node--;
3904 		}
3905 	}
3906 	return -ENOMEM;
3907 }
3908 
3909 /* Always called with the slab_mutex held */
3910 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3911 				int batchcount, int shared, gfp_t gfp)
3912 {
3913 	struct array_cache __percpu *cpu_cache, *prev;
3914 	int cpu;
3915 
3916 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3917 	if (!cpu_cache)
3918 		return -ENOMEM;
3919 
3920 	prev = cachep->cpu_cache;
3921 	cachep->cpu_cache = cpu_cache;
3922 	kick_all_cpus_sync();
3923 
3924 	check_irq_on();
3925 	cachep->batchcount = batchcount;
3926 	cachep->limit = limit;
3927 	cachep->shared = shared;
3928 
3929 	if (!prev)
3930 		goto setup_node;
3931 
3932 	for_each_online_cpu(cpu) {
3933 		LIST_HEAD(list);
3934 		int node;
3935 		struct kmem_cache_node *n;
3936 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3937 
3938 		node = cpu_to_mem(cpu);
3939 		n = get_node(cachep, node);
3940 		spin_lock_irq(&n->list_lock);
3941 		free_block(cachep, ac->entry, ac->avail, node, &list);
3942 		spin_unlock_irq(&n->list_lock);
3943 		slabs_destroy(cachep, &list);
3944 	}
3945 	free_percpu(prev);
3946 
3947 setup_node:
3948 	return setup_kmem_cache_nodes(cachep, gfp);
3949 }
3950 
3951 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3952 				int batchcount, int shared, gfp_t gfp)
3953 {
3954 	int ret;
3955 	struct kmem_cache *c;
3956 
3957 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3958 
3959 	if (slab_state < FULL)
3960 		return ret;
3961 
3962 	if ((ret < 0) || !is_root_cache(cachep))
3963 		return ret;
3964 
3965 	lockdep_assert_held(&slab_mutex);
3966 	for_each_memcg_cache(c, cachep) {
3967 		/* return value determined by the root cache only */
3968 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3969 	}
3970 
3971 	return ret;
3972 }
3973 
3974 /* Called with slab_mutex held always */
3975 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3976 {
3977 	int err;
3978 	int limit = 0;
3979 	int shared = 0;
3980 	int batchcount = 0;
3981 
3982 	err = cache_random_seq_create(cachep, gfp);
3983 	if (err)
3984 		goto end;
3985 
3986 	if (!is_root_cache(cachep)) {
3987 		struct kmem_cache *root = memcg_root_cache(cachep);
3988 		limit = root->limit;
3989 		shared = root->shared;
3990 		batchcount = root->batchcount;
3991 	}
3992 
3993 	if (limit && shared && batchcount)
3994 		goto skip_setup;
3995 	/*
3996 	 * The head array serves three purposes:
3997 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3998 	 * - reduce the number of spinlock operations.
3999 	 * - reduce the number of linked list operations on the slab and
4000 	 *   bufctl chains: array operations are cheaper.
4001 	 * The numbers are guessed, we should auto-tune as described by
4002 	 * Bonwick.
4003 	 */
4004 	if (cachep->size > 131072)
4005 		limit = 1;
4006 	else if (cachep->size > PAGE_SIZE)
4007 		limit = 8;
4008 	else if (cachep->size > 1024)
4009 		limit = 24;
4010 	else if (cachep->size > 256)
4011 		limit = 54;
4012 	else
4013 		limit = 120;
4014 
4015 	/*
4016 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4017 	 * allocation behaviour: Most allocs on one cpu, most free operations
4018 	 * on another cpu. For these cases, an efficient object passing between
4019 	 * cpus is necessary. This is provided by a shared array. The array
4020 	 * replaces Bonwick's magazine layer.
4021 	 * On uniprocessor, it's functionally equivalent (but less efficient)
4022 	 * to a larger limit. Thus disabled by default.
