1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'slab_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 120 #include <net/sock.h> 121 122 #include <asm/cacheflush.h> 123 #include <asm/tlbflush.h> 124 #include <asm/page.h> 125 126 #include <trace/events/kmem.h> 127 128 #include "internal.h" 129 130 #include "slab.h" 131 132 /* 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 134 * 0 for faster, smaller code (especially in the critical paths). 135 * 136 * STATS - 1 to collect stats for /proc/slabinfo. 137 * 0 for faster, smaller code (especially in the critical paths). 138 * 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 140 */ 141 142 #ifdef CONFIG_DEBUG_SLAB 143 #define DEBUG 1 144 #define STATS 1 145 #define FORCED_DEBUG 1 146 #else 147 #define DEBUG 0 148 #define STATS 0 149 #define FORCED_DEBUG 0 150 #endif 151 152 /* Shouldn't this be in a header file somewhere? */ 153 #define BYTES_PER_WORD sizeof(void *) 154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 155 156 #ifndef ARCH_KMALLOC_FLAGS 157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 158 #endif 159 160 /* 161 * true if a page was allocated from pfmemalloc reserves for network-based 162 * swap 163 */ 164 static bool pfmemalloc_active __read_mostly; 165 166 /* 167 * struct array_cache 168 * 169 * Purpose: 170 * - LIFO ordering, to hand out cache-warm objects from _alloc 171 * - reduce the number of linked list operations 172 * - reduce spinlock operations 173 * 174 * The limit is stored in the per-cpu structure to reduce the data cache 175 * footprint. 176 * 177 */ 178 struct array_cache { 179 unsigned int avail; 180 unsigned int limit; 181 unsigned int batchcount; 182 unsigned int touched; 183 spinlock_t lock; 184 void *entry[]; /* 185 * Must have this definition in here for the proper 186 * alignment of array_cache. Also simplifies accessing 187 * the entries. 188 * 189 * Entries should not be directly dereferenced as 190 * entries belonging to slabs marked pfmemalloc will 191 * have the lower bits set SLAB_OBJ_PFMEMALLOC 192 */ 193 }; 194 195 #define SLAB_OBJ_PFMEMALLOC 1 196 static inline bool is_obj_pfmemalloc(void *objp) 197 { 198 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC; 199 } 200 201 static inline void set_obj_pfmemalloc(void **objp) 202 { 203 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC); 204 return; 205 } 206 207 static inline void clear_obj_pfmemalloc(void **objp) 208 { 209 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC); 210 } 211 212 /* 213 * bootstrap: The caches do not work without cpuarrays anymore, but the 214 * cpuarrays are allocated from the generic caches... 215 */ 216 #define BOOT_CPUCACHE_ENTRIES 1 217 struct arraycache_init { 218 struct array_cache cache; 219 void *entries[BOOT_CPUCACHE_ENTRIES]; 220 }; 221 222 /* 223 * Need this for bootstrapping a per node allocator. 224 */ 225 #define NUM_INIT_LISTS (3 * MAX_NUMNODES) 226 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 227 #define CACHE_CACHE 0 228 #define SIZE_AC MAX_NUMNODES 229 #define SIZE_NODE (2 * MAX_NUMNODES) 230 231 static int drain_freelist(struct kmem_cache *cache, 232 struct kmem_cache_node *n, int tofree); 233 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 234 int node); 235 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 236 static void cache_reap(struct work_struct *unused); 237 238 static int slab_early_init = 1; 239 240 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init)) 241 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 242 243 static void kmem_cache_node_init(struct kmem_cache_node *parent) 244 { 245 INIT_LIST_HEAD(&parent->slabs_full); 246 INIT_LIST_HEAD(&parent->slabs_partial); 247 INIT_LIST_HEAD(&parent->slabs_free); 248 parent->shared = NULL; 249 parent->alien = NULL; 250 parent->colour_next = 0; 251 spin_lock_init(&parent->list_lock); 252 parent->free_objects = 0; 253 parent->free_touched = 0; 254 } 255 256 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 257 do { \ 258 INIT_LIST_HEAD(listp); \ 259 list_splice(&(cachep->node[nodeid]->slab), listp); \ 260 } while (0) 261 262 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 263 do { \ 264 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 265 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 266 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 267 } while (0) 268 269 #define CFLGS_OFF_SLAB (0x80000000UL) 270 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 271 272 #define BATCHREFILL_LIMIT 16 273 /* 274 * Optimization question: fewer reaps means less probability for unnessary 275 * cpucache drain/refill cycles. 276 * 277 * OTOH the cpuarrays can contain lots of objects, 278 * which could lock up otherwise freeable slabs. 279 */ 280 #define REAPTIMEOUT_CPUC (2*HZ) 281 #define REAPTIMEOUT_LIST3 (4*HZ) 282 283 #if STATS 284 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 285 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 286 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 287 #define STATS_INC_GROWN(x) ((x)->grown++) 288 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 289 #define STATS_SET_HIGH(x) \ 290 do { \ 291 if ((x)->num_active > (x)->high_mark) \ 292 (x)->high_mark = (x)->num_active; \ 293 } while (0) 294 #define STATS_INC_ERR(x) ((x)->errors++) 295 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 296 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 297 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 298 #define STATS_SET_FREEABLE(x, i) \ 299 do { \ 300 if ((x)->max_freeable < i) \ 301 (x)->max_freeable = i; \ 302 } while (0) 303 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 304 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 305 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 306 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 307 #else 308 #define STATS_INC_ACTIVE(x) do { } while (0) 309 #define STATS_DEC_ACTIVE(x) do { } while (0) 310 #define STATS_INC_ALLOCED(x) do { } while (0) 311 #define STATS_INC_GROWN(x) do { } while (0) 312 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 313 #define STATS_SET_HIGH(x) do { } while (0) 314 #define STATS_INC_ERR(x) do { } while (0) 315 #define STATS_INC_NODEALLOCS(x) do { } while (0) 316 #define STATS_INC_NODEFREES(x) do { } while (0) 317 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 318 #define STATS_SET_FREEABLE(x, i) do { } while (0) 319 #define STATS_INC_ALLOCHIT(x) do { } while (0) 320 #define STATS_INC_ALLOCMISS(x) do { } while (0) 321 #define STATS_INC_FREEHIT(x) do { } while (0) 322 #define STATS_INC_FREEMISS(x) do { } while (0) 323 #endif 324 325 #if DEBUG 326 327 /* 328 * memory layout of objects: 329 * 0 : objp 330 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 331 * the end of an object is aligned with the end of the real 332 * allocation. Catches writes behind the end of the allocation. 333 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 334 * redzone word. 335 * cachep->obj_offset: The real object. 336 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 337 * cachep->size - 1* BYTES_PER_WORD: last caller address 338 * [BYTES_PER_WORD long] 339 */ 340 static int obj_offset(struct kmem_cache *cachep) 341 { 342 return cachep->obj_offset; 343 } 344 345 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 346 { 347 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 348 return (unsigned long long*) (objp + obj_offset(cachep) - 349 sizeof(unsigned long long)); 350 } 351 352 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 353 { 354 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 355 if (cachep->flags & SLAB_STORE_USER) 356 return (unsigned long long *)(objp + cachep->size - 357 sizeof(unsigned long long) - 358 REDZONE_ALIGN); 359 return (unsigned long long *) (objp + cachep->size - 360 sizeof(unsigned long long)); 361 } 362 363 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 364 { 365 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 366 return (void **)(objp + cachep->size - BYTES_PER_WORD); 367 } 368 369 #else 370 371 #define obj_offset(x) 0 372 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 373 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 374 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 375 376 #endif 377 378 /* 379 * Do not go above this order unless 0 objects fit into the slab or 380 * overridden on the command line. 381 */ 382 #define SLAB_MAX_ORDER_HI 1 383 #define SLAB_MAX_ORDER_LO 0 384 static int slab_max_order = SLAB_MAX_ORDER_LO; 385 static bool slab_max_order_set __initdata; 386 387 static inline struct kmem_cache *virt_to_cache(const void *obj) 388 { 389 struct page *page = virt_to_head_page(obj); 390 return page->slab_cache; 391 } 392 393 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 394 unsigned int idx) 395 { 396 return page->s_mem + cache->size * idx; 397 } 398 399 /* 400 * We want to avoid an expensive divide : (offset / cache->size) 401 * Using the fact that size is a constant for a particular cache, 402 * we can replace (offset / cache->size) by 403 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 404 */ 405 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 406 const struct page *page, void *obj) 407 { 408 u32 offset = (obj - page->s_mem); 409 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 410 } 411 412 static struct arraycache_init initarray_generic = 413 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 414 415 /* internal cache of cache description objs */ 416 static struct kmem_cache kmem_cache_boot = { 417 .batchcount = 1, 418 .limit = BOOT_CPUCACHE_ENTRIES, 419 .shared = 1, 420 .size = sizeof(struct kmem_cache), 421 .name = "kmem_cache", 422 }; 423 424 #define BAD_ALIEN_MAGIC 0x01020304ul 425 426 #ifdef CONFIG_LOCKDEP 427 428 /* 429 * Slab sometimes uses the kmalloc slabs to store the slab headers 430 * for other slabs "off slab". 431 * The locking for this is tricky in that it nests within the locks 432 * of all other slabs in a few places; to deal with this special 433 * locking we put on-slab caches into a separate lock-class. 434 * 435 * We set lock class for alien array caches which are up during init. 436 * The lock annotation will be lost if all cpus of a node goes down and 437 * then comes back up during hotplug 438 */ 439 static struct lock_class_key on_slab_l3_key; 440 static struct lock_class_key on_slab_alc_key; 441 442 static struct lock_class_key debugobj_l3_key; 443 static struct lock_class_key debugobj_alc_key; 444 445 static void slab_set_lock_classes(struct kmem_cache *cachep, 446 struct lock_class_key *l3_key, struct lock_class_key *alc_key, 447 int q) 448 { 449 struct array_cache **alc; 450 struct kmem_cache_node *n; 451 int r; 452 453 n = cachep->node[q]; 454 if (!n) 455 return; 456 457 lockdep_set_class(&n->list_lock, l3_key); 458 alc = n->alien; 459 /* 460 * FIXME: This check for BAD_ALIEN_MAGIC 461 * should go away when common slab code is taught to 462 * work even without alien caches. 463 * Currently, non NUMA code returns BAD_ALIEN_MAGIC 464 * for alloc_alien_cache, 465 */ 466 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) 467 return; 468 for_each_node(r) { 469 if (alc[r]) 470 lockdep_set_class(&alc[r]->lock, alc_key); 471 } 472 } 473 474 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) 475 { 476 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node); 477 } 478 479 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) 480 { 481 int node; 482 483 for_each_online_node(node) 484 slab_set_debugobj_lock_classes_node(cachep, node); 485 } 486 487 static void init_node_lock_keys(int q) 488 { 489 int i; 490 491 if (slab_state < UP) 492 return; 493 494 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) { 495 struct kmem_cache_node *n; 496 struct kmem_cache *cache = kmalloc_caches[i]; 497 498 if (!cache) 499 continue; 500 501 n = cache->node[q]; 502 if (!n || OFF_SLAB(cache)) 503 continue; 504 505 slab_set_lock_classes(cache, &on_slab_l3_key, 506 &on_slab_alc_key, q); 507 } 508 } 509 510 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q) 511 { 512 if (!cachep->node[q]) 513 return; 514 515 slab_set_lock_classes(cachep, &on_slab_l3_key, 516 &on_slab_alc_key, q); 517 } 518 519 static inline void on_slab_lock_classes(struct kmem_cache *cachep) 520 { 521 int node; 522 523 VM_BUG_ON(OFF_SLAB(cachep)); 524 for_each_node(node) 525 on_slab_lock_classes_node(cachep, node); 526 } 527 528 static inline void init_lock_keys(void) 529 { 530 int node; 531 532 for_each_node(node) 533 init_node_lock_keys(node); 534 } 535 #else 536 static void init_node_lock_keys(int q) 537 { 538 } 539 540 static inline void init_lock_keys(void) 541 { 542 } 543 544 static inline void on_slab_lock_classes(struct kmem_cache *cachep) 545 { 546 } 547 548 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node) 549 { 550 } 551 552 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) 553 { 554 } 555 556 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) 557 { 558 } 559 #endif 560 561 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 562 563 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 564 { 565 return cachep->array[smp_processor_id()]; 566 } 567 568 static size_t slab_mgmt_size(size_t nr_objs, size_t align) 569 { 570 return ALIGN(nr_objs * sizeof(unsigned int), align); 571 } 572 573 /* 574 * Calculate the number of objects and left-over bytes for a given buffer size. 575 */ 576 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 577 size_t align, int flags, size_t *left_over, 578 unsigned int *num) 579 { 580 int nr_objs; 581 size_t mgmt_size; 582 size_t slab_size = PAGE_SIZE << gfporder; 583 584 /* 585 * The slab management structure can be either off the slab or 586 * on it. For the latter case, the memory allocated for a 587 * slab is used for: 588 * 589 * - One unsigned int for each object 590 * - Padding to respect alignment of @align 591 * - @buffer_size bytes for each object 592 * 593 * If the slab management structure is off the slab, then the 594 * alignment will already be calculated into the size. Because 595 * the slabs are all pages aligned, the objects will be at the 596 * correct alignment when allocated. 597 */ 598 if (flags & CFLGS_OFF_SLAB) { 599 mgmt_size = 0; 600 nr_objs = slab_size / buffer_size; 601 602 } else { 603 /* 604 * Ignore padding for the initial guess. The padding 605 * is at most @align-1 bytes, and @buffer_size is at 606 * least @align. In the worst case, this result will 607 * be one greater than the number of objects that fit 608 * into the memory allocation when taking the padding 609 * into account. 