1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/cpu.h> 104 #include <linux/sysctl.h> 105 #include <linux/module.h> 106 #include <linux/rcupdate.h> 107 #include <linux/string.h> 108 #include <linux/uaccess.h> 109 #include <linux/nodemask.h> 110 #include <linux/kmemleak.h> 111 #include <linux/mempolicy.h> 112 #include <linux/mutex.h> 113 #include <linux/fault-inject.h> 114 #include <linux/rtmutex.h> 115 #include <linux/reciprocal_div.h> 116 #include <linux/debugobjects.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 #include <linux/sched/task_stack.h> 120 121 #include <net/sock.h> 122 123 #include <asm/cacheflush.h> 124 #include <asm/tlbflush.h> 125 #include <asm/page.h> 126 127 #include <trace/events/kmem.h> 128 129 #include "internal.h" 130 131 #include "slab.h" 132 133 /* 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 135 * 0 for faster, smaller code (especially in the critical paths). 136 * 137 * STATS - 1 to collect stats for /proc/slabinfo. 138 * 0 for faster, smaller code (especially in the critical paths). 139 * 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 141 */ 142 143 #ifdef CONFIG_DEBUG_SLAB 144 #define DEBUG 1 145 #define STATS 1 146 #define FORCED_DEBUG 1 147 #else 148 #define DEBUG 0 149 #define STATS 0 150 #define FORCED_DEBUG 0 151 #endif 152 153 /* Shouldn't this be in a header file somewhere? */ 154 #define BYTES_PER_WORD sizeof(void *) 155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 156 157 #ifndef ARCH_KMALLOC_FLAGS 158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 159 #endif 160 161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 163 164 #if FREELIST_BYTE_INDEX 165 typedef unsigned char freelist_idx_t; 166 #else 167 typedef unsigned short freelist_idx_t; 168 #endif 169 170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 171 172 /* 173 * struct array_cache 174 * 175 * Purpose: 176 * - LIFO ordering, to hand out cache-warm objects from _alloc 177 * - reduce the number of linked list operations 178 * - reduce spinlock operations 179 * 180 * The limit is stored in the per-cpu structure to reduce the data cache 181 * footprint. 182 * 183 */ 184 struct array_cache { 185 unsigned int avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int touched; 189 void *entry[]; /* 190 * Must have this definition in here for the proper 191 * alignment of array_cache. Also simplifies accessing 192 * the entries. 193 */ 194 }; 195 196 struct alien_cache { 197 spinlock_t lock; 198 struct array_cache ac; 199 }; 200 201 /* 202 * Need this for bootstrapping a per node allocator. 203 */ 204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 206 #define CACHE_CACHE 0 207 #define SIZE_NODE (MAX_NUMNODES) 208 209 static int drain_freelist(struct kmem_cache *cache, 210 struct kmem_cache_node *n, int tofree); 211 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 212 int node, struct list_head *list); 213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 215 static void cache_reap(struct work_struct *unused); 216 217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 218 void **list); 219 static inline void fixup_slab_list(struct kmem_cache *cachep, 220 struct kmem_cache_node *n, struct page *page, 221 void **list); 222 static int slab_early_init = 1; 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long*) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 /* 366 * Do not go above this order unless 0 objects fit into the slab or 367 * overridden on the command line. 368 */ 369 #define SLAB_MAX_ORDER_HI 1 370 #define SLAB_MAX_ORDER_LO 0 371 static int slab_max_order = SLAB_MAX_ORDER_LO; 372 static bool slab_max_order_set __initdata; 373 374 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 375 unsigned int idx) 376 { 377 return page->s_mem + cache->size * idx; 378 } 379 380 #define BOOT_CPUCACHE_ENTRIES 1 381 /* internal cache of cache description objs */ 382 static struct kmem_cache kmem_cache_boot = { 383 .batchcount = 1, 384 .limit = BOOT_CPUCACHE_ENTRIES, 385 .shared = 1, 386 .size = sizeof(struct kmem_cache), 387 .name = "kmem_cache", 388 }; 389 390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 391 392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 393 { 394 return this_cpu_ptr(cachep->cpu_cache); 395 } 396 397 /* 398 * Calculate the number of objects and left-over bytes for a given buffer size. 399 */ 400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 401 slab_flags_t flags, size_t *left_over) 402 { 403 unsigned int num; 404 size_t slab_size = PAGE_SIZE << gfporder; 405 406 /* 407 * The slab management structure can be either off the slab or 408 * on it. For the latter case, the memory allocated for a 409 * slab is used for: 410 * 411 * - @buffer_size bytes for each object 412 * - One freelist_idx_t for each object 413 * 414 * We don't need to consider alignment of freelist because 415 * freelist will be at the end of slab page. The objects will be 416 * at the correct alignment. 417 * 418 * If the slab management structure is off the slab, then the 419 * alignment will already be calculated into the size. Because 420 * the slabs are all pages aligned, the objects will be at the 421 * correct alignment when allocated. 422 */ 423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 424 num = slab_size / buffer_size; 425 *left_over = slab_size % buffer_size; 426 } else { 427 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 428 *left_over = slab_size % 429 (buffer_size + sizeof(freelist_idx_t)); 430 } 431 432 return num; 433 } 434 435 #if DEBUG 436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 437 438 static void __slab_error(const char *function, struct kmem_cache *cachep, 439 char *msg) 440 { 441 pr_err("slab error in %s(): cache `%s': %s\n", 442 function, cachep->name, msg); 443 dump_stack(); 444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 445 } 446 #endif 447 448 /* 449 * By default on NUMA we use alien caches to stage the freeing of 450 * objects allocated from other nodes. This causes massive memory 451 * inefficiencies when using fake NUMA setup to split memory into a 452 * large number of small nodes, so it can be disabled on the command 453 * line 454 */ 455 456 static int use_alien_caches __read_mostly = 1; 457 static int __init noaliencache_setup(char *s) 458 { 459 use_alien_caches = 0; 460 return 1; 461 } 462 __setup("noaliencache", noaliencache_setup); 463 464 static int __init slab_max_order_setup(char *str) 465 { 466 get_option(&str, &slab_max_order); 467 slab_max_order = slab_max_order < 0 ? 0 : 468 min(slab_max_order, MAX_ORDER - 1); 469 slab_max_order_set = true; 470 471 return 1; 472 } 473 __setup("slab_max_order=", slab_max_order_setup); 474 475 #ifdef CONFIG_NUMA 476 /* 477 * Special reaping functions for NUMA systems called from cache_reap(). 478 * These take care of doing round robin flushing of alien caches (containing 479 * objects freed on different nodes from which they were allocated) and the 480 * flushing of remote pcps by calling drain_node_pages. 481 */ 482 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 483 484 static void init_reap_node(int cpu) 485 { 486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 487 node_online_map); 488 } 489 490 static void next_reap_node(void) 491 { 492 int node = __this_cpu_read(slab_reap_node); 493 494 node = next_node_in(node, node_online_map); 495 __this_cpu_write(slab_reap_node, node); 496 } 497 498 #else 499 #define init_reap_node(cpu) do { } while (0) 500 #define next_reap_node(void) do { } while (0) 501 #endif 502 503 /* 504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 505 * via the workqueue/eventd. 506 * Add the CPU number into the expiration time to minimize the possibility of 507 * the CPUs getting into lockstep and contending for the global cache chain 508 * lock. 509 */ 510 static void start_cpu_timer(int cpu) 511 { 512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 513 514 if (reap_work->work.func == NULL) { 515 init_reap_node(cpu); 516 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 517 schedule_delayed_work_on(cpu, reap_work, 518 __round_jiffies_relative(HZ, cpu)); 519 } 520 } 521 522 static void init_arraycache(struct array_cache *ac, int limit, int batch) 523 { 524 if (ac) { 525 ac->avail = 0; 526 ac->limit = limit; 527 ac->batchcount = batch; 528 ac->touched = 0; 529 } 530 } 531 532 static struct array_cache *alloc_arraycache(int node, int entries, 533 int batchcount, gfp_t gfp) 534 { 535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 536 struct array_cache *ac = NULL; 537 538 ac = kmalloc_node(memsize, gfp, node); 539 /* 540 * The array_cache structures contain pointers to free object. 541 * However, when such objects are allocated or transferred to another 542 * cache the pointers are not cleared and they could be counted as 543 * valid references during a kmemleak scan. Therefore, kmemleak must 544 * not scan such objects. 545 */ 546 kmemleak_no_scan(ac); 547 init_arraycache(ac, entries, batchcount); 548 return ac; 549 } 550 551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 552 struct page *page, void *objp) 553 { 554 struct kmem_cache_node *n; 555 int page_node; 556 LIST_HEAD(list); 557 558 page_node = page_to_nid(page); 559 n = get_node(cachep, page_node); 560 561 spin_lock(&n->list_lock); 562 free_block(cachep, &objp, 1, page_node, &list); 563 spin_unlock(&n->list_lock); 564 565 slabs_destroy(cachep, &list); 566 } 567 568 /* 569 * Transfer objects in one arraycache to another. 570 * Locking must be handled by the caller. 571 * 572 * Return the number of entries transferred. 573 */ 574 static int transfer_objects(struct array_cache *to, 575 struct array_cache *from, unsigned int max) 576 { 577 /* Figure out how many entries to transfer */ 578 int nr = min3(from->avail, max, to->limit - to->avail); 579 580 if (!nr) 581 return 0; 582 583 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 584 sizeof(void *) *nr); 585 586 from->avail -= nr; 587 to->avail += nr; 588 return nr; 589 } 590 591 /* &alien->lock must be held by alien callers. */ 592 static __always_inline void __free_one(struct array_cache *ac, void *objp) 593 { 594 /* Avoid trivial double-free. */ 595 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 596 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) 597 return; 598 ac->entry[ac->avail++] = objp; 599 } 600 601 #ifndef CONFIG_NUMA 602 603 #define drain_alien_cache(cachep, alien) do { } while (0) 604 #define reap_alien(cachep, n) do { } while (0) 605 606 static inline struct alien_cache **alloc_alien_cache(int node, 607 int limit, gfp_t gfp) 608 { 609 return NULL; 610 } 611 612 static inline void free_alien_cache(struct alien_cache **ac_ptr) 613 { 614 } 615 616 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 617 { 618 return 0; 619 } 620 621 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 622 gfp_t flags) 623 { 624 return NULL; 625 } 626 627 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 628 gfp_t flags, int nodeid) 629 { 630 return NULL; 631 } 632 633 static inline gfp_t gfp_exact_node(gfp_t flags) 634 { 635 return flags & ~__GFP_NOFAIL; 636 } 637 638 #else /* CONFIG_NUMA */ 639 640 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 641 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 642 643 static struct alien_cache *__alloc_alien_cache(int node, int entries, 644 int batch, gfp_t gfp) 645 { 646 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 647 struct alien_cache *alc = NULL; 648 649 alc = kmalloc_node(memsize, gfp, node); 650 if (alc) { 651 kmemleak_no_scan(alc); 652 init_arraycache(&alc->ac, entries, batch); 653 spin_lock_init(&alc->lock); 654 } 655 return alc; 656 } 657 658 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 659 { 660 struct alien_cache **alc_ptr; 661 int i; 662 663 if (limit > 1) 664 limit = 12; 665 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 666 if (!alc_ptr) 667 return NULL; 668 669 for_each_node(i) { 670 if (i == node || !node_online(i)) 671 continue; 672 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 673 if (!alc_ptr[i]) { 674 for (i--; i >= 0; i--) 675 kfree(alc_ptr[i]); 676 kfree(alc_ptr); 677 return NULL; 678 } 679 } 680 return alc_ptr; 681 } 682 683 static void free_alien_cache(struct alien_cache **alc_ptr) 684 { 685 int i; 686 687 if (!alc_ptr) 688 return; 689 for_each_node(i) 690 kfree(alc_ptr[i]); 691 kfree(alc_ptr); 692 } 693 694 static void __drain_alien_cache(struct kmem_cache *cachep, 695 struct array_cache *ac, int node, 696 struct list_head *list) 697 { 698 struct kmem_cache_node *n = get_node(cachep, node); 699 700 if (ac->avail) { 701 spin_lock(&n->list_lock); 702 /* 703 * Stuff objects into the remote nodes shared array first. 704 * That way we could avoid the overhead of putting the objects 705 * into the free lists and getting them back later. 706 */ 707 if (n->shared) 708 transfer_objects(n->shared, ac, ac->limit); 709 710 free_block(cachep, ac->entry, ac->avail, node, list); 711 ac->avail = 0; 712 spin_unlock(&n->list_lock); 713 } 714 } 715 716 /* 717 * Called from cache_reap() to regularly drain alien caches round robin. 