4023 	 */
4024 	shared = 0;
4025 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4026 		shared = 8;
4027 
4028 #if DEBUG
4029 	/*
4030 	 * With debugging enabled, large batchcount lead to excessively long
4031 	 * periods with disabled local interrupts. Limit the batchcount
4032 	 */
4033 	if (limit > 32)
4034 		limit = 32;
4035 #endif
4036 	batchcount = (limit + 1) / 2;
4037 skip_setup:
4038 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4039 end:
4040 	if (err)
4041 		pr_err("enable_cpucache failed for %s, error %d\n",
4042 		       cachep->name, -err);
4043 	return err;
4044 }
4045 
4046 /*
4047  * Drain an array if it contains any elements taking the node lock only if
4048  * necessary. Note that the node listlock also protects the array_cache
4049  * if drain_array() is used on the shared array.
4050  */
4051 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4052 			 struct array_cache *ac, int node)
4053 {
4054 	LIST_HEAD(list);
4055 
4056 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
4057 	check_mutex_acquired();
4058 
4059 	if (!ac || !ac->avail)
4060 		return;
4061 
4062 	if (ac->touched) {
4063 		ac->touched = 0;
4064 		return;
4065 	}
4066 
4067 	spin_lock_irq(&n->list_lock);
4068 	drain_array_locked(cachep, ac, node, false, &list);
4069 	spin_unlock_irq(&n->list_lock);
4070 
4071 	slabs_destroy(cachep, &list);
4072 }
4073 
4074 /**
4075  * cache_reap - Reclaim memory from caches.
4076  * @w: work descriptor
4077  *
4078  * Called from workqueue/eventd every few seconds.
4079  * Purpose:
4080  * - clear the per-cpu caches for this CPU.
4081  * - return freeable pages to the main free memory pool.
4082  *
4083  * If we cannot acquire the cache chain mutex then just give up - we'll try
4084  * again on the next iteration.
4085  */
4086 static void cache_reap(struct work_struct *w)
4087 {
4088 	struct kmem_cache *searchp;
4089 	struct kmem_cache_node *n;
4090 	int node = numa_mem_id();
4091 	struct delayed_work *work = to_delayed_work(w);
4092 
4093 	if (!mutex_trylock(&slab_mutex))
4094 		/* Give up. Setup the next iteration. */
4095 		goto out;
4096 
4097 	list_for_each_entry(searchp, &slab_caches, list) {
4098 		check_irq_on();
4099 
4100 		/*
4101 		 * We only take the node lock if absolutely necessary and we
4102 		 * have established with reasonable certainty that
4103 		 * we can do some work if the lock was obtained.
4104 		 */
4105 		n = get_node(searchp, node);
4106 
4107 		reap_alien(searchp, n);
4108 
4109 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4110 
4111 		/*
4112 		 * These are racy checks but it does not matter
4113 		 * if we skip one check or scan twice.