610 */ 611 nr_objs = (slab_size) / (buffer_size + sizeof(unsigned int)); 612 613 /* 614 * This calculated number will be either the right 615 * amount, or one greater than what we want. 616 */ 617 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size 618 > slab_size) 619 nr_objs--; 620 621 mgmt_size = slab_mgmt_size(nr_objs, align); 622 } 623 *num = nr_objs; 624 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 625 } 626 627 #if DEBUG 628 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 629 630 static void __slab_error(const char *function, struct kmem_cache *cachep, 631 char *msg) 632 { 633 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 634 function, cachep->name, msg); 635 dump_stack(); 636 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 637 } 638 #endif 639 640 /* 641 * By default on NUMA we use alien caches to stage the freeing of 642 * objects allocated from other nodes. This causes massive memory 643 * inefficiencies when using fake NUMA setup to split memory into a 644 * large number of small nodes, so it can be disabled on the command 645 * line 646 */ 647 648 static int use_alien_caches __read_mostly = 1; 649 static int __init noaliencache_setup(char *s) 650 { 651 use_alien_caches = 0; 652 return 1; 653 } 654 __setup("noaliencache", noaliencache_setup); 655 656 static int __init slab_max_order_setup(char *str) 657 { 658 get_option(&str, &slab_max_order); 659 slab_max_order = slab_max_order < 0 ? 0 : 660 min(slab_max_order, MAX_ORDER - 1); 661 slab_max_order_set = true; 662 663 return 1; 664 } 665 __setup("slab_max_order=", slab_max_order_setup); 666 667 #ifdef CONFIG_NUMA 668 /* 669 * Special reaping functions for NUMA systems called from cache_reap(). 670 * These take care of doing round robin flushing of alien caches (containing 671 * objects freed on different nodes from which they were allocated) and the 672 * flushing of remote pcps by calling drain_node_pages. 673 */ 674 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 675 676 static void init_reap_node(int cpu) 677 { 678 int node; 679 680 node = next_node(cpu_to_mem(cpu), node_online_map); 681 if (node == MAX_NUMNODES) 682 node = first_node(node_online_map); 683 684 per_cpu(slab_reap_node, cpu) = node; 685 } 686 687 static void next_reap_node(void) 688 { 689 int node = __this_cpu_read(slab_reap_node); 690 691 node = next_node(node, node_online_map); 692 if (unlikely(node >= MAX_NUMNODES)) 693 node = first_node(node_online_map); 694 __this_cpu_write(slab_reap_node, node); 695 } 696 697 #else 698 #define init_reap_node(cpu) do { } while (0) 699 #define next_reap_node(void) do { } while (0) 700 #endif 701 702 /* 703 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 704 * via the workqueue/eventd. 705 * Add the CPU number into the expiration time to minimize the possibility of 706 * the CPUs getting into lockstep and contending for the global cache chain 707 * lock. 708 */ 709 static void start_cpu_timer(int cpu) 710 { 711 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 712 713 /* 714 * When this gets called from do_initcalls via cpucache_init(), 715 * init_workqueues() has already run, so keventd will be setup 716 * at that time. 717 */ 718 if (keventd_up() && reap_work->work.func == NULL) { 719 init_reap_node(cpu); 720 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 721 schedule_delayed_work_on(cpu, reap_work, 722 __round_jiffies_relative(HZ, cpu)); 723 } 724 } 725 726 static struct array_cache *alloc_arraycache(int node, int entries, 727 int batchcount, gfp_t gfp) 728 { 729 int memsize = sizeof(void *) * entries + sizeof(struct array_cache); 730 struct array_cache *nc = NULL; 731 732 nc = kmalloc_node(memsize, gfp, node); 733 /* 734 * The array_cache structures contain pointers to free object. 735 * However, when such objects are allocated or transferred to another 736 * cache the pointers are not cleared and they could be counted as 737 * valid references during a kmemleak scan. Therefore, kmemleak must 738 * not scan such objects. 739 */ 740 kmemleak_no_scan(nc); 741 if (nc) { 742 nc->avail = 0; 743 nc->limit = entries; 744 nc->batchcount = batchcount; 745 nc->touched = 0; 746 spin_lock_init(&nc->lock); 747 } 748 return nc; 749 } 750 751 static inline bool is_slab_pfmemalloc(struct page *page) 752 { 753 return PageSlabPfmemalloc(page); 754 } 755 756 /* Clears pfmemalloc_active if no slabs have pfmalloc set */ 757 static void recheck_pfmemalloc_active(struct kmem_cache *cachep, 758 struct array_cache *ac) 759 { 760 struct kmem_cache_node *n = cachep->node[numa_mem_id()]; 761 struct page *page; 762 unsigned long flags; 763 764 if (!pfmemalloc_active) 765 return; 766 767 spin_lock_irqsave(&n->list_lock, flags); 768 list_for_each_entry(page, &n->slabs_full, lru) 769 if (is_slab_pfmemalloc(page)) 770 goto out; 771 772 list_for_each_entry(page, &n->slabs_partial, lru) 773 if (is_slab_pfmemalloc(page)) 774 goto out; 775 776 list_for_each_entry(page, &n->slabs_free, lru) 777 if (is_slab_pfmemalloc(page)) 778 goto out; 779 780 pfmemalloc_active = false; 781 out: 782 spin_unlock_irqrestore(&n->list_lock, flags); 783 } 784 785 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, 786 gfp_t flags, bool force_refill) 787 { 788 int i; 789 void *objp = ac->entry[--ac->avail]; 790 791 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ 792 if (unlikely(is_obj_pfmemalloc(objp))) { 793 struct kmem_cache_node *n; 794 795 if (gfp_pfmemalloc_allowed(flags)) { 796 clear_obj_pfmemalloc(&objp); 797 return objp; 798 } 799 800 /* The caller cannot use PFMEMALLOC objects, find another one */ 801 for (i = 0; i < ac->avail; i++) { 802 /* If a !PFMEMALLOC object is found, swap them */ 803 if (!is_obj_pfmemalloc(ac->entry[i])) { 804 objp = ac->entry[i]; 805 ac->entry[i] = ac->entry[ac->avail]; 806 ac->entry[ac->avail] = objp; 807 return objp; 808 } 809 } 810 811 /* 812 * If there are empty slabs on the slabs_free list and we are 813 * being forced to refill the cache, mark this one !pfmemalloc. 814 */ 815 n = cachep->node[numa_mem_id()]; 816 if (!list_empty(&n->slabs_free) && force_refill) { 817 struct page *page = virt_to_head_page(objp); 818 ClearPageSlabPfmemalloc(page); 819 clear_obj_pfmemalloc(&objp); 820 recheck_pfmemalloc_active(cachep, ac); 821 return objp; 822 } 823 824 /* No !PFMEMALLOC objects available */ 825 ac->avail++; 826 objp = NULL; 827 } 828 829 return objp; 830 } 831 832 static inline void *ac_get_obj(struct kmem_cache *cachep, 833 struct array_cache *ac, gfp_t flags, bool force_refill) 834 { 835 void *objp; 836 837 if (unlikely(sk_memalloc_socks())) 838 objp = __ac_get_obj(cachep, ac, flags, force_refill); 839 else 840 objp = ac->entry[--ac->avail]; 841 842 return objp; 843 } 844 845 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, 846 void *objp) 847 { 848 if (unlikely(pfmemalloc_active)) { 849 /* Some pfmemalloc slabs exist, check if this is one */ 850 struct page *page = virt_to_head_page(objp); 851 if (PageSlabPfmemalloc(page)) 852 set_obj_pfmemalloc(&objp); 853 } 854 855 return objp; 856 } 857 858 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, 859 void *objp) 860 { 861 if (unlikely(sk_memalloc_socks())) 862 objp = __ac_put_obj(cachep, ac, objp); 863 864 ac->entry[ac->avail++] = objp; 865 } 866 867 /* 868 * Transfer objects in one arraycache to another. 869 * Locking must be handled by the caller. 870 * 871 * Return the number of entries transferred. 872 */ 873 static int transfer_objects(struct array_cache *to, 874 struct array_cache *from, unsigned int max) 875 { 876 /* Figure out how many entries to transfer */ 877 int nr = min3(from->avail, max, to->limit - to->avail); 878 879 if (!nr) 880 return 0; 881 882 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 883 sizeof(void *) *nr); 884 885 from->avail -= nr; 886 to->avail += nr; 887 return nr; 888 } 889 890 #ifndef CONFIG_NUMA 891 892 #define drain_alien_cache(cachep, alien) do { } while (0) 893 #define reap_alien(cachep, n) do { } while (0) 894 895 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 896 { 897 return (struct array_cache **)BAD_ALIEN_MAGIC; 898 } 899 900 static inline void free_alien_cache(struct array_cache **ac_ptr) 901 { 902 } 903 904 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 905 { 906 return 0; 907 } 908 909 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 910 gfp_t flags) 911 { 912 return NULL; 913 } 914 915 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 916 gfp_t flags, int nodeid) 917 { 918 return NULL; 919 } 920 921 #else /* CONFIG_NUMA */ 922 923 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 924 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 925 926 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 927 { 928 struct array_cache **ac_ptr; 929 int memsize = sizeof(void *) * nr_node_ids; 930 int i; 931 932 if (limit > 1) 933 limit = 12; 934 ac_ptr = kzalloc_node(memsize, gfp, node); 935 if (ac_ptr) { 936 for_each_node(i) { 937 if (i == node || !node_online(i)) 938 continue; 939 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); 940 if (!ac_ptr[i]) { 941 for (i--; i >= 0; i--) 942 kfree(ac_ptr[i]); 943 kfree(ac_ptr); 944 return NULL; 945 } 946 } 947 } 948 return ac_ptr; 949 } 950 951 static void free_alien_cache(struct array_cache **ac_ptr) 952 { 953 int i; 954 955 if (!ac_ptr) 956 return; 957 for_each_node(i) 958 kfree(ac_ptr[i]); 959 kfree(ac_ptr); 960 } 961 962 static void __drain_alien_cache(struct kmem_cache *cachep, 963 struct array_cache *ac, int node) 964 { 965 struct kmem_cache_node *n = cachep->node[node]; 966 967 if (ac->avail) { 968 spin_lock(&n->list_lock); 969 /* 970 * Stuff objects into the remote nodes shared array first. 971 * That way we could avoid the overhead of putting the objects 972 * into the free lists and getting them back later. 973 */ 974 if (n->shared) 975 transfer_objects(n->shared, ac, ac->limit); 976 977 free_block(cachep, ac->entry, ac->avail, node); 978 ac->avail = 0; 979 spin_unlock(&n->list_lock); 980 } 981 } 982 983 /* 984 * Called from cache_reap() to regularly drain alien caches round robin. 985 */ 986 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 987 { 988 int node = __this_cpu_read(slab_reap_node); 989 990 if (n->alien) { 991 struct array_cache *ac = n->alien[node]; 992 993 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { 994 __drain_alien_cache(cachep, ac, node); 995 spin_unlock_irq(&ac->lock); 996 } 997 } 998 } 999 1000 static void drain_alien_cache(struct kmem_cache *cachep, 1001 struct array_cache **alien) 1002 { 1003 int i = 0; 1004 struct array_cache *ac; 1005 unsigned long flags; 1006 1007 for_each_online_node(i) { 1008 ac = alien[i]; 1009 if (ac) { 1010 spin_lock_irqsave(&ac->lock, flags); 1011 __drain_alien_cache(cachep, ac, i); 1012 spin_unlock_irqrestore(&ac->lock, flags); 1013 } 1014 } 1015 } 1016 1017 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1018 { 1019 int nodeid = page_to_nid(virt_to_page(objp)); 1020 struct kmem_cache_node *n; 1021 struct array_cache *alien = NULL; 1022 int node; 1023 1024 node = numa_mem_id(); 1025 1026 /* 1027 * Make sure we are not freeing a object from another node to the array 1028 * cache on this cpu. 1029 */ 1030 if (likely(nodeid == node)) 1031 return 0; 1032 1033 n = cachep->node[node]; 1034 STATS_INC_NODEFREES(cachep); 1035 if (n->alien && n->alien[nodeid]) { 1036 alien = n->alien[nodeid]; 1037 spin_lock(&alien->lock); 1038 if (unlikely(alien->avail == alien->limit)) { 1039 STATS_INC_ACOVERFLOW(cachep); 1040 __drain_alien_cache(cachep, alien, nodeid); 1041 } 1042 ac_put_obj(cachep, alien, objp); 1043 spin_unlock(&alien->lock); 1044 } else { 1045 spin_lock(&(cachep->node[nodeid])->list_lock); 1046 free_block(cachep, &objp, 1, nodeid); 1047 spin_unlock(&(cachep->node[nodeid])->list_lock); 1048 } 1049 return 1; 1050 } 1051 #endif 1052 1053 /* 1054 * Allocates and initializes node for a node on each slab cache, used for 1055 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 1056 * will be allocated off-node since memory is not yet online for the new node. 1057 * When hotplugging memory or a cpu, existing node are not replaced if 1058 * already in use. 1059 * 1060 * Must hold slab_mutex. 1061 */ 1062 static int init_cache_node_node(int node) 1063 { 1064 struct kmem_cache *cachep; 1065 struct kmem_cache_node *n; 1066 const int memsize = sizeof(struct kmem_cache_node); 1067 1068 list_for_each_entry(cachep, &slab_caches, list) { 1069 /* 1070 * Set up the size64 kmemlist for cpu before we can 1071 * begin anything. Make sure some other cpu on this 1072 * node has not already allocated this 1073 */ 1074 if (!cachep->node[node]) { 1075 n = kmalloc_node(memsize, GFP_KERNEL, node); 1076 if (!n) 1077 return -ENOMEM; 1078 kmem_cache_node_init(n); 1079 n->next_reap = jiffies + REAPTIMEOUT_LIST3 + 1080 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1081 1082 /* 1083 * The l3s don't come and go as CPUs come and 1084 * go. slab_mutex is sufficient 1085 * protection here. 1086 */ 1087 cachep->node[node] = n; 1088 } 1089 1090 spin_lock_irq(&cachep->node[node]->list_lock); 1091 cachep->node[node]->free_limit = 1092 (1 + nr_cpus_node(node)) * 1093 cachep->batchcount + cachep->num; 1094 spin_unlock_irq(&cachep->node[node]->list_lock); 1095 } 1096 return 0; 1097 } 1098 1099 static inline int slabs_tofree(struct kmem_cache *cachep, 1100 struct kmem_cache_node *n) 1101 { 1102 return (n->free_objects + cachep->num - 1) / cachep->num; 1103 } 1104 1105 static void cpuup_canceled(long cpu) 1106 { 1107 struct kmem_cache *cachep; 1108 struct kmem_cache_node *n = NULL; 1109 int node = cpu_to_mem(cpu); 1110 const struct cpumask *mask = cpumask_of_node(node); 1111 1112 list_for_each_entry(cachep, &slab_caches, list) { 1113 struct array_cache *nc; 1114 struct array_cache *shared; 1115 struct array_cache **alien; 1116 1117 /* cpu is dead; no one can alloc from it. */ 1118 nc = cachep->array[cpu]; 1119 cachep->array[cpu] = NULL; 1120 n = cachep->node[node]; 1121 1122 if (!n) 1123 goto free_array_cache; 1124 1125 spin_lock_irq(&n->list_lock); 1126 1127 /* Free limit for this kmem_cache_node */ 1128 n->free_limit -= cachep->batchcount; 1129 if (nc) 1130 free_block(cachep, nc->entry, nc->avail, node); 1131 1132 if (!cpumask_empty(mask)) { 1133 spin_unlock_irq(&n->list_lock); 1134 goto free_array_cache; 1135 } 1136 1137 shared = n->shared; 1138 if (shared) { 1139 free_block(cachep, shared->entry, 1140 shared->avail, node); 1141 n->shared = NULL; 1142 } 1143 1144 alien = n->alien; 1145 n->alien = NULL; 1146 1147 spin_unlock_irq(&n->list_lock); 1148 1149 kfree(shared); 1150 if (alien) { 1151 drain_alien_cache(cachep, alien); 1152 free_alien_cache(alien); 1153 } 1154 free_array_cache: 1155 kfree(nc); 1156 } 1157 /* 1158 * In the previous loop, all the objects were freed to 1159 * the respective cache's slabs, now we can go ahead and 1160 * shrink each nodelist to its limit. 