xref: /openbmc/linux/mm/slab.c (revision 1c2f87c2)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM (1 << sizeof(freelist_idx_t) * BITS_PER_BYTE)
170 
171 /*
172  * true if a page was allocated from pfmemalloc reserves for network-based
173  * swap
174  */
175 static bool pfmemalloc_active __read_mostly;
176 
177 /*
178  * struct array_cache
179  *
180  * Purpose:
181  * - LIFO ordering, to hand out cache-warm objects from _alloc
182  * - reduce the number of linked list operations
183  * - reduce spinlock operations
184  *
185  * The limit is stored in the per-cpu structure to reduce the data cache
186  * footprint.
187  *
188  */
189 struct array_cache {
190 	unsigned int avail;
191 	unsigned int limit;
192 	unsigned int batchcount;
193 	unsigned int touched;
194 	spinlock_t lock;
195 	void *entry[];	/*
196 			 * Must have this definition in here for the proper
197 			 * alignment of array_cache. Also simplifies accessing
198 			 * the entries.
199 			 *
200 			 * Entries should not be directly dereferenced as
201 			 * entries belonging to slabs marked pfmemalloc will
202 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
203 			 */
204 };
205 
206 #define SLAB_OBJ_PFMEMALLOC	1
207 static inline bool is_obj_pfmemalloc(void *objp)
208 {
209 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
210 }
211 
212 static inline void set_obj_pfmemalloc(void **objp)
213 {
214 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
215 	return;
216 }
217 
218 static inline void clear_obj_pfmemalloc(void **objp)
219 {
220 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
221 }
222 
223 /*
224  * bootstrap: The caches do not work without cpuarrays anymore, but the
225  * cpuarrays are allocated from the generic caches...
226  */
227 #define BOOT_CPUCACHE_ENTRIES	1
228 struct arraycache_init {
229 	struct array_cache cache;
230 	void *entries[BOOT_CPUCACHE_ENTRIES];
231 };
232 
233 /*
234  * Need this for bootstrapping a per node allocator.
235  */
236 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
237 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
238 #define	CACHE_CACHE 0
239 #define	SIZE_AC MAX_NUMNODES
240 #define	SIZE_NODE (2 * MAX_NUMNODES)
241 
242 static int drain_freelist(struct kmem_cache *cache,
243 			struct kmem_cache_node *n, int tofree);
244 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
245 			int node);
246 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
247 static void cache_reap(struct work_struct *unused);
248 
249 static int slab_early_init = 1;
250 
251 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
252 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
253 
254 static void kmem_cache_node_init(struct kmem_cache_node *parent)
255 {
256 	INIT_LIST_HEAD(&parent->slabs_full);
257 	INIT_LIST_HEAD(&parent->slabs_partial);
258 	INIT_LIST_HEAD(&parent->slabs_free);
259 	parent->shared = NULL;
260 	parent->alien = NULL;
261 	parent->colour_next = 0;
262 	spin_lock_init(&parent->list_lock);
263 	parent->free_objects = 0;
264 	parent->free_touched = 0;
265 }
266 
267 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
268 	do {								\
269 		INIT_LIST_HEAD(listp);					\
270 		list_splice(&(cachep->node[nodeid]->slab), listp);	\
271 	} while (0)
272 
273 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
274 	do {								\
275 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
276 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
277 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
278 	} while (0)
279 
280 #define CFLGS_OFF_SLAB		(0x80000000UL)
281 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
282 
283 #define BATCHREFILL_LIMIT	16
284 /*
285  * Optimization question: fewer reaps means less probability for unnessary
286  * cpucache drain/refill cycles.
287  *
288  * OTOH the cpuarrays can contain lots of objects,
289  * which could lock up otherwise freeable slabs.
290  */
291 #define REAPTIMEOUT_AC		(2*HZ)
292 #define REAPTIMEOUT_NODE	(4*HZ)
293 
294 #if STATS
295 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
296 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
297 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
298 #define	STATS_INC_GROWN(x)	((x)->grown++)
299 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
300 #define	STATS_SET_HIGH(x)						\
301 	do {								\
302 		if ((x)->num_active > (x)->high_mark)			\
303 			(x)->high_mark = (x)->num_active;		\
304 	} while (0)
305 #define	STATS_INC_ERR(x)	((x)->errors++)
306 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
307 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
308 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
309 #define	STATS_SET_FREEABLE(x, i)					\
310 	do {								\
311 		if ((x)->max_freeable < i)				\
312 			(x)->max_freeable = i;				\
313 	} while (0)
314 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
315 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
316 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
317 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
318 #else
319 #define	STATS_INC_ACTIVE(x)	do { } while (0)
320 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
321 #define	STATS_INC_ALLOCED(x)	do { } while (0)
322 #define	STATS_INC_GROWN(x)	do { } while (0)
323 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
324 #define	STATS_SET_HIGH(x)	do { } while (0)
325 #define	STATS_INC_ERR(x)	do { } while (0)
326 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
327 #define	STATS_INC_NODEFREES(x)	do { } while (0)
328 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
329 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
330 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
331 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
332 #define STATS_INC_FREEHIT(x)	do { } while (0)
333 #define STATS_INC_FREEMISS(x)	do { } while (0)
334 #endif
335 
336 #if DEBUG
337 
338 /*
339  * memory layout of objects:
340  * 0		: objp
341  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
342  * 		the end of an object is aligned with the end of the real
343  * 		allocation. Catches writes behind the end of the allocation.
344  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
345  * 		redzone word.
346  * cachep->obj_offset: The real object.
347  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
348  * cachep->size - 1* BYTES_PER_WORD: last caller address
349  *					[BYTES_PER_WORD long]
350  */
351 static int obj_offset(struct kmem_cache *cachep)
352 {
353 	return cachep->obj_offset;
354 }
355 
356 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
357 {
358 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
359 	return (unsigned long long*) (objp + obj_offset(cachep) -
360 				      sizeof(unsigned long long));
361 }
362 
363 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
364 {
365 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
366 	if (cachep->flags & SLAB_STORE_USER)
367 		return (unsigned long long *)(objp + cachep->size -
368 					      sizeof(unsigned long long) -
369 					      REDZONE_ALIGN);
370 	return (unsigned long long *) (objp + cachep->size -
371 				       sizeof(unsigned long long));
372 }
373 
374 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
375 {
376 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
377 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
378 }
379 
380 #else
381 
382 #define obj_offset(x)			0
383 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
384 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
385 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
386 
387 #endif
388 
389 /*
390  * Do not go above this order unless 0 objects fit into the slab or
391  * overridden on the command line.
392  */
393 #define	SLAB_MAX_ORDER_HI	1
394 #define	SLAB_MAX_ORDER_LO	0
395 static int slab_max_order = SLAB_MAX_ORDER_LO;
396 static bool slab_max_order_set __initdata;
397 
398 static inline struct kmem_cache *virt_to_cache(const void *obj)
399 {
400 	struct page *page = virt_to_head_page(obj);
401 	return page->slab_cache;
402 }
403 
404 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
405 				 unsigned int idx)
406 {
407 	return page->s_mem + cache->size * idx;
408 }
409 
410 /*
411  * We want to avoid an expensive divide : (offset / cache->size)
412  *   Using the fact that size is a constant for a particular cache,
413  *   we can replace (offset / cache->size) by
414  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
415  */
416 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
417 					const struct page *page, void *obj)
418 {
419 	u32 offset = (obj - page->s_mem);
420 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
421 }
422 
423 static struct arraycache_init initarray_generic =
424     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
425 
426 /* internal cache of cache description objs */
427 static struct kmem_cache kmem_cache_boot = {
428 	.batchcount = 1,
429 	.limit = BOOT_CPUCACHE_ENTRIES,
430 	.shared = 1,
431 	.size = sizeof(struct kmem_cache),
432 	.name = "kmem_cache",
433 };
434 
435 #define BAD_ALIEN_MAGIC 0x01020304ul
436 
437 #ifdef CONFIG_LOCKDEP
438 
439 /*
440  * Slab sometimes uses the kmalloc slabs to store the slab headers
441  * for other slabs "off slab".
442  * The locking for this is tricky in that it nests within the locks
443  * of all other slabs in a few places; to deal with this special
444  * locking we put on-slab caches into a separate lock-class.
445  *
446  * We set lock class for alien array caches which are up during init.
447  * The lock annotation will be lost if all cpus of a node goes down and
448  * then comes back up during hotplug
449  */
450 static struct lock_class_key on_slab_l3_key;
451 static struct lock_class_key on_slab_alc_key;
452 
453 static struct lock_class_key debugobj_l3_key;
454 static struct lock_class_key debugobj_alc_key;
455 
456 static void slab_set_lock_classes(struct kmem_cache *cachep,
457 		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
458 		int q)
459 {
460 	struct array_cache **alc;
461 	struct kmem_cache_node *n;
462 	int r;
463 
464 	n = cachep->node[q];
465 	if (!n)
466 		return;
467 
468 	lockdep_set_class(&n->list_lock, l3_key);
469 	alc = n->alien;
470 	/*
471 	 * FIXME: This check for BAD_ALIEN_MAGIC
472 	 * should go away when common slab code is taught to
473 	 * work even without alien caches.
474 	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
475 	 * for alloc_alien_cache,
476 	 */
477 	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
478 		return;
479 	for_each_node(r) {
480 		if (alc[r])
481 			lockdep_set_class(&alc[r]->lock, alc_key);
482 	}
483 }
484 
485 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
486 {
487 	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
488 }
489 
490 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
491 {
492 	int node;
493 
494 	for_each_online_node(node)
495 		slab_set_debugobj_lock_classes_node(cachep, node);
496 }
497 
498 static void init_node_lock_keys(int q)
499 {
500 	int i;
501 
502 	if (slab_state < UP)
503 		return;
504 
505 	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
506 		struct kmem_cache_node *n;
507 		struct kmem_cache *cache = kmalloc_caches[i];
508 
509 		if (!cache)
510 			continue;
511 
512 		n = cache->node[q];
513 		if (!n || OFF_SLAB(cache))
514 			continue;
515 
516 		slab_set_lock_classes(cache, &on_slab_l3_key,
517 				&on_slab_alc_key, q);
518 	}
519 }
520 
521 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
522 {
523 	if (!cachep->node[q])
524 		return;
525 
526 	slab_set_lock_classes(cachep, &on_slab_l3_key,
527 			&on_slab_alc_key, q);
528 }
529 
530 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
531 {
532 	int node;
533 
534 	VM_BUG_ON(OFF_SLAB(cachep));
535 	for_each_node(node)
536 		on_slab_lock_classes_node(cachep, node);
537 }
538 
539 static inline void init_lock_keys(void)
540 {
541 	int node;
542 
543 	for_each_node(node)
544 		init_node_lock_keys(node);
545 }
546 #else
547 static void init_node_lock_keys(int q)
548 {
549 }
550 
551 static inline void init_lock_keys(void)
552 {
553 }
554 
555 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
556 {
557 }
558 
559 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
560 {
561 }
562 
563 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
564 {
565 }
566 
567 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
568 {
569 }
570 #endif
571 
572 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
573 
574 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
575 {
576 	return cachep->array[smp_processor_id()];
577 }
578 
579 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
580 				size_t idx_size, size_t align)
581 {
582 	int nr_objs;
583 	size_t freelist_size;
584 
585 	/*
586 	 * Ignore padding for the initial guess. The padding
587 	 * is at most @align-1 bytes, and @buffer_size is at
588 	 * least @align. In the worst case, this result will
589 	 * be one greater than the number of objects that fit
590 	 * into the memory allocation when taking the padding
591 	 * into account.
592 	 */
593 	nr_objs = slab_size / (buffer_size + idx_size);
594 
595 	/*
596 	 * This calculated number will be either the right
597 	 * amount, or one greater than what we want.
598 	 */
599 	freelist_size = slab_size - nr_objs * buffer_size;
600 	if (freelist_size < ALIGN(nr_objs * idx_size, align))
601 		nr_objs--;
602 
603 	return nr_objs;
604 }
605 
606 /*
607  * Calculate the number of objects and left-over bytes for a given buffer size.
608  */
609 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
610 			   size_t align, int flags, size_t *left_over,
611 			   unsigned int *num)
612 {
613 	int nr_objs;
614 	size_t mgmt_size;
615 	size_t slab_size = PAGE_SIZE << gfporder;
616 
617 	/*
618 	 * The slab management structure can be either off the slab or
619 	 * on it. For the latter case, the memory allocated for a
620 	 * slab is used for:
621 	 *
622 	 * - One unsigned int for each object
623 	 * - Padding to respect alignment of @align
624 	 * - @buffer_size bytes for each object
625 	 *
626 	 * If the slab management structure is off the slab, then the
627 	 * alignment will already be calculated into the size. Because
628 	 * the slabs are all pages aligned, the objects will be at the
629 	 * correct alignment when allocated.
630 	 */
631 	if (flags & CFLGS_OFF_SLAB) {
632 		mgmt_size = 0;
633 		nr_objs = slab_size / buffer_size;
634 
635 	} else {
636 		nr_objs = calculate_nr_objs(slab_size, buffer_size,
637 					sizeof(freelist_idx_t), align);
638 		mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align);
639 	}
640 	*num = nr_objs;
641 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
642 }
643 
644 #if DEBUG
645 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
646 
647 static void __slab_error(const char *function, struct kmem_cache *cachep,
648 			char *msg)
649 {
650 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
651 	       function, cachep->name, msg);
652 	dump_stack();
653 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655 #endif
656 
657 /*
658  * By default on NUMA we use alien caches to stage the freeing of
659  * objects allocated from other nodes. This causes massive memory
660  * inefficiencies when using fake NUMA setup to split memory into a
661  * large number of small nodes, so it can be disabled on the command
662  * line
663   */
664 
665 static int use_alien_caches __read_mostly = 1;
666 static int __init noaliencache_setup(char *s)
667 {
668 	use_alien_caches = 0;
669 	return 1;
670 }
671 __setup("noaliencache", noaliencache_setup);
672 
673 static int __init slab_max_order_setup(char *str)
674 {
675 	get_option(&str, &slab_max_order);
676 	slab_max_order = slab_max_order < 0 ? 0 :
677 				min(slab_max_order, MAX_ORDER - 1);
678 	slab_max_order_set = true;
679 
680 	return 1;
681 }
682 __setup("slab_max_order=", slab_max_order_setup);
683 
684 #ifdef CONFIG_NUMA
685 /*
686  * Special reaping functions for NUMA systems called from cache_reap().
687  * These take care of doing round robin flushing of alien caches (containing
688  * objects freed on different nodes from which they were allocated) and the
689  * flushing of remote pcps by calling drain_node_pages.
690  */
691 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
692 
693 static void init_reap_node(int cpu)
694 {
695 	int node;
696 
697 	node = next_node(cpu_to_mem(cpu), node_online_map);
698 	if (node == MAX_NUMNODES)
699 		node = first_node(node_online_map);
700 
701 	per_cpu(slab_reap_node, cpu) = node;
702 }
703 
704 static void next_reap_node(void)
705 {
706 	int node = __this_cpu_read(slab_reap_node);
707 
708 	node = next_node(node, node_online_map);
709 	if (unlikely(node >= MAX_NUMNODES))
710 		node = first_node(node_online_map);
711 	__this_cpu_write(slab_reap_node, node);
712 }
713 
714 #else
715 #define init_reap_node(cpu) do { } while (0)
716 #define next_reap_node(void) do { } while (0)
717 #endif
718 
719 /*
720  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
721  * via the workqueue/eventd.
722  * Add the CPU number into the expiration time to minimize the possibility of
723  * the CPUs getting into lockstep and contending for the global cache chain
724  * lock.
725  */
726 static void start_cpu_timer(int cpu)
727 {
728 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
729 
730 	/*
731 	 * When this gets called from do_initcalls via cpucache_init(),
732 	 * init_workqueues() has already run, so keventd will be setup
733 	 * at that time.
734 	 */
735 	if (keventd_up() && reap_work->work.func == NULL) {
736 		init_reap_node(cpu);
737 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
738 		schedule_delayed_work_on(cpu, reap_work,
739 					__round_jiffies_relative(HZ, cpu));
740 	}
741 }
742 
743 static struct array_cache *alloc_arraycache(int node, int entries,
744 					    int batchcount, gfp_t gfp)
745 {
746 	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
747 	struct array_cache *nc = NULL;
748 
749 	nc = kmalloc_node(memsize, gfp, node);
750 	/*
751 	 * The array_cache structures contain pointers to free object.
