xref: /openbmc/linux/mm/slab.c (revision 110e6f26)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * struct array_cache
173  *
174  * Purpose:
175  * - LIFO ordering, to hand out cache-warm objects from _alloc
176  * - reduce the number of linked list operations
177  * - reduce spinlock operations
178  *
179  * The limit is stored in the per-cpu structure to reduce the data cache
180  * footprint.
181  *
182  */
183 struct array_cache {
184 	unsigned int avail;
185 	unsigned int limit;
186 	unsigned int batchcount;
187 	unsigned int touched;
188 	void *entry[];	/*
189 			 * Must have this definition in here for the proper
190 			 * alignment of array_cache. Also simplifies accessing
191 			 * the entries.
192 			 */
193 };
194 
195 struct alien_cache {
196 	spinlock_t lock;
197 	struct array_cache ac;
198 };
199 
200 /*
201  * Need this for bootstrapping a per node allocator.
202  */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define	CACHE_CACHE 0
206 #define	SIZE_NODE (MAX_NUMNODES)
207 
208 static int drain_freelist(struct kmem_cache *cache,
209 			struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 			int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215 
216 static int slab_early_init = 1;
217 
218 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
219 
220 static void kmem_cache_node_init(struct kmem_cache_node *parent)
221 {
222 	INIT_LIST_HEAD(&parent->slabs_full);
223 	INIT_LIST_HEAD(&parent->slabs_partial);
224 	INIT_LIST_HEAD(&parent->slabs_free);
225 	parent->shared = NULL;
226 	parent->alien = NULL;
227 	parent->colour_next = 0;
228 	spin_lock_init(&parent->list_lock);
229 	parent->free_objects = 0;
230 	parent->free_touched = 0;
231 }
232 
233 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
234 	do {								\
235 		INIT_LIST_HEAD(listp);					\
236 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
237 	} while (0)
238 
239 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
240 	do {								\
241 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
242 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
244 	} while (0)
245 
246 #define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
247 #define CFLGS_OFF_SLAB		(0x80000000UL)
248 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
249 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
250 
251 #define BATCHREFILL_LIMIT	16
252 /*
253  * Optimization question: fewer reaps means less probability for unnessary
254  * cpucache drain/refill cycles.
255  *
256  * OTOH the cpuarrays can contain lots of objects,
257  * which could lock up otherwise freeable slabs.
258  */
259 #define REAPTIMEOUT_AC		(2*HZ)
260 #define REAPTIMEOUT_NODE	(4*HZ)
261 
262 #if STATS
263 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
264 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
265 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
266 #define	STATS_INC_GROWN(x)	((x)->grown++)
267 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
268 #define	STATS_SET_HIGH(x)						\
269 	do {								\
270 		if ((x)->num_active > (x)->high_mark)			\
271 			(x)->high_mark = (x)->num_active;		\
272 	} while (0)
273 #define	STATS_INC_ERR(x)	((x)->errors++)
274 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
275 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
276 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
277 #define	STATS_SET_FREEABLE(x, i)					\
278 	do {								\
279 		if ((x)->max_freeable < i)				\
280 			(x)->max_freeable = i;				\
281 	} while (0)
282 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
283 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
284 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
285 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
286 #else
287 #define	STATS_INC_ACTIVE(x)	do { } while (0)
288 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
289 #define	STATS_INC_ALLOCED(x)	do { } while (0)
290 #define	STATS_INC_GROWN(x)	do { } while (0)
291 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
292 #define	STATS_SET_HIGH(x)	do { } while (0)
293 #define	STATS_INC_ERR(x)	do { } while (0)
294 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
295 #define	STATS_INC_NODEFREES(x)	do { } while (0)
296 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
297 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
298 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
299 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
300 #define STATS_INC_FREEHIT(x)	do { } while (0)
301 #define STATS_INC_FREEMISS(x)	do { } while (0)
302 #endif
303 
304 #if DEBUG
305 
306 /*
307  * memory layout of objects:
308  * 0		: objp
309  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
310  * 		the end of an object is aligned with the end of the real
311  * 		allocation. Catches writes behind the end of the allocation.
312  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
313  * 		redzone word.
314  * cachep->obj_offset: The real object.
315  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316  * cachep->size - 1* BYTES_PER_WORD: last caller address
317  *					[BYTES_PER_WORD long]
318  */
319 static int obj_offset(struct kmem_cache *cachep)
320 {
321 	return cachep->obj_offset;
322 }
323 
324 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
325 {
326 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
327 	return (unsigned long long*) (objp + obj_offset(cachep) -
328 				      sizeof(unsigned long long));
329 }
330 
331 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
332 {
333 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 	if (cachep->flags & SLAB_STORE_USER)
335 		return (unsigned long long *)(objp + cachep->size -
336 					      sizeof(unsigned long long) -
337 					      REDZONE_ALIGN);
338 	return (unsigned long long *) (objp + cachep->size -
339 				       sizeof(unsigned long long));
340 }
341 
342 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
343 {
344 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
345 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
346 }
347 
348 #else
349 
350 #define obj_offset(x)			0
351 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
352 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
353 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
354 
355 #endif
356 
357 #ifdef CONFIG_DEBUG_SLAB_LEAK
358 
359 static inline bool is_store_user_clean(struct kmem_cache *cachep)
360 {
361 	return atomic_read(&cachep->store_user_clean) == 1;
362 }
363 
364 static inline void set_store_user_clean(struct kmem_cache *cachep)
365 {
366 	atomic_set(&cachep->store_user_clean, 1);
367 }
368 
369 static inline void set_store_user_dirty(struct kmem_cache *cachep)
370 {
371 	if (is_store_user_clean(cachep))
372 		atomic_set(&cachep->store_user_clean, 0);
373 }
374 
375 #else
376 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
377 
378 #endif
379 
380 /*
381  * Do not go above this order unless 0 objects fit into the slab or
382  * overridden on the command line.
383  */
384 #define	SLAB_MAX_ORDER_HI	1
385 #define	SLAB_MAX_ORDER_LO	0
386 static int slab_max_order = SLAB_MAX_ORDER_LO;
387 static bool slab_max_order_set __initdata;
388 
389 static inline struct kmem_cache *virt_to_cache(const void *obj)
390 {
391 	struct page *page = virt_to_head_page(obj);
392 	return page->slab_cache;
393 }
394 
395 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
396 				 unsigned int idx)
397 {
398 	return page->s_mem + cache->size * idx;
399 }
400 
401 /*
402  * We want to avoid an expensive divide : (offset / cache->size)
403  *   Using the fact that size is a constant for a particular cache,
404  *   we can replace (offset / cache->size) by
405  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
406  */
407 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
408 					const struct page *page, void *obj)
409 {
410 	u32 offset = (obj - page->s_mem);
411 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
412 }
413 
414 #define BOOT_CPUCACHE_ENTRIES	1
415 /* internal cache of cache description objs */
416 static struct kmem_cache kmem_cache_boot = {
417 	.batchcount = 1,
418 	.limit = BOOT_CPUCACHE_ENTRIES,
419 	.shared = 1,
420 	.size = sizeof(struct kmem_cache),
421 	.name = "kmem_cache",
422 };
423 
424 #define BAD_ALIEN_MAGIC 0x01020304ul
425 
426 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
427 
428 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
429 {
430 	return this_cpu_ptr(cachep->cpu_cache);
431 }
432 
433 /*
434  * Calculate the number of objects and left-over bytes for a given buffer size.
435  */
436 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
437 		unsigned long flags, size_t *left_over)
438 {
439 	unsigned int num;
440 	size_t slab_size = PAGE_SIZE << gfporder;
441 
442 	/*
443 	 * The slab management structure can be either off the slab or
444 	 * on it. For the latter case, the memory allocated for a
445 	 * slab is used for:
446 	 *
447 	 * - @buffer_size bytes for each object
448 	 * - One freelist_idx_t for each object
449 	 *
450 	 * We don't need to consider alignment of freelist because
451 	 * freelist will be at the end of slab page. The objects will be
452 	 * at the correct alignment.
453 	 *
454 	 * If the slab management structure is off the slab, then the
455 	 * alignment will already be calculated into the size. Because
456 	 * the slabs are all pages aligned, the objects will be at the
457 	 * correct alignment when allocated.
458 	 */
459 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
460 		num = slab_size / buffer_size;
461 		*left_over = slab_size % buffer_size;
462 	} else {
463 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
464 		*left_over = slab_size %
465 			(buffer_size + sizeof(freelist_idx_t));
466 	}
467 
468 	return num;
469 }
470 
471 #if DEBUG
472 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
473 
474 static void __slab_error(const char *function, struct kmem_cache *cachep,
475 			char *msg)
476 {
477 	pr_err("slab error in %s(): cache `%s': %s\n",
478 	       function, cachep->name, msg);
479 	dump_stack();
480 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
481 }
482 #endif
483 
484 /*
485  * By default on NUMA we use alien caches to stage the freeing of
486  * objects allocated from other nodes. This causes massive memory
487  * inefficiencies when using fake NUMA setup to split memory into a
488  * large number of small nodes, so it can be disabled on the command
489  * line
490   */
491 
492 static int use_alien_caches __read_mostly = 1;
493 static int __init noaliencache_setup(char *s)
494 {
495 	use_alien_caches = 0;
496 	return 1;
497 }
498 __setup("noaliencache", noaliencache_setup);
499 
500 static int __init slab_max_order_setup(char *str)
501 {
502 	get_option(&str, &slab_max_order);
503 	slab_max_order = slab_max_order < 0 ? 0 :
504 				min(slab_max_order, MAX_ORDER - 1);
505 	slab_max_order_set = true;
506 
507 	return 1;
508 }
509 __setup("slab_max_order=", slab_max_order_setup);
510 
511 #ifdef CONFIG_NUMA
512 /*
513  * Special reaping functions for NUMA systems called from cache_reap().
514  * These take care of doing round robin flushing of alien caches (containing
515  * objects freed on different nodes from which they were allocated) and the
516  * flushing of remote pcps by calling drain_node_pages.
517  */
518 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
519 
520 static void init_reap_node(int cpu)
521 {
522 	int node;
523 
524 	node = next_node(cpu_to_mem(cpu), node_online_map);
525 	if (node == MAX_NUMNODES)
526 		node = first_node(node_online_map);
527 
528 	per_cpu(slab_reap_node, cpu) = node;
529 }
530 
531 static void next_reap_node(void)
532 {
533 	int node = __this_cpu_read(slab_reap_node);
534 
535 	node = next_node(node, node_online_map);
536 	if (unlikely(node >= MAX_NUMNODES))
537 		node = first_node(node_online_map);
538 	__this_cpu_write(slab_reap_node, node);
539 }
540 
541 #else
542 #define init_reap_node(cpu) do { } while (0)
543 #define next_reap_node(void) do { } while (0)
544 #endif
545 
546 /*
547  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
548  * via the workqueue/eventd.
549  * Add the CPU number into the expiration time to minimize the possibility of
550  * the CPUs getting into lockstep and contending for the global cache chain
551  * lock.
552  */
553 static void start_cpu_timer(int cpu)
554 {
555 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
556 
557 	/*
558 	 * When this gets called from do_initcalls via cpucache_init(),
559 	 * init_workqueues() has already run, so keventd will be setup
560 	 * at that time.
561 	 */
562 	if (keventd_up() && reap_work->work.func == NULL) {
563 		init_reap_node(cpu);
564 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
565 		schedule_delayed_work_on(cpu, reap_work,
566 					__round_jiffies_relative(HZ, cpu));
567 	}
568 }
569 
570 static void init_arraycache(struct array_cache *ac, int limit, int batch)
571 {
572 	/*
573 	 * The array_cache structures contain pointers to free object.
574 	 * However, when such objects are allocated or transferred to another
575 	 * cache the pointers are not cleared and they could be counted as
576 	 * valid references during a kmemleak scan. Therefore, kmemleak must
577 	 * not scan such objects.
578 	 */
579 	kmemleak_no_scan(ac);
580 	if (ac) {
581 		ac->avail = 0;
582 		ac->limit = limit;
583 		ac->batchcount = batch;
584 		ac->touched = 0;
585 	}
586 }
587 
588 static struct array_cache *alloc_arraycache(int node, int entries,
589 					    int batchcount, gfp_t gfp)
590 {
591 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
592 	struct array_cache *ac = NULL;
593 
594 	ac = kmalloc_node(memsize, gfp, node);
595 	init_arraycache(ac, entries, batchcount);
596 	return ac;
597 }
598 
599 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
600 					struct page *page, void *objp)
601 {
602 	struct kmem_cache_node *n;
603 	int page_node;
604 	LIST_HEAD(list);
605 
606 	page_node = page_to_nid(page);
607 	n = get_node(cachep, page_node);
608 
609 	spin_lock(&n->list_lock);
610 	free_block(cachep, &objp, 1, page_node, &list);
611 	spin_unlock(&n->list_lock);
612 
613 	slabs_destroy(cachep, &list);
614 }
615 
616 /*
617  * Transfer objects in one arraycache to another.
618  * Locking must be handled by the caller.
619  *
620  * Return the number of entries transferred.
621  */
622 static int transfer_objects(struct array_cache *to,
623 		struct array_cache *from, unsigned int max)
624 {
625 	/* Figure out how many entries to transfer */
626 	int nr = min3(from->avail, max, to->limit - to->avail);
627 
628 	if (!nr)
629 		return 0;
630 
631 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
632 			sizeof(void *) *nr);
633 
634 	from->avail -= nr;
635 	to->avail += nr;
636 	return nr;
637 }
638 
639 #ifndef CONFIG_NUMA
640 
641 #define drain_alien_cache(cachep, alien) do { } while (0)
642 #define reap_alien(cachep, n) do { } while (0)
643 
644 static inline struct alien_cache **alloc_alien_cache(int node,
645 						int limit, gfp_t gfp)
646 {
647 	return (struct alien_cache **)BAD_ALIEN_MAGIC;
648 }
649 
650 static inline void free_alien_cache(struct alien_cache **ac_ptr)
651 {
652 }
653 
654 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
655 {
656 	return 0;
657 }
658 
659 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
660 		gfp_t flags)
661 {
662 	return NULL;
663 }
664 
665 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
666 		 gfp_t flags, int nodeid)
667 {
668 	return NULL;
669 }
670 
671 static inline gfp_t gfp_exact_node(gfp_t flags)
672 {
673 	return flags & ~__GFP_NOFAIL;
674 }
675 
676 #else	/* CONFIG_NUMA */
677 
678 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
679 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
680 
681 static struct alien_cache *__alloc_alien_cache(int node, int entries,
682 						int batch, gfp_t gfp)
683 {
684 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
685 	struct alien_cache *alc = NULL;
686 
687 	alc = kmalloc_node(memsize, gfp, node);
688 	init_arraycache(&alc->ac, entries, batch);
689 	spin_lock_init(&alc->lock);
690 	return alc;
691 }
692 
693 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
694 {
695 	struct alien_cache **alc_ptr;
696 	size_t memsize = sizeof(void *) * nr_node_ids;
697 	int i;
698 
699 	if (limit > 1)
700 		limit = 12;
701 	alc_ptr = kzalloc_node(memsize, gfp, node);
702 	if (!alc_ptr)
703 		return NULL;
704 
705 	for_each_node(i) {
706 		if (i == node || !node_online(i))
707 			continue;
708 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
709 		if (!alc_ptr[i]) {
710 			for (i--; i >= 0; i--)
711 				kfree(alc_ptr[i]);
712 			kfree(alc_ptr);
713 			return NULL;
714 		}
715 	}
716 	return alc_ptr;
717 }
718 
719 static void free_alien_cache(struct alien_cache **alc_ptr)
720 {
721 	int i;
722 
723 	if (!alc_ptr)
724 		return;
725 	for_each_node(i)
726 	    kfree(alc_ptr[i]);
727 	kfree(alc_ptr);
728 }
729 
730 static void __drain_alien_cache(struct kmem_cache *cachep,
731 				struct array_cache *ac, int node,
732 				struct list_head *list)
733 {
734 	struct kmem_cache_node *n = get_node(cachep, node);
735 
736 	if (ac->avail) {
737 		spin_lock(&n->list_lock);
738 		/*
739 		 * Stuff objects into the remote nodes shared array first.
