1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 120 #include <asm/cacheflush.h> 121 #include <asm/tlbflush.h> 122 #include <asm/page.h> 123 124 #include <trace/events/kmem.h> 125 126 /* 127 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 128 * 0 for faster, smaller code (especially in the critical paths). 129 * 130 * STATS - 1 to collect stats for /proc/slabinfo. 131 * 0 for faster, smaller code (especially in the critical paths). 132 * 133 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 134 */ 135 136 #ifdef CONFIG_DEBUG_SLAB 137 #define DEBUG 1 138 #define STATS 1 139 #define FORCED_DEBUG 1 140 #else 141 #define DEBUG 0 142 #define STATS 0 143 #define FORCED_DEBUG 0 144 #endif 145 146 /* Shouldn't this be in a header file somewhere? */ 147 #define BYTES_PER_WORD sizeof(void *) 148 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 149 150 #ifndef ARCH_KMALLOC_FLAGS 151 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 152 #endif 153 154 /* Legal flag mask for kmem_cache_create(). */ 155 #if DEBUG 156 # define CREATE_MASK (SLAB_RED_ZONE | \ 157 SLAB_POISON | SLAB_HWCACHE_ALIGN | \ 158 SLAB_CACHE_DMA | \ 159 SLAB_STORE_USER | \ 160 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 161 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ 162 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) 163 #else 164 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ 165 SLAB_CACHE_DMA | \ 166 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 167 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ 168 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) 169 #endif 170 171 /* 172 * kmem_bufctl_t: 173 * 174 * Bufctl's are used for linking objs within a slab 175 * linked offsets. 176 * 177 * This implementation relies on "struct page" for locating the cache & 178 * slab an object belongs to. 179 * This allows the bufctl structure to be small (one int), but limits 180 * the number of objects a slab (not a cache) can contain when off-slab 181 * bufctls are used. The limit is the size of the largest general cache 182 * that does not use off-slab slabs. 183 * For 32bit archs with 4 kB pages, is this 56. 184 * This is not serious, as it is only for large objects, when it is unwise 185 * to have too many per slab. 186 * Note: This limit can be raised by introducing a general cache whose size 187 * is less than 512 (PAGE_SIZE<<3), but greater than 256. 188 */ 189 190 typedef unsigned int kmem_bufctl_t; 191 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) 192 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) 193 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) 194 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) 195 196 /* 197 * struct slab_rcu 198 * 199 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to 200 * arrange for kmem_freepages to be called via RCU. This is useful if 201 * we need to approach a kernel structure obliquely, from its address 202 * obtained without the usual locking. We can lock the structure to 203 * stabilize it and check it's still at the given address, only if we 204 * can be sure that the memory has not been meanwhile reused for some 205 * other kind of object (which our subsystem's lock might corrupt). 206 * 207 * rcu_read_lock before reading the address, then rcu_read_unlock after 208 * taking the spinlock within the structure expected at that address. 209 */ 210 struct slab_rcu { 211 struct rcu_head head; 212 struct kmem_cache *cachep; 213 void *addr; 214 }; 215 216 /* 217 * struct slab 218 * 219 * Manages the objs in a slab. Placed either at the beginning of mem allocated 220 * for a slab, or allocated from an general cache. 221 * Slabs are chained into three list: fully used, partial, fully free slabs. 222 */ 223 struct slab { 224 union { 225 struct { 226 struct list_head list; 227 unsigned long colouroff; 228 void *s_mem; /* including colour offset */ 229 unsigned int inuse; /* num of objs active in slab */ 230 kmem_bufctl_t free; 231 unsigned short nodeid; 232 }; 233 struct slab_rcu __slab_cover_slab_rcu; 234 }; 235 }; 236 237 /* 238 * struct array_cache 239 * 240 * Purpose: 241 * - LIFO ordering, to hand out cache-warm objects from _alloc 242 * - reduce the number of linked list operations 243 * - reduce spinlock operations 244 * 245 * The limit is stored in the per-cpu structure to reduce the data cache 246 * footprint. 247 * 248 */ 249 struct array_cache { 250 unsigned int avail; 251 unsigned int limit; 252 unsigned int batchcount; 253 unsigned int touched; 254 spinlock_t lock; 255 void *entry[]; /* 256 * Must have this definition in here for the proper 257 * alignment of array_cache. Also simplifies accessing 258 * the entries. 259 */ 260 }; 261 262 /* 263 * bootstrap: The caches do not work without cpuarrays anymore, but the 264 * cpuarrays are allocated from the generic caches... 265 */ 266 #define BOOT_CPUCACHE_ENTRIES 1 267 struct arraycache_init { 268 struct array_cache cache; 269 void *entries[BOOT_CPUCACHE_ENTRIES]; 270 }; 271 272 /* 273 * The slab lists for all objects. 274 */ 275 struct kmem_list3 { 276 struct list_head slabs_partial; /* partial list first, better asm code */ 277 struct list_head slabs_full; 278 struct list_head slabs_free; 279 unsigned long free_objects; 280 unsigned int free_limit; 281 unsigned int colour_next; /* Per-node cache coloring */ 282 spinlock_t list_lock; 283 struct array_cache *shared; /* shared per node */ 284 struct array_cache **alien; /* on other nodes */ 285 unsigned long next_reap; /* updated without locking */ 286 int free_touched; /* updated without locking */ 287 }; 288 289 /* 290 * Need this for bootstrapping a per node allocator. 291 */ 292 #define NUM_INIT_LISTS (3 * MAX_NUMNODES) 293 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; 294 #define CACHE_CACHE 0 295 #define SIZE_AC MAX_NUMNODES 296 #define SIZE_L3 (2 * MAX_NUMNODES) 297 298 static int drain_freelist(struct kmem_cache *cache, 299 struct kmem_list3 *l3, int tofree); 300 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 301 int node); 302 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 303 static void cache_reap(struct work_struct *unused); 304 305 /* 306 * This function must be completely optimized away if a constant is passed to 307 * it. Mostly the same as what is in linux/slab.h except it returns an index. 308 */ 309 static __always_inline int index_of(const size_t size) 310 { 311 extern void __bad_size(void); 312 313 if (__builtin_constant_p(size)) { 314 int i = 0; 315 316 #define CACHE(x) \ 317 if (size <=x) \ 318 return i; \ 319 else \ 320 i++; 321 #include <linux/kmalloc_sizes.h> 322 #undef CACHE 323 __bad_size(); 324 } else 325 __bad_size(); 326 return 0; 327 } 328 329 static int slab_early_init = 1; 330 331 #define INDEX_AC index_of(sizeof(struct arraycache_init)) 332 #define INDEX_L3 index_of(sizeof(struct kmem_list3)) 333 334 static void kmem_list3_init(struct kmem_list3 *parent) 335 { 336 INIT_LIST_HEAD(&parent->slabs_full); 337 INIT_LIST_HEAD(&parent->slabs_partial); 338 INIT_LIST_HEAD(&parent->slabs_free); 339 parent->shared = NULL; 340 parent->alien = NULL; 341 parent->colour_next = 0; 342 spin_lock_init(&parent->list_lock); 343 parent->free_objects = 0; 344 parent->free_touched = 0; 345 } 346 347 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 348 do { \ 349 INIT_LIST_HEAD(listp); \ 350 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ 351 } while (0) 352 353 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 354 do { \ 355 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 356 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 357 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 358 } while (0) 359 360 #define CFLGS_OFF_SLAB (0x80000000UL) 361 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 362 363 #define BATCHREFILL_LIMIT 16 364 /* 365 * Optimization question: fewer reaps means less probability for unnessary 366 * cpucache drain/refill cycles. 367 * 368 * OTOH the cpuarrays can contain lots of objects, 369 * which could lock up otherwise freeable slabs. 370 */ 371 #define REAPTIMEOUT_CPUC (2*HZ) 372 #define REAPTIMEOUT_LIST3 (4*HZ) 373 374 #if STATS 375 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 376 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 377 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 378 #define STATS_INC_GROWN(x) ((x)->grown++) 379 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 380 #define STATS_SET_HIGH(x) \ 381 do { \ 382 if ((x)->num_active > (x)->high_mark) \ 383 (x)->high_mark = (x)->num_active; \ 384 } while (0) 385 #define STATS_INC_ERR(x) ((x)->errors++) 386 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 387 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 388 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 389 #define STATS_SET_FREEABLE(x, i) \ 390 do { \ 391 if ((x)->max_freeable < i) \ 392 (x)->max_freeable = i; \ 393 } while (0) 394 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 395 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 396 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 397 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 398 #else 399 #define STATS_INC_ACTIVE(x) do { } while (0) 400 #define STATS_DEC_ACTIVE(x) do { } while (0) 401 #define STATS_INC_ALLOCED(x) do { } while (0) 402 #define STATS_INC_GROWN(x) do { } while (0) 403 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 404 #define STATS_SET_HIGH(x) do { } while (0) 405 #define STATS_INC_ERR(x) do { } while (0) 406 #define STATS_INC_NODEALLOCS(x) do { } while (0) 407 #define STATS_INC_NODEFREES(x) do { } while (0) 408 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 409 #define STATS_SET_FREEABLE(x, i) do { } while (0) 410 #define STATS_INC_ALLOCHIT(x) do { } while (0) 411 #define STATS_INC_ALLOCMISS(x) do { } while (0) 412 #define STATS_INC_FREEHIT(x) do { } while (0) 413 #define STATS_INC_FREEMISS(x) do { } while (0) 414 #endif 415 416 #if DEBUG 417 418 /* 419 * memory layout of objects: 420 * 0 : objp 421 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 422 * the end of an object is aligned with the end of the real 423 * allocation. Catches writes behind the end of the allocation. 424 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 425 * redzone word. 426 * cachep->obj_offset: The real object. 427 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 428 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address 429 * [BYTES_PER_WORD long] 430 */ 431 static int obj_offset(struct kmem_cache *cachep) 432 { 433 return cachep->obj_offset; 434 } 435 436 static int obj_size(struct kmem_cache *cachep) 437 { 438 return cachep->obj_size; 439 } 440 441 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 442 { 443 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 444 return (unsigned long long*) (objp + obj_offset(cachep) - 445 sizeof(unsigned long long)); 446 } 447 448 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 449 { 450 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 451 if (cachep->flags & SLAB_STORE_USER) 452 return (unsigned long long *)(objp + cachep->buffer_size - 453 sizeof(unsigned long long) - 454 REDZONE_ALIGN); 455 return (unsigned long long *) (objp + cachep->buffer_size - 456 sizeof(unsigned long long)); 457 } 458 459 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 460 { 461 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 462 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); 463 } 464 465 #else 466 467 #define obj_offset(x) 0 468 #define obj_size(cachep) (cachep->buffer_size) 469 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 470 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 471 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 472 473 #endif 474 475 #ifdef CONFIG_TRACING 476 size_t slab_buffer_size(struct kmem_cache *cachep) 477 { 478 return cachep->buffer_size; 479 } 480 EXPORT_SYMBOL(slab_buffer_size); 481 #endif 482 483 /* 484 * Do not go above this order unless 0 objects fit into the slab or 485 * overridden on the command line. 486 */ 487 #define SLAB_MAX_ORDER_HI 1 488 #define SLAB_MAX_ORDER_LO 0 489 static int slab_max_order = SLAB_MAX_ORDER_LO; 490 static bool slab_max_order_set __initdata; 491 492 /* 493 * Functions for storing/retrieving the cachep and or slab from the page 494 * allocator. These are used to find the slab an obj belongs to. With kfree(), 495 * these are used to find the cache which an obj belongs to. 496 */ 497 static inline void page_set_cache(struct page *page, struct kmem_cache *cache) 498 { 499 page->lru.next = (struct list_head *)cache; 500 } 501 502 static inline struct kmem_cache *page_get_cache(struct page *page) 503 { 504 page = compound_head(page); 505 BUG_ON(!PageSlab(page)); 506 return (struct kmem_cache *)page->lru.next; 507 } 508 509 static inline void page_set_slab(struct page *page, struct slab *slab) 510 { 511 page->lru.prev = (struct list_head *)slab; 512 } 513 514 static inline struct slab *page_get_slab(struct page *page) 515 { 516 BUG_ON(!PageSlab(page)); 517 return (struct slab *)page->lru.prev; 518 } 519 520 static inline struct kmem_cache *virt_to_cache(const void *obj) 521 { 522 struct page *page = virt_to_head_page(obj); 523 return page_get_cache(page); 524 } 525 526 static inline struct slab *virt_to_slab(const void *obj) 527 { 528 struct page *page = virt_to_head_page(obj); 529 return page_get_slab(page); 530 } 531 532 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, 533 unsigned int idx) 534 { 535 return slab->s_mem + cache->buffer_size * idx; 536 } 537 538 /* 539 * We want to avoid an expensive divide : (offset / cache->buffer_size) 540 * Using the fact that buffer_size is a constant for a particular cache, 541 * we can replace (offset / cache->buffer_size) by 542 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 543 */ 544 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 545 const struct slab *slab, void *obj) 546 { 547 u32 offset = (obj - slab->s_mem); 548 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 549 } 550 551 /* 552 * These are the default caches for kmalloc. Custom caches can have other sizes. 553 */ 554 struct cache_sizes malloc_sizes[] = { 555 #define CACHE(x) { .cs_size = (x) }, 556 #include <linux/kmalloc_sizes.h> 557 CACHE(ULONG_MAX) 558 #undef CACHE 559 }; 560 EXPORT_SYMBOL(malloc_sizes); 561 562 /* Must match cache_sizes above. Out of line to keep cache footprint low. */ 563 struct cache_names { 564 char *name; 565 char *name_dma; 566 }; 567 568 static struct cache_names __initdata cache_names[] = { 569 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, 570 #include <linux/kmalloc_sizes.h> 571 {NULL,} 572 #undef CACHE 573 }; 574 575 static struct arraycache_init initarray_cache __initdata = 576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 577 static struct arraycache_init initarray_generic = 578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 579 580 /* internal cache of cache description objs */ 581 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES]; 582 static struct kmem_cache cache_cache = { 583 .nodelists = cache_cache_nodelists, 584 .batchcount = 1, 585 .limit = BOOT_CPUCACHE_ENTRIES, 586 .shared = 1, 587 .buffer_size = sizeof(struct kmem_cache), 588 .name = "kmem_cache", 589 }; 590 591 #define BAD_ALIEN_MAGIC 0x01020304ul 592 593 /* 594 * chicken and egg problem: delay the per-cpu array allocation 595 * until the general caches are up. 596 */ 597 static enum { 598 NONE, 599 PARTIAL_AC, 600 PARTIAL_L3, 601 EARLY, 602 LATE, 603 FULL 604 } g_cpucache_up; 605 606 /* 607 * used by boot code to determine if it can use slab based allocator 608 */ 609 int slab_is_available(void) 610 { 611 return g_cpucache_up >= EARLY; 612 } 613 614 #ifdef CONFIG_LOCKDEP 615 616 /* 617 * Slab sometimes uses the kmalloc slabs to store the slab headers 618 * for other slabs "off slab". 619 * The locking for this is tricky in that it nests within the locks 620 * of all other slabs in a few places; to deal with this special 621 * locking we put on-slab caches into a separate lock-class. 