752 	 * However, when such objects are allocated or transferred to another
753 	 * cache the pointers are not cleared and they could be counted as
754 	 * valid references during a kmemleak scan. Therefore, kmemleak must
755 	 * not scan such objects.
756 	 */
757 	kmemleak_no_scan(nc);
758 	if (nc) {
759 		nc->avail = 0;
760 		nc->limit = entries;
761 		nc->batchcount = batchcount;
762 		nc->touched = 0;
763 		spin_lock_init(&nc->lock);
764 	}
765 	return nc;
766 }
767 
768 static inline bool is_slab_pfmemalloc(struct page *page)
769 {
770 	return PageSlabPfmemalloc(page);
771 }
772 
773 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
774 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
775 						struct array_cache *ac)
776 {
777 	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
778 	struct page *page;
779 	unsigned long flags;
780 
781 	if (!pfmemalloc_active)
782 		return;
783 
784 	spin_lock_irqsave(&n->list_lock, flags);
785 	list_for_each_entry(page, &n->slabs_full, lru)
786 		if (is_slab_pfmemalloc(page))
787 			goto out;
788 
789 	list_for_each_entry(page, &n->slabs_partial, lru)
790 		if (is_slab_pfmemalloc(page))
791 			goto out;
792 
793 	list_for_each_entry(page, &n->slabs_free, lru)
794 		if (is_slab_pfmemalloc(page))
795 			goto out;
796 
797 	pfmemalloc_active = false;
798 out:
799 	spin_unlock_irqrestore(&n->list_lock, flags);
800 }
801 
802 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
803 						gfp_t flags, bool force_refill)
804 {
805 	int i;
806 	void *objp = ac->entry[--ac->avail];
807 
808 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
809 	if (unlikely(is_obj_pfmemalloc(objp))) {
810 		struct kmem_cache_node *n;
811 
812 		if (gfp_pfmemalloc_allowed(flags)) {
813 			clear_obj_pfmemalloc(&objp);
814 			return objp;
815 		}
816 
817 		/* The caller cannot use PFMEMALLOC objects, find another one */
818 		for (i = 0; i < ac->avail; i++) {
819 			/* If a !PFMEMALLOC object is found, swap them */
820 			if (!is_obj_pfmemalloc(ac->entry[i])) {
821 				objp = ac->entry[i];
822 				ac->entry[i] = ac->entry[ac->avail];
823 				ac->entry[ac->avail] = objp;
824 				return objp;
825 			}
826 		}
827 
828 		/*
829 		 * If there are empty slabs on the slabs_free list and we are
830 		 * being forced to refill the cache, mark this one !pfmemalloc.
831 		 */
832 		n = cachep->node[numa_mem_id()];
833 		if (!list_empty(&n->slabs_free) && force_refill) {
834 			struct page *page = virt_to_head_page(objp);
835 			ClearPageSlabPfmemalloc(page);
836 			clear_obj_pfmemalloc(&objp);
837 			recheck_pfmemalloc_active(cachep, ac);
838 			return objp;
839 		}
840 
841 		/* No !PFMEMALLOC objects available */
842 		ac->avail++;
843 		objp = NULL;
844 	}
845 
846 	return objp;
847 }
848 
849 static inline void *ac_get_obj(struct kmem_cache *cachep,
850 			struct array_cache *ac, gfp_t flags, bool force_refill)
851 {
852 	void *objp;
853 
854 	if (unlikely(sk_memalloc_socks()))
855 		objp = __ac_get_obj(cachep, ac, flags, force_refill);
856 	else
857 		objp = ac->entry[--ac->avail];
858 
859 	return objp;
860 }
861 
862 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
863 								void *objp)
864 {
865 	if (unlikely(pfmemalloc_active)) {
866 		/* Some pfmemalloc slabs exist, check if this is one */
867 		struct page *page = virt_to_head_page(objp);
868 		if (PageSlabPfmemalloc(page))
869 			set_obj_pfmemalloc(&objp);
870 	}
871 
872 	return objp;
873 }
874 
875 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
876 								void *objp)
877 {
878 	if (unlikely(sk_memalloc_socks()))
879 		objp = __ac_put_obj(cachep, ac, objp);
880 
881 	ac->entry[ac->avail++] = objp;
882 }
883 
884 /*
885  * Transfer objects in one arraycache to another.
886  * Locking must be handled by the caller.
887  *
888  * Return the number of entries transferred.
889  */
890 static int transfer_objects(struct array_cache *to,
891 		struct array_cache *from, unsigned int max)
892 {
893 	/* Figure out how many entries to transfer */
894 	int nr = min3(from->avail, max, to->limit - to->avail);
895 
896 	if (!nr)
897 		return 0;
898 
899 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
900 			sizeof(void *) *nr);
901 
902 	from->avail -= nr;
903 	to->avail += nr;
904 	return nr;
905 }
906 
907 #ifndef CONFIG_NUMA
908 
909 #define drain_alien_cache(cachep, alien) do { } while (0)
910 #define reap_alien(cachep, n) do { } while (0)
911 
912 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
913 {
914 	return (struct array_cache **)BAD_ALIEN_MAGIC;
915 }
916 
917 static inline void free_alien_cache(struct array_cache **ac_ptr)
918 {
919 }
920 
921 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
922 {
923 	return 0;
924 }
925 
926 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
927 		gfp_t flags)
928 {
929 	return NULL;
930 }
931 
932 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
933 		 gfp_t flags, int nodeid)
934 {
935 	return NULL;
936 }
937 
938 #else	/* CONFIG_NUMA */
939 
940 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
941 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
942 
943 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
944 {
945 	struct array_cache **ac_ptr;
946 	int memsize = sizeof(void *) * nr_node_ids;
947 	int i;
948 
949 	if (limit > 1)
950 		limit = 12;
951 	ac_ptr = kzalloc_node(memsize, gfp, node);
952 	if (ac_ptr) {
953 		for_each_node(i) {
954 			if (i == node || !node_online(i))
955 				continue;
956 			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
957 			if (!ac_ptr[i]) {
958 				for (i--; i >= 0; i--)
959 					kfree(ac_ptr[i]);
960 				kfree(ac_ptr);
961 				return NULL;
962 			}
963 		}
964 	}
965 	return ac_ptr;
966 }
967 
968 static void free_alien_cache(struct array_cache **ac_ptr)
969 {
970 	int i;
971 
972 	if (!ac_ptr)
973 		return;
974 	for_each_node(i)
975 	    kfree(ac_ptr[i]);
976 	kfree(ac_ptr);
977 }
978 
979 static void __drain_alien_cache(struct kmem_cache *cachep,
980 				struct array_cache *ac, int node)
981 {
982 	struct kmem_cache_node *n = cachep->node[node];
983 
984 	if (ac->avail) {
985 		spin_lock(&n->list_lock);
986 		/*
987 		 * Stuff objects into the remote nodes shared array first.
988 		 * That way we could avoid the overhead of putting the objects
989 		 * into the free lists and getting them back later.
990 		 */
991 		if (n->shared)
992 			transfer_objects(n->shared, ac, ac->limit);
993 
994 		free_block(cachep, ac->entry, ac->avail, node);
995 		ac->avail = 0;
996 		spin_unlock(&n->list_lock);
997 	}
998 }
999 
1000 /*
1001  * Called from cache_reap() to regularly drain alien caches round robin.
1002  */
1003 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1004 {
1005 	int node = __this_cpu_read(slab_reap_node);
1006 
1007 	if (n->alien) {
1008 		struct array_cache *ac = n->alien[node];
1009 
1010 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1011 			__drain_alien_cache(cachep, ac, node);
1012 			spin_unlock_irq(&ac->lock);
1013 		}
1014 	}
1015 }
1016 
1017 static void drain_alien_cache(struct kmem_cache *cachep,
1018 				struct array_cache **alien)
1019 {
1020 	int i = 0;
1021 	struct array_cache *ac;
1022 	unsigned long flags;
1023 
1024 	for_each_online_node(i) {
1025 		ac = alien[i];
1026 		if (ac) {
1027 			spin_lock_irqsave(&ac->lock, flags);
1028 			__drain_alien_cache(cachep, ac, i);
1029 			spin_unlock_irqrestore(&ac->lock, flags);
1030 		}
1031 	}
1032 }
1033 
1034 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1035 {
1036 	int nodeid = page_to_nid(virt_to_page(objp));
1037 	struct kmem_cache_node *n;
1038 	struct array_cache *alien = NULL;
1039 	int node;
1040 
1041 	node = numa_mem_id();
1042 
1043 	/*
1044 	 * Make sure we are not freeing a object from another node to the array
1045 	 * cache on this cpu.
1046 	 */
1047 	if (likely(nodeid == node))
1048 		return 0;
1049 
1050 	n = cachep->node[node];
1051 	STATS_INC_NODEFREES(cachep);
1052 	if (n->alien && n->alien[nodeid]) {
1053 		alien = n->alien[nodeid];
1054 		spin_lock(&alien->lock);
1055 		if (unlikely(alien->avail == alien->limit)) {
1056 			STATS_INC_ACOVERFLOW(cachep);
1057 			__drain_alien_cache(cachep, alien, nodeid);
1058 		}
1059 		ac_put_obj(cachep, alien, objp);
1060 		spin_unlock(&alien->lock);
1061 	} else {
1062 		spin_lock(&(cachep->node[nodeid])->list_lock);
1063 		free_block(cachep, &objp, 1, nodeid);
1064 		spin_unlock(&(cachep->node[nodeid])->list_lock);
1065 	}
1066 	return 1;
1067 }
1068 #endif
1069 
1070 /*
1071  * Allocates and initializes node for a node on each slab cache, used for
1072  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1073  * will be allocated off-node since memory is not yet online for the new node.
1074  * When hotplugging memory or a cpu, existing node are not replaced if
1075  * already in use.
1076  *
1077  * Must hold slab_mutex.
1078  */
1079 static int init_cache_node_node(int node)
1080 {
1081 	struct kmem_cache *cachep;
1082 	struct kmem_cache_node *n;
1083 	const int memsize = sizeof(struct kmem_cache_node);
1084 
1085 	list_for_each_entry(cachep, &slab_caches, list) {
1086 		/*
1087 		 * Set up the kmem_cache_node for cpu before we can
1088 		 * begin anything. Make sure some other cpu on this
1089 		 * node has not already allocated this
1090 		 */
1091 		if (!cachep->node[node]) {
1092 			n = kmalloc_node(memsize, GFP_KERNEL, node);
1093 			if (!n)
1094 				return -ENOMEM;
1095 			kmem_cache_node_init(n);
1096 			n->next_reap = jiffies + REAPTIMEOUT_NODE +
1097 			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1098 
1099 			/*
1100 			 * The kmem_cache_nodes don't come and go as CPUs
1101 			 * come and go.  slab_mutex is sufficient
1102 			 * protection here.
1103 			 */
1104 			cachep->node[node] = n;
1105 		}
1106 
1107 		spin_lock_irq(&cachep->node[node]->list_lock);
1108 		cachep->node[node]->free_limit =
1109 			(1 + nr_cpus_node(node)) *
1110 			cachep->batchcount + cachep->num;
1111 		spin_unlock_irq(&cachep->node[node]->list_lock);
1112 	}
1113 	return 0;
1114 }
1115 
1116 static inline int slabs_tofree(struct kmem_cache *cachep,
1117 						struct kmem_cache_node *n)
1118 {
1119 	return (n->free_objects + cachep->num - 1) / cachep->num;
1120 }
1121 
1122 static void cpuup_canceled(long cpu)
1123 {
1124 	struct kmem_cache *cachep;
1125 	struct kmem_cache_node *n = NULL;
1126 	int node = cpu_to_mem(cpu);
1127 	const struct cpumask *mask = cpumask_of_node(node);
1128 
1129 	list_for_each_entry(cachep, &slab_caches, list) {
1130 		struct array_cache *nc;
1131 		struct array_cache *shared;
1132 		struct array_cache **alien;
1133 
1134 		/* cpu is dead; no one can alloc from it. */
1135 		nc = cachep->array[cpu];
1136 		cachep->array[cpu] = NULL;
1137 		n = cachep->node[node];
1138 
1139 		if (!n)
1140 			goto free_array_cache;
1141 
1142 		spin_lock_irq(&n->list_lock);
1143 
1144 		/* Free limit for this kmem_cache_node */
1145 		n->free_limit -= cachep->batchcount;
1146 		if (nc)
1147 			free_block(cachep, nc->entry, nc->avail, node);
1148 
1149 		if (!cpumask_empty(mask)) {
1150 			spin_unlock_irq(&n->list_lock);
1151 			goto free_array_cache;
1152 		}
1153 
1154 		shared = n->shared;
1155 		if (shared) {
1156 			free_block(cachep, shared->entry,
1157 				   shared->avail, node);
1158 			n->shared = NULL;
1159 		}
1160 
1161 		alien = n->alien;
1162 		n->alien = NULL;
1163 
1164 		spin_unlock_irq(&n->list_lock);
1165 
1166 		kfree(shared);
1167 		if (alien) {
1168 			drain_alien_cache(cachep, alien);
1169 			free_alien_cache(alien);
1170 		}
1171 free_array_cache:
1172 		kfree(nc);
1173 	}
1174 	/*
1175 	 * In the previous loop, all the objects were freed to
1176 	 * the respective cache's slabs,  now we can go ahead and
1177 	 * shrink each nodelist to its limit.
1178 	 */
1179 	list_for_each_entry(cachep, &slab_caches, list) {
1180 		n = cachep->node[node];
1181 		if (!n)
1182 			continue;
1183 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1184 	}
1185 }
1186 
1187 static int cpuup_prepare(long cpu)
1188 {
1189 	struct kmem_cache *cachep;
1190 	struct kmem_cache_node *n = NULL;
1191 	int node = cpu_to_mem(cpu);
1192 	int err;
1193 
1194 	/*
1195 	 * We need to do this right in the beginning since
1196 	 * alloc_arraycache's are going to use this list.
1197 	 * kmalloc_node allows us to add the slab to the right
1198 	 * kmem_cache_node and not this cpu's kmem_cache_node
1199 	 */
1200 	err = init_cache_node_node(node);
1201 	if (err < 0)
1202 		goto bad;
1203 
1204 	/*
1205 	 * Now we can go ahead with allocating the shared arrays and
1206 	 * array caches
1207 	 */
1208 	list_for_each_entry(cachep, &slab_caches, list) {
1209 		struct array_cache *nc;
1210 		struct array_cache *shared = NULL;
1211 		struct array_cache **alien = NULL;
1212 
1213 		nc = alloc_arraycache(node, cachep->limit,
1214 					cachep->batchcount, GFP_KERNEL);
1215 		if (!nc)
1216 			goto bad;
1217 		if (cachep->shared) {
1218 			shared = alloc_arraycache(node,
1219 				cachep->shared * cachep->batchcount,
1220 				0xbaadf00d, GFP_KERNEL);
1221 			if (!shared) {
1222 				kfree(nc);
1223 				goto bad;
1224 			}
1225 		}
1226 		if (use_alien_caches) {
1227 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1228 			if (!alien) {
1229 				kfree(shared);
1230 				kfree(nc);
1231 				goto bad;
1232 			}
1233 		}
1234 		cachep->array[cpu] = nc;
1235 		n = cachep->node[node];
1236 		BUG_ON(!n);
1237 
1238 		spin_lock_irq(&n->list_lock);
1239 		if (!n->shared) {
1240 			/*
1241 			 * We are serialised from CPU_DEAD or
1242 			 * CPU_UP_CANCELLED by the cpucontrol lock
1243 			 */
1244 			n->shared = shared;
1245 			shared = NULL;
1246 		}
1247 #ifdef CONFIG_NUMA
1248 		if (!n->alien) {
1249 			n->alien = alien;
1250 			alien = NULL;
1251 		}
1252 #endif
1253 		spin_unlock_irq(&n->list_lock);
1254 		kfree(shared);
1255 		free_alien_cache(alien);
1256 		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1257 			slab_set_debugobj_lock_classes_node(cachep, node);
1258 		else if (!OFF_SLAB(cachep) &&
1259 			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1260 			on_slab_lock_classes_node(cachep, node);
1261 	}
1262 	init_node_lock_keys(node);
1263 
1264 	return 0;
1265 bad:
1266 	cpuup_canceled(cpu);
1267 	return -ENOMEM;
1268 }
1269 
1270 static int cpuup_callback(struct notifier_block *nfb,
1271 				    unsigned long action, void *hcpu)
1272 {
1273 	long cpu = (long)hcpu;
1274 	int err = 0;
1275 
1276 	switch (action) {
1277 	case CPU_UP_PREPARE:
1278 	case CPU_UP_PREPARE_FROZEN:
1279 		mutex_lock(&slab_mutex);
1280 		err = cpuup_prepare(cpu);
1281 		mutex_unlock(&slab_mutex);
1282 		break;
1283 	case CPU_ONLINE:
1284 	case CPU_ONLINE_FROZEN:
1285 		start_cpu_timer(cpu);
1286 		break;
1287 #ifdef CONFIG_HOTPLUG_CPU
1288   	case CPU_DOWN_PREPARE:
1289   	case CPU_DOWN_PREPARE_FROZEN:
1290 		/*
1291 		 * Shutdown cache reaper. Note that the slab_mutex is
1292 		 * held so that if cache_reap() is invoked it cannot do
1293 		 * anything expensive but will only modify reap_work
1294 		 * and reschedule the timer.