740 		 * That way we could avoid the overhead of putting the objects
741 		 * into the free lists and getting them back later.
742 		 */
743 		if (n->shared)
744 			transfer_objects(n->shared, ac, ac->limit);
745 
746 		free_block(cachep, ac->entry, ac->avail, node, list);
747 		ac->avail = 0;
748 		spin_unlock(&n->list_lock);
749 	}
750 }
751 
752 /*
753  * Called from cache_reap() to regularly drain alien caches round robin.
754  */
755 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
756 {
757 	int node = __this_cpu_read(slab_reap_node);
758 
759 	if (n->alien) {
760 		struct alien_cache *alc = n->alien[node];
761 		struct array_cache *ac;
762 
763 		if (alc) {
764 			ac = &alc->ac;
765 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
766 				LIST_HEAD(list);
767 
768 				__drain_alien_cache(cachep, ac, node, &list);
769 				spin_unlock_irq(&alc->lock);
770 				slabs_destroy(cachep, &list);
771 			}
772 		}
773 	}
774 }
775 
776 static void drain_alien_cache(struct kmem_cache *cachep,
777 				struct alien_cache **alien)
778 {
779 	int i = 0;
780 	struct alien_cache *alc;
781 	struct array_cache *ac;
782 	unsigned long flags;
783 
784 	for_each_online_node(i) {
785 		alc = alien[i];
786 		if (alc) {
787 			LIST_HEAD(list);
788 
789 			ac = &alc->ac;
790 			spin_lock_irqsave(&alc->lock, flags);
791 			__drain_alien_cache(cachep, ac, i, &list);
792 			spin_unlock_irqrestore(&alc->lock, flags);
793 			slabs_destroy(cachep, &list);
794 		}
795 	}
796 }
797 
798 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
799 				int node, int page_node)
800 {
801 	struct kmem_cache_node *n;
802 	struct alien_cache *alien = NULL;
803 	struct array_cache *ac;
804 	LIST_HEAD(list);
805 
806 	n = get_node(cachep, node);
807 	STATS_INC_NODEFREES(cachep);
808 	if (n->alien && n->alien[page_node]) {
809 		alien = n->alien[page_node];
810 		ac = &alien->ac;
811 		spin_lock(&alien->lock);
812 		if (unlikely(ac->avail == ac->limit)) {
813 			STATS_INC_ACOVERFLOW(cachep);
814 			__drain_alien_cache(cachep, ac, page_node, &list);
815 		}
816 		ac->entry[ac->avail++] = objp;
817 		spin_unlock(&alien->lock);
818 		slabs_destroy(cachep, &list);
819 	} else {
820 		n = get_node(cachep, page_node);
821 		spin_lock(&n->list_lock);
822 		free_block(cachep, &objp, 1, page_node, &list);
823 		spin_unlock(&n->list_lock);
824 		slabs_destroy(cachep, &list);
825 	}
826 	return 1;
827 }
828 
829 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
830 {
831 	int page_node = page_to_nid(virt_to_page(objp));
832 	int node = numa_mem_id();
833 	/*
834 	 * Make sure we are not freeing a object from another node to the array
835 	 * cache on this cpu.
836 	 */
837 	if (likely(node == page_node))
838 		return 0;
839 
840 	return __cache_free_alien(cachep, objp, node, page_node);
841 }
842 
843 /*
844  * Construct gfp mask to allocate from a specific node but do not reclaim or
845  * warn about failures.
846  */
847 static inline gfp_t gfp_exact_node(gfp_t flags)
848 {
849 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
850 }
851 #endif
852 
853 /*
854  * Allocates and initializes node for a node on each slab cache, used for
855  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
856  * will be allocated off-node since memory is not yet online for the new node.
857  * When hotplugging memory or a cpu, existing node are not replaced if
858  * already in use.
859  *
860  * Must hold slab_mutex.
861  */
862 static int init_cache_node_node(int node)
863 {
864 	struct kmem_cache *cachep;
865 	struct kmem_cache_node *n;
866 	const size_t memsize = sizeof(struct kmem_cache_node);
867 
868 	list_for_each_entry(cachep, &slab_caches, list) {
869 		/*
870 		 * Set up the kmem_cache_node for cpu before we can
871 		 * begin anything. Make sure some other cpu on this
872 		 * node has not already allocated this
873 		 */
874 		n = get_node(cachep, node);
875 		if (!n) {
876 			n = kmalloc_node(memsize, GFP_KERNEL, node);
877 			if (!n)
878 				return -ENOMEM;
879 			kmem_cache_node_init(n);
880 			n->next_reap = jiffies + REAPTIMEOUT_NODE +
881 			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
882 
883 			/*
884 			 * The kmem_cache_nodes don't come and go as CPUs
885 			 * come and go.  slab_mutex is sufficient
886 			 * protection here.
887 			 */
888 			cachep->node[node] = n;
889 		}
890 
891 		spin_lock_irq(&n->list_lock);
892 		n->free_limit =
893 			(1 + nr_cpus_node(node)) *
894 			cachep->batchcount + cachep->num;
895 		spin_unlock_irq(&n->list_lock);
896 	}
897 	return 0;
898 }
899 
900 static inline int slabs_tofree(struct kmem_cache *cachep,
901 						struct kmem_cache_node *n)
902 {
903 	return (n->free_objects + cachep->num - 1) / cachep->num;
904 }
905 
906 static void cpuup_canceled(long cpu)
907 {
908 	struct kmem_cache *cachep;
909 	struct kmem_cache_node *n = NULL;
910 	int node = cpu_to_mem(cpu);
911 	const struct cpumask *mask = cpumask_of_node(node);
912 
913 	list_for_each_entry(cachep, &slab_caches, list) {
914 		struct array_cache *nc;
915 		struct array_cache *shared;
916 		struct alien_cache **alien;
917 		LIST_HEAD(list);
918 
919 		n = get_node(cachep, node);
920 		if (!n)
921 			continue;
922 
923 		spin_lock_irq(&n->list_lock);
924 
925 		/* Free limit for this kmem_cache_node */
926 		n->free_limit -= cachep->batchcount;
927 
928 		/* cpu is dead; no one can alloc from it. */
929 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
930 		if (nc) {
931 			free_block(cachep, nc->entry, nc->avail, node, &list);
932 			nc->avail = 0;
933 		}
934 
935 		if (!cpumask_empty(mask)) {
936 			spin_unlock_irq(&n->list_lock);
937 			goto free_slab;
938 		}
939 
940 		shared = n->shared;
941 		if (shared) {
942 			free_block(cachep, shared->entry,
943 				   shared->avail, node, &list);
944 			n->shared = NULL;
945 		}
946 
947 		alien = n->alien;
948 		n->alien = NULL;
949 
950 		spin_unlock_irq(&n->list_lock);
951 
952 		kfree(shared);
953 		if (alien) {
954 			drain_alien_cache(cachep, alien);
955 			free_alien_cache(alien);
956 		}
957 
958 free_slab:
959 		slabs_destroy(cachep, &list);
960 	}
961 	/*
962 	 * In the previous loop, all the objects were freed to
963 	 * the respective cache's slabs,  now we can go ahead and
964 	 * shrink each nodelist to its limit.
965 	 */
966 	list_for_each_entry(cachep, &slab_caches, list) {
967 		n = get_node(cachep, node);
968 		if (!n)
969 			continue;
970 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
971 	}
972 }
973 
974 static int cpuup_prepare(long cpu)
975 {
976 	struct kmem_cache *cachep;
977 	struct kmem_cache_node *n = NULL;
978 	int node = cpu_to_mem(cpu);
979 	int err;
980 
981 	/*
982 	 * We need to do this right in the beginning since
983 	 * alloc_arraycache's are going to use this list.
984 	 * kmalloc_node allows us to add the slab to the right
985 	 * kmem_cache_node and not this cpu's kmem_cache_node
986 	 */
987 	err = init_cache_node_node(node);
988 	if (err < 0)
989 		goto bad;
990 
991 	/*
992 	 * Now we can go ahead with allocating the shared arrays and
993 	 * array caches
994 	 */
995 	list_for_each_entry(cachep, &slab_caches, list) {
996 		struct array_cache *shared = NULL;
997 		struct alien_cache **alien = NULL;
998 
999 		if (cachep->shared) {
1000 			shared = alloc_arraycache(node,
1001 				cachep->shared * cachep->batchcount,
1002 				0xbaadf00d, GFP_KERNEL);
1003 			if (!shared)
1004 				goto bad;
1005 		}
1006 		if (use_alien_caches) {
1007 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1008 			if (!alien) {
1009 				kfree(shared);
1010 				goto bad;
1011 			}
1012 		}
1013 		n = get_node(cachep, node);
1014 		BUG_ON(!n);
1015 
1016 		spin_lock_irq(&n->list_lock);
1017 		if (!n->shared) {
1018 			/*
1019 			 * We are serialised from CPU_DEAD or
1020 			 * CPU_UP_CANCELLED by the cpucontrol lock
1021 			 */
1022 			n->shared = shared;
1023 			shared = NULL;
1024 		}
1025 #ifdef CONFIG_NUMA
1026 		if (!n->alien) {
1027 			n->alien = alien;
1028 			alien = NULL;
1029 		}
1030 #endif
1031 		spin_unlock_irq(&n->list_lock);
1032 		kfree(shared);
1033 		free_alien_cache(alien);
1034 	}
1035 
1036 	return 0;
1037 bad:
1038 	cpuup_canceled(cpu);
1039 	return -ENOMEM;
1040 }
1041 
1042 static int cpuup_callback(struct notifier_block *nfb,
1043 				    unsigned long action, void *hcpu)
1044 {
1045 	long cpu = (long)hcpu;
1046 	int err = 0;
1047 
1048 	switch (action) {
1049 	case CPU_UP_PREPARE:
1050 	case CPU_UP_PREPARE_FROZEN:
1051 		mutex_lock(&slab_mutex);
1052 		err = cpuup_prepare(cpu);
1053 		mutex_unlock(&slab_mutex);
1054 		break;
1055 	case CPU_ONLINE:
1056 	case CPU_ONLINE_FROZEN:
1057 		start_cpu_timer(cpu);
1058 		break;
1059 #ifdef CONFIG_HOTPLUG_CPU
1060   	case CPU_DOWN_PREPARE:
1061   	case CPU_DOWN_PREPARE_FROZEN:
1062 		/*
1063 		 * Shutdown cache reaper. Note that the slab_mutex is
1064 		 * held so that if cache_reap() is invoked it cannot do
1065 		 * anything expensive but will only modify reap_work
1066 		 * and reschedule the timer.
1067 		*/
1068 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1069 		/* Now the cache_reaper is guaranteed to be not running. */
1070 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1071   		break;
1072   	case CPU_DOWN_FAILED:
1073   	case CPU_DOWN_FAILED_FROZEN:
1074 		start_cpu_timer(cpu);
1075   		break;
1076 	case CPU_DEAD:
1077 	case CPU_DEAD_FROZEN:
1078 		/*
1079 		 * Even if all the cpus of a node are down, we don't free the
1080 		 * kmem_cache_node of any cache. This to avoid a race between
1081 		 * cpu_down, and a kmalloc allocation from another cpu for
1082 		 * memory from the node of the cpu going down.  The node
1083 		 * structure is usually allocated from kmem_cache_create() and
1084 		 * gets destroyed at kmem_cache_destroy().
1085 		 */
1086 		/* fall through */
1087 #endif
1088 	case CPU_UP_CANCELED:
1089 	case CPU_UP_CANCELED_FROZEN:
1090 		mutex_lock(&slab_mutex);
1091 		cpuup_canceled(cpu);
1092 		mutex_unlock(&slab_mutex);
1093 		break;
1094 	}
1095 	return notifier_from_errno(err);
1096 }
1097 
1098 static struct notifier_block cpucache_notifier = {
1099 	&cpuup_callback, NULL, 0
1100 };
1101 
1102 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1103 /*
1104  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1105  * Returns -EBUSY if all objects cannot be drained so that the node is not
1106  * removed.
1107  *
1108  * Must hold slab_mutex.
1109  */
1110 static int __meminit drain_cache_node_node(int node)
1111 {
1112 	struct kmem_cache *cachep;
1113 	int ret = 0;
1114 
1115 	list_for_each_entry(cachep, &slab_caches, list) {
1116 		struct kmem_cache_node *n;
1117 
1118 		n = get_node(cachep, node);
1119 		if (!n)
1120 			continue;
1121 
1122 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1123 
1124 		if (!list_empty(&n->slabs_full) ||
1125 		    !list_empty(&n->slabs_partial)) {
1126 			ret = -EBUSY;
1127 			break;
1128 		}
1129 	}
1130 	return ret;
1131 }
1132 
1133 static int __meminit slab_memory_callback(struct notifier_block *self,
1134 					unsigned long action, void *arg)
1135 {
1136 	struct memory_notify *mnb = arg;
1137 	int ret = 0;
1138 	int nid;
1139 
1140 	nid = mnb->status_change_nid;
1141 	if (nid < 0)
1142 		goto out;
1143 
1144 	switch (action) {
1145 	case MEM_GOING_ONLINE:
1146 		mutex_lock(&slab_mutex);
1147 		ret = init_cache_node_node(nid);
1148 		mutex_unlock(&slab_mutex);
1149 		break;
1150 	case MEM_GOING_OFFLINE:
1151 		mutex_lock(&slab_mutex);
1152 		ret = drain_cache_node_node(nid);
1153 		mutex_unlock(&slab_mutex);
1154 		break;
1155 	case MEM_ONLINE:
1156 	case MEM_OFFLINE:
1157 	case MEM_CANCEL_ONLINE:
1158 	case MEM_CANCEL_OFFLINE:
1159 		break;
1160 	}
1161 out:
1162 	return notifier_from_errno(ret);
1163 }
1164 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1165 
1166 /*
1167  * swap the static kmem_cache_node with kmalloced memory
1168  */
1169 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1170 				int nodeid)
1171 {
1172 	struct kmem_cache_node *ptr;
1173 
1174 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1175 	BUG_ON(!ptr);
1176 
1177 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1178 	/*
1179 	 * Do not assume that spinlocks can be initialized via memcpy:
1180 	 */
1181 	spin_lock_init(&ptr->list_lock);
1182 
1183 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1184 	cachep->node[nodeid] = ptr;
1185 }
1186 
1187 /*
1188  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1189  * size of kmem_cache_node.
1190  */
1191 static void __init set_up_node(struct kmem_cache *cachep, int index)
1192 {
1193 	int node;
1194 
1195 	for_each_online_node(node) {
1196 		cachep->node[node] = &init_kmem_cache_node[index + node];
1197 		cachep->node[node]->next_reap = jiffies +
1198 		    REAPTIMEOUT_NODE +
1199 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1200 	}
1201 }
1202 
1203 /*
1204  * Initialisation.  Called after the page allocator have been initialised and
1205  * before smp_init().
1206  */
1207 void __init kmem_cache_init(void)
1208 {
1209 	int i;
1210 
1211 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1212 					sizeof(struct rcu_head));
1213 	kmem_cache = &kmem_cache_boot;
1214 
1215 	if (num_possible_nodes() == 1)
1216 		use_alien_caches = 0;
1217 
1218 	for (i = 0; i < NUM_INIT_LISTS; i++)
1219 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1220 
1221 	/*
1222 	 * Fragmentation resistance on low memory - only use bigger
1223 	 * page orders on machines with more than 32MB of memory if
1224 	 * not overridden on the command line.
1225 	 */
1226 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1227 		slab_max_order = SLAB_MAX_ORDER_HI;
1228 
1229 	/* Bootstrap is tricky, because several objects are allocated
1230 	 * from caches that do not exist yet:
1231 	 * 1) initialize the kmem_cache cache: it contains the struct
1232 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1233 	 *    kmem_cache is statically allocated.