622 * 623 * We set lock class for alien array caches which are up during init. 624 * The lock annotation will be lost if all cpus of a node goes down and 625 * then comes back up during hotplug 626 */ 627 static struct lock_class_key on_slab_l3_key; 628 static struct lock_class_key on_slab_alc_key; 629 630 static struct lock_class_key debugobj_l3_key; 631 static struct lock_class_key debugobj_alc_key; 632 633 static void slab_set_lock_classes(struct kmem_cache *cachep, 634 struct lock_class_key *l3_key, struct lock_class_key *alc_key, 635 int q) 636 { 637 struct array_cache **alc; 638 struct kmem_list3 *l3; 639 int r; 640 641 l3 = cachep->nodelists[q]; 642 if (!l3) 643 return; 644 645 lockdep_set_class(&l3->list_lock, l3_key); 646 alc = l3->alien; 647 /* 648 * FIXME: This check for BAD_ALIEN_MAGIC 649 * should go away when common slab code is taught to 650 * work even without alien caches. 651 * Currently, non NUMA code returns BAD_ALIEN_MAGIC 652 * for alloc_alien_cache, 653 */ 654 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) 655 return; 656 for_each_node(r) { 657 if (alc[r]) 658 lockdep_set_class(&alc[r]->lock, alc_key); 659 } 660 } 661 662 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) 663 { 664 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node); 665 } 666 667 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) 668 { 669 int node; 670 671 for_each_online_node(node) 672 slab_set_debugobj_lock_classes_node(cachep, node); 673 } 674 675 static void init_node_lock_keys(int q) 676 { 677 struct cache_sizes *s = malloc_sizes; 678 679 if (g_cpucache_up < LATE) 680 return; 681 682 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) { 683 struct kmem_list3 *l3; 684 685 l3 = s->cs_cachep->nodelists[q]; 686 if (!l3 || OFF_SLAB(s->cs_cachep)) 687 continue; 688 689 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key, 690 &on_slab_alc_key, q); 691 } 692 } 693 694 static inline void init_lock_keys(void) 695 { 696 int node; 697 698 for_each_node(node) 699 init_node_lock_keys(node); 700 } 701 #else 702 static void init_node_lock_keys(int q) 703 { 704 } 705 706 static inline void init_lock_keys(void) 707 { 708 } 709 710 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) 711 { 712 } 713 714 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) 715 { 716 } 717 #endif 718 719 /* 720 * Guard access to the cache-chain. 721 */ 722 static DEFINE_MUTEX(cache_chain_mutex); 723 static struct list_head cache_chain; 724 725 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 726 727 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 728 { 729 return cachep->array[smp_processor_id()]; 730 } 731 732 static inline struct kmem_cache *__find_general_cachep(size_t size, 733 gfp_t gfpflags) 734 { 735 struct cache_sizes *csizep = malloc_sizes; 736 737 #if DEBUG 738 /* This happens if someone tries to call 739 * kmem_cache_create(), or __kmalloc(), before 740 * the generic caches are initialized. 741 */ 742 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); 743 #endif 744 if (!size) 745 return ZERO_SIZE_PTR; 746 747 while (size > csizep->cs_size) 748 csizep++; 749 750 /* 751 * Really subtle: The last entry with cs->cs_size==ULONG_MAX 752 * has cs_{dma,}cachep==NULL. Thus no special case 753 * for large kmalloc calls required. 754 */ 755 #ifdef CONFIG_ZONE_DMA 756 if (unlikely(gfpflags & GFP_DMA)) 757 return csizep->cs_dmacachep; 758 #endif 759 return csizep->cs_cachep; 760 } 761 762 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) 763 { 764 return __find_general_cachep(size, gfpflags); 765 } 766 767 static size_t slab_mgmt_size(size_t nr_objs, size_t align) 768 { 769 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); 770 } 771 772 /* 773 * Calculate the number of objects and left-over bytes for a given buffer size. 774 */ 775 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 776 size_t align, int flags, size_t *left_over, 777 unsigned int *num) 778 { 779 int nr_objs; 780 size_t mgmt_size; 781 size_t slab_size = PAGE_SIZE << gfporder; 782 783 /* 784 * The slab management structure can be either off the slab or 785 * on it. For the latter case, the memory allocated for a 786 * slab is used for: 787 * 788 * - The struct slab 789 * - One kmem_bufctl_t for each object 790 * - Padding to respect alignment of @align 791 * - @buffer_size bytes for each object 792 * 793 * If the slab management structure is off the slab, then the 794 * alignment will already be calculated into the size. Because 795 * the slabs are all pages aligned, the objects will be at the 796 * correct alignment when allocated. 797 */ 798 if (flags & CFLGS_OFF_SLAB) { 799 mgmt_size = 0; 800 nr_objs = slab_size / buffer_size; 801 802 if (nr_objs > SLAB_LIMIT) 803 nr_objs = SLAB_LIMIT; 804 } else { 805 /* 806 * Ignore padding for the initial guess. The padding 807 * is at most @align-1 bytes, and @buffer_size is at 808 * least @align. In the worst case, this result will 809 * be one greater than the number of objects that fit 810 * into the memory allocation when taking the padding 811 * into account. 812 */ 813 nr_objs = (slab_size - sizeof(struct slab)) / 814 (buffer_size + sizeof(kmem_bufctl_t)); 815 816 /* 817 * This calculated number will be either the right 818 * amount, or one greater than what we want. 819 */ 820 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size 821 > slab_size) 822 nr_objs--; 823 824 if (nr_objs > SLAB_LIMIT) 825 nr_objs = SLAB_LIMIT; 826 827 mgmt_size = slab_mgmt_size(nr_objs, align); 828 } 829 *num = nr_objs; 830 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 831 } 832 833 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 834 835 static void __slab_error(const char *function, struct kmem_cache *cachep, 836 char *msg) 837 { 838 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 839 function, cachep->name, msg); 840 dump_stack(); 841 } 842 843 /* 844 * By default on NUMA we use alien caches to stage the freeing of 845 * objects allocated from other nodes. This causes massive memory 846 * inefficiencies when using fake NUMA setup to split memory into a 847 * large number of small nodes, so it can be disabled on the command 848 * line 849 */ 850 851 static int use_alien_caches __read_mostly = 1; 852 static int __init noaliencache_setup(char *s) 853 { 854 use_alien_caches = 0; 855 return 1; 856 } 857 __setup("noaliencache", noaliencache_setup); 858 859 static int __init slab_max_order_setup(char *str) 860 { 861 get_option(&str, &slab_max_order); 862 slab_max_order = slab_max_order < 0 ? 0 : 863 min(slab_max_order, MAX_ORDER - 1); 864 slab_max_order_set = true; 865 866 return 1; 867 } 868 __setup("slab_max_order=", slab_max_order_setup); 869 870 #ifdef CONFIG_NUMA 871 /* 872 * Special reaping functions for NUMA systems called from cache_reap(). 873 * These take care of doing round robin flushing of alien caches (containing 874 * objects freed on different nodes from which they were allocated) and the 875 * flushing of remote pcps by calling drain_node_pages. 876 */ 877 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 878 879 static void init_reap_node(int cpu) 880 { 881 int node; 882 883 node = next_node(cpu_to_mem(cpu), node_online_map); 884 if (node == MAX_NUMNODES) 885 node = first_node(node_online_map); 886 887 per_cpu(slab_reap_node, cpu) = node; 888 } 889 890 static void next_reap_node(void) 891 { 892 int node = __this_cpu_read(slab_reap_node); 893 894 node = next_node(node, node_online_map); 895 if (unlikely(node >= MAX_NUMNODES)) 896 node = first_node(node_online_map); 897 __this_cpu_write(slab_reap_node, node); 898 } 899 900 #else 901 #define init_reap_node(cpu) do { } while (0) 902 #define next_reap_node(void) do { } while (0) 903 #endif 904 905 /* 906 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 907 * via the workqueue/eventd. 908 * Add the CPU number into the expiration time to minimize the possibility of 909 * the CPUs getting into lockstep and contending for the global cache chain 910 * lock. 911 */ 912 static void __cpuinit start_cpu_timer(int cpu) 913 { 914 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 915 916 /* 917 * When this gets called from do_initcalls via cpucache_init(), 918 * init_workqueues() has already run, so keventd will be setup 919 * at that time. 920 */ 921 if (keventd_up() && reap_work->work.func == NULL) { 922 init_reap_node(cpu); 923 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap); 924 schedule_delayed_work_on(cpu, reap_work, 925 __round_jiffies_relative(HZ, cpu)); 926 } 927 } 928 929 static struct array_cache *alloc_arraycache(int node, int entries, 930 int batchcount, gfp_t gfp) 931 { 932 int memsize = sizeof(void *) * entries + sizeof(struct array_cache); 933 struct array_cache *nc = NULL; 934 935 nc = kmalloc_node(memsize, gfp, node); 936 /* 937 * The array_cache structures contain pointers to free object. 938 * However, when such objects are allocated or transferred to another 939 * cache the pointers are not cleared and they could be counted as 940 * valid references during a kmemleak scan. Therefore, kmemleak must 941 * not scan such objects. 942 */ 943 kmemleak_no_scan(nc); 944 if (nc) { 945 nc->avail = 0; 946 nc->limit = entries; 947 nc->batchcount = batchcount; 948 nc->touched = 0; 949 spin_lock_init(&nc->lock); 950 } 951 return nc; 952 } 953 954 /* 955 * Transfer objects in one arraycache to another. 956 * Locking must be handled by the caller. 957 * 958 * Return the number of entries transferred. 959 */ 960 static int transfer_objects(struct array_cache *to, 961 struct array_cache *from, unsigned int max) 962 { 963 /* Figure out how many entries to transfer */ 964 int nr = min3(from->avail, max, to->limit - to->avail); 965 966 if (!nr) 967 return 0; 968 969 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 970 sizeof(void *) *nr); 971 972 from->avail -= nr; 973 to->avail += nr; 974 return nr; 975 } 976 977 #ifndef CONFIG_NUMA 978 979 #define drain_alien_cache(cachep, alien) do { } while (0) 980 #define reap_alien(cachep, l3) do { } while (0) 981 982 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 983 { 984 return (struct array_cache **)BAD_ALIEN_MAGIC; 985 } 986 987 static inline void free_alien_cache(struct array_cache **ac_ptr) 988 { 989 } 990 991 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 992 { 993 return 0; 994 } 995 996 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 997 gfp_t flags) 998 { 999 return NULL; 1000 } 1001 1002 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 1003 gfp_t flags, int nodeid) 1004 { 1005 return NULL; 1006 } 1007 1008 #else /* CONFIG_NUMA */ 1009 1010 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 1011 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 1012 1013 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 1014 { 1015 struct array_cache **ac_ptr; 1016 int memsize = sizeof(void *) * nr_node_ids; 1017 int i; 1018 1019 if (limit > 1) 1020 limit = 12; 1021 ac_ptr = kzalloc_node(memsize, gfp, node); 1022 if (ac_ptr) { 1023 for_each_node(i) { 1024 if (i == node || !node_online(i)) 1025 continue; 1026 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); 1027 if (!ac_ptr[i]) { 1028 for (i--; i >= 0; i--) 1029 kfree(ac_ptr[i]); 1030 kfree(ac_ptr); 1031 return NULL; 1032 } 1033 } 1034 } 1035 return ac_ptr; 1036 } 1037 1038 static void free_alien_cache(struct array_cache **ac_ptr) 1039 { 1040 int i; 1041 1042 if (!ac_ptr) 1043 return; 1044 for_each_node(i) 1045 kfree(ac_ptr[i]); 1046 kfree(ac_ptr); 1047 } 1048 1049 static void __drain_alien_cache(struct kmem_cache *cachep, 1050 struct array_cache *ac, int node) 1051 { 1052 struct kmem_list3 *rl3 = cachep->nodelists[node]; 1053 1054 if (ac->avail) { 1055 spin_lock(&rl3->list_lock); 1056 /* 1057 * Stuff objects into the remote nodes shared array first. 1058 * That way we could avoid the overhead of putting the objects 1059 * into the free lists and getting them back later. 1060 */ 1061 if (rl3->shared) 1062 transfer_objects(rl3->shared, ac, ac->limit); 1063 1064 free_block(cachep, ac->entry, ac->avail, node); 1065 ac->avail = 0; 1066 spin_unlock(&rl3->list_lock); 1067 } 1068 } 1069 1070 /* 1071 * Called from cache_reap() to regularly drain alien caches round robin. 1072 */ 1073 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) 1074 { 1075 int node = __this_cpu_read(slab_reap_node); 1076 1077 if (l3->alien) { 1078 struct array_cache *ac = l3->alien[node]; 1079 1080 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { 1081 __drain_alien_cache(cachep, ac, node); 1082 spin_unlock_irq(&ac->lock); 1083 } 1084 } 1085 } 1086 1087 static void drain_alien_cache(struct kmem_cache *cachep, 1088 struct array_cache **alien) 1089 { 1090 int i = 0; 1091 struct array_cache *ac; 1092 unsigned long flags; 1093 1094 for_each_online_node(i) { 1095 ac = alien[i]; 1096 if (ac) { 1097 spin_lock_irqsave(&ac->lock, flags); 1098 __drain_alien_cache(cachep, ac, i); 1099 spin_unlock_irqrestore(&ac->lock, flags); 1100 } 1101 } 1102 } 1103 1104 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1105 { 1106 struct slab *slabp = virt_to_slab(objp); 1107 int nodeid = slabp->nodeid; 1108 struct kmem_list3 *l3; 1109 struct array_cache *alien = NULL; 1110 int node; 1111 1112 node = numa_mem_id(); 1113 1114 /* 1115 * Make sure we are not freeing a object from another node to the array 1116 * cache on this cpu. 1117 */ 1118 if (likely(slabp->nodeid == node)) 1119 return 0; 1120 1121 l3 = cachep->nodelists[node]; 1122 STATS_INC_NODEFREES(cachep); 1123 if (l3->alien && l3->alien[nodeid]) { 1124 alien = l3->alien[nodeid]; 1125 spin_lock(&alien->lock); 1126 if (unlikely(alien->avail == alien->limit)) { 1127 STATS_INC_ACOVERFLOW(cachep); 1128 __drain_alien_cache(cachep, alien, nodeid); 1129 } 1130 alien->entry[alien->avail++] = objp; 1131 spin_unlock(&alien->lock); 1132 } else { 1133 spin_lock(&(cachep->nodelists[nodeid])->list_lock); 1134 free_block(cachep, &objp, 1, nodeid); 1135 spin_unlock(&(cachep->nodelists[nodeid])->list_lock); 1136 } 1137 return 1; 1138 } 1139 #endif 1140 1141 /* 1142 * Allocates and initializes nodelists for a node on each slab cache, used for 1143 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 1144 * will be allocated off-node since memory is not yet online for the new node. 1145 * When hotplugging memory or a cpu, existing nodelists are not replaced if 1146 * already in use. 1147 * 1148 * Must hold cache_chain_mutex. 1149 */ 1150 static int init_cache_nodelists_node(int node) 1151 { 1152 struct kmem_cache *cachep; 1153 struct kmem_list3 *l3; 1154 const int memsize = sizeof(struct kmem_list3); 1155 1156 list_for_each_entry(cachep, &cache_chain, next) { 1157 /* 1158 * Set up the size64 kmemlist for cpu before we can 1159 * begin anything. Make sure some other cpu on this 1160 * node has not already allocated this 1161 */ 1162 if (!cachep->nodelists[node]) { 1163 l3 = kmalloc_node(memsize, GFP_KERNEL, node); 1164 if (!l3) 1165 return -ENOMEM; 1166 kmem_list3_init(l3); 1167 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 1168 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1169 1170 /* 1171 * The l3s don't come and go as CPUs come and 1172 * go. cache_chain_mutex is sufficient 1173 * protection here. 1174 */ 1175 cachep->nodelists[node] = l3; 1176 } 1177 1178 spin_lock_irq(&cachep->nodelists[node]->list_lock); 1179 cachep->nodelists[node]->free_limit = 1180 (1 + nr_cpus_node(node)) * 1181 cachep->batchcount + cachep->num; 1182 spin_unlock_irq(&cachep->nodelists[node]->list_lock); 1183 } 1184 return 0; 1185 } 1186 1187 static void __cpuinit cpuup_canceled(long cpu) 1188 { 1189 struct kmem_cache *cachep; 1190 struct kmem_list3 *l3 = NULL; 1191 int node = cpu_to_mem(cpu); 1192 const struct cpumask *mask = cpumask_of_node(node); 1193 1194 list_for_each_entry(cachep, &cache_chain, next) { 1195 struct array_cache *nc; 1196 struct array_cache *shared; 1197 struct array_cache **alien; 1198 1199 /* cpu is dead; no one can alloc from it. */ 1200 nc = cachep->array[cpu]; 1201 cachep->array[cpu] = NULL; 1202 l3 = cachep->nodelists[node]; 1203 1204 if (!l3) 1205 goto free_array_cache; 1206 1207 spin_lock_irq(&l3->list_lock); 1208 1209 /* Free limit for this kmem_list3 */ 1210 l3->free_limit -= cachep->batchcount; 1211 if (nc) 1212 free_block(cachep, nc->entry, nc->avail, node); 1213 1214 if (!cpumask_empty(mask)) { 1215 spin_unlock_irq(&l3->list_lock); 1216 goto free_array_cache; 1217 } 1218 1219 shared = l3->shared; 1220 if (shared) { 1221 free_block(cachep, shared->entry, 1222 shared->avail, node); 1223 l3->shared = NULL; 1224 } 1225 1226 alien = l3->alien; 1227 l3->alien = NULL; 1228 1229 spin_unlock_irq(&l3->list_lock); 1230 1231 kfree(shared); 1232 if (alien) { 1233 drain_alien_cache(cachep, alien); 1234 free_alien_cache(alien); 1235 } 1236 free_array_cache: 1237 kfree(nc); 1238 } 1239 /* 1240 * In the previous loop, all the objects were freed to 1241 * the respective cache's slabs, now we can go ahead and 1242 * shrink each nodelist to its limit. 