1161 */ 1162 list_for_each_entry(cachep, &slab_caches, list) { 1163 n = cachep->node[node]; 1164 if (!n) 1165 continue; 1166 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 1167 } 1168 } 1169 1170 static int cpuup_prepare(long cpu) 1171 { 1172 struct kmem_cache *cachep; 1173 struct kmem_cache_node *n = NULL; 1174 int node = cpu_to_mem(cpu); 1175 int err; 1176 1177 /* 1178 * We need to do this right in the beginning since 1179 * alloc_arraycache's are going to use this list. 1180 * kmalloc_node allows us to add the slab to the right 1181 * kmem_cache_node and not this cpu's kmem_cache_node 1182 */ 1183 err = init_cache_node_node(node); 1184 if (err < 0) 1185 goto bad; 1186 1187 /* 1188 * Now we can go ahead with allocating the shared arrays and 1189 * array caches 1190 */ 1191 list_for_each_entry(cachep, &slab_caches, list) { 1192 struct array_cache *nc; 1193 struct array_cache *shared = NULL; 1194 struct array_cache **alien = NULL; 1195 1196 nc = alloc_arraycache(node, cachep->limit, 1197 cachep->batchcount, GFP_KERNEL); 1198 if (!nc) 1199 goto bad; 1200 if (cachep->shared) { 1201 shared = alloc_arraycache(node, 1202 cachep->shared * cachep->batchcount, 1203 0xbaadf00d, GFP_KERNEL); 1204 if (!shared) { 1205 kfree(nc); 1206 goto bad; 1207 } 1208 } 1209 if (use_alien_caches) { 1210 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); 1211 if (!alien) { 1212 kfree(shared); 1213 kfree(nc); 1214 goto bad; 1215 } 1216 } 1217 cachep->array[cpu] = nc; 1218 n = cachep->node[node]; 1219 BUG_ON(!n); 1220 1221 spin_lock_irq(&n->list_lock); 1222 if (!n->shared) { 1223 /* 1224 * We are serialised from CPU_DEAD or 1225 * CPU_UP_CANCELLED by the cpucontrol lock 1226 */ 1227 n->shared = shared; 1228 shared = NULL; 1229 } 1230 #ifdef CONFIG_NUMA 1231 if (!n->alien) { 1232 n->alien = alien; 1233 alien = NULL; 1234 } 1235 #endif 1236 spin_unlock_irq(&n->list_lock); 1237 kfree(shared); 1238 free_alien_cache(alien); 1239 if (cachep->flags & SLAB_DEBUG_OBJECTS) 1240 slab_set_debugobj_lock_classes_node(cachep, node); 1241 else if (!OFF_SLAB(cachep) && 1242 !(cachep->flags & SLAB_DESTROY_BY_RCU)) 1243 on_slab_lock_classes_node(cachep, node); 1244 } 1245 init_node_lock_keys(node); 1246 1247 return 0; 1248 bad: 1249 cpuup_canceled(cpu); 1250 return -ENOMEM; 1251 } 1252 1253 static int cpuup_callback(struct notifier_block *nfb, 1254 unsigned long action, void *hcpu) 1255 { 1256 long cpu = (long)hcpu; 1257 int err = 0; 1258 1259 switch (action) { 1260 case CPU_UP_PREPARE: 1261 case CPU_UP_PREPARE_FROZEN: 1262 mutex_lock(&slab_mutex); 1263 err = cpuup_prepare(cpu); 1264 mutex_unlock(&slab_mutex); 1265 break; 1266 case CPU_ONLINE: 1267 case CPU_ONLINE_FROZEN: 1268 start_cpu_timer(cpu); 1269 break; 1270 #ifdef CONFIG_HOTPLUG_CPU 1271 case CPU_DOWN_PREPARE: 1272 case CPU_DOWN_PREPARE_FROZEN: 1273 /* 1274 * Shutdown cache reaper. Note that the slab_mutex is 1275 * held so that if cache_reap() is invoked it cannot do 1276 * anything expensive but will only modify reap_work 1277 * and reschedule the timer. 1278 */ 1279 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1280 /* Now the cache_reaper is guaranteed to be not running. */ 1281 per_cpu(slab_reap_work, cpu).work.func = NULL; 1282 break; 1283 case CPU_DOWN_FAILED: 1284 case CPU_DOWN_FAILED_FROZEN: 1285 start_cpu_timer(cpu); 1286 break; 1287 case CPU_DEAD: 1288 case CPU_DEAD_FROZEN: 1289 /* 1290 * Even if all the cpus of a node are down, we don't free the 1291 * kmem_cache_node of any cache. This to avoid a race between 1292 * cpu_down, and a kmalloc allocation from another cpu for 1293 * memory from the node of the cpu going down. The node 1294 * structure is usually allocated from kmem_cache_create() and 1295 * gets destroyed at kmem_cache_destroy(). 1296 */ 1297 /* fall through */ 1298 #endif 1299 case CPU_UP_CANCELED: 1300 case CPU_UP_CANCELED_FROZEN: 1301 mutex_lock(&slab_mutex); 1302 cpuup_canceled(cpu); 1303 mutex_unlock(&slab_mutex); 1304 break; 1305 } 1306 return notifier_from_errno(err); 1307 } 1308 1309 static struct notifier_block cpucache_notifier = { 1310 &cpuup_callback, NULL, 0 1311 }; 1312 1313 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1314 /* 1315 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1316 * Returns -EBUSY if all objects cannot be drained so that the node is not 1317 * removed. 1318 * 1319 * Must hold slab_mutex. 1320 */ 1321 static int __meminit drain_cache_node_node(int node) 1322 { 1323 struct kmem_cache *cachep; 1324 int ret = 0; 1325 1326 list_for_each_entry(cachep, &slab_caches, list) { 1327 struct kmem_cache_node *n; 1328 1329 n = cachep->node[node]; 1330 if (!n) 1331 continue; 1332 1333 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 1334 1335 if (!list_empty(&n->slabs_full) || 1336 !list_empty(&n->slabs_partial)) { 1337 ret = -EBUSY; 1338 break; 1339 } 1340 } 1341 return ret; 1342 } 1343 1344 static int __meminit slab_memory_callback(struct notifier_block *self, 1345 unsigned long action, void *arg) 1346 { 1347 struct memory_notify *mnb = arg; 1348 int ret = 0; 1349 int nid; 1350 1351 nid = mnb->status_change_nid; 1352 if (nid < 0) 1353 goto out; 1354 1355 switch (action) { 1356 case MEM_GOING_ONLINE: 1357 mutex_lock(&slab_mutex); 1358 ret = init_cache_node_node(nid); 1359 mutex_unlock(&slab_mutex); 1360 break; 1361 case MEM_GOING_OFFLINE: 1362 mutex_lock(&slab_mutex); 1363 ret = drain_cache_node_node(nid); 1364 mutex_unlock(&slab_mutex); 1365 break; 1366 case MEM_ONLINE: 1367 case MEM_OFFLINE: 1368 case MEM_CANCEL_ONLINE: 1369 case MEM_CANCEL_OFFLINE: 1370 break; 1371 } 1372 out: 1373 return notifier_from_errno(ret); 1374 } 1375 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1376 1377 /* 1378 * swap the static kmem_cache_node with kmalloced memory 1379 */ 1380 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1381 int nodeid) 1382 { 1383 struct kmem_cache_node *ptr; 1384 1385 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1386 BUG_ON(!ptr); 1387 1388 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1389 /* 1390 * Do not assume that spinlocks can be initialized via memcpy: 1391 */ 1392 spin_lock_init(&ptr->list_lock); 1393 1394 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1395 cachep->node[nodeid] = ptr; 1396 } 1397 1398 /* 1399 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1400 * size of kmem_cache_node. 1401 */ 1402 static void __init set_up_node(struct kmem_cache *cachep, int index) 1403 { 1404 int node; 1405 1406 for_each_online_node(node) { 1407 cachep->node[node] = &init_kmem_cache_node[index + node]; 1408 cachep->node[node]->next_reap = jiffies + 1409 REAPTIMEOUT_LIST3 + 1410 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1411 } 1412 } 1413 1414 /* 1415 * The memory after the last cpu cache pointer is used for the 1416 * the node pointer. 1417 */ 1418 static void setup_node_pointer(struct kmem_cache *cachep) 1419 { 1420 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids]; 1421 } 1422 1423 /* 1424 * Initialisation. Called after the page allocator have been initialised and 1425 * before smp_init(). 1426 */ 1427 void __init kmem_cache_init(void) 1428 { 1429 int i; 1430 1431 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1432 sizeof(struct rcu_head)); 1433 kmem_cache = &kmem_cache_boot; 1434 setup_node_pointer(kmem_cache); 1435 1436 if (num_possible_nodes() == 1) 1437 use_alien_caches = 0; 1438 1439 for (i = 0; i < NUM_INIT_LISTS; i++) 1440 kmem_cache_node_init(&init_kmem_cache_node[i]); 1441 1442 set_up_node(kmem_cache, CACHE_CACHE); 1443 1444 /* 1445 * Fragmentation resistance on low memory - only use bigger 1446 * page orders on machines with more than 32MB of memory if 1447 * not overridden on the command line. 1448 */ 1449 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1450 slab_max_order = SLAB_MAX_ORDER_HI; 1451 1452 /* Bootstrap is tricky, because several objects are allocated 1453 * from caches that do not exist yet: 1454 * 1) initialize the kmem_cache cache: it contains the struct 1455 * kmem_cache structures of all caches, except kmem_cache itself: 1456 * kmem_cache is statically allocated. 1457 * Initially an __init data area is used for the head array and the 1458 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1459 * array at the end of the bootstrap. 1460 * 2) Create the first kmalloc cache. 1461 * The struct kmem_cache for the new cache is allocated normally. 1462 * An __init data area is used for the head array. 1463 * 3) Create the remaining kmalloc caches, with minimally sized 1464 * head arrays. 1465 * 4) Replace the __init data head arrays for kmem_cache and the first 1466 * kmalloc cache with kmalloc allocated arrays. 1467 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1468 * the other cache's with kmalloc allocated memory. 1469 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1470 */ 1471 1472 /* 1) create the kmem_cache */ 1473 1474 /* 1475 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1476 */ 1477 create_boot_cache(kmem_cache, "kmem_cache", 1478 offsetof(struct kmem_cache, array[nr_cpu_ids]) + 1479 nr_node_ids * sizeof(struct kmem_cache_node *), 1480 SLAB_HWCACHE_ALIGN); 1481 list_add(&kmem_cache->list, &slab_caches); 1482 1483 /* 2+3) create the kmalloc caches */ 1484 1485 /* 1486 * Initialize the caches that provide memory for the array cache and the 1487 * kmem_cache_node structures first. Without this, further allocations will 1488 * bug. 1489 */ 1490 1491 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac", 1492 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS); 1493 1494 if (INDEX_AC != INDEX_NODE) 1495 kmalloc_caches[INDEX_NODE] = 1496 create_kmalloc_cache("kmalloc-node", 1497 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1498 1499 slab_early_init = 0; 1500 1501 /* 4) Replace the bootstrap head arrays */ 1502 { 1503 struct array_cache *ptr; 1504 1505 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1506 1507 memcpy(ptr, cpu_cache_get(kmem_cache), 1508 sizeof(struct arraycache_init)); 1509 /* 1510 * Do not assume that spinlocks can be initialized via memcpy: 1511 */ 1512 spin_lock_init(&ptr->lock); 1513 1514 kmem_cache->array[smp_processor_id()] = ptr; 1515 1516 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1517 1518 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC]) 1519 != &initarray_generic.cache); 1520 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]), 1521 sizeof(struct arraycache_init)); 1522 /* 1523 * Do not assume that spinlocks can be initialized via memcpy: 1524 */ 1525 spin_lock_init(&ptr->lock); 1526 1527 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr; 1528 } 1529 /* 5) Replace the bootstrap kmem_cache_node */ 1530 { 1531 int nid; 1532 1533 for_each_online_node(nid) { 1534 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1535 1536 init_list(kmalloc_caches[INDEX_AC], 1537 &init_kmem_cache_node[SIZE_AC + nid], nid); 1538 1539 if (INDEX_AC != INDEX_NODE) { 1540 init_list(kmalloc_caches[INDEX_NODE], 1541 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1542 } 1543 } 1544 } 1545 1546 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1547 } 1548 1549 void __init kmem_cache_init_late(void) 1550 { 1551 struct kmem_cache *cachep; 1552 1553 slab_state = UP; 1554 1555 /* 6) resize the head arrays to their final sizes */ 1556 mutex_lock(&slab_mutex); 1557 list_for_each_entry(cachep, &slab_caches, list) 1558 if (enable_cpucache(cachep, GFP_NOWAIT)) 1559 BUG(); 1560 mutex_unlock(&slab_mutex); 1561 1562 /* Annotate slab for lockdep -- annotate the malloc caches */ 1563 init_lock_keys(); 1564 1565 /* Done! */ 1566 slab_state = FULL; 1567 1568 /* 1569 * Register a cpu startup notifier callback that initializes 1570 * cpu_cache_get for all new cpus 1571 */ 1572 register_cpu_notifier(&cpucache_notifier); 1573 1574 #ifdef CONFIG_NUMA 1575 /* 1576 * Register a memory hotplug callback that initializes and frees 1577 * node. 1578 */ 1579 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1580 #endif 1581 1582 /* 1583 * The reap timers are started later, with a module init call: That part 1584 * of the kernel is not yet operational. 1585 */ 1586 } 1587 1588 static int __init cpucache_init(void) 1589 { 1590 int cpu; 1591 1592 /* 1593 * Register the timers that return unneeded pages to the page allocator 1594 */ 1595 for_each_online_cpu(cpu) 1596 start_cpu_timer(cpu); 1597 1598 /* Done! */ 1599 slab_state = FULL; 1600 return 0; 1601 } 1602 __initcall(cpucache_init); 1603 1604 static noinline void 1605 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1606 { 1607 struct kmem_cache_node *n; 1608 struct page *page; 1609 unsigned long flags; 1610 int node; 1611 1612 printk(KERN_WARNING 1613 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1614 nodeid, gfpflags); 1615 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n", 1616 cachep->name, cachep->size, cachep->gfporder); 1617 1618 for_each_online_node(node) { 1619 unsigned long active_objs = 0, num_objs = 0, free_objects = 0; 1620 unsigned long active_slabs = 0, num_slabs = 0; 1621 1622 n = cachep->node[node]; 1623 if (!n) 1624 continue; 1625 1626 spin_lock_irqsave(&n->list_lock, flags); 1627 list_for_each_entry(page, &n->slabs_full, lru) { 1628 active_objs += cachep->num; 1629 active_slabs++; 1630 } 1631 list_for_each_entry(page, &n->slabs_partial, lru) { 1632 active_objs += page->active; 1633 active_slabs++; 1634 } 1635 list_for_each_entry(page, &n->slabs_free, lru) 1636 num_slabs++; 1637 1638 free_objects += n->free_objects; 1639 spin_unlock_irqrestore(&n->list_lock, flags); 1640 1641 num_slabs += active_slabs; 1642 num_objs = num_slabs * cachep->num; 1643 printk(KERN_WARNING 1644 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", 1645 node, active_slabs, num_slabs, active_objs, num_objs, 1646 free_objects); 1647 } 1648 } 1649 1650 /* 1651 * Interface to system's page allocator. No need to hold the cache-lock. 1652 * 1653 * If we requested dmaable memory, we will get it. Even if we 1654 * did not request dmaable memory, we might get it, but that 1655 * would be relatively rare and ignorable. 1656 */ 1657 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1658 int nodeid) 1659 { 1660 struct page *page; 1661 int nr_pages; 1662 1663 flags |= cachep->allocflags; 1664 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1665 flags |= __GFP_RECLAIMABLE; 1666 1667 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1668 if (!page) { 1669 if (!(flags & __GFP_NOWARN) && printk_ratelimit()) 1670 slab_out_of_memory(cachep, flags, nodeid); 1671 return NULL; 1672 } 1673 1674 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1675 if (unlikely(page->pfmemalloc)) 1676 pfmemalloc_active = true; 1677 1678 nr_pages = (1 << cachep->gfporder); 1679 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1680 add_zone_page_state(page_zone(page), 1681 NR_SLAB_RECLAIMABLE, nr_pages); 1682 else 1683 add_zone_page_state(page_zone(page), 1684 NR_SLAB_UNRECLAIMABLE, nr_pages); 1685 __SetPageSlab(page); 1686 if (page->pfmemalloc) 1687 SetPageSlabPfmemalloc(page); 1688 memcg_bind_pages(cachep, cachep->gfporder); 1689 1690 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1691 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1692 1693 if (cachep->ctor) 1694 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1695 else 1696 kmemcheck_mark_unallocated_pages(page, nr_pages); 1697 } 1698 1699 return page; 1700 } 1701 1702 /* 1703 * Interface to system's page release. 