xref: /openbmc/linux/mm/slab.c (revision 06ff634c0dae791c17ceeeb60c74e14470d76898)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/slab.c
4  * Written by Mark Hemment, 1996/97.
5  * (markhe@nextd.demon.co.uk)
6  *
7  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8  *
9  * Major cleanup, different bufctl logic, per-cpu arrays
10  *	(c) 2000 Manfred Spraul
11  *
12  * Cleanup, make the head arrays unconditional, preparation for NUMA
13  * 	(c) 2002 Manfred Spraul
14  *
15  * An implementation of the Slab Allocator as described in outline in;
16  *	UNIX Internals: The New Frontiers by Uresh Vahalia
17  *	Pub: Prentice Hall	ISBN 0-13-101908-2
18  * or with a little more detail in;
19  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
20  *	Jeff Bonwick (Sun Microsystems).
21  *	Presented at: USENIX Summer 1994 Technical Conference
22  *
23  * The memory is organized in caches, one cache for each object type.
24  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25  * Each cache consists out of many slabs (they are small (usually one
26  * page long) and always contiguous), and each slab contains multiple
27  * initialized objects.
28  *
29  * This means, that your constructor is used only for newly allocated
30  * slabs and you must pass objects with the same initializations to
31  * kmem_cache_free.
32  *
33  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34  * normal). If you need a special memory type, then must create a new
35  * cache for that memory type.
36  *
37  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38  *   full slabs with 0 free objects
39  *   partial slabs
40  *   empty slabs with no allocated objects
41  *
42  * If partial slabs exist, then new allocations come from these slabs,
43  * otherwise from empty slabs or new slabs are allocated.
44  *
45  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47  *
48  * Each cache has a short per-cpu head array, most allocs
49  * and frees go into that array, and if that array overflows, then 1/2
50  * of the entries in the array are given back into the global cache.
51  * The head array is strictly LIFO and should improve the cache hit rates.
52  * On SMP, it additionally reduces the spinlock operations.
53  *
54  * The c_cpuarray may not be read with enabled local interrupts -
55  * it's changed with a smp_call_function().
56  *
57  * SMP synchronization:
58  *  constructors and destructors are called without any locking.
59  *  Several members in struct kmem_cache and struct slab never change, they
60  *	are accessed without any locking.
61  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
62  *  	and local interrupts are disabled so slab code is preempt-safe.
63  *  The non-constant members are protected with a per-cache irq spinlock.
64  *
65  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66  * in 2000 - many ideas in the current implementation are derived from
67  * his patch.
68  *
69  * Further notes from the original documentation:
70  *
71  * 11 April '97.  Started multi-threading - markhe
72  *	The global cache-chain is protected by the mutex 'slab_mutex'.
73  *	The sem is only needed when accessing/extending the cache-chain, which
74  *	can never happen inside an interrupt (kmem_cache_create(),
75  *	kmem_cache_shrink() and kmem_cache_reap()).
76  *
77  *	At present, each engine can be growing a cache.  This should be blocked.
78  *
79  * 15 March 2005. NUMA slab allocator.
80  *	Shai Fultheim <shai@scalex86.org>.
81  *	Shobhit Dayal <shobhit@calsoftinc.com>
82  *	Alok N Kataria <alokk@calsoftinc.com>
83  *	Christoph Lameter <christoph@lameter.com>
84  *
85  *	Modified the slab allocator to be node aware on NUMA systems.
86  *	Each node has its own list of partial, free and full slabs.
87  *	All object allocations for a node occur from node specific slab lists.
88  */
89 
90 #include	<linux/slab.h>
91 #include	<linux/mm.h>
92 #include	<linux/poison.h>
93 #include	<linux/swap.h>
94 #include	<linux/cache.h>
95 #include	<linux/interrupt.h>
96 #include	<linux/init.h>
97 #include	<linux/compiler.h>
98 #include	<linux/cpuset.h>
99 #include	<linux/proc_fs.h>
100 #include	<linux/seq_file.h>
101 #include	<linux/notifier.h>
102 #include	<linux/kallsyms.h>
103 #include	<linux/cpu.h>
104 #include	<linux/sysctl.h>
105 #include	<linux/module.h>
106 #include	<linux/rcupdate.h>
107 #include	<linux/string.h>
108 #include	<linux/uaccess.h>
109 #include	<linux/nodemask.h>
110 #include	<linux/kmemleak.h>
111 #include	<linux/mempolicy.h>
112 #include	<linux/mutex.h>
113 #include	<linux/fault-inject.h>
114 #include	<linux/rtmutex.h>
115 #include	<linux/reciprocal_div.h>
116 #include	<linux/debugobjects.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 #include	<linux/sched/task_stack.h>
120 
121 #include	<net/sock.h>
122 
123 #include	<asm/cacheflush.h>
124 #include	<asm/tlbflush.h>
125 #include	<asm/page.h>
126 
127 #include <trace/events/kmem.h>
128 
129 #include	"internal.h"
130 
131 #include	"slab.h"
132 
133 /*
134  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135  *		  0 for faster, smaller code (especially in the critical paths).
136  *
137  * STATS	- 1 to collect stats for /proc/slabinfo.
138  *		  0 for faster, smaller code (especially in the critical paths).
139  *
140  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141  */
142 
143 #ifdef CONFIG_DEBUG_SLAB
144 #define	DEBUG		1
145 #define	STATS		1
146 #define	FORCED_DEBUG	1
147 #else
148 #define	DEBUG		0
149 #define	STATS		0
150 #define	FORCED_DEBUG	0
151 #endif
152 
153 /* Shouldn't this be in a header file somewhere? */
154 #define	BYTES_PER_WORD		sizeof(void *)
155 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160 
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169 
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171 
172 /*
173  * struct array_cache
174  *
175  * Purpose:
176  * - LIFO ordering, to hand out cache-warm objects from _alloc
177  * - reduce the number of linked list operations
178  * - reduce spinlock operations
179  *
180  * The limit is stored in the per-cpu structure to reduce the data cache
181  * footprint.
182  *
183  */
184 struct array_cache {
185 	unsigned int avail;
186 	unsigned int limit;
187 	unsigned int batchcount;
188 	unsigned int touched;
189 	void *entry[];	/*
190 			 * Must have this definition in here for the proper
191 			 * alignment of array_cache. Also simplifies accessing
192 			 * the entries.
193 			 */
194 };
195 
196 struct alien_cache {
197 	spinlock_t lock;
198 	struct array_cache ac;
199 };
200 
201 /*
202  * Need this for bootstrapping a per node allocator.