1234 	 *    Initially an __init data area is used for the head array and the
1235 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1236 	 *    array at the end of the bootstrap.
1237 	 * 2) Create the first kmalloc cache.
1238 	 *    The struct kmem_cache for the new cache is allocated normally.
1239 	 *    An __init data area is used for the head array.
1240 	 * 3) Create the remaining kmalloc caches, with minimally sized
1241 	 *    head arrays.
1242 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1243 	 *    kmalloc cache with kmalloc allocated arrays.
1244 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1245 	 *    the other cache's with kmalloc allocated memory.
1246 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1247 	 */
1248 
1249 	/* 1) create the kmem_cache */
1250 
1251 	/*
1252 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1253 	 */
1254 	create_boot_cache(kmem_cache, "kmem_cache",
1255 		offsetof(struct kmem_cache, node) +
1256 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1257 				  SLAB_HWCACHE_ALIGN);
1258 	list_add(&kmem_cache->list, &slab_caches);
1259 	slab_state = PARTIAL;
1260 
1261 	/*
1262 	 * Initialize the caches that provide memory for the  kmem_cache_node
1263 	 * structures first.  Without this, further allocations will bug.
1264 	 */
1265 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1266 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1267 	slab_state = PARTIAL_NODE;
1268 	setup_kmalloc_cache_index_table();
1269 
1270 	slab_early_init = 0;
1271 
1272 	/* 5) Replace the bootstrap kmem_cache_node */
1273 	{
1274 		int nid;
1275 
1276 		for_each_online_node(nid) {
1277 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1278 
1279 			init_list(kmalloc_caches[INDEX_NODE],
1280 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1281 		}
1282 	}
1283 
1284 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1285 }
1286 
1287 void __init kmem_cache_init_late(void)
1288 {
1289 	struct kmem_cache *cachep;
1290 
1291 	slab_state = UP;
1292 
1293 	/* 6) resize the head arrays to their final sizes */
1294 	mutex_lock(&slab_mutex);
1295 	list_for_each_entry(cachep, &slab_caches, list)
1296 		if (enable_cpucache(cachep, GFP_NOWAIT))
1297 			BUG();
1298 	mutex_unlock(&slab_mutex);
1299 
1300 	/* Done! */
1301 	slab_state = FULL;
1302 
1303 	/*
1304 	 * Register a cpu startup notifier callback that initializes
1305 	 * cpu_cache_get for all new cpus
1306 	 */
1307 	register_cpu_notifier(&cpucache_notifier);
1308 
1309 #ifdef CONFIG_NUMA
1310 	/*
1311 	 * Register a memory hotplug callback that initializes and frees
1312 	 * node.
1313 	 */
1314 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1315 #endif
1316 
1317 	/*
1318 	 * The reap timers are started later, with a module init call: That part
1319 	 * of the kernel is not yet operational.
1320 	 */
1321 }
1322 
1323 static int __init cpucache_init(void)
1324 {
1325 	int cpu;
1326 
1327 	/*
1328 	 * Register the timers that return unneeded pages to the page allocator
1329 	 */
1330 	for_each_online_cpu(cpu)
1331 		start_cpu_timer(cpu);
1332 
1333 	/* Done! */
1334 	slab_state = FULL;
1335 	return 0;
1336 }
1337 __initcall(cpucache_init);
1338 
1339 static noinline void
1340 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1341 {
1342 #if DEBUG
1343 	struct kmem_cache_node *n;
1344 	struct page *page;
1345 	unsigned long flags;
1346 	int node;
1347 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1348 				      DEFAULT_RATELIMIT_BURST);
1349 
1350 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1351 		return;
1352 
1353 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1354 		nodeid, gfpflags, &gfpflags);
1355 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1356 		cachep->name, cachep->size, cachep->gfporder);
1357 
1358 	for_each_kmem_cache_node(cachep, node, n) {
1359 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1360 		unsigned long active_slabs = 0, num_slabs = 0;
1361 
1362 		spin_lock_irqsave(&n->list_lock, flags);
1363 		list_for_each_entry(page, &n->slabs_full, lru) {
1364 			active_objs += cachep->num;
1365 			active_slabs++;
1366 		}
1367 		list_for_each_entry(page, &n->slabs_partial, lru) {
1368 			active_objs += page->active;
1369 			active_slabs++;
1370 		}
1371 		list_for_each_entry(page, &n->slabs_free, lru)
1372 			num_slabs++;
1373 
1374 		free_objects += n->free_objects;
1375 		spin_unlock_irqrestore(&n->list_lock, flags);
1376 
1377 		num_slabs += active_slabs;
1378 		num_objs = num_slabs * cachep->num;
1379 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1380 			node, active_slabs, num_slabs, active_objs, num_objs,
1381 			free_objects);
1382 	}
1383 #endif
1384 }
1385 
1386 /*
1387  * Interface to system's page allocator. No need to hold the
1388  * kmem_cache_node ->list_lock.
1389  *
1390  * If we requested dmaable memory, we will get it. Even if we
1391  * did not request dmaable memory, we might get it, but that
1392  * would be relatively rare and ignorable.
1393  */
1394 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1395 								int nodeid)
1396 {
1397 	struct page *page;
1398 	int nr_pages;
1399 
1400 	flags |= cachep->allocflags;
1401 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1402 		flags |= __GFP_RECLAIMABLE;
1403 
1404 	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1405 	if (!page) {
1406 		slab_out_of_memory(cachep, flags, nodeid);
1407 		return NULL;
1408 	}
1409 
1410 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1411 		__free_pages(page, cachep->gfporder);
1412 		return NULL;
1413 	}
1414 
1415 	nr_pages = (1 << cachep->gfporder);
1416 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1417 		add_zone_page_state(page_zone(page),
1418 			NR_SLAB_RECLAIMABLE, nr_pages);
1419 	else
1420 		add_zone_page_state(page_zone(page),
1421 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1422 
1423 	__SetPageSlab(page);
1424 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1425 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1426 		SetPageSlabPfmemalloc(page);
1427 
1428 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1429 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1430 
1431 		if (cachep->ctor)
1432 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1433 		else
1434 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1435 	}
1436 
1437 	return page;
1438 }
1439 
1440 /*
1441  * Interface to system's page release.
1442  */
1443 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1444 {
1445 	int order = cachep->gfporder;
1446 	unsigned long nr_freed = (1 << order);
1447 
1448 	kmemcheck_free_shadow(page, order);
1449 
1450 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1451 		sub_zone_page_state(page_zone(page),
1452 				NR_SLAB_RECLAIMABLE, nr_freed);
1453 	else
1454 		sub_zone_page_state(page_zone(page),
1455 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1456 
1457 	BUG_ON(!PageSlab(page));
1458 	__ClearPageSlabPfmemalloc(page);
1459 	__ClearPageSlab(page);
1460 	page_mapcount_reset(page);
1461 	page->mapping = NULL;
1462 
1463 	if (current->reclaim_state)
1464 		current->reclaim_state->reclaimed_slab += nr_freed;
1465 	memcg_uncharge_slab(page, order, cachep);
1466 	__free_pages(page, order);
1467 }
1468 
1469 static void kmem_rcu_free(struct rcu_head *head)
1470 {
1471 	struct kmem_cache *cachep;
1472 	struct page *page;
1473 
1474 	page = container_of(head, struct page, rcu_head);
1475 	cachep = page->slab_cache;
1476 
1477 	kmem_freepages(cachep, page);
1478 }
1479 
1480 #if DEBUG
1481 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1482 {
1483 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1484 		(cachep->size % PAGE_SIZE) == 0)
1485 		return true;
1486 
1487 	return false;
1488 }
1489 
1490 #ifdef CONFIG_DEBUG_PAGEALLOC
1491 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1492 			    unsigned long caller)
1493 {
1494 	int size = cachep->object_size;
1495 
1496 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1497 
1498 	if (size < 5 * sizeof(unsigned long))
1499 		return;
1500 
1501 	*addr++ = 0x12345678;
1502 	*addr++ = caller;
1503 	*addr++ = smp_processor_id();
1504 	size -= 3 * sizeof(unsigned long);
1505 	{
1506 		unsigned long *sptr = &caller;
1507 		unsigned long svalue;
1508 
1509 		while (!kstack_end(sptr)) {
1510 			svalue = *sptr++;
1511 			if (kernel_text_address(svalue)) {
1512 				*addr++ = svalue;
1513 				size -= sizeof(unsigned long);
1514 				if (size <= sizeof(unsigned long))
1515 					break;
1516 			}
1517 		}
1518 
1519 	}
1520 	*addr++ = 0x87654321;
1521 }
1522 
1523 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1524 				int map, unsigned long caller)
1525 {
1526 	if (!is_debug_pagealloc_cache(cachep))
1527 		return;
1528 
1529 	if (caller)
1530 		store_stackinfo(cachep, objp, caller);
1531 
1532 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1533 }
1534 
1535 #else
1536 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1537 				int map, unsigned long caller) {}
1538 
1539 #endif
1540 
1541 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1542 {
1543 	int size = cachep->object_size;
1544 	addr = &((char *)addr)[obj_offset(cachep)];
1545 
1546 	memset(addr, val, size);
1547 	*(unsigned char *)(addr + size - 1) = POISON_END;
1548 }
1549 
1550 static void dump_line(char *data, int offset, int limit)
1551 {
1552 	int i;
1553 	unsigned char error = 0;
1554 	int bad_count = 0;
1555 
1556 	pr_err("%03x: ", offset);
1557 	for (i = 0; i < limit; i++) {
1558 		if (data[offset + i] != POISON_FREE) {
1559 			error = data[offset + i];
1560 			bad_count++;
1561 		}
1562 	}
1563 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1564 			&data[offset], limit, 1);
1565 
1566 	if (bad_count == 1) {
1567 		error ^= POISON_FREE;
1568 		if (!(error & (error - 1))) {
1569 			pr_err("Single bit error detected. Probably bad RAM.\n");
1570 #ifdef CONFIG_X86
1571 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1572 #else
1573 			pr_err("Run a memory test tool.\n");
1574 #endif
1575 		}
1576 	}
1577 }
1578 #endif
1579 
1580 #if DEBUG
1581 
1582 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1583 {
1584 	int i, size;
1585 	char *realobj;
1586 
1587 	if (cachep->flags & SLAB_RED_ZONE) {
1588 		pr_err("Redzone: 0x%llx/0x%llx\n",
1589 		       *dbg_redzone1(cachep, objp),
1590 		       *dbg_redzone2(cachep, objp));
1591 	}
1592 
1593 	if (cachep->flags & SLAB_STORE_USER) {
1594 		pr_err("Last user: [<%p>](%pSR)\n",
1595 		       *dbg_userword(cachep, objp),
1596 		       *dbg_userword(cachep, objp));
1597 	}
1598 	realobj = (char *)objp + obj_offset(cachep);
1599 	size = cachep->object_size;
1600 	for (i = 0; i < size && lines; i += 16, lines--) {
1601 		int limit;
1602 		limit = 16;
1603 		if (i + limit > size)
1604 			limit = size - i;
1605 		dump_line(realobj, i, limit);
1606 	}
1607 }
1608 
1609 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1610 {
1611 	char *realobj;
1612 	int size, i;
1613 	int lines = 0;
1614 
1615 	if (is_debug_pagealloc_cache(cachep))
1616 		return;
1617 
1618 	realobj = (char *)objp + obj_offset(cachep);
1619 	size = cachep->object_size;
1620 
1621 	for (i = 0; i < size; i++) {
1622 		char exp = POISON_FREE;
1623 		if (i == size - 1)
1624 			exp = POISON_END;
1625 		if (realobj[i] != exp) {
1626 			int limit;
1627 			/* Mismatch ! */
1628 			/* Print header */
1629 			if (lines == 0) {
1630 				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1631 				       print_tainted(), cachep->name,
1632 				       realobj, size);
1633 				print_objinfo(cachep, objp, 0);
1634 			}
1635 			/* Hexdump the affected line */
1636 			i = (i / 16) * 16;
1637 			limit = 16;
1638 			if (i + limit > size)
1639 				limit = size - i;
1640 			dump_line(realobj, i, limit);
1641 			i += 16;
1642 			lines++;
1643 			/* Limit to 5 lines */
1644 			if (lines > 5)
1645 				break;
1646 		}
1647 	}
1648 	if (lines != 0) {
1649 		/* Print some data about the neighboring objects, if they
1650 		 * exist:
1651 		 */
1652 		struct page *page = virt_to_head_page(objp);
1653 		unsigned int objnr;
1654 
1655 		objnr = obj_to_index(cachep, page, objp);
1656 		if (objnr) {
1657 			objp = index_to_obj(cachep, page, objnr - 1);
1658 			realobj = (char *)objp + obj_offset(cachep);
1659 			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1660 			print_objinfo(cachep, objp, 2);
1661 		}
1662 		if (objnr + 1 < cachep->num) {
1663 			objp = index_to_obj(cachep, page, objnr + 1);
1664 			realobj = (char *)objp + obj_offset(cachep);
1665 			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1666 			print_objinfo(cachep, objp, 2);
1667 		}
1668 	}
1669 }
1670 #endif
1671 
1672 #if DEBUG
1673 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1674 						struct page *page)
1675 {
1676 	int i;
1677 
1678 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1679 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1680 			POISON_FREE);
1681 	}
1682 
1683 	for (i = 0; i < cachep->num; i++) {
1684 		void *objp = index_to_obj(cachep, page, i);
1685 
1686 		if (cachep->flags & SLAB_POISON) {
1687 			check_poison_obj(cachep, objp);
1688 			slab_kernel_map(cachep, objp, 1, 0);
1689 		}
1690 		if (cachep->flags & SLAB_RED_ZONE) {
1691 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1692 				slab_error(cachep, "start of a freed object was overwritten");
1693 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1694 				slab_error(cachep, "end of a freed object was overwritten");
1695 		}
1696 	}
1697 }
1698 #else
1699 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1700 						struct page *page)
1701 {
1702 }
1703 #endif
1704 
1705 /**
1706  * slab_destroy - destroy and release all objects in a slab
1707  * @cachep: cache pointer being destroyed
1708  * @page: page pointer being destroyed
1709  *
1710  * Destroy all the objs in a slab page, and release the mem back to the system.
1711  * Before calling the slab page must have been unlinked from the cache. The
1712  * kmem_cache_node ->list_lock is not held/needed.
1713  */
1714 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1715 {
1716 	void *freelist;
1717 
1718 	freelist = page->freelist;
1719 	slab_destroy_debugcheck(cachep, page);
1720 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1721 		call_rcu(&page->rcu_head, kmem_rcu_free);
1722 	else
1723 		kmem_freepages(cachep, page);
1724 
1725 	/*
1726 	 * From now on, we don't use freelist
1727 	 * although actual page can be freed in rcu context
1728 	 */
1729 	if (OFF_SLAB(cachep))
1730 		kmem_cache_free(cachep->freelist_cache, freelist);
1731 }
1732 
1733 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1734 {
1735 	struct page *page, *n;
1736 
1737 	list_for_each_entry_safe(page, n, list, lru) {
1738 		list_del(&page->lru);
1739 		slab_destroy(cachep, page);
1740 	}
1741 }
1742 
1743 /**
1744  * calculate_slab_order - calculate size (page order) of slabs
1745  * @cachep: pointer to the cache that is being created
1746  * @size: size of objects to be created in this cache.
1747  * @flags: slab allocation flags
1748  *
1749  * Also calculates the number of objects per slab.
1750  *
1751  * This could be made much more intelligent.  For now, try to avoid using
1752  * high order pages for slabs.  When the gfp() functions are more friendly
1753  * towards high-order requests, this should be changed.