1704 */ 1705 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1706 { 1707 const unsigned long nr_freed = (1 << cachep->gfporder); 1708 1709 kmemcheck_free_shadow(page, cachep->gfporder); 1710 1711 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1712 sub_zone_page_state(page_zone(page), 1713 NR_SLAB_RECLAIMABLE, nr_freed); 1714 else 1715 sub_zone_page_state(page_zone(page), 1716 NR_SLAB_UNRECLAIMABLE, nr_freed); 1717 1718 BUG_ON(!PageSlab(page)); 1719 __ClearPageSlabPfmemalloc(page); 1720 __ClearPageSlab(page); 1721 page_mapcount_reset(page); 1722 page->mapping = NULL; 1723 1724 memcg_release_pages(cachep, cachep->gfporder); 1725 if (current->reclaim_state) 1726 current->reclaim_state->reclaimed_slab += nr_freed; 1727 __free_memcg_kmem_pages(page, cachep->gfporder); 1728 } 1729 1730 static void kmem_rcu_free(struct rcu_head *head) 1731 { 1732 struct kmem_cache *cachep; 1733 struct page *page; 1734 1735 page = container_of(head, struct page, rcu_head); 1736 cachep = page->slab_cache; 1737 1738 kmem_freepages(cachep, page); 1739 } 1740 1741 #if DEBUG 1742 1743 #ifdef CONFIG_DEBUG_PAGEALLOC 1744 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1745 unsigned long caller) 1746 { 1747 int size = cachep->object_size; 1748 1749 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1750 1751 if (size < 5 * sizeof(unsigned long)) 1752 return; 1753 1754 *addr++ = 0x12345678; 1755 *addr++ = caller; 1756 *addr++ = smp_processor_id(); 1757 size -= 3 * sizeof(unsigned long); 1758 { 1759 unsigned long *sptr = &caller; 1760 unsigned long svalue; 1761 1762 while (!kstack_end(sptr)) { 1763 svalue = *sptr++; 1764 if (kernel_text_address(svalue)) { 1765 *addr++ = svalue; 1766 size -= sizeof(unsigned long); 1767 if (size <= sizeof(unsigned long)) 1768 break; 1769 } 1770 } 1771 1772 } 1773 *addr++ = 0x87654321; 1774 } 1775 #endif 1776 1777 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1778 { 1779 int size = cachep->object_size; 1780 addr = &((char *)addr)[obj_offset(cachep)]; 1781 1782 memset(addr, val, size); 1783 *(unsigned char *)(addr + size - 1) = POISON_END; 1784 } 1785 1786 static void dump_line(char *data, int offset, int limit) 1787 { 1788 int i; 1789 unsigned char error = 0; 1790 int bad_count = 0; 1791 1792 printk(KERN_ERR "%03x: ", offset); 1793 for (i = 0; i < limit; i++) { 1794 if (data[offset + i] != POISON_FREE) { 1795 error = data[offset + i]; 1796 bad_count++; 1797 } 1798 } 1799 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1800 &data[offset], limit, 1); 1801 1802 if (bad_count == 1) { 1803 error ^= POISON_FREE; 1804 if (!(error & (error - 1))) { 1805 printk(KERN_ERR "Single bit error detected. Probably " 1806 "bad RAM.\n"); 1807 #ifdef CONFIG_X86 1808 printk(KERN_ERR "Run memtest86+ or a similar memory " 1809 "test tool.\n"); 1810 #else 1811 printk(KERN_ERR "Run a memory test tool.\n"); 1812 #endif 1813 } 1814 } 1815 } 1816 #endif 1817 1818 #if DEBUG 1819 1820 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1821 { 1822 int i, size; 1823 char *realobj; 1824 1825 if (cachep->flags & SLAB_RED_ZONE) { 1826 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 1827 *dbg_redzone1(cachep, objp), 1828 *dbg_redzone2(cachep, objp)); 1829 } 1830 1831 if (cachep->flags & SLAB_STORE_USER) { 1832 printk(KERN_ERR "Last user: [<%p>](%pSR)\n", 1833 *dbg_userword(cachep, objp), 1834 *dbg_userword(cachep, objp)); 1835 } 1836 realobj = (char *)objp + obj_offset(cachep); 1837 size = cachep->object_size; 1838 for (i = 0; i < size && lines; i += 16, lines--) { 1839 int limit; 1840 limit = 16; 1841 if (i + limit > size) 1842 limit = size - i; 1843 dump_line(realobj, i, limit); 1844 } 1845 } 1846 1847 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1848 { 1849 char *realobj; 1850 int size, i; 1851 int lines = 0; 1852 1853 realobj = (char *)objp + obj_offset(cachep); 1854 size = cachep->object_size; 1855 1856 for (i = 0; i < size; i++) { 1857 char exp = POISON_FREE; 1858 if (i == size - 1) 1859 exp = POISON_END; 1860 if (realobj[i] != exp) { 1861 int limit; 1862 /* Mismatch ! */ 1863 /* Print header */ 1864 if (lines == 0) { 1865 printk(KERN_ERR 1866 "Slab corruption (%s): %s start=%p, len=%d\n", 1867 print_tainted(), cachep->name, realobj, size); 1868 print_objinfo(cachep, objp, 0); 1869 } 1870 /* Hexdump the affected line */ 1871 i = (i / 16) * 16; 1872 limit = 16; 1873 if (i + limit > size) 1874 limit = size - i; 1875 dump_line(realobj, i, limit); 1876 i += 16; 1877 lines++; 1878 /* Limit to 5 lines */ 1879 if (lines > 5) 1880 break; 1881 } 1882 } 1883 if (lines != 0) { 1884 /* Print some data about the neighboring objects, if they 1885 * exist: 1886 */ 1887 struct page *page = virt_to_head_page(objp); 1888 unsigned int objnr; 1889 1890 objnr = obj_to_index(cachep, page, objp); 1891 if (objnr) { 1892 objp = index_to_obj(cachep, page, objnr - 1); 1893 realobj = (char *)objp + obj_offset(cachep); 1894 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1895 realobj, size); 1896 print_objinfo(cachep, objp, 2); 1897 } 1898 if (objnr + 1 < cachep->num) { 1899 objp = index_to_obj(cachep, page, objnr + 1); 1900 realobj = (char *)objp + obj_offset(cachep); 1901 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1902 realobj, size); 1903 print_objinfo(cachep, objp, 2); 1904 } 1905 } 1906 } 1907 #endif 1908 1909 #if DEBUG 1910 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1911 struct page *page) 1912 { 1913 int i; 1914 for (i = 0; i < cachep->num; i++) { 1915 void *objp = index_to_obj(cachep, page, i); 1916 1917 if (cachep->flags & SLAB_POISON) { 1918 #ifdef CONFIG_DEBUG_PAGEALLOC 1919 if (cachep->size % PAGE_SIZE == 0 && 1920 OFF_SLAB(cachep)) 1921 kernel_map_pages(virt_to_page(objp), 1922 cachep->size / PAGE_SIZE, 1); 1923 else 1924 check_poison_obj(cachep, objp); 1925 #else 1926 check_poison_obj(cachep, objp); 1927 #endif 1928 } 1929 if (cachep->flags & SLAB_RED_ZONE) { 1930 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1931 slab_error(cachep, "start of a freed object " 1932 "was overwritten"); 1933 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1934 slab_error(cachep, "end of a freed object " 1935 "was overwritten"); 1936 } 1937 } 1938 } 1939 #else 1940 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1941 struct page *page) 1942 { 1943 } 1944 #endif 1945 1946 /** 1947 * slab_destroy - destroy and release all objects in a slab 1948 * @cachep: cache pointer being destroyed 1949 * @slabp: slab pointer being destroyed 1950 * 1951 * Destroy all the objs in a slab, and release the mem back to the system. 1952 * Before calling the slab must have been unlinked from the cache. The 1953 * cache-lock is not held/needed. 1954 */ 1955 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1956 { 1957 void *freelist; 1958 1959 freelist = page->freelist; 1960 slab_destroy_debugcheck(cachep, page); 1961 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 1962 struct rcu_head *head; 1963 1964 /* 1965 * RCU free overloads the RCU head over the LRU. 1966 * slab_page has been overloeaded over the LRU, 1967 * however it is not used from now on so that 1968 * we can use it safely. 1969 */ 1970 head = (void *)&page->rcu_head; 1971 call_rcu(head, kmem_rcu_free); 1972 1973 } else { 1974 kmem_freepages(cachep, page); 1975 } 1976 1977 /* 1978 * From now on, we don't use freelist 1979 * although actual page can be freed in rcu context 1980 */ 1981 if (OFF_SLAB(cachep)) 1982 kmem_cache_free(cachep->freelist_cache, freelist); 1983 } 1984 1985 /** 1986 * calculate_slab_order - calculate size (page order) of slabs 1987 * @cachep: pointer to the cache that is being created 1988 * @size: size of objects to be created in this cache. 1989 * @align: required alignment for the objects. 1990 * @flags: slab allocation flags 1991 * 1992 * Also calculates the number of objects per slab. 1993 * 1994 * This could be made much more intelligent. For now, try to avoid using 1995 * high order pages for slabs. When the gfp() functions are more friendly 1996 * towards high-order requests, this should be changed. 1997 */ 1998 static size_t calculate_slab_order(struct kmem_cache *cachep, 1999 size_t size, size_t align, unsigned long flags) 2000 { 2001 unsigned long offslab_limit; 2002 size_t left_over = 0; 2003 int gfporder; 2004 2005 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 2006 unsigned int num; 2007 size_t remainder; 2008 2009 cache_estimate(gfporder, size, align, flags, &remainder, &num); 2010 if (!num) 2011 continue; 2012 2013 if (flags & CFLGS_OFF_SLAB) { 2014 /* 2015 * Max number of objs-per-slab for caches which 2016 * use off-slab slabs. Needed to avoid a possible 2017 * looping condition in cache_grow(). 2018 */ 2019 offslab_limit = size; 2020 offslab_limit /= sizeof(unsigned int); 2021 2022 if (num > offslab_limit) 2023 break; 2024 } 2025 2026 /* Found something acceptable - save it away */ 2027 cachep->num = num; 2028 cachep->gfporder = gfporder; 2029 left_over = remainder; 2030 2031 /* 2032 * A VFS-reclaimable slab tends to have most allocations 2033 * as GFP_NOFS and we really don't want to have to be allocating 2034 * higher-order pages when we are unable to shrink dcache. 2035 */ 2036 if (flags & SLAB_RECLAIM_ACCOUNT) 2037 break; 2038 2039 /* 2040 * Large number of objects is good, but very large slabs are 2041 * currently bad for the gfp()s. 2042 */ 2043 if (gfporder >= slab_max_order) 2044 break; 2045 2046 /* 2047 * Acceptable internal fragmentation? 2048 */ 2049 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 2050 break; 2051 } 2052 return left_over; 2053 } 2054 2055 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 2056 { 2057 if (slab_state >= FULL) 2058 return enable_cpucache(cachep, gfp); 2059 2060 if (slab_state == DOWN) { 2061 /* 2062 * Note: Creation of first cache (kmem_cache). 2063 * The setup_node is taken care 2064 * of by the caller of __kmem_cache_create 2065 */ 2066 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2067 slab_state = PARTIAL; 2068 } else if (slab_state == PARTIAL) { 2069 /* 2070 * Note: the second kmem_cache_create must create the cache 2071 * that's used by kmalloc(24), otherwise the creation of 2072 * further caches will BUG(). 2073 */ 2074 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2075 2076 /* 2077 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is 2078 * the second cache, then we need to set up all its node/, 2079 * otherwise the creation of further caches will BUG(). 2080 */ 2081 set_up_node(cachep, SIZE_AC); 2082 if (INDEX_AC == INDEX_NODE) 2083 slab_state = PARTIAL_NODE; 2084 else 2085 slab_state = PARTIAL_ARRAYCACHE; 2086 } else { 2087 /* Remaining boot caches */ 2088 cachep->array[smp_processor_id()] = 2089 kmalloc(sizeof(struct arraycache_init), gfp); 2090 2091 if (slab_state == PARTIAL_ARRAYCACHE) { 2092 set_up_node(cachep, SIZE_NODE); 2093 slab_state = PARTIAL_NODE; 2094 } else { 2095 int node; 2096 for_each_online_node(node) { 2097 cachep->node[node] = 2098 kmalloc_node(sizeof(struct kmem_cache_node), 2099 gfp, node); 2100 BUG_ON(!cachep->node[node]); 2101 kmem_cache_node_init(cachep->node[node]); 2102 } 2103 } 2104 } 2105 cachep->node[numa_mem_id()]->next_reap = 2106 jiffies + REAPTIMEOUT_LIST3 + 2107 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 2108 2109 cpu_cache_get(cachep)->avail = 0; 2110 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2111 cpu_cache_get(cachep)->batchcount = 1; 2112 cpu_cache_get(cachep)->touched = 0; 2113 cachep->batchcount = 1; 2114 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2115 return 0; 2116 } 2117 2118 /** 2119 * __kmem_cache_create - Create a cache. 2120 * @cachep: cache management descriptor 2121 * @flags: SLAB flags 2122 * 2123 * Returns a ptr to the cache on success, NULL on failure. 2124 * Cannot be called within a int, but can be interrupted. 2125 * The @ctor is run when new pages are allocated by the cache. 2126 * 2127 * The flags are 2128 * 2129 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2130 * to catch references to uninitialised memory. 2131 * 2132 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2133 * for buffer overruns. 2134 * 2135 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2136 * cacheline. This can be beneficial if you're counting cycles as closely 2137 * as davem. 2138 */ 2139 int 2140 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2141 { 2142 size_t left_over, freelist_size, ralign; 2143 gfp_t gfp; 2144 int err; 2145 size_t size = cachep->size; 2146 2147 #if DEBUG 2148 #if FORCED_DEBUG 2149 /* 2150 * Enable redzoning and last user accounting, except for caches with 2151 * large objects, if the increased size would increase the object size 2152 * above the next power of two: caches with object sizes just above a 2153 * power of two have a significant amount of internal fragmentation. 2154 */ 2155 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2156 2 * sizeof(unsigned long long))) 2157 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2158 if (!(flags & SLAB_DESTROY_BY_RCU)) 2159 flags |= SLAB_POISON; 2160 #endif 2161 if (flags & SLAB_DESTROY_BY_RCU) 2162 BUG_ON(flags & SLAB_POISON); 2163 #endif 2164 2165 /* 2166 * Check that size is in terms of words. This is needed to avoid 2167 * unaligned accesses for some archs when redzoning is used, and makes 2168 * sure any on-slab bufctl's are also correctly aligned. 2169 */ 2170 if (size & (BYTES_PER_WORD - 1)) { 2171 size += (BYTES_PER_WORD - 1); 2172 size &= ~(BYTES_PER_WORD - 1); 2173 } 2174 2175 /* 2176 * Redzoning and user store require word alignment or possibly larger. 2177 * Note this will be overridden by architecture or caller mandated 2178 * alignment if either is greater than BYTES_PER_WORD. 2179 */ 2180 if (flags & SLAB_STORE_USER) 2181 ralign = BYTES_PER_WORD; 2182 2183 if (flags & SLAB_RED_ZONE) { 2184 ralign = REDZONE_ALIGN; 2185 /* If redzoning, ensure that the second redzone is suitably 2186 * aligned, by adjusting the object size accordingly. */ 2187 size += REDZONE_ALIGN - 1; 2188 size &= ~(REDZONE_ALIGN - 1); 2189 } 2190 2191 /* 3) caller mandated alignment */ 2192 if (ralign < cachep->align) { 2193 ralign = cachep->align; 2194 } 2195 /* disable debug if necessary */ 2196 if (ralign > __alignof__(unsigned long long)) 2197 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2198 /* 2199 * 4) Store it. 2200 */ 2201 cachep->align = ralign; 2202 2203 if (slab_is_available()) 2204 gfp = GFP_KERNEL; 2205 else 2206 gfp = GFP_NOWAIT; 2207 2208 setup_node_pointer(cachep); 2209 #if DEBUG 2210 2211 /* 2212 * Both debugging options require word-alignment which is calculated 2213 * into align above. 2214 */ 2215 if (flags & SLAB_RED_ZONE) { 2216 /* add space for red zone words */ 2217 cachep->obj_offset += sizeof(unsigned long long); 2218 size += 2 * sizeof(unsigned long long); 2219 } 2220 if (flags & SLAB_STORE_USER) { 2221 /* user store requires one word storage behind the end of 2222 * the real object. But if the second red zone needs to be 2223 * aligned to 64 bits, we must allow that much space. 