718 */ 719 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 720 { 721 int node = __this_cpu_read(slab_reap_node); 722 723 if (n->alien) { 724 struct alien_cache *alc = n->alien[node]; 725 struct array_cache *ac; 726 727 if (alc) { 728 ac = &alc->ac; 729 if (ac->avail && spin_trylock_irq(&alc->lock)) { 730 LIST_HEAD(list); 731 732 __drain_alien_cache(cachep, ac, node, &list); 733 spin_unlock_irq(&alc->lock); 734 slabs_destroy(cachep, &list); 735 } 736 } 737 } 738 } 739 740 static void drain_alien_cache(struct kmem_cache *cachep, 741 struct alien_cache **alien) 742 { 743 int i = 0; 744 struct alien_cache *alc; 745 struct array_cache *ac; 746 unsigned long flags; 747 748 for_each_online_node(i) { 749 alc = alien[i]; 750 if (alc) { 751 LIST_HEAD(list); 752 753 ac = &alc->ac; 754 spin_lock_irqsave(&alc->lock, flags); 755 __drain_alien_cache(cachep, ac, i, &list); 756 spin_unlock_irqrestore(&alc->lock, flags); 757 slabs_destroy(cachep, &list); 758 } 759 } 760 } 761 762 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 763 int node, int page_node) 764 { 765 struct kmem_cache_node *n; 766 struct alien_cache *alien = NULL; 767 struct array_cache *ac; 768 LIST_HEAD(list); 769 770 n = get_node(cachep, node); 771 STATS_INC_NODEFREES(cachep); 772 if (n->alien && n->alien[page_node]) { 773 alien = n->alien[page_node]; 774 ac = &alien->ac; 775 spin_lock(&alien->lock); 776 if (unlikely(ac->avail == ac->limit)) { 777 STATS_INC_ACOVERFLOW(cachep); 778 __drain_alien_cache(cachep, ac, page_node, &list); 779 } 780 __free_one(ac, objp); 781 spin_unlock(&alien->lock); 782 slabs_destroy(cachep, &list); 783 } else { 784 n = get_node(cachep, page_node); 785 spin_lock(&n->list_lock); 786 free_block(cachep, &objp, 1, page_node, &list); 787 spin_unlock(&n->list_lock); 788 slabs_destroy(cachep, &list); 789 } 790 return 1; 791 } 792 793 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 794 { 795 int page_node = page_to_nid(virt_to_page(objp)); 796 int node = numa_mem_id(); 797 /* 798 * Make sure we are not freeing a object from another node to the array 799 * cache on this cpu. 800 */ 801 if (likely(node == page_node)) 802 return 0; 803 804 return __cache_free_alien(cachep, objp, node, page_node); 805 } 806 807 /* 808 * Construct gfp mask to allocate from a specific node but do not reclaim or 809 * warn about failures. 810 */ 811 static inline gfp_t gfp_exact_node(gfp_t flags) 812 { 813 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 814 } 815 #endif 816 817 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 818 { 819 struct kmem_cache_node *n; 820 821 /* 822 * Set up the kmem_cache_node for cpu before we can 823 * begin anything. Make sure some other cpu on this 824 * node has not already allocated this 825 */ 826 n = get_node(cachep, node); 827 if (n) { 828 spin_lock_irq(&n->list_lock); 829 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 830 cachep->num; 831 spin_unlock_irq(&n->list_lock); 832 833 return 0; 834 } 835 836 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 837 if (!n) 838 return -ENOMEM; 839 840 kmem_cache_node_init(n); 841 n->next_reap = jiffies + REAPTIMEOUT_NODE + 842 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 843 844 n->free_limit = 845 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 846 847 /* 848 * The kmem_cache_nodes don't come and go as CPUs 849 * come and go. slab_mutex is sufficient 850 * protection here. 851 */ 852 cachep->node[node] = n; 853 854 return 0; 855 } 856 857 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) 858 /* 859 * Allocates and initializes node for a node on each slab cache, used for 860 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 861 * will be allocated off-node since memory is not yet online for the new node. 862 * When hotplugging memory or a cpu, existing node are not replaced if 863 * already in use. 864 * 865 * Must hold slab_mutex. 866 */ 867 static int init_cache_node_node(int node) 868 { 869 int ret; 870 struct kmem_cache *cachep; 871 872 list_for_each_entry(cachep, &slab_caches, list) { 873 ret = init_cache_node(cachep, node, GFP_KERNEL); 874 if (ret) 875 return ret; 876 } 877 878 return 0; 879 } 880 #endif 881 882 static int setup_kmem_cache_node(struct kmem_cache *cachep, 883 int node, gfp_t gfp, bool force_change) 884 { 885 int ret = -ENOMEM; 886 struct kmem_cache_node *n; 887 struct array_cache *old_shared = NULL; 888 struct array_cache *new_shared = NULL; 889 struct alien_cache **new_alien = NULL; 890 LIST_HEAD(list); 891 892 if (use_alien_caches) { 893 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 894 if (!new_alien) 895 goto fail; 896 } 897 898 if (cachep->shared) { 899 new_shared = alloc_arraycache(node, 900 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 901 if (!new_shared) 902 goto fail; 903 } 904 905 ret = init_cache_node(cachep, node, gfp); 906 if (ret) 907 goto fail; 908 909 n = get_node(cachep, node); 910 spin_lock_irq(&n->list_lock); 911 if (n->shared && force_change) { 912 free_block(cachep, n->shared->entry, 913 n->shared->avail, node, &list); 914 n->shared->avail = 0; 915 } 916 917 if (!n->shared || force_change) { 918 old_shared = n->shared; 919 n->shared = new_shared; 920 new_shared = NULL; 921 } 922 923 if (!n->alien) { 924 n->alien = new_alien; 925 new_alien = NULL; 926 } 927 928 spin_unlock_irq(&n->list_lock); 929 slabs_destroy(cachep, &list); 930 931 /* 932 * To protect lockless access to n->shared during irq disabled context. 933 * If n->shared isn't NULL in irq disabled context, accessing to it is 934 * guaranteed to be valid until irq is re-enabled, because it will be 935 * freed after synchronize_rcu(). 936 */ 937 if (old_shared && force_change) 938 synchronize_rcu(); 939 940 fail: 941 kfree(old_shared); 942 kfree(new_shared); 943 free_alien_cache(new_alien); 944 945 return ret; 946 } 947 948 #ifdef CONFIG_SMP 949 950 static void cpuup_canceled(long cpu) 951 { 952 struct kmem_cache *cachep; 953 struct kmem_cache_node *n = NULL; 954 int node = cpu_to_mem(cpu); 955 const struct cpumask *mask = cpumask_of_node(node); 956 957 list_for_each_entry(cachep, &slab_caches, list) { 958 struct array_cache *nc; 959 struct array_cache *shared; 960 struct alien_cache **alien; 961 LIST_HEAD(list); 962 963 n = get_node(cachep, node); 964 if (!n) 965 continue; 966 967 spin_lock_irq(&n->list_lock); 968 969 /* Free limit for this kmem_cache_node */ 970 n->free_limit -= cachep->batchcount; 971 972 /* cpu is dead; no one can alloc from it. */ 973 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 974 free_block(cachep, nc->entry, nc->avail, node, &list); 975 nc->avail = 0; 976 977 if (!cpumask_empty(mask)) { 978 spin_unlock_irq(&n->list_lock); 979 goto free_slab; 980 } 981 982 shared = n->shared; 983 if (shared) { 984 free_block(cachep, shared->entry, 985 shared->avail, node, &list); 986 n->shared = NULL; 987 } 988 989 alien = n->alien; 990 n->alien = NULL; 991 992 spin_unlock_irq(&n->list_lock); 993 994 kfree(shared); 995 if (alien) { 996 drain_alien_cache(cachep, alien); 997 free_alien_cache(alien); 998 } 999 1000 free_slab: 1001 slabs_destroy(cachep, &list); 1002 } 1003 /* 1004 * In the previous loop, all the objects were freed to 1005 * the respective cache's slabs, now we can go ahead and 1006 * shrink each nodelist to its limit. 1007 */ 1008 list_for_each_entry(cachep, &slab_caches, list) { 1009 n = get_node(cachep, node); 1010 if (!n) 1011 continue; 1012 drain_freelist(cachep, n, INT_MAX); 1013 } 1014 } 1015 1016 static int cpuup_prepare(long cpu) 1017 { 1018 struct kmem_cache *cachep; 1019 int node = cpu_to_mem(cpu); 1020 int err; 1021 1022 /* 1023 * We need to do this right in the beginning since 1024 * alloc_arraycache's are going to use this list. 1025 * kmalloc_node allows us to add the slab to the right 1026 * kmem_cache_node and not this cpu's kmem_cache_node 1027 */ 1028 err = init_cache_node_node(node); 1029 if (err < 0) 1030 goto bad; 1031 1032 /* 1033 * Now we can go ahead with allocating the shared arrays and 1034 * array caches 1035 */ 1036 list_for_each_entry(cachep, &slab_caches, list) { 1037 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1038 if (err) 1039 goto bad; 1040 } 1041 1042 return 0; 1043 bad: 1044 cpuup_canceled(cpu); 1045 return -ENOMEM; 1046 } 1047 1048 int slab_prepare_cpu(unsigned int cpu) 1049 { 1050 int err; 1051 1052 mutex_lock(&slab_mutex); 1053 err = cpuup_prepare(cpu); 1054 mutex_unlock(&slab_mutex); 1055 return err; 1056 } 1057 1058 /* 1059 * This is called for a failed online attempt and for a successful 1060 * offline. 1061 * 1062 * Even if all the cpus of a node are down, we don't free the 1063 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and 1064 * a kmalloc allocation from another cpu for memory from the node of 1065 * the cpu going down. The kmem_cache_node structure is usually allocated from 1066 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1067 */ 1068 int slab_dead_cpu(unsigned int cpu) 1069 { 1070 mutex_lock(&slab_mutex); 1071 cpuup_canceled(cpu); 1072 mutex_unlock(&slab_mutex); 1073 return 0; 1074 } 1075 #endif 1076 1077 static int slab_online_cpu(unsigned int cpu) 1078 { 1079 start_cpu_timer(cpu); 1080 return 0; 1081 } 1082 1083 static int slab_offline_cpu(unsigned int cpu) 1084 { 1085 /* 1086 * Shutdown cache reaper. Note that the slab_mutex is held so 1087 * that if cache_reap() is invoked it cannot do anything 1088 * expensive but will only modify reap_work and reschedule the 1089 * timer. 1090 */ 1091 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1092 /* Now the cache_reaper is guaranteed to be not running. */ 1093 per_cpu(slab_reap_work, cpu).work.func = NULL; 1094 return 0; 1095 } 1096 1097 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1098 /* 1099 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1100 * Returns -EBUSY if all objects cannot be drained so that the node is not 1101 * removed. 1102 * 1103 * Must hold slab_mutex. 1104 */ 1105 static int __meminit drain_cache_node_node(int node) 1106 { 1107 struct kmem_cache *cachep; 1108 int ret = 0; 1109 1110 list_for_each_entry(cachep, &slab_caches, list) { 1111 struct kmem_cache_node *n; 1112 1113 n = get_node(cachep, node); 1114 if (!n) 1115 continue; 1116 1117 drain_freelist(cachep, n, INT_MAX); 1118 1119 if (!list_empty(&n->slabs_full) || 1120 !list_empty(&n->slabs_partial)) { 1121 ret = -EBUSY; 1122 break; 1123 } 1124 } 1125 return ret; 1126 } 1127 1128 static int __meminit slab_memory_callback(struct notifier_block *self, 1129 unsigned long action, void *arg) 1130 { 1131 struct memory_notify *mnb = arg; 1132 int ret = 0; 1133 int nid; 1134 1135 nid = mnb->status_change_nid; 1136 if (nid < 0) 1137 goto out; 1138 1139 switch (action) { 1140 case MEM_GOING_ONLINE: 1141 mutex_lock(&slab_mutex); 1142 ret = init_cache_node_node(nid); 1143 mutex_unlock(&slab_mutex); 1144 break; 1145 case MEM_GOING_OFFLINE: 1146 mutex_lock(&slab_mutex); 1147 ret = drain_cache_node_node(nid); 1148 mutex_unlock(&slab_mutex); 1149 break; 1150 case MEM_ONLINE: 1151 case MEM_OFFLINE: 1152 case MEM_CANCEL_ONLINE: 1153 case MEM_CANCEL_OFFLINE: 1154 break; 1155 } 1156 out: 1157 return notifier_from_errno(ret); 1158 } 1159 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1160 1161 /* 1162 * swap the static kmem_cache_node with kmalloced memory 1163 */ 1164 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1165 int nodeid) 1166 { 1167 struct kmem_cache_node *ptr; 1168 1169 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1170 BUG_ON(!ptr); 1171 1172 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1173 /* 1174 * Do not assume that spinlocks can be initialized via memcpy: 1175 */ 1176 spin_lock_init(&ptr->list_lock); 1177 1178 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1179 cachep->node[nodeid] = ptr; 1180 } 1181 1182 /* 1183 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1184 * size of kmem_cache_node. 1185 */ 1186 static void __init set_up_node(struct kmem_cache *cachep, int index) 1187 { 1188 int node; 1189 1190 for_each_online_node(node) { 1191 cachep->node[node] = &init_kmem_cache_node[index + node]; 1192 cachep->node[node]->next_reap = jiffies + 1193 REAPTIMEOUT_NODE + 1194 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1195 } 1196 } 1197 1198 /* 1199 * Initialisation. Called after the page allocator have been initialised and 1200 * before smp_init(). 1201 */ 1202 void __init kmem_cache_init(void) 1203 { 1204 int i; 1205 1206 kmem_cache = &kmem_cache_boot; 1207 1208 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1209 use_alien_caches = 0; 1210 1211 for (i = 0; i < NUM_INIT_LISTS; i++) 1212 kmem_cache_node_init(&init_kmem_cache_node[i]); 1213 1214 /* 1215 * Fragmentation resistance on low memory - only use bigger 1216 * page orders on machines with more than 32MB of memory if 1217 * not overridden on the command line. 1218 */ 1219 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1220 slab_max_order = SLAB_MAX_ORDER_HI; 1221 1222 /* Bootstrap is tricky, because several objects are allocated 1223 * from caches that do not exist yet: 1224 * 1) initialize the kmem_cache cache: it contains the struct 1225 * kmem_cache structures of all caches, except kmem_cache itself: 1226 * kmem_cache is statically allocated. 1227 * Initially an __init data area is used for the head array and the 1228 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1229 * array at the end of the bootstrap. 1230 * 2) Create the first kmalloc cache. 1231 * The struct kmem_cache for the new cache is allocated normally. 1232 * An __init data area is used for the head array. 1233 * 3) Create the remaining kmalloc caches, with minimally sized 1234 * head arrays. 1235 * 4) Replace the __init data head arrays for kmem_cache and the first 1236 * kmalloc cache with kmalloc allocated arrays. 1237 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1238 * the other cache's with kmalloc allocated memory. 