203  */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define	CACHE_CACHE 0
207 #define	SIZE_NODE (MAX_NUMNODES)
208 
209 static int drain_freelist(struct kmem_cache *cache,
210 			struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 			int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216 
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 						void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 				struct kmem_cache_node *n, struct page *page,
221 				void **list);
222 static int slab_early_init = 1;
223 
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 	INIT_LIST_HEAD(&parent->slabs_full);
229 	INIT_LIST_HEAD(&parent->slabs_partial);
230 	INIT_LIST_HEAD(&parent->slabs_free);
231 	parent->total_slabs = 0;
232 	parent->free_slabs = 0;
233 	parent->shared = NULL;
234 	parent->alien = NULL;
235 	parent->colour_next = 0;
236 	spin_lock_init(&parent->list_lock);
237 	parent->free_objects = 0;
238 	parent->free_touched = 0;
239 }
240 
241 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
242 	do {								\
243 		INIT_LIST_HEAD(listp);					\
244 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 	} while (0)
246 
247 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
248 	do {								\
249 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
250 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
252 	} while (0)
253 
254 #define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
258 
259 #define BATCHREFILL_LIMIT	16
260 /*
261  * Optimization question: fewer reaps means less probability for unnessary
262  * cpucache drain/refill cycles.
263  *
264  * OTOH the cpuarrays can contain lots of objects,
265  * which could lock up otherwise freeable slabs.
266  */
267 #define REAPTIMEOUT_AC		(2*HZ)
268 #define REAPTIMEOUT_NODE	(4*HZ)
269 
270 #if STATS
271 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
272 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
273 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
274 #define	STATS_INC_GROWN(x)	((x)->grown++)
275 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
276 #define	STATS_SET_HIGH(x)						\
277 	do {								\
278 		if ((x)->num_active > (x)->high_mark)			\
279 			(x)->high_mark = (x)->num_active;		\
280 	} while (0)
281 #define	STATS_INC_ERR(x)	((x)->errors++)
282 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
285 #define	STATS_SET_FREEABLE(x, i)					\
286 	do {								\
287 		if ((x)->max_freeable < i)				\
288 			(x)->max_freeable = i;				\
289 	} while (0)
290 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
294 #else
295 #define	STATS_INC_ACTIVE(x)	do { } while (0)
296 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
297 #define	STATS_INC_ALLOCED(x)	do { } while (0)
298 #define	STATS_INC_GROWN(x)	do { } while (0)
299 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
300 #define	STATS_SET_HIGH(x)	do { } while (0)
301 #define	STATS_INC_ERR(x)	do { } while (0)
302 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303 #define	STATS_INC_NODEFREES(x)	do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
305 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
307 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
308 #define STATS_INC_FREEHIT(x)	do { } while (0)
309 #define STATS_INC_FREEMISS(x)	do { } while (0)
310 #endif
311 
312 #if DEBUG
313 
314 /*
315  * memory layout of objects:
316  * 0		: objp
317  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318  * 		the end of an object is aligned with the end of the real
319  * 		allocation. Catches writes behind the end of the allocation.
320  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321  * 		redzone word.
322  * cachep->obj_offset: The real object.
323  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324  * cachep->size - 1* BYTES_PER_WORD: last caller address
325  *					[BYTES_PER_WORD long]
326  */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 	return cachep->obj_offset;
330 }
331 
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 	return (unsigned long long*) (objp + obj_offset(cachep) -
336 				      sizeof(unsigned long long));
337 }
338 
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 	if (cachep->flags & SLAB_STORE_USER)
343 		return (unsigned long long *)(objp + cachep->size -
344 					      sizeof(unsigned long long) -
345 					      REDZONE_ALIGN);
346 	return (unsigned long long *) (objp + cachep->size -
347 				       sizeof(unsigned long long));
348 }
349 
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355 
356 #else
357 
358 #define obj_offset(x)			0
359 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
362 
363 #endif
364 
365 /*
366  * Do not go above this order unless 0 objects fit into the slab or
367  * overridden on the command line.
368  */
369 #define	SLAB_MAX_ORDER_HI	1
370 #define	SLAB_MAX_ORDER_LO	0
371 static int slab_max_order = SLAB_MAX_ORDER_LO;
372 static bool slab_max_order_set __initdata;
373 
374 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
375 				 unsigned int idx)
376 {
377 	return page->s_mem + cache->size * idx;
378 }
379 
380 #define BOOT_CPUCACHE_ENTRIES	1
381 /* internal cache of cache description objs */
382 static struct kmem_cache kmem_cache_boot = {
383 	.batchcount = 1,
384 	.limit = BOOT_CPUCACHE_ENTRIES,
385 	.shared = 1,
386 	.size = sizeof(struct kmem_cache),
387 	.name = "kmem_cache",
388 };
389 
390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
391 
392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
393 {
394 	return this_cpu_ptr(cachep->cpu_cache);
395 }
396 
397 /*
398  * Calculate the number of objects and left-over bytes for a given buffer size.
399  */
400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
401 		slab_flags_t flags, size_t *left_over)
402 {
403 	unsigned int num;
404 	size_t slab_size = PAGE_SIZE << gfporder;
405 
406 	/*
407 	 * The slab management structure can be either off the slab or
408 	 * on it. For the latter case, the memory allocated for a
409 	 * slab is used for:
410 	 *
411 	 * - @buffer_size bytes for each object
412 	 * - One freelist_idx_t for each object
413 	 *
414 	 * We don't need to consider alignment of freelist because
415 	 * freelist will be at the end of slab page. The objects will be
416 	 * at the correct alignment.
417 	 *
418 	 * If the slab management structure is off the slab, then the
419 	 * alignment will already be calculated into the size. Because
420 	 * the slabs are all pages aligned, the objects will be at the
421 	 * correct alignment when allocated.
422 	 */
423 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
424 		num = slab_size / buffer_size;
425 		*left_over = slab_size % buffer_size;
426 	} else {
427 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
428 		*left_over = slab_size %
429 			(buffer_size + sizeof(freelist_idx_t));
430 	}
431 
432 	return num;
433 }
434 
435 #if DEBUG
436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
437 
438 static void __slab_error(const char *function, struct kmem_cache *cachep,
439 			char *msg)
440 {
441 	pr_err("slab error in %s(): cache `%s': %s\n",
442 	       function, cachep->name, msg);
443 	dump_stack();
444 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
445 }
446 #endif
447 
448 /*
449  * By default on NUMA we use alien caches to stage the freeing of
450  * objects allocated from other nodes. This causes massive memory
451  * inefficiencies when using fake NUMA setup to split memory into a
452  * large number of small nodes, so it can be disabled on the command
453  * line
454   */
455 
456 static int use_alien_caches __read_mostly = 1;
457 static int __init noaliencache_setup(char *s)
458 {
459 	use_alien_caches = 0;
460 	return 1;
461 }
462 __setup("noaliencache", noaliencache_setup);
463 
464 static int __init slab_max_order_setup(char *str)
465 {
466 	get_option(&str, &slab_max_order);
467 	slab_max_order = slab_max_order < 0 ? 0 :
468 				min(slab_max_order, MAX_ORDER - 1);
469 	slab_max_order_set = true;
470 
471 	return 1;
472 }
473 __setup("slab_max_order=", slab_max_order_setup);
474 
475 #ifdef CONFIG_NUMA
476 /*
477  * Special reaping functions for NUMA systems called from cache_reap().
478  * These take care of doing round robin flushing of alien caches (containing
479  * objects freed on different nodes from which they were allocated) and the
480  * flushing of remote pcps by calling drain_node_pages.