4114 		 */
4115 		if (time_after(n->next_reap, jiffies))
4116 			goto next;
4117 
4118 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4119 
4120 		drain_array(searchp, n, n->shared, node);
4121 
4122 		if (n->free_touched)
4123 			n->free_touched = 0;
4124 		else {
4125 			int freed;
4126 
4127 			freed = drain_freelist(searchp, n, (n->free_limit +
4128 				5 * searchp->num - 1) / (5 * searchp->num));
4129 			STATS_ADD_REAPED(searchp, freed);
4130 		}
4131 next:
4132 		cond_resched();
4133 	}
4134 	check_irq_on();
4135 	mutex_unlock(&slab_mutex);
4136 	next_reap_node();
4137 out:
4138 	/* Set up the next iteration */
4139 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4140 }
4141 
4142 #ifdef CONFIG_SLABINFO
4143 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4144 {
4145 	struct page *page;
4146 	unsigned long active_objs;
4147 	unsigned long num_objs;
4148 	unsigned long active_slabs = 0;
4149 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4150 	const char *name;
4151 	char *error = NULL;
4152 	int node;
4153 	struct kmem_cache_node *n;
4154 
4155 	active_objs = 0;
4156 	num_slabs = 0;
4157 	for_each_kmem_cache_node(cachep, node, n) {
4158 
4159 		check_irq_on();
4160 		spin_lock_irq(&n->list_lock);
4161 
4162 		list_for_each_entry(page, &n->slabs_full, lru) {
4163 			if (page->active != cachep->num && !error)
4164 				error = "slabs_full accounting error";
4165 			active_objs += cachep->num;
4166 			active_slabs++;
4167 		}
4168 		list_for_each_entry(page, &n->slabs_partial, lru) {
4169 			if (page->active == cachep->num && !error)
4170 				error = "slabs_partial accounting error";
4171 			if (!page->active && !error)
4172 				error = "slabs_partial accounting error";
4173 			active_objs += page->active;
4174 			active_slabs++;
4175 		}
4176 		list_for_each_entry(page, &n->slabs_free, lru) {
4177 			if (page->active && !error)
4178 				error = "slabs_free accounting error";
4179 			num_slabs++;
4180 		}
4181 		free_objects += n->free_objects;
4182 		if (n->shared)
4183 			shared_avail += n->shared->avail;
4184 
4185 		spin_unlock_irq(&n->list_lock);
4186 	}
4187 	num_slabs += active_slabs;
4188 	num_objs = num_slabs * cachep->num;
4189 	if (num_objs - active_objs != free_objects && !error)
4190 		error = "free_objects accounting error";
4191 
4192 	name = cachep->name;
4193 	if (error)
4194 		pr_err("slab: cache %s error: %s\n", name, error);
4195 
4196 	sinfo->active_objs = active_objs;
4197 	sinfo->num_objs = num_objs;
4198 	sinfo->active_slabs = active_slabs;
4199 	sinfo->num_slabs = num_slabs;
4200 	sinfo->shared_avail = shared_avail;
4201 	sinfo->limit = cachep->limit;
4202 	sinfo->batchcount = cachep->batchcount;
4203 	sinfo->shared = cachep->shared;
4204 	sinfo->objects_per_slab = cachep->num;
4205 	sinfo->cache_order = cachep->gfporder;
4206 }
4207 
4208 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4209 {
4210 #if STATS
4211 	{			/* node stats */
4212 		unsigned long high = cachep->high_mark;
4213 		unsigned long allocs = cachep->num_allocations;
4214 		unsigned long grown = cachep->grown;
4215 		unsigned long reaped = cachep->reaped;
4216 		unsigned long errors = cachep->errors;
4217 		unsigned long max_freeable = cachep->max_freeable;
4218 		unsigned long node_allocs = cachep->node_allocs;
4219 		unsigned long node_frees = cachep->node_frees;
4220 		unsigned long overflows = cachep->node_overflow;
4221 
4222 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4223 			   allocs, high, grown,
4224 			   reaped, errors, max_freeable, node_allocs,
4225 			   node_frees, overflows);
4226 	}
4227 	/* cpu stats */
4228 	{
4229 		unsigned long allochit = atomic_read(&cachep->allochit);
4230 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4231 		unsigned long freehit = atomic_read(&cachep->freehit);
4232 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4233 
4234 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4235 			   allochit, allocmiss, freehit, freemiss);
4236 	}
4237 #endif
4238 }
4239 
4240 #define MAX_SLABINFO_WRITE 128