1239 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1240 */ 1241 1242 /* 1) create the kmem_cache */ 1243 1244 /* 1245 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1246 */ 1247 create_boot_cache(kmem_cache, "kmem_cache", 1248 offsetof(struct kmem_cache, node) + 1249 nr_node_ids * sizeof(struct kmem_cache_node *), 1250 SLAB_HWCACHE_ALIGN, 0, 0); 1251 list_add(&kmem_cache->list, &slab_caches); 1252 slab_state = PARTIAL; 1253 1254 /* 1255 * Initialize the caches that provide memory for the kmem_cache_node 1256 * structures first. Without this, further allocations will bug. 1257 */ 1258 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( 1259 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL], 1260 kmalloc_info[INDEX_NODE].size, 1261 ARCH_KMALLOC_FLAGS, 0, 1262 kmalloc_info[INDEX_NODE].size); 1263 slab_state = PARTIAL_NODE; 1264 setup_kmalloc_cache_index_table(); 1265 1266 slab_early_init = 0; 1267 1268 /* 5) Replace the bootstrap kmem_cache_node */ 1269 { 1270 int nid; 1271 1272 for_each_online_node(nid) { 1273 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1274 1275 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1276 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1277 } 1278 } 1279 1280 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1281 } 1282 1283 void __init kmem_cache_init_late(void) 1284 { 1285 struct kmem_cache *cachep; 1286 1287 /* 6) resize the head arrays to their final sizes */ 1288 mutex_lock(&slab_mutex); 1289 list_for_each_entry(cachep, &slab_caches, list) 1290 if (enable_cpucache(cachep, GFP_NOWAIT)) 1291 BUG(); 1292 mutex_unlock(&slab_mutex); 1293 1294 /* Done! */ 1295 slab_state = FULL; 1296 1297 #ifdef CONFIG_NUMA 1298 /* 1299 * Register a memory hotplug callback that initializes and frees 1300 * node. 1301 */ 1302 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1303 #endif 1304 1305 /* 1306 * The reap timers are started later, with a module init call: That part 1307 * of the kernel is not yet operational. 1308 */ 1309 } 1310 1311 static int __init cpucache_init(void) 1312 { 1313 int ret; 1314 1315 /* 1316 * Register the timers that return unneeded pages to the page allocator 1317 */ 1318 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1319 slab_online_cpu, slab_offline_cpu); 1320 WARN_ON(ret < 0); 1321 1322 return 0; 1323 } 1324 __initcall(cpucache_init); 1325 1326 static noinline void 1327 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1328 { 1329 #if DEBUG 1330 struct kmem_cache_node *n; 1331 unsigned long flags; 1332 int node; 1333 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1334 DEFAULT_RATELIMIT_BURST); 1335 1336 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1337 return; 1338 1339 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1340 nodeid, gfpflags, &gfpflags); 1341 pr_warn(" cache: %s, object size: %d, order: %d\n", 1342 cachep->name, cachep->size, cachep->gfporder); 1343 1344 for_each_kmem_cache_node(cachep, node, n) { 1345 unsigned long total_slabs, free_slabs, free_objs; 1346 1347 spin_lock_irqsave(&n->list_lock, flags); 1348 total_slabs = n->total_slabs; 1349 free_slabs = n->free_slabs; 1350 free_objs = n->free_objects; 1351 spin_unlock_irqrestore(&n->list_lock, flags); 1352 1353 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1354 node, total_slabs - free_slabs, total_slabs, 1355 (total_slabs * cachep->num) - free_objs, 1356 total_slabs * cachep->num); 1357 } 1358 #endif 1359 } 1360 1361 /* 1362 * Interface to system's page allocator. No need to hold the 1363 * kmem_cache_node ->list_lock. 1364 * 1365 * If we requested dmaable memory, we will get it. Even if we 1366 * did not request dmaable memory, we might get it, but that 1367 * would be relatively rare and ignorable. 1368 */ 1369 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1370 int nodeid) 1371 { 1372 struct page *page; 1373 1374 flags |= cachep->allocflags; 1375 1376 page = __alloc_pages_node(nodeid, flags, cachep->gfporder); 1377 if (!page) { 1378 slab_out_of_memory(cachep, flags, nodeid); 1379 return NULL; 1380 } 1381 1382 account_slab_page(page, cachep->gfporder, cachep); 1383 __SetPageSlab(page); 1384 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1385 if (sk_memalloc_socks() && page_is_pfmemalloc(page)) 1386 SetPageSlabPfmemalloc(page); 1387 1388 return page; 1389 } 1390 1391 /* 1392 * Interface to system's page release. 1393 */ 1394 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1395 { 1396 int order = cachep->gfporder; 1397 1398 BUG_ON(!PageSlab(page)); 1399 __ClearPageSlabPfmemalloc(page); 1400 __ClearPageSlab(page); 1401 page_mapcount_reset(page); 1402 page->mapping = NULL; 1403 1404 if (current->reclaim_state) 1405 current->reclaim_state->reclaimed_slab += 1 << order; 1406 unaccount_slab_page(page, order, cachep); 1407 __free_pages(page, order); 1408 } 1409 1410 static void kmem_rcu_free(struct rcu_head *head) 1411 { 1412 struct kmem_cache *cachep; 1413 struct page *page; 1414 1415 page = container_of(head, struct page, rcu_head); 1416 cachep = page->slab_cache; 1417 1418 kmem_freepages(cachep, page); 1419 } 1420 1421 #if DEBUG 1422 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1423 { 1424 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && 1425 (cachep->size % PAGE_SIZE) == 0) 1426 return true; 1427 1428 return false; 1429 } 1430 1431 #ifdef CONFIG_DEBUG_PAGEALLOC 1432 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1433 { 1434 if (!is_debug_pagealloc_cache(cachep)) 1435 return; 1436 1437 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1438 } 1439 1440 #else 1441 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1442 int map) {} 1443 1444 #endif 1445 1446 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1447 { 1448 int size = cachep->object_size; 1449 addr = &((char *)addr)[obj_offset(cachep)]; 1450 1451 memset(addr, val, size); 1452 *(unsigned char *)(addr + size - 1) = POISON_END; 1453 } 1454 1455 static void dump_line(char *data, int offset, int limit) 1456 { 1457 int i; 1458 unsigned char error = 0; 1459 int bad_count = 0; 1460 1461 pr_err("%03x: ", offset); 1462 for (i = 0; i < limit; i++) { 1463 if (data[offset + i] != POISON_FREE) { 1464 error = data[offset + i]; 1465 bad_count++; 1466 } 1467 } 1468 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1469 &data[offset], limit, 1); 1470 1471 if (bad_count == 1) { 1472 error ^= POISON_FREE; 1473 if (!(error & (error - 1))) { 1474 pr_err("Single bit error detected. Probably bad RAM.\n"); 1475 #ifdef CONFIG_X86 1476 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1477 #else 1478 pr_err("Run a memory test tool.\n"); 1479 #endif 1480 } 1481 } 1482 } 1483 #endif 1484 1485 #if DEBUG 1486 1487 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1488 { 1489 int i, size; 1490 char *realobj; 1491 1492 if (cachep->flags & SLAB_RED_ZONE) { 1493 pr_err("Redzone: 0x%llx/0x%llx\n", 1494 *dbg_redzone1(cachep, objp), 1495 *dbg_redzone2(cachep, objp)); 1496 } 1497 1498 if (cachep->flags & SLAB_STORE_USER) 1499 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1500 realobj = (char *)objp + obj_offset(cachep); 1501 size = cachep->object_size; 1502 for (i = 0; i < size && lines; i += 16, lines--) { 1503 int limit; 1504 limit = 16; 1505 if (i + limit > size) 1506 limit = size - i; 1507 dump_line(realobj, i, limit); 1508 } 1509 } 1510 1511 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1512 { 1513 char *realobj; 1514 int size, i; 1515 int lines = 0; 1516 1517 if (is_debug_pagealloc_cache(cachep)) 1518 return; 1519 1520 realobj = (char *)objp + obj_offset(cachep); 1521 size = cachep->object_size; 1522 1523 for (i = 0; i < size; i++) { 1524 char exp = POISON_FREE; 1525 if (i == size - 1) 1526 exp = POISON_END; 1527 if (realobj[i] != exp) { 1528 int limit; 1529 /* Mismatch ! */ 1530 /* Print header */ 1531 if (lines == 0) { 1532 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1533 print_tainted(), cachep->name, 1534 realobj, size); 1535 print_objinfo(cachep, objp, 0); 1536 } 1537 /* Hexdump the affected line */ 1538 i = (i / 16) * 16; 1539 limit = 16; 1540 if (i + limit > size) 1541 limit = size - i; 1542 dump_line(realobj, i, limit); 1543 i += 16; 1544 lines++; 1545 /* Limit to 5 lines */ 1546 if (lines > 5) 1547 break; 1548 } 1549 } 1550 if (lines != 0) { 1551 /* Print some data about the neighboring objects, if they 1552 * exist: 1553 */ 1554 struct page *page = virt_to_head_page(objp); 1555 unsigned int objnr; 1556 1557 objnr = obj_to_index(cachep, page, objp); 1558 if (objnr) { 1559 objp = index_to_obj(cachep, page, objnr - 1); 1560 realobj = (char *)objp + obj_offset(cachep); 1561 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1562 print_objinfo(cachep, objp, 2); 1563 } 1564 if (objnr + 1 < cachep->num) { 1565 objp = index_to_obj(cachep, page, objnr + 1); 1566 realobj = (char *)objp + obj_offset(cachep); 1567 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1568 print_objinfo(cachep, objp, 2); 1569 } 1570 } 1571 } 1572 #endif 1573 1574 #if DEBUG 1575 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1576 struct page *page) 1577 { 1578 int i; 1579 1580 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1581 poison_obj(cachep, page->freelist - obj_offset(cachep), 1582 POISON_FREE); 1583 } 1584 1585 for (i = 0; i < cachep->num; i++) { 1586 void *objp = index_to_obj(cachep, page, i); 1587 1588 if (cachep->flags & SLAB_POISON) { 1589 check_poison_obj(cachep, objp); 1590 slab_kernel_map(cachep, objp, 1); 1591 } 1592 if (cachep->flags & SLAB_RED_ZONE) { 1593 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1594 slab_error(cachep, "start of a freed object was overwritten"); 1595 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1596 slab_error(cachep, "end of a freed object was overwritten"); 1597 } 1598 } 1599 } 1600 #else 1601 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1602 struct page *page) 1603 { 1604 } 1605 #endif 1606 1607 /** 1608 * slab_destroy - destroy and release all objects in a slab 1609 * @cachep: cache pointer being destroyed 1610 * @page: page pointer being destroyed 1611 * 1612 * Destroy all the objs in a slab page, and release the mem back to the system. 1613 * Before calling the slab page must have been unlinked from the cache. The 1614 * kmem_cache_node ->list_lock is not held/needed. 1615 */ 1616 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1617 { 1618 void *freelist; 1619 1620 freelist = page->freelist; 1621 slab_destroy_debugcheck(cachep, page); 1622 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1623 call_rcu(&page->rcu_head, kmem_rcu_free); 1624 else 1625 kmem_freepages(cachep, page); 1626 1627 /* 1628 * From now on, we don't use freelist 1629 * although actual page can be freed in rcu context 1630 */ 1631 if (OFF_SLAB(cachep)) 1632 kmem_cache_free(cachep->freelist_cache, freelist); 1633 } 1634 1635 /* 1636 * Update the size of the caches before calling slabs_destroy as it may 1637 * recursively call kfree. 1638 */ 1639 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1640 { 1641 struct page *page, *n; 1642 1643 list_for_each_entry_safe(page, n, list, slab_list) { 1644 list_del(&page->slab_list); 1645 slab_destroy(cachep, page); 1646 } 1647 } 1648 1649 /** 1650 * calculate_slab_order - calculate size (page order) of slabs 1651 * @cachep: pointer to the cache that is being created 1652 * @size: size of objects to be created in this cache. 1653 * @flags: slab allocation flags 1654 * 1655 * Also calculates the number of objects per slab. 1656 * 1657 * This could be made much more intelligent. For now, try to avoid using 1658 * high order pages for slabs. When the gfp() functions are more friendly 1659 * towards high-order requests, this should be changed. 1660 * 1661 * Return: number of left-over bytes in a slab 1662 */ 1663 static size_t calculate_slab_order(struct kmem_cache *cachep, 1664 size_t size, slab_flags_t flags) 1665 { 1666 size_t left_over = 0; 1667 int gfporder; 1668 1669 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1670 unsigned int num; 1671 size_t remainder; 1672 1673 num = cache_estimate(gfporder, size, flags, &remainder); 1674 if (!num) 1675 continue; 1676 1677 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1678 if (num > SLAB_OBJ_MAX_NUM) 1679 break; 1680 1681 if (flags & CFLGS_OFF_SLAB) { 1682 struct kmem_cache *freelist_cache; 1683 size_t freelist_size; 1684 1685 freelist_size = num * sizeof(freelist_idx_t); 1686 freelist_cache = kmalloc_slab(freelist_size, 0u); 1687 if (!freelist_cache) 1688 continue; 1689 1690 /* 1691 * Needed to avoid possible looping condition 1692 * in cache_grow_begin() 1693 */ 1694 if (OFF_SLAB(freelist_cache)) 1695 continue; 1696 1697 /* check if off slab has enough benefit */ 1698 if (freelist_cache->size > cachep->size / 2) 1699 continue; 1700 } 1701 1702 /* Found something acceptable - save it away */ 1703 cachep->num = num; 1704 cachep->gfporder = gfporder; 1705 left_over = remainder; 1706 1707 /* 1708 * A VFS-reclaimable slab tends to have most allocations 1709 * as GFP_NOFS and we really don't want to have to be allocating 1710 * higher-order pages when we are unable to shrink dcache. 1711 */ 1712 if (flags & SLAB_RECLAIM_ACCOUNT) 1713 break; 1714 1715 /* 1716 * Large number of objects is good, but very large slabs are 1717 * currently bad for the gfp()s. 1718 */ 1719 if (gfporder >= slab_max_order) 1720 break; 1721 1722 /* 1723 * Acceptable internal fragmentation? 