481  */
482 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
483 
484 static void init_reap_node(int cpu)
485 {
486 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
487 						    node_online_map);
488 }
489 
490 static void next_reap_node(void)
491 {
492 	int node = __this_cpu_read(slab_reap_node);
493 
494 	node = next_node_in(node, node_online_map);
495 	__this_cpu_write(slab_reap_node, node);
496 }
497 
498 #else
499 #define init_reap_node(cpu) do { } while (0)
500 #define next_reap_node(void) do { } while (0)
501 #endif
502 
503 /*
504  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
505  * via the workqueue/eventd.
506  * Add the CPU number into the expiration time to minimize the possibility of
507  * the CPUs getting into lockstep and contending for the global cache chain
508  * lock.
509  */
510 static void start_cpu_timer(int cpu)
511 {
512 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
513 
514 	if (reap_work->work.func == NULL) {
515 		init_reap_node(cpu);
516 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
517 		schedule_delayed_work_on(cpu, reap_work,
518 					__round_jiffies_relative(HZ, cpu));
519 	}
520 }
521 
522 static void init_arraycache(struct array_cache *ac, int limit, int batch)
523 {
524 	if (ac) {
525 		ac->avail = 0;
526 		ac->limit = limit;
527 		ac->batchcount = batch;
528 		ac->touched = 0;
529 	}
530 }
531 
532 static struct array_cache *alloc_arraycache(int node, int entries,
533 					    int batchcount, gfp_t gfp)
534 {
535 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
536 	struct array_cache *ac = NULL;
537 
538 	ac = kmalloc_node(memsize, gfp, node);
539 	/*
540 	 * The array_cache structures contain pointers to free object.
541 	 * However, when such objects are allocated or transferred to another
542 	 * cache the pointers are not cleared and they could be counted as
543 	 * valid references during a kmemleak scan. Therefore, kmemleak must
544 	 * not scan such objects.
545 	 */
546 	kmemleak_no_scan(ac);
547 	init_arraycache(ac, entries, batchcount);
548 	return ac;
549 }
550 
551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
552 					struct page *page, void *objp)
553 {
554 	struct kmem_cache_node *n;
555 	int page_node;
556 	LIST_HEAD(list);
557 
558 	page_node = page_to_nid(page);
559 	n = get_node(cachep, page_node);
560 
561 	spin_lock(&n->list_lock);
562 	free_block(cachep, &objp, 1, page_node, &list);
563 	spin_unlock(&n->list_lock);
564 
565 	slabs_destroy(cachep, &list);
566 }
567 
568 /*
569  * Transfer objects in one arraycache to another.
570  * Locking must be handled by the caller.
571  *
572  * Return the number of entries transferred.
573  */
574 static int transfer_objects(struct array_cache *to,
575 		struct array_cache *from, unsigned int max)
576 {
577 	/* Figure out how many entries to transfer */
578 	int nr = min3(from->avail, max, to->limit - to->avail);
579 
580 	if (!nr)
581 		return 0;
582 
583 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
584 			sizeof(void *) *nr);
585 
586 	from->avail -= nr;
587 	to->avail += nr;
588 	return nr;
589 }
590 
591 #ifndef CONFIG_NUMA
592 
593 #define drain_alien_cache(cachep, alien) do { } while (0)
594 #define reap_alien(cachep, n) do { } while (0)
595 
596 static inline struct alien_cache **alloc_alien_cache(int node,
597 						int limit, gfp_t gfp)
598 {
599 	return NULL;
600 }
601 
602 static inline void free_alien_cache(struct alien_cache **ac_ptr)
603 {
604 }
605 
606 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
607 {
608 	return 0;
609 }
610 
611 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
612 		gfp_t flags)
613 {
614 	return NULL;
615 }
616 
617 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
618 		 gfp_t flags, int nodeid)
619 {
620 	return NULL;
621 }
622 
623 static inline gfp_t gfp_exact_node(gfp_t flags)
624 {
625 	return flags & ~__GFP_NOFAIL;
626 }
627 
628 #else	/* CONFIG_NUMA */
629 
630 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
631 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
632 
633 static struct alien_cache *__alloc_alien_cache(int node, int entries,
634 						int batch, gfp_t gfp)
635 {
636 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
637 	struct alien_cache *alc = NULL;
638 
639 	alc = kmalloc_node(memsize, gfp, node);
640 	if (alc) {
641 		kmemleak_no_scan(alc);
642 		init_arraycache(&alc->ac, entries, batch);
643 		spin_lock_init(&alc->lock);
644 	}
645 	return alc;
646 }
647 
648 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
649 {
650 	struct alien_cache **alc_ptr;
651 	int i;
652 
653 	if (limit > 1)
654 		limit = 12;
655 	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
656 	if (!alc_ptr)
657 		return NULL;
658 
659 	for_each_node(i) {
660 		if (i == node || !node_online(i))
661 			continue;
662 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
663 		if (!alc_ptr[i]) {
664 			for (i--; i >= 0; i--)
665 				kfree(alc_ptr[i]);
666 			kfree(alc_ptr);
667 			return NULL;
668 		}
669 	}
670 	return alc_ptr;
671 }
672 
673 static void free_alien_cache(struct alien_cache **alc_ptr)
674 {
675 	int i;
676 
677 	if (!alc_ptr)
678 		return;
679 	for_each_node(i)
680 	    kfree(alc_ptr[i]);
681 	kfree(alc_ptr);
682 }
683 
684 static void __drain_alien_cache(struct kmem_cache *cachep,
685 				struct array_cache *ac, int node,
686 				struct list_head *list)
687 {
688 	struct kmem_cache_node *n = get_node(cachep, node);
689 
690 	if (ac->avail) {
691 		spin_lock(&n->list_lock);
692 		/*
693 		 * Stuff objects into the remote nodes shared array first.
694 		 * That way we could avoid the overhead of putting the objects
695 		 * into the free lists and getting them back later.
696 		 */
697 		if (n->shared)
698 			transfer_objects(n->shared, ac, ac->limit);
699 
700 		free_block(cachep, ac->entry, ac->avail, node, list);
701 		ac->avail = 0;
702 		spin_unlock(&n->list_lock);
703 	}
704 }
705 
706 /*
707  * Called from cache_reap() to regularly drain alien caches round robin.