1754  */
1755 static size_t calculate_slab_order(struct kmem_cache *cachep,
1756 				size_t size, unsigned long flags)
1757 {
1758 	size_t left_over = 0;
1759 	int gfporder;
1760 
1761 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1762 		unsigned int num;
1763 		size_t remainder;
1764 
1765 		num = cache_estimate(gfporder, size, flags, &remainder);
1766 		if (!num)
1767 			continue;
1768 
1769 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1770 		if (num > SLAB_OBJ_MAX_NUM)
1771 			break;
1772 
1773 		if (flags & CFLGS_OFF_SLAB) {
1774 			struct kmem_cache *freelist_cache;
1775 			size_t freelist_size;
1776 
1777 			freelist_size = num * sizeof(freelist_idx_t);
1778 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1779 			if (!freelist_cache)
1780 				continue;
1781 
1782 			/*
1783 			 * Needed to avoid possible looping condition
1784 			 * in cache_grow()
1785 			 */
1786 			if (OFF_SLAB(freelist_cache))
1787 				continue;
1788 
1789 			/* check if off slab has enough benefit */
1790 			if (freelist_cache->size > cachep->size / 2)
1791 				continue;
1792 		}
1793 
1794 		/* Found something acceptable - save it away */
1795 		cachep->num = num;
1796 		cachep->gfporder = gfporder;
1797 		left_over = remainder;
1798 
1799 		/*
1800 		 * A VFS-reclaimable slab tends to have most allocations
1801 		 * as GFP_NOFS and we really don't want to have to be allocating
1802 		 * higher-order pages when we are unable to shrink dcache.
1803 		 */
1804 		if (flags & SLAB_RECLAIM_ACCOUNT)
1805 			break;
1806 
1807 		/*
1808 		 * Large number of objects is good, but very large slabs are
1809 		 * currently bad for the gfp()s.
1810 		 */
1811 		if (gfporder >= slab_max_order)
1812 			break;
1813 
1814 		/*
1815 		 * Acceptable internal fragmentation?
1816 		 */
1817 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1818 			break;
1819 	}
1820 	return left_over;
1821 }
1822 
1823 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1824 		struct kmem_cache *cachep, int entries, int batchcount)
1825 {
1826 	int cpu;
1827 	size_t size;
1828 	struct array_cache __percpu *cpu_cache;
1829 
1830 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1831 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1832 
1833 	if (!cpu_cache)
1834 		return NULL;
1835 
1836 	for_each_possible_cpu(cpu) {
1837 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1838 				entries, batchcount);
1839 	}
1840 
1841 	return cpu_cache;
1842 }
1843 
1844 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1845 {
1846 	if (slab_state >= FULL)
1847 		return enable_cpucache(cachep, gfp);
1848 
1849 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1850 	if (!cachep->cpu_cache)
1851 		return 1;
1852 
1853 	if (slab_state == DOWN) {
1854 		/* Creation of first cache (kmem_cache). */
1855 		set_up_node(kmem_cache, CACHE_CACHE);
1856 	} else if (slab_state == PARTIAL) {
1857 		/* For kmem_cache_node */
1858 		set_up_node(cachep, SIZE_NODE);
1859 	} else {
1860 		int node;
1861 
1862 		for_each_online_node(node) {
1863 			cachep->node[node] = kmalloc_node(
1864 				sizeof(struct kmem_cache_node), gfp, node);
1865 			BUG_ON(!cachep->node[node]);
1866 			kmem_cache_node_init(cachep->node[node]);
1867 		}
1868 	}
1869 
1870 	cachep->node[numa_mem_id()]->next_reap =
1871 			jiffies + REAPTIMEOUT_NODE +
1872 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1873 
1874 	cpu_cache_get(cachep)->avail = 0;
1875 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1876 	cpu_cache_get(cachep)->batchcount = 1;
1877 	cpu_cache_get(cachep)->touched = 0;
1878 	cachep->batchcount = 1;
1879 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1880 	return 0;
1881 }
1882 
1883 unsigned long kmem_cache_flags(unsigned long object_size,
1884 	unsigned long flags, const char *name,
1885 	void (*ctor)(void *))
1886 {
1887 	return flags;
1888 }
1889 
1890 struct kmem_cache *
1891 __kmem_cache_alias(const char *name, size_t size, size_t align,
1892 		   unsigned long flags, void (*ctor)(void *))
1893 {
1894 	struct kmem_cache *cachep;
1895 
1896 	cachep = find_mergeable(size, align, flags, name, ctor);
1897 	if (cachep) {
1898 		cachep->refcount++;
1899 
1900 		/*
1901 		 * Adjust the object sizes so that we clear
1902 		 * the complete object on kzalloc.
1903 		 */
1904 		cachep->object_size = max_t(int, cachep->object_size, size);
1905 	}
1906 	return cachep;
1907 }
1908 
1909 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1910 			size_t size, unsigned long flags)
1911 {
1912 	size_t left;
1913 
1914 	cachep->num = 0;
1915 
1916 	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1917 		return false;
1918 
1919 	left = calculate_slab_order(cachep, size,
1920 			flags | CFLGS_OBJFREELIST_SLAB);
1921 	if (!cachep->num)
1922 		return false;
1923 
1924 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1925 		return false;
1926 
1927 	cachep->colour = left / cachep->colour_off;
1928 
1929 	return true;
1930 }
1931 
1932 static bool set_off_slab_cache(struct kmem_cache *cachep,
1933 			size_t size, unsigned long flags)
1934 {
1935 	size_t left;
1936 
1937 	cachep->num = 0;
1938 
1939 	/*
1940 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1941 	 * to avoid recursive calls into kmemleak.
1942 	 */
1943 	if (flags & SLAB_NOLEAKTRACE)
1944 		return false;
1945 
1946 	/*
1947 	 * Size is large, assume best to place the slab management obj
1948 	 * off-slab (should allow better packing of objs).
1949 	 */
1950 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1951 	if (!cachep->num)
1952 		return false;
1953 
1954 	/*
1955 	 * If the slab has been placed off-slab, and we have enough space then
1956 	 * move it on-slab. This is at the expense of any extra colouring.
1957 	 */
1958 	if (left >= cachep->num * sizeof(freelist_idx_t))
1959 		return false;
1960 
1961 	cachep->colour = left / cachep->colour_off;
1962 
1963 	return true;
1964 }
1965 
1966 static bool set_on_slab_cache(struct kmem_cache *cachep,
1967 			size_t size, unsigned long flags)
1968 {
1969 	size_t left;
1970 
1971 	cachep->num = 0;
1972 
1973 	left = calculate_slab_order(cachep, size, flags);
1974 	if (!cachep->num)
1975 		return false;
1976 
1977 	cachep->colour = left / cachep->colour_off;
1978 
1979 	return true;
1980 }
1981 
1982 /**
1983  * __kmem_cache_create - Create a cache.
1984  * @cachep: cache management descriptor
1985  * @flags: SLAB flags
1986  *
1987  * Returns a ptr to the cache on success, NULL on failure.
1988  * Cannot be called within a int, but can be interrupted.
1989  * The @ctor is run when new pages are allocated by the cache.
1990  *
1991  * The flags are
1992  *
1993  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1994  * to catch references to uninitialised memory.
1995  *
1996  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1997  * for buffer overruns.
1998  *
1999  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2000  * cacheline.  This can be beneficial if you're counting cycles as closely
2001  * as davem.
2002  */
2003 int
2004 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2005 {
2006 	size_t ralign = BYTES_PER_WORD;
2007 	gfp_t gfp;
2008 	int err;
2009 	size_t size = cachep->size;
2010 
2011 #if DEBUG
2012 #if FORCED_DEBUG
2013 	/*
2014 	 * Enable redzoning and last user accounting, except for caches with
2015 	 * large objects, if the increased size would increase the object size
2016 	 * above the next power of two: caches with object sizes just above a
2017 	 * power of two have a significant amount of internal fragmentation.
2018 	 */
2019 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2020 						2 * sizeof(unsigned long long)))
2021 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2022 	if (!(flags & SLAB_DESTROY_BY_RCU))
2023 		flags |= SLAB_POISON;
2024 #endif
2025 #endif
2026 
2027 	/*
2028 	 * Check that size is in terms of words.  This is needed to avoid
2029 	 * unaligned accesses for some archs when redzoning is used, and makes
2030 	 * sure any on-slab bufctl's are also correctly aligned.
2031 	 */
2032 	if (size & (BYTES_PER_WORD - 1)) {
2033 		size += (BYTES_PER_WORD - 1);
2034 		size &= ~(BYTES_PER_WORD - 1);
2035 	}
2036 
2037 	if (flags & SLAB_RED_ZONE) {
2038 		ralign = REDZONE_ALIGN;
2039 		/* If redzoning, ensure that the second redzone is suitably
2040 		 * aligned, by adjusting the object size accordingly. */
2041 		size += REDZONE_ALIGN - 1;
2042 		size &= ~(REDZONE_ALIGN - 1);
2043 	}
2044 
2045 	/* 3) caller mandated alignment */
2046 	if (ralign < cachep->align) {
2047 		ralign = cachep->align;
2048 	}
2049 	/* disable debug if necessary */
2050 	if (ralign > __alignof__(unsigned long long))
2051 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2052 	/*
2053 	 * 4) Store it.
2054 	 */
2055 	cachep->align = ralign;
2056 	cachep->colour_off = cache_line_size();
2057 	/* Offset must be a multiple of the alignment. */
2058 	if (cachep->colour_off < cachep->align)
2059 		cachep->colour_off = cachep->align;
2060 
2061 	if (slab_is_available())
2062 		gfp = GFP_KERNEL;
2063 	else
2064 		gfp = GFP_NOWAIT;
2065 
2066 #if DEBUG
2067 
2068 	/*
2069 	 * Both debugging options require word-alignment which is calculated
2070 	 * into align above.
2071 	 */
2072 	if (flags & SLAB_RED_ZONE) {
2073 		/* add space for red zone words */
2074 		cachep->obj_offset += sizeof(unsigned long long);
2075 		size += 2 * sizeof(unsigned long long);
2076 	}
2077 	if (flags & SLAB_STORE_USER) {
2078 		/* user store requires one word storage behind the end of
2079 		 * the real object. But if the second red zone needs to be
2080 		 * aligned to 64 bits, we must allow that much space.
2081 		 */
2082 		if (flags & SLAB_RED_ZONE)
2083 			size += REDZONE_ALIGN;
2084 		else
2085 			size += BYTES_PER_WORD;
2086 	}
2087 #endif
2088 
2089 	kasan_cache_create(cachep, &size, &flags);
2090 
2091 	size = ALIGN(size, cachep->align);
2092 	/*
2093 	 * We should restrict the number of objects in a slab to implement
2094 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2095 	 */
2096 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2097 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2098 
2099 #if DEBUG
2100 	/*
2101 	 * To activate debug pagealloc, off-slab management is necessary
2102 	 * requirement. In early phase of initialization, small sized slab
2103 	 * doesn't get initialized so it would not be possible. So, we need
2104 	 * to check size >= 256. It guarantees that all necessary small
2105 	 * sized slab is initialized in current slab initialization sequence.
2106 	 */
2107 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2108 		size >= 256 && cachep->object_size > cache_line_size()) {
2109 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2110 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2111 
2112 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2113 				flags |= CFLGS_OFF_SLAB;
2114 				cachep->obj_offset += tmp_size - size;
2115 				size = tmp_size;
2116 				goto done;
2117 			}
2118 		}
2119 	}
2120 #endif
2121 
2122 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2123 		flags |= CFLGS_OBJFREELIST_SLAB;
2124 		goto done;
2125 	}
2126 
2127 	if (set_off_slab_cache(cachep, size, flags)) {
2128 		flags |= CFLGS_OFF_SLAB;
2129 		goto done;
2130 	}
2131 
2132 	if (set_on_slab_cache(cachep, size, flags))
2133 		goto done;
2134 
2135 	return -E2BIG;
2136 
2137 done:
2138 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2139 	cachep->flags = flags;
2140 	cachep->allocflags = __GFP_COMP;
2141 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2142 		cachep->allocflags |= GFP_DMA;
2143 	cachep->size = size;
2144 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2145 
2146 #if DEBUG
2147 	/*
2148 	 * If we're going to use the generic kernel_map_pages()
2149 	 * poisoning, then it's going to smash the contents of
2150 	 * the redzone and userword anyhow, so switch them off.
2151 	 */
2152 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2153 		(cachep->flags & SLAB_POISON) &&
2154 		is_debug_pagealloc_cache(cachep))
2155 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2156 #endif
2157 
2158 	if (OFF_SLAB(cachep)) {
2159 		cachep->freelist_cache =
2160 			kmalloc_slab(cachep->freelist_size, 0u);
2161 	}
2162 
2163 	err = setup_cpu_cache(cachep, gfp);
2164 	if (err) {
2165 		__kmem_cache_release(cachep);
2166 		return err;
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 #if DEBUG
2173 static void check_irq_off(void)
2174 {
2175 	BUG_ON(!irqs_disabled());
2176 }
2177 
2178 static void check_irq_on(void)
2179 {
2180 	BUG_ON(irqs_disabled());
2181 }
2182 
2183 static void check_spinlock_acquired(struct kmem_cache *cachep)
2184 {
2185 #ifdef CONFIG_SMP
2186 	check_irq_off();
2187 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2188 #endif
2189 }
2190 
2191 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2192 {
2193 #ifdef CONFIG_SMP
2194 	check_irq_off();
2195 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2196 #endif
2197 }
2198 
2199 #else
2200 #define check_irq_off()	do { } while(0)
2201 #define check_irq_on()	do { } while(0)
2202 #define check_spinlock_acquired(x) do { } while(0)
2203 #define check_spinlock_acquired_node(x, y) do { } while(0)
2204 #endif
2205 
2206 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2207 			struct array_cache *ac,
2208 			int force, int node);
2209 
2210 static void do_drain(void *arg)
2211 {
2212 	struct kmem_cache *cachep = arg;
2213 	struct array_cache *ac;
2214 	int node = numa_mem_id();
2215 	struct kmem_cache_node *n;
2216 	LIST_HEAD(list);
2217 
2218 	check_irq_off();
2219 	ac = cpu_cache_get(cachep);
2220 	n = get_node(cachep, node);
2221 	spin_lock(&n->list_lock);
2222 	free_block(cachep, ac->entry, ac->avail, node, &list);
2223 	spin_unlock(&n->list_lock);
2224 	slabs_destroy(cachep, &list);
2225 	ac->avail = 0;
2226 }
2227 
2228 static void drain_cpu_caches(struct kmem_cache *cachep)
2229 {
2230 	struct kmem_cache_node *n;
2231 	int node;
2232 
2233 	on_each_cpu(do_drain, cachep, 1);
2234 	check_irq_on();
2235 	for_each_kmem_cache_node(cachep, node, n)
2236 		if (n->alien)
2237 			drain_alien_cache(cachep, n->alien);
2238 
2239 	for_each_kmem_cache_node(cachep, node, n)
2240 		drain_array(cachep, n, n->shared, 1, node);
2241 }
2242 
2243 /*
2244  * Remove slabs from the list of free slabs.
2245  * Specify the number of slabs to drain in tofree.
2246  *
2247  * Returns the actual number of slabs released.
2248  */
2249 static int drain_freelist(struct kmem_cache *cache,
2250 			struct kmem_cache_node *n, int tofree)
2251 {
2252 	struct list_head *p;
2253 	int nr_freed;
2254 	struct page *page;
2255 
2256 	nr_freed = 0;
2257 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2258 
2259 		spin_lock_irq(&n->list_lock);
2260 		p = n->slabs_free.prev;
2261 		if (p == &n->slabs_free) {
2262 			spin_unlock_irq(&n->list_lock);
2263 			goto out;
2264 		}
2265 
2266 		page = list_entry(p, struct page, lru);
2267 		list_del(&page->lru);
2268 		/*
2269 		 * Safe to drop the lock. The slab is no longer linked
2270 		 * to the cache.