1243 */ 1244 list_for_each_entry(cachep, &cache_chain, next) { 1245 l3 = cachep->nodelists[node]; 1246 if (!l3) 1247 continue; 1248 drain_freelist(cachep, l3, l3->free_objects); 1249 } 1250 } 1251 1252 static int __cpuinit cpuup_prepare(long cpu) 1253 { 1254 struct kmem_cache *cachep; 1255 struct kmem_list3 *l3 = NULL; 1256 int node = cpu_to_mem(cpu); 1257 int err; 1258 1259 /* 1260 * We need to do this right in the beginning since 1261 * alloc_arraycache's are going to use this list. 1262 * kmalloc_node allows us to add the slab to the right 1263 * kmem_list3 and not this cpu's kmem_list3 1264 */ 1265 err = init_cache_nodelists_node(node); 1266 if (err < 0) 1267 goto bad; 1268 1269 /* 1270 * Now we can go ahead with allocating the shared arrays and 1271 * array caches 1272 */ 1273 list_for_each_entry(cachep, &cache_chain, next) { 1274 struct array_cache *nc; 1275 struct array_cache *shared = NULL; 1276 struct array_cache **alien = NULL; 1277 1278 nc = alloc_arraycache(node, cachep->limit, 1279 cachep->batchcount, GFP_KERNEL); 1280 if (!nc) 1281 goto bad; 1282 if (cachep->shared) { 1283 shared = alloc_arraycache(node, 1284 cachep->shared * cachep->batchcount, 1285 0xbaadf00d, GFP_KERNEL); 1286 if (!shared) { 1287 kfree(nc); 1288 goto bad; 1289 } 1290 } 1291 if (use_alien_caches) { 1292 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); 1293 if (!alien) { 1294 kfree(shared); 1295 kfree(nc); 1296 goto bad; 1297 } 1298 } 1299 cachep->array[cpu] = nc; 1300 l3 = cachep->nodelists[node]; 1301 BUG_ON(!l3); 1302 1303 spin_lock_irq(&l3->list_lock); 1304 if (!l3->shared) { 1305 /* 1306 * We are serialised from CPU_DEAD or 1307 * CPU_UP_CANCELLED by the cpucontrol lock 1308 */ 1309 l3->shared = shared; 1310 shared = NULL; 1311 } 1312 #ifdef CONFIG_NUMA 1313 if (!l3->alien) { 1314 l3->alien = alien; 1315 alien = NULL; 1316 } 1317 #endif 1318 spin_unlock_irq(&l3->list_lock); 1319 kfree(shared); 1320 free_alien_cache(alien); 1321 if (cachep->flags & SLAB_DEBUG_OBJECTS) 1322 slab_set_debugobj_lock_classes_node(cachep, node); 1323 } 1324 init_node_lock_keys(node); 1325 1326 return 0; 1327 bad: 1328 cpuup_canceled(cpu); 1329 return -ENOMEM; 1330 } 1331 1332 static int __cpuinit cpuup_callback(struct notifier_block *nfb, 1333 unsigned long action, void *hcpu) 1334 { 1335 long cpu = (long)hcpu; 1336 int err = 0; 1337 1338 switch (action) { 1339 case CPU_UP_PREPARE: 1340 case CPU_UP_PREPARE_FROZEN: 1341 mutex_lock(&cache_chain_mutex); 1342 err = cpuup_prepare(cpu); 1343 mutex_unlock(&cache_chain_mutex); 1344 break; 1345 case CPU_ONLINE: 1346 case CPU_ONLINE_FROZEN: 1347 start_cpu_timer(cpu); 1348 break; 1349 #ifdef CONFIG_HOTPLUG_CPU 1350 case CPU_DOWN_PREPARE: 1351 case CPU_DOWN_PREPARE_FROZEN: 1352 /* 1353 * Shutdown cache reaper. Note that the cache_chain_mutex is 1354 * held so that if cache_reap() is invoked it cannot do 1355 * anything expensive but will only modify reap_work 1356 * and reschedule the timer. 1357 */ 1358 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1359 /* Now the cache_reaper is guaranteed to be not running. */ 1360 per_cpu(slab_reap_work, cpu).work.func = NULL; 1361 break; 1362 case CPU_DOWN_FAILED: 1363 case CPU_DOWN_FAILED_FROZEN: 1364 start_cpu_timer(cpu); 1365 break; 1366 case CPU_DEAD: 1367 case CPU_DEAD_FROZEN: 1368 /* 1369 * Even if all the cpus of a node are down, we don't free the 1370 * kmem_list3 of any cache. This to avoid a race between 1371 * cpu_down, and a kmalloc allocation from another cpu for 1372 * memory from the node of the cpu going down. The list3 1373 * structure is usually allocated from kmem_cache_create() and 1374 * gets destroyed at kmem_cache_destroy(). 1375 */ 1376 /* fall through */ 1377 #endif 1378 case CPU_UP_CANCELED: 1379 case CPU_UP_CANCELED_FROZEN: 1380 mutex_lock(&cache_chain_mutex); 1381 cpuup_canceled(cpu); 1382 mutex_unlock(&cache_chain_mutex); 1383 break; 1384 } 1385 return notifier_from_errno(err); 1386 } 1387 1388 static struct notifier_block __cpuinitdata cpucache_notifier = { 1389 &cpuup_callback, NULL, 0 1390 }; 1391 1392 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1393 /* 1394 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1395 * Returns -EBUSY if all objects cannot be drained so that the node is not 1396 * removed. 1397 * 1398 * Must hold cache_chain_mutex. 1399 */ 1400 static int __meminit drain_cache_nodelists_node(int node) 1401 { 1402 struct kmem_cache *cachep; 1403 int ret = 0; 1404 1405 list_for_each_entry(cachep, &cache_chain, next) { 1406 struct kmem_list3 *l3; 1407 1408 l3 = cachep->nodelists[node]; 1409 if (!l3) 1410 continue; 1411 1412 drain_freelist(cachep, l3, l3->free_objects); 1413 1414 if (!list_empty(&l3->slabs_full) || 1415 !list_empty(&l3->slabs_partial)) { 1416 ret = -EBUSY; 1417 break; 1418 } 1419 } 1420 return ret; 1421 } 1422 1423 static int __meminit slab_memory_callback(struct notifier_block *self, 1424 unsigned long action, void *arg) 1425 { 1426 struct memory_notify *mnb = arg; 1427 int ret = 0; 1428 int nid; 1429 1430 nid = mnb->status_change_nid; 1431 if (nid < 0) 1432 goto out; 1433 1434 switch (action) { 1435 case MEM_GOING_ONLINE: 1436 mutex_lock(&cache_chain_mutex); 1437 ret = init_cache_nodelists_node(nid); 1438 mutex_unlock(&cache_chain_mutex); 1439 break; 1440 case MEM_GOING_OFFLINE: 1441 mutex_lock(&cache_chain_mutex); 1442 ret = drain_cache_nodelists_node(nid); 1443 mutex_unlock(&cache_chain_mutex); 1444 break; 1445 case MEM_ONLINE: 1446 case MEM_OFFLINE: 1447 case MEM_CANCEL_ONLINE: 1448 case MEM_CANCEL_OFFLINE: 1449 break; 1450 } 1451 out: 1452 return notifier_from_errno(ret); 1453 } 1454 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1455 1456 /* 1457 * swap the static kmem_list3 with kmalloced memory 1458 */ 1459 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, 1460 int nodeid) 1461 { 1462 struct kmem_list3 *ptr; 1463 1464 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); 1465 BUG_ON(!ptr); 1466 1467 memcpy(ptr, list, sizeof(struct kmem_list3)); 1468 /* 1469 * Do not assume that spinlocks can be initialized via memcpy: 1470 */ 1471 spin_lock_init(&ptr->list_lock); 1472 1473 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1474 cachep->nodelists[nodeid] = ptr; 1475 } 1476 1477 /* 1478 * For setting up all the kmem_list3s for cache whose buffer_size is same as 1479 * size of kmem_list3. 1480 */ 1481 static void __init set_up_list3s(struct kmem_cache *cachep, int index) 1482 { 1483 int node; 1484 1485 for_each_online_node(node) { 1486 cachep->nodelists[node] = &initkmem_list3[index + node]; 1487 cachep->nodelists[node]->next_reap = jiffies + 1488 REAPTIMEOUT_LIST3 + 1489 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1490 } 1491 } 1492 1493 /* 1494 * Initialisation. Called after the page allocator have been initialised and 1495 * before smp_init(). 1496 */ 1497 void __init kmem_cache_init(void) 1498 { 1499 size_t left_over; 1500 struct cache_sizes *sizes; 1501 struct cache_names *names; 1502 int i; 1503 int order; 1504 int node; 1505 1506 if (num_possible_nodes() == 1) 1507 use_alien_caches = 0; 1508 1509 for (i = 0; i < NUM_INIT_LISTS; i++) { 1510 kmem_list3_init(&initkmem_list3[i]); 1511 if (i < MAX_NUMNODES) 1512 cache_cache.nodelists[i] = NULL; 1513 } 1514 set_up_list3s(&cache_cache, CACHE_CACHE); 1515 1516 /* 1517 * Fragmentation resistance on low memory - only use bigger 1518 * page orders on machines with more than 32MB of memory if 1519 * not overridden on the command line. 1520 */ 1521 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1522 slab_max_order = SLAB_MAX_ORDER_HI; 1523 1524 /* Bootstrap is tricky, because several objects are allocated 1525 * from caches that do not exist yet: 1526 * 1) initialize the cache_cache cache: it contains the struct 1527 * kmem_cache structures of all caches, except cache_cache itself: 1528 * cache_cache is statically allocated. 1529 * Initially an __init data area is used for the head array and the 1530 * kmem_list3 structures, it's replaced with a kmalloc allocated 1531 * array at the end of the bootstrap. 1532 * 2) Create the first kmalloc cache. 1533 * The struct kmem_cache for the new cache is allocated normally. 1534 * An __init data area is used for the head array. 1535 * 3) Create the remaining kmalloc caches, with minimally sized 1536 * head arrays. 1537 * 4) Replace the __init data head arrays for cache_cache and the first 1538 * kmalloc cache with kmalloc allocated arrays. 1539 * 5) Replace the __init data for kmem_list3 for cache_cache and 1540 * the other cache's with kmalloc allocated memory. 1541 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1542 */ 1543 1544 node = numa_mem_id(); 1545 1546 /* 1) create the cache_cache */ 1547 INIT_LIST_HEAD(&cache_chain); 1548 list_add(&cache_cache.next, &cache_chain); 1549 cache_cache.colour_off = cache_line_size(); 1550 cache_cache.array[smp_processor_id()] = &initarray_cache.cache; 1551 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; 1552 1553 /* 1554 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1555 */ 1556 cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) + 1557 nr_node_ids * sizeof(struct kmem_list3 *); 1558 #if DEBUG 1559 cache_cache.obj_size = cache_cache.buffer_size; 1560 #endif 1561 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, 1562 cache_line_size()); 1563 cache_cache.reciprocal_buffer_size = 1564 reciprocal_value(cache_cache.buffer_size); 1565 1566 for (order = 0; order < MAX_ORDER; order++) { 1567 cache_estimate(order, cache_cache.buffer_size, 1568 cache_line_size(), 0, &left_over, &cache_cache.num); 1569 if (cache_cache.num) 1570 break; 1571 } 1572 BUG_ON(!cache_cache.num); 1573 cache_cache.gfporder = order; 1574 cache_cache.colour = left_over / cache_cache.colour_off; 1575 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + 1576 sizeof(struct slab), cache_line_size()); 1577 1578 /* 2+3) create the kmalloc caches */ 1579 sizes = malloc_sizes; 1580 names = cache_names; 1581 1582 /* 1583 * Initialize the caches that provide memory for the array cache and the 1584 * kmem_list3 structures first. Without this, further allocations will 1585 * bug. 1586 */ 1587 1588 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, 1589 sizes[INDEX_AC].cs_size, 1590 ARCH_KMALLOC_MINALIGN, 1591 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1592 NULL); 1593 1594 if (INDEX_AC != INDEX_L3) { 1595 sizes[INDEX_L3].cs_cachep = 1596 kmem_cache_create(names[INDEX_L3].name, 1597 sizes[INDEX_L3].cs_size, 1598 ARCH_KMALLOC_MINALIGN, 1599 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1600 NULL); 1601 } 1602 1603 slab_early_init = 0; 1604 1605 while (sizes->cs_size != ULONG_MAX) { 1606 /* 1607 * For performance, all the general caches are L1 aligned. 1608 * This should be particularly beneficial on SMP boxes, as it 1609 * eliminates "false sharing". 1610 * Note for systems short on memory removing the alignment will 1611 * allow tighter packing of the smaller caches. 1612 */ 1613 if (!sizes->cs_cachep) { 1614 sizes->cs_cachep = kmem_cache_create(names->name, 1615 sizes->cs_size, 1616 ARCH_KMALLOC_MINALIGN, 1617 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1618 NULL); 1619 } 1620 #ifdef CONFIG_ZONE_DMA 1621 sizes->cs_dmacachep = kmem_cache_create( 1622 names->name_dma, 1623 sizes->cs_size, 1624 ARCH_KMALLOC_MINALIGN, 1625 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| 1626 SLAB_PANIC, 1627 NULL); 1628 #endif 1629 sizes++; 1630 names++; 1631 } 1632 /* 4) Replace the bootstrap head arrays */ 1633 { 1634 struct array_cache *ptr; 1635 1636 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1637 1638 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); 1639 memcpy(ptr, cpu_cache_get(&cache_cache), 1640 sizeof(struct arraycache_init)); 1641 /* 1642 * Do not assume that spinlocks can be initialized via memcpy: 1643 */ 1644 spin_lock_init(&ptr->lock); 1645 1646 cache_cache.array[smp_processor_id()] = ptr; 1647 1648 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); 1649 1650 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) 1651 != &initarray_generic.cache); 1652 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), 1653 sizeof(struct arraycache_init)); 1654 /* 1655 * Do not assume that spinlocks can be initialized via memcpy: 1656 */ 1657 spin_lock_init(&ptr->lock); 1658 1659 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = 1660 ptr; 1661 } 1662 /* 5) Replace the bootstrap kmem_list3's */ 1663 { 1664 int nid; 1665 1666 for_each_online_node(nid) { 1667 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); 1668 1669 init_list(malloc_sizes[INDEX_AC].cs_cachep, 1670 &initkmem_list3[SIZE_AC + nid], nid); 1671 1672 if (INDEX_AC != INDEX_L3) { 1673 init_list(malloc_sizes[INDEX_L3].cs_cachep, 1674 &initkmem_list3[SIZE_L3 + nid], nid); 1675 } 1676 } 1677 } 1678 1679 g_cpucache_up = EARLY; 1680 } 1681 1682 void __init kmem_cache_init_late(void) 1683 { 1684 struct kmem_cache *cachep; 1685 1686 g_cpucache_up = LATE; 1687 1688 /* Annotate slab for lockdep -- annotate the malloc caches */ 1689 init_lock_keys(); 1690 1691 /* 6) resize the head arrays to their final sizes */ 1692 mutex_lock(&cache_chain_mutex); 1693 list_for_each_entry(cachep, &cache_chain, next) 1694 if (enable_cpucache(cachep, GFP_NOWAIT)) 1695 BUG(); 1696 mutex_unlock(&cache_chain_mutex); 1697 1698 /* Done! */ 1699 g_cpucache_up = FULL; 1700 1701 /* 1702 * Register a cpu startup notifier callback that initializes 1703 * cpu_cache_get for all new cpus 1704 */ 1705 register_cpu_notifier(&cpucache_notifier); 1706 1707 #ifdef CONFIG_NUMA 1708 /* 1709 * Register a memory hotplug callback that initializes and frees 1710 * nodelists. 1711 */ 1712 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1713 #endif 1714 1715 /* 1716 * The reap timers are started later, with a module init call: That part 1717 * of the kernel is not yet operational. 1718 */ 1719 } 1720 1721 static int __init cpucache_init(void) 1722 { 1723 int cpu; 1724 1725 /* 1726 * Register the timers that return unneeded pages to the page allocator 1727 */ 1728 for_each_online_cpu(cpu) 1729 start_cpu_timer(cpu); 1730 return 0; 1731 } 1732 __initcall(cpucache_init); 1733 1734 static noinline void 1735 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1736 { 1737 struct kmem_list3 *l3; 1738 struct slab *slabp; 1739 unsigned long flags; 1740 int node; 1741 1742 printk(KERN_WARNING 1743 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1744 nodeid, gfpflags); 1745 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n", 1746 cachep->name, cachep->buffer_size, cachep->gfporder); 1747 1748 for_each_online_node(node) { 1749 unsigned long active_objs = 0, num_objs = 0, free_objects = 0; 1750 unsigned long active_slabs = 0, num_slabs = 0; 1751 1752 l3 = cachep->nodelists[node]; 1753 if (!l3) 1754 continue; 1755 1756 spin_lock_irqsave(&l3->list_lock, flags); 1757 list_for_each_entry(slabp, &l3->slabs_full, list) { 1758 active_objs += cachep->num; 1759 active_slabs++; 1760 } 1761 list_for_each_entry(slabp, &l3->slabs_partial, list) { 1762 active_objs += slabp->inuse; 1763 active_slabs++; 1764 } 1765 list_for_each_entry(slabp, &l3->slabs_free, list) 1766 num_slabs++; 1767 1768 free_objects += l3->free_objects; 1769 spin_unlock_irqrestore(&l3->list_lock, flags); 1770 1771 num_slabs += active_slabs; 1772 num_objs = num_slabs * cachep->num; 1773 printk(KERN_WARNING 1774 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", 1775 node, active_slabs, num_slabs, active_objs, num_objs, 1776 free_objects); 1777 } 1778 } 1779 1780 /* 1781 * Interface to system's page allocator. No need to hold the cache-lock. 1782 * 1783 * If we requested dmaable memory, we will get it. Even if we 1784 * did not request dmaable memory, we might get it, but that 1785 * would be relatively rare and ignorable. 1786 */ 1787 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) 1788 { 1789 struct page *page; 1790 int nr_pages; 1791 int i; 1792 1793 #ifndef CONFIG_MMU 1794 /* 1795 * Nommu uses slab's for process anonymous memory allocations, and thus 1796 * requires __GFP_COMP to properly refcount higher order allocations 1797 */ 1798 flags |= __GFP_COMP; 1799 #endif 1800 1801 flags |= cachep->gfpflags; 1802 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1803 flags |= __GFP_RECLAIMABLE; 1804 1805 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1806 if (!page) { 1807 if (!