1724 */ 1725 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1726 break; 1727 } 1728 return left_over; 1729 } 1730 1731 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1732 struct kmem_cache *cachep, int entries, int batchcount) 1733 { 1734 int cpu; 1735 size_t size; 1736 struct array_cache __percpu *cpu_cache; 1737 1738 size = sizeof(void *) * entries + sizeof(struct array_cache); 1739 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1740 1741 if (!cpu_cache) 1742 return NULL; 1743 1744 for_each_possible_cpu(cpu) { 1745 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1746 entries, batchcount); 1747 } 1748 1749 return cpu_cache; 1750 } 1751 1752 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1753 { 1754 if (slab_state >= FULL) 1755 return enable_cpucache(cachep, gfp); 1756 1757 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1758 if (!cachep->cpu_cache) 1759 return 1; 1760 1761 if (slab_state == DOWN) { 1762 /* Creation of first cache (kmem_cache). */ 1763 set_up_node(kmem_cache, CACHE_CACHE); 1764 } else if (slab_state == PARTIAL) { 1765 /* For kmem_cache_node */ 1766 set_up_node(cachep, SIZE_NODE); 1767 } else { 1768 int node; 1769 1770 for_each_online_node(node) { 1771 cachep->node[node] = kmalloc_node( 1772 sizeof(struct kmem_cache_node), gfp, node); 1773 BUG_ON(!cachep->node[node]); 1774 kmem_cache_node_init(cachep->node[node]); 1775 } 1776 } 1777 1778 cachep->node[numa_mem_id()]->next_reap = 1779 jiffies + REAPTIMEOUT_NODE + 1780 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1781 1782 cpu_cache_get(cachep)->avail = 0; 1783 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1784 cpu_cache_get(cachep)->batchcount = 1; 1785 cpu_cache_get(cachep)->touched = 0; 1786 cachep->batchcount = 1; 1787 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1788 return 0; 1789 } 1790 1791 slab_flags_t kmem_cache_flags(unsigned int object_size, 1792 slab_flags_t flags, const char *name, 1793 void (*ctor)(void *)) 1794 { 1795 return flags; 1796 } 1797 1798 struct kmem_cache * 1799 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1800 slab_flags_t flags, void (*ctor)(void *)) 1801 { 1802 struct kmem_cache *cachep; 1803 1804 cachep = find_mergeable(size, align, flags, name, ctor); 1805 if (cachep) { 1806 cachep->refcount++; 1807 1808 /* 1809 * Adjust the object sizes so that we clear 1810 * the complete object on kzalloc. 1811 */ 1812 cachep->object_size = max_t(int, cachep->object_size, size); 1813 } 1814 return cachep; 1815 } 1816 1817 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1818 size_t size, slab_flags_t flags) 1819 { 1820 size_t left; 1821 1822 cachep->num = 0; 1823 1824 /* 1825 * If slab auto-initialization on free is enabled, store the freelist 1826 * off-slab, so that its contents don't end up in one of the allocated 1827 * objects. 1828 */ 1829 if (unlikely(slab_want_init_on_free(cachep))) 1830 return false; 1831 1832 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1833 return false; 1834 1835 left = calculate_slab_order(cachep, size, 1836 flags | CFLGS_OBJFREELIST_SLAB); 1837 if (!cachep->num) 1838 return false; 1839 1840 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1841 return false; 1842 1843 cachep->colour = left / cachep->colour_off; 1844 1845 return true; 1846 } 1847 1848 static bool set_off_slab_cache(struct kmem_cache *cachep, 1849 size_t size, slab_flags_t flags) 1850 { 1851 size_t left; 1852 1853 cachep->num = 0; 1854 1855 /* 1856 * Always use on-slab management when SLAB_NOLEAKTRACE 1857 * to avoid recursive calls into kmemleak. 1858 */ 1859 if (flags & SLAB_NOLEAKTRACE) 1860 return false; 1861 1862 /* 1863 * Size is large, assume best to place the slab management obj 1864 * off-slab (should allow better packing of objs). 1865 */ 1866 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1867 if (!cachep->num) 1868 return false; 1869 1870 /* 1871 * If the slab has been placed off-slab, and we have enough space then 1872 * move it on-slab. This is at the expense of any extra colouring. 1873 */ 1874 if (left >= cachep->num * sizeof(freelist_idx_t)) 1875 return false; 1876 1877 cachep->colour = left / cachep->colour_off; 1878 1879 return true; 1880 } 1881 1882 static bool set_on_slab_cache(struct kmem_cache *cachep, 1883 size_t size, slab_flags_t flags) 1884 { 1885 size_t left; 1886 1887 cachep->num = 0; 1888 1889 left = calculate_slab_order(cachep, size, flags); 1890 if (!cachep->num) 1891 return false; 1892 1893 cachep->colour = left / cachep->colour_off; 1894 1895 return true; 1896 } 1897 1898 /** 1899 * __kmem_cache_create - Create a cache. 1900 * @cachep: cache management descriptor 1901 * @flags: SLAB flags 1902 * 1903 * Returns a ptr to the cache on success, NULL on failure. 1904 * Cannot be called within a int, but can be interrupted. 1905 * The @ctor is run when new pages are allocated by the cache. 1906 * 1907 * The flags are 1908 * 1909 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1910 * to catch references to uninitialised memory. 1911 * 1912 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1913 * for buffer overruns. 1914 * 1915 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1916 * cacheline. This can be beneficial if you're counting cycles as closely 1917 * as davem. 1918 * 1919 * Return: a pointer to the created cache or %NULL in case of error 1920 */ 1921 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1922 { 1923 size_t ralign = BYTES_PER_WORD; 1924 gfp_t gfp; 1925 int err; 1926 unsigned int size = cachep->size; 1927 1928 #if DEBUG 1929 #if FORCED_DEBUG 1930 /* 1931 * Enable redzoning and last user accounting, except for caches with 1932 * large objects, if the increased size would increase the object size 1933 * above the next power of two: caches with object sizes just above a 1934 * power of two have a significant amount of internal fragmentation. 1935 */ 1936 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1937 2 * sizeof(unsigned long long))) 1938 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1939 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1940 flags |= SLAB_POISON; 1941 #endif 1942 #endif 1943 1944 /* 1945 * Check that size is in terms of words. This is needed to avoid 1946 * unaligned accesses for some archs when redzoning is used, and makes 1947 * sure any on-slab bufctl's are also correctly aligned. 1948 */ 1949 size = ALIGN(size, BYTES_PER_WORD); 1950 1951 if (flags & SLAB_RED_ZONE) { 1952 ralign = REDZONE_ALIGN; 1953 /* If redzoning, ensure that the second redzone is suitably 1954 * aligned, by adjusting the object size accordingly. */ 1955 size = ALIGN(size, REDZONE_ALIGN); 1956 } 1957 1958 /* 3) caller mandated alignment */ 1959 if (ralign < cachep->align) { 1960 ralign = cachep->align; 1961 } 1962 /* disable debug if necessary */ 1963 if (ralign > __alignof__(unsigned long long)) 1964 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1965 /* 1966 * 4) Store it. 1967 */ 1968 cachep->align = ralign; 1969 cachep->colour_off = cache_line_size(); 1970 /* Offset must be a multiple of the alignment. */ 1971 if (cachep->colour_off < cachep->align) 1972 cachep->colour_off = cachep->align; 1973 1974 if (slab_is_available()) 1975 gfp = GFP_KERNEL; 1976 else 1977 gfp = GFP_NOWAIT; 1978 1979 #if DEBUG 1980 1981 /* 1982 * Both debugging options require word-alignment which is calculated 1983 * into align above. 1984 */ 1985 if (flags & SLAB_RED_ZONE) { 1986 /* add space for red zone words */ 1987 cachep->obj_offset += sizeof(unsigned long long); 1988 size += 2 * sizeof(unsigned long long); 1989 } 1990 if (flags & SLAB_STORE_USER) { 1991 /* user store requires one word storage behind the end of 1992 * the real object. But if the second red zone needs to be 1993 * aligned to 64 bits, we must allow that much space. 1994 */ 1995 if (flags & SLAB_RED_ZONE) 1996 size += REDZONE_ALIGN; 1997 else 1998 size += BYTES_PER_WORD; 1999 } 2000 #endif 2001 2002 kasan_cache_create(cachep, &size, &flags); 2003 2004 size = ALIGN(size, cachep->align); 2005 /* 2006 * We should restrict the number of objects in a slab to implement 2007 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2008 */ 2009 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2010 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2011 2012 #if DEBUG 2013 /* 2014 * To activate debug pagealloc, off-slab management is necessary 2015 * requirement. In early phase of initialization, small sized slab 2016 * doesn't get initialized so it would not be possible. So, we need 2017 * to check size >= 256. It guarantees that all necessary small 2018 * sized slab is initialized in current slab initialization sequence. 2019 */ 2020 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && 2021 size >= 256 && cachep->object_size > cache_line_size()) { 2022 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2023 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2024 2025 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2026 flags |= CFLGS_OFF_SLAB; 2027 cachep->obj_offset += tmp_size - size; 2028 size = tmp_size; 2029 goto done; 2030 } 2031 } 2032 } 2033 #endif 2034 2035 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2036 flags |= CFLGS_OBJFREELIST_SLAB; 2037 goto done; 2038 } 2039 2040 if (set_off_slab_cache(cachep, size, flags)) { 2041 flags |= CFLGS_OFF_SLAB; 2042 goto done; 2043 } 2044 2045 if (set_on_slab_cache(cachep, size, flags)) 2046 goto done; 2047 2048 return -E2BIG; 2049 2050 done: 2051 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2052 cachep->flags = flags; 2053 cachep->allocflags = __GFP_COMP; 2054 if (flags & SLAB_CACHE_DMA) 2055 cachep->allocflags |= GFP_DMA; 2056 if (flags & SLAB_CACHE_DMA32) 2057 cachep->allocflags |= GFP_DMA32; 2058 if (flags & SLAB_RECLAIM_ACCOUNT) 2059 cachep->allocflags |= __GFP_RECLAIMABLE; 2060 cachep->size = size; 2061 cachep->reciprocal_buffer_size = reciprocal_value(size); 2062 2063 #if DEBUG 2064 /* 2065 * If we're going to use the generic kernel_map_pages() 2066 * poisoning, then it's going to smash the contents of 2067 * the redzone and userword anyhow, so switch them off. 2068 */ 2069 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2070 (cachep->flags & SLAB_POISON) && 2071 is_debug_pagealloc_cache(cachep)) 2072 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2073 #endif 2074 2075 if (OFF_SLAB(cachep)) { 2076 cachep->freelist_cache = 2077 kmalloc_slab(cachep->freelist_size, 0u); 2078 } 2079 2080 err = setup_cpu_cache(cachep, gfp); 2081 if (err) { 2082 __kmem_cache_release(cachep); 2083 return err; 2084 } 2085 2086 return 0; 2087 } 2088 2089 #if DEBUG 2090 static void check_irq_off(void) 2091 { 2092 BUG_ON(!irqs_disabled()); 2093 } 2094 2095 static void check_irq_on(void) 2096 { 2097 BUG_ON(irqs_disabled()); 2098 } 2099 2100 static void check_mutex_acquired(void) 2101 { 2102 BUG_ON(!mutex_is_locked(&slab_mutex)); 2103 } 2104 2105 static void check_spinlock_acquired(struct kmem_cache *cachep) 2106 { 2107 #ifdef CONFIG_SMP 2108 check_irq_off(); 2109 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2110 #endif 2111 } 2112 2113 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2114 { 2115 #ifdef CONFIG_SMP 2116 check_irq_off(); 2117 assert_spin_locked(&get_node(cachep, node)->list_lock); 2118 #endif 2119 } 2120 2121 #else 2122 #define check_irq_off() do { } while(0) 2123 #define check_irq_on() do { } while(0) 2124 #define check_mutex_acquired() do { } while(0) 2125 #define check_spinlock_acquired(x) do { } while(0) 2126 #define check_spinlock_acquired_node(x, y) do { } while(0) 2127 #endif 2128 2129 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2130 int node, bool free_all, struct list_head *list) 2131 { 2132 int tofree; 2133 2134 if (!ac || !ac->avail) 2135 return; 2136 2137 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2138 if (tofree > ac->avail) 2139 tofree = (ac->avail + 1) / 2; 2140 2141 free_block(cachep, ac->entry, tofree, node, list); 2142 ac->avail -= tofree; 2143 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2144 } 2145 2146 static void do_drain(void *arg) 2147 { 2148 struct kmem_cache *cachep = arg; 2149 struct array_cache *ac; 2150 int node = numa_mem_id(); 2151 struct kmem_cache_node *n; 2152 LIST_HEAD(list); 2153 2154 check_irq_off(); 2155 ac = cpu_cache_get(cachep); 2156 n = get_node(cachep, node); 2157 spin_lock(&n->list_lock); 2158 free_block(cachep, ac->entry, ac->avail, node, &list); 2159 spin_unlock(&n->list_lock); 2160 ac->avail = 0; 2161 slabs_destroy(cachep, &list); 2162 } 2163 2164 static void drain_cpu_caches(struct kmem_cache *cachep) 2165 { 2166 struct kmem_cache_node *n; 2167 int node; 2168 LIST_HEAD(list); 2169 2170 on_each_cpu(do_drain, cachep, 1); 2171 check_irq_on(); 2172 for_each_kmem_cache_node(cachep, node, n) 2173 if (n->alien) 2174 drain_alien_cache(cachep, n->alien); 2175 2176 for_each_kmem_cache_node(cachep, node, n) { 2177 spin_lock_irq(&n->list_lock); 2178 drain_array_locked(cachep, n->shared, node, true, &list); 2179 spin_unlock_irq(&n->list_lock); 2180 2181 slabs_destroy(cachep, &list); 2182 } 2183 } 2184 2185 /* 2186 * Remove slabs from the list of free slabs. 2187 * Specify the number of slabs to drain in tofree. 2188 * 2189 * Returns the actual number of slabs released. 2190 */ 2191 static int drain_freelist(struct kmem_cache *cache, 2192 struct kmem_cache_node *n, int tofree) 2193 { 2194 struct list_head *p; 2195 int nr_freed; 2196 struct page *page; 2197 2198 nr_freed = 0; 2199 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2200 2201 spin_lock_irq(&n->list_lock); 2202 p = n->slabs_free.prev; 2203 if (p == &n->slabs_free) { 2204 spin_unlock_irq(&n->list_lock); 2205 goto out; 2206 } 2207 2208 page = list_entry(p, struct page, slab_list); 2209 list_del(&page->slab_list); 2210 n->free_slabs--; 2211 n->total_slabs--; 2212 /* 2213 * Safe to drop the lock. The slab is no longer linked 2214 * to the cache. 2215 */ 2216 n->free_objects -= cache->num; 2217 spin_unlock_irq(&n->list_lock); 2218 slab_destroy(cache, page); 2219 nr_freed++; 2220 } 2221 out: 2222 return nr_freed; 2223 } 2224 2225 bool __kmem_cache_empty(struct kmem_cache *s) 2226 { 2227 int node; 2228 struct kmem_cache_node *n; 2229 2230 for_each_kmem_cache_node(s, node, n) 2231 if (!list_empty(&n->slabs_full) || 2232 !list_empty(&n->slabs_partial)) 2233 return false; 2234 return true; 2235 } 2236 2237 int __kmem_cache_shrink(struct kmem_cache *cachep) 2238 { 2239 int ret = 0; 2240 int node; 2241 struct kmem_cache_node *n; 2242 2243 drain_cpu_caches(cachep); 2244 2245 check_irq_on(); 2246 for_each_kmem_cache_node(cachep, node, n) { 2247 drain_freelist(cachep, n, INT_MAX); 2248 2249 ret += !list_empty(&n->slabs_full) || 2250 !list_empty(&n->slabs_partial); 2251 } 2252 return (ret ? 