1295 		*/
1296 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1297 		/* Now the cache_reaper is guaranteed to be not running. */
1298 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1299   		break;
1300   	case CPU_DOWN_FAILED:
1301   	case CPU_DOWN_FAILED_FROZEN:
1302 		start_cpu_timer(cpu);
1303   		break;
1304 	case CPU_DEAD:
1305 	case CPU_DEAD_FROZEN:
1306 		/*
1307 		 * Even if all the cpus of a node are down, we don't free the
1308 		 * kmem_cache_node of any cache. This to avoid a race between
1309 		 * cpu_down, and a kmalloc allocation from another cpu for
1310 		 * memory from the node of the cpu going down.  The node
1311 		 * structure is usually allocated from kmem_cache_create() and
1312 		 * gets destroyed at kmem_cache_destroy().
1313 		 */
1314 		/* fall through */
1315 #endif
1316 	case CPU_UP_CANCELED:
1317 	case CPU_UP_CANCELED_FROZEN:
1318 		mutex_lock(&slab_mutex);
1319 		cpuup_canceled(cpu);
1320 		mutex_unlock(&slab_mutex);
1321 		break;
1322 	}
1323 	return notifier_from_errno(err);
1324 }
1325 
1326 static struct notifier_block cpucache_notifier = {
1327 	&cpuup_callback, NULL, 0
1328 };
1329 
1330 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1331 /*
1332  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1333  * Returns -EBUSY if all objects cannot be drained so that the node is not
1334  * removed.
1335  *
1336  * Must hold slab_mutex.
1337  */
1338 static int __meminit drain_cache_node_node(int node)
1339 {
1340 	struct kmem_cache *cachep;
1341 	int ret = 0;
1342 
1343 	list_for_each_entry(cachep, &slab_caches, list) {
1344 		struct kmem_cache_node *n;
1345 
1346 		n = cachep->node[node];
1347 		if (!n)
1348 			continue;
1349 
1350 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1351 
1352 		if (!list_empty(&n->slabs_full) ||
1353 		    !list_empty(&n->slabs_partial)) {
1354 			ret = -EBUSY;
1355 			break;
1356 		}
1357 	}
1358 	return ret;
1359 }
1360 
1361 static int __meminit slab_memory_callback(struct notifier_block *self,
1362 					unsigned long action, void *arg)
1363 {
1364 	struct memory_notify *mnb = arg;
1365 	int ret = 0;
1366 	int nid;
1367 
1368 	nid = mnb->status_change_nid;
1369 	if (nid < 0)
1370 		goto out;
1371 
1372 	switch (action) {
1373 	case MEM_GOING_ONLINE:
1374 		mutex_lock(&slab_mutex);
1375 		ret = init_cache_node_node(nid);
1376 		mutex_unlock(&slab_mutex);
1377 		break;
1378 	case MEM_GOING_OFFLINE:
1379 		mutex_lock(&slab_mutex);
1380 		ret = drain_cache_node_node(nid);
1381 		mutex_unlock(&slab_mutex);
1382 		break;
1383 	case MEM_ONLINE:
1384 	case MEM_OFFLINE:
1385 	case MEM_CANCEL_ONLINE:
1386 	case MEM_CANCEL_OFFLINE:
1387 		break;
1388 	}
1389 out:
1390 	return notifier_from_errno(ret);
1391 }
1392 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1393 
1394 /*
1395  * swap the static kmem_cache_node with kmalloced memory
1396  */
1397 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1398 				int nodeid)
1399 {
1400 	struct kmem_cache_node *ptr;
1401 
1402 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1403 	BUG_ON(!ptr);
1404 
1405 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1406 	/*
1407 	 * Do not assume that spinlocks can be initialized via memcpy:
1408 	 */
1409 	spin_lock_init(&ptr->list_lock);
1410 
1411 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1412 	cachep->node[nodeid] = ptr;
1413 }
1414 
1415 /*
1416  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1417  * size of kmem_cache_node.
1418  */
1419 static void __init set_up_node(struct kmem_cache *cachep, int index)
1420 {
1421 	int node;
1422 
1423 	for_each_online_node(node) {
1424 		cachep->node[node] = &init_kmem_cache_node[index + node];
1425 		cachep->node[node]->next_reap = jiffies +
1426 		    REAPTIMEOUT_NODE +
1427 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1428 	}
1429 }
1430 
1431 /*
1432  * The memory after the last cpu cache pointer is used for the
1433  * the node pointer.
1434  */
1435 static void setup_node_pointer(struct kmem_cache *cachep)
1436 {
1437 	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1438 }
1439 
1440 /*
1441  * Initialisation.  Called after the page allocator have been initialised and
1442  * before smp_init().
1443  */
1444 void __init kmem_cache_init(void)
1445 {
1446 	int i;
1447 
1448 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1449 					sizeof(struct rcu_head));
1450 	kmem_cache = &kmem_cache_boot;
1451 	setup_node_pointer(kmem_cache);
1452 
1453 	if (num_possible_nodes() == 1)
1454 		use_alien_caches = 0;
1455 
1456 	for (i = 0; i < NUM_INIT_LISTS; i++)
1457 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1458 
1459 	set_up_node(kmem_cache, CACHE_CACHE);
1460 
1461 	/*
1462 	 * Fragmentation resistance on low memory - only use bigger
1463 	 * page orders on machines with more than 32MB of memory if
1464 	 * not overridden on the command line.
1465 	 */
1466 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1467 		slab_max_order = SLAB_MAX_ORDER_HI;
1468 
1469 	/* Bootstrap is tricky, because several objects are allocated
1470 	 * from caches that do not exist yet:
1471 	 * 1) initialize the kmem_cache cache: it contains the struct
1472 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1473 	 *    kmem_cache is statically allocated.
1474 	 *    Initially an __init data area is used for the head array and the
1475 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1476 	 *    array at the end of the bootstrap.
1477 	 * 2) Create the first kmalloc cache.
1478 	 *    The struct kmem_cache for the new cache is allocated normally.
1479 	 *    An __init data area is used for the head array.
1480 	 * 3) Create the remaining kmalloc caches, with minimally sized
1481 	 *    head arrays.
1482 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1483 	 *    kmalloc cache with kmalloc allocated arrays.
1484 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1485 	 *    the other cache's with kmalloc allocated memory.
1486 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1487 	 */
1488 
1489 	/* 1) create the kmem_cache */
1490 
1491 	/*
1492 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1493 	 */
1494 	create_boot_cache(kmem_cache, "kmem_cache",
1495 		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1496 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1497 				  SLAB_HWCACHE_ALIGN);
1498 	list_add(&kmem_cache->list, &slab_caches);
1499 
1500 	/* 2+3) create the kmalloc caches */
1501 
1502 	/*
1503 	 * Initialize the caches that provide memory for the array cache and the
1504 	 * kmem_cache_node structures first.  Without this, further allocations will
1505 	 * bug.
1506 	 */
1507 
1508 	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1509 					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1510 
1511 	if (INDEX_AC != INDEX_NODE)
1512 		kmalloc_caches[INDEX_NODE] =
1513 			create_kmalloc_cache("kmalloc-node",
1514 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1515 
1516 	slab_early_init = 0;
1517 
1518 	/* 4) Replace the bootstrap head arrays */
1519 	{
1520 		struct array_cache *ptr;
1521 
1522 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1523 
1524 		memcpy(ptr, cpu_cache_get(kmem_cache),
1525 		       sizeof(struct arraycache_init));
1526 		/*
1527 		 * Do not assume that spinlocks can be initialized via memcpy:
1528 		 */
1529 		spin_lock_init(&ptr->lock);
1530 
1531 		kmem_cache->array[smp_processor_id()] = ptr;
1532 
1533 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1534 
1535 		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1536 		       != &initarray_generic.cache);
1537 		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1538 		       sizeof(struct arraycache_init));
1539 		/*
1540 		 * Do not assume that spinlocks can be initialized via memcpy:
1541 		 */
1542 		spin_lock_init(&ptr->lock);
1543 
1544 		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1545 	}
1546 	/* 5) Replace the bootstrap kmem_cache_node */
1547 	{
1548 		int nid;
1549 
1550 		for_each_online_node(nid) {
1551 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1552 
1553 			init_list(kmalloc_caches[INDEX_AC],
1554 				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1555 
1556 			if (INDEX_AC != INDEX_NODE) {
1557 				init_list(kmalloc_caches[INDEX_NODE],
1558 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1559 			}
1560 		}
1561 	}
1562 
1563 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1564 }
1565 
1566 void __init kmem_cache_init_late(void)
1567 {
1568 	struct kmem_cache *cachep;
1569 
1570 	slab_state = UP;
1571 
1572 	/* 6) resize the head arrays to their final sizes */
1573 	mutex_lock(&slab_mutex);
1574 	list_for_each_entry(cachep, &slab_caches, list)
1575 		if (enable_cpucache(cachep, GFP_NOWAIT))
1576 			BUG();
1577 	mutex_unlock(&slab_mutex);
1578 
1579 	/* Annotate slab for lockdep -- annotate the malloc caches */
1580 	init_lock_keys();
1581 
1582 	/* Done! */
1583 	slab_state = FULL;
1584 
1585 	/*
1586 	 * Register a cpu startup notifier callback that initializes
1587 	 * cpu_cache_get for all new cpus
1588 	 */
1589 	register_cpu_notifier(&cpucache_notifier);
1590 
1591 #ifdef CONFIG_NUMA
1592 	/*
1593 	 * Register a memory hotplug callback that initializes and frees
1594 	 * node.
1595 	 */
1596 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1597 #endif
1598 
1599 	/*
1600 	 * The reap timers are started later, with a module init call: That part
1601 	 * of the kernel is not yet operational.
1602 	 */
1603 }
1604 
1605 static int __init cpucache_init(void)
1606 {
1607 	int cpu;
1608 
1609 	/*
1610 	 * Register the timers that return unneeded pages to the page allocator
1611 	 */
1612 	for_each_online_cpu(cpu)
1613 		start_cpu_timer(cpu);
1614 
1615 	/* Done! */
1616 	slab_state = FULL;
1617 	return 0;
1618 }
1619 __initcall(cpucache_init);
1620 
1621 static noinline void
1622 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1623 {
1624 	struct kmem_cache_node *n;
1625 	struct page *page;
1626 	unsigned long flags;
1627 	int node;
1628 
1629 	printk(KERN_WARNING
1630 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1631 		nodeid, gfpflags);
1632 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1633 		cachep->name, cachep->size, cachep->gfporder);
1634 
1635 	for_each_online_node(node) {
1636 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1637 		unsigned long active_slabs = 0, num_slabs = 0;
1638 
1639 		n = cachep->node[node];
1640 		if (!n)
1641 			continue;
1642 
1643 		spin_lock_irqsave(&n->list_lock, flags);
1644 		list_for_each_entry(page, &n->slabs_full, lru) {
1645 			active_objs += cachep->num;
1646 			active_slabs++;
1647 		}
1648 		list_for_each_entry(page, &n->slabs_partial, lru) {
1649 			active_objs += page->active;
1650 			active_slabs++;
1651 		}
1652 		list_for_each_entry(page, &n->slabs_free, lru)
1653 			num_slabs++;
1654 
1655 		free_objects += n->free_objects;
1656 		spin_unlock_irqrestore(&n->list_lock, flags);
1657 
1658 		num_slabs += active_slabs;
1659 		num_objs = num_slabs * cachep->num;
1660 		printk(KERN_WARNING
1661 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1662 			node, active_slabs, num_slabs, active_objs, num_objs,
1663 			free_objects);
1664 	}
1665 }
1666 
1667 /*
1668  * Interface to system's page allocator. No need to hold the cache-lock.
1669  *
1670  * If we requested dmaable memory, we will get it. Even if we
1671  * did not request dmaable memory, we might get it, but that
1672  * would be relatively rare and ignorable.
1673  */
1674 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1675 								int nodeid)
1676 {
1677 	struct page *page;
1678 	int nr_pages;
1679 
1680 	flags |= cachep->allocflags;
1681 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1682 		flags |= __GFP_RECLAIMABLE;
1683 
1684 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1685 	if (!page) {
1686 		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1687 			slab_out_of_memory(cachep, flags, nodeid);
1688 		return NULL;
1689 	}
1690 
1691 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1692 	if (unlikely(page->pfmemalloc))
1693 		pfmemalloc_active = true;
1694 
1695 	nr_pages = (1 << cachep->gfporder);
1696 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1697 		add_zone_page_state(page_zone(page),
1698 			NR_SLAB_RECLAIMABLE, nr_pages);
1699 	else
1700 		add_zone_page_state(page_zone(page),
1701 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1702 	__SetPageSlab(page);
1703 	if (page->pfmemalloc)
1704 		SetPageSlabPfmemalloc(page);
1705 	memcg_bind_pages(cachep, cachep->gfporder);
1706 
1707 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1708 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1709 
1710 		if (cachep->ctor)
1711 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1712 		else
1713 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1714 	}
1715 
1716 	return page;
1717 }
1718 
1719 /*
1720  * Interface to system's page release.