(flags & __GFP_NOWARN) && printk_ratelimit()) 1808 slab_out_of_memory(cachep, flags, nodeid); 1809 return NULL; 1810 } 1811 1812 nr_pages = (1 << cachep->gfporder); 1813 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1814 add_zone_page_state(page_zone(page), 1815 NR_SLAB_RECLAIMABLE, nr_pages); 1816 else 1817 add_zone_page_state(page_zone(page), 1818 NR_SLAB_UNRECLAIMABLE, nr_pages); 1819 for (i = 0; i < nr_pages; i++) 1820 __SetPageSlab(page + i); 1821 1822 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1823 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1824 1825 if (cachep->ctor) 1826 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1827 else 1828 kmemcheck_mark_unallocated_pages(page, nr_pages); 1829 } 1830 1831 return page_address(page); 1832 } 1833 1834 /* 1835 * Interface to system's page release. 1836 */ 1837 static void kmem_freepages(struct kmem_cache *cachep, void *addr) 1838 { 1839 unsigned long i = (1 << cachep->gfporder); 1840 struct page *page = virt_to_page(addr); 1841 const unsigned long nr_freed = i; 1842 1843 kmemcheck_free_shadow(page, cachep->gfporder); 1844 1845 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1846 sub_zone_page_state(page_zone(page), 1847 NR_SLAB_RECLAIMABLE, nr_freed); 1848 else 1849 sub_zone_page_state(page_zone(page), 1850 NR_SLAB_UNRECLAIMABLE, nr_freed); 1851 while (i--) { 1852 BUG_ON(!PageSlab(page)); 1853 __ClearPageSlab(page); 1854 page++; 1855 } 1856 if (current->reclaim_state) 1857 current->reclaim_state->reclaimed_slab += nr_freed; 1858 free_pages((unsigned long)addr, cachep->gfporder); 1859 } 1860 1861 static void kmem_rcu_free(struct rcu_head *head) 1862 { 1863 struct slab_rcu *slab_rcu = (struct slab_rcu *)head; 1864 struct kmem_cache *cachep = slab_rcu->cachep; 1865 1866 kmem_freepages(cachep, slab_rcu->addr); 1867 if (OFF_SLAB(cachep)) 1868 kmem_cache_free(cachep->slabp_cache, slab_rcu); 1869 } 1870 1871 #if DEBUG 1872 1873 #ifdef CONFIG_DEBUG_PAGEALLOC 1874 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1875 unsigned long caller) 1876 { 1877 int size = obj_size(cachep); 1878 1879 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1880 1881 if (size < 5 * sizeof(unsigned long)) 1882 return; 1883 1884 *addr++ = 0x12345678; 1885 *addr++ = caller; 1886 *addr++ = smp_processor_id(); 1887 size -= 3 * sizeof(unsigned long); 1888 { 1889 unsigned long *sptr = &caller; 1890 unsigned long svalue; 1891 1892 while (!kstack_end(sptr)) { 1893 svalue = *sptr++; 1894 if (kernel_text_address(svalue)) { 1895 *addr++ = svalue; 1896 size -= sizeof(unsigned long); 1897 if (size <= sizeof(unsigned long)) 1898 break; 1899 } 1900 } 1901 1902 } 1903 *addr++ = 0x87654321; 1904 } 1905 #endif 1906 1907 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1908 { 1909 int size = obj_size(cachep); 1910 addr = &((char *)addr)[obj_offset(cachep)]; 1911 1912 memset(addr, val, size); 1913 *(unsigned char *)(addr + size - 1) = POISON_END; 1914 } 1915 1916 static void dump_line(char *data, int offset, int limit) 1917 { 1918 int i; 1919 unsigned char error = 0; 1920 int bad_count = 0; 1921 1922 printk(KERN_ERR "%03x: ", offset); 1923 for (i = 0; i < limit; i++) { 1924 if (data[offset + i] != POISON_FREE) { 1925 error = data[offset + i]; 1926 bad_count++; 1927 } 1928 } 1929 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1930 &data[offset], limit, 1); 1931 1932 if (bad_count == 1) { 1933 error ^= POISON_FREE; 1934 if (!(error & (error - 1))) { 1935 printk(KERN_ERR "Single bit error detected. Probably " 1936 "bad RAM.\n"); 1937 #ifdef CONFIG_X86 1938 printk(KERN_ERR "Run memtest86+ or a similar memory " 1939 "test tool.\n"); 1940 #else 1941 printk(KERN_ERR "Run a memory test tool.\n"); 1942 #endif 1943 } 1944 } 1945 } 1946 #endif 1947 1948 #if DEBUG 1949 1950 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1951 { 1952 int i, size; 1953 char *realobj; 1954 1955 if (cachep->flags & SLAB_RED_ZONE) { 1956 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 1957 *dbg_redzone1(cachep, objp), 1958 *dbg_redzone2(cachep, objp)); 1959 } 1960 1961 if (cachep->flags & SLAB_STORE_USER) { 1962 printk(KERN_ERR "Last user: [<%p>]", 1963 *dbg_userword(cachep, objp)); 1964 print_symbol("(%s)", 1965 (unsigned long)*dbg_userword(cachep, objp)); 1966 printk("\n"); 1967 } 1968 realobj = (char *)objp + obj_offset(cachep); 1969 size = obj_size(cachep); 1970 for (i = 0; i < size && lines; i += 16, lines--) { 1971 int limit; 1972 limit = 16; 1973 if (i + limit > size) 1974 limit = size - i; 1975 dump_line(realobj, i, limit); 1976 } 1977 } 1978 1979 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1980 { 1981 char *realobj; 1982 int size, i; 1983 int lines = 0; 1984 1985 realobj = (char *)objp + obj_offset(cachep); 1986 size = obj_size(cachep); 1987 1988 for (i = 0; i < size; i++) { 1989 char exp = POISON_FREE; 1990 if (i == size - 1) 1991 exp = POISON_END; 1992 if (realobj[i] != exp) { 1993 int limit; 1994 /* Mismatch ! */ 1995 /* Print header */ 1996 if (lines == 0) { 1997 printk(KERN_ERR 1998 "Slab corruption (%s): %s start=%p, len=%d\n", 1999 print_tainted(), cachep->name, realobj, size); 2000 print_objinfo(cachep, objp, 0); 2001 } 2002 /* Hexdump the affected line */ 2003 i = (i / 16) * 16; 2004 limit = 16; 2005 if (i + limit > size) 2006 limit = size - i; 2007 dump_line(realobj, i, limit); 2008 i += 16; 2009 lines++; 2010 /* Limit to 5 lines */ 2011 if (lines > 5) 2012 break; 2013 } 2014 } 2015 if (lines != 0) { 2016 /* Print some data about the neighboring objects, if they 2017 * exist: 2018 */ 2019 struct slab *slabp = virt_to_slab(objp); 2020 unsigned int objnr; 2021 2022 objnr = obj_to_index(cachep, slabp, objp); 2023 if (objnr) { 2024 objp = index_to_obj(cachep, slabp, objnr - 1); 2025 realobj = (char *)objp + obj_offset(cachep); 2026 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 2027 realobj, size); 2028 print_objinfo(cachep, objp, 2); 2029 } 2030 if (objnr + 1 < cachep->num) { 2031 objp = index_to_obj(cachep, slabp, objnr + 1); 2032 realobj = (char *)objp + obj_offset(cachep); 2033 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 2034 realobj, size); 2035 print_objinfo(cachep, objp, 2); 2036 } 2037 } 2038 } 2039 #endif 2040 2041 #if DEBUG 2042 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 2043 { 2044 int i; 2045 for (i = 0; i < cachep->num; i++) { 2046 void *objp = index_to_obj(cachep, slabp, i); 2047 2048 if (cachep->flags & SLAB_POISON) { 2049 #ifdef CONFIG_DEBUG_PAGEALLOC 2050 if (cachep->buffer_size % PAGE_SIZE == 0 && 2051 OFF_SLAB(cachep)) 2052 kernel_map_pages(virt_to_page(objp), 2053 cachep->buffer_size / PAGE_SIZE, 1); 2054 else 2055 check_poison_obj(cachep, objp); 2056 #else 2057 check_poison_obj(cachep, objp); 2058 #endif 2059 } 2060 if (cachep->flags & SLAB_RED_ZONE) { 2061 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2062 slab_error(cachep, "start of a freed object " 2063 "was overwritten"); 2064 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2065 slab_error(cachep, "end of a freed object " 2066 "was overwritten"); 2067 } 2068 } 2069 } 2070 #else 2071 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) 2072 { 2073 } 2074 #endif 2075 2076 /** 2077 * slab_destroy - destroy and release all objects in a slab 2078 * @cachep: cache pointer being destroyed 2079 * @slabp: slab pointer being destroyed 2080 * 2081 * Destroy all the objs in a slab, and release the mem back to the system. 2082 * Before calling the slab must have been unlinked from the cache. The 2083 * cache-lock is not held/needed. 2084 */ 2085 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) 2086 { 2087 void *addr = slabp->s_mem - slabp->colouroff; 2088 2089 slab_destroy_debugcheck(cachep, slabp); 2090 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 2091 struct slab_rcu *slab_rcu; 2092 2093 slab_rcu = (struct slab_rcu *)slabp; 2094 slab_rcu->cachep = cachep; 2095 slab_rcu->addr = addr; 2096 call_rcu(&slab_rcu->head, kmem_rcu_free); 2097 } else { 2098 kmem_freepages(cachep, addr); 2099 if (OFF_SLAB(cachep)) 2100 kmem_cache_free(cachep->slabp_cache, slabp); 2101 } 2102 } 2103 2104 static void __kmem_cache_destroy(struct kmem_cache *cachep) 2105 { 2106 int i; 2107 struct kmem_list3 *l3; 2108 2109 for_each_online_cpu(i) 2110 kfree(cachep->array[i]); 2111 2112 /* NUMA: free the list3 structures */ 2113 for_each_online_node(i) { 2114 l3 = cachep->nodelists[i]; 2115 if (l3) { 2116 kfree(l3->shared); 2117 free_alien_cache(l3->alien); 2118 kfree(l3); 2119 } 2120 } 2121 kmem_cache_free(&cache_cache, cachep); 2122 } 2123 2124 2125 /** 2126 * calculate_slab_order - calculate size (page order) of slabs 2127 * @cachep: pointer to the cache that is being created 2128 * @size: size of objects to be created in this cache. 2129 * @align: required alignment for the objects. 2130 * @flags: slab allocation flags 2131 * 2132 * Also calculates the number of objects per slab. 2133 * 2134 * This could be made much more intelligent. For now, try to avoid using 2135 * high order pages for slabs. When the gfp() functions are more friendly 2136 * towards high-order requests, this should be changed. 2137 */ 2138 static size_t calculate_slab_order(struct kmem_cache *cachep, 2139 size_t size, size_t align, unsigned long flags) 2140 { 2141 unsigned long offslab_limit; 2142 size_t left_over = 0; 2143 int gfporder; 2144 2145 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 2146 unsigned int num; 2147 size_t remainder; 2148 2149 cache_estimate(gfporder, size, align, flags, &remainder, &num); 2150 if (!num) 2151 continue; 2152 2153 if (flags & CFLGS_OFF_SLAB) { 2154 /* 2155 * Max number of objs-per-slab for caches which 2156 * use off-slab slabs. Needed to avoid a possible 2157 * looping condition in cache_grow(). 2158 */ 2159 offslab_limit = size - sizeof(struct slab); 2160 offslab_limit /= sizeof(kmem_bufctl_t); 2161 2162 if (num > offslab_limit) 2163 break; 2164 } 2165 2166 /* Found something acceptable - save it away */ 2167 cachep->num = num; 2168 cachep->gfporder = gfporder; 2169 left_over = remainder; 2170 2171 /* 2172 * A VFS-reclaimable slab tends to have most allocations 2173 * as GFP_NOFS and we really don't want to have to be allocating 2174 * higher-order pages when we are unable to shrink dcache. 2175 */ 2176 if (flags & SLAB_RECLAIM_ACCOUNT) 2177 break; 2178 2179 /* 2180 * Large number of objects is good, but very large slabs are 2181 * currently bad for the gfp()s. 2182 */ 2183 if (gfporder >= slab_max_order) 2184 break; 2185 2186 /* 2187 * Acceptable internal fragmentation? 2188 */ 2189 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 2190 break; 2191 } 2192 return left_over; 2193 } 2194 2195 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 2196 { 2197 if (g_cpucache_up == FULL) 2198 return enable_cpucache(cachep, gfp); 2199 2200 if (g_cpucache_up == NONE) { 2201 /* 2202 * Note: the first kmem_cache_create must create the cache 2203 * that's used by kmalloc(24), otherwise the creation of 2204 * further caches will BUG(). 2205 */ 2206 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2207 2208 /* 2209 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is 2210 * the first cache, then we need to set up all its list3s, 2211 * otherwise the creation of further caches will BUG(). 2212 */ 2213 set_up_list3s(cachep, SIZE_AC); 2214 if (INDEX_AC == INDEX_L3) 2215 g_cpucache_up = PARTIAL_L3; 2216 else 2217 g_cpucache_up = PARTIAL_AC; 2218 } else { 2219 cachep->array[smp_processor_id()] = 2220 kmalloc(sizeof(struct arraycache_init), gfp); 2221 2222 if (g_cpucache_up == PARTIAL_AC) { 2223 set_up_list3s(cachep, SIZE_L3); 2224 g_cpucache_up = PARTIAL_L3; 2225 } else { 2226 int node; 2227 for_each_online_node(node) { 2228 cachep->nodelists[node] = 2229 kmalloc_node(sizeof(struct kmem_list3), 2230 gfp, node); 2231 BUG_ON(!cachep->nodelists[node]); 2232 kmem_list3_init(cachep->nodelists[node]); 2233 } 2234 } 2235 } 2236 cachep->nodelists[numa_mem_id()]->next_reap = 2237 jiffies + REAPTIMEOUT_LIST3 + 2238 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 2239 2240 cpu_cache_get(cachep)->avail = 0; 2241 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2242 cpu_cache_get(cachep)->batchcount = 1; 2243 cpu_cache_get(cachep)->touched = 0; 2244 cachep->batchcount = 1; 2245 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2246 return 0; 2247 } 2248 2249 /** 2250 * kmem_cache_create - Create a cache. 2251 * @name: A string which is used in /proc/slabinfo to identify this cache. 2252 * @size: The size of objects to be created in this cache. 2253 * @align: The required alignment for the objects. 2254 * @flags: SLAB flags 2255 * @ctor: A constructor for the objects. 2256 * 2257 * Returns a ptr to the cache on success, NULL on failure. 2258 * Cannot be called within a int, but can be interrupted. 2259 * The @ctor is run when new pages are allocated by the cache. 2260 * 2261 * @name must be valid until the cache is destroyed. This implies that 2262 * the module calling this has to destroy the cache before getting unloaded. 2263 * 2264 * The flags are 2265 * 2266 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2267 * to catch references to uninitialised memory. 2268 * 2269 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2270 * for buffer overruns. 2271 * 2272 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2273 * cacheline. This can be beneficial if you're counting cycles as closely 2274 * as davem. 2275 */ 2276 struct kmem_cache * 2277 kmem_cache_create (const char *name, size_t size, size_t align, 2278 unsigned long flags, void (*ctor)(void *)) 2279 { 2280 size_t left_over, slab_size, ralign; 2281 struct kmem_cache *cachep = NULL, *pc; 2282 gfp_t gfp; 2283 2284 /* 2285 * Sanity checks... these are all serious usage bugs. 2286 */ 2287 if (!name || in_interrupt() || (size < BYTES_PER_WORD) || 2288 size > KMALLOC_MAX_SIZE) { 2289 printk(KERN_ERR "%s: Early error in slab %s\n", __func__, 2290 name); 2291 BUG(); 2292 } 2293 2294 /* 2295 * We use cache_chain_mutex to ensure a consistent view of 2296 * cpu_online_mask as well. Please see cpuup_callback 2297 */ 2298 if (slab_is_available()) { 2299 get_online_cpus(); 2300 mutex_lock(&cache_chain_mutex); 2301 } 2302 2303 list_for_each_entry(pc, &cache_chain, next) { 2304 char tmp; 2305 int res; 2306 2307 /* 2308 * This happens when the module gets unloaded and doesn't 2309 * destroy its slab cache and no-one else reuses the vmalloc 2310 * area of the module. Print a warning. 2311 */ 2312 res = probe_kernel_address(pc->name, tmp); 2313 if (res) { 2314 printk(KERN_ERR 2315 "SLAB: cache with size %d has lost its name\n", 2316 pc->buffer_size); 2317 continue; 2318 } 2319 2320 if (!strcmp(pc->name, name)) { 2321 printk(KERN_ERR 2322 "kmem_cache_create: duplicate cache %s\n", name); 2323 dump_stack(); 2324 goto oops; 2325 } 2326 } 2327 2328 #if DEBUG 2329 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 2330 #if FORCED_DEBUG 2331 /* 2332 * Enable redzoning and last user accounting, except for caches with 2333 * large objects, if the increased size would increase the object size 2334 * above the next power of two: caches with object sizes just above a 2335 * power of two have a significant amount of internal fragmentation. 2336 */ 2337 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2338 2 * sizeof(unsigned long long))) 2339 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2340 if (!(flags & SLAB_DESTROY_BY_RCU)) 2341 flags |= SLAB_POISON; 2342 #endif 2343 if (flags & SLAB_DESTROY_BY_RCU) 2344 BUG_ON(flags & SLAB_POISON); 2345 #endif 2346 /* 2347 * Always checks flags, a caller might be expecting debug support which 2348 * isn't available. 2349 */ 2350 BUG_ON(flags & ~CREATE_MASK); 2351 2352 /* 2353 * Check that size is in terms of words. This is needed to avoid 2354 * unaligned accesses for some archs when redzoning is used, and makes 2355 * sure any on-slab bufctl's are also correctly aligned. 2356 */ 2357 if (size & (BYTES_PER_WORD - 1)) { 2358 size += (BYTES_PER_WORD - 1); 2359 size &= ~(BYTES_PER_WORD - 1); 2360 } 2361 2362 /* calculate the final buffer alignment: */ 2363 2364 /* 1) arch recommendation: can be overridden for debug */ 2365 if (flags & SLAB_HWCACHE_ALIGN) { 2366 /* 2367 * Default alignment: as specified by the arch code. Except if 2368 * an object is really small, then squeeze multiple objects into 2369 * one cacheline. 2370 */ 2371 ralign = cache_line_size(); 2372 while (size <= ralign / 2) 2373 ralign /= 2; 2374 } else { 2375 ralign = BYTES_PER_WORD; 2376 } 2377 2378 /* 2379 * Redzoning and user store require word alignment or possibly larger. 