2224 */ 2225 if (flags & SLAB_RED_ZONE) 2226 size += REDZONE_ALIGN; 2227 else 2228 size += BYTES_PER_WORD; 2229 } 2230 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2231 if (size >= kmalloc_size(INDEX_NODE + 1) 2232 && cachep->object_size > cache_line_size() 2233 && ALIGN(size, cachep->align) < PAGE_SIZE) { 2234 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); 2235 size = PAGE_SIZE; 2236 } 2237 #endif 2238 #endif 2239 2240 /* 2241 * Determine if the slab management is 'on' or 'off' slab. 2242 * (bootstrapping cannot cope with offslab caches so don't do 2243 * it too early on. Always use on-slab management when 2244 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) 2245 */ 2246 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init && 2247 !(flags & SLAB_NOLEAKTRACE)) 2248 /* 2249 * Size is large, assume best to place the slab management obj 2250 * off-slab (should allow better packing of objs). 2251 */ 2252 flags |= CFLGS_OFF_SLAB; 2253 2254 size = ALIGN(size, cachep->align); 2255 2256 left_over = calculate_slab_order(cachep, size, cachep->align, flags); 2257 2258 if (!cachep->num) 2259 return -E2BIG; 2260 2261 freelist_size = 2262 ALIGN(cachep->num * sizeof(unsigned int), cachep->align); 2263 2264 /* 2265 * If the slab has been placed off-slab, and we have enough space then 2266 * move it on-slab. This is at the expense of any extra colouring. 2267 */ 2268 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) { 2269 flags &= ~CFLGS_OFF_SLAB; 2270 left_over -= freelist_size; 2271 } 2272 2273 if (flags & CFLGS_OFF_SLAB) { 2274 /* really off slab. No need for manual alignment */ 2275 freelist_size = cachep->num * sizeof(unsigned int); 2276 2277 #ifdef CONFIG_PAGE_POISONING 2278 /* If we're going to use the generic kernel_map_pages() 2279 * poisoning, then it's going to smash the contents of 2280 * the redzone and userword anyhow, so switch them off. 2281 */ 2282 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) 2283 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2284 #endif 2285 } 2286 2287 cachep->colour_off = cache_line_size(); 2288 /* Offset must be a multiple of the alignment. */ 2289 if (cachep->colour_off < cachep->align) 2290 cachep->colour_off = cachep->align; 2291 cachep->colour = left_over / cachep->colour_off; 2292 cachep->freelist_size = freelist_size; 2293 cachep->flags = flags; 2294 cachep->allocflags = __GFP_COMP; 2295 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2296 cachep->allocflags |= GFP_DMA; 2297 cachep->size = size; 2298 cachep->reciprocal_buffer_size = reciprocal_value(size); 2299 2300 if (flags & CFLGS_OFF_SLAB) { 2301 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u); 2302 /* 2303 * This is a possibility for one of the malloc_sizes caches. 2304 * But since we go off slab only for object size greater than 2305 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, 2306 * this should not happen at all. 2307 * But leave a BUG_ON for some lucky dude. 2308 */ 2309 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache)); 2310 } 2311 2312 err = setup_cpu_cache(cachep, gfp); 2313 if (err) { 2314 __kmem_cache_shutdown(cachep); 2315 return err; 2316 } 2317 2318 if (flags & SLAB_DEBUG_OBJECTS) { 2319 /* 2320 * Would deadlock through slab_destroy()->call_rcu()-> 2321 * debug_object_activate()->kmem_cache_alloc(). 2322 */ 2323 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU); 2324 2325 slab_set_debugobj_lock_classes(cachep); 2326 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU)) 2327 on_slab_lock_classes(cachep); 2328 2329 return 0; 2330 } 2331 2332 #if DEBUG 2333 static void check_irq_off(void) 2334 { 2335 BUG_ON(!irqs_disabled()); 2336 } 2337 2338 static void check_irq_on(void) 2339 { 2340 BUG_ON(irqs_disabled()); 2341 } 2342 2343 static void check_spinlock_acquired(struct kmem_cache *cachep) 2344 { 2345 #ifdef CONFIG_SMP 2346 check_irq_off(); 2347 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock); 2348 #endif 2349 } 2350 2351 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2352 { 2353 #ifdef CONFIG_SMP 2354 check_irq_off(); 2355 assert_spin_locked(&cachep->node[node]->list_lock); 2356 #endif 2357 } 2358 2359 #else 2360 #define check_irq_off() do { } while(0) 2361 #define check_irq_on() do { } while(0) 2362 #define check_spinlock_acquired(x) do { } while(0) 2363 #define check_spinlock_acquired_node(x, y) do { } while(0) 2364 #endif 2365 2366 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 2367 struct array_cache *ac, 2368 int force, int node); 2369 2370 static void do_drain(void *arg) 2371 { 2372 struct kmem_cache *cachep = arg; 2373 struct array_cache *ac; 2374 int node = numa_mem_id(); 2375 2376 check_irq_off(); 2377 ac = cpu_cache_get(cachep); 2378 spin_lock(&cachep->node[node]->list_lock); 2379 free_block(cachep, ac->entry, ac->avail, node); 2380 spin_unlock(&cachep->node[node]->list_lock); 2381 ac->avail = 0; 2382 } 2383 2384 static void drain_cpu_caches(struct kmem_cache *cachep) 2385 { 2386 struct kmem_cache_node *n; 2387 int node; 2388 2389 on_each_cpu(do_drain, cachep, 1); 2390 check_irq_on(); 2391 for_each_online_node(node) { 2392 n = cachep->node[node]; 2393 if (n && n->alien) 2394 drain_alien_cache(cachep, n->alien); 2395 } 2396 2397 for_each_online_node(node) { 2398 n = cachep->node[node]; 2399 if (n) 2400 drain_array(cachep, n, n->shared, 1, node); 2401 } 2402 } 2403 2404 /* 2405 * Remove slabs from the list of free slabs. 2406 * Specify the number of slabs to drain in tofree. 2407 * 2408 * Returns the actual number of slabs released. 2409 */ 2410 static int drain_freelist(struct kmem_cache *cache, 2411 struct kmem_cache_node *n, int tofree) 2412 { 2413 struct list_head *p; 2414 int nr_freed; 2415 struct page *page; 2416 2417 nr_freed = 0; 2418 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2419 2420 spin_lock_irq(&n->list_lock); 2421 p = n->slabs_free.prev; 2422 if (p == &n->slabs_free) { 2423 spin_unlock_irq(&n->list_lock); 2424 goto out; 2425 } 2426 2427 page = list_entry(p, struct page, lru); 2428 #if DEBUG 2429 BUG_ON(page->active); 2430 #endif 2431 list_del(&page->lru); 2432 /* 2433 * Safe to drop the lock. The slab is no longer linked 2434 * to the cache. 2435 */ 2436 n->free_objects -= cache->num; 2437 spin_unlock_irq(&n->list_lock); 2438 slab_destroy(cache, page); 2439 nr_freed++; 2440 } 2441 out: 2442 return nr_freed; 2443 } 2444 2445 /* Called with slab_mutex held to protect against cpu hotplug */ 2446 static int __cache_shrink(struct kmem_cache *cachep) 2447 { 2448 int ret = 0, i = 0; 2449 struct kmem_cache_node *n; 2450 2451 drain_cpu_caches(cachep); 2452 2453 check_irq_on(); 2454 for_each_online_node(i) { 2455 n = cachep->node[i]; 2456 if (!n) 2457 continue; 2458 2459 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 2460 2461 ret += !list_empty(&n->slabs_full) || 2462 !list_empty(&n->slabs_partial); 2463 } 2464 return (ret ? 1 : 0); 2465 } 2466 2467 /** 2468 * kmem_cache_shrink - Shrink a cache. 2469 * @cachep: The cache to shrink. 2470 * 2471 * Releases as many slabs as possible for a cache. 2472 * To help debugging, a zero exit status indicates all slabs were released. 2473 */ 2474 int kmem_cache_shrink(struct kmem_cache *cachep) 2475 { 2476 int ret; 2477 BUG_ON(!cachep || in_interrupt()); 2478 2479 get_online_cpus(); 2480 mutex_lock(&slab_mutex); 2481 ret = __cache_shrink(cachep); 2482 mutex_unlock(&slab_mutex); 2483 put_online_cpus(); 2484 return ret; 2485 } 2486 EXPORT_SYMBOL(kmem_cache_shrink); 2487 2488 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2489 { 2490 int i; 2491 struct kmem_cache_node *n; 2492 int rc = __cache_shrink(cachep); 2493 2494 if (rc) 2495 return rc; 2496 2497 for_each_online_cpu(i) 2498 kfree(cachep->array[i]); 2499 2500 /* NUMA: free the node structures */ 2501 for_each_online_node(i) { 2502 n = cachep->node[i]; 2503 if (n) { 2504 kfree(n->shared); 2505 free_alien_cache(n->alien); 2506 kfree(n); 2507 } 2508 } 2509 return 0; 2510 } 2511 2512 /* 2513 * Get the memory for a slab management obj. 2514 * For a slab cache when the slab descriptor is off-slab, slab descriptors 2515 * always come from malloc_sizes caches. The slab descriptor cannot 2516 * come from the same cache which is getting created because, 2517 * when we are searching for an appropriate cache for these 2518 * descriptors in kmem_cache_create, we search through the malloc_sizes array. 2519 * If we are creating a malloc_sizes cache here it would not be visible to 2520 * kmem_find_general_cachep till the initialization is complete. 2521 * Hence we cannot have freelist_cache same as the original cache. 2522 */ 2523 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2524 struct page *page, int colour_off, 2525 gfp_t local_flags, int nodeid) 2526 { 2527 void *freelist; 2528 void *addr = page_address(page); 2529 2530 if (OFF_SLAB(cachep)) { 2531 /* Slab management obj is off-slab. */ 2532 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2533 local_flags, nodeid); 2534 if (!freelist) 2535 return NULL; 2536 } else { 2537 freelist = addr + colour_off; 2538 colour_off += cachep->freelist_size; 2539 } 2540 page->active = 0; 2541 page->s_mem = addr + colour_off; 2542 return freelist; 2543 } 2544 2545 static inline unsigned int *slab_freelist(struct page *page) 2546 { 2547 return (unsigned int *)(page->freelist); 2548 } 2549 2550 static void cache_init_objs(struct kmem_cache *cachep, 2551 struct page *page) 2552 { 2553 int i; 2554 2555 for (i = 0; i < cachep->num; i++) { 2556 void *objp = index_to_obj(cachep, page, i); 2557 #if DEBUG 2558 /* need to poison the objs? */ 2559 if (cachep->flags & SLAB_POISON) 2560 poison_obj(cachep, objp, POISON_FREE); 2561 if (cachep->flags & SLAB_STORE_USER) 2562 *dbg_userword(cachep, objp) = NULL; 2563 2564 if (cachep->flags & SLAB_RED_ZONE) { 2565 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2566 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2567 } 2568 /* 2569 * Constructors are not allowed to allocate memory from the same 2570 * cache which they are a constructor for. Otherwise, deadlock. 2571 * They must also be threaded. 2572 */ 2573 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2574 cachep->ctor(objp + obj_offset(cachep)); 2575 2576 if (cachep->flags & SLAB_RED_ZONE) { 2577 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2578 slab_error(cachep, "constructor overwrote the" 2579 " end of an object"); 2580 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2581 slab_error(cachep, "constructor overwrote the" 2582 " start of an object"); 2583 } 2584 if ((cachep->size % PAGE_SIZE) == 0 && 2585 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2586 kernel_map_pages(virt_to_page(objp), 2587 cachep->size / PAGE_SIZE, 0); 2588 #else 2589 if (cachep->ctor) 2590 cachep->ctor(objp); 2591 #endif 2592 slab_freelist(page)[i] = i; 2593 } 2594 } 2595 2596 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2597 { 2598 if (CONFIG_ZONE_DMA_FLAG) { 2599 if (flags & GFP_DMA) 2600 BUG_ON(!(cachep->allocflags & GFP_DMA)); 2601 else 2602 BUG_ON(cachep->allocflags & GFP_DMA); 2603 } 2604 } 2605 2606 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page, 2607 int nodeid) 2608 { 2609 void *objp; 2610 2611 objp = index_to_obj(cachep, page, slab_freelist(page)[page->active]); 2612 page->active++; 2613 #if DEBUG 2614 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); 2615 #endif 2616 2617 return objp; 2618 } 2619 2620 static void slab_put_obj(struct kmem_cache *cachep, struct page *page, 2621 void *objp, int nodeid) 2622 { 2623 unsigned int objnr = obj_to_index(cachep, page, objp); 2624 #if DEBUG 2625 unsigned int i; 2626 2627 /* Verify that the slab belongs to the intended node */ 2628 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); 2629 2630 /* Verify double free bug */ 2631 for (i = page->active; i < cachep->num; i++) { 2632 if (slab_freelist(page)[i] == objnr) { 2633 printk(KERN_ERR "slab: double free detected in cache " 2634 "'%s', objp %p\n", cachep->name, objp); 2635 BUG(); 2636 } 2637 } 2638 #endif 2639 page->active--; 2640 slab_freelist(page)[page->active] = objnr; 2641 } 2642 2643 /* 2644 * Map pages beginning at addr to the given cache and slab. This is required 2645 * for the slab allocator to be able to lookup the cache and slab of a 2646 * virtual address for kfree, ksize, and slab debugging. 2647 */ 2648 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2649 void *freelist) 2650 { 2651 page->slab_cache = cache; 2652 page->freelist = freelist; 2653 } 2654 2655 /* 2656 * Grow (by 1) the number of slabs within a cache. This is called by 2657 * kmem_cache_alloc() when there are no active objs left in a cache. 2658 */ 2659 static int cache_grow(struct kmem_cache *cachep, 2660 gfp_t flags, int nodeid, struct page *page) 2661 { 2662 void *freelist; 2663 size_t offset; 2664 gfp_t local_flags; 2665 struct kmem_cache_node *n; 2666 2667 /* 2668 * Be lazy and only check for valid flags here, keeping it out of the 2669 * critical path in kmem_cache_alloc(). 2670 */ 2671 BUG_ON(flags & GFP_SLAB_BUG_MASK); 2672 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2673 2674 /* Take the node list lock to change the colour_next on this node */ 2675 check_irq_off(); 2676 n = cachep->node[nodeid]; 2677 spin_lock(&n->list_lock); 2678 2679 /* Get colour for the slab, and cal the next value. */ 2680 offset = n->colour_next; 2681 n->colour_next++; 2682 if (n->colour_next >= cachep->colour) 2683 n->colour_next = 0; 2684 spin_unlock(&n->list_lock); 2685 2686 offset *= cachep->colour_off; 2687 2688 if (local_flags & __GFP_WAIT) 2689 local_irq_enable(); 2690 2691 /* 2692 * The test for missing atomic flag is performed here, rather than 2693 * the more obvious place, simply to reduce the critical path length 2694 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2695 * will eventually be caught here (where it matters). 2696 */ 2697 kmem_flagcheck(cachep, flags); 2698 2699 /* 2700 * Get mem for the objs. Attempt to allocate a physical page from 2701 * 'nodeid'. 2702 */ 2703 if (!page) 2704 page = kmem_getpages(cachep, local_flags, nodeid); 2705 if (!page) 2706 goto failed; 2707 2708 /* Get slab management. */ 2709 freelist = alloc_slabmgmt(cachep, page, offset, 2710 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2711 if (!freelist) 2712 goto opps1; 2713 2714 slab_map_pages(cachep, page, freelist); 2715 2716 cache_init_objs(cachep, page); 2717 2718 if (local_flags & __GFP_WAIT) 2719 local_irq_disable(); 2720 check_irq_off(); 2721 spin_lock(&n->list_lock); 2722 2723 /* Make slab active. */ 2724 list_add_tail(&page->lru, &(n->slabs_free)); 2725 STATS_INC_GROWN(cachep); 2726 n->free_objects += cachep->num; 2727 spin_unlock(&n->list_lock); 2728 return 1; 2729 opps1: 2730 kmem_freepages(cachep, page); 2731 failed: 2732 if (local_flags & __GFP_WAIT) 2733 local_irq_disable(); 2734 return 0; 2735 } 2736 2737 #if DEBUG 2738 2739 /* 2740 * Perform extra freeing checks: 2741 * - detect bad pointers. 