1 : 0); 2253 } 2254 2255 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2256 { 2257 return __kmem_cache_shrink(cachep); 2258 } 2259 2260 void __kmem_cache_release(struct kmem_cache *cachep) 2261 { 2262 int i; 2263 struct kmem_cache_node *n; 2264 2265 cache_random_seq_destroy(cachep); 2266 2267 free_percpu(cachep->cpu_cache); 2268 2269 /* NUMA: free the node structures */ 2270 for_each_kmem_cache_node(cachep, i, n) { 2271 kfree(n->shared); 2272 free_alien_cache(n->alien); 2273 kfree(n); 2274 cachep->node[i] = NULL; 2275 } 2276 } 2277 2278 /* 2279 * Get the memory for a slab management obj. 2280 * 2281 * For a slab cache when the slab descriptor is off-slab, the 2282 * slab descriptor can't come from the same cache which is being created, 2283 * Because if it is the case, that means we defer the creation of 2284 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2285 * And we eventually call down to __kmem_cache_create(), which 2286 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2287 * This is a "chicken-and-egg" problem. 2288 * 2289 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2290 * which are all initialized during kmem_cache_init(). 2291 */ 2292 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2293 struct page *page, int colour_off, 2294 gfp_t local_flags, int nodeid) 2295 { 2296 void *freelist; 2297 void *addr = page_address(page); 2298 2299 page->s_mem = addr + colour_off; 2300 page->active = 0; 2301 2302 if (OBJFREELIST_SLAB(cachep)) 2303 freelist = NULL; 2304 else if (OFF_SLAB(cachep)) { 2305 /* Slab management obj is off-slab. */ 2306 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2307 local_flags, nodeid); 2308 } else { 2309 /* We will use last bytes at the slab for freelist */ 2310 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2311 cachep->freelist_size; 2312 } 2313 2314 return freelist; 2315 } 2316 2317 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2318 { 2319 return ((freelist_idx_t *)page->freelist)[idx]; 2320 } 2321 2322 static inline void set_free_obj(struct page *page, 2323 unsigned int idx, freelist_idx_t val) 2324 { 2325 ((freelist_idx_t *)(page->freelist))[idx] = val; 2326 } 2327 2328 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) 2329 { 2330 #if DEBUG 2331 int i; 2332 2333 for (i = 0; i < cachep->num; i++) { 2334 void *objp = index_to_obj(cachep, page, i); 2335 2336 if (cachep->flags & SLAB_STORE_USER) 2337 *dbg_userword(cachep, objp) = NULL; 2338 2339 if (cachep->flags & SLAB_RED_ZONE) { 2340 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2341 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2342 } 2343 /* 2344 * Constructors are not allowed to allocate memory from the same 2345 * cache which they are a constructor for. Otherwise, deadlock. 2346 * They must also be threaded. 2347 */ 2348 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2349 kasan_unpoison_object_data(cachep, 2350 objp + obj_offset(cachep)); 2351 cachep->ctor(objp + obj_offset(cachep)); 2352 kasan_poison_object_data( 2353 cachep, objp + obj_offset(cachep)); 2354 } 2355 2356 if (cachep->flags & SLAB_RED_ZONE) { 2357 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2358 slab_error(cachep, "constructor overwrote the end of an object"); 2359 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2360 slab_error(cachep, "constructor overwrote the start of an object"); 2361 } 2362 /* need to poison the objs? */ 2363 if (cachep->flags & SLAB_POISON) { 2364 poison_obj(cachep, objp, POISON_FREE); 2365 slab_kernel_map(cachep, objp, 0); 2366 } 2367 } 2368 #endif 2369 } 2370 2371 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2372 /* Hold information during a freelist initialization */ 2373 union freelist_init_state { 2374 struct { 2375 unsigned int pos; 2376 unsigned int *list; 2377 unsigned int count; 2378 }; 2379 struct rnd_state rnd_state; 2380 }; 2381 2382 /* 2383 * Initialize the state based on the randomization methode available. 2384 * return true if the pre-computed list is available, false otherwize. 2385 */ 2386 static bool freelist_state_initialize(union freelist_init_state *state, 2387 struct kmem_cache *cachep, 2388 unsigned int count) 2389 { 2390 bool ret; 2391 unsigned int rand; 2392 2393 /* Use best entropy available to define a random shift */ 2394 rand = get_random_int(); 2395 2396 /* Use a random state if the pre-computed list is not available */ 2397 if (!cachep->random_seq) { 2398 prandom_seed_state(&state->rnd_state, rand); 2399 ret = false; 2400 } else { 2401 state->list = cachep->random_seq; 2402 state->count = count; 2403 state->pos = rand % count; 2404 ret = true; 2405 } 2406 return ret; 2407 } 2408 2409 /* Get the next entry on the list and randomize it using a random shift */ 2410 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2411 { 2412 if (state->pos >= state->count) 2413 state->pos = 0; 2414 return state->list[state->pos++]; 2415 } 2416 2417 /* Swap two freelist entries */ 2418 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) 2419 { 2420 swap(((freelist_idx_t *)page->freelist)[a], 2421 ((freelist_idx_t *)page->freelist)[b]); 2422 } 2423 2424 /* 2425 * Shuffle the freelist initialization state based on pre-computed lists. 2426 * return true if the list was successfully shuffled, false otherwise. 2427 */ 2428 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) 2429 { 2430 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2431 union freelist_init_state state; 2432 bool precomputed; 2433 2434 if (count < 2) 2435 return false; 2436 2437 precomputed = freelist_state_initialize(&state, cachep, count); 2438 2439 /* Take a random entry as the objfreelist */ 2440 if (OBJFREELIST_SLAB(cachep)) { 2441 if (!precomputed) 2442 objfreelist = count - 1; 2443 else 2444 objfreelist = next_random_slot(&state); 2445 page->freelist = index_to_obj(cachep, page, objfreelist) + 2446 obj_offset(cachep); 2447 count--; 2448 } 2449 2450 /* 2451 * On early boot, generate the list dynamically. 2452 * Later use a pre-computed list for speed. 2453 */ 2454 if (!precomputed) { 2455 for (i = 0; i < count; i++) 2456 set_free_obj(page, i, i); 2457 2458 /* Fisher-Yates shuffle */ 2459 for (i = count - 1; i > 0; i--) { 2460 rand = prandom_u32_state(&state.rnd_state); 2461 rand %= (i + 1); 2462 swap_free_obj(page, i, rand); 2463 } 2464 } else { 2465 for (i = 0; i < count; i++) 2466 set_free_obj(page, i, next_random_slot(&state)); 2467 } 2468 2469 if (OBJFREELIST_SLAB(cachep)) 2470 set_free_obj(page, cachep->num - 1, objfreelist); 2471 2472 return true; 2473 } 2474 #else 2475 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2476 struct page *page) 2477 { 2478 return false; 2479 } 2480 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2481 2482 static void cache_init_objs(struct kmem_cache *cachep, 2483 struct page *page) 2484 { 2485 int i; 2486 void *objp; 2487 bool shuffled; 2488 2489 cache_init_objs_debug(cachep, page); 2490 2491 /* Try to randomize the freelist if enabled */ 2492 shuffled = shuffle_freelist(cachep, page); 2493 2494 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2495 page->freelist = index_to_obj(cachep, page, cachep->num - 1) + 2496 obj_offset(cachep); 2497 } 2498 2499 for (i = 0; i < cachep->num; i++) { 2500 objp = index_to_obj(cachep, page, i); 2501 objp = kasan_init_slab_obj(cachep, objp); 2502 2503 /* constructor could break poison info */ 2504 if (DEBUG == 0 && cachep->ctor) { 2505 kasan_unpoison_object_data(cachep, objp); 2506 cachep->ctor(objp); 2507 kasan_poison_object_data(cachep, objp); 2508 } 2509 2510 if (!shuffled) 2511 set_free_obj(page, i, i); 2512 } 2513 } 2514 2515 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) 2516 { 2517 void *objp; 2518 2519 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2520 page->active++; 2521 2522 return objp; 2523 } 2524 2525 static void slab_put_obj(struct kmem_cache *cachep, 2526 struct page *page, void *objp) 2527 { 2528 unsigned int objnr = obj_to_index(cachep, page, objp); 2529 #if DEBUG 2530 unsigned int i; 2531 2532 /* Verify double free bug */ 2533 for (i = page->active; i < cachep->num; i++) { 2534 if (get_free_obj(page, i) == objnr) { 2535 pr_err("slab: double free detected in cache '%s', objp %px\n", 2536 cachep->name, objp); 2537 BUG(); 2538 } 2539 } 2540 #endif 2541 page->active--; 2542 if (!page->freelist) 2543 page->freelist = objp + obj_offset(cachep); 2544 2545 set_free_obj(page, page->active, objnr); 2546 } 2547 2548 /* 2549 * Map pages beginning at addr to the given cache and slab. This is required 2550 * for the slab allocator to be able to lookup the cache and slab of a 2551 * virtual address for kfree, ksize, and slab debugging. 2552 */ 2553 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2554 void *freelist) 2555 { 2556 page->slab_cache = cache; 2557 page->freelist = freelist; 2558 } 2559 2560 /* 2561 * Grow (by 1) the number of slabs within a cache. This is called by 2562 * kmem_cache_alloc() when there are no active objs left in a cache. 2563 */ 2564 static struct page *cache_grow_begin(struct kmem_cache *cachep, 2565 gfp_t flags, int nodeid) 2566 { 2567 void *freelist; 2568 size_t offset; 2569 gfp_t local_flags; 2570 int page_node; 2571 struct kmem_cache_node *n; 2572 struct page *page; 2573 2574 /* 2575 * Be lazy and only check for valid flags here, keeping it out of the 2576 * critical path in kmem_cache_alloc(). 2577 */ 2578 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2579 flags = kmalloc_fix_flags(flags); 2580 2581 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2582 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2583 2584 check_irq_off(); 2585 if (gfpflags_allow_blocking(local_flags)) 2586 local_irq_enable(); 2587 2588 /* 2589 * Get mem for the objs. Attempt to allocate a physical page from 2590 * 'nodeid'. 2591 */ 2592 page = kmem_getpages(cachep, local_flags, nodeid); 2593 if (!page) 2594 goto failed; 2595 2596 page_node = page_to_nid(page); 2597 n = get_node(cachep, page_node); 2598 2599 /* Get colour for the slab, and cal the next value. */ 2600 n->colour_next++; 2601 if (n->colour_next >= cachep->colour) 2602 n->colour_next = 0; 2603 2604 offset = n->colour_next; 2605 if (offset >= cachep->colour) 2606 offset = 0; 2607 2608 offset *= cachep->colour_off; 2609 2610 /* 2611 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2612 * page_address() in the latter returns a non-tagged pointer, 2613 * as it should be for slab pages. 2614 */ 2615 kasan_poison_slab(page); 2616 2617 /* Get slab management. */ 2618 freelist = alloc_slabmgmt(cachep, page, offset, 2619 local_flags & ~GFP_CONSTRAINT_MASK, page_node); 2620 if (OFF_SLAB(cachep) && !freelist) 2621 goto opps1; 2622 2623 slab_map_pages(cachep, page, freelist); 2624 2625 cache_init_objs(cachep, page); 2626 2627 if (gfpflags_allow_blocking(local_flags)) 2628 local_irq_disable(); 2629 2630 return page; 2631 2632 opps1: 2633 kmem_freepages(cachep, page); 2634 failed: 2635 if (gfpflags_allow_blocking(local_flags)) 2636 local_irq_disable(); 2637 return NULL; 2638 } 2639 2640 static void cache_grow_end(struct kmem_cache *cachep, struct page *page) 2641 { 2642 struct kmem_cache_node *n; 2643 void *list = NULL; 2644 2645 check_irq_off(); 2646 2647 if (!page) 2648 return; 2649 2650 INIT_LIST_HEAD(&page->slab_list); 2651 n = get_node(cachep, page_to_nid(page)); 2652 2653 spin_lock(&n->list_lock); 2654 n->total_slabs++; 2655 if (!page->active) { 2656 list_add_tail(&page->slab_list, &n->slabs_free); 2657 n->free_slabs++; 2658 } else 2659 fixup_slab_list(cachep, n, page, &list); 2660 2661 STATS_INC_GROWN(cachep); 2662 n->free_objects += cachep->num - page->active; 2663 spin_unlock(&n->list_lock); 2664 2665 fixup_objfreelist_debug(cachep, &list); 2666 } 2667 2668 #if DEBUG 2669 2670 /* 2671 * Perform extra freeing checks: 2672 * - detect bad pointers. 