1721  */
1722 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1723 {
1724 	const unsigned long nr_freed = (1 << cachep->gfporder);
1725 
1726 	kmemcheck_free_shadow(page, cachep->gfporder);
1727 
1728 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1729 		sub_zone_page_state(page_zone(page),
1730 				NR_SLAB_RECLAIMABLE, nr_freed);
1731 	else
1732 		sub_zone_page_state(page_zone(page),
1733 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1734 
1735 	BUG_ON(!PageSlab(page));
1736 	__ClearPageSlabPfmemalloc(page);
1737 	__ClearPageSlab(page);
1738 	page_mapcount_reset(page);
1739 	page->mapping = NULL;
1740 
1741 	memcg_release_pages(cachep, cachep->gfporder);
1742 	if (current->reclaim_state)
1743 		current->reclaim_state->reclaimed_slab += nr_freed;
1744 	__free_memcg_kmem_pages(page, cachep->gfporder);
1745 }
1746 
1747 static void kmem_rcu_free(struct rcu_head *head)
1748 {
1749 	struct kmem_cache *cachep;
1750 	struct page *page;
1751 
1752 	page = container_of(head, struct page, rcu_head);
1753 	cachep = page->slab_cache;
1754 
1755 	kmem_freepages(cachep, page);
1756 }
1757 
1758 #if DEBUG
1759 
1760 #ifdef CONFIG_DEBUG_PAGEALLOC
1761 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1762 			    unsigned long caller)
1763 {
1764 	int size = cachep->object_size;
1765 
1766 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1767 
1768 	if (size < 5 * sizeof(unsigned long))
1769 		return;
1770 
1771 	*addr++ = 0x12345678;
1772 	*addr++ = caller;
1773 	*addr++ = smp_processor_id();
1774 	size -= 3 * sizeof(unsigned long);
1775 	{
1776 		unsigned long *sptr = &caller;
1777 		unsigned long svalue;
1778 
1779 		while (!kstack_end(sptr)) {
1780 			svalue = *sptr++;
1781 			if (kernel_text_address(svalue)) {
1782 				*addr++ = svalue;
1783 				size -= sizeof(unsigned long);
1784 				if (size <= sizeof(unsigned long))
1785 					break;
1786 			}
1787 		}
1788 
1789 	}
1790 	*addr++ = 0x87654321;
1791 }
1792 #endif
1793 
1794 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1795 {
1796 	int size = cachep->object_size;
1797 	addr = &((char *)addr)[obj_offset(cachep)];
1798 
1799 	memset(addr, val, size);
1800 	*(unsigned char *)(addr + size - 1) = POISON_END;
1801 }
1802 
1803 static void dump_line(char *data, int offset, int limit)
1804 {
1805 	int i;
1806 	unsigned char error = 0;
1807 	int bad_count = 0;
1808 
1809 	printk(KERN_ERR "%03x: ", offset);
1810 	for (i = 0; i < limit; i++) {
1811 		if (data[offset + i] != POISON_FREE) {
1812 			error = data[offset + i];
1813 			bad_count++;
1814 		}
1815 	}
1816 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1817 			&data[offset], limit, 1);
1818 
1819 	if (bad_count == 1) {
1820 		error ^= POISON_FREE;
1821 		if (!(error & (error - 1))) {
1822 			printk(KERN_ERR "Single bit error detected. Probably "
1823 					"bad RAM.\n");
1824 #ifdef CONFIG_X86
1825 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1826 					"test tool.\n");
1827 #else
1828 			printk(KERN_ERR "Run a memory test tool.\n");
1829 #endif
1830 		}
1831 	}
1832 }
1833 #endif
1834 
1835 #if DEBUG
1836 
1837 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1838 {
1839 	int i, size;
1840 	char *realobj;
1841 
1842 	if (cachep->flags & SLAB_RED_ZONE) {
1843 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1844 			*dbg_redzone1(cachep, objp),
1845 			*dbg_redzone2(cachep, objp));
1846 	}
1847 
1848 	if (cachep->flags & SLAB_STORE_USER) {
1849 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1850 		       *dbg_userword(cachep, objp),
1851 		       *dbg_userword(cachep, objp));
1852 	}
1853 	realobj = (char *)objp + obj_offset(cachep);
1854 	size = cachep->object_size;
1855 	for (i = 0; i < size && lines; i += 16, lines--) {
1856 		int limit;
1857 		limit = 16;
1858 		if (i + limit > size)
1859 			limit = size - i;
1860 		dump_line(realobj, i, limit);
1861 	}
1862 }
1863 
1864 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1865 {
1866 	char *realobj;
1867 	int size, i;
1868 	int lines = 0;
1869 
1870 	realobj = (char *)objp + obj_offset(cachep);
1871 	size = cachep->object_size;
1872 
1873 	for (i = 0; i < size; i++) {
1874 		char exp = POISON_FREE;
1875 		if (i == size - 1)
1876 			exp = POISON_END;
1877 		if (realobj[i] != exp) {
1878 			int limit;
1879 			/* Mismatch ! */
1880 			/* Print header */
1881 			if (lines == 0) {
1882 				printk(KERN_ERR
1883 					"Slab corruption (%s): %s start=%p, len=%d\n",
1884 					print_tainted(), cachep->name, realobj, size);
1885 				print_objinfo(cachep, objp, 0);
1886 			}
1887 			/* Hexdump the affected line */
1888 			i = (i / 16) * 16;
1889 			limit = 16;
1890 			if (i + limit > size)
1891 				limit = size - i;
1892 			dump_line(realobj, i, limit);
1893 			i += 16;
1894 			lines++;
1895 			/* Limit to 5 lines */
1896 			if (lines > 5)
1897 				break;
1898 		}
1899 	}
1900 	if (lines != 0) {
1901 		/* Print some data about the neighboring objects, if they
1902 		 * exist:
1903 		 */
1904 		struct page *page = virt_to_head_page(objp);
1905 		unsigned int objnr;
1906 
1907 		objnr = obj_to_index(cachep, page, objp);
1908 		if (objnr) {
1909 			objp = index_to_obj(cachep, page, objnr - 1);
1910 			realobj = (char *)objp + obj_offset(cachep);
1911 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1912 			       realobj, size);
1913 			print_objinfo(cachep, objp, 2);
1914 		}
1915 		if (objnr + 1 < cachep->num) {
1916 			objp = index_to_obj(cachep, page, objnr + 1);
1917 			realobj = (char *)objp + obj_offset(cachep);
1918 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1919 			       realobj, size);
1920 			print_objinfo(cachep, objp, 2);
1921 		}
1922 	}
1923 }
1924 #endif
1925 
1926 #if DEBUG
1927 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1928 						struct page *page)
1929 {
1930 	int i;
1931 	for (i = 0; i < cachep->num; i++) {
1932 		void *objp = index_to_obj(cachep, page, i);
1933 
1934 		if (cachep->flags & SLAB_POISON) {
1935 #ifdef CONFIG_DEBUG_PAGEALLOC
1936 			if (cachep->size % PAGE_SIZE == 0 &&
1937 					OFF_SLAB(cachep))
1938 				kernel_map_pages(virt_to_page(objp),
1939 					cachep->size / PAGE_SIZE, 1);
1940 			else
1941 				check_poison_obj(cachep, objp);
1942 #else
1943 			check_poison_obj(cachep, objp);
1944 #endif
1945 		}
1946 		if (cachep->flags & SLAB_RED_ZONE) {
1947 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1948 				slab_error(cachep, "start of a freed object "
1949 					   "was overwritten");
1950 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1951 				slab_error(cachep, "end of a freed object "
1952 					   "was overwritten");
1953 		}
1954 	}
1955 }
1956 #else
1957 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1958 						struct page *page)
1959 {
1960 }
1961 #endif
1962 
1963 /**
1964  * slab_destroy - destroy and release all objects in a slab
1965  * @cachep: cache pointer being destroyed
1966  * @page: page pointer being destroyed
1967  *
1968  * Destroy all the objs in a slab, and release the mem back to the system.
1969  * Before calling the slab must have been unlinked from the cache.  The
1970  * cache-lock is not held/needed.
1971  */
1972 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1973 {
1974 	void *freelist;
1975 
1976 	freelist = page->freelist;
1977 	slab_destroy_debugcheck(cachep, page);
1978 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1979 		struct rcu_head *head;
1980 
1981 		/*
1982 		 * RCU free overloads the RCU head over the LRU.
1983 		 * slab_page has been overloeaded over the LRU,
1984 		 * however it is not used from now on so that
1985 		 * we can use it safely.
1986 		 */
1987 		head = (void *)&page->rcu_head;
1988 		call_rcu(head, kmem_rcu_free);
1989 
1990 	} else {
1991 		kmem_freepages(cachep, page);
1992 	}
1993 
1994 	/*
1995 	 * From now on, we don't use freelist
1996 	 * although actual page can be freed in rcu context
1997 	 */
1998 	if (OFF_SLAB(cachep))
1999 		kmem_cache_free(cachep->freelist_cache, freelist);
2000 }
2001 
2002 /**
2003  * calculate_slab_order - calculate size (page order) of slabs
2004  * @cachep: pointer to the cache that is being created
2005  * @size: size of objects to be created in this cache.
2006  * @align: required alignment for the objects.
2007  * @flags: slab allocation flags
2008  *
2009  * Also calculates the number of objects per slab.
2010  *
2011  * This could be made much more intelligent.  For now, try to avoid using
2012  * high order pages for slabs.  When the gfp() functions are more friendly
2013  * towards high-order requests, this should be changed.
2014  */
2015 static size_t calculate_slab_order(struct kmem_cache *cachep,
2016 			size_t size, size_t align, unsigned long flags)
2017 {
2018 	unsigned long offslab_limit;
2019 	size_t left_over = 0;
2020 	int gfporder;
2021 
2022 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2023 		unsigned int num;
2024 		size_t remainder;
2025 
2026 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2027 		if (!num)
2028 			continue;
2029 
2030 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
2031 		if (num > SLAB_OBJ_MAX_NUM)
2032 			break;
2033 
2034 		if (flags & CFLGS_OFF_SLAB) {
2035 			/*
2036 			 * Max number of objs-per-slab for caches which
2037 			 * use off-slab slabs. Needed to avoid a possible
2038 			 * looping condition in cache_grow().
2039 			 */
2040 			offslab_limit = size;
2041 			offslab_limit /= sizeof(freelist_idx_t);
2042 
2043  			if (num > offslab_limit)
2044 				break;
2045 		}
2046 
2047 		/* Found something acceptable - save it away */
2048 		cachep->num = num;
2049 		cachep->gfporder = gfporder;
2050 		left_over = remainder;
2051 
2052 		/*
2053 		 * A VFS-reclaimable slab tends to have most allocations
2054 		 * as GFP_NOFS and we really don't want to have to be allocating
2055 		 * higher-order pages when we are unable to shrink dcache.
2056 		 */
2057 		if (flags & SLAB_RECLAIM_ACCOUNT)
2058 			break;
2059 
2060 		/*
2061 		 * Large number of objects is good, but very large slabs are
2062 		 * currently bad for the gfp()s.
2063 		 */
2064 		if (gfporder >= slab_max_order)
2065 			break;
2066 
2067 		/*
2068 		 * Acceptable internal fragmentation?
2069 		 */
2070 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2071 			break;
2072 	}
2073 	return left_over;
2074 }
2075 
2076 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2077 {
2078 	if (slab_state >= FULL)
2079 		return enable_cpucache(cachep, gfp);
2080 
2081 	if (slab_state == DOWN) {
2082 		/*
2083 		 * Note: Creation of first cache (kmem_cache).
2084 		 * The setup_node is taken care
2085 		 * of by the caller of __kmem_cache_create
2086 		 */
2087 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2088 		slab_state = PARTIAL;
2089 	} else if (slab_state == PARTIAL) {
2090 		/*
2091 		 * Note: the second kmem_cache_create must create the cache
2092 		 * that's used by kmalloc(24), otherwise the creation of
2093 		 * further caches will BUG().
2094 		 */
2095 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2096 
2097 		/*
2098 		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2099 		 * the second cache, then we need to set up all its node/,
2100 		 * otherwise the creation of further caches will BUG().
2101 		 */
2102 		set_up_node(cachep, SIZE_AC);
2103 		if (INDEX_AC == INDEX_NODE)
2104 			slab_state = PARTIAL_NODE;
2105 		else
2106 			slab_state = PARTIAL_ARRAYCACHE;
2107 	} else {
2108 		/* Remaining boot caches */
2109 		cachep->array[smp_processor_id()] =
2110 			kmalloc(sizeof(struct arraycache_init), gfp);
2111 
2112 		if (slab_state == PARTIAL_ARRAYCACHE) {
2113 			set_up_node(cachep, SIZE_NODE);
2114 			slab_state = PARTIAL_NODE;
2115 		} else {
2116 			int node;
2117 			for_each_online_node(node) {
2118 				cachep->node[node] =
2119 				    kmalloc_node(sizeof(struct kmem_cache_node),
2120 						gfp, node);
2121 				BUG_ON(!cachep->node[node]);
2122 				kmem_cache_node_init(cachep->node[node]);
2123 			}
2124 		}
2125 	}
2126 	cachep->node[numa_mem_id()]->next_reap =
2127 			jiffies + REAPTIMEOUT_NODE +
2128 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2129 
2130 	cpu_cache_get(cachep)->avail = 0;
2131 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2132 	cpu_cache_get(cachep)->batchcount = 1;
2133 	cpu_cache_get(cachep)->touched = 0;
2134 	cachep->batchcount = 1;
2135 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2136 	return 0;
2137 }
2138 
2139 /**
2140  * __kmem_cache_create - Create a cache.
2141  * @cachep: cache management descriptor
2142  * @flags: SLAB flags
2143  *
2144  * Returns a ptr to the cache on success, NULL on failure.
2145  * Cannot be called within a int, but can be interrupted.
2146  * The @ctor is run when new pages are allocated by the cache.
2147  *
2148  * The flags are
2149  *
2150  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2151  * to catch references to uninitialised memory.
2152  *
2153  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2154  * for buffer overruns.
2155  *
2156  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2157  * cacheline.  This can be beneficial if you're counting cycles as closely
2158  * as davem.
2159  */
2160 int
2161 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2162 {
2163 	size_t left_over, freelist_size, ralign;
2164 	gfp_t gfp;
2165 	int err;
2166 	size_t size = cachep->size;
2167 
2168 #if DEBUG
2169 #if FORCED_DEBUG
2170 	/*
2171 	 * Enable redzoning and last user accounting, except for caches with
2172 	 * large objects, if the increased size would increase the object size
2173 	 * above the next power of two: caches with object sizes just above a
2174 	 * power of two have a significant amount of internal fragmentation.
2175 	 */
2176 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2177 						2 * sizeof(unsigned long long)))
2178 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2179 	if (!(flags & SLAB_DESTROY_BY_RCU))
2180 		flags |= SLAB_POISON;
2181 #endif
2182 	if (flags & SLAB_DESTROY_BY_RCU)
2183 		BUG_ON(flags & SLAB_POISON);
2184 #endif
2185 
2186 	/*
2187 	 * Check that size is in terms of words.  This is needed to avoid
2188 	 * unaligned accesses for some archs when redzoning is used, and makes
2189 	 * sure any on-slab bufctl's are also correctly aligned.
2190 	 */
2191 	if (size & (BYTES_PER_WORD - 1)) {
2192 		size += (BYTES_PER_WORD - 1);
2193 		size &= ~(BYTES_PER_WORD - 1);
2194 	}
2195 
2196 	/*
2197 	 * Redzoning and user store require word alignment or possibly larger.
2198 	 * Note this will be overridden by architecture or caller mandated
2199 	 * alignment if either is greater than BYTES_PER_WORD.
2200 	 */
2201 	if (flags & SLAB_STORE_USER)
2202 		ralign = BYTES_PER_WORD;
2203 
2204 	if (flags & SLAB_RED_ZONE) {
2205 		ralign = REDZONE_ALIGN;
2206 		/* If redzoning, ensure that the second redzone is suitably
2207 		 * aligned, by adjusting the object size accordingly. */
2208 		size += REDZONE_ALIGN - 1;
2209 		size &= ~(REDZONE_ALIGN - 1);
2210 	}
2211 
2212 	/* 3) caller mandated alignment */
2213 	if (ralign < cachep->align) {
2214 		ralign = cachep->align;
2215 	}
2216 	/* disable debug if necessary */
2217 	if (ralign > __alignof__(unsigned long long))
2218 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2219 	/*
2220 	 * 4) Store it.
2221 	 */
2222 	cachep->align = ralign;
2223 
2224 	if (slab_is_available())
2225 		gfp = GFP_KERNEL;
2226 	else
2227 		gfp = GFP_NOWAIT;
2228 
2229 	setup_node_pointer(cachep);
2230 #if DEBUG
2231 
2232 	/*
2233 	 * Both debugging options require word-alignment which is calculated
2234 	 * into align above.
2235 	 */
2236 	if (flags & SLAB_RED_ZONE) {
2237 		/* add space for red zone words */
2238 		cachep->obj_offset += sizeof(unsigned long long);
2239 		size += 2 * sizeof(unsigned long long);
2240 	}
2241 	if (flags & SLAB_STORE_USER) {
2242 		/* user store requires one word storage behind the end of
2243 		 * the real object. But if the second red zone needs to be
2244 		 * aligned to 64 bits, we must allow that much space.
2245 		 */
2246 		if (flags & SLAB_RED_ZONE)
2247 			size += REDZONE_ALIGN;
2248 		else
2249 			size += BYTES_PER_WORD;
2250 	}
2251 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2252 	if (size >= kmalloc_size(INDEX_NODE + 1)
2253 	    && cachep->object_size > cache_line_size()
2254 	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
2255 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2256 		size = PAGE_SIZE;
2257 	}
2258 #endif
2259 #endif
2260 
2261 	/*
2262 	 * Determine if the slab management is 'on' or 'off' slab.
2263 	 * (bootstrapping cannot cope with offslab caches so don't do
2264 	 * it too early on. Always use on-slab management when
2265 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2266 	 */
2267 	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2268 	    !(flags & SLAB_NOLEAKTRACE))
2269 		/*
2270 		 * Size is large, assume best to place the slab management obj
2271 		 * off-slab (should allow better packing of objs).