2380 * Note this will be overridden by architecture or caller mandated 2381 * alignment if either is greater than BYTES_PER_WORD. 2382 */ 2383 if (flags & SLAB_STORE_USER) 2384 ralign = BYTES_PER_WORD; 2385 2386 if (flags & SLAB_RED_ZONE) { 2387 ralign = REDZONE_ALIGN; 2388 /* If redzoning, ensure that the second redzone is suitably 2389 * aligned, by adjusting the object size accordingly. */ 2390 size += REDZONE_ALIGN - 1; 2391 size &= ~(REDZONE_ALIGN - 1); 2392 } 2393 2394 /* 2) arch mandated alignment */ 2395 if (ralign < ARCH_SLAB_MINALIGN) { 2396 ralign = ARCH_SLAB_MINALIGN; 2397 } 2398 /* 3) caller mandated alignment */ 2399 if (ralign < align) { 2400 ralign = align; 2401 } 2402 /* disable debug if necessary */ 2403 if (ralign > __alignof__(unsigned long long)) 2404 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2405 /* 2406 * 4) Store it. 2407 */ 2408 align = ralign; 2409 2410 if (slab_is_available()) 2411 gfp = GFP_KERNEL; 2412 else 2413 gfp = GFP_NOWAIT; 2414 2415 /* Get cache's description obj. */ 2416 cachep = kmem_cache_zalloc(&cache_cache, gfp); 2417 if (!cachep) 2418 goto oops; 2419 2420 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids]; 2421 #if DEBUG 2422 cachep->obj_size = size; 2423 2424 /* 2425 * Both debugging options require word-alignment which is calculated 2426 * into align above. 2427 */ 2428 if (flags & SLAB_RED_ZONE) { 2429 /* add space for red zone words */ 2430 cachep->obj_offset += sizeof(unsigned long long); 2431 size += 2 * sizeof(unsigned long long); 2432 } 2433 if (flags & SLAB_STORE_USER) { 2434 /* user store requires one word storage behind the end of 2435 * the real object. But if the second red zone needs to be 2436 * aligned to 64 bits, we must allow that much space. 2437 */ 2438 if (flags & SLAB_RED_ZONE) 2439 size += REDZONE_ALIGN; 2440 else 2441 size += BYTES_PER_WORD; 2442 } 2443 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2444 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size 2445 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) { 2446 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align); 2447 size = PAGE_SIZE; 2448 } 2449 #endif 2450 #endif 2451 2452 /* 2453 * Determine if the slab management is 'on' or 'off' slab. 2454 * (bootstrapping cannot cope with offslab caches so don't do 2455 * it too early on. Always use on-slab management when 2456 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) 2457 */ 2458 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init && 2459 !(flags & SLAB_NOLEAKTRACE)) 2460 /* 2461 * Size is large, assume best to place the slab management obj 2462 * off-slab (should allow better packing of objs). 2463 */ 2464 flags |= CFLGS_OFF_SLAB; 2465 2466 size = ALIGN(size, align); 2467 2468 left_over = calculate_slab_order(cachep, size, align, flags); 2469 2470 if (!cachep->num) { 2471 printk(KERN_ERR 2472 "kmem_cache_create: couldn't create cache %s.\n", name); 2473 kmem_cache_free(&cache_cache, cachep); 2474 cachep = NULL; 2475 goto oops; 2476 } 2477 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) 2478 + sizeof(struct slab), align); 2479 2480 /* 2481 * If the slab has been placed off-slab, and we have enough space then 2482 * move it on-slab. This is at the expense of any extra colouring. 2483 */ 2484 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { 2485 flags &= ~CFLGS_OFF_SLAB; 2486 left_over -= slab_size; 2487 } 2488 2489 if (flags & CFLGS_OFF_SLAB) { 2490 /* really off slab. No need for manual alignment */ 2491 slab_size = 2492 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); 2493 2494 #ifdef CONFIG_PAGE_POISONING 2495 /* If we're going to use the generic kernel_map_pages() 2496 * poisoning, then it's going to smash the contents of 2497 * the redzone and userword anyhow, so switch them off. 2498 */ 2499 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) 2500 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2501 #endif 2502 } 2503 2504 cachep->colour_off = cache_line_size(); 2505 /* Offset must be a multiple of the alignment. */ 2506 if (cachep->colour_off < align) 2507 cachep->colour_off = align; 2508 cachep->colour = left_over / cachep->colour_off; 2509 cachep->slab_size = slab_size; 2510 cachep->flags = flags; 2511 cachep->gfpflags = 0; 2512 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2513 cachep->gfpflags |= GFP_DMA; 2514 cachep->buffer_size = size; 2515 cachep->reciprocal_buffer_size = reciprocal_value(size); 2516 2517 if (flags & CFLGS_OFF_SLAB) { 2518 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); 2519 /* 2520 * This is a possibility for one of the malloc_sizes caches. 2521 * But since we go off slab only for object size greater than 2522 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, 2523 * this should not happen at all. 2524 * But leave a BUG_ON for some lucky dude. 2525 */ 2526 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); 2527 } 2528 cachep->ctor = ctor; 2529 cachep->name = name; 2530 2531 if (setup_cpu_cache(cachep, gfp)) { 2532 __kmem_cache_destroy(cachep); 2533 cachep = NULL; 2534 goto oops; 2535 } 2536 2537 if (flags & SLAB_DEBUG_OBJECTS) { 2538 /* 2539 * Would deadlock through slab_destroy()->call_rcu()-> 2540 * debug_object_activate()->kmem_cache_alloc(). 2541 */ 2542 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU); 2543 2544 slab_set_debugobj_lock_classes(cachep); 2545 } 2546 2547 /* cache setup completed, link it into the list */ 2548 list_add(&cachep->next, &cache_chain); 2549 oops: 2550 if (!cachep && (flags & SLAB_PANIC)) 2551 panic("kmem_cache_create(): failed to create slab `%s'\n", 2552 name); 2553 if (slab_is_available()) { 2554 mutex_unlock(&cache_chain_mutex); 2555 put_online_cpus(); 2556 } 2557 return cachep; 2558 } 2559 EXPORT_SYMBOL(kmem_cache_create); 2560 2561 #if DEBUG 2562 static void check_irq_off(void) 2563 { 2564 BUG_ON(!irqs_disabled()); 2565 } 2566 2567 static void check_irq_on(void) 2568 { 2569 BUG_ON(irqs_disabled()); 2570 } 2571 2572 static void check_spinlock_acquired(struct kmem_cache *cachep) 2573 { 2574 #ifdef CONFIG_SMP 2575 check_irq_off(); 2576 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock); 2577 #endif 2578 } 2579 2580 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2581 { 2582 #ifdef CONFIG_SMP 2583 check_irq_off(); 2584 assert_spin_locked(&cachep->nodelists[node]->list_lock); 2585 #endif 2586 } 2587 2588 #else 2589 #define check_irq_off() do { } while(0) 2590 #define check_irq_on() do { } while(0) 2591 #define check_spinlock_acquired(x) do { } while(0) 2592 #define check_spinlock_acquired_node(x, y) do { } while(0) 2593 #endif 2594 2595 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 2596 struct array_cache *ac, 2597 int force, int node); 2598 2599 static void do_drain(void *arg) 2600 { 2601 struct kmem_cache *cachep = arg; 2602 struct array_cache *ac; 2603 int node = numa_mem_id(); 2604 2605 check_irq_off(); 2606 ac = cpu_cache_get(cachep); 2607 spin_lock(&cachep->nodelists[node]->list_lock); 2608 free_block(cachep, ac->entry, ac->avail, node); 2609 spin_unlock(&cachep->nodelists[node]->list_lock); 2610 ac->avail = 0; 2611 } 2612 2613 static void drain_cpu_caches(struct kmem_cache *cachep) 2614 { 2615 struct kmem_list3 *l3; 2616 int node; 2617 2618 on_each_cpu(do_drain, cachep, 1); 2619 check_irq_on(); 2620 for_each_online_node(node) { 2621 l3 = cachep->nodelists[node]; 2622 if (l3 && l3->alien) 2623 drain_alien_cache(cachep, l3->alien); 2624 } 2625 2626 for_each_online_node(node) { 2627 l3 = cachep->nodelists[node]; 2628 if (l3) 2629 drain_array(cachep, l3, l3->shared, 1, node); 2630 } 2631 } 2632 2633 /* 2634 * Remove slabs from the list of free slabs. 2635 * Specify the number of slabs to drain in tofree. 2636 * 2637 * Returns the actual number of slabs released. 2638 */ 2639 static int drain_freelist(struct kmem_cache *cache, 2640 struct kmem_list3 *l3, int tofree) 2641 { 2642 struct list_head *p; 2643 int nr_freed; 2644 struct slab *slabp; 2645 2646 nr_freed = 0; 2647 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { 2648 2649 spin_lock_irq(&l3->list_lock); 2650 p = l3->slabs_free.prev; 2651 if (p == &l3->slabs_free) { 2652 spin_unlock_irq(&l3->list_lock); 2653 goto out; 2654 } 2655 2656 slabp = list_entry(p, struct slab, list); 2657 #if DEBUG 2658 BUG_ON(slabp->inuse); 2659 #endif 2660 list_del(&slabp->list); 2661 /* 2662 * Safe to drop the lock. The slab is no longer linked 2663 * to the cache. 2664 */ 2665 l3->free_objects -= cache->num; 2666 spin_unlock_irq(&l3->list_lock); 2667 slab_destroy(cache, slabp); 2668 nr_freed++; 2669 } 2670 out: 2671 return nr_freed; 2672 } 2673 2674 /* Called with cache_chain_mutex held to protect against cpu hotplug */ 2675 static int __cache_shrink(struct kmem_cache *cachep) 2676 { 2677 int ret = 0, i = 0; 2678 struct kmem_list3 *l3; 2679 2680 drain_cpu_caches(cachep); 2681 2682 check_irq_on(); 2683 for_each_online_node(i) { 2684 l3 = cachep->nodelists[i]; 2685 if (!l3) 2686 continue; 2687 2688 drain_freelist(cachep, l3, l3->free_objects); 2689 2690 ret += !list_empty(&l3->slabs_full) || 2691 !list_empty(&l3->slabs_partial); 2692 } 2693 return (ret ? 1 : 0); 2694 } 2695 2696 /** 2697 * kmem_cache_shrink - Shrink a cache. 2698 * @cachep: The cache to shrink. 2699 * 2700 * Releases as many slabs as possible for a cache. 2701 * To help debugging, a zero exit status indicates all slabs were released. 2702 */ 2703 int kmem_cache_shrink(struct kmem_cache *cachep) 2704 { 2705 int ret; 2706 BUG_ON(!cachep || in_interrupt()); 2707 2708 get_online_cpus(); 2709 mutex_lock(&cache_chain_mutex); 2710 ret = __cache_shrink(cachep); 2711 mutex_unlock(&cache_chain_mutex); 2712 put_online_cpus(); 2713 return ret; 2714 } 2715 EXPORT_SYMBOL(kmem_cache_shrink); 2716 2717 /** 2718 * kmem_cache_destroy - delete a cache 2719 * @cachep: the cache to destroy 2720 * 2721 * Remove a &struct kmem_cache object from the slab cache. 2722 * 2723 * It is expected this function will be called by a module when it is 2724 * unloaded. This will remove the cache completely, and avoid a duplicate 2725 * cache being allocated each time a module is loaded and unloaded, if the 2726 * module doesn't have persistent in-kernel storage across loads and unloads. 2727 * 2728 * The cache must be empty before calling this function. 2729 * 2730 * The caller must guarantee that no one will allocate memory from the cache 2731 * during the kmem_cache_destroy(). 2732 */ 2733 void kmem_cache_destroy(struct kmem_cache *cachep) 2734 { 2735 BUG_ON(!cachep || in_interrupt()); 2736 2737 /* Find the cache in the chain of caches. */ 2738 get_online_cpus(); 2739 mutex_lock(&cache_chain_mutex); 2740 /* 2741 * the chain is never empty, cache_cache is never destroyed 2742 */ 2743 list_del(&cachep->next); 2744 if (__cache_shrink(cachep)) { 2745 slab_error(cachep, "Can't free all objects"); 2746 list_add(&cachep->next, &cache_chain); 2747 mutex_unlock(&cache_chain_mutex); 2748 put_online_cpus(); 2749 return; 2750 } 2751 2752 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 2753 rcu_barrier(); 2754 2755 __kmem_cache_destroy(cachep); 2756 mutex_unlock(&cache_chain_mutex); 2757 put_online_cpus(); 2758 } 2759 EXPORT_SYMBOL(kmem_cache_destroy); 2760 2761 /* 2762 * Get the memory for a slab management obj. 2763 * For a slab cache when the slab descriptor is off-slab, slab descriptors 2764 * always come from malloc_sizes caches. The slab descriptor cannot 2765 * come from the same cache which is getting created because, 2766 * when we are searching for an appropriate cache for these 2767 * descriptors in kmem_cache_create, we search through the malloc_sizes array. 2768 * If we are creating a malloc_sizes cache here it would not be visible to 2769 * kmem_find_general_cachep till the initialization is complete. 2770 * Hence we cannot have slabp_cache same as the original cache. 2771 */ 2772 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, 2773 int colour_off, gfp_t local_flags, 2774 int nodeid) 2775 { 2776 struct slab *slabp; 2777 2778 if (OFF_SLAB(cachep)) { 2779 /* Slab management obj is off-slab. */ 2780 slabp = kmem_cache_alloc_node(cachep->slabp_cache, 2781 local_flags, nodeid); 2782 /* 2783 * If the first object in the slab is leaked (it's allocated 2784 * but no one has a reference to it), we want to make sure 2785 * kmemleak does not treat the ->s_mem pointer as a reference 2786 * to the object. Otherwise we will not report the leak. 2787 */ 2788 kmemleak_scan_area(&slabp->list, sizeof(struct list_head), 2789 local_flags); 2790 if (!slabp) 2791 return NULL; 2792 } else { 2793 slabp = objp + colour_off; 2794 colour_off += cachep->slab_size; 2795 } 2796 slabp->inuse = 0; 2797 slabp->colouroff = colour_off; 2798 slabp->s_mem = objp + colour_off; 2799 slabp->nodeid = nodeid; 2800 slabp->free = 0; 2801 return slabp; 2802 } 2803 2804 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) 2805 { 2806 return (kmem_bufctl_t *) (slabp + 1); 2807 } 2808 2809 static void cache_init_objs(struct kmem_cache *cachep, 2810 struct slab *slabp) 2811 { 2812 int i; 2813 2814 for (i = 0; i < cachep->num; i++) { 2815 void *objp = index_to_obj(cachep, slabp, i); 2816 #if DEBUG 2817 /* need to poison the objs? */ 2818 if (cachep->flags & SLAB_POISON) 2819 poison_obj(cachep, objp, POISON_FREE); 2820 if (cachep->flags & SLAB_STORE_USER) 2821 *dbg_userword(cachep, objp) = NULL; 2822 2823 if (cachep->flags & SLAB_RED_ZONE) { 2824 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2825 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2826 } 2827 /* 2828 * Constructors are not allowed to allocate memory from the same 2829 * cache which they are a constructor for. Otherwise, deadlock. 2830 * They must also be threaded. 2831 */ 2832 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2833 cachep->ctor(objp + obj_offset(cachep)); 2834 2835 if (cachep->flags & SLAB_RED_ZONE) { 2836 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2837 slab_error(cachep, "constructor overwrote the" 2838 " end of an object"); 2839 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2840 slab_error(cachep, "constructor overwrote the" 2841 " start of an object"); 2842 } 2843 if ((cachep->buffer_size % PAGE_SIZE) == 0 && 2844 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2845 kernel_map_pages(virt_to_page(objp), 2846 cachep->buffer_size / PAGE_SIZE, 0); 2847 #else 2848 if (cachep->ctor) 2849 cachep->ctor(objp); 2850 #endif 2851 slab_bufctl(slabp)[i] = i + 1; 2852 } 2853 slab_bufctl(slabp)[i - 1] = BUFCTL_END; 2854 } 2855 2856 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2857 { 2858 if (CONFIG_ZONE_DMA_FLAG) { 2859 if (flags & GFP_DMA) 2860 BUG_ON(!(cachep->gfpflags & GFP_DMA)); 2861 else 2862 BUG_ON(cachep->gfpflags & GFP_DMA); 2863 } 2864 } 2865 2866 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, 2867 int nodeid) 2868 { 2869 void *objp = index_to_obj(cachep, slabp, slabp->free); 2870 kmem_bufctl_t next; 2871 2872 slabp->inuse++; 2873 next = slab_bufctl(slabp)[slabp->free]; 2874 #if DEBUG 2875 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; 2876 WARN_ON(slabp->nodeid != nodeid); 2877 #endif 2878 slabp->free = next; 2879 2880 return objp; 2881 } 2882 2883 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, 2884 void *objp, int nodeid) 2885 { 2886 unsigned int objnr = obj_to_index(cachep, slabp, objp); 2887 2888 #if DEBUG 2889 /* Verify that the slab belongs to the intended node */ 2890 WARN_ON(slabp->nodeid != nodeid); 2891 2892 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { 2893 printk(KERN_ERR "slab: double free detected in cache " 2894 "'%s', objp %p\n", cachep->name, objp); 2895 BUG(); 2896 } 2897 #endif 2898 slab_bufctl(slabp)[objnr] = slabp->free; 2899 slabp->free = objnr; 2900 slabp->inuse--; 2901 } 2902 2903 /* 2904 * Map pages beginning at addr to the given cache and slab. This is required 2905 * for the slab allocator to be able to lookup the cache and slab of a 2906 * virtual address for kfree, ksize, and slab debugging. 2907 */ 2908 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, 2909 void *addr) 2910 { 2911 int nr_pages; 2912 struct page *page; 2913 2914 page = virt_to_page(addr); 2915 2916 nr_pages = 1; 2917 if (likely(!PageCompound(page))) 2918 nr_pages <<= cache->gfporder; 2919 2920 do { 2921 page_set_cache(page, cache); 2922 page_set_slab(page, slab); 2923 page++; 2924 } while (--nr_pages); 2925 } 2926 2927 /* 2928 * Grow (by 1) the number of slabs within a cache. This is called by 2929 * kmem_cache_alloc() when there are no active objs left in a cache. 