2673 * - POISON/RED_ZONE checking 2674 */ 2675 static void kfree_debugcheck(const void *objp) 2676 { 2677 if (!virt_addr_valid(objp)) { 2678 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2679 (unsigned long)objp); 2680 BUG(); 2681 } 2682 } 2683 2684 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2685 { 2686 unsigned long long redzone1, redzone2; 2687 2688 redzone1 = *dbg_redzone1(cache, obj); 2689 redzone2 = *dbg_redzone2(cache, obj); 2690 2691 /* 2692 * Redzone is ok. 2693 */ 2694 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2695 return; 2696 2697 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2698 slab_error(cache, "double free detected"); 2699 else 2700 slab_error(cache, "memory outside object was overwritten"); 2701 2702 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2703 obj, redzone1, redzone2); 2704 } 2705 2706 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2707 unsigned long caller) 2708 { 2709 unsigned int objnr; 2710 struct page *page; 2711 2712 BUG_ON(virt_to_cache(objp) != cachep); 2713 2714 objp -= obj_offset(cachep); 2715 kfree_debugcheck(objp); 2716 page = virt_to_head_page(objp); 2717 2718 if (cachep->flags & SLAB_RED_ZONE) { 2719 verify_redzone_free(cachep, objp); 2720 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2721 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2722 } 2723 if (cachep->flags & SLAB_STORE_USER) 2724 *dbg_userword(cachep, objp) = (void *)caller; 2725 2726 objnr = obj_to_index(cachep, page, objp); 2727 2728 BUG_ON(objnr >= cachep->num); 2729 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2730 2731 if (cachep->flags & SLAB_POISON) { 2732 poison_obj(cachep, objp, POISON_FREE); 2733 slab_kernel_map(cachep, objp, 0); 2734 } 2735 return objp; 2736 } 2737 2738 #else 2739 #define kfree_debugcheck(x) do { } while(0) 2740 #define cache_free_debugcheck(x,objp,z) (objp) 2741 #endif 2742 2743 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2744 void **list) 2745 { 2746 #if DEBUG 2747 void *next = *list; 2748 void *objp; 2749 2750 while (next) { 2751 objp = next - obj_offset(cachep); 2752 next = *(void **)next; 2753 poison_obj(cachep, objp, POISON_FREE); 2754 } 2755 #endif 2756 } 2757 2758 static inline void fixup_slab_list(struct kmem_cache *cachep, 2759 struct kmem_cache_node *n, struct page *page, 2760 void **list) 2761 { 2762 /* move slabp to correct slabp list: */ 2763 list_del(&page->slab_list); 2764 if (page->active == cachep->num) { 2765 list_add(&page->slab_list, &n->slabs_full); 2766 if (OBJFREELIST_SLAB(cachep)) { 2767 #if DEBUG 2768 /* Poisoning will be done without holding the lock */ 2769 if (cachep->flags & SLAB_POISON) { 2770 void **objp = page->freelist; 2771 2772 *objp = *list; 2773 *list = objp; 2774 } 2775 #endif 2776 page->freelist = NULL; 2777 } 2778 } else 2779 list_add(&page->slab_list, &n->slabs_partial); 2780 } 2781 2782 /* Try to find non-pfmemalloc slab if needed */ 2783 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, 2784 struct page *page, bool pfmemalloc) 2785 { 2786 if (!page) 2787 return NULL; 2788 2789 if (pfmemalloc) 2790 return page; 2791 2792 if (!PageSlabPfmemalloc(page)) 2793 return page; 2794 2795 /* No need to keep pfmemalloc slab if we have enough free objects */ 2796 if (n->free_objects > n->free_limit) { 2797 ClearPageSlabPfmemalloc(page); 2798 return page; 2799 } 2800 2801 /* Move pfmemalloc slab to the end of list to speed up next search */ 2802 list_del(&page->slab_list); 2803 if (!page->active) { 2804 list_add_tail(&page->slab_list, &n->slabs_free); 2805 n->free_slabs++; 2806 } else 2807 list_add_tail(&page->slab_list, &n->slabs_partial); 2808 2809 list_for_each_entry(page, &n->slabs_partial, slab_list) { 2810 if (!PageSlabPfmemalloc(page)) 2811 return page; 2812 } 2813 2814 n->free_touched = 1; 2815 list_for_each_entry(page, &n->slabs_free, slab_list) { 2816 if (!PageSlabPfmemalloc(page)) { 2817 n->free_slabs--; 2818 return page; 2819 } 2820 } 2821 2822 return NULL; 2823 } 2824 2825 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2826 { 2827 struct page *page; 2828 2829 assert_spin_locked(&n->list_lock); 2830 page = list_first_entry_or_null(&n->slabs_partial, struct page, 2831 slab_list); 2832 if (!page) { 2833 n->free_touched = 1; 2834 page = list_first_entry_or_null(&n->slabs_free, struct page, 2835 slab_list); 2836 if (page) 2837 n->free_slabs--; 2838 } 2839 2840 if (sk_memalloc_socks()) 2841 page = get_valid_first_slab(n, page, pfmemalloc); 2842 2843 return page; 2844 } 2845 2846 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2847 struct kmem_cache_node *n, gfp_t flags) 2848 { 2849 struct page *page; 2850 void *obj; 2851 void *list = NULL; 2852 2853 if (!gfp_pfmemalloc_allowed(flags)) 2854 return NULL; 2855 2856 spin_lock(&n->list_lock); 2857 page = get_first_slab(n, true); 2858 if (!page) { 2859 spin_unlock(&n->list_lock); 2860 return NULL; 2861 } 2862 2863 obj = slab_get_obj(cachep, page); 2864 n->free_objects--; 2865 2866 fixup_slab_list(cachep, n, page, &list); 2867 2868 spin_unlock(&n->list_lock); 2869 fixup_objfreelist_debug(cachep, &list); 2870 2871 return obj; 2872 } 2873 2874 /* 2875 * Slab list should be fixed up by fixup_slab_list() for existing slab 2876 * or cache_grow_end() for new slab 2877 */ 2878 static __always_inline int alloc_block(struct kmem_cache *cachep, 2879 struct array_cache *ac, struct page *page, int batchcount) 2880 { 2881 /* 2882 * There must be at least one object available for 2883 * allocation. 2884 */ 2885 BUG_ON(page->active >= cachep->num); 2886 2887 while (page->active < cachep->num && batchcount--) { 2888 STATS_INC_ALLOCED(cachep); 2889 STATS_INC_ACTIVE(cachep); 2890 STATS_SET_HIGH(cachep); 2891 2892 ac->entry[ac->avail++] = slab_get_obj(cachep, page); 2893 } 2894 2895 return batchcount; 2896 } 2897 2898 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2899 { 2900 int batchcount; 2901 struct kmem_cache_node *n; 2902 struct array_cache *ac, *shared; 2903 int node; 2904 void *list = NULL; 2905 struct page *page; 2906 2907 check_irq_off(); 2908 node = numa_mem_id(); 2909 2910 ac = cpu_cache_get(cachep); 2911 batchcount = ac->batchcount; 2912 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2913 /* 2914 * If there was little recent activity on this cache, then 2915 * perform only a partial refill. Otherwise we could generate 2916 * refill bouncing. 2917 */ 2918 batchcount = BATCHREFILL_LIMIT; 2919 } 2920 n = get_node(cachep, node); 2921 2922 BUG_ON(ac->avail > 0 || !n); 2923 shared = READ_ONCE(n->shared); 2924 if (!n->free_objects && (!shared || !shared->avail)) 2925 goto direct_grow; 2926 2927 spin_lock(&n->list_lock); 2928 shared = READ_ONCE(n->shared); 2929 2930 /* See if we can refill from the shared array */ 2931 if (shared && transfer_objects(ac, shared, batchcount)) { 2932 shared->touched = 1; 2933 goto alloc_done; 2934 } 2935 2936 while (batchcount > 0) { 2937 /* Get slab alloc is to come from. */ 2938 page = get_first_slab(n, false); 2939 if (!page) 2940 goto must_grow; 2941 2942 check_spinlock_acquired(cachep); 2943 2944 batchcount = alloc_block(cachep, ac, page, batchcount); 2945 fixup_slab_list(cachep, n, page, &list); 2946 } 2947 2948 must_grow: 2949 n->free_objects -= ac->avail; 2950 alloc_done: 2951 spin_unlock(&n->list_lock); 2952 fixup_objfreelist_debug(cachep, &list); 2953 2954 direct_grow: 2955 if (unlikely(!ac->avail)) { 2956 /* Check if we can use obj in pfmemalloc slab */ 2957 if (sk_memalloc_socks()) { 2958 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2959 2960 if (obj) 2961 return obj; 2962 } 2963 2964 page = cache_grow_begin(cachep, gfp_exact_node(flags), node); 2965 2966 /* 2967 * cache_grow_begin() can reenable interrupts, 2968 * then ac could change. 2969 */ 2970 ac = cpu_cache_get(cachep); 2971 if (!ac->avail && page) 2972 alloc_block(cachep, ac, page, batchcount); 2973 cache_grow_end(cachep, page); 2974 2975 if (!ac->avail) 2976 return NULL; 2977 } 2978 ac->touched = 1; 2979 2980 return ac->entry[--ac->avail]; 2981 } 2982 2983 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 2984 gfp_t flags) 2985 { 2986 might_sleep_if(gfpflags_allow_blocking(flags)); 2987 } 2988 2989 #if DEBUG 2990 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2991 gfp_t flags, void *objp, unsigned long caller) 2992 { 2993 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2994 if (!objp) 2995 return objp; 2996 if (cachep->flags & SLAB_POISON) { 2997 check_poison_obj(cachep, objp); 2998 slab_kernel_map(cachep, objp, 1); 2999 poison_obj(cachep, objp, POISON_INUSE); 3000 } 3001 if (cachep->flags & SLAB_STORE_USER) 3002 *dbg_userword(cachep, objp) = (void *)caller; 3003 3004 if (cachep->flags & SLAB_RED_ZONE) { 3005 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3006 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3007 slab_error(cachep, "double free, or memory outside object was overwritten"); 3008 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 3009 objp, *dbg_redzone1(cachep, objp), 3010 *dbg_redzone2(cachep, objp)); 3011 } 3012 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3013 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3014 } 3015 3016 objp += obj_offset(cachep); 3017 if (cachep->ctor && cachep->flags & SLAB_POISON) 3018 cachep->ctor(objp); 3019 if (ARCH_SLAB_MINALIGN && 3020 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3021 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3022 objp, (int)ARCH_SLAB_MINALIGN); 3023 } 3024 return objp; 3025 } 3026 #else 3027 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3028 #endif 3029 3030 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3031 { 3032 void *objp; 3033 struct array_cache *ac; 3034 3035 check_irq_off(); 3036 3037 ac = cpu_cache_get(cachep); 3038 if (likely(ac->avail)) { 3039 ac->touched = 1; 3040 objp = ac->entry[--ac->avail]; 3041 3042 STATS_INC_ALLOCHIT(cachep); 3043 goto out; 3044 } 3045 3046 STATS_INC_ALLOCMISS(cachep); 3047 objp = cache_alloc_refill(cachep, flags); 3048 /* 3049 * the 'ac' may be updated by cache_alloc_refill(), 3050 * and kmemleak_erase() requires its correct value. 3051 */ 3052 ac = cpu_cache_get(cachep); 3053 3054 out: 3055 /* 3056 * To avoid a false negative, if an object that is in one of the 3057 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3058 * treat the array pointers as a reference to the object. 3059 */ 3060 if (objp) 3061 kmemleak_erase(&ac->entry[ac->avail]); 3062 return objp; 3063 } 3064 3065 #ifdef CONFIG_NUMA 3066 /* 3067 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3068 * 3069 * If we are in_interrupt, then process context, including cpusets and 3070 * mempolicy, may not apply and should not be used for allocation policy. 3071 */ 3072 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3073 { 3074 int nid_alloc, nid_here; 3075 3076 if (in_interrupt() || (flags & __GFP_THISNODE)) 3077 return NULL; 3078 nid_alloc = nid_here = numa_mem_id(); 3079 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3080 nid_alloc = cpuset_slab_spread_node(); 3081 else if (current->mempolicy) 3082 nid_alloc = mempolicy_slab_node(); 3083 if (nid_alloc != nid_here) 3084 return ____cache_alloc_node(cachep, flags, nid_alloc); 3085 return NULL; 3086 } 3087 3088 /* 3089 * Fallback function if there was no memory available and no objects on a 3090 * certain node and fall back is permitted. First we scan all the 3091 * available node for available objects. If that fails then we 3092 * perform an allocation without specifying a node. This allows the page 3093 * allocator to do its reclaim / fallback magic. We then insert the 3094 * slab into the proper nodelist and then allocate from it. 3095 */ 3096 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3097 { 3098 struct zonelist *zonelist; 3099 struct zoneref *z; 3100 struct zone *zone; 3101 enum zone_type highest_zoneidx = gfp_zone(flags); 3102 void *obj = NULL; 3103 struct page *page; 3104 int nid; 3105 unsigned int cpuset_mems_cookie; 3106 3107 if (flags & __GFP_THISNODE) 3108 return NULL; 3109 3110 retry_cpuset: 3111 cpuset_mems_cookie = read_mems_allowed_begin(); 3112 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3113 3114 retry: 3115 /* 3116 * Look through allowed nodes for objects available 3117 * from existing per node queues. 3118 */ 3119 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 3120 nid = zone_to_nid(zone); 3121 3122 if (cpuset_zone_allowed(zone, flags) && 3123 get_node(cache, nid) && 3124 get_node(cache, nid)->free_objects) { 3125 obj = ____cache_alloc_node(cache, 3126 gfp_exact_node(flags), nid); 3127 if (obj) 3128 break; 3129 } 3130 } 3131 3132 if (!obj) { 3133 /* 3134 * This allocation will be performed within the constraints 3135 * of the current cpuset / memory policy requirements. 3136 * We may trigger various forms of reclaim on the allowed 3137 * set and go into memory reserves if necessary. 3138 */ 3139 page = cache_grow_begin(cache, flags, numa_mem_id()); 3140 cache_grow_end(cache, page); 3141 if (page) { 3142 nid = page_to_nid(page); 3143 obj = ____cache_alloc_node(cache, 3144 gfp_exact_node(flags), nid); 3145 3146 /* 3147 * Another processor may allocate the objects in 3148 * the slab since we are not holding any locks. 3149 */ 3150 if (!obj) 3151 goto retry; 3152 } 3153 } 3154 3155 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3156 goto retry_cpuset; 3157 return obj; 3158 } 3159 3160 /* 3161 * A interface to enable slab creation on nodeid 3162 */ 3163 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3164 int nodeid) 3165 { 3166 struct page *page; 3167 struct kmem_cache_node *n; 3168 void *obj = NULL; 3169 void *list = NULL; 3170 3171 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3172 n = get_node(cachep, nodeid); 3173 BUG_ON(!n); 3174 3175 check_irq_off(); 3176 spin_lock(&n->list_lock); 3177 page = get_first_slab(n, false); 3178 if (!page) 3179 goto must_grow; 3180 3181 check_spinlock_acquired_node(cachep, nodeid); 3182 3183 STATS_INC_NODEALLOCS(cachep); 3184 STATS_INC_ACTIVE(cachep); 3185 STATS_SET_HIGH(cachep); 3186 3187 BUG_ON(page->active == cachep->num); 3188 3189 obj = slab_get_obj(cachep, page); 3190 n->free_objects--; 3191 3192 fixup_slab_list(cachep, n, page, &list); 3193 3194 spin_unlock(&n->list_lock); 3195 fixup_objfreelist_debug(cachep, &list); 3196 return obj; 3197 3198 must_grow: 3199 spin_unlock(&n->list_lock); 3200 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3201 if (page) { 3202 /* This slab isn't counted yet so don't update free_objects */ 3203 obj = slab_get_obj(cachep, page); 3204 } 3205 cache_grow_end(cachep, page); 3206 3207 return obj ? obj : fallback_alloc(cachep, flags); 3208 } 3209 3210 static __always_inline void * 3211 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3212 unsigned long caller) 3213 { 3214 unsigned long save_flags; 3215 void *ptr; 3216 int slab_node = numa_mem_id(); 3217 struct obj_cgroup *objcg = NULL; 3218 3219 flags &= gfp_allowed_mask; 3220 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags); 3221 if (unlikely(!cachep)) 3222 return NULL; 3223 3224 cache_alloc_debugcheck_before(cachep, flags); 3225 local_irq_save(save_flags); 3226 3227 if (nodeid == NUMA_NO_NODE) 3228 nodeid = slab_node; 3229 3230 if (unlikely(!get_node(cachep, nodeid))) { 3231 /* Node not bootstrapped yet */ 3232 ptr = fallback_alloc(cachep, flags); 3233 goto out; 3234 } 3235 3236 if (nodeid == slab_node) { 3237 /* 3238 * Use the locally cached objects if possible. 