2742 * - POISON/RED_ZONE checking 2743 */ 2744 static void kfree_debugcheck(const void *objp) 2745 { 2746 if (!virt_addr_valid(objp)) { 2747 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2748 (unsigned long)objp); 2749 BUG(); 2750 } 2751 } 2752 2753 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2754 { 2755 unsigned long long redzone1, redzone2; 2756 2757 redzone1 = *dbg_redzone1(cache, obj); 2758 redzone2 = *dbg_redzone2(cache, obj); 2759 2760 /* 2761 * Redzone is ok. 2762 */ 2763 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2764 return; 2765 2766 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2767 slab_error(cache, "double free detected"); 2768 else 2769 slab_error(cache, "memory outside object was overwritten"); 2770 2771 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 2772 obj, redzone1, redzone2); 2773 } 2774 2775 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2776 unsigned long caller) 2777 { 2778 unsigned int objnr; 2779 struct page *page; 2780 2781 BUG_ON(virt_to_cache(objp) != cachep); 2782 2783 objp -= obj_offset(cachep); 2784 kfree_debugcheck(objp); 2785 page = virt_to_head_page(objp); 2786 2787 if (cachep->flags & SLAB_RED_ZONE) { 2788 verify_redzone_free(cachep, objp); 2789 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2790 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2791 } 2792 if (cachep->flags & SLAB_STORE_USER) 2793 *dbg_userword(cachep, objp) = (void *)caller; 2794 2795 objnr = obj_to_index(cachep, page, objp); 2796 2797 BUG_ON(objnr >= cachep->num); 2798 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2799 2800 if (cachep->flags & SLAB_POISON) { 2801 #ifdef CONFIG_DEBUG_PAGEALLOC 2802 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 2803 store_stackinfo(cachep, objp, caller); 2804 kernel_map_pages(virt_to_page(objp), 2805 cachep->size / PAGE_SIZE, 0); 2806 } else { 2807 poison_obj(cachep, objp, POISON_FREE); 2808 } 2809 #else 2810 poison_obj(cachep, objp, POISON_FREE); 2811 #endif 2812 } 2813 return objp; 2814 } 2815 2816 #else 2817 #define kfree_debugcheck(x) do { } while(0) 2818 #define cache_free_debugcheck(x,objp,z) (objp) 2819 #endif 2820 2821 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, 2822 bool force_refill) 2823 { 2824 int batchcount; 2825 struct kmem_cache_node *n; 2826 struct array_cache *ac; 2827 int node; 2828 2829 check_irq_off(); 2830 node = numa_mem_id(); 2831 if (unlikely(force_refill)) 2832 goto force_grow; 2833 retry: 2834 ac = cpu_cache_get(cachep); 2835 batchcount = ac->batchcount; 2836 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2837 /* 2838 * If there was little recent activity on this cache, then 2839 * perform only a partial refill. Otherwise we could generate 2840 * refill bouncing. 2841 */ 2842 batchcount = BATCHREFILL_LIMIT; 2843 } 2844 n = cachep->node[node]; 2845 2846 BUG_ON(ac->avail > 0 || !n); 2847 spin_lock(&n->list_lock); 2848 2849 /* See if we can refill from the shared array */ 2850 if (n->shared && transfer_objects(ac, n->shared, batchcount)) { 2851 n->shared->touched = 1; 2852 goto alloc_done; 2853 } 2854 2855 while (batchcount > 0) { 2856 struct list_head *entry; 2857 struct page *page; 2858 /* Get slab alloc is to come from. */ 2859 entry = n->slabs_partial.next; 2860 if (entry == &n->slabs_partial) { 2861 n->free_touched = 1; 2862 entry = n->slabs_free.next; 2863 if (entry == &n->slabs_free) 2864 goto must_grow; 2865 } 2866 2867 page = list_entry(entry, struct page, lru); 2868 check_spinlock_acquired(cachep); 2869 2870 /* 2871 * The slab was either on partial or free list so 2872 * there must be at least one object available for 2873 * allocation. 2874 */ 2875 BUG_ON(page->active >= cachep->num); 2876 2877 while (page->active < cachep->num && batchcount--) { 2878 STATS_INC_ALLOCED(cachep); 2879 STATS_INC_ACTIVE(cachep); 2880 STATS_SET_HIGH(cachep); 2881 2882 ac_put_obj(cachep, ac, slab_get_obj(cachep, page, 2883 node)); 2884 } 2885 2886 /* move slabp to correct slabp list: */ 2887 list_del(&page->lru); 2888 if (page->active == cachep->num) 2889 list_add(&page->list, &n->slabs_full); 2890 else 2891 list_add(&page->list, &n->slabs_partial); 2892 } 2893 2894 must_grow: 2895 n->free_objects -= ac->avail; 2896 alloc_done: 2897 spin_unlock(&n->list_lock); 2898 2899 if (unlikely(!ac->avail)) { 2900 int x; 2901 force_grow: 2902 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 2903 2904 /* cache_grow can reenable interrupts, then ac could change. */ 2905 ac = cpu_cache_get(cachep); 2906 node = numa_mem_id(); 2907 2908 /* no objects in sight? abort */ 2909 if (!x && (ac->avail == 0 || force_refill)) 2910 return NULL; 2911 2912 if (!ac->avail) /* objects refilled by interrupt? */ 2913 goto retry; 2914 } 2915 ac->touched = 1; 2916 2917 return ac_get_obj(cachep, ac, flags, force_refill); 2918 } 2919 2920 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 2921 gfp_t flags) 2922 { 2923 might_sleep_if(flags & __GFP_WAIT); 2924 #if DEBUG 2925 kmem_flagcheck(cachep, flags); 2926 #endif 2927 } 2928 2929 #if DEBUG 2930 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2931 gfp_t flags, void *objp, unsigned long caller) 2932 { 2933 if (!objp) 2934 return objp; 2935 if (cachep->flags & SLAB_POISON) { 2936 #ifdef CONFIG_DEBUG_PAGEALLOC 2937 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 2938 kernel_map_pages(virt_to_page(objp), 2939 cachep->size / PAGE_SIZE, 1); 2940 else 2941 check_poison_obj(cachep, objp); 2942 #else 2943 check_poison_obj(cachep, objp); 2944 #endif 2945 poison_obj(cachep, objp, POISON_INUSE); 2946 } 2947 if (cachep->flags & SLAB_STORE_USER) 2948 *dbg_userword(cachep, objp) = (void *)caller; 2949 2950 if (cachep->flags & SLAB_RED_ZONE) { 2951 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 2952 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 2953 slab_error(cachep, "double free, or memory outside" 2954 " object was overwritten"); 2955 printk(KERN_ERR 2956 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2957 objp, *dbg_redzone1(cachep, objp), 2958 *dbg_redzone2(cachep, objp)); 2959 } 2960 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2961 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2962 } 2963 objp += obj_offset(cachep); 2964 if (cachep->ctor && cachep->flags & SLAB_POISON) 2965 cachep->ctor(objp); 2966 if (ARCH_SLAB_MINALIGN && 2967 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 2968 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 2969 objp, (int)ARCH_SLAB_MINALIGN); 2970 } 2971 return objp; 2972 } 2973 #else 2974 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 2975 #endif 2976 2977 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) 2978 { 2979 if (cachep == kmem_cache) 2980 return false; 2981 2982 return should_failslab(cachep->object_size, flags, cachep->flags); 2983 } 2984 2985 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 2986 { 2987 void *objp; 2988 struct array_cache *ac; 2989 bool force_refill = false; 2990 2991 check_irq_off(); 2992 2993 ac = cpu_cache_get(cachep); 2994 if (likely(ac->avail)) { 2995 ac->touched = 1; 2996 objp = ac_get_obj(cachep, ac, flags, false); 2997 2998 /* 2999 * Allow for the possibility all avail objects are not allowed 3000 * by the current flags 3001 */ 3002 if (objp) { 3003 STATS_INC_ALLOCHIT(cachep); 3004 goto out; 3005 } 3006 force_refill = true; 3007 } 3008 3009 STATS_INC_ALLOCMISS(cachep); 3010 objp = cache_alloc_refill(cachep, flags, force_refill); 3011 /* 3012 * the 'ac' may be updated by cache_alloc_refill(), 3013 * and kmemleak_erase() requires its correct value. 3014 */ 3015 ac = cpu_cache_get(cachep); 3016 3017 out: 3018 /* 3019 * To avoid a false negative, if an object that is in one of the 3020 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3021 * treat the array pointers as a reference to the object. 3022 */ 3023 if (objp) 3024 kmemleak_erase(&ac->entry[ac->avail]); 3025 return objp; 3026 } 3027 3028 #ifdef CONFIG_NUMA 3029 /* 3030 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. 3031 * 3032 * If we are in_interrupt, then process context, including cpusets and 3033 * mempolicy, may not apply and should not be used for allocation policy. 3034 */ 3035 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3036 { 3037 int nid_alloc, nid_here; 3038 3039 if (in_interrupt() || (flags & __GFP_THISNODE)) 3040 return NULL; 3041 nid_alloc = nid_here = numa_mem_id(); 3042 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3043 nid_alloc = cpuset_slab_spread_node(); 3044 else if (current->mempolicy) 3045 nid_alloc = slab_node(); 3046 if (nid_alloc != nid_here) 3047 return ____cache_alloc_node(cachep, flags, nid_alloc); 3048 return NULL; 3049 } 3050 3051 /* 3052 * Fallback function if there was no memory available and no objects on a 3053 * certain node and fall back is permitted. First we scan all the 3054 * available node for available objects. If that fails then we 3055 * perform an allocation without specifying a node. This allows the page 3056 * allocator to do its reclaim / fallback magic. We then insert the 3057 * slab into the proper nodelist and then allocate from it. 3058 */ 3059 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3060 { 3061 struct zonelist *zonelist; 3062 gfp_t local_flags; 3063 struct zoneref *z; 3064 struct zone *zone; 3065 enum zone_type high_zoneidx = gfp_zone(flags); 3066 void *obj = NULL; 3067 int nid; 3068 unsigned int cpuset_mems_cookie; 3069 3070 if (flags & __GFP_THISNODE) 3071 return NULL; 3072 3073 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3074 3075 retry_cpuset: 3076 cpuset_mems_cookie = get_mems_allowed(); 3077 zonelist = node_zonelist(slab_node(), flags); 3078 3079 retry: 3080 /* 3081 * Look through allowed nodes for objects available 3082 * from existing per node queues. 3083 */ 3084 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3085 nid = zone_to_nid(zone); 3086 3087 if (cpuset_zone_allowed_hardwall(zone, flags) && 3088 cache->node[nid] && 3089 cache->node[nid]->free_objects) { 3090 obj = ____cache_alloc_node(cache, 3091 flags | GFP_THISNODE, nid); 3092 if (obj) 3093 break; 3094 } 3095 } 3096 3097 if (!obj) { 3098 /* 3099 * This allocation will be performed within the constraints 3100 * of the current cpuset / memory policy requirements. 3101 * We may trigger various forms of reclaim on the allowed 3102 * set and go into memory reserves if necessary. 3103 */ 3104 struct page *page; 3105 3106 if (local_flags & __GFP_WAIT) 3107 local_irq_enable(); 3108 kmem_flagcheck(cache, flags); 3109 page = kmem_getpages(cache, local_flags, numa_mem_id()); 3110 if (local_flags & __GFP_WAIT) 3111 local_irq_disable(); 3112 if (page) { 3113 /* 3114 * Insert into the appropriate per node queues 3115 */ 3116 nid = page_to_nid(page); 3117 if (cache_grow(cache, flags, nid, page)) { 3118 obj = ____cache_alloc_node(cache, 3119 flags | GFP_THISNODE, nid); 3120 if (!obj) 3121 /* 3122 * Another processor may allocate the 3123 * objects in the slab since we are 3124 * not holding any locks. 3125 */ 3126 goto retry; 3127 } else { 3128 /* cache_grow already freed obj */ 3129 obj = NULL; 3130 } 3131 } 3132 } 3133 3134 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj)) 3135 goto retry_cpuset; 3136 return obj; 3137 } 3138 3139 /* 3140 * A interface to enable slab creation on nodeid 3141 */ 3142 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3143 int nodeid) 3144 { 3145 struct list_head *entry; 3146 struct page *page; 3147 struct kmem_cache_node *n; 3148 void *obj; 3149 int x; 3150 3151 VM_BUG_ON(nodeid > num_online_nodes()); 3152 n = cachep->node[nodeid]; 3153 BUG_ON(!n); 3154 3155 retry: 3156 check_irq_off(); 3157 spin_lock(&n->list_lock); 3158 entry = n->slabs_partial.next; 3159 if (entry == &n->slabs_partial) { 3160 n->free_touched = 1; 3161 entry = n->slabs_free.next; 3162 if (entry == &n->slabs_free) 3163 goto must_grow; 3164 } 3165 3166 page = list_entry(entry, struct page, lru); 3167 check_spinlock_acquired_node(cachep, nodeid); 3168 3169 STATS_INC_NODEALLOCS(cachep); 3170 STATS_INC_ACTIVE(cachep); 3171 STATS_SET_HIGH(cachep); 3172 3173 BUG_ON(page->active == cachep->num); 3174 3175 obj = slab_get_obj(cachep, page, nodeid); 3176 n->free_objects--; 3177 /* move slabp to correct slabp list: */ 3178 list_del(&page->lru); 3179 3180 if (page->active == cachep->num) 3181 list_add(&page->lru, &n->slabs_full); 3182 else 3183 list_add(&page->lru, &n->slabs_partial); 3184 3185 spin_unlock(&n->list_lock); 3186 goto done; 3187 3188 must_grow: 3189 spin_unlock(&n->list_lock); 3190 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3191 if (x) 3192 goto retry; 3193 3194 return fallback_alloc(cachep, flags); 3195 3196 done: 3197 return obj; 3198 } 3199 3200 static __always_inline void * 3201 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3202 unsigned long caller) 3203 { 3204 unsigned long save_flags; 3205 void *ptr; 3206 int slab_node = numa_mem_id(); 3207 3208 flags &= gfp_allowed_mask; 3209 3210 lockdep_trace_alloc(flags); 3211 3212 if (slab_should_failslab(cachep, flags)) 3213 return NULL; 3214 3215 cachep = memcg_kmem_get_cache(cachep, flags); 3216 3217 cache_alloc_debugcheck_before(cachep, flags); 3218 local_irq_save(save_flags); 3219 3220 if (nodeid == NUMA_NO_NODE) 3221 nodeid = slab_node; 3222 3223 if (unlikely(!cachep->node[nodeid])) { 3224 /* Node not bootstrapped yet */ 3225 ptr = fallback_alloc(cachep, flags); 3226 goto out; 3227 } 3228 3229 if (nodeid == slab_node) { 3230 /* 3231 * Use the locally cached objects if possible. 3232 * However ____cache_alloc does not allow fallback 3233 * to other nodes. It may fail while we still have 3234 * objects on other nodes available. 