2271 		 */
2272 		n->free_objects -= cache->num;
2273 		spin_unlock_irq(&n->list_lock);
2274 		slab_destroy(cache, page);
2275 		nr_freed++;
2276 	}
2277 out:
2278 	return nr_freed;
2279 }
2280 
2281 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2282 {
2283 	int ret = 0;
2284 	int node;
2285 	struct kmem_cache_node *n;
2286 
2287 	drain_cpu_caches(cachep);
2288 
2289 	check_irq_on();
2290 	for_each_kmem_cache_node(cachep, node, n) {
2291 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2292 
2293 		ret += !list_empty(&n->slabs_full) ||
2294 			!list_empty(&n->slabs_partial);
2295 	}
2296 	return (ret ? 1 : 0);
2297 }
2298 
2299 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2300 {
2301 	return __kmem_cache_shrink(cachep, false);
2302 }
2303 
2304 void __kmem_cache_release(struct kmem_cache *cachep)
2305 {
2306 	int i;
2307 	struct kmem_cache_node *n;
2308 
2309 	free_percpu(cachep->cpu_cache);
2310 
2311 	/* NUMA: free the node structures */
2312 	for_each_kmem_cache_node(cachep, i, n) {
2313 		kfree(n->shared);
2314 		free_alien_cache(n->alien);
2315 		kfree(n);
2316 		cachep->node[i] = NULL;
2317 	}
2318 }
2319 
2320 /*
2321  * Get the memory for a slab management obj.
2322  *
2323  * For a slab cache when the slab descriptor is off-slab, the
2324  * slab descriptor can't come from the same cache which is being created,
2325  * Because if it is the case, that means we defer the creation of
2326  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2327  * And we eventually call down to __kmem_cache_create(), which
2328  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2329  * This is a "chicken-and-egg" problem.
2330  *
2331  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2332  * which are all initialized during kmem_cache_init().
2333  */
2334 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2335 				   struct page *page, int colour_off,
2336 				   gfp_t local_flags, int nodeid)
2337 {
2338 	void *freelist;
2339 	void *addr = page_address(page);
2340 
2341 	page->s_mem = addr + colour_off;
2342 	page->active = 0;
2343 
2344 	if (OBJFREELIST_SLAB(cachep))
2345 		freelist = NULL;
2346 	else if (OFF_SLAB(cachep)) {
2347 		/* Slab management obj is off-slab. */
2348 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2349 					      local_flags, nodeid);
2350 		if (!freelist)
2351 			return NULL;
2352 	} else {
2353 		/* We will use last bytes at the slab for freelist */
2354 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2355 				cachep->freelist_size;
2356 	}
2357 
2358 	return freelist;
2359 }
2360 
2361 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2362 {
2363 	return ((freelist_idx_t *)page->freelist)[idx];
2364 }
2365 
2366 static inline void set_free_obj(struct page *page,
2367 					unsigned int idx, freelist_idx_t val)
2368 {
2369 	((freelist_idx_t *)(page->freelist))[idx] = val;
2370 }
2371 
2372 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2373 {
2374 #if DEBUG
2375 	int i;
2376 
2377 	for (i = 0; i < cachep->num; i++) {
2378 		void *objp = index_to_obj(cachep, page, i);
2379 
2380 		if (cachep->flags & SLAB_STORE_USER)
2381 			*dbg_userword(cachep, objp) = NULL;
2382 
2383 		if (cachep->flags & SLAB_RED_ZONE) {
2384 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2385 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2386 		}
2387 		/*
2388 		 * Constructors are not allowed to allocate memory from the same
2389 		 * cache which they are a constructor for.  Otherwise, deadlock.
2390 		 * They must also be threaded.
2391 		 */
2392 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2393 			kasan_unpoison_object_data(cachep,
2394 						   objp + obj_offset(cachep));
2395 			cachep->ctor(objp + obj_offset(cachep));
2396 			kasan_poison_object_data(
2397 				cachep, objp + obj_offset(cachep));
2398 		}
2399 
2400 		if (cachep->flags & SLAB_RED_ZONE) {
2401 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2402 				slab_error(cachep, "constructor overwrote the end of an object");
2403 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2404 				slab_error(cachep, "constructor overwrote the start of an object");
2405 		}
2406 		/* need to poison the objs? */
2407 		if (cachep->flags & SLAB_POISON) {
2408 			poison_obj(cachep, objp, POISON_FREE);
2409 			slab_kernel_map(cachep, objp, 0, 0);
2410 		}
2411 	}
2412 #endif
2413 }
2414 
2415 static void cache_init_objs(struct kmem_cache *cachep,
2416 			    struct page *page)
2417 {
2418 	int i;
2419 	void *objp;
2420 
2421 	cache_init_objs_debug(cachep, page);
2422 
2423 	if (OBJFREELIST_SLAB(cachep)) {
2424 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2425 						obj_offset(cachep);
2426 	}
2427 
2428 	for (i = 0; i < cachep->num; i++) {
2429 		/* constructor could break poison info */
2430 		if (DEBUG == 0 && cachep->ctor) {
2431 			objp = index_to_obj(cachep, page, i);
2432 			kasan_unpoison_object_data(cachep, objp);
2433 			cachep->ctor(objp);
2434 			kasan_poison_object_data(cachep, objp);
2435 		}
2436 
2437 		set_free_obj(page, i, i);
2438 	}
2439 }
2440 
2441 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2442 {
2443 	if (CONFIG_ZONE_DMA_FLAG) {
2444 		if (flags & GFP_DMA)
2445 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2446 		else
2447 			BUG_ON(cachep->allocflags & GFP_DMA);
2448 	}
2449 }
2450 
2451 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2452 {
2453 	void *objp;
2454 
2455 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2456 	page->active++;
2457 
2458 #if DEBUG
2459 	if (cachep->flags & SLAB_STORE_USER)
2460 		set_store_user_dirty(cachep);
2461 #endif
2462 
2463 	return objp;
2464 }
2465 
2466 static void slab_put_obj(struct kmem_cache *cachep,
2467 			struct page *page, void *objp)
2468 {
2469 	unsigned int objnr = obj_to_index(cachep, page, objp);
2470 #if DEBUG
2471 	unsigned int i;
2472 
2473 	/* Verify double free bug */
2474 	for (i = page->active; i < cachep->num; i++) {
2475 		if (get_free_obj(page, i) == objnr) {
2476 			pr_err("slab: double free detected in cache '%s', objp %p\n",
2477 			       cachep->name, objp);
2478 			BUG();
2479 		}
2480 	}
2481 #endif
2482 	page->active--;
2483 	if (!page->freelist)
2484 		page->freelist = objp + obj_offset(cachep);
2485 
2486 	set_free_obj(page, page->active, objnr);
2487 }
2488 
2489 /*
2490  * Map pages beginning at addr to the given cache and slab. This is required
2491  * for the slab allocator to be able to lookup the cache and slab of a
2492  * virtual address for kfree, ksize, and slab debugging.
2493  */
2494 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2495 			   void *freelist)
2496 {
2497 	page->slab_cache = cache;
2498 	page->freelist = freelist;
2499 }
2500 
2501 /*
2502  * Grow (by 1) the number of slabs within a cache.  This is called by
2503  * kmem_cache_alloc() when there are no active objs left in a cache.
2504  */
2505 static int cache_grow(struct kmem_cache *cachep,
2506 		gfp_t flags, int nodeid, struct page *page)
2507 {
2508 	void *freelist;
2509 	size_t offset;
2510 	gfp_t local_flags;
2511 	struct kmem_cache_node *n;
2512 
2513 	/*
2514 	 * Be lazy and only check for valid flags here,  keeping it out of the
2515 	 * critical path in kmem_cache_alloc().
2516 	 */
2517 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2518 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2519 		BUG();
2520 	}
2521 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2522 
2523 	/* Take the node list lock to change the colour_next on this node */
2524 	check_irq_off();
2525 	n = get_node(cachep, nodeid);
2526 	spin_lock(&n->list_lock);
2527 
2528 	/* Get colour for the slab, and cal the next value. */
2529 	offset = n->colour_next;
2530 	n->colour_next++;
2531 	if (n->colour_next >= cachep->colour)
2532 		n->colour_next = 0;
2533 	spin_unlock(&n->list_lock);
2534 
2535 	offset *= cachep->colour_off;
2536 
2537 	if (gfpflags_allow_blocking(local_flags))
2538 		local_irq_enable();
2539 
2540 	/*
2541 	 * The test for missing atomic flag is performed here, rather than
2542 	 * the more obvious place, simply to reduce the critical path length
2543 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2544 	 * will eventually be caught here (where it matters).
2545 	 */
2546 	kmem_flagcheck(cachep, flags);
2547 
2548 	/*
2549 	 * Get mem for the objs.  Attempt to allocate a physical page from
2550 	 * 'nodeid'.
2551 	 */
2552 	if (!page)
2553 		page = kmem_getpages(cachep, local_flags, nodeid);
2554 	if (!page)
2555 		goto failed;
2556 
2557 	/* Get slab management. */
2558 	freelist = alloc_slabmgmt(cachep, page, offset,
2559 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2560 	if (OFF_SLAB(cachep) && !freelist)
2561 		goto opps1;
2562 
2563 	slab_map_pages(cachep, page, freelist);
2564 
2565 	kasan_poison_slab(page);
2566 	cache_init_objs(cachep, page);
2567 
2568 	if (gfpflags_allow_blocking(local_flags))
2569 		local_irq_disable();
2570 	check_irq_off();
2571 	spin_lock(&n->list_lock);
2572 
2573 	/* Make slab active. */
2574 	list_add_tail(&page->lru, &(n->slabs_free));
2575 	STATS_INC_GROWN(cachep);
2576 	n->free_objects += cachep->num;
2577 	spin_unlock(&n->list_lock);
2578 	return 1;
2579 opps1:
2580 	kmem_freepages(cachep, page);
2581 failed:
2582 	if (gfpflags_allow_blocking(local_flags))
2583 		local_irq_disable();
2584 	return 0;
2585 }
2586 
2587 #if DEBUG
2588 
2589 /*
2590  * Perform extra freeing checks:
2591  * - detect bad pointers.
2592  * - POISON/RED_ZONE checking
2593  */
2594 static void kfree_debugcheck(const void *objp)
2595 {
2596 	if (!virt_addr_valid(objp)) {
2597 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2598 		       (unsigned long)objp);
2599 		BUG();
2600 	}
2601 }
2602 
2603 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2604 {
2605 	unsigned long long redzone1, redzone2;
2606 
2607 	redzone1 = *dbg_redzone1(cache, obj);
2608 	redzone2 = *dbg_redzone2(cache, obj);
2609 
2610 	/*
2611 	 * Redzone is ok.
2612 	 */
2613 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2614 		return;
2615 
2616 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2617 		slab_error(cache, "double free detected");
2618 	else
2619 		slab_error(cache, "memory outside object was overwritten");
2620 
2621 	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2622 	       obj, redzone1, redzone2);
2623 }
2624 
2625 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2626 				   unsigned long caller)
2627 {
2628 	unsigned int objnr;
2629 	struct page *page;
2630 
2631 	BUG_ON(virt_to_cache(objp) != cachep);
2632 
2633 	objp -= obj_offset(cachep);
2634 	kfree_debugcheck(objp);
2635 	page = virt_to_head_page(objp);
2636 
2637 	if (cachep->flags & SLAB_RED_ZONE) {
2638 		verify_redzone_free(cachep, objp);
2639 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2640 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2641 	}
2642 	if (cachep->flags & SLAB_STORE_USER) {
2643 		set_store_user_dirty(cachep);
2644 		*dbg_userword(cachep, objp) = (void *)caller;
2645 	}
2646 
2647 	objnr = obj_to_index(cachep, page, objp);
2648 
2649 	BUG_ON(objnr >= cachep->num);
2650 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2651 
2652 	if (cachep->flags & SLAB_POISON) {
2653 		poison_obj(cachep, objp, POISON_FREE);
2654 		slab_kernel_map(cachep, objp, 0, caller);
2655 	}
2656 	return objp;
2657 }
2658 
2659 #else
2660 #define kfree_debugcheck(x) do { } while(0)
2661 #define cache_free_debugcheck(x,objp,z) (objp)
2662 #endif
2663 
2664 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2665 						void **list)
2666 {
2667 #if DEBUG
2668 	void *next = *list;
2669 	void *objp;
2670 
2671 	while (next) {
2672 		objp = next - obj_offset(cachep);
2673 		next = *(void **)next;
2674 		poison_obj(cachep, objp, POISON_FREE);
2675 	}
2676 #endif
2677 }
2678 
2679 static inline void fixup_slab_list(struct kmem_cache *cachep,
2680 				struct kmem_cache_node *n, struct page *page,
2681 				void **list)
2682 {
2683 	/* move slabp to correct slabp list: */
2684 	list_del(&page->lru);
2685 	if (page->active == cachep->num) {
2686 		list_add(&page->lru, &n->slabs_full);
2687 		if (OBJFREELIST_SLAB(cachep)) {
2688 #if DEBUG
2689 			/* Poisoning will be done without holding the lock */
2690 			if (cachep->flags & SLAB_POISON) {
2691 				void **objp = page->freelist;
2692 
2693 				*objp = *list;
2694 				*list = objp;
2695 			}
2696 #endif
2697 			page->freelist = NULL;
2698 		}
2699 	} else
2700 		list_add(&page->lru, &n->slabs_partial);
2701 }
2702 
2703 /* Try to find non-pfmemalloc slab if needed */
2704 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2705 					struct page *page, bool pfmemalloc)
2706 {
2707 	if (!page)
2708 		return NULL;
2709 
2710 	if (pfmemalloc)
2711 		return page;
2712 
2713 	if (!PageSlabPfmemalloc(page))
2714 		return page;
2715 
2716 	/* No need to keep pfmemalloc slab if we have enough free objects */
2717 	if (n->free_objects > n->free_limit) {
2718 		ClearPageSlabPfmemalloc(page);
2719 		return page;
2720 	}
2721 
2722 	/* Move pfmemalloc slab to the end of list to speed up next search */
2723 	list_del(&page->lru);
2724 	if (!page->active)
2725 		list_add_tail(&page->lru, &n->slabs_free);
2726 	else
2727 		list_add_tail(&page->lru, &n->slabs_partial);
2728 
2729 	list_for_each_entry(page, &n->slabs_partial, lru) {
2730 		if (!PageSlabPfmemalloc(page))
2731 			return page;
2732 	}
2733 
2734 	list_for_each_entry(page, &n->slabs_free, lru) {
2735 		if (!PageSlabPfmemalloc(page))
2736 			return page;
2737 	}
2738 
2739 	return NULL;
2740 }
2741 
2742 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2743 {
2744 	struct page *page;
2745 
2746 	page = list_first_entry_or_null(&n->slabs_partial,
2747 			struct page, lru);
2748 	if (!page) {
2749 		n->free_touched = 1;
2750 		page = list_first_entry_or_null(&n->slabs_free,
2751 				struct page, lru);
2752 	}
2753 
2754 	if (sk_memalloc_socks())
2755 		return get_valid_first_slab(n, page, pfmemalloc);
2756 
2757 	return page;
2758 }
2759 
2760 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2761 				struct kmem_cache_node *n, gfp_t flags)
2762 {
2763 	struct page *page;
2764 	void *obj;
2765 	void *list = NULL;
2766 
2767 	if (!gfp_pfmemalloc_allowed(flags))
2768 		return NULL;
2769 
2770 	spin_lock(&n->list_lock);
2771 	page = get_first_slab(n, true);
2772 	if (!page) {
2773 		spin_unlock(&n->list_lock);
2774 		return NULL;
2775 	}
2776 
2777 	obj = slab_get_obj(cachep, page);
2778 	n->free_objects--;
2779 
2780 	fixup_slab_list(cachep, n, page, &list);
2781 
2782 	spin_unlock(&n->list_lock);
2783 	fixup_objfreelist_debug(cachep, &list);
2784 
2785 	return obj;
2786 }
2787 
2788 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2789 {
2790 	int batchcount;
2791 	struct kmem_cache_node *n;
2792 	struct array_cache *ac;
2793 	int node;
2794 	void *list = NULL;
2795 
2796 	check_irq_off();
2797 	node = numa_mem_id();
2798 
2799 retry:
2800 	ac = cpu_cache_get(cachep);
2801 	batchcount = ac->batchcount;
2802 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2803 		/*
2804 		 * If there was little recent activity on this cache, then
2805 		 * perform only a partial refill.  Otherwise we could generate
2806 		 * refill bouncing.