2930 */ 2931 static int cache_grow(struct kmem_cache *cachep, 2932 gfp_t flags, int nodeid, void *objp) 2933 { 2934 struct slab *slabp; 2935 size_t offset; 2936 gfp_t local_flags; 2937 struct kmem_list3 *l3; 2938 2939 /* 2940 * Be lazy and only check for valid flags here, keeping it out of the 2941 * critical path in kmem_cache_alloc(). 2942 */ 2943 BUG_ON(flags & GFP_SLAB_BUG_MASK); 2944 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2945 2946 /* Take the l3 list lock to change the colour_next on this node */ 2947 check_irq_off(); 2948 l3 = cachep->nodelists[nodeid]; 2949 spin_lock(&l3->list_lock); 2950 2951 /* Get colour for the slab, and cal the next value. */ 2952 offset = l3->colour_next; 2953 l3->colour_next++; 2954 if (l3->colour_next >= cachep->colour) 2955 l3->colour_next = 0; 2956 spin_unlock(&l3->list_lock); 2957 2958 offset *= cachep->colour_off; 2959 2960 if (local_flags & __GFP_WAIT) 2961 local_irq_enable(); 2962 2963 /* 2964 * The test for missing atomic flag is performed here, rather than 2965 * the more obvious place, simply to reduce the critical path length 2966 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2967 * will eventually be caught here (where it matters). 2968 */ 2969 kmem_flagcheck(cachep, flags); 2970 2971 /* 2972 * Get mem for the objs. Attempt to allocate a physical page from 2973 * 'nodeid'. 2974 */ 2975 if (!objp) 2976 objp = kmem_getpages(cachep, local_flags, nodeid); 2977 if (!objp) 2978 goto failed; 2979 2980 /* Get slab management. */ 2981 slabp = alloc_slabmgmt(cachep, objp, offset, 2982 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2983 if (!slabp) 2984 goto opps1; 2985 2986 slab_map_pages(cachep, slabp, objp); 2987 2988 cache_init_objs(cachep, slabp); 2989 2990 if (local_flags & __GFP_WAIT) 2991 local_irq_disable(); 2992 check_irq_off(); 2993 spin_lock(&l3->list_lock); 2994 2995 /* Make slab active. */ 2996 list_add_tail(&slabp->list, &(l3->slabs_free)); 2997 STATS_INC_GROWN(cachep); 2998 l3->free_objects += cachep->num; 2999 spin_unlock(&l3->list_lock); 3000 return 1; 3001 opps1: 3002 kmem_freepages(cachep, objp); 3003 failed: 3004 if (local_flags & __GFP_WAIT) 3005 local_irq_disable(); 3006 return 0; 3007 } 3008 3009 #if DEBUG 3010 3011 /* 3012 * Perform extra freeing checks: 3013 * - detect bad pointers. 3014 * - POISON/RED_ZONE checking 3015 */ 3016 static void kfree_debugcheck(const void *objp) 3017 { 3018 if (!virt_addr_valid(objp)) { 3019 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 3020 (unsigned long)objp); 3021 BUG(); 3022 } 3023 } 3024 3025 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 3026 { 3027 unsigned long long redzone1, redzone2; 3028 3029 redzone1 = *dbg_redzone1(cache, obj); 3030 redzone2 = *dbg_redzone2(cache, obj); 3031 3032 /* 3033 * Redzone is ok. 3034 */ 3035 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 3036 return; 3037 3038 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 3039 slab_error(cache, "double free detected"); 3040 else 3041 slab_error(cache, "memory outside object was overwritten"); 3042 3043 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 3044 obj, redzone1, redzone2); 3045 } 3046 3047 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 3048 void *caller) 3049 { 3050 struct page *page; 3051 unsigned int objnr; 3052 struct slab *slabp; 3053 3054 BUG_ON(virt_to_cache(objp) != cachep); 3055 3056 objp -= obj_offset(cachep); 3057 kfree_debugcheck(objp); 3058 page = virt_to_head_page(objp); 3059 3060 slabp = page_get_slab(page); 3061 3062 if (cachep->flags & SLAB_RED_ZONE) { 3063 verify_redzone_free(cachep, objp); 3064 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 3065 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 3066 } 3067 if (cachep->flags & SLAB_STORE_USER) 3068 *dbg_userword(cachep, objp) = caller; 3069 3070 objnr = obj_to_index(cachep, slabp, objp); 3071 3072 BUG_ON(objnr >= cachep->num); 3073 BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); 3074 3075 #ifdef CONFIG_DEBUG_SLAB_LEAK 3076 slab_bufctl(slabp)[objnr] = BUFCTL_FREE; 3077 #endif 3078 if (cachep->flags & SLAB_POISON) { 3079 #ifdef CONFIG_DEBUG_PAGEALLOC 3080 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 3081 store_stackinfo(cachep, objp, (unsigned long)caller); 3082 kernel_map_pages(virt_to_page(objp), 3083 cachep->buffer_size / PAGE_SIZE, 0); 3084 } else { 3085 poison_obj(cachep, objp, POISON_FREE); 3086 } 3087 #else 3088 poison_obj(cachep, objp, POISON_FREE); 3089 #endif 3090 } 3091 return objp; 3092 } 3093 3094 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) 3095 { 3096 kmem_bufctl_t i; 3097 int entries = 0; 3098 3099 /* Check slab's freelist to see if this obj is there. */ 3100 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { 3101 entries++; 3102 if (entries > cachep->num || i >= cachep->num) 3103 goto bad; 3104 } 3105 if (entries != cachep->num - slabp->inuse) { 3106 bad: 3107 printk(KERN_ERR "slab: Internal list corruption detected in " 3108 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n", 3109 cachep->name, cachep->num, slabp, slabp->inuse, 3110 print_tainted()); 3111 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp, 3112 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t), 3113 1); 3114 BUG(); 3115 } 3116 } 3117 #else 3118 #define kfree_debugcheck(x) do { } while(0) 3119 #define cache_free_debugcheck(x,objp,z) (objp) 3120 #define check_slabp(x,y) do { } while(0) 3121 #endif 3122 3123 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 3124 { 3125 int batchcount; 3126 struct kmem_list3 *l3; 3127 struct array_cache *ac; 3128 int node; 3129 3130 retry: 3131 check_irq_off(); 3132 node = numa_mem_id(); 3133 ac = cpu_cache_get(cachep); 3134 batchcount = ac->batchcount; 3135 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 3136 /* 3137 * If there was little recent activity on this cache, then 3138 * perform only a partial refill. Otherwise we could generate 3139 * refill bouncing. 3140 */ 3141 batchcount = BATCHREFILL_LIMIT; 3142 } 3143 l3 = cachep->nodelists[node]; 3144 3145 BUG_ON(ac->avail > 0 || !l3); 3146 spin_lock(&l3->list_lock); 3147 3148 /* See if we can refill from the shared array */ 3149 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) { 3150 l3->shared->touched = 1; 3151 goto alloc_done; 3152 } 3153 3154 while (batchcount > 0) { 3155 struct list_head *entry; 3156 struct slab *slabp; 3157 /* Get slab alloc is to come from. */ 3158 entry = l3->slabs_partial.next; 3159 if (entry == &l3->slabs_partial) { 3160 l3->free_touched = 1; 3161 entry = l3->slabs_free.next; 3162 if (entry == &l3->slabs_free) 3163 goto must_grow; 3164 } 3165 3166 slabp = list_entry(entry, struct slab, list); 3167 check_slabp(cachep, slabp); 3168 check_spinlock_acquired(cachep); 3169 3170 /* 3171 * The slab was either on partial or free list so 3172 * there must be at least one object available for 3173 * allocation. 3174 */ 3175 BUG_ON(slabp->inuse >= cachep->num); 3176 3177 while (slabp->inuse < cachep->num && batchcount--) { 3178 STATS_INC_ALLOCED(cachep); 3179 STATS_INC_ACTIVE(cachep); 3180 STATS_SET_HIGH(cachep); 3181 3182 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, 3183 node); 3184 } 3185 check_slabp(cachep, slabp); 3186 3187 /* move slabp to correct slabp list: */ 3188 list_del(&slabp->list); 3189 if (slabp->free == BUFCTL_END) 3190 list_add(&slabp->list, &l3->slabs_full); 3191 else 3192 list_add(&slabp->list, &l3->slabs_partial); 3193 } 3194 3195 must_grow: 3196 l3->free_objects -= ac->avail; 3197 alloc_done: 3198 spin_unlock(&l3->list_lock); 3199 3200 if (unlikely(!ac->avail)) { 3201 int x; 3202 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 3203 3204 /* cache_grow can reenable interrupts, then ac could change. */ 3205 ac = cpu_cache_get(cachep); 3206 if (!x && ac->avail == 0) /* no objects in sight? abort */ 3207 return NULL; 3208 3209 if (!ac->avail) /* objects refilled by interrupt? */ 3210 goto retry; 3211 } 3212 ac->touched = 1; 3213 return ac->entry[--ac->avail]; 3214 } 3215 3216 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3217 gfp_t flags) 3218 { 3219 might_sleep_if(flags & __GFP_WAIT); 3220 #if DEBUG 3221 kmem_flagcheck(cachep, flags); 3222 #endif 3223 } 3224 3225 #if DEBUG 3226 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3227 gfp_t flags, void *objp, void *caller) 3228 { 3229 if (!objp) 3230 return objp; 3231 if (cachep->flags & SLAB_POISON) { 3232 #ifdef CONFIG_DEBUG_PAGEALLOC 3233 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 3234 kernel_map_pages(virt_to_page(objp), 3235 cachep->buffer_size / PAGE_SIZE, 1); 3236 else 3237 check_poison_obj(cachep, objp); 3238 #else 3239 check_poison_obj(cachep, objp); 3240 #endif 3241 poison_obj(cachep, objp, POISON_INUSE); 3242 } 3243 if (cachep->flags & SLAB_STORE_USER) 3244 *dbg_userword(cachep, objp) = caller; 3245 3246 if (cachep->flags & SLAB_RED_ZONE) { 3247 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3248 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3249 slab_error(cachep, "double free, or memory outside" 3250 " object was overwritten"); 3251 printk(KERN_ERR 3252 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 3253 objp, *dbg_redzone1(cachep, objp), 3254 *dbg_redzone2(cachep, objp)); 3255 } 3256 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3257 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3258 } 3259 #ifdef CONFIG_DEBUG_SLAB_LEAK 3260 { 3261 struct slab *slabp; 3262 unsigned objnr; 3263 3264 slabp = page_get_slab(virt_to_head_page(objp)); 3265 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; 3266 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; 3267 } 3268 #endif 3269 objp += obj_offset(cachep); 3270 if (cachep->ctor && cachep->flags & SLAB_POISON) 3271 cachep->ctor(objp); 3272 if (ARCH_SLAB_MINALIGN && 3273 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 3274 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3275 objp, (int)ARCH_SLAB_MINALIGN); 3276 } 3277 return objp; 3278 } 3279 #else 3280 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3281 #endif 3282 3283 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) 3284 { 3285 if (cachep == &cache_cache) 3286 return false; 3287 3288 return should_failslab(obj_size(cachep), flags, cachep->flags); 3289 } 3290 3291 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3292 { 3293 void *objp; 3294 struct array_cache *ac; 3295 3296 check_irq_off(); 3297 3298 ac = cpu_cache_get(cachep); 3299 if (likely(ac->avail)) { 3300 STATS_INC_ALLOCHIT(cachep); 3301 ac->touched = 1; 3302 objp = ac->entry[--ac->avail]; 3303 } else { 3304 STATS_INC_ALLOCMISS(cachep); 3305 objp = cache_alloc_refill(cachep, flags); 3306 /* 3307 * the 'ac' may be updated by cache_alloc_refill(), 3308 * and kmemleak_erase() requires its correct value. 3309 */ 3310 ac = cpu_cache_get(cachep); 3311 } 3312 /* 3313 * To avoid a false negative, if an object that is in one of the 3314 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3315 * treat the array pointers as a reference to the object. 3316 */ 3317 if (objp) 3318 kmemleak_erase(&ac->entry[ac->avail]); 3319 return objp; 3320 } 3321 3322 #ifdef CONFIG_NUMA 3323 /* 3324 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. 3325 * 3326 * If we are in_interrupt, then process context, including cpusets and 3327 * mempolicy, may not apply and should not be used for allocation policy. 3328 */ 3329 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3330 { 3331 int nid_alloc, nid_here; 3332 3333 if (in_interrupt() || (flags & __GFP_THISNODE)) 3334 return NULL; 3335 nid_alloc = nid_here = numa_mem_id(); 3336 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3337 nid_alloc = cpuset_slab_spread_node(); 3338 else if (current->mempolicy) 3339 nid_alloc = slab_node(current->mempolicy); 3340 if (nid_alloc != nid_here) 3341 return ____cache_alloc_node(cachep, flags, nid_alloc); 3342 return NULL; 3343 } 3344 3345 /* 3346 * Fallback function if there was no memory available and no objects on a 3347 * certain node and fall back is permitted. First we scan all the 3348 * available nodelists for available objects. If that fails then we 3349 * perform an allocation without specifying a node. This allows the page 3350 * allocator to do its reclaim / fallback magic. We then insert the 3351 * slab into the proper nodelist and then allocate from it. 3352 */ 3353 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3354 { 3355 struct zonelist *zonelist; 3356 gfp_t local_flags; 3357 struct zoneref *z; 3358 struct zone *zone; 3359 enum zone_type high_zoneidx = gfp_zone(flags); 3360 void *obj = NULL; 3361 int nid; 3362 unsigned int cpuset_mems_cookie; 3363 3364 if (flags & __GFP_THISNODE) 3365 return NULL; 3366 3367 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3368 3369 retry_cpuset: 3370 cpuset_mems_cookie = get_mems_allowed(); 3371 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 3372 3373 retry: 3374 /* 3375 * Look through allowed nodes for objects available 3376 * from existing per node queues. 3377 */ 3378 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3379 nid = zone_to_nid(zone); 3380 3381 if (cpuset_zone_allowed_hardwall(zone, flags) && 3382 cache->nodelists[nid] && 3383 cache->nodelists[nid]->free_objects) { 3384 obj = ____cache_alloc_node(cache, 3385 flags | GFP_THISNODE, nid); 3386 if (obj) 3387 break; 3388 } 3389 } 3390 3391 if (!obj) { 3392 /* 3393 * This allocation will be performed within the constraints 3394 * of the current cpuset / memory policy requirements. 3395 * We may trigger various forms of reclaim on the allowed 3396 * set and go into memory reserves if necessary. 3397 */ 3398 if (local_flags & __GFP_WAIT) 3399 local_irq_enable(); 3400 kmem_flagcheck(cache, flags); 3401 obj = kmem_getpages(cache, local_flags, numa_mem_id()); 3402 if (local_flags & __GFP_WAIT) 3403 local_irq_disable(); 3404 if (obj) { 3405 /* 3406 * Insert into the appropriate per node queues 3407 */ 3408 nid = page_to_nid(virt_to_page(obj)); 3409 if (cache_grow(cache, flags, nid, obj)) { 3410 obj = ____cache_alloc_node(cache, 3411 flags | GFP_THISNODE, nid); 3412 if (!obj) 3413 /* 3414 * Another processor may allocate the 3415 * objects in the slab since we are 3416 * not holding any locks. 3417 */ 3418 goto retry; 3419 } else { 3420 /* cache_grow already freed obj */ 3421 obj = NULL; 3422 } 3423 } 3424 } 3425 3426 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj)) 3427 goto retry_cpuset; 3428 return obj; 3429 } 3430 3431 /* 3432 * A interface to enable slab creation on nodeid 3433 */ 3434 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3435 int nodeid) 3436 { 3437 struct list_head *entry; 3438 struct slab *slabp; 3439 struct kmem_list3 *l3; 3440 void *obj; 3441 int x; 3442 3443 l3 = cachep->nodelists[nodeid]; 3444 BUG_ON(!l3); 3445 3446 retry: 3447 check_irq_off(); 3448 spin_lock(&l3->list_lock); 3449 entry = l3->slabs_partial.next; 3450 if (entry == &l3->slabs_partial) { 3451 l3->free_touched = 1; 3452 entry = l3->slabs_free.next; 3453 if (entry == &l3->slabs_free) 3454 goto must_grow; 3455 } 3456 3457 slabp = list_entry(entry, struct slab, list); 3458 check_spinlock_acquired_node(cachep, nodeid); 3459 check_slabp(cachep, slabp); 3460 3461 STATS_INC_NODEALLOCS(cachep); 3462 STATS_INC_ACTIVE(cachep); 3463 STATS_SET_HIGH(cachep); 3464 3465 BUG_ON(slabp->inuse == cachep->num); 3466 3467 obj = slab_get_obj(cachep, slabp, nodeid); 3468 check_slabp(cachep, slabp); 3469 l3->free_objects--; 3470 /* move slabp to correct slabp list: */ 3471 list_del(&slabp->list); 3472 3473 if (slabp->free == BUFCTL_END) 3474 list_add(&slabp->list, &l3->slabs_full); 3475 else 3476 list_add(&slabp->list, &l3->slabs_partial); 3477 3478 spin_unlock(&l3->list_lock); 3479 goto done; 3480 3481 must_grow: 3482 spin_unlock(&l3->list_lock); 3483 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3484 if (x) 3485 goto retry; 3486 3487 return fallback_alloc(cachep, flags); 3488 3489 done: 3490 return obj; 3491 } 3492 3493 /** 3494 * kmem_cache_alloc_node - Allocate an object on the specified node 3495 * @cachep: The cache to allocate from. 3496 * @flags: See kmalloc(). 3497 * @nodeid: node number of the target node. 3498 * @caller: return address of caller, used for debug information 3499 * 3500 * Identical to kmem_cache_alloc but it will allocate memory on the given 3501 * node, which can improve the performance for cpu bound structures. 