4241 /**
4242  * slabinfo_write - Tuning for the slab allocator
4243  * @file: unused
4244  * @buffer: user buffer
4245  * @count: data length
4246  * @ppos: unused
4247  */
4248 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4249 		       size_t count, loff_t *ppos)
4250 {
4251 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4252 	int limit, batchcount, shared, res;
4253 	struct kmem_cache *cachep;
4254 
4255 	if (count > MAX_SLABINFO_WRITE)
4256 		return -EINVAL;
4257 	if (copy_from_user(&kbuf, buffer, count))
4258 		return -EFAULT;
4259 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4260 
4261 	tmp = strchr(kbuf, ' ');
4262 	if (!tmp)
4263 		return -EINVAL;
4264 	*tmp = '\0';
4265 	tmp++;
4266 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4267 		return -EINVAL;
4268 
4269 	/* Find the cache in the chain of caches. */
4270 	mutex_lock(&slab_mutex);
4271 	res = -EINVAL;
4272 	list_for_each_entry(cachep, &slab_caches, list) {
4273 		if (!strcmp(cachep->name, kbuf)) {
4274 			if (limit < 1 || batchcount < 1 ||
4275 					batchcount > limit || shared < 0) {
4276 				res = 0;
4277 			} else {
4278 				res = do_tune_cpucache(cachep, limit,
4279 						       batchcount, shared,
4280 						       GFP_KERNEL);
4281 			}
4282 			break;
4283 		}
4284 	}
4285 	mutex_unlock(&slab_mutex);
4286 	if (res >= 0)
4287 		res = count;
4288 	return res;
4289 }
4290 
4291 #ifdef CONFIG_DEBUG_SLAB_LEAK
4292 
4293 static inline int add_caller(unsigned long *n, unsigned long v)
4294 {
4295 	unsigned long *p;
4296 	int l;
4297 	if (!v)
4298 		return 1;
4299 	l = n[1];
4300 	p = n + 2;
4301 	while (l) {
4302 		int i = l/2;
4303 		unsigned long *q = p + 2 * i;
4304 		if (*q == v) {
4305 			q[1]++;
4306 			return 1;
4307 		}
4308 		if (*q > v) {
4309 			l = i;
4310 		} else {
4311 			p = q + 2;
4312 			l -= i + 1;
4313 		}
4314 	}
4315 	if (++n[1] == n[0])
4316 		return 0;
4317 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4318 	p[0] = v;
4319 	p[1] = 1;
4320 	return 1;
4321 }
4322 
4323 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4324 						struct page *page)
4325 {
4326 	void *p;
4327 	int i, j;
4328 	unsigned long v;
4329 
4330 	if (n[0] == n[1])
4331 		return;
4332 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4333 		bool active = true;
4334 
4335 		for (j = page->active; j < c->num; j++) {
4336 			if (get_free_obj(page, j) == i) {
4337 				active = false;
4338 				break;
4339 			}
4340 		}
4341 
4342 		if (!active)
4343 			continue;
4344 
4345 		/*
4346 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4347 		 * mapping is established when actual object allocation and
4348 		 * we could mistakenly access the unmapped object in the cpu
4349 		 * cache.
4350 		 */
4351 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4352 			continue;
4353 
4354 		if (!add_caller(n, v))
4355 			return;
4356 	}
4357 }
4358 
4359 static void show_symbol(struct seq_file *m, unsigned long address)
4360 {
4361 #ifdef CONFIG_KALLSYMS
4362 	unsigned long offset, size;
4363 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4364 
4365 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4366 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4367 		if (modname[0])
4368 			seq_printf(m, " [%s]", modname);
4369 		return;
4370 	}
4371 #endif
4372 	seq_printf(m, "%p", (void *)address);
4373 }
4374 
4375 static int leaks_show(struct seq_file *m, void *p)
4376 {
4377 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4378 	struct page *page;
4379 	struct kmem_cache_node *n;
4380 	const char *name;
4381 	unsigned long *x = m->private;
4382 	int node;
4383 	int i;
4384 
4385 	if (!(cachep->flags & SLAB_STORE_USER))
4386 		return 0;
4387 	if (!(cachep->flags & SLAB_RED_ZONE))
4388 		return 0;
4389 
4390 	/*
4391 	 * Set store_user_clean and start to grab stored user information
4392 	 * for all objects on this cache. If some alloc/free requests comes
4393 	 * during the processing, information would be wrong so restart
4394 	 * whole processing.