2807 		 */
2808 		batchcount = BATCHREFILL_LIMIT;
2809 	}
2810 	n = get_node(cachep, node);
2811 
2812 	BUG_ON(ac->avail > 0 || !n);
2813 	spin_lock(&n->list_lock);
2814 
2815 	/* See if we can refill from the shared array */
2816 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2817 		n->shared->touched = 1;
2818 		goto alloc_done;
2819 	}
2820 
2821 	while (batchcount > 0) {
2822 		struct page *page;
2823 		/* Get slab alloc is to come from. */
2824 		page = get_first_slab(n, false);
2825 		if (!page)
2826 			goto must_grow;
2827 
2828 		check_spinlock_acquired(cachep);
2829 
2830 		/*
2831 		 * The slab was either on partial or free list so
2832 		 * there must be at least one object available for
2833 		 * allocation.
2834 		 */
2835 		BUG_ON(page->active >= cachep->num);
2836 
2837 		while (page->active < cachep->num && batchcount--) {
2838 			STATS_INC_ALLOCED(cachep);
2839 			STATS_INC_ACTIVE(cachep);
2840 			STATS_SET_HIGH(cachep);
2841 
2842 			ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2843 		}
2844 
2845 		fixup_slab_list(cachep, n, page, &list);
2846 	}
2847 
2848 must_grow:
2849 	n->free_objects -= ac->avail;
2850 alloc_done:
2851 	spin_unlock(&n->list_lock);
2852 	fixup_objfreelist_debug(cachep, &list);
2853 
2854 	if (unlikely(!ac->avail)) {
2855 		int x;
2856 
2857 		/* Check if we can use obj in pfmemalloc slab */
2858 		if (sk_memalloc_socks()) {
2859 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2860 
2861 			if (obj)
2862 				return obj;
2863 		}
2864 
2865 		x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2866 
2867 		/* cache_grow can reenable interrupts, then ac could change. */
2868 		ac = cpu_cache_get(cachep);
2869 		node = numa_mem_id();
2870 
2871 		/* no objects in sight? abort */
2872 		if (!x && ac->avail == 0)
2873 			return NULL;
2874 
2875 		if (!ac->avail)		/* objects refilled by interrupt? */
2876 			goto retry;
2877 	}
2878 	ac->touched = 1;
2879 
2880 	return ac->entry[--ac->avail];
2881 }
2882 
2883 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2884 						gfp_t flags)
2885 {
2886 	might_sleep_if(gfpflags_allow_blocking(flags));
2887 #if DEBUG
2888 	kmem_flagcheck(cachep, flags);
2889 #endif
2890 }
2891 
2892 #if DEBUG
2893 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2894 				gfp_t flags, void *objp, unsigned long caller)
2895 {
2896 	if (!objp)
2897 		return objp;
2898 	if (cachep->flags & SLAB_POISON) {
2899 		check_poison_obj(cachep, objp);
2900 		slab_kernel_map(cachep, objp, 1, 0);
2901 		poison_obj(cachep, objp, POISON_INUSE);
2902 	}
2903 	if (cachep->flags & SLAB_STORE_USER)
2904 		*dbg_userword(cachep, objp) = (void *)caller;
2905 
2906 	if (cachep->flags & SLAB_RED_ZONE) {
2907 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2908 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2909 			slab_error(cachep, "double free, or memory outside object was overwritten");
2910 			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2911 			       objp, *dbg_redzone1(cachep, objp),
2912 			       *dbg_redzone2(cachep, objp));
2913 		}
2914 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2915 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2916 	}
2917 
2918 	objp += obj_offset(cachep);
2919 	if (cachep->ctor && cachep->flags & SLAB_POISON)
2920 		cachep->ctor(objp);
2921 	if (ARCH_SLAB_MINALIGN &&
2922 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2923 		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2924 		       objp, (int)ARCH_SLAB_MINALIGN);
2925 	}
2926 	return objp;
2927 }
2928 #else
2929 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2930 #endif
2931 
2932 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2933 {
2934 	void *objp;
2935 	struct array_cache *ac;
2936 
2937 	check_irq_off();
2938 
2939 	ac = cpu_cache_get(cachep);
2940 	if (likely(ac->avail)) {
2941 		ac->touched = 1;
2942 		objp = ac->entry[--ac->avail];
2943 
2944 		STATS_INC_ALLOCHIT(cachep);
2945 		goto out;
2946 	}
2947 
2948 	STATS_INC_ALLOCMISS(cachep);
2949 	objp = cache_alloc_refill(cachep, flags);
2950 	/*
2951 	 * the 'ac' may be updated by cache_alloc_refill(),
2952 	 * and kmemleak_erase() requires its correct value.
2953 	 */
2954 	ac = cpu_cache_get(cachep);
2955 
2956 out:
2957 	/*
2958 	 * To avoid a false negative, if an object that is in one of the
2959 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2960 	 * treat the array pointers as a reference to the object.
2961 	 */
2962 	if (objp)
2963 		kmemleak_erase(&ac->entry[ac->avail]);
2964 	return objp;
2965 }
2966 
2967 #ifdef CONFIG_NUMA
2968 /*
2969  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2970  *
2971  * If we are in_interrupt, then process context, including cpusets and
2972  * mempolicy, may not apply and should not be used for allocation policy.
2973  */
2974 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2975 {
2976 	int nid_alloc, nid_here;
2977 
2978 	if (in_interrupt() || (flags & __GFP_THISNODE))
2979 		return NULL;
2980 	nid_alloc = nid_here = numa_mem_id();
2981 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2982 		nid_alloc = cpuset_slab_spread_node();
2983 	else if (current->mempolicy)
2984 		nid_alloc = mempolicy_slab_node();
2985 	if (nid_alloc != nid_here)
2986 		return ____cache_alloc_node(cachep, flags, nid_alloc);
2987 	return NULL;
2988 }
2989 
2990 /*
2991  * Fallback function if there was no memory available and no objects on a
2992  * certain node and fall back is permitted. First we scan all the
2993  * available node for available objects. If that fails then we
2994  * perform an allocation without specifying a node. This allows the page
2995  * allocator to do its reclaim / fallback magic. We then insert the
2996  * slab into the proper nodelist and then allocate from it.
2997  */
2998 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2999 {
3000 	struct zonelist *zonelist;
3001 	gfp_t local_flags;
3002 	struct zoneref *z;
3003 	struct zone *zone;
3004 	enum zone_type high_zoneidx = gfp_zone(flags);
3005 	void *obj = NULL;
3006 	int nid;
3007 	unsigned int cpuset_mems_cookie;
3008 
3009 	if (flags & __GFP_THISNODE)
3010 		return NULL;
3011 
3012 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3013 
3014 retry_cpuset:
3015 	cpuset_mems_cookie = read_mems_allowed_begin();
3016 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3017 
3018 retry:
3019 	/*
3020 	 * Look through allowed nodes for objects available
3021 	 * from existing per node queues.
3022 	 */
3023 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3024 		nid = zone_to_nid(zone);
3025 
3026 		if (cpuset_zone_allowed(zone, flags) &&
3027 			get_node(cache, nid) &&
3028 			get_node(cache, nid)->free_objects) {
3029 				obj = ____cache_alloc_node(cache,
3030 					gfp_exact_node(flags), nid);
3031 				if (obj)
3032 					break;
3033 		}
3034 	}
3035 
3036 	if (!obj) {
3037 		/*
3038 		 * This allocation will be performed within the constraints
3039 		 * of the current cpuset / memory policy requirements.
3040 		 * We may trigger various forms of reclaim on the allowed
3041 		 * set and go into memory reserves if necessary.
3042 		 */
3043 		struct page *page;
3044 
3045 		if (gfpflags_allow_blocking(local_flags))
3046 			local_irq_enable();
3047 		kmem_flagcheck(cache, flags);
3048 		page = kmem_getpages(cache, local_flags, numa_mem_id());
3049 		if (gfpflags_allow_blocking(local_flags))
3050 			local_irq_disable();
3051 		if (page) {
3052 			/*
3053 			 * Insert into the appropriate per node queues
3054 			 */
3055 			nid = page_to_nid(page);
3056 			if (cache_grow(cache, flags, nid, page)) {
3057 				obj = ____cache_alloc_node(cache,
3058 					gfp_exact_node(flags), nid);
3059 				if (!obj)
3060 					/*
3061 					 * Another processor may allocate the
3062 					 * objects in the slab since we are
3063 					 * not holding any locks.
3064 					 */
3065 					goto retry;
3066 			} else {
3067 				/* cache_grow already freed obj */
3068 				obj = NULL;
3069 			}
3070 		}
3071 	}
3072 
3073 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3074 		goto retry_cpuset;
3075 	return obj;
3076 }
3077 
3078 /*
3079  * A interface to enable slab creation on nodeid
3080  */
3081 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3082 				int nodeid)
3083 {
3084 	struct page *page;
3085 	struct kmem_cache_node *n;
3086 	void *obj;
3087 	void *list = NULL;
3088 	int x;
3089 
3090 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3091 	n = get_node(cachep, nodeid);
3092 	BUG_ON(!n);
3093 
3094 retry:
3095 	check_irq_off();
3096 	spin_lock(&n->list_lock);
3097 	page = get_first_slab(n, false);
3098 	if (!page)
3099 		goto must_grow;
3100 
3101 	check_spinlock_acquired_node(cachep, nodeid);
3102 
3103 	STATS_INC_NODEALLOCS(cachep);
3104 	STATS_INC_ACTIVE(cachep);
3105 	STATS_SET_HIGH(cachep);
3106 
3107 	BUG_ON(page->active == cachep->num);
3108 
3109 	obj = slab_get_obj(cachep, page);
3110 	n->free_objects--;
3111 
3112 	fixup_slab_list(cachep, n, page, &list);
3113 
3114 	spin_unlock(&n->list_lock);
3115 	fixup_objfreelist_debug(cachep, &list);
3116 	goto done;
3117 
3118 must_grow:
3119 	spin_unlock(&n->list_lock);
3120 	x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3121 	if (x)
3122 		goto retry;
3123 
3124 	return fallback_alloc(cachep, flags);
3125 
3126 done:
3127 	return obj;
3128 }
3129 
3130 static __always_inline void *
3131 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3132 		   unsigned long caller)
3133 {
3134 	unsigned long save_flags;
3135 	void *ptr;
3136 	int slab_node = numa_mem_id();
3137 
3138 	flags &= gfp_allowed_mask;
3139 	cachep = slab_pre_alloc_hook(cachep, flags);
3140 	if (unlikely(!cachep))
3141 		return NULL;
3142 
3143 	cache_alloc_debugcheck_before(cachep, flags);
3144 	local_irq_save(save_flags);
3145 
3146 	if (nodeid == NUMA_NO_NODE)
3147 		nodeid = slab_node;
3148 
3149 	if (unlikely(!get_node(cachep, nodeid))) {
3150 		/* Node not bootstrapped yet */
3151 		ptr = fallback_alloc(cachep, flags);
3152 		goto out;
3153 	}
3154 
3155 	if (nodeid == slab_node) {
3156 		/*
3157 		 * Use the locally cached objects if possible.
3158 		 * However ____cache_alloc does not allow fallback
3159 		 * to other nodes. It may fail while we still have
3160 		 * objects on other nodes available.
3161 		 */
3162 		ptr = ____cache_alloc(cachep, flags);
3163 		if (ptr)
3164 			goto out;
3165 	}
3166 	/* ___cache_alloc_node can fall back to other nodes */
3167 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3168   out:
3169 	local_irq_restore(save_flags);
3170 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3171 
3172 	if (unlikely(flags & __GFP_ZERO) && ptr)
3173 		memset(ptr, 0, cachep->object_size);
3174 
3175 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3176 	return ptr;
3177 }
3178 
3179 static __always_inline void *
3180 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3181 {
3182 	void *objp;
3183 
3184 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3185 		objp = alternate_node_alloc(cache, flags);
3186 		if (objp)
3187 			goto out;
3188 	}
3189 	objp = ____cache_alloc(cache, flags);
3190 
3191 	/*
3192 	 * We may just have run out of memory on the local node.
3193 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3194 	 */
3195 	if (!objp)
3196 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3197 
3198   out:
3199 	return objp;
3200 }
3201 #else
3202 
3203 static __always_inline void *
3204 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3205 {
3206 	return ____cache_alloc(cachep, flags);
3207 }
3208 
3209 #endif /* CONFIG_NUMA */
3210 
3211 static __always_inline void *
3212 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3213 {
3214 	unsigned long save_flags;
3215 	void *objp;
3216 
3217 	flags &= gfp_allowed_mask;
3218 	cachep = slab_pre_alloc_hook(cachep, flags);
3219 	if (unlikely(!cachep))
3220 		return NULL;
3221 
3222 	cache_alloc_debugcheck_before(cachep, flags);
3223 	local_irq_save(save_flags);
3224 	objp = __do_cache_alloc(cachep, flags);
3225 	local_irq_restore(save_flags);
3226 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3227 	prefetchw(objp);
3228 
3229 	if (unlikely(flags & __GFP_ZERO) && objp)
3230 		memset(objp, 0, cachep->object_size);
3231 
3232 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3233 	return objp;
3234 }
3235 
3236 /*
3237  * Caller needs to acquire correct kmem_cache_node's list_lock
3238  * @list: List of detached free slabs should be freed by caller
3239  */
3240 static void free_block(struct kmem_cache *cachep, void **objpp,
3241 			int nr_objects, int node, struct list_head *list)
3242 {
3243 	int i;
3244 	struct kmem_cache_node *n = get_node(cachep, node);
3245 
3246 	for (i = 0; i < nr_objects; i++) {
3247 		void *objp;
3248 		struct page *page;
3249 
3250 		objp = objpp[i];
3251 
3252 		page = virt_to_head_page(objp);
3253 		list_del(&page->lru);
3254 		check_spinlock_acquired_node(cachep, node);
3255 		slab_put_obj(cachep, page, objp);
3256 		STATS_DEC_ACTIVE(cachep);
3257 		n->free_objects++;
3258 
3259 		/* fixup slab chains */
3260 		if (page->active == 0) {
3261 			if (n->free_objects > n->free_limit) {
3262 				n->free_objects -= cachep->num;
3263 				list_add_tail(&page->lru, list);
3264 			} else {
3265 				list_add(&page->lru, &n->slabs_free);
3266 			}
3267 		} else {
3268 			/* Unconditionally move a slab to the end of the
3269 			 * partial list on free - maximum time for the
3270 			 * other objects to be freed, too.
3271 			 */
3272 			list_add_tail(&page->lru, &n->slabs_partial);
3273 		}
3274 	}
3275 }
3276 
3277 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3278 {
3279 	int batchcount;
3280 	struct kmem_cache_node *n;
3281 	int node = numa_mem_id();
3282 	LIST_HEAD(list);
3283 
3284 	batchcount = ac->batchcount;
3285 
3286 	check_irq_off();
3287 	n = get_node(cachep, node);
3288 	spin_lock(&n->list_lock);
3289 	if (n->shared) {
3290 		struct array_cache *shared_array = n->shared;
3291 		int max = shared_array->limit - shared_array->avail;
3292 		if (max) {
3293 			if (batchcount > max)
3294 				batchcount = max;
3295 			memcpy(&(shared_array->entry[shared_array->avail]),
3296 			       ac->entry, sizeof(void *) * batchcount);
3297 			shared_array->avail += batchcount;
3298 			goto free_done;
3299 		}
3300 	}
3301 
3302 	free_block(cachep, ac->entry, batchcount, node, &list);
3303 free_done:
3304 #if STATS
3305 	{
3306 		int i = 0;
3307 		struct page *page;
3308 
3309 		list_for_each_entry(page, &n->slabs_free, lru) {
3310 			BUG_ON(page->active);
3311 
3312 			i++;
3313 		}
3314 		STATS_SET_FREEABLE(cachep, i);
3315 	}
3316 #endif
3317 	spin_unlock(&n->list_lock);
3318 	slabs_destroy(cachep, &list);
3319 	ac->avail -= batchcount;
3320 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3321 }
3322 
3323 /*
3324  * Release an obj back to its cache. If the obj has a constructed state, it must
3325  * be in this state _before_ it is released.  Called with disabled ints.