3235 */ 3236 ptr = ____cache_alloc(cachep, flags); 3237 if (ptr) 3238 goto out; 3239 } 3240 /* ___cache_alloc_node can fall back to other nodes */ 3241 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3242 out: 3243 local_irq_restore(save_flags); 3244 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3245 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags, 3246 flags); 3247 3248 if (likely(ptr)) 3249 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size); 3250 3251 if (unlikely((flags & __GFP_ZERO) && ptr)) 3252 memset(ptr, 0, cachep->object_size); 3253 3254 return ptr; 3255 } 3256 3257 static __always_inline void * 3258 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3259 { 3260 void *objp; 3261 3262 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { 3263 objp = alternate_node_alloc(cache, flags); 3264 if (objp) 3265 goto out; 3266 } 3267 objp = ____cache_alloc(cache, flags); 3268 3269 /* 3270 * We may just have run out of memory on the local node. 3271 * ____cache_alloc_node() knows how to locate memory on other nodes 3272 */ 3273 if (!objp) 3274 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3275 3276 out: 3277 return objp; 3278 } 3279 #else 3280 3281 static __always_inline void * 3282 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3283 { 3284 return ____cache_alloc(cachep, flags); 3285 } 3286 3287 #endif /* CONFIG_NUMA */ 3288 3289 static __always_inline void * 3290 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3291 { 3292 unsigned long save_flags; 3293 void *objp; 3294 3295 flags &= gfp_allowed_mask; 3296 3297 lockdep_trace_alloc(flags); 3298 3299 if (slab_should_failslab(cachep, flags)) 3300 return NULL; 3301 3302 cachep = memcg_kmem_get_cache(cachep, flags); 3303 3304 cache_alloc_debugcheck_before(cachep, flags); 3305 local_irq_save(save_flags); 3306 objp = __do_cache_alloc(cachep, flags); 3307 local_irq_restore(save_flags); 3308 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3309 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags, 3310 flags); 3311 prefetchw(objp); 3312 3313 if (likely(objp)) 3314 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size); 3315 3316 if (unlikely((flags & __GFP_ZERO) && objp)) 3317 memset(objp, 0, cachep->object_size); 3318 3319 return objp; 3320 } 3321 3322 /* 3323 * Caller needs to acquire correct kmem_list's list_lock 3324 */ 3325 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, 3326 int node) 3327 { 3328 int i; 3329 struct kmem_cache_node *n; 3330 3331 for (i = 0; i < nr_objects; i++) { 3332 void *objp; 3333 struct page *page; 3334 3335 clear_obj_pfmemalloc(&objpp[i]); 3336 objp = objpp[i]; 3337 3338 page = virt_to_head_page(objp); 3339 n = cachep->node[node]; 3340 list_del(&page->lru); 3341 check_spinlock_acquired_node(cachep, node); 3342 slab_put_obj(cachep, page, objp, node); 3343 STATS_DEC_ACTIVE(cachep); 3344 n->free_objects++; 3345 3346 /* fixup slab chains */ 3347 if (page->active == 0) { 3348 if (n->free_objects > n->free_limit) { 3349 n->free_objects -= cachep->num; 3350 /* No need to drop any previously held 3351 * lock here, even if we have a off-slab slab 3352 * descriptor it is guaranteed to come from 3353 * a different cache, refer to comments before 3354 * alloc_slabmgmt. 3355 */ 3356 slab_destroy(cachep, page); 3357 } else { 3358 list_add(&page->lru, &n->slabs_free); 3359 } 3360 } else { 3361 /* Unconditionally move a slab to the end of the 3362 * partial list on free - maximum time for the 3363 * other objects to be freed, too. 3364 */ 3365 list_add_tail(&page->lru, &n->slabs_partial); 3366 } 3367 } 3368 } 3369 3370 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3371 { 3372 int batchcount; 3373 struct kmem_cache_node *n; 3374 int node = numa_mem_id(); 3375 3376 batchcount = ac->batchcount; 3377 #if DEBUG 3378 BUG_ON(!batchcount || batchcount > ac->avail); 3379 #endif 3380 check_irq_off(); 3381 n = cachep->node[node]; 3382 spin_lock(&n->list_lock); 3383 if (n->shared) { 3384 struct array_cache *shared_array = n->shared; 3385 int max = shared_array->limit - shared_array->avail; 3386 if (max) { 3387 if (batchcount > max) 3388 batchcount = max; 3389 memcpy(&(shared_array->entry[shared_array->avail]), 3390 ac->entry, sizeof(void *) * batchcount); 3391 shared_array->avail += batchcount; 3392 goto free_done; 3393 } 3394 } 3395 3396 free_block(cachep, ac->entry, batchcount, node); 3397 free_done: 3398 #if STATS 3399 { 3400 int i = 0; 3401 struct list_head *p; 3402 3403 p = n->slabs_free.next; 3404 while (p != &(n->slabs_free)) { 3405 struct page *page; 3406 3407 page = list_entry(p, struct page, lru); 3408 BUG_ON(page->active); 3409 3410 i++; 3411 p = p->next; 3412 } 3413 STATS_SET_FREEABLE(cachep, i); 3414 } 3415 #endif 3416 spin_unlock(&n->list_lock); 3417 ac->avail -= batchcount; 3418 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3419 } 3420 3421 /* 3422 * Release an obj back to its cache. If the obj has a constructed state, it must 3423 * be in this state _before_ it is released. Called with disabled ints. 3424 */ 3425 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3426 unsigned long caller) 3427 { 3428 struct array_cache *ac = cpu_cache_get(cachep); 3429 3430 check_irq_off(); 3431 kmemleak_free_recursive(objp, cachep->flags); 3432 objp = cache_free_debugcheck(cachep, objp, caller); 3433 3434 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3435 3436 /* 3437 * Skip calling cache_free_alien() when the platform is not numa. 3438 * This will avoid cache misses that happen while accessing slabp (which 3439 * is per page memory reference) to get nodeid. Instead use a global 3440 * variable to skip the call, which is mostly likely to be present in 3441 * the cache. 3442 */ 3443 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3444 return; 3445 3446 if (likely(ac->avail < ac->limit)) { 3447 STATS_INC_FREEHIT(cachep); 3448 } else { 3449 STATS_INC_FREEMISS(cachep); 3450 cache_flusharray(cachep, ac); 3451 } 3452 3453 ac_put_obj(cachep, ac, objp); 3454 } 3455 3456 /** 3457 * kmem_cache_alloc - Allocate an object 3458 * @cachep: The cache to allocate from. 3459 * @flags: See kmalloc(). 3460 * 3461 * Allocate an object from this cache. The flags are only relevant 3462 * if the cache has no available objects. 3463 */ 3464 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3465 { 3466 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3467 3468 trace_kmem_cache_alloc(_RET_IP_, ret, 3469 cachep->object_size, cachep->size, flags); 3470 3471 return ret; 3472 } 3473 EXPORT_SYMBOL(kmem_cache_alloc); 3474 3475 #ifdef CONFIG_TRACING 3476 void * 3477 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3478 { 3479 void *ret; 3480 3481 ret = slab_alloc(cachep, flags, _RET_IP_); 3482 3483 trace_kmalloc(_RET_IP_, ret, 3484 size, cachep->size, flags); 3485 return ret; 3486 } 3487 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3488 #endif 3489 3490 #ifdef CONFIG_NUMA 3491 /** 3492 * kmem_cache_alloc_node - Allocate an object on the specified node 3493 * @cachep: The cache to allocate from. 3494 * @flags: See kmalloc(). 3495 * @nodeid: node number of the target node. 3496 * 3497 * Identical to kmem_cache_alloc but it will allocate memory on the given 3498 * node, which can improve the performance for cpu bound structures. 3499 * 3500 * Fallback to other node is possible if __GFP_THISNODE is not set. 3501 */ 3502 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3503 { 3504 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3505 3506 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3507 cachep->object_size, cachep->size, 3508 flags, nodeid); 3509 3510 return ret; 3511 } 3512 EXPORT_SYMBOL(kmem_cache_alloc_node); 3513 3514 #ifdef CONFIG_TRACING 3515 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3516 gfp_t flags, 3517 int nodeid, 3518 size_t size) 3519 { 3520 void *ret; 3521 3522 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3523 3524 trace_kmalloc_node(_RET_IP_, ret, 3525 size, cachep->size, 3526 flags, nodeid); 3527 return ret; 3528 } 3529 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3530 #endif 3531 3532 static __always_inline void * 3533 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3534 { 3535 struct kmem_cache *cachep; 3536 3537 cachep = kmalloc_slab(size, flags); 3538 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3539 return cachep; 3540 return kmem_cache_alloc_node_trace(cachep, flags, node, size); 3541 } 3542 3543 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3544 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3545 { 3546 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3547 } 3548 EXPORT_SYMBOL(__kmalloc_node); 3549 3550 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3551 int node, unsigned long caller) 3552 { 3553 return __do_kmalloc_node(size, flags, node, caller); 3554 } 3555 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3556 #else 3557 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3558 { 3559 return __do_kmalloc_node(size, flags, node, 0); 3560 } 3561 EXPORT_SYMBOL(__kmalloc_node); 3562 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ 3563 #endif /* CONFIG_NUMA */ 3564 3565 /** 3566 * __do_kmalloc - allocate memory 3567 * @size: how many bytes of memory are required. 3568 * @flags: the type of memory to allocate (see kmalloc). 3569 * @caller: function caller for debug tracking of the caller 3570 */ 3571 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3572 unsigned long caller) 3573 { 3574 struct kmem_cache *cachep; 3575 void *ret; 3576 3577 /* If you want to save a few bytes .text space: replace 3578 * __ with kmem_. 3579 * Then kmalloc uses the uninlined functions instead of the inline 3580 * functions. 3581 */ 3582 cachep = kmalloc_slab(size, flags); 3583 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3584 return cachep; 3585 ret = slab_alloc(cachep, flags, caller); 3586 3587 trace_kmalloc(caller, ret, 3588 size, cachep->size, flags); 3589 3590 return ret; 3591 } 3592 3593 3594 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3595 void *__kmalloc(size_t size, gfp_t flags) 3596 { 3597 return __do_kmalloc(size, flags, _RET_IP_); 3598 } 3599 EXPORT_SYMBOL(__kmalloc); 3600 3601 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3602 { 3603 return __do_kmalloc(size, flags, caller); 3604 } 3605 EXPORT_SYMBOL(__kmalloc_track_caller); 3606 3607 #else 3608 void *__kmalloc(size_t size, gfp_t flags) 3609 { 3610 return __do_kmalloc(size, flags, 0); 3611 } 3612 EXPORT_SYMBOL(__kmalloc); 3613 #endif 3614 3615 /** 3616 * kmem_cache_free - Deallocate an object 3617 * @cachep: The cache the allocation was from. 3618 * @objp: The previously allocated object. 3619 * 3620 * Free an object which was previously allocated from this 3621 * cache. 3622 */ 3623 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3624 { 3625 unsigned long flags; 3626 cachep = cache_from_obj(cachep, objp); 3627 if (!cachep) 3628 return; 3629 3630 local_irq_save(flags); 3631 debug_check_no_locks_freed(objp, cachep->object_size); 3632 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3633 debug_check_no_obj_freed(objp, cachep->object_size); 3634 __cache_free(cachep, objp, _RET_IP_); 3635 local_irq_restore(flags); 3636 3637 trace_kmem_cache_free(_RET_IP_, objp); 3638 } 3639 EXPORT_SYMBOL(kmem_cache_free); 3640 3641 /** 3642 * kfree - free previously allocated memory 3643 * @objp: pointer returned by kmalloc. 3644 * 3645 * If @objp is NULL, no operation is performed. 3646 * 3647 * Don't free memory not originally allocated by kmalloc() 3648 * or you will run into trouble. 3649 */ 3650 void kfree(const void *objp) 3651 { 3652 struct kmem_cache *c; 3653 unsigned long flags; 3654 3655 trace_kfree(_RET_IP_, objp); 3656 3657 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3658 return; 3659 local_irq_save(flags); 3660 kfree_debugcheck(objp); 3661 c = virt_to_cache(objp); 3662 debug_check_no_locks_freed(objp, c->object_size); 3663 3664 debug_check_no_obj_freed(objp, c->object_size); 3665 __cache_free(c, (void *)objp, _RET_IP_); 3666 local_irq_restore(flags); 3667 } 3668 EXPORT_SYMBOL(kfree); 3669 3670 /* 3671 * This initializes kmem_cache_node or resizes various caches for all nodes. 3672 */ 3673 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) 3674 { 3675 int node; 3676 struct kmem_cache_node *n; 3677 struct array_cache *new_shared; 3678 struct array_cache **new_alien = NULL; 3679 3680 for_each_online_node(node) { 3681 3682 if (use_alien_caches) { 3683 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 3684 if (!new_alien) 3685 goto fail; 3686 } 3687 3688 new_shared = NULL; 3689 if (cachep->shared) { 3690 new_shared = alloc_arraycache(node, 3691 cachep->shared*cachep->batchcount, 3692 0xbaadf00d, gfp); 3693 if (!new_shared) { 3694 free_alien_cache(new_alien); 3695 goto fail; 3696 } 3697 } 3698 3699 n = cachep->node[node]; 3700 if (n) { 3701 struct array_cache *shared = n->shared; 3702 3703 spin_lock_irq(&n->list_lock); 3704 3705 if (shared) 3706 free_block(cachep, shared->entry, 3707 shared->avail, node); 3708 3709 n->shared = new_shared; 3710 if (!n->alien) { 3711 n->alien = new_alien; 3712 new_alien = NULL; 3713 } 3714 n->free_limit = (1 + nr_cpus_node(node)) * 3715 cachep->batchcount + cachep->num; 3716 spin_unlock_irq(&n->list_lock); 3717 kfree(shared); 3718 free_alien_cache(new_alien); 3719 continue; 3720 } 3721 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 3722 if (!n) { 3723 free_alien_cache(new_alien); 3724 kfree(new_shared); 3725 goto fail; 3726 } 3727 3728 kmem_cache_node_init(n); 3729 n->next_reap = jiffies + REAPTIMEOUT_LIST3 + 3730 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 3731 n->shared = new_shared; 3732 n->alien = new_alien; 3733 n->free_limit = (1 + nr_cpus_node(node)) * 3734 cachep->batchcount + cachep->num; 3735 cachep->node[node] = n; 3736 } 3737 return 0; 3738 3739 fail: 3740 if (!cachep->list.next) { 3741 /* Cache is not active yet. Roll back what we did */ 3742 node--; 3743 while (node >= 0) { 3744 if (cachep->node[node]) { 3745 n = cachep->node[node]; 3746 3747 kfree(n->shared); 3748 free_alien_cache(n->alien); 3749 kfree(n); 3750 cachep->node[node] = NULL; 3751 } 3752 node--; 3753 } 3754 } 3755 return -ENOMEM; 3756 } 3757 3758 struct ccupdate_struct { 3759 struct kmem_cache *cachep; 3760 struct array_cache *new[0]; 3761 }; 3762 3763 static void do_ccupdate_local(void *info) 3764 { 3765 struct ccupdate_struct *new = info; 3766 struct array_cache *old; 3767 3768 check_irq_off(); 3769 old = cpu_cache_get(new->cachep); 3770 3771 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 3772 new->new[smp_processor_id()] = old; 3773 } 3774 3775 /* Always called with the slab_mutex held */ 3776 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3777 int batchcount, int shared, gfp_t gfp) 3778 { 3779 struct ccupdate_struct *new; 3780 int i; 3781 3782 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *), 3783 gfp); 3784 if (!new) 3785 return -ENOMEM; 3786 3787 for_each_online_cpu(i) { 3788 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, 3789 batchcount, gfp); 3790 if (!new->new[i]) { 3791 for (i--; i >= 0; i--) 3792 kfree(new->new[i]); 3793 kfree(new); 3794 return -ENOMEM; 3795 } 3796 } 3797 new->cachep = cachep; 3798 3799 on_each_cpu(do_ccupdate_local, (void *)new, 1); 3800 3801 check_irq_on(); 3802 cachep->batchcount = batchcount; 3803 cachep->limit = limit; 3804 cachep->shared = shared; 3805 3806 for_each_online_cpu(i) { 3807 struct array_cache *ccold = new->new[i]; 3808 if (!ccold) 3809 continue; 3810 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); 3811 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); 3812 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); 3813 kfree(ccold); 3814 } 3815 kfree(new); 3816 return alloc_kmemlist(cachep, gfp); 3817 } 3818 3819 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3820 int batchcount, int shared, gfp_t gfp) 3821 { 3822 int ret; 3823 struct kmem_cache *c = NULL; 3824 int i = 0; 3825 3826 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3827 3828 if (slab_state < FULL) 3829 return ret; 3830 3831 if ((ret < 0) || !is_root_cache(cachep)) 3832 return ret; 3833 3834 VM_BUG_ON(!mutex_is_locked(&slab_mutex)); 3835 for_each_memcg_cache_index(i) { 3836 c = cache_from_memcg_idx(cachep, i); 3837 if (c) 3838 /* return value determined by the parent cache only */ 3839 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3840 } 3841 3842 return ret; 3843 } 3844 3845 /* Called with slab_mutex held always */ 3846 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3847 { 3848 int err; 3849 int limit = 0; 3850 int shared = 0; 3851 int batchcount = 0; 3852 3853 if (!is_root_cache(cachep)) { 3854 struct kmem_cache *root = memcg_root_cache(cachep); 3855 limit = root->limit; 3856 shared = root->shared; 3857 batchcount = root->batchcount; 3858 } 3859 3860 if (limit && shared && batchcount) 3861 goto skip_setup; 3862 /* 3863 * The head array serves three purposes: 3864 * - create a LIFO ordering, i.e. return objects that are cache-warm 3865 * - reduce the number of spinlock operations. 