2272 		 */
2273 		flags |= CFLGS_OFF_SLAB;
2274 
2275 	size = ALIGN(size, cachep->align);
2276 	/*
2277 	 * We should restrict the number of objects in a slab to implement
2278 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2279 	 */
2280 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2281 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2282 
2283 	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2284 
2285 	if (!cachep->num)
2286 		return -E2BIG;
2287 
2288 	freelist_size =
2289 		ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align);
2290 
2291 	/*
2292 	 * If the slab has been placed off-slab, and we have enough space then
2293 	 * move it on-slab. This is at the expense of any extra colouring.
2294 	 */
2295 	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2296 		flags &= ~CFLGS_OFF_SLAB;
2297 		left_over -= freelist_size;
2298 	}
2299 
2300 	if (flags & CFLGS_OFF_SLAB) {
2301 		/* really off slab. No need for manual alignment */
2302 		freelist_size = cachep->num * sizeof(freelist_idx_t);
2303 
2304 #ifdef CONFIG_PAGE_POISONING
2305 		/* If we're going to use the generic kernel_map_pages()
2306 		 * poisoning, then it's going to smash the contents of
2307 		 * the redzone and userword anyhow, so switch them off.
2308 		 */
2309 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2310 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2311 #endif
2312 	}
2313 
2314 	cachep->colour_off = cache_line_size();
2315 	/* Offset must be a multiple of the alignment. */
2316 	if (cachep->colour_off < cachep->align)
2317 		cachep->colour_off = cachep->align;
2318 	cachep->colour = left_over / cachep->colour_off;
2319 	cachep->freelist_size = freelist_size;
2320 	cachep->flags = flags;
2321 	cachep->allocflags = __GFP_COMP;
2322 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2323 		cachep->allocflags |= GFP_DMA;
2324 	cachep->size = size;
2325 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2326 
2327 	if (flags & CFLGS_OFF_SLAB) {
2328 		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2329 		/*
2330 		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2331 		 * But since we go off slab only for object size greater than
2332 		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2333 		 * in ascending order,this should not happen at all.
2334 		 * But leave a BUG_ON for some lucky dude.
2335 		 */
2336 		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2337 	}
2338 
2339 	err = setup_cpu_cache(cachep, gfp);
2340 	if (err) {
2341 		__kmem_cache_shutdown(cachep);
2342 		return err;
2343 	}
2344 
2345 	if (flags & SLAB_DEBUG_OBJECTS) {
2346 		/*
2347 		 * Would deadlock through slab_destroy()->call_rcu()->
2348 		 * debug_object_activate()->kmem_cache_alloc().
2349 		 */
2350 		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2351 
2352 		slab_set_debugobj_lock_classes(cachep);
2353 	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2354 		on_slab_lock_classes(cachep);
2355 
2356 	return 0;
2357 }
2358 
2359 #if DEBUG
2360 static void check_irq_off(void)
2361 {
2362 	BUG_ON(!irqs_disabled());
2363 }
2364 
2365 static void check_irq_on(void)
2366 {
2367 	BUG_ON(irqs_disabled());
2368 }
2369 
2370 static void check_spinlock_acquired(struct kmem_cache *cachep)
2371 {
2372 #ifdef CONFIG_SMP
2373 	check_irq_off();
2374 	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2375 #endif
2376 }
2377 
2378 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2379 {
2380 #ifdef CONFIG_SMP
2381 	check_irq_off();
2382 	assert_spin_locked(&cachep->node[node]->list_lock);
2383 #endif
2384 }
2385 
2386 #else
2387 #define check_irq_off()	do { } while(0)
2388 #define check_irq_on()	do { } while(0)
2389 #define check_spinlock_acquired(x) do { } while(0)
2390 #define check_spinlock_acquired_node(x, y) do { } while(0)
2391 #endif
2392 
2393 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2394 			struct array_cache *ac,
2395 			int force, int node);
2396 
2397 static void do_drain(void *arg)
2398 {
2399 	struct kmem_cache *cachep = arg;
2400 	struct array_cache *ac;
2401 	int node = numa_mem_id();
2402 
2403 	check_irq_off();
2404 	ac = cpu_cache_get(cachep);
2405 	spin_lock(&cachep->node[node]->list_lock);
2406 	free_block(cachep, ac->entry, ac->avail, node);
2407 	spin_unlock(&cachep->node[node]->list_lock);
2408 	ac->avail = 0;
2409 }
2410 
2411 static void drain_cpu_caches(struct kmem_cache *cachep)
2412 {
2413 	struct kmem_cache_node *n;
2414 	int node;
2415 
2416 	on_each_cpu(do_drain, cachep, 1);
2417 	check_irq_on();
2418 	for_each_online_node(node) {
2419 		n = cachep->node[node];
2420 		if (n && n->alien)
2421 			drain_alien_cache(cachep, n->alien);
2422 	}
2423 
2424 	for_each_online_node(node) {
2425 		n = cachep->node[node];
2426 		if (n)
2427 			drain_array(cachep, n, n->shared, 1, node);
2428 	}
2429 }
2430 
2431 /*
2432  * Remove slabs from the list of free slabs.
2433  * Specify the number of slabs to drain in tofree.
2434  *
2435  * Returns the actual number of slabs released.
2436  */
2437 static int drain_freelist(struct kmem_cache *cache,
2438 			struct kmem_cache_node *n, int tofree)
2439 {
2440 	struct list_head *p;
2441 	int nr_freed;
2442 	struct page *page;
2443 
2444 	nr_freed = 0;
2445 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2446 
2447 		spin_lock_irq(&n->list_lock);
2448 		p = n->slabs_free.prev;
2449 		if (p == &n->slabs_free) {
2450 			spin_unlock_irq(&n->list_lock);
2451 			goto out;
2452 		}
2453 
2454 		page = list_entry(p, struct page, lru);
2455 #if DEBUG
2456 		BUG_ON(page->active);
2457 #endif
2458 		list_del(&page->lru);
2459 		/*
2460 		 * Safe to drop the lock. The slab is no longer linked
2461 		 * to the cache.
2462 		 */
2463 		n->free_objects -= cache->num;
2464 		spin_unlock_irq(&n->list_lock);
2465 		slab_destroy(cache, page);
2466 		nr_freed++;
2467 	}
2468 out:
2469 	return nr_freed;
2470 }
2471 
2472 /* Called with slab_mutex held to protect against cpu hotplug */
2473 static int __cache_shrink(struct kmem_cache *cachep)
2474 {
2475 	int ret = 0, i = 0;
2476 	struct kmem_cache_node *n;
2477 
2478 	drain_cpu_caches(cachep);
2479 
2480 	check_irq_on();
2481 	for_each_online_node(i) {
2482 		n = cachep->node[i];
2483 		if (!n)
2484 			continue;
2485 
2486 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2487 
2488 		ret += !list_empty(&n->slabs_full) ||
2489 			!list_empty(&n->slabs_partial);
2490 	}
2491 	return (ret ? 1 : 0);
2492 }
2493 
2494 /**
2495  * kmem_cache_shrink - Shrink a cache.
2496  * @cachep: The cache to shrink.
2497  *
2498  * Releases as many slabs as possible for a cache.
2499  * To help debugging, a zero exit status indicates all slabs were released.
2500  */
2501 int kmem_cache_shrink(struct kmem_cache *cachep)
2502 {
2503 	int ret;
2504 	BUG_ON(!cachep || in_interrupt());
2505 
2506 	get_online_cpus();
2507 	mutex_lock(&slab_mutex);
2508 	ret = __cache_shrink(cachep);
2509 	mutex_unlock(&slab_mutex);
2510 	put_online_cpus();
2511 	return ret;
2512 }
2513 EXPORT_SYMBOL(kmem_cache_shrink);
2514 
2515 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2516 {
2517 	int i;
2518 	struct kmem_cache_node *n;
2519 	int rc = __cache_shrink(cachep);
2520 
2521 	if (rc)
2522 		return rc;
2523 
2524 	for_each_online_cpu(i)
2525 	    kfree(cachep->array[i]);
2526 
2527 	/* NUMA: free the node structures */
2528 	for_each_online_node(i) {
2529 		n = cachep->node[i];
2530 		if (n) {
2531 			kfree(n->shared);
2532 			free_alien_cache(n->alien);
2533 			kfree(n);
2534 		}
2535 	}
2536 	return 0;
2537 }
2538 
2539 /*
2540  * Get the memory for a slab management obj.
2541  *
2542  * For a slab cache when the slab descriptor is off-slab, the
2543  * slab descriptor can't come from the same cache which is being created,
2544  * Because if it is the case, that means we defer the creation of
2545  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2546  * And we eventually call down to __kmem_cache_create(), which
2547  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2548  * This is a "chicken-and-egg" problem.
2549  *
2550  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2551  * which are all initialized during kmem_cache_init().
2552  */
2553 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2554 				   struct page *page, int colour_off,
2555 				   gfp_t local_flags, int nodeid)
2556 {
2557 	void *freelist;
2558 	void *addr = page_address(page);
2559 
2560 	if (OFF_SLAB(cachep)) {
2561 		/* Slab management obj is off-slab. */
2562 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2563 					      local_flags, nodeid);
2564 		if (!freelist)
2565 			return NULL;
2566 	} else {
2567 		freelist = addr + colour_off;
2568 		colour_off += cachep->freelist_size;
2569 	}
2570 	page->active = 0;
2571 	page->s_mem = addr + colour_off;
2572 	return freelist;
2573 }
2574 
2575 static inline freelist_idx_t get_free_obj(struct page *page, unsigned char idx)
2576 {
2577 	return ((freelist_idx_t *)page->freelist)[idx];
2578 }
2579 
2580 static inline void set_free_obj(struct page *page,
2581 					unsigned char idx, freelist_idx_t val)
2582 {
2583 	((freelist_idx_t *)(page->freelist))[idx] = val;
2584 }
2585 
2586 static void cache_init_objs(struct kmem_cache *cachep,
2587 			    struct page *page)
2588 {
2589 	int i;
2590 
2591 	for (i = 0; i < cachep->num; i++) {
2592 		void *objp = index_to_obj(cachep, page, i);
2593 #if DEBUG
2594 		/* need to poison the objs? */
2595 		if (cachep->flags & SLAB_POISON)
2596 			poison_obj(cachep, objp, POISON_FREE);
2597 		if (cachep->flags & SLAB_STORE_USER)
2598 			*dbg_userword(cachep, objp) = NULL;
2599 
2600 		if (cachep->flags & SLAB_RED_ZONE) {
2601 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2602 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2603 		}
2604 		/*
2605 		 * Constructors are not allowed to allocate memory from the same
2606 		 * cache which they are a constructor for.  Otherwise, deadlock.
2607 		 * They must also be threaded.
2608 		 */
2609 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2610 			cachep->ctor(objp + obj_offset(cachep));
2611 
2612 		if (cachep->flags & SLAB_RED_ZONE) {
2613 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2614 				slab_error(cachep, "constructor overwrote the"
2615 					   " end of an object");
2616 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2617 				slab_error(cachep, "constructor overwrote the"
2618 					   " start of an object");
2619 		}
2620 		if ((cachep->size % PAGE_SIZE) == 0 &&
2621 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2622 			kernel_map_pages(virt_to_page(objp),
2623 					 cachep->size / PAGE_SIZE, 0);
2624 #else
2625 		if (cachep->ctor)
2626 			cachep->ctor(objp);
2627 #endif
2628 		set_free_obj(page, i, i);
2629 	}
2630 }
2631 
2632 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2633 {
2634 	if (CONFIG_ZONE_DMA_FLAG) {
2635 		if (flags & GFP_DMA)
2636 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2637 		else
2638 			BUG_ON(cachep->allocflags & GFP_DMA);
2639 	}
2640 }
2641 
2642 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2643 				int nodeid)
2644 {
2645 	void *objp;
2646 
2647 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2648 	page->active++;
2649 #if DEBUG
2650 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2651 #endif
2652 
2653 	return objp;
2654 }
2655 
2656 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2657 				void *objp, int nodeid)
2658 {
2659 	unsigned int objnr = obj_to_index(cachep, page, objp);
2660 #if DEBUG
2661 	unsigned int i;
2662 
2663 	/* Verify that the slab belongs to the intended node */
2664 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2665 
2666 	/* Verify double free bug */
2667 	for (i = page->active; i < cachep->num; i++) {
2668 		if (get_free_obj(page, i) == objnr) {
2669 			printk(KERN_ERR "slab: double free detected in cache "
2670 					"'%s', objp %p\n", cachep->name, objp);
2671 			BUG();
2672 		}
2673 	}
2674 #endif
2675 	page->active--;
2676 	set_free_obj(page, page->active, objnr);
2677 }
2678 
2679 /*
2680  * Map pages beginning at addr to the given cache and slab. This is required
2681  * for the slab allocator to be able to lookup the cache and slab of a
2682  * virtual address for kfree, ksize, and slab debugging.
2683  */
2684 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2685 			   void *freelist)
2686 {
2687 	page->slab_cache = cache;
2688 	page->freelist = freelist;
2689 }
2690 
2691 /*
2692  * Grow (by 1) the number of slabs within a cache.  This is called by
2693  * kmem_cache_alloc() when there are no active objs left in a cache.
2694  */
2695 static int cache_grow(struct kmem_cache *cachep,
2696 		gfp_t flags, int nodeid, struct page *page)
2697 {
2698 	void *freelist;
2699 	size_t offset;
2700 	gfp_t local_flags;
2701 	struct kmem_cache_node *n;
2702 
2703 	/*
2704 	 * Be lazy and only check for valid flags here,  keeping it out of the
2705 	 * critical path in kmem_cache_alloc().
2706 	 */
2707 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2708 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2709 
2710 	/* Take the node list lock to change the colour_next on this node */
2711 	check_irq_off();
2712 	n = cachep->node[nodeid];
2713 	spin_lock(&n->list_lock);
2714 
2715 	/* Get colour for the slab, and cal the next value. */
2716 	offset = n->colour_next;
2717 	n->colour_next++;
2718 	if (n->colour_next >= cachep->colour)
2719 		n->colour_next = 0;
2720 	spin_unlock(&n->list_lock);
2721 
2722 	offset *= cachep->colour_off;
2723 
2724 	if (local_flags & __GFP_WAIT)
2725 		local_irq_enable();
2726 
2727 	/*
2728 	 * The test for missing atomic flag is performed here, rather than
2729 	 * the more obvious place, simply to reduce the critical path length
2730 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2731 	 * will eventually be caught here (where it matters).
2732 	 */
2733 	kmem_flagcheck(cachep, flags);
2734 
2735 	/*
2736 	 * Get mem for the objs.  Attempt to allocate a physical page from
2737 	 * 'nodeid'.
2738 	 */
2739 	if (!page)
2740 		page = kmem_getpages(cachep, local_flags, nodeid);
2741 	if (!page)
2742 		goto failed;
2743 
2744 	/* Get slab management. */
2745 	freelist = alloc_slabmgmt(cachep, page, offset,
2746 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2747 	if (!freelist)
2748 		goto opps1;
2749 
2750 	slab_map_pages(cachep, page, freelist);
2751 
2752 	cache_init_objs(cachep, page);
2753 
2754 	if (local_flags & __GFP_WAIT)
2755 		local_irq_disable();
2756 	check_irq_off();
2757 	spin_lock(&n->list_lock);
2758 
2759 	/* Make slab active. */
2760 	list_add_tail(&page->lru, &(n->slabs_free));
2761 	STATS_INC_GROWN(cachep);
2762 	n->free_objects += cachep->num;
2763 	spin_unlock(&n->list_lock);
2764 	return 1;
2765 opps1:
2766 	kmem_freepages(cachep, page);
2767 failed:
2768 	if (local_flags & __GFP_WAIT)
2769 		local_irq_disable();
2770 	return 0;
2771 }
2772 
2773 #if DEBUG
2774 
2775 /*
2776  * Perform extra freeing checks:
2777  * - detect bad pointers.
2778  * - POISON/RED_ZONE checking
2779  */
2780 static void kfree_debugcheck(const void *objp)
2781 {
2782 	if (!virt_addr_valid(objp)) {
2783 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2784 		       (unsigned long)objp);
2785 		BUG();
2786 	}
2787 }
2788 
2789 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2790 {
2791 	unsigned long long redzone1, redzone2;
2792 
2793 	redzone1 = *dbg_redzone1(cache, obj);
2794 	redzone2 = *dbg_redzone2(cache, obj);
2795 
2796 	/*
2797 	 * Redzone is ok.