4395 	 */
4396 	do {
4397 		set_store_user_clean(cachep);
4398 		drain_cpu_caches(cachep);
4399 
4400 		x[1] = 0;
4401 
4402 		for_each_kmem_cache_node(cachep, node, n) {
4403 
4404 			check_irq_on();
4405 			spin_lock_irq(&n->list_lock);
4406 
4407 			list_for_each_entry(page, &n->slabs_full, lru)
4408 				handle_slab(x, cachep, page);
4409 			list_for_each_entry(page, &n->slabs_partial, lru)
4410 				handle_slab(x, cachep, page);
4411 			spin_unlock_irq(&n->list_lock);
4412 		}
4413 	} while (!is_store_user_clean(cachep));
4414 
4415 	name = cachep->name;
4416 	if (x[0] == x[1]) {
4417 		/* Increase the buffer size */
4418 		mutex_unlock(&slab_mutex);
4419 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4420 		if (!m->private) {
4421 			/* Too bad, we are really out */
4422 			m->private = x;
4423 			mutex_lock(&slab_mutex);
4424 			return -ENOMEM;
4425 		}
4426 		*(unsigned long *)m->private = x[0] * 2;
4427 		kfree(x);
4428 		mutex_lock(&slab_mutex);
4429 		/* Now make sure this entry will be retried */
4430 		m->count = m->size;
4431 		return 0;
4432 	}
4433 	for (i = 0; i < x[1]; i++) {
4434 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4435 		show_symbol(m, x[2*i+2]);
4436 		seq_putc(m, '\n');
4437 	}
4438 
4439 	return 0;
4440 }
4441 
4442 static const struct seq_operations slabstats_op = {
4443 	.start = slab_start,
4444 	.next = slab_next,
4445 	.stop = slab_stop,
4446 	.show = leaks_show,
4447 };
4448 
4449 static int slabstats_open(struct inode *inode, struct file *file)
4450 {
4451 	unsigned long *n;
4452 
4453 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4454 	if (!n)
4455 		return -ENOMEM;
4456 
4457 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4458 
4459 	return 0;
4460 }
4461 
4462 static const struct file_operations proc_slabstats_operations = {
4463 	.open		= slabstats_open,
4464 	.read		= seq_read,
4465 	.llseek		= seq_lseek,
4466 	.release	= seq_release_private,
4467 };
4468 #endif
4469 
4470 static int __init slab_proc_init(void)
4471 {
4472 #ifdef CONFIG_DEBUG_SLAB_LEAK
4473 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4474 #endif
4475 	return 0;
4476 }
4477 module_init(slab_proc_init);
4478 #endif
4479 
4480 /**
4481  * ksize - get the actual amount of memory allocated for a given object
4482  * @objp: Pointer to the object
4483  *
4484  * kmalloc may internally round up allocations and return more memory
4485  * than requested. ksize() can be used to determine the actual amount of
4486  * memory allocated. The caller may use this additional memory, even though
4487  * a smaller amount of memory was initially specified with the kmalloc call.
4488  * The caller must guarantee that objp points to a valid object previously
4489  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4490  * must not be freed during the duration of the call.
4491  */
4492 size_t ksize(const void *objp)
4493 {
4494 	size_t size;
4495 
4496 	BUG_ON(!objp);
4497 	if (unlikely(objp == ZERO_SIZE_PTR))
4498 		return 0;
4499 
4500 	size = virt_to_cache(objp)->object_size;
4501 	/* We assume that ksize callers could use the whole allocated area,
4502 	 * so we need to unpoison this area.
4503 	 */
4504 	kasan_unpoison_shadow(objp, size);
4505 
4506 	return size;
4507 }
4508 EXPORT_SYMBOL(ksize);
4509