3326  */
3327 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3328 				unsigned long caller)
3329 {
3330 	struct array_cache *ac = cpu_cache_get(cachep);
3331 
3332 	kasan_slab_free(cachep, objp);
3333 
3334 	check_irq_off();
3335 	kmemleak_free_recursive(objp, cachep->flags);
3336 	objp = cache_free_debugcheck(cachep, objp, caller);
3337 
3338 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3339 
3340 	/*
3341 	 * Skip calling cache_free_alien() when the platform is not numa.
3342 	 * This will avoid cache misses that happen while accessing slabp (which
3343 	 * is per page memory  reference) to get nodeid. Instead use a global
3344 	 * variable to skip the call, which is mostly likely to be present in
3345 	 * the cache.
3346 	 */
3347 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3348 		return;
3349 
3350 	if (ac->avail < ac->limit) {
3351 		STATS_INC_FREEHIT(cachep);
3352 	} else {
3353 		STATS_INC_FREEMISS(cachep);
3354 		cache_flusharray(cachep, ac);
3355 	}
3356 
3357 	if (sk_memalloc_socks()) {
3358 		struct page *page = virt_to_head_page(objp);
3359 
3360 		if (unlikely(PageSlabPfmemalloc(page))) {
3361 			cache_free_pfmemalloc(cachep, page, objp);
3362 			return;
3363 		}
3364 	}
3365 
3366 	ac->entry[ac->avail++] = objp;
3367 }
3368 
3369 /**
3370  * kmem_cache_alloc - Allocate an object
3371  * @cachep: The cache to allocate from.
3372  * @flags: See kmalloc().
3373  *
3374  * Allocate an object from this cache.  The flags are only relevant
3375  * if the cache has no available objects.
3376  */
3377 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3378 {
3379 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3380 
3381 	kasan_slab_alloc(cachep, ret, flags);
3382 	trace_kmem_cache_alloc(_RET_IP_, ret,
3383 			       cachep->object_size, cachep->size, flags);
3384 
3385 	return ret;
3386 }
3387 EXPORT_SYMBOL(kmem_cache_alloc);
3388 
3389 static __always_inline void
3390 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3391 				  size_t size, void **p, unsigned long caller)
3392 {
3393 	size_t i;
3394 
3395 	for (i = 0; i < size; i++)
3396 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3397 }
3398 
3399 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3400 			  void **p)
3401 {
3402 	size_t i;
3403 
3404 	s = slab_pre_alloc_hook(s, flags);
3405 	if (!s)
3406 		return 0;
3407 
3408 	cache_alloc_debugcheck_before(s, flags);
3409 
3410 	local_irq_disable();
3411 	for (i = 0; i < size; i++) {
3412 		void *objp = __do_cache_alloc(s, flags);
3413 
3414 		if (unlikely(!objp))
3415 			goto error;
3416 		p[i] = objp;
3417 	}
3418 	local_irq_enable();
3419 
3420 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3421 
3422 	/* Clear memory outside IRQ disabled section */
3423 	if (unlikely(flags & __GFP_ZERO))
3424 		for (i = 0; i < size; i++)
3425 			memset(p[i], 0, s->object_size);
3426 
3427 	slab_post_alloc_hook(s, flags, size, p);
3428 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3429 	return size;
3430 error:
3431 	local_irq_enable();
3432 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3433 	slab_post_alloc_hook(s, flags, i, p);
3434 	__kmem_cache_free_bulk(s, i, p);
3435 	return 0;
3436 }
3437 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3438 
3439 #ifdef CONFIG_TRACING
3440 void *
3441 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3442 {
3443 	void *ret;
3444 
3445 	ret = slab_alloc(cachep, flags, _RET_IP_);
3446 
3447 	kasan_kmalloc(cachep, ret, size, flags);
3448 	trace_kmalloc(_RET_IP_, ret,
3449 		      size, cachep->size, flags);
3450 	return ret;
3451 }
3452 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3453 #endif
3454 
3455 #ifdef CONFIG_NUMA
3456 /**
3457  * kmem_cache_alloc_node - Allocate an object on the specified node
3458  * @cachep: The cache to allocate from.
3459  * @flags: See kmalloc().
3460  * @nodeid: node number of the target node.
3461  *
3462  * Identical to kmem_cache_alloc but it will allocate memory on the given
3463  * node, which can improve the performance for cpu bound structures.
3464  *
3465  * Fallback to other node is possible if __GFP_THISNODE is not set.
3466  */
3467 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3468 {
3469 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3470 
3471 	kasan_slab_alloc(cachep, ret, flags);
3472 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3473 				    cachep->object_size, cachep->size,
3474 				    flags, nodeid);
3475 
3476 	return ret;
3477 }
3478 EXPORT_SYMBOL(kmem_cache_alloc_node);
3479 
3480 #ifdef CONFIG_TRACING
3481 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3482 				  gfp_t flags,
3483 				  int nodeid,
3484 				  size_t size)
3485 {
3486 	void *ret;
3487 
3488 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3489 
3490 	kasan_kmalloc(cachep, ret, size, flags);
3491 	trace_kmalloc_node(_RET_IP_, ret,
3492 			   size, cachep->size,
3493 			   flags, nodeid);
3494 	return ret;
3495 }
3496 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3497 #endif
3498 
3499 static __always_inline void *
3500 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3501 {
3502 	struct kmem_cache *cachep;
3503 	void *ret;
3504 
3505 	cachep = kmalloc_slab(size, flags);
3506 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3507 		return cachep;
3508 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3509 	kasan_kmalloc(cachep, ret, size, flags);
3510 
3511 	return ret;
3512 }
3513 
3514 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3515 {
3516 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3517 }
3518 EXPORT_SYMBOL(__kmalloc_node);
3519 
3520 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3521 		int node, unsigned long caller)
3522 {
3523 	return __do_kmalloc_node(size, flags, node, caller);
3524 }
3525 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3526 #endif /* CONFIG_NUMA */
3527 
3528 /**
3529  * __do_kmalloc - allocate memory
3530  * @size: how many bytes of memory are required.
3531  * @flags: the type of memory to allocate (see kmalloc).
3532  * @caller: function caller for debug tracking of the caller
3533  */
3534 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3535 					  unsigned long caller)
3536 {
3537 	struct kmem_cache *cachep;
3538 	void *ret;
3539 
3540 	cachep = kmalloc_slab(size, flags);
3541 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3542 		return cachep;
3543 	ret = slab_alloc(cachep, flags, caller);
3544 
3545 	kasan_kmalloc(cachep, ret, size, flags);
3546 	trace_kmalloc(caller, ret,
3547 		      size, cachep->size, flags);
3548 
3549 	return ret;
3550 }
3551 
3552 void *__kmalloc(size_t size, gfp_t flags)
3553 {
3554 	return __do_kmalloc(size, flags, _RET_IP_);
3555 }
3556 EXPORT_SYMBOL(__kmalloc);
3557 
3558 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3559 {
3560 	return __do_kmalloc(size, flags, caller);
3561 }
3562 EXPORT_SYMBOL(__kmalloc_track_caller);
3563 
3564 /**
3565  * kmem_cache_free - Deallocate an object
3566  * @cachep: The cache the allocation was from.
3567  * @objp: The previously allocated object.
3568  *
3569  * Free an object which was previously allocated from this
3570  * cache.
3571  */
3572 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3573 {
3574 	unsigned long flags;
3575 	cachep = cache_from_obj(cachep, objp);
3576 	if (!cachep)
3577 		return;
3578 
3579 	local_irq_save(flags);
3580 	debug_check_no_locks_freed(objp, cachep->object_size);
3581 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3582 		debug_check_no_obj_freed(objp, cachep->object_size);
3583 	__cache_free(cachep, objp, _RET_IP_);
3584 	local_irq_restore(flags);
3585 
3586 	trace_kmem_cache_free(_RET_IP_, objp);
3587 }
3588 EXPORT_SYMBOL(kmem_cache_free);
3589 
3590 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3591 {
3592 	struct kmem_cache *s;
3593 	size_t i;
3594 
3595 	local_irq_disable();
3596 	for (i = 0; i < size; i++) {
3597 		void *objp = p[i];
3598 
3599 		if (!orig_s) /* called via kfree_bulk */
3600 			s = virt_to_cache(objp);
3601 		else
3602 			s = cache_from_obj(orig_s, objp);
3603 
3604 		debug_check_no_locks_freed(objp, s->object_size);
3605 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3606 			debug_check_no_obj_freed(objp, s->object_size);
3607 
3608 		__cache_free(s, objp, _RET_IP_);
3609 	}
3610 	local_irq_enable();
3611 
3612 	/* FIXME: add tracing */
3613 }
3614 EXPORT_SYMBOL(kmem_cache_free_bulk);
3615 
3616 /**
3617  * kfree - free previously allocated memory
3618  * @objp: pointer returned by kmalloc.
3619  *
3620  * If @objp is NULL, no operation is performed.
3621  *
3622  * Don't free memory not originally allocated by kmalloc()
3623  * or you will run into trouble.
3624  */
3625 void kfree(const void *objp)
3626 {
3627 	struct kmem_cache *c;
3628 	unsigned long flags;
3629 
3630 	trace_kfree(_RET_IP_, objp);
3631 
3632 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3633 		return;
3634 	local_irq_save(flags);
3635 	kfree_debugcheck(objp);
3636 	c = virt_to_cache(objp);
3637 	debug_check_no_locks_freed(objp, c->object_size);
3638 
3639 	debug_check_no_obj_freed(objp, c->object_size);
3640 	__cache_free(c, (void *)objp, _RET_IP_);
3641 	local_irq_restore(flags);
3642 }
3643 EXPORT_SYMBOL(kfree);
3644 
3645 /*
3646  * This initializes kmem_cache_node or resizes various caches for all nodes.
3647  */
3648 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3649 {
3650 	int node;
3651 	struct kmem_cache_node *n;
3652 	struct array_cache *new_shared;
3653 	struct alien_cache **new_alien = NULL;
3654 
3655 	for_each_online_node(node) {
3656 
3657 		if (use_alien_caches) {
3658 			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3659 			if (!new_alien)
3660 				goto fail;
3661 		}
3662 
3663 		new_shared = NULL;
3664 		if (cachep->shared) {
3665 			new_shared = alloc_arraycache(node,
3666 				cachep->shared*cachep->batchcount,
3667 					0xbaadf00d, gfp);
3668 			if (!new_shared) {
3669 				free_alien_cache(new_alien);
3670 				goto fail;
3671 			}
3672 		}
3673 
3674 		n = get_node(cachep, node);
3675 		if (n) {
3676 			struct array_cache *shared = n->shared;
3677 			LIST_HEAD(list);
3678 
3679 			spin_lock_irq(&n->list_lock);
3680 
3681 			if (shared)
3682 				free_block(cachep, shared->entry,
3683 						shared->avail, node, &list);
3684 
3685 			n->shared = new_shared;
3686 			if (!n->alien) {
3687 				n->alien = new_alien;
3688 				new_alien = NULL;
3689 			}
3690 			n->free_limit = (1 + nr_cpus_node(node)) *
3691 					cachep->batchcount + cachep->num;
3692 			spin_unlock_irq(&n->list_lock);
3693 			slabs_destroy(cachep, &list);
3694 			kfree(shared);
3695 			free_alien_cache(new_alien);
3696 			continue;
3697 		}
3698 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3699 		if (!n) {
3700 			free_alien_cache(new_alien);
3701 			kfree(new_shared);
3702 			goto fail;
3703 		}
3704 
3705 		kmem_cache_node_init(n);
3706 		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3707 				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3708 		n->shared = new_shared;
3709 		n->alien = new_alien;
3710 		n->free_limit = (1 + nr_cpus_node(node)) *
3711 					cachep->batchcount + cachep->num;
3712 		cachep->node[node] = n;
3713 	}
3714 	return 0;
3715 
3716 fail:
3717 	if (!cachep->list.next) {
3718 		/* Cache is not active yet. Roll back what we did */
3719 		node--;
3720 		while (node >= 0) {
3721 			n = get_node(cachep, node);
3722 			if (n) {
3723 				kfree(n->shared);
3724 				free_alien_cache(n->alien);
3725 				kfree(n);
3726 				cachep->node[node] = NULL;
3727 			}
3728 			node--;
3729 		}
3730 	}
3731 	return -ENOMEM;
3732 }
3733 
3734 /* Always called with the slab_mutex held */
3735 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3736 				int batchcount, int shared, gfp_t gfp)
3737 {
3738 	struct array_cache __percpu *cpu_cache, *prev;
3739 	int cpu;
3740 
3741 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3742 	if (!cpu_cache)
3743 		return -ENOMEM;
3744 
3745 	prev = cachep->cpu_cache;
3746 	cachep->cpu_cache = cpu_cache;
3747 	kick_all_cpus_sync();
3748 
3749 	check_irq_on();
3750 	cachep->batchcount = batchcount;
3751 	cachep->limit = limit;
3752 	cachep->shared = shared;
3753 
3754 	if (!prev)
3755 		goto alloc_node;
3756 
3757 	for_each_online_cpu(cpu) {
3758 		LIST_HEAD(list);
3759 		int node;
3760 		struct kmem_cache_node *n;
3761 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3762 
3763 		node = cpu_to_mem(cpu);
3764 		n = get_node(cachep, node);
3765 		spin_lock_irq(&n->list_lock);
3766 		free_block(cachep, ac->entry, ac->avail, node, &list);
3767 		spin_unlock_irq(&n->list_lock);
3768 		slabs_destroy(cachep, &list);
3769 	}
3770 	free_percpu(prev);
3771 
3772 alloc_node:
3773 	return alloc_kmem_cache_node(cachep, gfp);
3774 }
3775 
3776 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3777 				int batchcount, int shared, gfp_t gfp)
3778 {
3779 	int ret;
3780 	struct kmem_cache *c;
3781 
3782 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3783 
3784 	if (slab_state < FULL)
3785 		return ret;
3786 
3787 	if ((ret < 0) || !is_root_cache(cachep))
3788 		return ret;
3789 
3790 	lockdep_assert_held(&slab_mutex);
3791 	for_each_memcg_cache(c, cachep) {
3792 		/* return value determined by the root cache only */
3793 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3794 	}
3795 
3796 	return ret;
3797 }
3798 
3799 /* Called with slab_mutex held always */
3800 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3801 {
3802 	int err;
3803 	int limit = 0;
3804 	int shared = 0;
3805 	int batchcount = 0;
3806 
3807 	if (!is_root_cache(cachep)) {
3808 		struct kmem_cache *root = memcg_root_cache(cachep);
3809 		limit = root->limit;
3810 		shared = root->shared;
3811 		batchcount = root->batchcount;
3812 	}
3813 
3814 	if (limit && shared && batchcount)
3815 		goto skip_setup;
3816 	/*
3817 	 * The head array serves three purposes:
3818 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3819 	 * - reduce the number of spinlock operations.
3820 	 * - reduce the number of linked list operations on the slab and
3821 	 *   bufctl chains: array operations are cheaper.
3822 	 * The numbers are guessed, we should auto-tune as described by
3823 	 * Bonwick.