2798 	 */
2799 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2800 		return;
2801 
2802 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2803 		slab_error(cache, "double free detected");
2804 	else
2805 		slab_error(cache, "memory outside object was overwritten");
2806 
2807 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2808 			obj, redzone1, redzone2);
2809 }
2810 
2811 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2812 				   unsigned long caller)
2813 {
2814 	unsigned int objnr;
2815 	struct page *page;
2816 
2817 	BUG_ON(virt_to_cache(objp) != cachep);
2818 
2819 	objp -= obj_offset(cachep);
2820 	kfree_debugcheck(objp);
2821 	page = virt_to_head_page(objp);
2822 
2823 	if (cachep->flags & SLAB_RED_ZONE) {
2824 		verify_redzone_free(cachep, objp);
2825 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2826 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2827 	}
2828 	if (cachep->flags & SLAB_STORE_USER)
2829 		*dbg_userword(cachep, objp) = (void *)caller;
2830 
2831 	objnr = obj_to_index(cachep, page, objp);
2832 
2833 	BUG_ON(objnr >= cachep->num);
2834 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2835 
2836 	if (cachep->flags & SLAB_POISON) {
2837 #ifdef CONFIG_DEBUG_PAGEALLOC
2838 		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2839 			store_stackinfo(cachep, objp, caller);
2840 			kernel_map_pages(virt_to_page(objp),
2841 					 cachep->size / PAGE_SIZE, 0);
2842 		} else {
2843 			poison_obj(cachep, objp, POISON_FREE);
2844 		}
2845 #else
2846 		poison_obj(cachep, objp, POISON_FREE);
2847 #endif
2848 	}
2849 	return objp;
2850 }
2851 
2852 #else
2853 #define kfree_debugcheck(x) do { } while(0)
2854 #define cache_free_debugcheck(x,objp,z) (objp)
2855 #endif
2856 
2857 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2858 							bool force_refill)
2859 {
2860 	int batchcount;
2861 	struct kmem_cache_node *n;
2862 	struct array_cache *ac;
2863 	int node;
2864 
2865 	check_irq_off();
2866 	node = numa_mem_id();
2867 	if (unlikely(force_refill))
2868 		goto force_grow;
2869 retry:
2870 	ac = cpu_cache_get(cachep);
2871 	batchcount = ac->batchcount;
2872 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2873 		/*
2874 		 * If there was little recent activity on this cache, then
2875 		 * perform only a partial refill.  Otherwise we could generate
2876 		 * refill bouncing.
2877 		 */
2878 		batchcount = BATCHREFILL_LIMIT;
2879 	}
2880 	n = cachep->node[node];
2881 
2882 	BUG_ON(ac->avail > 0 || !n);
2883 	spin_lock(&n->list_lock);
2884 
2885 	/* See if we can refill from the shared array */
2886 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2887 		n->shared->touched = 1;
2888 		goto alloc_done;
2889 	}
2890 
2891 	while (batchcount > 0) {
2892 		struct list_head *entry;
2893 		struct page *page;
2894 		/* Get slab alloc is to come from. */
2895 		entry = n->slabs_partial.next;
2896 		if (entry == &n->slabs_partial) {
2897 			n->free_touched = 1;
2898 			entry = n->slabs_free.next;
2899 			if (entry == &n->slabs_free)
2900 				goto must_grow;
2901 		}
2902 
2903 		page = list_entry(entry, struct page, lru);
2904 		check_spinlock_acquired(cachep);
2905 
2906 		/*
2907 		 * The slab was either on partial or free list so
2908 		 * there must be at least one object available for
2909 		 * allocation.
2910 		 */
2911 		BUG_ON(page->active >= cachep->num);
2912 
2913 		while (page->active < cachep->num && batchcount--) {
2914 			STATS_INC_ALLOCED(cachep);
2915 			STATS_INC_ACTIVE(cachep);
2916 			STATS_SET_HIGH(cachep);
2917 
2918 			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2919 									node));
2920 		}
2921 
2922 		/* move slabp to correct slabp list: */
2923 		list_del(&page->lru);
2924 		if (page->active == cachep->num)
2925 			list_add(&page->lru, &n->slabs_full);
2926 		else
2927 			list_add(&page->lru, &n->slabs_partial);
2928 	}
2929 
2930 must_grow:
2931 	n->free_objects -= ac->avail;
2932 alloc_done:
2933 	spin_unlock(&n->list_lock);
2934 
2935 	if (unlikely(!ac->avail)) {
2936 		int x;
2937 force_grow:
2938 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2939 
2940 		/* cache_grow can reenable interrupts, then ac could change. */
2941 		ac = cpu_cache_get(cachep);
2942 		node = numa_mem_id();
2943 
2944 		/* no objects in sight? abort */
2945 		if (!x && (ac->avail == 0 || force_refill))
2946 			return NULL;
2947 
2948 		if (!ac->avail)		/* objects refilled by interrupt? */
2949 			goto retry;
2950 	}
2951 	ac->touched = 1;
2952 
2953 	return ac_get_obj(cachep, ac, flags, force_refill);
2954 }
2955 
2956 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2957 						gfp_t flags)
2958 {
2959 	might_sleep_if(flags & __GFP_WAIT);
2960 #if DEBUG
2961 	kmem_flagcheck(cachep, flags);
2962 #endif
2963 }
2964 
2965 #if DEBUG
2966 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2967 				gfp_t flags, void *objp, unsigned long caller)
2968 {
2969 	if (!objp)
2970 		return objp;
2971 	if (cachep->flags & SLAB_POISON) {
2972 #ifdef CONFIG_DEBUG_PAGEALLOC
2973 		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2974 			kernel_map_pages(virt_to_page(objp),
2975 					 cachep->size / PAGE_SIZE, 1);
2976 		else
2977 			check_poison_obj(cachep, objp);
2978 #else
2979 		check_poison_obj(cachep, objp);
2980 #endif
2981 		poison_obj(cachep, objp, POISON_INUSE);
2982 	}
2983 	if (cachep->flags & SLAB_STORE_USER)
2984 		*dbg_userword(cachep, objp) = (void *)caller;
2985 
2986 	if (cachep->flags & SLAB_RED_ZONE) {
2987 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2988 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2989 			slab_error(cachep, "double free, or memory outside"
2990 						" object was overwritten");
2991 			printk(KERN_ERR
2992 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2993 				objp, *dbg_redzone1(cachep, objp),
2994 				*dbg_redzone2(cachep, objp));
2995 		}
2996 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2997 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2998 	}
2999 	objp += obj_offset(cachep);
3000 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3001 		cachep->ctor(objp);
3002 	if (ARCH_SLAB_MINALIGN &&
3003 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3004 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3005 		       objp, (int)ARCH_SLAB_MINALIGN);
3006 	}
3007 	return objp;
3008 }
3009 #else
3010 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3011 #endif
3012 
3013 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3014 {
3015 	if (cachep == kmem_cache)
3016 		return false;
3017 
3018 	return should_failslab(cachep->object_size, flags, cachep->flags);
3019 }
3020 
3021 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3022 {
3023 	void *objp;
3024 	struct array_cache *ac;
3025 	bool force_refill = false;
3026 
3027 	check_irq_off();
3028 
3029 	ac = cpu_cache_get(cachep);
3030 	if (likely(ac->avail)) {
3031 		ac->touched = 1;
3032 		objp = ac_get_obj(cachep, ac, flags, false);
3033 
3034 		/*
3035 		 * Allow for the possibility all avail objects are not allowed
3036 		 * by the current flags
3037 		 */
3038 		if (objp) {
3039 			STATS_INC_ALLOCHIT(cachep);
3040 			goto out;
3041 		}
3042 		force_refill = true;
3043 	}
3044 
3045 	STATS_INC_ALLOCMISS(cachep);
3046 	objp = cache_alloc_refill(cachep, flags, force_refill);
3047 	/*
3048 	 * the 'ac' may be updated by cache_alloc_refill(),
3049 	 * and kmemleak_erase() requires its correct value.
3050 	 */
3051 	ac = cpu_cache_get(cachep);
3052 
3053 out:
3054 	/*
3055 	 * To avoid a false negative, if an object that is in one of the
3056 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3057 	 * treat the array pointers as a reference to the object.
3058 	 */
3059 	if (objp)
3060 		kmemleak_erase(&ac->entry[ac->avail]);
3061 	return objp;
3062 }
3063 
3064 #ifdef CONFIG_NUMA
3065 /*
3066  * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3067  *
3068  * If we are in_interrupt, then process context, including cpusets and
3069  * mempolicy, may not apply and should not be used for allocation policy.
3070  */
3071 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3072 {
3073 	int nid_alloc, nid_here;
3074 
3075 	if (in_interrupt() || (flags & __GFP_THISNODE))
3076 		return NULL;
3077 	nid_alloc = nid_here = numa_mem_id();
3078 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3079 		nid_alloc = cpuset_slab_spread_node();
3080 	else if (current->mempolicy)
3081 		nid_alloc = mempolicy_slab_node();
3082 	if (nid_alloc != nid_here)
3083 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3084 	return NULL;
3085 }
3086 
3087 /*
3088  * Fallback function if there was no memory available and no objects on a
3089  * certain node and fall back is permitted. First we scan all the
3090  * available node for available objects. If that fails then we
3091  * perform an allocation without specifying a node. This allows the page
3092  * allocator to do its reclaim / fallback magic. We then insert the
3093  * slab into the proper nodelist and then allocate from it.
3094  */
3095 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3096 {
3097 	struct zonelist *zonelist;
3098 	gfp_t local_flags;
3099 	struct zoneref *z;
3100 	struct zone *zone;
3101 	enum zone_type high_zoneidx = gfp_zone(flags);
3102 	void *obj = NULL;
3103 	int nid;
3104 	unsigned int cpuset_mems_cookie;
3105 
3106 	if (flags & __GFP_THISNODE)
3107 		return NULL;
3108 
3109 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3110 
3111 retry_cpuset:
3112 	cpuset_mems_cookie = read_mems_allowed_begin();
3113 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3114 
3115 retry:
3116 	/*
3117 	 * Look through allowed nodes for objects available
3118 	 * from existing per node queues.
3119 	 */
3120 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3121 		nid = zone_to_nid(zone);
3122 
3123 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3124 			cache->node[nid] &&
3125 			cache->node[nid]->free_objects) {
3126 				obj = ____cache_alloc_node(cache,
3127 					flags | GFP_THISNODE, nid);
3128 				if (obj)
3129 					break;
3130 		}
3131 	}
3132 
3133 	if (!obj) {
3134 		/*
3135 		 * This allocation will be performed within the constraints
3136 		 * of the current cpuset / memory policy requirements.
3137 		 * We may trigger various forms of reclaim on the allowed
3138 		 * set and go into memory reserves if necessary.
3139 		 */
3140 		struct page *page;
3141 
3142 		if (local_flags & __GFP_WAIT)
3143 			local_irq_enable();
3144 		kmem_flagcheck(cache, flags);
3145 		page = kmem_getpages(cache, local_flags, numa_mem_id());
3146 		if (local_flags & __GFP_WAIT)
3147 			local_irq_disable();
3148 		if (page) {
3149 			/*
3150 			 * Insert into the appropriate per node queues
3151 			 */
3152 			nid = page_to_nid(page);
3153 			if (cache_grow(cache, flags, nid, page)) {
3154 				obj = ____cache_alloc_node(cache,
3155 					flags | GFP_THISNODE, nid);
3156 				if (!obj)
3157 					/*
3158 					 * Another processor may allocate the
3159 					 * objects in the slab since we are
3160 					 * not holding any locks.
3161 					 */
3162 					goto retry;
3163 			} else {
3164 				/* cache_grow already freed obj */
3165 				obj = NULL;
3166 			}
3167 		}
3168 	}
3169 
3170 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3171 		goto retry_cpuset;
3172 	return obj;
3173 }
3174 
3175 /*
3176  * A interface to enable slab creation on nodeid
3177  */
3178 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3179 				int nodeid)
3180 {
3181 	struct list_head *entry;
3182 	struct page *page;
3183 	struct kmem_cache_node *n;
3184 	void *obj;
3185 	int x;
3186 
3187 	VM_BUG_ON(nodeid > num_online_nodes());
3188 	n = cachep->node[nodeid];
3189 	BUG_ON(!n);
3190 
3191 retry:
3192 	check_irq_off();
3193 	spin_lock(&n->list_lock);
3194 	entry = n->slabs_partial.next;
3195 	if (entry == &n->slabs_partial) {
3196 		n->free_touched = 1;
3197 		entry = n->slabs_free.next;
3198 		if (entry == &n->slabs_free)
3199 			goto must_grow;
3200 	}
3201 
3202 	page = list_entry(entry, struct page, lru);
3203 	check_spinlock_acquired_node(cachep, nodeid);
3204 
3205 	STATS_INC_NODEALLOCS(cachep);
3206 	STATS_INC_ACTIVE(cachep);
3207 	STATS_SET_HIGH(cachep);
3208 
3209 	BUG_ON(page->active == cachep->num);
3210 
3211 	obj = slab_get_obj(cachep, page, nodeid);
3212 	n->free_objects--;
3213 	/* move slabp to correct slabp list: */
3214 	list_del(&page->lru);
3215 
3216 	if (page->active == cachep->num)
3217 		list_add(&page->lru, &n->slabs_full);
3218 	else
3219 		list_add(&page->lru, &n->slabs_partial);
3220 
3221 	spin_unlock(&n->list_lock);
3222 	goto done;
3223 
3224 must_grow:
3225 	spin_unlock(&n->list_lock);
3226 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3227 	if (x)
3228 		goto retry;
3229 
3230 	return fallback_alloc(cachep, flags);
3231 
3232 done:
3233 	return obj;
3234 }
3235 
3236 static __always_inline void *
3237 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3238 		   unsigned long caller)
3239 {
3240 	unsigned long save_flags;
3241 	void *ptr;
3242 	int slab_node = numa_mem_id();
3243 
3244 	flags &= gfp_allowed_mask;
3245 
3246 	lockdep_trace_alloc(flags);
3247 
3248 	if (slab_should_failslab(cachep, flags))
3249 		return NULL;
3250 
3251 	cachep = memcg_kmem_get_cache(cachep, flags);
3252 
3253 	cache_alloc_debugcheck_before(cachep, flags);
3254 	local_irq_save(save_flags);
3255 
3256 	if (nodeid == NUMA_NO_NODE)
3257 		nodeid = slab_node;
3258 
3259 	if (unlikely(!cachep->node[nodeid])) {
3260 		/* Node not bootstrapped yet */
3261 		ptr = fallback_alloc(cachep, flags);
3262 		goto out;
3263 	}
3264 
3265 	if (nodeid == slab_node) {
3266 		/*
3267 		 * Use the locally cached objects if possible.
3268 		 * However ____cache_alloc does not allow fallback
3269 		 * to other nodes. It may fail while we still have
3270 		 * objects on other nodes available.
3271 		 */
3272 		ptr = ____cache_alloc(cachep, flags);
3273 		if (ptr)
3274 			goto out;
3275 	}
3276 	/* ___cache_alloc_node can fall back to other nodes */
3277 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3278   out:
3279 	local_irq_restore(save_flags);
3280 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3281 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3282 				 flags);
3283 
3284 	if (likely(ptr)) {
3285 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3286 		if (unlikely(flags & __GFP_ZERO))
3287 			memset(ptr, 0, cachep->object_size);
3288 	}
3289 
3290 	return ptr;
3291 }
3292 
3293 static __always_inline void *
3294 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3295 {
3296 	void *objp;
3297 
3298 	if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3299 		objp = alternate_node_alloc(cache, flags);
3300 		if (objp)
3301 			goto out;
3302 	}
3303 	objp = ____cache_alloc(cache, flags);
3304 
3305 	/*
3306 	 * We may just have run out of memory on the local node.