708  */
709 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
710 {
711 	int node = __this_cpu_read(slab_reap_node);
712 
713 	if (n->alien) {
714 		struct alien_cache *alc = n->alien[node];
715 		struct array_cache *ac;
716 
717 		if (alc) {
718 			ac = &alc->ac;
719 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
720 				LIST_HEAD(list);
721 
722 				__drain_alien_cache(cachep, ac, node, &list);
723 				spin_unlock_irq(&alc->lock);
724 				slabs_destroy(cachep, &list);
725 			}
726 		}
727 	}
728 }
729 
730 static void drain_alien_cache(struct kmem_cache *cachep,
731 				struct alien_cache **alien)
732 {
733 	int i = 0;
734 	struct alien_cache *alc;
735 	struct array_cache *ac;
736 	unsigned long flags;
737 
738 	for_each_online_node(i) {
739 		alc = alien[i];
740 		if (alc) {
741 			LIST_HEAD(list);
742 
743 			ac = &alc->ac;
744 			spin_lock_irqsave(&alc->lock, flags);
745 			__drain_alien_cache(cachep, ac, i, &list);
746 			spin_unlock_irqrestore(&alc->lock, flags);
747 			slabs_destroy(cachep, &list);
748 		}
749 	}
750 }
751 
752 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
753 				int node, int page_node)
754 {
755 	struct kmem_cache_node *n;
756 	struct alien_cache *alien = NULL;
757 	struct array_cache *ac;
758 	LIST_HEAD(list);
759 
760 	n = get_node(cachep, node);
761 	STATS_INC_NODEFREES(cachep);
762 	if (n->alien && n->alien[page_node]) {
763 		alien = n->alien[page_node];
764 		ac = &alien->ac;
765 		spin_lock(&alien->lock);
766 		if (unlikely(ac->avail == ac->limit)) {
767 			STATS_INC_ACOVERFLOW(cachep);
768 			__drain_alien_cache(cachep, ac, page_node, &list);
769 		}
770 		ac->entry[ac->avail++] = objp;
771 		spin_unlock(&alien->lock);
772 		slabs_destroy(cachep, &list);
773 	} else {
774 		n = get_node(cachep, page_node);
775 		spin_lock(&n->list_lock);
776 		free_block(cachep, &objp, 1, page_node, &list);
777 		spin_unlock(&n->list_lock);
778 		slabs_destroy(cachep, &list);
779 	}
780 	return 1;
781 }
782 
783 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
784 {
785 	int page_node = page_to_nid(virt_to_page(objp));
786 	int node = numa_mem_id();
787 	/*
788 	 * Make sure we are not freeing a object from another node to the array
789 	 * cache on this cpu.
790 	 */
791 	if (likely(node == page_node))
792 		return 0;
793 
794 	return __cache_free_alien(cachep, objp, node, page_node);
795 }
796 
797 /*
798  * Construct gfp mask to allocate from a specific node but do not reclaim or
799  * warn about failures.
800  */
801 static inline gfp_t gfp_exact_node(gfp_t flags)
802 {
803 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
804 }
805 #endif
806 
807 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
808 {
809 	struct kmem_cache_node *n;
810 
811 	/*
812 	 * Set up the kmem_cache_node for cpu before we can
813 	 * begin anything. Make sure some other cpu on this
814 	 * node has not already allocated this
815 	 */
816 	n = get_node(cachep, node);
817 	if (n) {
818 		spin_lock_irq(&n->list_lock);
819 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
820 				cachep->num;
821 		spin_unlock_irq(&n->list_lock);
822 
823 		return 0;
824 	}
825 
826 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
827 	if (!n)
828 		return -ENOMEM;
829 
830 	kmem_cache_node_init(n);
831 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
832 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
833 
834 	n->free_limit =
835 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
836 
837 	/*
838 	 * The kmem_cache_nodes don't come and go as CPUs
839 	 * come and go.  slab_mutex is sufficient
840 	 * protection here.
841 	 */
842 	cachep->node[node] = n;
843 
844 	return 0;
845 }
846 
847 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
848 /*
849  * Allocates and initializes node for a node on each slab cache, used for
850  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
851  * will be allocated off-node since memory is not yet online for the new node.
852  * When hotplugging memory or a cpu, existing node are not replaced if
853  * already in use.
854  *
855  * Must hold slab_mutex.
856  */
857 static int init_cache_node_node(int node)
858 {
859 	int ret;
860 	struct kmem_cache *cachep;
861 
862 	list_for_each_entry(cachep, &slab_caches, list) {
863 		ret = init_cache_node(cachep, node, GFP_KERNEL);
864 		if (ret)
865 			return ret;
866 	}
867 
868 	return 0;
869 }
870 #endif
871 
872 static int setup_kmem_cache_node(struct kmem_cache *cachep,
873 				int node, gfp_t gfp, bool force_change)
874 {
875 	int ret = -ENOMEM;
876 	struct kmem_cache_node *n;
877 	struct array_cache *old_shared = NULL;
878 	struct array_cache *new_shared = NULL;
879 	struct alien_cache **new_alien = NULL;
880 	LIST_HEAD(list);
881 
882 	if (use_alien_caches) {
883 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
884 		if (!new_alien)
885 			goto fail;
886 	}
887 
888 	if (cachep->shared) {
889 		new_shared = alloc_arraycache(node,
890 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
891 		if (!new_shared)
892 			goto fail;
893 	}
894 
895 	ret = init_cache_node(cachep, node, gfp);
896 	if (ret)
897 		goto fail;
898 
899 	n = get_node(cachep, node);
900 	spin_lock_irq(&n->list_lock);
901 	if (n->shared && force_change) {
902 		free_block(cachep, n->shared->entry,
903 				n->shared->avail, node, &list);
904 		n->shared->avail = 0;
905 	}
906 
907 	if (!n->shared || force_change) {
908 		old_shared = n->shared;
909 		n->shared = new_shared;
910 		new_shared = NULL;
911 	}
912 
913 	if (!n->alien) {
914 		n->alien = new_alien;
915 		new_alien = NULL;
916 	}
917 
918 	spin_unlock_irq(&n->list_lock);
919 	slabs_destroy(cachep, &list);
920 
921 	/*
922 	 * To protect lockless access to n->shared during irq disabled context.
923 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
924 	 * guaranteed to be valid until irq is re-enabled, because it will be
925 	 * freed after synchronize_rcu().
926 	 */
927 	if (old_shared && force_change)
928 		synchronize_rcu();
929 
930 fail:
931 	kfree(old_shared);
932 	kfree(new_shared);
933 	free_alien_cache(new_alien);
934 
935 	return ret;
936 }
937 
938 #ifdef CONFIG_SMP
939 
940 static void cpuup_canceled(long cpu)
941 {
942 	struct kmem_cache *cachep;
943 	struct kmem_cache_node *n = NULL;
944 	int node = cpu_to_mem(cpu);
945 	const struct cpumask *mask = cpumask_of_node(node);
946 
947 	list_for_each_entry(cachep, &slab_caches, list) {
948 		struct array_cache *nc;
949 		struct array_cache *shared;
950 		struct alien_cache **alien;
951 		LIST_HEAD(list);
952 
953 		n = get_node(cachep, node);
954 		if (!n)
955 			continue;
956 
957 		spin_lock_irq(&n->list_lock);
958 
959 		/* Free limit for this kmem_cache_node */
960 		n->free_limit -= cachep->batchcount;
961 
962 		/* cpu is dead; no one can alloc from it. */
963 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
964 		free_block(cachep, nc->entry, nc->avail, node, &list);
965 		nc->avail = 0;
966 
967 		if (!cpumask_empty(mask)) {
968 			spin_unlock_irq(&n->list_lock);
969 			goto free_slab;
970 		}
971 
972 		shared = n->shared;
973 		if (shared) {
974 			free_block(cachep, shared->entry,
975 				   shared->avail, node, &list);
976 			n->shared = NULL;
977 		}
978 
979 		alien = n->alien;
980 		n->alien = NULL;
981 
982 		spin_unlock_irq(&n->list_lock);
983 
984 		kfree(shared);
985 		if (alien) {
986 			drain_alien_cache(cachep, alien);
987 			free_alien_cache(alien);
988 		}
989 
990 free_slab:
991 		slabs_destroy(cachep, &list);
992 	}
993 	/*
994 	 * In the previous loop, all the objects were freed to
995 	 * the respective cache's slabs,  now we can go ahead and
996 	 * shrink each nodelist to its limit.