3866 * - reduce the number of linked list operations on the slab and 3867 * bufctl chains: array operations are cheaper. 3868 * The numbers are guessed, we should auto-tune as described by 3869 * Bonwick. 3870 */ 3871 if (cachep->size > 131072) 3872 limit = 1; 3873 else if (cachep->size > PAGE_SIZE) 3874 limit = 8; 3875 else if (cachep->size > 1024) 3876 limit = 24; 3877 else if (cachep->size > 256) 3878 limit = 54; 3879 else 3880 limit = 120; 3881 3882 /* 3883 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3884 * allocation behaviour: Most allocs on one cpu, most free operations 3885 * on another cpu. For these cases, an efficient object passing between 3886 * cpus is necessary. This is provided by a shared array. The array 3887 * replaces Bonwick's magazine layer. 3888 * On uniprocessor, it's functionally equivalent (but less efficient) 3889 * to a larger limit. Thus disabled by default. 3890 */ 3891 shared = 0; 3892 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3893 shared = 8; 3894 3895 #if DEBUG 3896 /* 3897 * With debugging enabled, large batchcount lead to excessively long 3898 * periods with disabled local interrupts. Limit the batchcount 3899 */ 3900 if (limit > 32) 3901 limit = 32; 3902 #endif 3903 batchcount = (limit + 1) / 2; 3904 skip_setup: 3905 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3906 if (err) 3907 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 3908 cachep->name, -err); 3909 return err; 3910 } 3911 3912 /* 3913 * Drain an array if it contains any elements taking the node lock only if 3914 * necessary. Note that the node listlock also protects the array_cache 3915 * if drain_array() is used on the shared array. 3916 */ 3917 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3918 struct array_cache *ac, int force, int node) 3919 { 3920 int tofree; 3921 3922 if (!ac || !ac->avail) 3923 return; 3924 if (ac->touched && !force) { 3925 ac->touched = 0; 3926 } else { 3927 spin_lock_irq(&n->list_lock); 3928 if (ac->avail) { 3929 tofree = force ? ac->avail : (ac->limit + 4) / 5; 3930 if (tofree > ac->avail) 3931 tofree = (ac->avail + 1) / 2; 3932 free_block(cachep, ac->entry, tofree, node); 3933 ac->avail -= tofree; 3934 memmove(ac->entry, &(ac->entry[tofree]), 3935 sizeof(void *) * ac->avail); 3936 } 3937 spin_unlock_irq(&n->list_lock); 3938 } 3939 } 3940 3941 /** 3942 * cache_reap - Reclaim memory from caches. 3943 * @w: work descriptor 3944 * 3945 * Called from workqueue/eventd every few seconds. 3946 * Purpose: 3947 * - clear the per-cpu caches for this CPU. 3948 * - return freeable pages to the main free memory pool. 3949 * 3950 * If we cannot acquire the cache chain mutex then just give up - we'll try 3951 * again on the next iteration. 3952 */ 3953 static void cache_reap(struct work_struct *w) 3954 { 3955 struct kmem_cache *searchp; 3956 struct kmem_cache_node *n; 3957 int node = numa_mem_id(); 3958 struct delayed_work *work = to_delayed_work(w); 3959 3960 if (!mutex_trylock(&slab_mutex)) 3961 /* Give up. Setup the next iteration. */ 3962 goto out; 3963 3964 list_for_each_entry(searchp, &slab_caches, list) { 3965 check_irq_on(); 3966 3967 /* 3968 * We only take the node lock if absolutely necessary and we 3969 * have established with reasonable certainty that 3970 * we can do some work if the lock was obtained. 3971 */ 3972 n = searchp->node[node]; 3973 3974 reap_alien(searchp, n); 3975 3976 drain_array(searchp, n, cpu_cache_get(searchp), 0, node); 3977 3978 /* 3979 * These are racy checks but it does not matter 3980 * if we skip one check or scan twice. 3981 */ 3982 if (time_after(n->next_reap, jiffies)) 3983 goto next; 3984 3985 n->next_reap = jiffies + REAPTIMEOUT_LIST3; 3986 3987 drain_array(searchp, n, n->shared, 0, node); 3988 3989 if (n->free_touched) 3990 n->free_touched = 0; 3991 else { 3992 int freed; 3993 3994 freed = drain_freelist(searchp, n, (n->free_limit + 3995 5 * searchp->num - 1) / (5 * searchp->num)); 3996 STATS_ADD_REAPED(searchp, freed); 3997 } 3998 next: 3999 cond_resched(); 4000 } 4001 check_irq_on(); 4002 mutex_unlock(&slab_mutex); 4003 next_reap_node(); 4004 out: 4005 /* Set up the next iteration */ 4006 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); 4007 } 4008 4009 #ifdef CONFIG_SLABINFO 4010 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 4011 { 4012 struct page *page; 4013 unsigned long active_objs; 4014 unsigned long num_objs; 4015 unsigned long active_slabs = 0; 4016 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4017 const char *name; 4018 char *error = NULL; 4019 int node; 4020 struct kmem_cache_node *n; 4021 4022 active_objs = 0; 4023 num_slabs = 0; 4024 for_each_online_node(node) { 4025 n = cachep->node[node]; 4026 if (!n) 4027 continue; 4028 4029 check_irq_on(); 4030 spin_lock_irq(&n->list_lock); 4031 4032 list_for_each_entry(page, &n->slabs_full, lru) { 4033 if (page->active != cachep->num && !error) 4034 error = "slabs_full accounting error"; 4035 active_objs += cachep->num; 4036 active_slabs++; 4037 } 4038 list_for_each_entry(page, &n->slabs_partial, lru) { 4039 if (page->active == cachep->num && !error) 4040 error = "slabs_partial accounting error"; 4041 if (!page->active && !error) 4042 error = "slabs_partial accounting error"; 4043 active_objs += page->active; 4044 active_slabs++; 4045 } 4046 list_for_each_entry(page, &n->slabs_free, lru) { 4047 if (page->active && !error) 4048 error = "slabs_free accounting error"; 4049 num_slabs++; 4050 } 4051 free_objects += n->free_objects; 4052 if (n->shared) 4053 shared_avail += n->shared->avail; 4054 4055 spin_unlock_irq(&n->list_lock); 4056 } 4057 num_slabs += active_slabs; 4058 num_objs = num_slabs * cachep->num; 4059 if (num_objs - active_objs != free_objects && !error) 4060 error = "free_objects accounting error"; 4061 4062 name = cachep->name; 4063 if (error) 4064 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 4065 4066 sinfo->active_objs = active_objs; 4067 sinfo->num_objs = num_objs; 4068 sinfo->active_slabs = active_slabs; 4069 sinfo->num_slabs = num_slabs; 4070 sinfo->shared_avail = shared_avail; 4071 sinfo->limit = cachep->limit; 4072 sinfo->batchcount = cachep->batchcount; 4073 sinfo->shared = cachep->shared; 4074 sinfo->objects_per_slab = cachep->num; 4075 sinfo->cache_order = cachep->gfporder; 4076 } 4077 4078 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 4079 { 4080 #if STATS 4081 { /* node stats */ 4082 unsigned long high = cachep->high_mark; 4083 unsigned long allocs = cachep->num_allocations; 4084 unsigned long grown = cachep->grown; 4085 unsigned long reaped = cachep->reaped; 4086 unsigned long errors = cachep->errors; 4087 unsigned long max_freeable = cachep->max_freeable; 4088 unsigned long node_allocs = cachep->node_allocs; 4089 unsigned long node_frees = cachep->node_frees; 4090 unsigned long overflows = cachep->node_overflow; 4091 4092 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " 4093 "%4lu %4lu %4lu %4lu %4lu", 4094 allocs, high, grown, 4095 reaped, errors, max_freeable, node_allocs, 4096 node_frees, overflows); 4097 } 4098 /* cpu stats */ 4099 { 4100 unsigned long allochit = atomic_read(&cachep->allochit); 4101 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4102 unsigned long freehit = atomic_read(&cachep->freehit); 4103 unsigned long freemiss = atomic_read(&cachep->freemiss); 4104 4105 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4106 allochit, allocmiss, freehit, freemiss); 4107 } 4108 #endif 4109 } 4110 4111 #define MAX_SLABINFO_WRITE 128 4112 /** 4113 * slabinfo_write - Tuning for the slab allocator 4114 * @file: unused 4115 * @buffer: user buffer 4116 * @count: data length 4117 * @ppos: unused 4118 */ 4119 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4120 size_t count, loff_t *ppos) 4121 { 4122 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4123 int limit, batchcount, shared, res; 4124 struct kmem_cache *cachep; 4125 4126 if (count > MAX_SLABINFO_WRITE) 4127 return -EINVAL; 4128 if (copy_from_user(&kbuf, buffer, count)) 4129 return -EFAULT; 4130 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4131 4132 tmp = strchr(kbuf, ' '); 4133 if (!tmp) 4134 return -EINVAL; 4135 *tmp = '\0'; 4136 tmp++; 4137 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4138 return -EINVAL; 4139 4140 /* Find the cache in the chain of caches. */ 4141 mutex_lock(&slab_mutex); 4142 res = -EINVAL; 4143 list_for_each_entry(cachep, &slab_caches, list) { 4144 if (!strcmp(cachep->name, kbuf)) { 4145 if (limit < 1 || batchcount < 1 || 4146 batchcount > limit || shared < 0) { 4147 res = 0; 4148 } else { 4149 res = do_tune_cpucache(cachep, limit, 4150 batchcount, shared, 4151 GFP_KERNEL); 4152 } 4153 break; 4154 } 4155 } 4156 mutex_unlock(&slab_mutex); 4157 if (res >= 0) 4158 res = count; 4159 return res; 4160 } 4161 4162 #ifdef CONFIG_DEBUG_SLAB_LEAK 4163 4164 static void *leaks_start(struct seq_file *m, loff_t *pos) 4165 { 4166 mutex_lock(&slab_mutex); 4167 return seq_list_start(&slab_caches, *pos); 4168 } 4169 4170 static inline int add_caller(unsigned long *n, unsigned long v) 4171 { 4172 unsigned long *p; 4173 int l; 4174 if (!v) 4175 return 1; 4176 l = n[1]; 4177 p = n + 2; 4178 while (l) { 4179 int i = l/2; 4180 unsigned long *q = p + 2 * i; 4181 if (*q == v) { 4182 q[1]++; 4183 return 1; 4184 } 4185 if (*q > v) { 4186 l = i; 4187 } else { 4188 p = q + 2; 4189 l -= i + 1; 4190 } 4191 } 4192 if (++n[1] == n[0]) 4193 return 0; 4194 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4195 p[0] = v; 4196 p[1] = 1; 4197 return 1; 4198 } 4199 4200 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4201 struct page *page) 4202 { 4203 void *p; 4204 int i, j; 4205 4206 if (n[0] == n[1]) 4207 return; 4208 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4209 bool active = true; 4210 4211 for (j = page->active; j < c->num; j++) { 4212 /* Skip freed item */ 4213 if (slab_freelist(page)[j] == i) { 4214 active = false; 4215 break; 4216 } 4217 } 4218 if (!active) 4219 continue; 4220 4221 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4222 return; 4223 } 4224 } 4225 4226 static void show_symbol(struct seq_file *m, unsigned long address) 4227 { 4228 #ifdef CONFIG_KALLSYMS 4229 unsigned long offset, size; 4230 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4231 4232 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4233 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4234 if (modname[0]) 4235 seq_printf(m, " [%s]", modname); 4236 return; 4237 } 4238 #endif 4239 seq_printf(m, "%p", (void *)address); 4240 } 4241 4242 static int leaks_show(struct seq_file *m, void *p) 4243 { 4244 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4245 struct page *page; 4246 struct kmem_cache_node *n; 4247 const char *name; 4248 unsigned long *x = m->private; 4249 int node; 4250 int i; 4251 4252 if (!(cachep->flags & SLAB_STORE_USER)) 4253 return 0; 4254 if (!(cachep->flags & SLAB_RED_ZONE)) 4255 return 0; 4256 4257 /* OK, we can do it */ 4258 4259 x[1] = 0; 4260 4261 for_each_online_node(node) { 4262 n = cachep->node[node]; 4263 if (!n) 4264 continue; 4265 4266 check_irq_on(); 4267 spin_lock_irq(&n->list_lock); 4268 4269 list_for_each_entry(page, &n->slabs_full, lru) 4270 handle_slab(x, cachep, page); 4271 list_for_each_entry(page, &n->slabs_partial, lru) 4272 handle_slab(x, cachep, page); 4273 spin_unlock_irq(&n->list_lock); 4274 } 4275 name = cachep->name; 4276 if (x[0] == x[1]) { 4277 /* Increase the buffer size */ 4278 mutex_unlock(&slab_mutex); 4279 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4280 if (!m->private) { 4281 /* Too bad, we are really out */ 4282 m->private = x; 4283 mutex_lock(&slab_mutex); 4284 return -ENOMEM; 4285 } 4286 *(unsigned long *)m->private = x[0] * 2; 4287 kfree(x); 4288 mutex_lock(&slab_mutex); 4289 /* Now make sure this entry will be retried */ 4290 m->count = m->size; 4291 return 0; 4292 } 4293 for (i = 0; i < x[1]; i++) { 4294 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4295 show_symbol(m, x[2*i+2]); 4296 seq_putc(m, '\n'); 4297 } 4298 4299 return 0; 4300 } 4301 4302 static const struct seq_operations slabstats_op = { 4303 .start = leaks_start, 4304 .next = slab_next, 4305 .stop = slab_stop, 4306 .show = leaks_show, 4307 }; 4308 4309 static int slabstats_open(struct inode *inode, struct file *file) 4310 { 4311 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); 4312 int ret = -ENOMEM; 4313 if (n) { 4314 ret = seq_open(file, &slabstats_op); 4315 if (!ret) { 4316 struct seq_file *m = file->private_data; 4317 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4318 m->private = n; 4319 n = NULL; 4320 } 4321 kfree(n); 4322 } 4323 return ret; 4324 } 4325 4326 static const struct file_operations proc_slabstats_operations = { 4327 .open = slabstats_open, 4328 .read = seq_read, 4329 .llseek = seq_lseek, 4330 .release = seq_release_private, 4331 }; 4332 #endif 4333 4334 static int __init slab_proc_init(void) 4335 { 4336 #ifdef CONFIG_DEBUG_SLAB_LEAK 4337 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4338 #endif 4339 return 0; 4340 } 4341 module_init(slab_proc_init); 4342 #endif 4343 4344 /** 4345 * ksize - get the actual amount of memory allocated for a given object 4346 * @objp: Pointer to the object 4347 * 4348 * kmalloc may internally round up allocations and return more memory 4349 * than requested. ksize() can be used to determine the actual amount of 4350 * memory allocated. The caller may use this additional memory, even though 4351 * a smaller amount of memory was initially specified with the kmalloc call. 4352 * The caller must guarantee that objp points to a valid object previously 4353 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4354 * must not be freed during the duration of the call. 4355 */ 4356 size_t ksize(const void *objp) 4357 { 4358 BUG_ON(!objp); 4359 if (unlikely(objp == ZERO_SIZE_PTR)) 4360 return 0; 4361 4362 return virt_to_cache(objp)->object_size; 4363 } 4364 EXPORT_SYMBOL(ksize); 4365