3502 * 3503 * Fallback to other node is possible if __GFP_THISNODE is not set. 3504 */ 3505 static __always_inline void * 3506 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3507 void *caller) 3508 { 3509 unsigned long save_flags; 3510 void *ptr; 3511 int slab_node = numa_mem_id(); 3512 3513 flags &= gfp_allowed_mask; 3514 3515 lockdep_trace_alloc(flags); 3516 3517 if (slab_should_failslab(cachep, flags)) 3518 return NULL; 3519 3520 cache_alloc_debugcheck_before(cachep, flags); 3521 local_irq_save(save_flags); 3522 3523 if (nodeid == NUMA_NO_NODE) 3524 nodeid = slab_node; 3525 3526 if (unlikely(!cachep->nodelists[nodeid])) { 3527 /* Node not bootstrapped yet */ 3528 ptr = fallback_alloc(cachep, flags); 3529 goto out; 3530 } 3531 3532 if (nodeid == slab_node) { 3533 /* 3534 * Use the locally cached objects if possible. 3535 * However ____cache_alloc does not allow fallback 3536 * to other nodes. It may fail while we still have 3537 * objects on other nodes available. 3538 */ 3539 ptr = ____cache_alloc(cachep, flags); 3540 if (ptr) 3541 goto out; 3542 } 3543 /* ___cache_alloc_node can fall back to other nodes */ 3544 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3545 out: 3546 local_irq_restore(save_flags); 3547 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3548 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags, 3549 flags); 3550 3551 if (likely(ptr)) 3552 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep)); 3553 3554 if (unlikely((flags & __GFP_ZERO) && ptr)) 3555 memset(ptr, 0, obj_size(cachep)); 3556 3557 return ptr; 3558 } 3559 3560 static __always_inline void * 3561 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3562 { 3563 void *objp; 3564 3565 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { 3566 objp = alternate_node_alloc(cache, flags); 3567 if (objp) 3568 goto out; 3569 } 3570 objp = ____cache_alloc(cache, flags); 3571 3572 /* 3573 * We may just have run out of memory on the local node. 3574 * ____cache_alloc_node() knows how to locate memory on other nodes 3575 */ 3576 if (!objp) 3577 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3578 3579 out: 3580 return objp; 3581 } 3582 #else 3583 3584 static __always_inline void * 3585 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3586 { 3587 return ____cache_alloc(cachep, flags); 3588 } 3589 3590 #endif /* CONFIG_NUMA */ 3591 3592 static __always_inline void * 3593 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) 3594 { 3595 unsigned long save_flags; 3596 void *objp; 3597 3598 flags &= gfp_allowed_mask; 3599 3600 lockdep_trace_alloc(flags); 3601 3602 if (slab_should_failslab(cachep, flags)) 3603 return NULL; 3604 3605 cache_alloc_debugcheck_before(cachep, flags); 3606 local_irq_save(save_flags); 3607 objp = __do_cache_alloc(cachep, flags); 3608 local_irq_restore(save_flags); 3609 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3610 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags, 3611 flags); 3612 prefetchw(objp); 3613 3614 if (likely(objp)) 3615 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep)); 3616 3617 if (unlikely((flags & __GFP_ZERO) && objp)) 3618 memset(objp, 0, obj_size(cachep)); 3619 3620 return objp; 3621 } 3622 3623 /* 3624 * Caller needs to acquire correct kmem_list's list_lock 3625 */ 3626 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, 3627 int node) 3628 { 3629 int i; 3630 struct kmem_list3 *l3; 3631 3632 for (i = 0; i < nr_objects; i++) { 3633 void *objp = objpp[i]; 3634 struct slab *slabp; 3635 3636 slabp = virt_to_slab(objp); 3637 l3 = cachep->nodelists[node]; 3638 list_del(&slabp->list); 3639 check_spinlock_acquired_node(cachep, node); 3640 check_slabp(cachep, slabp); 3641 slab_put_obj(cachep, slabp, objp, node); 3642 STATS_DEC_ACTIVE(cachep); 3643 l3->free_objects++; 3644 check_slabp(cachep, slabp); 3645 3646 /* fixup slab chains */ 3647 if (slabp->inuse == 0) { 3648 if (l3->free_objects > l3->free_limit) { 3649 l3->free_objects -= cachep->num; 3650 /* No need to drop any previously held 3651 * lock here, even if we have a off-slab slab 3652 * descriptor it is guaranteed to come from 3653 * a different cache, refer to comments before 3654 * alloc_slabmgmt. 3655 */ 3656 slab_destroy(cachep, slabp); 3657 } else { 3658 list_add(&slabp->list, &l3->slabs_free); 3659 } 3660 } else { 3661 /* Unconditionally move a slab to the end of the 3662 * partial list on free - maximum time for the 3663 * other objects to be freed, too. 3664 */ 3665 list_add_tail(&slabp->list, &l3->slabs_partial); 3666 } 3667 } 3668 } 3669 3670 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3671 { 3672 int batchcount; 3673 struct kmem_list3 *l3; 3674 int node = numa_mem_id(); 3675 3676 batchcount = ac->batchcount; 3677 #if DEBUG 3678 BUG_ON(!batchcount || batchcount > ac->avail); 3679 #endif 3680 check_irq_off(); 3681 l3 = cachep->nodelists[node]; 3682 spin_lock(&l3->list_lock); 3683 if (l3->shared) { 3684 struct array_cache *shared_array = l3->shared; 3685 int max = shared_array->limit - shared_array->avail; 3686 if (max) { 3687 if (batchcount > max) 3688 batchcount = max; 3689 memcpy(&(shared_array->entry[shared_array->avail]), 3690 ac->entry, sizeof(void *) * batchcount); 3691 shared_array->avail += batchcount; 3692 goto free_done; 3693 } 3694 } 3695 3696 free_block(cachep, ac->entry, batchcount, node); 3697 free_done: 3698 #if STATS 3699 { 3700 int i = 0; 3701 struct list_head *p; 3702 3703 p = l3->slabs_free.next; 3704 while (p != &(l3->slabs_free)) { 3705 struct slab *slabp; 3706 3707 slabp = list_entry(p, struct slab, list); 3708 BUG_ON(slabp->inuse); 3709 3710 i++; 3711 p = p->next; 3712 } 3713 STATS_SET_FREEABLE(cachep, i); 3714 } 3715 #endif 3716 spin_unlock(&l3->list_lock); 3717 ac->avail -= batchcount; 3718 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3719 } 3720 3721 /* 3722 * Release an obj back to its cache. If the obj has a constructed state, it must 3723 * be in this state _before_ it is released. Called with disabled ints. 3724 */ 3725 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3726 void *caller) 3727 { 3728 struct array_cache *ac = cpu_cache_get(cachep); 3729 3730 check_irq_off(); 3731 kmemleak_free_recursive(objp, cachep->flags); 3732 objp = cache_free_debugcheck(cachep, objp, caller); 3733 3734 kmemcheck_slab_free(cachep, objp, obj_size(cachep)); 3735 3736 /* 3737 * Skip calling cache_free_alien() when the platform is not numa. 3738 * This will avoid cache misses that happen while accessing slabp (which 3739 * is per page memory reference) to get nodeid. Instead use a global 3740 * variable to skip the call, which is mostly likely to be present in 3741 * the cache. 3742 */ 3743 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3744 return; 3745 3746 if (likely(ac->avail < ac->limit)) { 3747 STATS_INC_FREEHIT(cachep); 3748 } else { 3749 STATS_INC_FREEMISS(cachep); 3750 cache_flusharray(cachep, ac); 3751 } 3752 3753 ac->entry[ac->avail++] = objp; 3754 } 3755 3756 /** 3757 * kmem_cache_alloc - Allocate an object 3758 * @cachep: The cache to allocate from. 3759 * @flags: See kmalloc(). 3760 * 3761 * Allocate an object from this cache. The flags are only relevant 3762 * if the cache has no available objects. 3763 */ 3764 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3765 { 3766 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); 3767 3768 trace_kmem_cache_alloc(_RET_IP_, ret, 3769 obj_size(cachep), cachep->buffer_size, flags); 3770 3771 return ret; 3772 } 3773 EXPORT_SYMBOL(kmem_cache_alloc); 3774 3775 #ifdef CONFIG_TRACING 3776 void * 3777 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags) 3778 { 3779 void *ret; 3780 3781 ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); 3782 3783 trace_kmalloc(_RET_IP_, ret, 3784 size, slab_buffer_size(cachep), flags); 3785 return ret; 3786 } 3787 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3788 #endif 3789 3790 #ifdef CONFIG_NUMA 3791 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3792 { 3793 void *ret = __cache_alloc_node(cachep, flags, nodeid, 3794 __builtin_return_address(0)); 3795 3796 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3797 obj_size(cachep), cachep->buffer_size, 3798 flags, nodeid); 3799 3800 return ret; 3801 } 3802 EXPORT_SYMBOL(kmem_cache_alloc_node); 3803 3804 #ifdef CONFIG_TRACING 3805 void *kmem_cache_alloc_node_trace(size_t size, 3806 struct kmem_cache *cachep, 3807 gfp_t flags, 3808 int nodeid) 3809 { 3810 void *ret; 3811 3812 ret = __cache_alloc_node(cachep, flags, nodeid, 3813 __builtin_return_address(0)); 3814 trace_kmalloc_node(_RET_IP_, ret, 3815 size, slab_buffer_size(cachep), 3816 flags, nodeid); 3817 return ret; 3818 } 3819 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3820 #endif 3821 3822 static __always_inline void * 3823 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) 3824 { 3825 struct kmem_cache *cachep; 3826 3827 cachep = kmem_find_general_cachep(size, flags); 3828 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3829 return cachep; 3830 return kmem_cache_alloc_node_trace(size, cachep, flags, node); 3831 } 3832 3833 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3834 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3835 { 3836 return __do_kmalloc_node(size, flags, node, 3837 __builtin_return_address(0)); 3838 } 3839 EXPORT_SYMBOL(__kmalloc_node); 3840 3841 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3842 int node, unsigned long caller) 3843 { 3844 return __do_kmalloc_node(size, flags, node, (void *)caller); 3845 } 3846 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3847 #else 3848 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3849 { 3850 return __do_kmalloc_node(size, flags, node, NULL); 3851 } 3852 EXPORT_SYMBOL(__kmalloc_node); 3853 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ 3854 #endif /* CONFIG_NUMA */ 3855 3856 /** 3857 * __do_kmalloc - allocate memory 3858 * @size: how many bytes of memory are required. 3859 * @flags: the type of memory to allocate (see kmalloc). 3860 * @caller: function caller for debug tracking of the caller 3861 */ 3862 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3863 void *caller) 3864 { 3865 struct kmem_cache *cachep; 3866 void *ret; 3867 3868 /* If you want to save a few bytes .text space: replace 3869 * __ with kmem_. 3870 * Then kmalloc uses the uninlined functions instead of the inline 3871 * functions. 3872 */ 3873 cachep = __find_general_cachep(size, flags); 3874 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3875 return cachep; 3876 ret = __cache_alloc(cachep, flags, caller); 3877 3878 trace_kmalloc((unsigned long) caller, ret, 3879 size, cachep->buffer_size, flags); 3880 3881 return ret; 3882 } 3883 3884 3885 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) 3886 void *__kmalloc(size_t size, gfp_t flags) 3887 { 3888 return __do_kmalloc(size, flags, __builtin_return_address(0)); 3889 } 3890 EXPORT_SYMBOL(__kmalloc); 3891 3892 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3893 { 3894 return __do_kmalloc(size, flags, (void *)caller); 3895 } 3896 EXPORT_SYMBOL(__kmalloc_track_caller); 3897 3898 #else 3899 void *__kmalloc(size_t size, gfp_t flags) 3900 { 3901 return __do_kmalloc(size, flags, NULL); 3902 } 3903 EXPORT_SYMBOL(__kmalloc); 3904 #endif 3905 3906 /** 3907 * kmem_cache_free - Deallocate an object 3908 * @cachep: The cache the allocation was from. 3909 * @objp: The previously allocated object. 3910 * 3911 * Free an object which was previously allocated from this 3912 * cache. 3913 */ 3914 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3915 { 3916 unsigned long flags; 3917 3918 local_irq_save(flags); 3919 debug_check_no_locks_freed(objp, obj_size(cachep)); 3920 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3921 debug_check_no_obj_freed(objp, obj_size(cachep)); 3922 __cache_free(cachep, objp, __builtin_return_address(0)); 3923 local_irq_restore(flags); 3924 3925 trace_kmem_cache_free(_RET_IP_, objp); 3926 } 3927 EXPORT_SYMBOL(kmem_cache_free); 3928 3929 /** 3930 * kfree - free previously allocated memory 3931 * @objp: pointer returned by kmalloc. 3932 * 3933 * If @objp is NULL, no operation is performed. 3934 * 3935 * Don't free memory not originally allocated by kmalloc() 3936 * or you will run into trouble. 3937 */ 3938 void kfree(const void *objp) 3939 { 3940 struct kmem_cache *c; 3941 unsigned long flags; 3942 3943 trace_kfree(_RET_IP_, objp); 3944 3945 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3946 return; 3947 local_irq_save(flags); 3948 kfree_debugcheck(objp); 3949 c = virt_to_cache(objp); 3950 debug_check_no_locks_freed(objp, obj_size(c)); 3951 debug_check_no_obj_freed(objp, obj_size(c)); 3952 __cache_free(c, (void *)objp, __builtin_return_address(0)); 3953 local_irq_restore(flags); 3954 } 3955 EXPORT_SYMBOL(kfree); 3956 3957 unsigned int kmem_cache_size(struct kmem_cache *cachep) 3958 { 3959 return obj_size(cachep); 3960 } 3961 EXPORT_SYMBOL(kmem_cache_size); 3962 3963 /* 3964 * This initializes kmem_list3 or resizes various caches for all nodes. 3965 */ 3966 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) 3967 { 3968 int node; 3969 struct kmem_list3 *l3; 3970 struct array_cache *new_shared; 3971 struct array_cache **new_alien = NULL; 3972 3973 for_each_online_node(node) { 3974 3975 if (use_alien_caches) { 3976 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 3977 if (!new_alien) 3978 goto fail; 3979 } 3980 3981 new_shared = NULL; 3982 if (cachep->shared) { 3983 new_shared = alloc_arraycache(node, 3984 cachep->shared*cachep->batchcount, 3985 0xbaadf00d, gfp); 3986 if (!new_shared) { 3987 free_alien_cache(new_alien); 3988 goto fail; 3989 } 3990 } 3991 3992 l3 = cachep->nodelists[node]; 3993 if (l3) { 3994 struct array_cache *shared = l3->shared; 3995 3996 spin_lock_irq(&l3->list_lock); 3997 3998 if (shared) 3999 free_block(cachep, shared->entry, 4000 shared->avail, node); 4001 4002 l3->shared = new_shared; 4003 if (!l3->alien) { 4004 l3->alien = new_alien; 4005 new_alien = NULL; 4006 } 4007 l3->free_limit = (1 + nr_cpus_node(node)) * 4008 cachep->batchcount + cachep->num; 4009 spin_unlock_irq(&l3->list_lock); 4010 kfree(shared); 4011 free_alien_cache(new_alien); 4012 continue; 4013 } 4014 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); 4015 if (!l3) { 4016 free_alien_cache(new_alien); 4017 kfree(new_shared); 4018 goto fail; 4019 } 4020 4021 kmem_list3_init(l3); 4022 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 4023 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 4024 l3->shared = new_shared; 4025 l3->alien = new_alien; 4026 l3->free_limit = (1 + nr_cpus_node(node)) * 4027 cachep->batchcount + cachep->num; 4028 cachep->nodelists[node] = l3; 4029 } 4030 return 0; 4031 4032 fail: 4033 if (!cachep->next.next) { 4034 /* Cache is not active yet. Roll back what we did */ 4035 node--; 4036 while (node >= 0) { 4037 if (cachep->nodelists[node]) { 4038 l3 = cachep->nodelists[node]; 4039 4040 kfree(l3->shared); 4041 free_alien_cache(l3->alien); 4042 kfree(l3); 4043 cachep->nodelists[node] = NULL; 4044 } 4045 node--; 4046 } 4047 } 4048 return -ENOMEM; 4049 } 4050 4051 struct ccupdate_struct { 4052 struct kmem_cache *cachep; 4053 struct array_cache *new[0]; 4054 }; 4055 4056 static void do_ccupdate_local(void *info) 4057 { 4058 struct ccupdate_struct *new = info; 4059 struct array_cache *old; 4060 4061 check_irq_off(); 4062 old = cpu_cache_get(new->cachep); 4063 4064 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 4065 new->new[smp_processor_id()] = old; 4066 } 4067 4068 /* Always called with the cache_chain_mutex held */ 4069 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 4070 int batchcount, int shared, gfp_t gfp) 4071 { 4072 struct ccupdate_struct *new; 4073 int i; 4074 4075 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *), 4076 gfp); 4077 if (!new) 4078 return -ENOMEM; 4079 4080 for_each_online_cpu(i) { 4081 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, 4082 batchcount, gfp); 4083 if (!new->new[i]) { 4084 for (i--; i >= 0; i--) 4085 kfree(new->new[i]); 4086 kfree(new); 4087 return -ENOMEM; 4088 } 4089 } 4090 new->cachep = cachep; 4091 4092 on_each_cpu(do_ccupdate_local, (void *)new, 1); 4093 4094 check_irq_on(); 4095 cachep->batchcount = batchcount; 4096 cachep->limit = limit; 4097 cachep->shared = shared; 4098 4099 for_each_online_cpu(i) { 4100 struct array_cache *ccold = new->new[i]; 4101 if (!ccold) 4102 continue; 4103 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); 4104 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); 4105 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); 4106 kfree(ccold); 4107 } 4108 kfree(new); 4109 return alloc_kmemlist(cachep, gfp); 4110 } 4111 4112 /* Called with cache_chain_mutex held always */ 4113 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 4114 { 4115 int err; 4116 int limit, shared; 4117 4118 /* 4119 * The head array serves three purposes: 4120 * - create a LIFO ordering, i.e. return objects that are cache-warm 4121 * - reduce the number of spinlock operations. 