997 	 */
998 	list_for_each_entry(cachep, &slab_caches, list) {
999 		n = get_node(cachep, node);
1000 		if (!n)
1001 			continue;
1002 		drain_freelist(cachep, n, INT_MAX);
1003 	}
1004 }
1005 
1006 static int cpuup_prepare(long cpu)
1007 {
1008 	struct kmem_cache *cachep;
1009 	int node = cpu_to_mem(cpu);
1010 	int err;
1011 
1012 	/*
1013 	 * We need to do this right in the beginning since
1014 	 * alloc_arraycache's are going to use this list.
1015 	 * kmalloc_node allows us to add the slab to the right
1016 	 * kmem_cache_node and not this cpu's kmem_cache_node
1017 	 */
1018 	err = init_cache_node_node(node);
1019 	if (err < 0)
1020 		goto bad;
1021 
1022 	/*
1023 	 * Now we can go ahead with allocating the shared arrays and
1024 	 * array caches
1025 	 */
1026 	list_for_each_entry(cachep, &slab_caches, list) {
1027 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1028 		if (err)
1029 			goto bad;
1030 	}
1031 
1032 	return 0;
1033 bad:
1034 	cpuup_canceled(cpu);
1035 	return -ENOMEM;
1036 }
1037 
1038 int slab_prepare_cpu(unsigned int cpu)
1039 {
1040 	int err;
1041 
1042 	mutex_lock(&slab_mutex);
1043 	err = cpuup_prepare(cpu);
1044 	mutex_unlock(&slab_mutex);
1045 	return err;
1046 }
1047 
1048 /*
1049  * This is called for a failed online attempt and for a successful
1050  * offline.
1051  *
1052  * Even if all the cpus of a node are down, we don't free the
1053  * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1054  * a kmalloc allocation from another cpu for memory from the node of
1055  * the cpu going down.  The list3 structure is usually allocated from
1056  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1057  */
1058 int slab_dead_cpu(unsigned int cpu)
1059 {
1060 	mutex_lock(&slab_mutex);
1061 	cpuup_canceled(cpu);
1062 	mutex_unlock(&slab_mutex);
1063 	return 0;
1064 }
1065 #endif
1066 
1067 static int slab_online_cpu(unsigned int cpu)
1068 {
1069 	start_cpu_timer(cpu);
1070 	return 0;
1071 }
1072 
1073 static int slab_offline_cpu(unsigned int cpu)
1074 {
1075 	/*
1076 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1077 	 * that if cache_reap() is invoked it cannot do anything
1078 	 * expensive but will only modify reap_work and reschedule the
1079 	 * timer.
1080 	 */
1081 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1082 	/* Now the cache_reaper is guaranteed to be not running. */
1083 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1084 	return 0;
1085 }
1086 
1087 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1088 /*
1089  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1090  * Returns -EBUSY if all objects cannot be drained so that the node is not
1091  * removed.
1092  *
1093  * Must hold slab_mutex.
1094  */
1095 static int __meminit drain_cache_node_node(int node)
1096 {
1097 	struct kmem_cache *cachep;
1098 	int ret = 0;
1099 
1100 	list_for_each_entry(cachep, &slab_caches, list) {
1101 		struct kmem_cache_node *n;
1102 
1103 		n = get_node(cachep, node);
1104 		if (!n)
1105 			continue;
1106 
1107 		drain_freelist(cachep, n, INT_MAX);
1108 
1109 		if (!list_empty(&n->slabs_full) ||
1110 		    !list_empty(&n->slabs_partial)) {
1111 			ret = -EBUSY;
1112 			break;
1113 		}
1114 	}
1115 	return ret;
1116 }
1117 
1118 static int __meminit slab_memory_callback(struct notifier_block *self,
1119 					unsigned long action, void *arg)
1120 {
1121 	struct memory_notify *mnb = arg;
1122 	int ret = 0;
1123 	int nid;
1124 
1125 	nid = mnb->status_change_nid;
1126 	if (nid < 0)
1127 		goto out;
1128 
1129 	switch (action) {
1130 	case MEM_GOING_ONLINE:
1131 		mutex_lock(&slab_mutex);
1132 		ret = init_cache_node_node(nid);
1133 		mutex_unlock(&slab_mutex);
1134 		break;
1135 	case MEM_GOING_OFFLINE:
1136 		mutex_lock(&slab_mutex);
1137 		ret = drain_cache_node_node(nid);
1138 		mutex_unlock(&slab_mutex);
1139 		break;
1140 	case MEM_ONLINE:
1141 	case MEM_OFFLINE:
1142 	case MEM_CANCEL_ONLINE:
1143 	case MEM_CANCEL_OFFLINE:
1144 		break;
1145 	}
1146 out:
1147 	return notifier_from_errno(ret);
1148 }
1149 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1150 
1151 /*
1152  * swap the static kmem_cache_node with kmalloced memory
1153  */
1154 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1155 				int nodeid)
1156 {
1157 	struct kmem_cache_node *ptr;
1158 
1159 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1160 	BUG_ON(!ptr);
1161 
1162 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1163 	/*
1164 	 * Do not assume that spinlocks can be initialized via memcpy:
1165 	 */
1166 	spin_lock_init(&ptr->list_lock);
1167 
1168 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1169 	cachep->node[nodeid] = ptr;
1170 }
1171 
1172 /*
1173  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1174  * size of kmem_cache_node.
1175  */
1176 static void __init set_up_node(struct kmem_cache *cachep, int index)
1177 {
1178 	int node;
1179 
1180 	for_each_online_node(node) {
1181 		cachep->node[node] = &init_kmem_cache_node[index + node];
1182 		cachep->node[node]->next_reap = jiffies +
1183 		    REAPTIMEOUT_NODE +
1184 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1185 	}
1186 }
1187 
1188 /*
1189  * Initialisation.  Called after the page allocator have been initialised and
1190  * before smp_init().
1191  */
1192 void __init kmem_cache_init(void)
1193 {
1194 	int i;
1195 
1196 	kmem_cache = &kmem_cache_boot;
1197 
1198 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1199 		use_alien_caches = 0;
1200 
1201 	for (i = 0; i < NUM_INIT_LISTS; i++)
1202 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1203 
1204 	/*
1205 	 * Fragmentation resistance on low memory - only use bigger
1206 	 * page orders on machines with more than 32MB of memory if
1207 	 * not overridden on the command line.