3307 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3308 	 */
3309 	if (!objp)
3310 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3311 
3312   out:
3313 	return objp;
3314 }
3315 #else
3316 
3317 static __always_inline void *
3318 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3319 {
3320 	return ____cache_alloc(cachep, flags);
3321 }
3322 
3323 #endif /* CONFIG_NUMA */
3324 
3325 static __always_inline void *
3326 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3327 {
3328 	unsigned long save_flags;
3329 	void *objp;
3330 
3331 	flags &= gfp_allowed_mask;
3332 
3333 	lockdep_trace_alloc(flags);
3334 
3335 	if (slab_should_failslab(cachep, flags))
3336 		return NULL;
3337 
3338 	cachep = memcg_kmem_get_cache(cachep, flags);
3339 
3340 	cache_alloc_debugcheck_before(cachep, flags);
3341 	local_irq_save(save_flags);
3342 	objp = __do_cache_alloc(cachep, flags);
3343 	local_irq_restore(save_flags);
3344 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3345 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3346 				 flags);
3347 	prefetchw(objp);
3348 
3349 	if (likely(objp)) {
3350 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3351 		if (unlikely(flags & __GFP_ZERO))
3352 			memset(objp, 0, cachep->object_size);
3353 	}
3354 
3355 	return objp;
3356 }
3357 
3358 /*
3359  * Caller needs to acquire correct kmem_cache_node's list_lock
3360  */
3361 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3362 		       int node)
3363 {
3364 	int i;
3365 	struct kmem_cache_node *n;
3366 
3367 	for (i = 0; i < nr_objects; i++) {
3368 		void *objp;
3369 		struct page *page;
3370 
3371 		clear_obj_pfmemalloc(&objpp[i]);
3372 		objp = objpp[i];
3373 
3374 		page = virt_to_head_page(objp);
3375 		n = cachep->node[node];
3376 		list_del(&page->lru);
3377 		check_spinlock_acquired_node(cachep, node);
3378 		slab_put_obj(cachep, page, objp, node);
3379 		STATS_DEC_ACTIVE(cachep);
3380 		n->free_objects++;
3381 
3382 		/* fixup slab chains */
3383 		if (page->active == 0) {
3384 			if (n->free_objects > n->free_limit) {
3385 				n->free_objects -= cachep->num;
3386 				/* No need to drop any previously held
3387 				 * lock here, even if we have a off-slab slab
3388 				 * descriptor it is guaranteed to come from
3389 				 * a different cache, refer to comments before
3390 				 * alloc_slabmgmt.
3391 				 */
3392 				slab_destroy(cachep, page);
3393 			} else {
3394 				list_add(&page->lru, &n->slabs_free);
3395 			}
3396 		} else {
3397 			/* Unconditionally move a slab to the end of the
3398 			 * partial list on free - maximum time for the
3399 			 * other objects to be freed, too.
3400 			 */
3401 			list_add_tail(&page->lru, &n->slabs_partial);
3402 		}
3403 	}
3404 }
3405 
3406 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3407 {
3408 	int batchcount;
3409 	struct kmem_cache_node *n;
3410 	int node = numa_mem_id();
3411 
3412 	batchcount = ac->batchcount;
3413 #if DEBUG
3414 	BUG_ON(!batchcount || batchcount > ac->avail);
3415 #endif
3416 	check_irq_off();
3417 	n = cachep->node[node];
3418 	spin_lock(&n->list_lock);
3419 	if (n->shared) {
3420 		struct array_cache *shared_array = n->shared;
3421 		int max = shared_array->limit - shared_array->avail;
3422 		if (max) {
3423 			if (batchcount > max)
3424 				batchcount = max;
3425 			memcpy(&(shared_array->entry[shared_array->avail]),
3426 			       ac->entry, sizeof(void *) * batchcount);
3427 			shared_array->avail += batchcount;
3428 			goto free_done;
3429 		}
3430 	}
3431 
3432 	free_block(cachep, ac->entry, batchcount, node);
3433 free_done:
3434 #if STATS
3435 	{
3436 		int i = 0;
3437 		struct list_head *p;
3438 
3439 		p = n->slabs_free.next;
3440 		while (p != &(n->slabs_free)) {
3441 			struct page *page;
3442 
3443 			page = list_entry(p, struct page, lru);
3444 			BUG_ON(page->active);
3445 
3446 			i++;
3447 			p = p->next;
3448 		}
3449 		STATS_SET_FREEABLE(cachep, i);
3450 	}
3451 #endif
3452 	spin_unlock(&n->list_lock);
3453 	ac->avail -= batchcount;
3454 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3455 }
3456 
3457 /*
3458  * Release an obj back to its cache. If the obj has a constructed state, it must
3459  * be in this state _before_ it is released.  Called with disabled ints.
3460  */
3461 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3462 				unsigned long caller)
3463 {
3464 	struct array_cache *ac = cpu_cache_get(cachep);
3465 
3466 	check_irq_off();
3467 	kmemleak_free_recursive(objp, cachep->flags);
3468 	objp = cache_free_debugcheck(cachep, objp, caller);
3469 
3470 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3471 
3472 	/*
3473 	 * Skip calling cache_free_alien() when the platform is not numa.
3474 	 * This will avoid cache misses that happen while accessing slabp (which
3475 	 * is per page memory  reference) to get nodeid. Instead use a global
3476 	 * variable to skip the call, which is mostly likely to be present in
3477 	 * the cache.
3478 	 */
3479 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3480 		return;
3481 
3482 	if (likely(ac->avail < ac->limit)) {
3483 		STATS_INC_FREEHIT(cachep);
3484 	} else {
3485 		STATS_INC_FREEMISS(cachep);
3486 		cache_flusharray(cachep, ac);
3487 	}
3488 
3489 	ac_put_obj(cachep, ac, objp);
3490 }
3491 
3492 /**
3493  * kmem_cache_alloc - Allocate an object
3494  * @cachep: The cache to allocate from.
3495  * @flags: See kmalloc().
3496  *
3497  * Allocate an object from this cache.  The flags are only relevant
3498  * if the cache has no available objects.
3499  */
3500 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3501 {
3502 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3503 
3504 	trace_kmem_cache_alloc(_RET_IP_, ret,
3505 			       cachep->object_size, cachep->size, flags);
3506 
3507 	return ret;
3508 }
3509 EXPORT_SYMBOL(kmem_cache_alloc);
3510 
3511 #ifdef CONFIG_TRACING
3512 void *
3513 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3514 {
3515 	void *ret;
3516 
3517 	ret = slab_alloc(cachep, flags, _RET_IP_);
3518 
3519 	trace_kmalloc(_RET_IP_, ret,
3520 		      size, cachep->size, flags);
3521 	return ret;
3522 }
3523 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3524 #endif
3525 
3526 #ifdef CONFIG_NUMA
3527 /**
3528  * kmem_cache_alloc_node - Allocate an object on the specified node
3529  * @cachep: The cache to allocate from.
3530  * @flags: See kmalloc().
3531  * @nodeid: node number of the target node.
3532  *
3533  * Identical to kmem_cache_alloc but it will allocate memory on the given
3534  * node, which can improve the performance for cpu bound structures.
3535  *
3536  * Fallback to other node is possible if __GFP_THISNODE is not set.
3537  */
3538 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3539 {
3540 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3541 
3542 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3543 				    cachep->object_size, cachep->size,
3544 				    flags, nodeid);
3545 
3546 	return ret;
3547 }
3548 EXPORT_SYMBOL(kmem_cache_alloc_node);
3549 
3550 #ifdef CONFIG_TRACING
3551 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3552 				  gfp_t flags,
3553 				  int nodeid,
3554 				  size_t size)
3555 {
3556 	void *ret;
3557 
3558 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3559 
3560 	trace_kmalloc_node(_RET_IP_, ret,
3561 			   size, cachep->size,
3562 			   flags, nodeid);
3563 	return ret;
3564 }
3565 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3566 #endif
3567 
3568 static __always_inline void *
3569 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3570 {
3571 	struct kmem_cache *cachep;
3572 
3573 	cachep = kmalloc_slab(size, flags);
3574 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3575 		return cachep;
3576 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3577 }
3578 
3579 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3580 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3581 {
3582 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3583 }
3584 EXPORT_SYMBOL(__kmalloc_node);
3585 
3586 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3587 		int node, unsigned long caller)
3588 {
3589 	return __do_kmalloc_node(size, flags, node, caller);
3590 }
3591 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3592 #else
3593 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3594 {
3595 	return __do_kmalloc_node(size, flags, node, 0);
3596 }
3597 EXPORT_SYMBOL(__kmalloc_node);
3598 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3599 #endif /* CONFIG_NUMA */
3600 
3601 /**
3602  * __do_kmalloc - allocate memory
3603  * @size: how many bytes of memory are required.
3604  * @flags: the type of memory to allocate (see kmalloc).
3605  * @caller: function caller for debug tracking of the caller
3606  */
3607 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3608 					  unsigned long caller)
3609 {
3610 	struct kmem_cache *cachep;
3611 	void *ret;
3612 
3613 	cachep = kmalloc_slab(size, flags);
3614 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3615 		return cachep;
3616 	ret = slab_alloc(cachep, flags, caller);
3617 
3618 	trace_kmalloc(caller, ret,
3619 		      size, cachep->size, flags);
3620 
3621 	return ret;
3622 }
3623 
3624 
3625 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3626 void *__kmalloc(size_t size, gfp_t flags)
3627 {
3628 	return __do_kmalloc(size, flags, _RET_IP_);
3629 }
3630 EXPORT_SYMBOL(__kmalloc);
3631 
3632 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3633 {
3634 	return __do_kmalloc(size, flags, caller);
3635 }
3636 EXPORT_SYMBOL(__kmalloc_track_caller);
3637 
3638 #else
3639 void *__kmalloc(size_t size, gfp_t flags)
3640 {
3641 	return __do_kmalloc(size, flags, 0);
3642 }
3643 EXPORT_SYMBOL(__kmalloc);
3644 #endif
3645 
3646 /**
3647  * kmem_cache_free - Deallocate an object
3648  * @cachep: The cache the allocation was from.
3649  * @objp: The previously allocated object.
3650  *
3651  * Free an object which was previously allocated from this
3652  * cache.
3653  */
3654 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3655 {
3656 	unsigned long flags;
3657 	cachep = cache_from_obj(cachep, objp);
3658 	if (!cachep)
3659 		return;
3660 
3661 	local_irq_save(flags);
3662 	debug_check_no_locks_freed(objp, cachep->object_size);
3663 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3664 		debug_check_no_obj_freed(objp, cachep->object_size);
3665 	__cache_free(cachep, objp, _RET_IP_);
3666 	local_irq_restore(flags);
3667 
3668 	trace_kmem_cache_free(_RET_IP_, objp);
3669 }
3670 EXPORT_SYMBOL(kmem_cache_free);
3671 
3672 /**
3673  * kfree - free previously allocated memory
3674  * @objp: pointer returned by kmalloc.
3675  *
3676  * If @objp is NULL, no operation is performed.
3677  *
3678  * Don't free memory not originally allocated by kmalloc()
3679  * or you will run into trouble.
3680  */
3681 void kfree(const void *objp)
3682 {
3683 	struct kmem_cache *c;
3684 	unsigned long flags;
3685 
3686 	trace_kfree(_RET_IP_, objp);
3687 
3688 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3689 		return;
3690 	local_irq_save(flags);
3691 	kfree_debugcheck(objp);
3692 	c = virt_to_cache(objp);
3693 	debug_check_no_locks_freed(objp, c->object_size);
3694 
3695 	debug_check_no_obj_freed(objp, c->object_size);
3696 	__cache_free(c, (void *)objp, _RET_IP_);
3697 	local_irq_restore(flags);
3698 }
3699 EXPORT_SYMBOL(kfree);
3700 
3701 /*
3702  * This initializes kmem_cache_node or resizes various caches for all nodes.
3703  */
3704 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3705 {
3706 	int node;
3707 	struct kmem_cache_node *n;
3708 	struct array_cache *new_shared;
3709 	struct array_cache **new_alien = NULL;
3710 
3711 	for_each_online_node(node) {
3712 
3713                 if (use_alien_caches) {
3714                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3715                         if (!new_alien)
3716                                 goto fail;
3717                 }
3718 
3719 		new_shared = NULL;
3720 		if (cachep->shared) {
3721 			new_shared = alloc_arraycache(node,
3722 				cachep->shared*cachep->batchcount,
3723 					0xbaadf00d, gfp);
3724 			if (!new_shared) {
3725 				free_alien_cache(new_alien);
3726 				goto fail;
3727 			}
3728 		}
3729 
3730 		n = cachep->node[node];
3731 		if (n) {
3732 			struct array_cache *shared = n->shared;
3733 
3734 			spin_lock_irq(&n->list_lock);
3735 
3736 			if (shared)
3737 				free_block(cachep, shared->entry,
3738 						shared->avail, node);
3739 
3740 			n->shared = new_shared;
3741 			if (!n->alien) {
3742 				n->alien = new_alien;
3743 				new_alien = NULL;
3744 			}
3745 			n->free_limit = (1 + nr_cpus_node(node)) *
3746 					cachep->batchcount + cachep->num;
3747 			spin_unlock_irq(&n->list_lock);
3748 			kfree(shared);
3749 			free_alien_cache(new_alien);
3750 			continue;
3751 		}
3752 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3753 		if (!n) {
3754 			free_alien_cache(new_alien);
3755 			kfree(new_shared);
3756 			goto fail;
3757 		}
3758 
3759 		kmem_cache_node_init(n);
3760 		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3761 				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3762 		n->shared = new_shared;
3763 		n->alien = new_alien;
3764 		n->free_limit = (1 + nr_cpus_node(node)) *
3765 					cachep->batchcount + cachep->num;
3766 		cachep->node[node] = n;
3767 	}
3768 	return 0;
3769 
3770 fail:
3771 	if (!cachep->list.next) {
3772 		/* Cache is not active yet. Roll back what we did */
3773 		node--;
3774 		while (node >= 0) {
3775 			if (cachep->node[node]) {
3776 				n = cachep->node[node];
3777 
3778 				kfree(n->shared);
3779 				free_alien_cache(n->alien);
3780 				kfree(n);
3781 				cachep->node[node] = NULL;
3782 			}
3783 			node--;
3784 		}
3785 	}
3786 	return -ENOMEM;
3787 }
3788 
3789 struct ccupdate_struct {
3790 	struct kmem_cache *cachep;
3791 	struct array_cache *new[0];
3792 };
3793 
3794 static void do_ccupdate_local(void *info)
3795 {
3796 	struct ccupdate_struct *new = info;
3797 	struct array_cache *old;
3798 
3799 	check_irq_off();
3800 	old = cpu_cache_get(new->cachep);
3801 
3802 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3803 	new->new[smp_processor_id()] = old;
3804 }
3805 
3806 /* Always called with the slab_mutex held */
3807 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3808 				int batchcount, int shared, gfp_t gfp)
3809 {
3810 	struct ccupdate_struct *new;
3811 	int i;
3812 
3813 	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3814 		      gfp);
3815 	if (!new)
3816 		return -ENOMEM;
3817 
3818 	for_each_online_cpu(i) {
3819 		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3820 						batchcount, gfp);
3821 		if (!new->new[i]) {
3822 			for (i--; i >= 0; i--)
3823 				kfree(new->new[i]);
3824 			kfree(new);
3825 			return -ENOMEM;
3826 		}
3827 	}
3828 	new->cachep = cachep;
3829 
3830 	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3831 
3832 	check_irq_on();
3833 	cachep->batchcount = batchcount;
3834 	cachep->limit = limit;
3835 	cachep->shared = shared;
3836 
3837 	for_each_online_cpu(i) {
3838 		struct array_cache *ccold = new->new[i];
3839 		if (!ccold)
3840 			continue;
3841 		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3842 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3843 		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3844 		kfree(ccold);
3845 	}
3846 	kfree(new);
3847 	return alloc_kmem_cache_node(cachep, gfp);
3848 }
3849 
3850 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3851 				int batchcount, int shared, gfp_t gfp)
3852 {
3853 	int ret;
3854 	struct kmem_cache *c = NULL;
3855 	int i = 0;
3856 
3857 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3858 
3859 	if (slab_state < FULL)
3860 		return ret;
3861 
3862 	if ((ret < 0) || !is_root_cache(cachep))
3863 		return ret;
3864 
3865 	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3866 	for_each_memcg_cache_index(i) {
3867 		c = cache_from_memcg_idx(cachep, i);
3868 		if (c)
3869 			/* return value determined by the parent cache only */
3870 			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3871 	}
3872 
3873 	return ret;
3874 }
3875 
3876 /* Called with slab_mutex held always */
3877 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3878 {
3879 	int err;
3880 	int limit = 0;
3881 	int shared = 0;
3882 	int batchcount = 0;
3883 
3884 	if (!is_root_cache(cachep)) {
3885 		struct kmem_cache *root = memcg_root_cache(cachep);
3886 		limit = root->limit;
3887 		shared = root->shared;
3888 		batchcount = root->batchcount;
3889 	}
3890 
3891 	if (limit && shared && batchcount)
3892 		goto skip_setup;
3893 	/*
3894 	 * The head array serves three purposes:
3895 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3896 	 * - reduce the number of spinlock operations.