4122 * - reduce the number of linked list operations on the slab and 4123 * bufctl chains: array operations are cheaper. 4124 * The numbers are guessed, we should auto-tune as described by 4125 * Bonwick. 4126 */ 4127 if (cachep->buffer_size > 131072) 4128 limit = 1; 4129 else if (cachep->buffer_size > PAGE_SIZE) 4130 limit = 8; 4131 else if (cachep->buffer_size > 1024) 4132 limit = 24; 4133 else if (cachep->buffer_size > 256) 4134 limit = 54; 4135 else 4136 limit = 120; 4137 4138 /* 4139 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 4140 * allocation behaviour: Most allocs on one cpu, most free operations 4141 * on another cpu. For these cases, an efficient object passing between 4142 * cpus is necessary. This is provided by a shared array. The array 4143 * replaces Bonwick's magazine layer. 4144 * On uniprocessor, it's functionally equivalent (but less efficient) 4145 * to a larger limit. Thus disabled by default. 4146 */ 4147 shared = 0; 4148 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1) 4149 shared = 8; 4150 4151 #if DEBUG 4152 /* 4153 * With debugging enabled, large batchcount lead to excessively long 4154 * periods with disabled local interrupts. Limit the batchcount 4155 */ 4156 if (limit > 32) 4157 limit = 32; 4158 #endif 4159 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp); 4160 if (err) 4161 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 4162 cachep->name, -err); 4163 return err; 4164 } 4165 4166 /* 4167 * Drain an array if it contains any elements taking the l3 lock only if 4168 * necessary. Note that the l3 listlock also protects the array_cache 4169 * if drain_array() is used on the shared array. 4170 */ 4171 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 4172 struct array_cache *ac, int force, int node) 4173 { 4174 int tofree; 4175 4176 if (!ac || !ac->avail) 4177 return; 4178 if (ac->touched && !force) { 4179 ac->touched = 0; 4180 } else { 4181 spin_lock_irq(&l3->list_lock); 4182 if (ac->avail) { 4183 tofree = force ? ac->avail : (ac->limit + 4) / 5; 4184 if (tofree > ac->avail) 4185 tofree = (ac->avail + 1) / 2; 4186 free_block(cachep, ac->entry, tofree, node); 4187 ac->avail -= tofree; 4188 memmove(ac->entry, &(ac->entry[tofree]), 4189 sizeof(void *) * ac->avail); 4190 } 4191 spin_unlock_irq(&l3->list_lock); 4192 } 4193 } 4194 4195 /** 4196 * cache_reap - Reclaim memory from caches. 4197 * @w: work descriptor 4198 * 4199 * Called from workqueue/eventd every few seconds. 4200 * Purpose: 4201 * - clear the per-cpu caches for this CPU. 4202 * - return freeable pages to the main free memory pool. 4203 * 4204 * If we cannot acquire the cache chain mutex then just give up - we'll try 4205 * again on the next iteration. 4206 */ 4207 static void cache_reap(struct work_struct *w) 4208 { 4209 struct kmem_cache *searchp; 4210 struct kmem_list3 *l3; 4211 int node = numa_mem_id(); 4212 struct delayed_work *work = to_delayed_work(w); 4213 4214 if (!mutex_trylock(&cache_chain_mutex)) 4215 /* Give up. Setup the next iteration. */ 4216 goto out; 4217 4218 list_for_each_entry(searchp, &cache_chain, next) { 4219 check_irq_on(); 4220 4221 /* 4222 * We only take the l3 lock if absolutely necessary and we 4223 * have established with reasonable certainty that 4224 * we can do some work if the lock was obtained. 4225 */ 4226 l3 = searchp->nodelists[node]; 4227 4228 reap_alien(searchp, l3); 4229 4230 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); 4231 4232 /* 4233 * These are racy checks but it does not matter 4234 * if we skip one check or scan twice. 4235 */ 4236 if (time_after(l3->next_reap, jiffies)) 4237 goto next; 4238 4239 l3->next_reap = jiffies + REAPTIMEOUT_LIST3; 4240 4241 drain_array(searchp, l3, l3->shared, 0, node); 4242 4243 if (l3->free_touched) 4244 l3->free_touched = 0; 4245 else { 4246 int freed; 4247 4248 freed = drain_freelist(searchp, l3, (l3->free_limit + 4249 5 * searchp->num - 1) / (5 * searchp->num)); 4250 STATS_ADD_REAPED(searchp, freed); 4251 } 4252 next: 4253 cond_resched(); 4254 } 4255 check_irq_on(); 4256 mutex_unlock(&cache_chain_mutex); 4257 next_reap_node(); 4258 out: 4259 /* Set up the next iteration */ 4260 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); 4261 } 4262 4263 #ifdef CONFIG_SLABINFO 4264 4265 static void print_slabinfo_header(struct seq_file *m) 4266 { 4267 /* 4268 * Output format version, so at least we can change it 4269 * without _too_ many complaints. 4270 */ 4271 #if STATS 4272 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 4273 #else 4274 seq_puts(m, "slabinfo - version: 2.1\n"); 4275 #endif 4276 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4277 "<objperslab> <pagesperslab>"); 4278 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4279 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4280 #if STATS 4281 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " 4282 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 4283 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 4284 #endif 4285 seq_putc(m, '\n'); 4286 } 4287 4288 static void *s_start(struct seq_file *m, loff_t *pos) 4289 { 4290 loff_t n = *pos; 4291 4292 mutex_lock(&cache_chain_mutex); 4293 if (!n) 4294 print_slabinfo_header(m); 4295 4296 return seq_list_start(&cache_chain, *pos); 4297 } 4298 4299 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4300 { 4301 return seq_list_next(p, &cache_chain, pos); 4302 } 4303 4304 static void s_stop(struct seq_file *m, void *p) 4305 { 4306 mutex_unlock(&cache_chain_mutex); 4307 } 4308 4309 static int s_show(struct seq_file *m, void *p) 4310 { 4311 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4312 struct slab *slabp; 4313 unsigned long active_objs; 4314 unsigned long num_objs; 4315 unsigned long active_slabs = 0; 4316 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4317 const char *name; 4318 char *error = NULL; 4319 int node; 4320 struct kmem_list3 *l3; 4321 4322 active_objs = 0; 4323 num_slabs = 0; 4324 for_each_online_node(node) { 4325 l3 = cachep->nodelists[node]; 4326 if (!l3) 4327 continue; 4328 4329 check_irq_on(); 4330 spin_lock_irq(&l3->list_lock); 4331 4332 list_for_each_entry(slabp, &l3->slabs_full, list) { 4333 if (slabp->inuse != cachep->num && !error) 4334 error = "slabs_full accounting error"; 4335 active_objs += cachep->num; 4336 active_slabs++; 4337 } 4338 list_for_each_entry(slabp, &l3->slabs_partial, list) { 4339 if (slabp->inuse == cachep->num && !error) 4340 error = "slabs_partial inuse accounting error"; 4341 if (!slabp->inuse && !error) 4342 error = "slabs_partial/inuse accounting error"; 4343 active_objs += slabp->inuse; 4344 active_slabs++; 4345 } 4346 list_for_each_entry(slabp, &l3->slabs_free, list) { 4347 if (slabp->inuse && !error) 4348 error = "slabs_free/inuse accounting error"; 4349 num_slabs++; 4350 } 4351 free_objects += l3->free_objects; 4352 if (l3->shared) 4353 shared_avail += l3->shared->avail; 4354 4355 spin_unlock_irq(&l3->list_lock); 4356 } 4357 num_slabs += active_slabs; 4358 num_objs = num_slabs * cachep->num; 4359 if (num_objs - active_objs != free_objects && !error) 4360 error = "free_objects accounting error"; 4361 4362 name = cachep->name; 4363 if (error) 4364 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 4365 4366 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 4367 name, active_objs, num_objs, cachep->buffer_size, 4368 cachep->num, (1 << cachep->gfporder)); 4369 seq_printf(m, " : tunables %4u %4u %4u", 4370 cachep->limit, cachep->batchcount, cachep->shared); 4371 seq_printf(m, " : slabdata %6lu %6lu %6lu", 4372 active_slabs, num_slabs, shared_avail); 4373 #if STATS 4374 { /* list3 stats */ 4375 unsigned long high = cachep->high_mark; 4376 unsigned long allocs = cachep->num_allocations; 4377 unsigned long grown = cachep->grown; 4378 unsigned long reaped = cachep->reaped; 4379 unsigned long errors = cachep->errors; 4380 unsigned long max_freeable = cachep->max_freeable; 4381 unsigned long node_allocs = cachep->node_allocs; 4382 unsigned long node_frees = cachep->node_frees; 4383 unsigned long overflows = cachep->node_overflow; 4384 4385 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " 4386 "%4lu %4lu %4lu %4lu %4lu", 4387 allocs, high, grown, 4388 reaped, errors, max_freeable, node_allocs, 4389 node_frees, overflows); 4390 } 4391 /* cpu stats */ 4392 { 4393 unsigned long allochit = atomic_read(&cachep->allochit); 4394 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4395 unsigned long freehit = atomic_read(&cachep->freehit); 4396 unsigned long freemiss = atomic_read(&cachep->freemiss); 4397 4398 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4399 allochit, allocmiss, freehit, freemiss); 4400 } 4401 #endif 4402 seq_putc(m, '\n'); 4403 return 0; 4404 } 4405 4406 /* 4407 * slabinfo_op - iterator that generates /proc/slabinfo 4408 * 4409 * Output layout: 4410 * cache-name 4411 * num-active-objs 4412 * total-objs 4413 * object size 4414 * num-active-slabs 4415 * total-slabs 4416 * num-pages-per-slab 4417 * + further values on SMP and with statistics enabled 4418 */ 4419 4420 static const struct seq_operations slabinfo_op = { 4421 .start = s_start, 4422 .next = s_next, 4423 .stop = s_stop, 4424 .show = s_show, 4425 }; 4426 4427 #define MAX_SLABINFO_WRITE 128 4428 /** 4429 * slabinfo_write - Tuning for the slab allocator 4430 * @file: unused 4431 * @buffer: user buffer 4432 * @count: data length 4433 * @ppos: unused 4434 */ 4435 static ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4436 size_t count, loff_t *ppos) 4437 { 4438 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4439 int limit, batchcount, shared, res; 4440 struct kmem_cache *cachep; 4441 4442 if (count > MAX_SLABINFO_WRITE) 4443 return -EINVAL; 4444 if (copy_from_user(&kbuf, buffer, count)) 4445 return -EFAULT; 4446 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4447 4448 tmp = strchr(kbuf, ' '); 4449 if (!tmp) 4450 return -EINVAL; 4451 *tmp = '\0'; 4452 tmp++; 4453 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4454 return -EINVAL; 4455 4456 /* Find the cache in the chain of caches. */ 4457 mutex_lock(&cache_chain_mutex); 4458 res = -EINVAL; 4459 list_for_each_entry(cachep, &cache_chain, next) { 4460 if (!strcmp(cachep->name, kbuf)) { 4461 if (limit < 1 || batchcount < 1 || 4462 batchcount > limit || shared < 0) { 4463 res = 0; 4464 } else { 4465 res = do_tune_cpucache(cachep, limit, 4466 batchcount, shared, 4467 GFP_KERNEL); 4468 } 4469 break; 4470 } 4471 } 4472 mutex_unlock(&cache_chain_mutex); 4473 if (res >= 0) 4474 res = count; 4475 return res; 4476 } 4477 4478 static int slabinfo_open(struct inode *inode, struct file *file) 4479 { 4480 return seq_open(file, &slabinfo_op); 4481 } 4482 4483 static const struct file_operations proc_slabinfo_operations = { 4484 .open = slabinfo_open, 4485 .read = seq_read, 4486 .write = slabinfo_write, 4487 .llseek = seq_lseek, 4488 .release = seq_release, 4489 }; 4490 4491 #ifdef CONFIG_DEBUG_SLAB_LEAK 4492 4493 static void *leaks_start(struct seq_file *m, loff_t *pos) 4494 { 4495 mutex_lock(&cache_chain_mutex); 4496 return seq_list_start(&cache_chain, *pos); 4497 } 4498 4499 static inline int add_caller(unsigned long *n, unsigned long v) 4500 { 4501 unsigned long *p; 4502 int l; 4503 if (!v) 4504 return 1; 4505 l = n[1]; 4506 p = n + 2; 4507 while (l) { 4508 int i = l/2; 4509 unsigned long *q = p + 2 * i; 4510 if (*q == v) { 4511 q[1]++; 4512 return 1; 4513 } 4514 if (*q > v) { 4515 l = i; 4516 } else { 4517 p = q + 2; 4518 l -= i + 1; 4519 } 4520 } 4521 if (++n[1] == n[0]) 4522 return 0; 4523 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4524 p[0] = v; 4525 p[1] = 1; 4526 return 1; 4527 } 4528 4529 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) 4530 { 4531 void *p; 4532 int i; 4533 if (n[0] == n[1]) 4534 return; 4535 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { 4536 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) 4537 continue; 4538 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4539 return; 4540 } 4541 } 4542 4543 static void show_symbol(struct seq_file *m, unsigned long address) 4544 { 4545 #ifdef CONFIG_KALLSYMS 4546 unsigned long offset, size; 4547 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4548 4549 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4550 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4551 if (modname[0]) 4552 seq_printf(m, " [%s]", modname); 4553 return; 4554 } 4555 #endif 4556 seq_printf(m, "%p", (void *)address); 4557 } 4558 4559 static int leaks_show(struct seq_file *m, void *p) 4560 { 4561 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); 4562 struct slab *slabp; 4563 struct kmem_list3 *l3; 4564 const char *name; 4565 unsigned long *n = m->private; 4566 int node; 4567 int i; 4568 4569 if (!(cachep->flags & SLAB_STORE_USER)) 4570 return 0; 4571 if (!(cachep->flags & SLAB_RED_ZONE)) 4572 return 0; 4573 4574 /* OK, we can do it */ 4575 4576 n[1] = 0; 4577 4578 for_each_online_node(node) { 4579 l3 = cachep->nodelists[node]; 4580 if (!l3) 4581 continue; 4582 4583 check_irq_on(); 4584 spin_lock_irq(&l3->list_lock); 4585 4586 list_for_each_entry(slabp, &l3->slabs_full, list) 4587 handle_slab(n, cachep, slabp); 4588 list_for_each_entry(slabp, &l3->slabs_partial, list) 4589 handle_slab(n, cachep, slabp); 4590 spin_unlock_irq(&l3->list_lock); 4591 } 4592 name = cachep->name; 4593 if (n[0] == n[1]) { 4594 /* Increase the buffer size */ 4595 mutex_unlock(&cache_chain_mutex); 4596 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4597 if (!m->private) { 4598 /* Too bad, we are really out */ 4599 m->private = n; 4600 mutex_lock(&cache_chain_mutex); 4601 return -ENOMEM; 4602 } 4603 *(unsigned long *)m->private = n[0] * 2; 4604 kfree(n); 4605 mutex_lock(&cache_chain_mutex); 4606 /* Now make sure this entry will be retried */ 4607 m->count = m->size; 4608 return 0; 4609 } 4610 for (i = 0; i < n[1]; i++) { 4611 seq_printf(m, "%s: %lu ", name, n[2*i+3]); 4612 show_symbol(m, n[2*i+2]); 4613 seq_putc(m, '\n'); 4614 } 4615 4616 return 0; 4617 } 4618 4619 static const struct seq_operations slabstats_op = { 4620 .start = leaks_start, 4621 .next = s_next, 4622 .stop = s_stop, 4623 .show = leaks_show, 4624 }; 4625 4626 static int slabstats_open(struct inode *inode, struct file *file) 4627 { 4628 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); 4629 int ret = -ENOMEM; 4630 if (n) { 4631 ret = seq_open(file, &slabstats_op); 4632 if (!ret) { 4633 struct seq_file *m = file->private_data; 4634 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4635 m->private = n; 4636 n = NULL; 4637 } 4638 kfree(n); 4639 } 4640 return ret; 4641 } 4642 4643 static const struct file_operations proc_slabstats_operations = { 4644 .open = slabstats_open, 4645 .read = seq_read, 4646 .llseek = seq_lseek, 4647 .release = seq_release_private, 4648 }; 4649 #endif 4650 4651 static int __init slab_proc_init(void) 4652 { 4653 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations); 4654 #ifdef CONFIG_DEBUG_SLAB_LEAK 4655 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4656 #endif 4657 return 0; 4658 } 4659 module_init(slab_proc_init); 4660 #endif 4661 4662 /** 4663 * ksize - get the actual amount of memory allocated for a given object 4664 * @objp: Pointer to the object 4665 * 4666 * kmalloc may internally round up allocations and return more memory 4667 * than requested. ksize() can be used to determine the actual amount of 4668 * memory allocated. The caller may use this additional memory, even though 4669 * a smaller amount of memory was initially specified with the kmalloc call. 4670 * The caller must guarantee that objp points to a valid object previously 4671 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4672 * must not be freed during the duration of the call. 4673 */ 4674 size_t ksize(const void *objp) 4675 { 4676 BUG_ON(!objp); 4677 if (unlikely(objp == ZERO_SIZE_PTR)) 4678 return 0; 4679 4680 return obj_size(virt_to_cache(objp)); 4681 } 4682 EXPORT_SYMBOL(ksize); 4683