1208 	 */
1209 	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1210 		slab_max_order = SLAB_MAX_ORDER_HI;
1211 
1212 	/* Bootstrap is tricky, because several objects are allocated
1213 	 * from caches that do not exist yet:
1214 	 * 1) initialize the kmem_cache cache: it contains the struct
1215 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1216 	 *    kmem_cache is statically allocated.
1217 	 *    Initially an __init data area is used for the head array and the
1218 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1219 	 *    array at the end of the bootstrap.
1220 	 * 2) Create the first kmalloc cache.
1221 	 *    The struct kmem_cache for the new cache is allocated normally.
1222 	 *    An __init data area is used for the head array.
1223 	 * 3) Create the remaining kmalloc caches, with minimally sized
1224 	 *    head arrays.
1225 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1226 	 *    kmalloc cache with kmalloc allocated arrays.
1227 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1228 	 *    the other cache's with kmalloc allocated memory.
1229 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1230 	 */
1231 
1232 	/* 1) create the kmem_cache */
1233 
1234 	/*
1235 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1236 	 */
1237 	create_boot_cache(kmem_cache, "kmem_cache",
1238 		offsetof(struct kmem_cache, node) +
1239 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1240 				  SLAB_HWCACHE_ALIGN, 0, 0);
1241 	list_add(&kmem_cache->list, &slab_caches);
1242 	memcg_link_cache(kmem_cache, NULL);
1243 	slab_state = PARTIAL;
1244 
1245 	/*
1246 	 * Initialize the caches that provide memory for the  kmem_cache_node
1247 	 * structures first.  Without this, further allocations will bug.
1248 	 */
1249 	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1250 				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1251 				kmalloc_info[INDEX_NODE].size,
1252 				ARCH_KMALLOC_FLAGS, 0,
1253 				kmalloc_info[INDEX_NODE].size);
1254 	slab_state = PARTIAL_NODE;
1255 	setup_kmalloc_cache_index_table();
1256 
1257 	slab_early_init = 0;
1258 
1259 	/* 5) Replace the bootstrap kmem_cache_node */
1260 	{
1261 		int nid;
1262 
1263 		for_each_online_node(nid) {
1264 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1265 
1266 			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1267 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1268 		}
1269 	}
1270 
1271 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1272 }
1273 
1274 void __init kmem_cache_init_late(void)
1275 {
1276 	struct kmem_cache *cachep;
1277 
1278 	/* 6) resize the head arrays to their final sizes */
1279 	mutex_lock(&slab_mutex);
1280 	list_for_each_entry(cachep, &slab_caches, list)
1281 		if (enable_cpucache(cachep, GFP_NOWAIT))
1282 			BUG();
1283 	mutex_unlock(&slab_mutex);
1284 
1285 	/* Done! */
1286 	slab_state = FULL;
1287 
1288 #ifdef CONFIG_NUMA
1289 	/*
1290 	 * Register a memory hotplug callback that initializes and frees
1291 	 * node.
1292 	 */
1293 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1294 #endif
1295 
1296 	/*
1297 	 * The reap timers are started later, with a module init call: That part
1298 	 * of the kernel is not yet operational.
1299 	 */
1300 }
1301 
1302 static int __init cpucache_init(void)
1303 {
1304 	int ret;
1305 
1306 	/*
1307 	 * Register the timers that return unneeded pages to the page allocator
1308 	 */
1309 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1310 				slab_online_cpu, slab_offline_cpu);
1311 	WARN_ON(ret < 0);
1312 
1313 	return 0;
1314 }
1315 __initcall(cpucache_init);
1316 
1317 static noinline void
1318 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1319 {
1320 #if DEBUG
1321 	struct kmem_cache_node *n;
1322 	unsigned long flags;
1323 	int node;
1324 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1325 				      DEFAULT_RATELIMIT_BURST);
1326 
1327 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1328 		return;
1329 
1330 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1331 		nodeid, gfpflags, &gfpflags);
1332 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1333 		cachep->name, cachep->size, cachep->gfporder);
1334 
1335 	for_each_kmem_cache_node(cachep, node, n) {
1336 		unsigned long total_slabs, free_slabs, free_objs;
1337 
1338 		spin_lock_irqsave(&n->list_lock, flags);
1339 		total_slabs = n->total_slabs;
1340 		free_slabs = n->free_slabs;
1341 		free_objs = n->free_objects;
1342 		spin_unlock_irqrestore(&n->list_lock, flags);
1343 
1344 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1345 			node, total_slabs - free_slabs, total_slabs,
1346 			(total_slabs * cachep->num) - free_objs,
1347 			total_slabs * cachep->num);
1348 	}
1349 #endif
1350 }
1351 
1352 /*
1353  * Interface to system's page allocator. No need to hold the
1354  * kmem_cache_node ->list_lock.
1355  *
1356  * If we requested dmaable memory, we will get it. Even if we
1357  * did not request dmaable memory, we might get it, but that
1358  * would be relatively rare and ignorable.
1359  */
1360 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1361 								int nodeid)
1362 {
1363 	struct page *page;
1364 
1365 	flags |= cachep->allocflags;
1366 
1367 	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1368 	if (!page) {
1369 		slab_out_of_memory(cachep, flags, nodeid);
1370 		return NULL;
1371 	}
1372 
1373 	if (charge_slab_page(page, flags, cachep->gfporder, cachep)) {
1374 		__free_pages(page, cachep->gfporder);
1375 		return NULL;
1376 	}
1377 
1378 	__SetPageSlab(page);
1379 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1380 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1381 		SetPageSlabPfmemalloc(page);
1382 
1383 	return page;
1384 }
1385 
1386 /*
1387  * Interface to system's page release.