3824 	 */
3825 	if (cachep->size > 131072)
3826 		limit = 1;
3827 	else if (cachep->size > PAGE_SIZE)
3828 		limit = 8;
3829 	else if (cachep->size > 1024)
3830 		limit = 24;
3831 	else if (cachep->size > 256)
3832 		limit = 54;
3833 	else
3834 		limit = 120;
3835 
3836 	/*
3837 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3838 	 * allocation behaviour: Most allocs on one cpu, most free operations
3839 	 * on another cpu. For these cases, an efficient object passing between
3840 	 * cpus is necessary. This is provided by a shared array. The array
3841 	 * replaces Bonwick's magazine layer.
3842 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3843 	 * to a larger limit. Thus disabled by default.
3844 	 */
3845 	shared = 0;
3846 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3847 		shared = 8;
3848 
3849 #if DEBUG
3850 	/*
3851 	 * With debugging enabled, large batchcount lead to excessively long
3852 	 * periods with disabled local interrupts. Limit the batchcount
3853 	 */
3854 	if (limit > 32)
3855 		limit = 32;
3856 #endif
3857 	batchcount = (limit + 1) / 2;
3858 skip_setup:
3859 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3860 	if (err)
3861 		pr_err("enable_cpucache failed for %s, error %d\n",
3862 		       cachep->name, -err);
3863 	return err;
3864 }
3865 
3866 /*
3867  * Drain an array if it contains any elements taking the node lock only if
3868  * necessary. Note that the node listlock also protects the array_cache
3869  * if drain_array() is used on the shared array.
3870  */
3871 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3872 			 struct array_cache *ac, int force, int node)
3873 {
3874 	LIST_HEAD(list);
3875 	int tofree;
3876 
3877 	if (!ac || !ac->avail)
3878 		return;
3879 	if (ac->touched && !force) {
3880 		ac->touched = 0;
3881 	} else {
3882 		spin_lock_irq(&n->list_lock);
3883 		if (ac->avail) {
3884 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3885 			if (tofree > ac->avail)
3886 				tofree = (ac->avail + 1) / 2;
3887 			free_block(cachep, ac->entry, tofree, node, &list);
3888 			ac->avail -= tofree;
3889 			memmove(ac->entry, &(ac->entry[tofree]),
3890 				sizeof(void *) * ac->avail);
3891 		}
3892 		spin_unlock_irq(&n->list_lock);
3893 		slabs_destroy(cachep, &list);
3894 	}
3895 }
3896 
3897 /**
3898  * cache_reap - Reclaim memory from caches.
3899  * @w: work descriptor
3900  *
3901  * Called from workqueue/eventd every few seconds.
3902  * Purpose:
3903  * - clear the per-cpu caches for this CPU.
3904  * - return freeable pages to the main free memory pool.
3905  *
3906  * If we cannot acquire the cache chain mutex then just give up - we'll try
3907  * again on the next iteration.
3908  */
3909 static void cache_reap(struct work_struct *w)
3910 {
3911 	struct kmem_cache *searchp;
3912 	struct kmem_cache_node *n;
3913 	int node = numa_mem_id();
3914 	struct delayed_work *work = to_delayed_work(w);
3915 
3916 	if (!mutex_trylock(&slab_mutex))
3917 		/* Give up. Setup the next iteration. */
3918 		goto out;
3919 
3920 	list_for_each_entry(searchp, &slab_caches, list) {
3921 		check_irq_on();
3922 
3923 		/*
3924 		 * We only take the node lock if absolutely necessary and we
3925 		 * have established with reasonable certainty that
3926 		 * we can do some work if the lock was obtained.
3927 		 */
3928 		n = get_node(searchp, node);
3929 
3930 		reap_alien(searchp, n);
3931 
3932 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3933 
3934 		/*
3935 		 * These are racy checks but it does not matter
3936 		 * if we skip one check or scan twice.
3937 		 */
3938 		if (time_after(n->next_reap, jiffies))
3939 			goto next;
3940 
3941 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3942 
3943 		drain_array(searchp, n, n->shared, 0, node);
3944 
3945 		if (n->free_touched)
3946 			n->free_touched = 0;
3947 		else {
3948 			int freed;
3949 
3950 			freed = drain_freelist(searchp, n, (n->free_limit +
3951 				5 * searchp->num - 1) / (5 * searchp->num));
3952 			STATS_ADD_REAPED(searchp, freed);
3953 		}
3954 next:
3955 		cond_resched();
3956 	}
3957 	check_irq_on();
3958 	mutex_unlock(&slab_mutex);
3959 	next_reap_node();
3960 out:
3961 	/* Set up the next iteration */
3962 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3963 }
3964 
3965 #ifdef CONFIG_SLABINFO
3966 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3967 {
3968 	struct page *page;
3969 	unsigned long active_objs;
3970 	unsigned long num_objs;
3971 	unsigned long active_slabs = 0;
3972 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3973 	const char *name;
3974 	char *error = NULL;
3975 	int node;
3976 	struct kmem_cache_node *n;
3977 
3978 	active_objs = 0;
3979 	num_slabs = 0;
3980 	for_each_kmem_cache_node(cachep, node, n) {
3981 
3982 		check_irq_on();
3983 		spin_lock_irq(&n->list_lock);
3984 
3985 		list_for_each_entry(page, &n->slabs_full, lru) {
3986 			if (page->active != cachep->num && !error)
3987 				error = "slabs_full accounting error";
3988 			active_objs += cachep->num;
3989 			active_slabs++;
3990 		}
3991 		list_for_each_entry(page, &n->slabs_partial, lru) {
3992 			if (page->active == cachep->num && !error)
3993 				error = "slabs_partial accounting error";
3994 			if (!page->active && !error)
3995 				error = "slabs_partial accounting error";
3996 			active_objs += page->active;
3997 			active_slabs++;
3998 		}
3999 		list_for_each_entry(page, &n->slabs_free, lru) {
4000 			if (page->active && !error)
4001 				error = "slabs_free accounting error";
4002 			num_slabs++;
4003 		}
4004 		free_objects += n->free_objects;
4005 		if (n->shared)
4006 			shared_avail += n->shared->avail;
4007 
4008 		spin_unlock_irq(&n->list_lock);
4009 	}
4010 	num_slabs += active_slabs;
4011 	num_objs = num_slabs * cachep->num;
4012 	if (num_objs - active_objs != free_objects && !error)
4013 		error = "free_objects accounting error";
4014 
4015 	name = cachep->name;
4016 	if (error)
4017 		pr_err("slab: cache %s error: %s\n", name, error);
4018 
4019 	sinfo->active_objs = active_objs;
4020 	sinfo->num_objs = num_objs;
4021 	sinfo->active_slabs = active_slabs;
4022 	sinfo->num_slabs = num_slabs;
4023 	sinfo->shared_avail = shared_avail;
4024 	sinfo->limit = cachep->limit;
4025 	sinfo->batchcount = cachep->batchcount;
4026 	sinfo->shared = cachep->shared;
4027 	sinfo->objects_per_slab = cachep->num;
4028 	sinfo->cache_order = cachep->gfporder;
4029 }
4030 
4031 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4032 {
4033 #if STATS
4034 	{			/* node stats */
4035 		unsigned long high = cachep->high_mark;
4036 		unsigned long allocs = cachep->num_allocations;
4037 		unsigned long grown = cachep->grown;
4038 		unsigned long reaped = cachep->reaped;
4039 		unsigned long errors = cachep->errors;
4040 		unsigned long max_freeable = cachep->max_freeable;
4041 		unsigned long node_allocs = cachep->node_allocs;
4042 		unsigned long node_frees = cachep->node_frees;
4043 		unsigned long overflows = cachep->node_overflow;
4044 
4045 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4046 			   allocs, high, grown,
4047 			   reaped, errors, max_freeable, node_allocs,
4048 			   node_frees, overflows);
4049 	}
4050 	/* cpu stats */
4051 	{
4052 		unsigned long allochit = atomic_read(&cachep->allochit);
4053 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4054 		unsigned long freehit = atomic_read(&cachep->freehit);
4055 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4056 
4057 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4058 			   allochit, allocmiss, freehit, freemiss);
4059 	}
4060 #endif
4061 }
4062 
4063 #define MAX_SLABINFO_WRITE 128
4064 /**
4065  * slabinfo_write - Tuning for the slab allocator
4066  * @file: unused
4067  * @buffer: user buffer
4068  * @count: data length
4069  * @ppos: unused
4070  */
4071 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4072 		       size_t count, loff_t *ppos)
4073 {
4074 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4075 	int limit, batchcount, shared, res;
4076 	struct kmem_cache *cachep;
4077 
4078 	if (count > MAX_SLABINFO_WRITE)
4079 		return -EINVAL;
4080 	if (copy_from_user(&kbuf, buffer, count))
4081 		return -EFAULT;
4082 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4083 
4084 	tmp = strchr(kbuf, ' ');
4085 	if (!tmp)
4086 		return -EINVAL;
4087 	*tmp = '\0';
4088 	tmp++;
4089 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4090 		return -EINVAL;
4091 
4092 	/* Find the cache in the chain of caches. */
4093 	mutex_lock(&slab_mutex);
4094 	res = -EINVAL;
4095 	list_for_each_entry(cachep, &slab_caches, list) {
4096 		if (!strcmp(cachep->name, kbuf)) {
4097 			if (limit < 1 || batchcount < 1 ||
4098 					batchcount > limit || shared < 0) {
4099 				res = 0;
4100 			} else {
4101 				res = do_tune_cpucache(cachep, limit,
4102 						       batchcount, shared,
4103 						       GFP_KERNEL);
4104 			}
4105 			break;
4106 		}
4107 	}
4108 	mutex_unlock(&slab_mutex);
4109 	if (res >= 0)
4110 		res = count;
4111 	return res;
4112 }
4113 
4114 #ifdef CONFIG_DEBUG_SLAB_LEAK
4115 
4116 static inline int add_caller(unsigned long *n, unsigned long v)
4117 {
4118 	unsigned long *p;
4119 	int l;
4120 	if (!v)
4121 		return 1;
4122 	l = n[1];
4123 	p = n + 2;
4124 	while (l) {
4125 		int i = l/2;
4126 		unsigned long *q = p + 2 * i;
4127 		if (*q == v) {
4128 			q[1]++;
4129 			return 1;
4130 		}
4131 		if (*q > v) {
4132 			l = i;
4133 		} else {
4134 			p = q + 2;
4135 			l -= i + 1;
4136 		}
4137 	}
4138 	if (++n[1] == n[0])
4139 		return 0;
4140 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4141 	p[0] = v;
4142 	p[1] = 1;
4143 	return 1;
4144 }
4145 
4146 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4147 						struct page *page)
4148 {
4149 	void *p;
4150 	int i, j;
4151 	unsigned long v;
4152 
4153 	if (n[0] == n[1])
4154 		return;
4155 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4156 		bool active = true;
4157 
4158 		for (j = page->active; j < c->num; j++) {
4159 			if (get_free_obj(page, j) == i) {
4160 				active = false;
4161 				break;
4162 			}
4163 		}
4164 
4165 		if (!active)
4166 			continue;
4167 
4168 		/*
4169 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4170 		 * mapping is established when actual object allocation and
4171 		 * we could mistakenly access the unmapped object in the cpu
4172 		 * cache.
4173 		 */
4174 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4175 			continue;
4176 
4177 		if (!add_caller(n, v))
4178 			return;
4179 	}
4180 }
4181 
4182 static void show_symbol(struct seq_file *m, unsigned long address)
4183 {
4184 #ifdef CONFIG_KALLSYMS
4185 	unsigned long offset, size;
4186 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4187 
4188 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4189 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4190 		if (modname[0])
4191 			seq_printf(m, " [%s]", modname);
4192 		return;
4193 	}
4194 #endif
4195 	seq_printf(m, "%p", (void *)address);
4196 }
4197 
4198 static int leaks_show(struct seq_file *m, void *p)
4199 {
4200 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4201 	struct page *page;
4202 	struct kmem_cache_node *n;
4203 	const char *name;
4204 	unsigned long *x = m->private;
4205 	int node;
4206 	int i;
4207 
4208 	if (!(cachep->flags & SLAB_STORE_USER))
4209 		return 0;
4210 	if (!(cachep->flags & SLAB_RED_ZONE))
4211 		return 0;
4212 
4213 	/*
4214 	 * Set store_user_clean and start to grab stored user information
4215 	 * for all objects on this cache. If some alloc/free requests comes
4216 	 * during the processing, information would be wrong so restart
4217 	 * whole processing.
4218 	 */
4219 	do {
4220 		set_store_user_clean(cachep);
4221 		drain_cpu_caches(cachep);
4222 
4223 		x[1] = 0;
4224 
4225 		for_each_kmem_cache_node(cachep, node, n) {
4226 
4227 			check_irq_on();
4228 			spin_lock_irq(&n->list_lock);
4229 
4230 			list_for_each_entry(page, &n->slabs_full, lru)
4231 				handle_slab(x, cachep, page);
4232 			list_for_each_entry(page, &n->slabs_partial, lru)
4233 				handle_slab(x, cachep, page);
4234 			spin_unlock_irq(&n->list_lock);
4235 		}
4236 	} while (!is_store_user_clean(cachep));
4237 
4238 	name = cachep->name;
4239 	if (x[0] == x[1]) {
4240 		/* Increase the buffer size */
4241 		mutex_unlock(&slab_mutex);
4242 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4243 		if (!m->private) {
4244 			/* Too bad, we are really out */
4245 			m->private = x;
4246 			mutex_lock(&slab_mutex);
4247 			return -ENOMEM;
4248 		}
4249 		*(unsigned long *)m->private = x[0] * 2;
4250 		kfree(x);
4251 		mutex_lock(&slab_mutex);
4252 		/* Now make sure this entry will be retried */
4253 		m->count = m->size;
4254 		return 0;
4255 	}
4256 	for (i = 0; i < x[1]; i++) {
4257 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4258 		show_symbol(m, x[2*i+2]);
4259 		seq_putc(m, '\n');
4260 	}
4261 
4262 	return 0;
4263 }
4264 
4265 static const struct seq_operations slabstats_op = {
4266 	.start = slab_start,
4267 	.next = slab_next,
4268 	.stop = slab_stop,
4269 	.show = leaks_show,
4270 };
4271 
4272 static int slabstats_open(struct inode *inode, struct file *file)
4273 {
4274 	unsigned long *n;
4275 
4276 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4277 	if (!n)
4278 		return -ENOMEM;
4279 
4280 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4281 
4282 	return 0;
4283 }
4284 
4285 static const struct file_operations proc_slabstats_operations = {
4286 	.open		= slabstats_open,
4287 	.read		= seq_read,
4288 	.llseek		= seq_lseek,
4289 	.release	= seq_release_private,
4290 };
4291 #endif
4292 
4293 static int __init slab_proc_init(void)
4294 {
4295 #ifdef CONFIG_DEBUG_SLAB_LEAK
4296 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4297 #endif
4298 	return 0;
4299 }
4300 module_init(slab_proc_init);
4301 #endif
4302 
4303 /**
4304  * ksize - get the actual amount of memory allocated for a given object
4305  * @objp: Pointer to the object
4306  *
4307  * kmalloc may internally round up allocations and return more memory
4308  * than requested. ksize() can be used to determine the actual amount of
4309  * memory allocated. The caller may use this additional memory, even though
4310  * a smaller amount of memory was initially specified with the kmalloc call.
4311  * The caller must guarantee that objp points to a valid object previously
4312  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4313  * must not be freed during the duration of the call.
4314  */
4315 size_t ksize(const void *objp)
4316 {
4317 	size_t size;
4318 
4319 	BUG_ON(!objp);
4320 	if (unlikely(objp == ZERO_SIZE_PTR))
4321 		return 0;
4322 
4323 	size = virt_to_cache(objp)->object_size;
4324 	/* We assume that ksize callers could use the whole allocated area,
4325 	 * so we need to unpoison this area.
4326 	 */
4327 	kasan_krealloc(objp, size, GFP_NOWAIT);
4328 
4329 	return size;
4330 }
4331 EXPORT_SYMBOL(ksize);
4332