3239 * However ____cache_alloc does not allow fallback 3240 * to other nodes. It may fail while we still have 3241 * objects on other nodes available. 3242 */ 3243 ptr = ____cache_alloc(cachep, flags); 3244 if (ptr) 3245 goto out; 3246 } 3247 /* ___cache_alloc_node can fall back to other nodes */ 3248 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3249 out: 3250 local_irq_restore(save_flags); 3251 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3252 3253 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr) 3254 memset(ptr, 0, cachep->object_size); 3255 3256 slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr); 3257 return ptr; 3258 } 3259 3260 static __always_inline void * 3261 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3262 { 3263 void *objp; 3264 3265 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3266 objp = alternate_node_alloc(cache, flags); 3267 if (objp) 3268 goto out; 3269 } 3270 objp = ____cache_alloc(cache, flags); 3271 3272 /* 3273 * We may just have run out of memory on the local node. 3274 * ____cache_alloc_node() knows how to locate memory on other nodes 3275 */ 3276 if (!objp) 3277 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3278 3279 out: 3280 return objp; 3281 } 3282 #else 3283 3284 static __always_inline void * 3285 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3286 { 3287 return ____cache_alloc(cachep, flags); 3288 } 3289 3290 #endif /* CONFIG_NUMA */ 3291 3292 static __always_inline void * 3293 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3294 { 3295 unsigned long save_flags; 3296 void *objp; 3297 struct obj_cgroup *objcg = NULL; 3298 3299 flags &= gfp_allowed_mask; 3300 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags); 3301 if (unlikely(!cachep)) 3302 return NULL; 3303 3304 cache_alloc_debugcheck_before(cachep, flags); 3305 local_irq_save(save_flags); 3306 objp = __do_cache_alloc(cachep, flags); 3307 local_irq_restore(save_flags); 3308 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3309 prefetchw(objp); 3310 3311 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp) 3312 memset(objp, 0, cachep->object_size); 3313 3314 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp); 3315 return objp; 3316 } 3317 3318 /* 3319 * Caller needs to acquire correct kmem_cache_node's list_lock 3320 * @list: List of detached free slabs should be freed by caller 3321 */ 3322 static void free_block(struct kmem_cache *cachep, void **objpp, 3323 int nr_objects, int node, struct list_head *list) 3324 { 3325 int i; 3326 struct kmem_cache_node *n = get_node(cachep, node); 3327 struct page *page; 3328 3329 n->free_objects += nr_objects; 3330 3331 for (i = 0; i < nr_objects; i++) { 3332 void *objp; 3333 struct page *page; 3334 3335 objp = objpp[i]; 3336 3337 page = virt_to_head_page(objp); 3338 list_del(&page->slab_list); 3339 check_spinlock_acquired_node(cachep, node); 3340 slab_put_obj(cachep, page, objp); 3341 STATS_DEC_ACTIVE(cachep); 3342 3343 /* fixup slab chains */ 3344 if (page->active == 0) { 3345 list_add(&page->slab_list, &n->slabs_free); 3346 n->free_slabs++; 3347 } else { 3348 /* Unconditionally move a slab to the end of the 3349 * partial list on free - maximum time for the 3350 * other objects to be freed, too. 3351 */ 3352 list_add_tail(&page->slab_list, &n->slabs_partial); 3353 } 3354 } 3355 3356 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3357 n->free_objects -= cachep->num; 3358 3359 page = list_last_entry(&n->slabs_free, struct page, slab_list); 3360 list_move(&page->slab_list, list); 3361 n->free_slabs--; 3362 n->total_slabs--; 3363 } 3364 } 3365 3366 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3367 { 3368 int batchcount; 3369 struct kmem_cache_node *n; 3370 int node = numa_mem_id(); 3371 LIST_HEAD(list); 3372 3373 batchcount = ac->batchcount; 3374 3375 check_irq_off(); 3376 n = get_node(cachep, node); 3377 spin_lock(&n->list_lock); 3378 if (n->shared) { 3379 struct array_cache *shared_array = n->shared; 3380 int max = shared_array->limit - shared_array->avail; 3381 if (max) { 3382 if (batchcount > max) 3383 batchcount = max; 3384 memcpy(&(shared_array->entry[shared_array->avail]), 3385 ac->entry, sizeof(void *) * batchcount); 3386 shared_array->avail += batchcount; 3387 goto free_done; 3388 } 3389 } 3390 3391 free_block(cachep, ac->entry, batchcount, node, &list); 3392 free_done: 3393 #if STATS 3394 { 3395 int i = 0; 3396 struct page *page; 3397 3398 list_for_each_entry(page, &n->slabs_free, slab_list) { 3399 BUG_ON(page->active); 3400 3401 i++; 3402 } 3403 STATS_SET_FREEABLE(cachep, i); 3404 } 3405 #endif 3406 spin_unlock(&n->list_lock); 3407 ac->avail -= batchcount; 3408 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3409 slabs_destroy(cachep, &list); 3410 } 3411 3412 /* 3413 * Release an obj back to its cache. If the obj has a constructed state, it must 3414 * be in this state _before_ it is released. Called with disabled ints. 3415 */ 3416 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3417 unsigned long caller) 3418 { 3419 /* Put the object into the quarantine, don't touch it for now. */ 3420 if (kasan_slab_free(cachep, objp, _RET_IP_)) 3421 return; 3422 3423 /* Use KCSAN to help debug racy use-after-free. */ 3424 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 3425 __kcsan_check_access(objp, cachep->object_size, 3426 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 3427 3428 ___cache_free(cachep, objp, caller); 3429 } 3430 3431 void ___cache_free(struct kmem_cache *cachep, void *objp, 3432 unsigned long caller) 3433 { 3434 struct array_cache *ac = cpu_cache_get(cachep); 3435 3436 check_irq_off(); 3437 if (unlikely(slab_want_init_on_free(cachep))) 3438 memset(objp, 0, cachep->object_size); 3439 kmemleak_free_recursive(objp, cachep->flags); 3440 objp = cache_free_debugcheck(cachep, objp, caller); 3441 memcg_slab_free_hook(cachep, &objp, 1); 3442 3443 /* 3444 * Skip calling cache_free_alien() when the platform is not numa. 3445 * This will avoid cache misses that happen while accessing slabp (which 3446 * is per page memory reference) to get nodeid. Instead use a global 3447 * variable to skip the call, which is mostly likely to be present in 3448 * the cache. 3449 */ 3450 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3451 return; 3452 3453 if (ac->avail < ac->limit) { 3454 STATS_INC_FREEHIT(cachep); 3455 } else { 3456 STATS_INC_FREEMISS(cachep); 3457 cache_flusharray(cachep, ac); 3458 } 3459 3460 if (sk_memalloc_socks()) { 3461 struct page *page = virt_to_head_page(objp); 3462 3463 if (unlikely(PageSlabPfmemalloc(page))) { 3464 cache_free_pfmemalloc(cachep, page, objp); 3465 return; 3466 } 3467 } 3468 3469 __free_one(ac, objp); 3470 } 3471 3472 /** 3473 * kmem_cache_alloc - Allocate an object 3474 * @cachep: The cache to allocate from. 3475 * @flags: See kmalloc(). 3476 * 3477 * Allocate an object from this cache. The flags are only relevant 3478 * if the cache has no available objects. 3479 * 3480 * Return: pointer to the new object or %NULL in case of error 3481 */ 3482 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3483 { 3484 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3485 3486 trace_kmem_cache_alloc(_RET_IP_, ret, 3487 cachep->object_size, cachep->size, flags); 3488 3489 return ret; 3490 } 3491 EXPORT_SYMBOL(kmem_cache_alloc); 3492 3493 static __always_inline void 3494 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3495 size_t size, void **p, unsigned long caller) 3496 { 3497 size_t i; 3498 3499 for (i = 0; i < size; i++) 3500 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3501 } 3502 3503 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3504 void **p) 3505 { 3506 size_t i; 3507 struct obj_cgroup *objcg = NULL; 3508 3509 s = slab_pre_alloc_hook(s, &objcg, size, flags); 3510 if (!s) 3511 return 0; 3512 3513 cache_alloc_debugcheck_before(s, flags); 3514 3515 local_irq_disable(); 3516 for (i = 0; i < size; i++) { 3517 void *objp = __do_cache_alloc(s, flags); 3518 3519 if (unlikely(!objp)) 3520 goto error; 3521 p[i] = objp; 3522 } 3523 local_irq_enable(); 3524 3525 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3526 3527 /* Clear memory outside IRQ disabled section */ 3528 if (unlikely(slab_want_init_on_alloc(flags, s))) 3529 for (i = 0; i < size; i++) 3530 memset(p[i], 0, s->object_size); 3531 3532 slab_post_alloc_hook(s, objcg, flags, size, p); 3533 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3534 return size; 3535 error: 3536 local_irq_enable(); 3537 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3538 slab_post_alloc_hook(s, objcg, flags, i, p); 3539 __kmem_cache_free_bulk(s, i, p); 3540 return 0; 3541 } 3542 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3543 3544 #ifdef CONFIG_TRACING 3545 void * 3546 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3547 { 3548 void *ret; 3549 3550 ret = slab_alloc(cachep, flags, _RET_IP_); 3551 3552 ret = kasan_kmalloc(cachep, ret, size, flags); 3553 trace_kmalloc(_RET_IP_, ret, 3554 size, cachep->size, flags); 3555 return ret; 3556 } 3557 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3558 #endif 3559 3560 #ifdef CONFIG_NUMA 3561 /** 3562 * kmem_cache_alloc_node - Allocate an object on the specified node 3563 * @cachep: The cache to allocate from. 3564 * @flags: See kmalloc(). 3565 * @nodeid: node number of the target node. 3566 * 3567 * Identical to kmem_cache_alloc but it will allocate memory on the given 3568 * node, which can improve the performance for cpu bound structures. 3569 * 3570 * Fallback to other node is possible if __GFP_THISNODE is not set. 3571 * 3572 * Return: pointer to the new object or %NULL in case of error 3573 */ 3574 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3575 { 3576 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3577 3578 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3579 cachep->object_size, cachep->size, 3580 flags, nodeid); 3581 3582 return ret; 3583 } 3584 EXPORT_SYMBOL(kmem_cache_alloc_node); 3585 3586 #ifdef CONFIG_TRACING 3587 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3588 gfp_t flags, 3589 int nodeid, 3590 size_t size) 3591 { 3592 void *ret; 3593 3594 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3595 3596 ret = kasan_kmalloc(cachep, ret, size, flags); 3597 trace_kmalloc_node(_RET_IP_, ret, 3598 size, cachep->size, 3599 flags, nodeid); 3600 return ret; 3601 } 3602 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3603 #endif 3604 3605 static __always_inline void * 3606 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3607 { 3608 struct kmem_cache *cachep; 3609 void *ret; 3610 3611 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3612 return NULL; 3613 cachep = kmalloc_slab(size, flags); 3614 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3615 return cachep; 3616 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); 3617 ret = kasan_kmalloc(cachep, ret, size, flags); 3618 3619 return ret; 3620 } 3621 3622 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3623 { 3624 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3625 } 3626 EXPORT_SYMBOL(__kmalloc_node); 3627 3628 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3629 int node, unsigned long caller) 3630 { 3631 return __do_kmalloc_node(size, flags, node, caller); 3632 } 3633 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3634 #endif /* CONFIG_NUMA */ 3635 3636 /** 3637 * __do_kmalloc - allocate memory 3638 * @size: how many bytes of memory are required. 3639 * @flags: the type of memory to allocate (see kmalloc). 3640 * @caller: function caller for debug tracking of the caller 3641 * 3642 * Return: pointer to the allocated memory or %NULL in case of error 3643 */ 3644 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3645 unsigned long caller) 3646 { 3647 struct kmem_cache *cachep; 3648 void *ret; 3649 3650 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3651 return NULL; 3652 cachep = kmalloc_slab(size, flags); 3653 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3654 return cachep; 3655 ret = slab_alloc(cachep, flags, caller); 3656 3657 ret = kasan_kmalloc(cachep, ret, size, flags); 3658 trace_kmalloc(caller, ret, 3659 size, cachep->size, flags); 3660 3661 return ret; 3662 } 3663 3664 void *__kmalloc(size_t size, gfp_t flags) 3665 { 3666 return __do_kmalloc(size, flags, _RET_IP_); 3667 } 3668 EXPORT_SYMBOL(__kmalloc); 3669 3670 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3671 { 3672 return __do_kmalloc(size, flags, caller); 3673 } 3674 EXPORT_SYMBOL(__kmalloc_track_caller); 3675 3676 /** 3677 * kmem_cache_free - Deallocate an object 3678 * @cachep: The cache the allocation was from. 3679 * @objp: The previously allocated object. 3680 * 3681 * Free an object which was previously allocated from this 3682 * cache. 3683 */ 3684 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3685 { 3686 unsigned long flags; 3687 cachep = cache_from_obj(cachep, objp); 3688 if (!cachep) 3689 return; 3690 3691 local_irq_save(flags); 3692 debug_check_no_locks_freed(objp, cachep->object_size); 3693 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3694 debug_check_no_obj_freed(objp, cachep->object_size); 3695 __cache_free(cachep, objp, _RET_IP_); 3696 local_irq_restore(flags); 3697 3698 trace_kmem_cache_free(_RET_IP_, objp); 3699 } 3700 EXPORT_SYMBOL(kmem_cache_free); 3701 3702 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3703 { 3704 struct kmem_cache *s; 3705 size_t i; 3706 3707 local_irq_disable(); 3708 for (i = 0; i < size; i++) { 3709 void *objp = p[i]; 3710 3711 if (!orig_s) /* called via kfree_bulk */ 3712 s = virt_to_cache(objp); 3713 else 3714 s = cache_from_obj(orig_s, objp); 3715 if (!s) 3716 continue; 3717 3718 debug_check_no_locks_freed(objp, s->object_size); 3719 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3720 debug_check_no_obj_freed(objp, s->object_size); 3721 3722 __cache_free(s, objp, _RET_IP_); 3723 } 3724 local_irq_enable(); 3725 3726 /* FIXME: add tracing */ 3727 } 3728 EXPORT_SYMBOL(kmem_cache_free_bulk); 3729 3730 /** 3731 * kfree - free previously allocated memory 3732 * @objp: pointer returned by kmalloc. 