1388  */
1389 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1390 {
1391 	int order = cachep->gfporder;
1392 
1393 	BUG_ON(!PageSlab(page));
1394 	__ClearPageSlabPfmemalloc(page);
1395 	__ClearPageSlab(page);
1396 	page_mapcount_reset(page);
1397 	page->mapping = NULL;
1398 
1399 	if (current->reclaim_state)
1400 		current->reclaim_state->reclaimed_slab += 1 << order;
1401 	uncharge_slab_page(page, order, cachep);
1402 	__free_pages(page, order);
1403 }
1404 
1405 static void kmem_rcu_free(struct rcu_head *head)
1406 {
1407 	struct kmem_cache *cachep;
1408 	struct page *page;
1409 
1410 	page = container_of(head, struct page, rcu_head);
1411 	cachep = page->slab_cache;
1412 
1413 	kmem_freepages(cachep, page);
1414 }
1415 
1416 #if DEBUG
1417 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1418 {
1419 	if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1420 		(cachep->size % PAGE_SIZE) == 0)
1421 		return true;
1422 
1423 	return false;
1424 }
1425 
1426 #ifdef CONFIG_DEBUG_PAGEALLOC
1427 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1428 {
1429 	if (!is_debug_pagealloc_cache(cachep))
1430 		return;
1431 
1432 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1433 }
1434 
1435 #else
1436 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1437 				int map) {}
1438 
1439 #endif
1440 
1441 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1442 {
1443 	int size = cachep->object_size;
1444 	addr = &((char *)addr)[obj_offset(cachep)];
1445 
1446 	memset(addr, val, size);
1447 	*(unsigned char *)(addr + size - 1) = POISON_END;
1448 }
1449 
1450 static void dump_line(char *data, int offset, int limit)
1451 {
1452 	int i;
1453 	unsigned char error = 0;
1454 	int bad_count = 0;
1455 
1456 	pr_err("%03x: ", offset);
1457 	for (i = 0; i < limit; i++) {
1458 		if (data[offset + i] != POISON_FREE) {
1459 			error = data[offset + i];
1460 			bad_count++;
1461 		}
1462 	}
1463 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1464 			&data[offset], limit, 1);
1465 
1466 	if (bad_count == 1) {
1467 		error ^= POISON_FREE;
1468 		if (!(error & (error - 1))) {
1469 			pr_err("Single bit error detected. Probably bad RAM.\n");
1470 #ifdef CONFIG_X86
1471 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1472 #else
1473 			pr_err("Run a memory test tool.\n");
1474 #endif
1475 		}
1476 	}
1477 }
1478 #endif
1479 
1480 #if DEBUG
1481 
1482 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1483 {
1484 	int i, size;
1485 	char *realobj;
1486 
1487 	if (cachep->flags & SLAB_RED_ZONE) {
1488 		pr_err("Redzone: 0x%llx/0x%llx\n",
1489 		       *dbg_redzone1(cachep, objp),
1490 		       *dbg_redzone2(cachep, objp));
1491 	}
1492 
1493 	if (cachep->flags & SLAB_STORE_USER)
1494 		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1495 	realobj = (char *)objp + obj_offset(cachep);
1496 	size = cachep->object_size;
1497 	for (i = 0; i < size && lines; i += 16, lines--) {
1498 		int limit;
1499 		limit = 16;
1500 		if (i + limit > size)
1501 			limit = size - i;
1502 		dump_line(realobj, i, limit);
1503 	}
1504 }
1505 
1506 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1507 {
1508 	char *realobj;
1509 	int size, i;
1510 	int lines = 0;
1511 
1512 	if (is_debug_pagealloc_cache(cachep))
1513 		return;
1514 
1515 	realobj = (char *)objp + obj_offset(cachep);
1516 	size = cachep->object_size;
1517 
1518 	for (i = 0; i < size; i++) {
1519 		char exp = POISON_FREE;
1520 		if (i == size - 1)
1521 			exp = POISON_END;
1522 		if (realobj[i] != exp) {
1523 			int limit;
1524 			/* Mismatch ! */
1525 			/* Print header */
1526 			if (lines == 0) {
1527 				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1528 				       print_tainted(), cachep->name,
1529 				       realobj, size);
1530 				print_objinfo(cachep, objp, 0);
1531 			}
1532 			/* Hexdump the affected line */
1533 			i = (i / 16) * 16;
1534 			limit = 16;
1535 			if (i + limit > size)
1536 				limit = size - i;
1537 			dump_line(realobj, i, limit);
1538 			i += 16;
1539 			lines++;
1540 			/* Limit to 5 lines */
1541 			if (lines > 5)
1542 				break;
1543 		}
1544 	}
1545 	if (lines != 0) {
1546 		/* Print some data about the neighboring objects, if they
1547 		 * exist:
1548 		 */
1549 		struct page *page = virt_to_head_page(objp);
1550 		unsigned int objnr;
1551 
1552 		objnr = obj_to_index(cachep, page, objp);
1553 		if (objnr) {
1554 			objp = index_to_obj(cachep, page, objnr - 1);
1555 			realobj = (char *)objp + obj_offset(cachep);
1556 			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1557 			print_objinfo(cachep, objp, 2);
1558 		}
1559 		if (objnr + 1 < cachep->num) {
1560 			objp = index_to_obj(cachep, page, objnr + 1);
1561 			realobj = (char *)objp + obj_offset(cachep);
1562 			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1563 			print_objinfo(cachep, objp, 2);
1564 		}
1565 	}
1566 }
1567 #endif
1568 
1569 #if DEBUG
1570 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1571 						struct page *page)
1572 {
1573 	int i;
1574 
1575 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1576 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1577 			POISON_FREE);
1578 	}
1579 
1580 	for (i = 0; i < cachep->num; i++) {
1581 		void *objp = index_to_obj(cachep, page, i);
1582 
1583 		if (cachep->flags & SLAB_POISON) {
1584 			check_poison_obj(cachep, objp);
1585 			slab_kernel_map(cachep, objp, 1);
1586 		}
1587 		if (cachep->flags & SLAB_RED_ZONE) {
1588 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1589 				slab_error(cachep, "start of a freed object was overwritten");
1590 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1591 				slab_error(cachep, "end of a freed object was overwritten");
1592 		}
1593 	}
1594 }
1595 #else
1596 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1597 						struct page *page)
1598 {
1599 }
1600 #endif
1601 
1602 /**
1603  * slab_destroy - destroy and release all objects in a slab
1604  * @cachep: cache pointer being destroyed
1605  * @page: page pointer being destroyed
1606  *
1607  * Destroy all the objs in a slab page, and release the mem back to the system.
1608  * Before calling the slab page must have been unlinked from the cache. The
1609  * kmem_cache_node ->list_lock is not held/needed.
1610  */
1611 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1612 {
1613 	void *freelist;
1614 
1615 	freelist = page->freelist;
1616 	slab_destroy_debugcheck(cachep, page);
1617 	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1618 		call_rcu(&page->rcu_head, kmem_rcu_free);
1619 	else
1620 		kmem_freepages(cachep, page);
1621 
1622 	/*
1623 	 * From now on, we don't use freelist
1624 	 * although actual page can be freed in rcu context
1625 	 */
1626 	if (OFF_SLAB(cachep))
1627 		kmem_cache_free(cachep->freelist_cache, freelist);
1628 }
1629 
1630 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1631 {
1632 	struct page *page, *n;
1633 
1634 	list_for_each_entry_safe(page, n, list, slab_list) {
1635 		list_del(&page->slab_list);
1636 		slab_destroy(cachep, page);
1637 	}
1638 }
1639 
1640 /**
1641  * calculate_slab_order - calculate size (page order) of slabs
1642  * @cachep: pointer to the cache that is being created
1643  * @size: size of objects to be created in this cache.
1644  * @flags: slab allocation flags
1645  *
1646  * Also calculates the number of objects per slab.
1647  *
1648  * This could be made much more intelligent.  For now, try to avoid using
1649  * high order pages for slabs.  When the gfp() functions are more friendly
1650  * towards high-order requests, this should be changed.