3897 	 * - reduce the number of linked list operations on the slab and
3898 	 *   bufctl chains: array operations are cheaper.
3899 	 * The numbers are guessed, we should auto-tune as described by
3900 	 * Bonwick.
3901 	 */
3902 	if (cachep->size > 131072)
3903 		limit = 1;
3904 	else if (cachep->size > PAGE_SIZE)
3905 		limit = 8;
3906 	else if (cachep->size > 1024)
3907 		limit = 24;
3908 	else if (cachep->size > 256)
3909 		limit = 54;
3910 	else
3911 		limit = 120;
3912 
3913 	/*
3914 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3915 	 * allocation behaviour: Most allocs on one cpu, most free operations
3916 	 * on another cpu. For these cases, an efficient object passing between
3917 	 * cpus is necessary. This is provided by a shared array. The array
3918 	 * replaces Bonwick's magazine layer.
3919 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3920 	 * to a larger limit. Thus disabled by default.
3921 	 */
3922 	shared = 0;
3923 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3924 		shared = 8;
3925 
3926 #if DEBUG
3927 	/*
3928 	 * With debugging enabled, large batchcount lead to excessively long
3929 	 * periods with disabled local interrupts. Limit the batchcount
3930 	 */
3931 	if (limit > 32)
3932 		limit = 32;
3933 #endif
3934 	batchcount = (limit + 1) / 2;
3935 skip_setup:
3936 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3937 	if (err)
3938 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3939 		       cachep->name, -err);
3940 	return err;
3941 }
3942 
3943 /*
3944  * Drain an array if it contains any elements taking the node lock only if
3945  * necessary. Note that the node listlock also protects the array_cache
3946  * if drain_array() is used on the shared array.
3947  */
3948 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3949 			 struct array_cache *ac, int force, int node)
3950 {
3951 	int tofree;
3952 
3953 	if (!ac || !ac->avail)
3954 		return;
3955 	if (ac->touched && !force) {
3956 		ac->touched = 0;
3957 	} else {
3958 		spin_lock_irq(&n->list_lock);
3959 		if (ac->avail) {
3960 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3961 			if (tofree > ac->avail)
3962 				tofree = (ac->avail + 1) / 2;
3963 			free_block(cachep, ac->entry, tofree, node);
3964 			ac->avail -= tofree;
3965 			memmove(ac->entry, &(ac->entry[tofree]),
3966 				sizeof(void *) * ac->avail);
3967 		}
3968 		spin_unlock_irq(&n->list_lock);
3969 	}
3970 }
3971 
3972 /**
3973  * cache_reap - Reclaim memory from caches.
3974  * @w: work descriptor
3975  *
3976  * Called from workqueue/eventd every few seconds.
3977  * Purpose:
3978  * - clear the per-cpu caches for this CPU.
3979  * - return freeable pages to the main free memory pool.
3980  *
3981  * If we cannot acquire the cache chain mutex then just give up - we'll try
3982  * again on the next iteration.
3983  */
3984 static void cache_reap(struct work_struct *w)
3985 {
3986 	struct kmem_cache *searchp;
3987 	struct kmem_cache_node *n;
3988 	int node = numa_mem_id();
3989 	struct delayed_work *work = to_delayed_work(w);
3990 
3991 	if (!mutex_trylock(&slab_mutex))
3992 		/* Give up. Setup the next iteration. */
3993 		goto out;
3994 
3995 	list_for_each_entry(searchp, &slab_caches, list) {
3996 		check_irq_on();
3997 
3998 		/*
3999 		 * We only take the node lock if absolutely necessary and we
4000 		 * have established with reasonable certainty that
4001 		 * we can do some work if the lock was obtained.
4002 		 */
4003 		n = searchp->node[node];
4004 
4005 		reap_alien(searchp, n);
4006 
4007 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4008 
4009 		/*
4010 		 * These are racy checks but it does not matter
4011 		 * if we skip one check or scan twice.
4012 		 */
4013 		if (time_after(n->next_reap, jiffies))
4014 			goto next;
4015 
4016 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4017 
4018 		drain_array(searchp, n, n->shared, 0, node);
4019 
4020 		if (n->free_touched)
4021 			n->free_touched = 0;
4022 		else {
4023 			int freed;
4024 
4025 			freed = drain_freelist(searchp, n, (n->free_limit +
4026 				5 * searchp->num - 1) / (5 * searchp->num));
4027 			STATS_ADD_REAPED(searchp, freed);
4028 		}
4029 next:
4030 		cond_resched();
4031 	}
4032 	check_irq_on();
4033 	mutex_unlock(&slab_mutex);
4034 	next_reap_node();
4035 out:
4036 	/* Set up the next iteration */
4037 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4038 }
4039 
4040 #ifdef CONFIG_SLABINFO
4041 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4042 {
4043 	struct page *page;
4044 	unsigned long active_objs;
4045 	unsigned long num_objs;
4046 	unsigned long active_slabs = 0;
4047 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4048 	const char *name;
4049 	char *error = NULL;
4050 	int node;
4051 	struct kmem_cache_node *n;
4052 
4053 	active_objs = 0;
4054 	num_slabs = 0;
4055 	for_each_online_node(node) {
4056 		n = cachep->node[node];
4057 		if (!n)
4058 			continue;
4059 
4060 		check_irq_on();
4061 		spin_lock_irq(&n->list_lock);
4062 
4063 		list_for_each_entry(page, &n->slabs_full, lru) {
4064 			if (page->active != cachep->num && !error)
4065 				error = "slabs_full accounting error";
4066 			active_objs += cachep->num;
4067 			active_slabs++;
4068 		}
4069 		list_for_each_entry(page, &n->slabs_partial, lru) {
4070 			if (page->active == cachep->num && !error)
4071 				error = "slabs_partial accounting error";
4072 			if (!page->active && !error)
4073 				error = "slabs_partial accounting error";
4074 			active_objs += page->active;
4075 			active_slabs++;
4076 		}
4077 		list_for_each_entry(page, &n->slabs_free, lru) {
4078 			if (page->active && !error)
4079 				error = "slabs_free accounting error";
4080 			num_slabs++;
4081 		}
4082 		free_objects += n->free_objects;
4083 		if (n->shared)
4084 			shared_avail += n->shared->avail;
4085 
4086 		spin_unlock_irq(&n->list_lock);
4087 	}
4088 	num_slabs += active_slabs;
4089 	num_objs = num_slabs * cachep->num;
4090 	if (num_objs - active_objs != free_objects && !error)
4091 		error = "free_objects accounting error";
4092 
4093 	name = cachep->name;
4094 	if (error)
4095 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4096 
4097 	sinfo->active_objs = active_objs;
4098 	sinfo->num_objs = num_objs;
4099 	sinfo->active_slabs = active_slabs;
4100 	sinfo->num_slabs = num_slabs;
4101 	sinfo->shared_avail = shared_avail;
4102 	sinfo->limit = cachep->limit;
4103 	sinfo->batchcount = cachep->batchcount;
4104 	sinfo->shared = cachep->shared;
4105 	sinfo->objects_per_slab = cachep->num;
4106 	sinfo->cache_order = cachep->gfporder;
4107 }
4108 
4109 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4110 {
4111 #if STATS
4112 	{			/* node stats */
4113 		unsigned long high = cachep->high_mark;
4114 		unsigned long allocs = cachep->num_allocations;
4115 		unsigned long grown = cachep->grown;
4116 		unsigned long reaped = cachep->reaped;
4117 		unsigned long errors = cachep->errors;
4118 		unsigned long max_freeable = cachep->max_freeable;
4119 		unsigned long node_allocs = cachep->node_allocs;
4120 		unsigned long node_frees = cachep->node_frees;
4121 		unsigned long overflows = cachep->node_overflow;
4122 
4123 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4124 			   "%4lu %4lu %4lu %4lu %4lu",
4125 			   allocs, high, grown,
4126 			   reaped, errors, max_freeable, node_allocs,
4127 			   node_frees, overflows);
4128 	}
4129 	/* cpu stats */
4130 	{
4131 		unsigned long allochit = atomic_read(&cachep->allochit);
4132 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4133 		unsigned long freehit = atomic_read(&cachep->freehit);
4134 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4135 
4136 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4137 			   allochit, allocmiss, freehit, freemiss);
4138 	}
4139 #endif
4140 }
4141 
4142 #define MAX_SLABINFO_WRITE 128
4143 /**
4144  * slabinfo_write - Tuning for the slab allocator
4145  * @file: unused
4146  * @buffer: user buffer
4147  * @count: data length
4148  * @ppos: unused
4149  */
4150 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4151 		       size_t count, loff_t *ppos)
4152 {
4153 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4154 	int limit, batchcount, shared, res;
4155 	struct kmem_cache *cachep;
4156 
4157 	if (count > MAX_SLABINFO_WRITE)
4158 		return -EINVAL;
4159 	if (copy_from_user(&kbuf, buffer, count))
4160 		return -EFAULT;
4161 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4162 
4163 	tmp = strchr(kbuf, ' ');
4164 	if (!tmp)
4165 		return -EINVAL;
4166 	*tmp = '\0';
4167 	tmp++;
4168 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4169 		return -EINVAL;
4170 
4171 	/* Find the cache in the chain of caches. */
4172 	mutex_lock(&slab_mutex);
4173 	res = -EINVAL;
4174 	list_for_each_entry(cachep, &slab_caches, list) {
4175 		if (!strcmp(cachep->name, kbuf)) {
4176 			if (limit < 1 || batchcount < 1 ||
4177 					batchcount > limit || shared < 0) {
4178 				res = 0;
4179 			} else {
4180 				res = do_tune_cpucache(cachep, limit,
4181 						       batchcount, shared,
4182 						       GFP_KERNEL);
4183 			}
4184 			break;
4185 		}
4186 	}
4187 	mutex_unlock(&slab_mutex);
4188 	if (res >= 0)
4189 		res = count;
4190 	return res;
4191 }
4192 
4193 #ifdef CONFIG_DEBUG_SLAB_LEAK
4194 
4195 static void *leaks_start(struct seq_file *m, loff_t *pos)
4196 {
4197 	mutex_lock(&slab_mutex);
4198 	return seq_list_start(&slab_caches, *pos);
4199 }
4200 
4201 static inline int add_caller(unsigned long *n, unsigned long v)
4202 {
4203 	unsigned long *p;
4204 	int l;
4205 	if (!v)
4206 		return 1;
4207 	l = n[1];
4208 	p = n + 2;
4209 	while (l) {
4210 		int i = l/2;
4211 		unsigned long *q = p + 2 * i;
4212 		if (*q == v) {
4213 			q[1]++;
4214 			return 1;
4215 		}
4216 		if (*q > v) {
4217 			l = i;
4218 		} else {
4219 			p = q + 2;
4220 			l -= i + 1;
4221 		}
4222 	}
4223 	if (++n[1] == n[0])
4224 		return 0;
4225 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4226 	p[0] = v;
4227 	p[1] = 1;
4228 	return 1;
4229 }
4230 
4231 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4232 						struct page *page)
4233 {
4234 	void *p;
4235 	int i, j;
4236 
4237 	if (n[0] == n[1])
4238 		return;
4239 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4240 		bool active = true;
4241 
4242 		for (j = page->active; j < c->num; j++) {
4243 			/* Skip freed item */
4244 			if (get_free_obj(page, j) == i) {
4245 				active = false;
4246 				break;
4247 			}
4248 		}
4249 		if (!active)
4250 			continue;
4251 
4252 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4253 			return;
4254 	}
4255 }
4256 
4257 static void show_symbol(struct seq_file *m, unsigned long address)
4258 {
4259 #ifdef CONFIG_KALLSYMS
4260 	unsigned long offset, size;
4261 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4262 
4263 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4264 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4265 		if (modname[0])
4266 			seq_printf(m, " [%s]", modname);
4267 		return;
4268 	}
4269 #endif
4270 	seq_printf(m, "%p", (void *)address);
4271 }
4272 
4273 static int leaks_show(struct seq_file *m, void *p)
4274 {
4275 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4276 	struct page *page;
4277 	struct kmem_cache_node *n;
4278 	const char *name;
4279 	unsigned long *x = m->private;
4280 	int node;
4281 	int i;
4282 
4283 	if (!(cachep->flags & SLAB_STORE_USER))
4284 		return 0;
4285 	if (!(cachep->flags & SLAB_RED_ZONE))
4286 		return 0;
4287 
4288 	/* OK, we can do it */
4289 
4290 	x[1] = 0;
4291 
4292 	for_each_online_node(node) {
4293 		n = cachep->node[node];
4294 		if (!n)
4295 			continue;
4296 
4297 		check_irq_on();
4298 		spin_lock_irq(&n->list_lock);
4299 
4300 		list_for_each_entry(page, &n->slabs_full, lru)
4301 			handle_slab(x, cachep, page);
4302 		list_for_each_entry(page, &n->slabs_partial, lru)
4303 			handle_slab(x, cachep, page);
4304 		spin_unlock_irq(&n->list_lock);
4305 	}
4306 	name = cachep->name;
4307 	if (x[0] == x[1]) {
4308 		/* Increase the buffer size */
4309 		mutex_unlock(&slab_mutex);
4310 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4311 		if (!m->private) {
4312 			/* Too bad, we are really out */
4313 			m->private = x;
4314 			mutex_lock(&slab_mutex);
4315 			return -ENOMEM;
4316 		}
4317 		*(unsigned long *)m->private = x[0] * 2;
4318 		kfree(x);
4319 		mutex_lock(&slab_mutex);
4320 		/* Now make sure this entry will be retried */
4321 		m->count = m->size;
4322 		return 0;
4323 	}
4324 	for (i = 0; i < x[1]; i++) {
4325 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4326 		show_symbol(m, x[2*i+2]);
4327 		seq_putc(m, '\n');
4328 	}
4329 
4330 	return 0;
4331 }
4332 
4333 static const struct seq_operations slabstats_op = {
4334 	.start = leaks_start,
4335 	.next = slab_next,
4336 	.stop = slab_stop,
4337 	.show = leaks_show,
4338 };
4339 
4340 static int slabstats_open(struct inode *inode, struct file *file)
4341 {
4342 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4343 	int ret = -ENOMEM;
4344 	if (n) {
4345 		ret = seq_open(file, &slabstats_op);
4346 		if (!ret) {
4347 			struct seq_file *m = file->private_data;
4348 			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4349 			m->private = n;
4350 			n = NULL;
4351 		}
4352 		kfree(n);
4353 	}
4354 	return ret;
4355 }
4356 
4357 static const struct file_operations proc_slabstats_operations = {
4358 	.open		= slabstats_open,
4359 	.read		= seq_read,
4360 	.llseek		= seq_lseek,
4361 	.release	= seq_release_private,
4362 };
4363 #endif
4364 
4365 static int __init slab_proc_init(void)
4366 {
4367 #ifdef CONFIG_DEBUG_SLAB_LEAK
4368 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4369 #endif
4370 	return 0;
4371 }
4372 module_init(slab_proc_init);
4373 #endif
4374 
4375 /**
4376  * ksize - get the actual amount of memory allocated for a given object
4377  * @objp: Pointer to the object
4378  *
4379  * kmalloc may internally round up allocations and return more memory
4380  * than requested. ksize() can be used to determine the actual amount of
4381  * memory allocated. The caller may use this additional memory, even though
4382  * a smaller amount of memory was initially specified with the kmalloc call.
4383  * The caller must guarantee that objp points to a valid object previously
4384  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4385  * must not be freed during the duration of the call.
4386  */
4387 size_t ksize(const void *objp)
4388 {
4389 	BUG_ON(!objp);
4390 	if (unlikely(objp == ZERO_SIZE_PTR))
4391 		return 0;
4392 
4393 	return virt_to_cache(objp)->object_size;
4394 }
4395 EXPORT_SYMBOL(ksize);
4396