3733 * 3734 * If @objp is NULL, no operation is performed. 3735 * 3736 * Don't free memory not originally allocated by kmalloc() 3737 * or you will run into trouble. 3738 */ 3739 void kfree(const void *objp) 3740 { 3741 struct kmem_cache *c; 3742 unsigned long flags; 3743 3744 trace_kfree(_RET_IP_, objp); 3745 3746 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3747 return; 3748 local_irq_save(flags); 3749 kfree_debugcheck(objp); 3750 c = virt_to_cache(objp); 3751 if (!c) { 3752 local_irq_restore(flags); 3753 return; 3754 } 3755 debug_check_no_locks_freed(objp, c->object_size); 3756 3757 debug_check_no_obj_freed(objp, c->object_size); 3758 __cache_free(c, (void *)objp, _RET_IP_); 3759 local_irq_restore(flags); 3760 } 3761 EXPORT_SYMBOL(kfree); 3762 3763 /* 3764 * This initializes kmem_cache_node or resizes various caches for all nodes. 3765 */ 3766 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3767 { 3768 int ret; 3769 int node; 3770 struct kmem_cache_node *n; 3771 3772 for_each_online_node(node) { 3773 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3774 if (ret) 3775 goto fail; 3776 3777 } 3778 3779 return 0; 3780 3781 fail: 3782 if (!cachep->list.next) { 3783 /* Cache is not active yet. Roll back what we did */ 3784 node--; 3785 while (node >= 0) { 3786 n = get_node(cachep, node); 3787 if (n) { 3788 kfree(n->shared); 3789 free_alien_cache(n->alien); 3790 kfree(n); 3791 cachep->node[node] = NULL; 3792 } 3793 node--; 3794 } 3795 } 3796 return -ENOMEM; 3797 } 3798 3799 /* Always called with the slab_mutex held */ 3800 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3801 int batchcount, int shared, gfp_t gfp) 3802 { 3803 struct array_cache __percpu *cpu_cache, *prev; 3804 int cpu; 3805 3806 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3807 if (!cpu_cache) 3808 return -ENOMEM; 3809 3810 prev = cachep->cpu_cache; 3811 cachep->cpu_cache = cpu_cache; 3812 /* 3813 * Without a previous cpu_cache there's no need to synchronize remote 3814 * cpus, so skip the IPIs. 3815 */ 3816 if (prev) 3817 kick_all_cpus_sync(); 3818 3819 check_irq_on(); 3820 cachep->batchcount = batchcount; 3821 cachep->limit = limit; 3822 cachep->shared = shared; 3823 3824 if (!prev) 3825 goto setup_node; 3826 3827 for_each_online_cpu(cpu) { 3828 LIST_HEAD(list); 3829 int node; 3830 struct kmem_cache_node *n; 3831 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3832 3833 node = cpu_to_mem(cpu); 3834 n = get_node(cachep, node); 3835 spin_lock_irq(&n->list_lock); 3836 free_block(cachep, ac->entry, ac->avail, node, &list); 3837 spin_unlock_irq(&n->list_lock); 3838 slabs_destroy(cachep, &list); 3839 } 3840 free_percpu(prev); 3841 3842 setup_node: 3843 return setup_kmem_cache_nodes(cachep, gfp); 3844 } 3845 3846 /* Called with slab_mutex held always */ 3847 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3848 { 3849 int err; 3850 int limit = 0; 3851 int shared = 0; 3852 int batchcount = 0; 3853 3854 err = cache_random_seq_create(cachep, cachep->num, gfp); 3855 if (err) 3856 goto end; 3857 3858 if (limit && shared && batchcount) 3859 goto skip_setup; 3860 /* 3861 * The head array serves three purposes: 3862 * - create a LIFO ordering, i.e. return objects that are cache-warm 3863 * - reduce the number of spinlock operations. 3864 * - reduce the number of linked list operations on the slab and 3865 * bufctl chains: array operations are cheaper. 3866 * The numbers are guessed, we should auto-tune as described by 3867 * Bonwick. 3868 */ 3869 if (cachep->size > 131072) 3870 limit = 1; 3871 else if (cachep->size > PAGE_SIZE) 3872 limit = 8; 3873 else if (cachep->size > 1024) 3874 limit = 24; 3875 else if (cachep->size > 256) 3876 limit = 54; 3877 else 3878 limit = 120; 3879 3880 /* 3881 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3882 * allocation behaviour: Most allocs on one cpu, most free operations 3883 * on another cpu. For these cases, an efficient object passing between 3884 * cpus is necessary. This is provided by a shared array. The array 3885 * replaces Bonwick's magazine layer. 3886 * On uniprocessor, it's functionally equivalent (but less efficient) 3887 * to a larger limit. Thus disabled by default. 3888 */ 3889 shared = 0; 3890 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3891 shared = 8; 3892 3893 #if DEBUG 3894 /* 3895 * With debugging enabled, large batchcount lead to excessively long 3896 * periods with disabled local interrupts. Limit the batchcount 3897 */ 3898 if (limit > 32) 3899 limit = 32; 3900 #endif 3901 batchcount = (limit + 1) / 2; 3902 skip_setup: 3903 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3904 end: 3905 if (err) 3906 pr_err("enable_cpucache failed for %s, error %d\n", 3907 cachep->name, -err); 3908 return err; 3909 } 3910 3911 /* 3912 * Drain an array if it contains any elements taking the node lock only if 3913 * necessary. Note that the node listlock also protects the array_cache 3914 * if drain_array() is used on the shared array. 3915 */ 3916 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3917 struct array_cache *ac, int node) 3918 { 3919 LIST_HEAD(list); 3920 3921 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3922 check_mutex_acquired(); 3923 3924 if (!ac || !ac->avail) 3925 return; 3926 3927 if (ac->touched) { 3928 ac->touched = 0; 3929 return; 3930 } 3931 3932 spin_lock_irq(&n->list_lock); 3933 drain_array_locked(cachep, ac, node, false, &list); 3934 spin_unlock_irq(&n->list_lock); 3935 3936 slabs_destroy(cachep, &list); 3937 } 3938 3939 /** 3940 * cache_reap - Reclaim memory from caches. 3941 * @w: work descriptor 3942 * 3943 * Called from workqueue/eventd every few seconds. 3944 * Purpose: 3945 * - clear the per-cpu caches for this CPU. 3946 * - return freeable pages to the main free memory pool. 3947 * 3948 * If we cannot acquire the cache chain mutex then just give up - we'll try 3949 * again on the next iteration. 3950 */ 3951 static void cache_reap(struct work_struct *w) 3952 { 3953 struct kmem_cache *searchp; 3954 struct kmem_cache_node *n; 3955 int node = numa_mem_id(); 3956 struct delayed_work *work = to_delayed_work(w); 3957 3958 if (!mutex_trylock(&slab_mutex)) 3959 /* Give up. Setup the next iteration. */ 3960 goto out; 3961 3962 list_for_each_entry(searchp, &slab_caches, list) { 3963 check_irq_on(); 3964 3965 /* 3966 * We only take the node lock if absolutely necessary and we 3967 * have established with reasonable certainty that 3968 * we can do some work if the lock was obtained. 3969 */ 3970 n = get_node(searchp, node); 3971 3972 reap_alien(searchp, n); 3973 3974 drain_array(searchp, n, cpu_cache_get(searchp), node); 3975 3976 /* 3977 * These are racy checks but it does not matter 3978 * if we skip one check or scan twice. 3979 */ 3980 if (time_after(n->next_reap, jiffies)) 3981 goto next; 3982 3983 n->next_reap = jiffies + REAPTIMEOUT_NODE; 3984 3985 drain_array(searchp, n, n->shared, node); 3986 3987 if (n->free_touched) 3988 n->free_touched = 0; 3989 else { 3990 int freed; 3991 3992 freed = drain_freelist(searchp, n, (n->free_limit + 3993 5 * searchp->num - 1) / (5 * searchp->num)); 3994 STATS_ADD_REAPED(searchp, freed); 3995 } 3996 next: 3997 cond_resched(); 3998 } 3999 check_irq_on(); 4000 mutex_unlock(&slab_mutex); 4001 next_reap_node(); 4002 out: 4003 /* Set up the next iteration */ 4004 schedule_delayed_work_on(smp_processor_id(), work, 4005 round_jiffies_relative(REAPTIMEOUT_AC)); 4006 } 4007 4008 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4009 { 4010 unsigned long active_objs, num_objs, active_slabs; 4011 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 4012 unsigned long free_slabs = 0; 4013 int node; 4014 struct kmem_cache_node *n; 4015 4016 for_each_kmem_cache_node(cachep, node, n) { 4017 check_irq_on(); 4018 spin_lock_irq(&n->list_lock); 4019 4020 total_slabs += n->total_slabs; 4021 free_slabs += n->free_slabs; 4022 free_objs += n->free_objects; 4023 4024 if (n->shared) 4025 shared_avail += n->shared->avail; 4026 4027 spin_unlock_irq(&n->list_lock); 4028 } 4029 num_objs = total_slabs * cachep->num; 4030 active_slabs = total_slabs - free_slabs; 4031 active_objs = num_objs - free_objs; 4032 4033 sinfo->active_objs = active_objs; 4034 sinfo->num_objs = num_objs; 4035 sinfo->active_slabs = active_slabs; 4036 sinfo->num_slabs = total_slabs; 4037 sinfo->shared_avail = shared_avail; 4038 sinfo->limit = cachep->limit; 4039 sinfo->batchcount = cachep->batchcount; 4040 sinfo->shared = cachep->shared; 4041 sinfo->objects_per_slab = cachep->num; 4042 sinfo->cache_order = cachep->gfporder; 4043 } 4044 4045 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4046 { 4047 #if STATS 4048 { /* node stats */ 4049 unsigned long high = cachep->high_mark; 4050 unsigned long allocs = cachep->num_allocations; 4051 unsigned long grown = cachep->grown; 4052 unsigned long reaped = cachep->reaped; 4053 unsigned long errors = cachep->errors; 4054 unsigned long max_freeable = cachep->max_freeable; 4055 unsigned long node_allocs = cachep->node_allocs; 4056 unsigned long node_frees = cachep->node_frees; 4057 unsigned long overflows = cachep->node_overflow; 4058 4059 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 4060 allocs, high, grown, 4061 reaped, errors, max_freeable, node_allocs, 4062 node_frees, overflows); 4063 } 4064 /* cpu stats */ 4065 { 4066 unsigned long allochit = atomic_read(&cachep->allochit); 4067 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4068 unsigned long freehit = atomic_read(&cachep->freehit); 4069 unsigned long freemiss = atomic_read(&cachep->freemiss); 4070 4071 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4072 allochit, allocmiss, freehit, freemiss); 4073 } 4074 #endif 4075 } 4076 4077 #define MAX_SLABINFO_WRITE 128 4078 /** 4079 * slabinfo_write - Tuning for the slab allocator 4080 * @file: unused 4081 * @buffer: user buffer 4082 * @count: data length 4083 * @ppos: unused 4084 * 4085 * Return: %0 on success, negative error code otherwise. 4086 */ 4087 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4088 size_t count, loff_t *ppos) 4089 { 4090 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4091 int limit, batchcount, shared, res; 4092 struct kmem_cache *cachep; 4093 4094 if (count > MAX_SLABINFO_WRITE) 4095 return -EINVAL; 4096 if (copy_from_user(&kbuf, buffer, count)) 4097 return -EFAULT; 4098 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4099 4100 tmp = strchr(kbuf, ' '); 4101 if (!tmp) 4102 return -EINVAL; 4103 *tmp = '\0'; 4104 tmp++; 4105 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4106 return -EINVAL; 4107 4108 /* Find the cache in the chain of caches. */ 4109 mutex_lock(&slab_mutex); 4110 res = -EINVAL; 4111 list_for_each_entry(cachep, &slab_caches, list) { 4112 if (!strcmp(cachep->name, kbuf)) { 4113 if (limit < 1 || batchcount < 1 || 4114 batchcount > limit || shared < 0) { 4115 res = 0; 4116 } else { 4117 res = do_tune_cpucache(cachep, limit, 4118 batchcount, shared, 4119 GFP_KERNEL); 4120 } 4121 break; 4122 } 4123 } 4124 mutex_unlock(&slab_mutex); 4125 if (res >= 0) 4126 res = count; 4127 return res; 4128 } 4129 4130 #ifdef CONFIG_HARDENED_USERCOPY 4131 /* 4132 * Rejects incorrectly sized objects and objects that are to be copied 4133 * to/from userspace but do not fall entirely within the containing slab 4134 * cache's usercopy region. 4135 * 4136 * Returns NULL if check passes, otherwise const char * to name of cache 4137 * to indicate an error. 4138 */ 4139 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4140 bool to_user) 4141 { 4142 struct kmem_cache *cachep; 4143 unsigned int objnr; 4144 unsigned long offset; 4145 4146 ptr = kasan_reset_tag(ptr); 4147 4148 /* Find and validate object. */ 4149 cachep = page->slab_cache; 4150 objnr = obj_to_index(cachep, page, (void *)ptr); 4151 BUG_ON(objnr >= cachep->num); 4152 4153 /* Find offset within object. */ 4154 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); 4155 4156 /* Allow address range falling entirely within usercopy region. */ 4157 if (offset >= cachep->useroffset && 4158 offset - cachep->useroffset <= cachep->usersize && 4159 n <= cachep->useroffset - offset + cachep->usersize) 4160 return; 4161 4162 /* 4163 * If the copy is still within the allocated object, produce 4164 * a warning instead of rejecting the copy. This is intended 4165 * to be a temporary method to find any missing usercopy 4166 * whitelists. 4167 */ 4168 if (usercopy_fallback && 4169 offset <= cachep->object_size && 4170 n <= cachep->object_size - offset) { 4171 usercopy_warn("SLAB object", cachep->name, to_user, offset, n); 4172 return; 4173 } 4174 4175 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4176 } 4177 #endif /* CONFIG_HARDENED_USERCOPY */ 4178 4179 /** 4180 * __ksize -- Uninstrumented ksize. 4181 * @objp: pointer to the object 4182 * 4183 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same 4184 * safety checks as ksize() with KASAN instrumentation enabled. 4185 * 4186 * Return: size of the actual memory used by @objp in bytes 4187 */ 4188 size_t __ksize(const void *objp) 4189 { 4190 struct kmem_cache *c; 4191 size_t size; 4192 4193 BUG_ON(!objp); 4194 if (unlikely(objp == ZERO_SIZE_PTR)) 4195 return 0; 4196 4197 c = virt_to_cache(objp); 4198 size = c ? c->object_size : 0; 4199 4200 return size; 4201 } 4202 EXPORT_SYMBOL(__ksize); 4203