1651  *
1652  * Return: number of left-over bytes in a slab
1653  */
1654 static size_t calculate_slab_order(struct kmem_cache *cachep,
1655 				size_t size, slab_flags_t flags)
1656 {
1657 	size_t left_over = 0;
1658 	int gfporder;
1659 
1660 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1661 		unsigned int num;
1662 		size_t remainder;
1663 
1664 		num = cache_estimate(gfporder, size, flags, &remainder);
1665 		if (!num)
1666 			continue;
1667 
1668 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1669 		if (num > SLAB_OBJ_MAX_NUM)
1670 			break;
1671 
1672 		if (flags & CFLGS_OFF_SLAB) {
1673 			struct kmem_cache *freelist_cache;
1674 			size_t freelist_size;
1675 
1676 			freelist_size = num * sizeof(freelist_idx_t);
1677 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1678 			if (!freelist_cache)
1679 				continue;
1680 
1681 			/*
1682 			 * Needed to avoid possible looping condition
1683 			 * in cache_grow_begin()
1684 			 */
1685 			if (OFF_SLAB(freelist_cache))
1686 				continue;
1687 
1688 			/* check if off slab has enough benefit */
1689 			if (freelist_cache->size > cachep->size / 2)
1690 				continue;
1691 		}
1692 
1693 		/* Found something acceptable - save it away */
1694 		cachep->num = num;
1695 		cachep->gfporder = gfporder;
1696 		left_over = remainder;
1697 
1698 		/*
1699 		 * A VFS-reclaimable slab tends to have most allocations
1700 		 * as GFP_NOFS and we really don't want to have to be allocating
1701 		 * higher-order pages when we are unable to shrink dcache.
1702 		 */
1703 		if (flags & SLAB_RECLAIM_ACCOUNT)
1704 			break;
1705 
1706 		/*
1707 		 * Large number of objects is good, but very large slabs are
1708 		 * currently bad for the gfp()s.
1709 		 */
1710 		if (gfporder >= slab_max_order)
1711 			break;
1712 
1713 		/*
1714 		 * Acceptable internal fragmentation?
1715 		 */
1716 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1717 			break;
1718 	}
1719 	return left_over;
1720 }
1721 
1722 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1723 		struct kmem_cache *cachep, int entries, int batchcount)
1724 {
1725 	int cpu;
1726 	size_t size;
1727 	struct array_cache __percpu *cpu_cache;
1728 
1729 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1730 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1731 
1732 	if (!cpu_cache)
1733 		return NULL;
1734 
1735 	for_each_possible_cpu(cpu) {
1736 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1737 				entries, batchcount);
1738 	}
1739 
1740 	return cpu_cache;
1741 }
1742 
1743 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1744 {
1745 	if (slab_state >= FULL)
1746 		return enable_cpucache(cachep, gfp);
1747 
1748 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1749 	if (!cachep->cpu_cache)
1750 		return 1;
1751 
1752 	if (slab_state == DOWN) {
1753 		/* Creation of first cache (kmem_cache). */
1754 		set_up_node(kmem_cache, CACHE_CACHE);
1755 	} else if (slab_state == PARTIAL) {
1756 		/* For kmem_cache_node */
1757 		set_up_node(cachep, SIZE_NODE);
1758 	} else {
1759 		int node;
1760 
1761 		for_each_online_node(node) {
1762 			cachep->node[node] = kmalloc_node(
1763 				sizeof(struct kmem_cache_node), gfp, node);
1764 			BUG_ON(!cachep->node[node]);
1765 			kmem_cache_node_init(cachep->node[node]);
1766 		}
1767 	}
1768 
1769 	cachep->node[numa_mem_id()]->next_reap =
1770 			jiffies + REAPTIMEOUT_NODE +
1771 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1772 
1773 	cpu_cache_get(cachep)->avail = 0;
1774 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1775 	cpu_cache_get(cachep)->batchcount = 1;
1776 	cpu_cache_get(cachep)->touched = 0;
1777 	cachep->batchcount = 1;
1778 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1779 	return 0;
1780 }
1781 
1782 slab_flags_t kmem_cache_flags(unsigned int object_size,
1783 	slab_flags_t flags, const char *name,
1784 	void (*ctor)(void *))
1785 {
1786 	return flags;
1787 }
1788 
1789 struct kmem_cache *
1790 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1791 		   slab_flags_t flags, void (*ctor)(void *))
1792 {
1793 	struct kmem_cache *cachep;
1794 
1795 	cachep = find_mergeable(size, align, flags, name, ctor);
1796 	if (cachep) {
1797 		cachep->refcount++;
1798 
1799 		/*
1800 		 * Adjust the object sizes so that we clear
1801 		 * the complete object on kzalloc.
1802 		 */
1803 		cachep->object_size = max_t(int, cachep->object_size, size);
1804 	}
1805 	return cachep;
1806 }
1807 
1808 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1809 			size_t size, slab_flags_t flags)
1810 {
1811 	size_t left;
1812 
1813 	cachep->num = 0;
1814 
1815 	/*
1816 	 * If slab auto-initialization on free is enabled, store the freelist
1817 	 * off-slab, so that its contents don't end up in one of the allocated
1818 	 * objects.
1819 	 */
1820 	if (unlikely(slab_want_init_on_free(cachep)))
1821 		return false;
1822 
1823 	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1824 		return false;
1825 
1826 	left = calculate_slab_order(cachep, size,
1827 			flags | CFLGS_OBJFREELIST_SLAB);
1828 	if (!cachep->num)
1829 		return false;
1830 
1831 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1832 		return false;
1833 
1834 	cachep->colour = left / cachep->colour_off;
1835 
1836 	return true;
1837 }
1838 
1839 static bool set_off_slab_cache(struct kmem_cache *cachep,
1840 			size_t size, slab_flags_t flags)
1841 {
1842 	size_t left;
1843 
1844 	cachep->num = 0;
1845 
1846 	/*
1847 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1848 	 * to avoid recursive calls into kmemleak.
1849 	 */
1850 	if (flags & SLAB_NOLEAKTRACE)
1851 		return false;
1852 
1853 	/*
1854 	 * Size is large, assume best to place the slab management obj
1855 	 * off-slab (should allow better packing of objs).
1856 	 */
1857 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1858 	if (!cachep->num)
1859 		return false;
1860 
1861 	/*
1862 	 * If the slab has been placed off-slab, and we have enough space then
1863 	 * move it on-slab. This is at the expense of any extra colouring.
1864 	 */
1865 	if (left >= cachep->num * sizeof(freelist_idx_t))
1866 		return false;
1867 
1868 	cachep->colour = left / cachep->colour_off;
1869 
1870 	return true;
1871 }
1872 
1873 static bool set_on_slab_cache(struct kmem_cache *cachep,
1874 			size_t size, slab_flags_t flags)
1875 {
1876 	size_t left;
1877 
1878 	cachep->num = 0;
1879 
1880 	left = calculate_slab_order(cachep, size, flags);
1881 	if (!cachep->num)
1882 		return false;
1883 
1884 	cachep->colour = left / cachep->colour_off;
1885 
1886 	return true;
1887 }
1888 
1889 /**
1890  * __kmem_cache_create - Create a cache.
1891  * @cachep: cache management descriptor
1892  * @flags: SLAB flags
1893  *
1894  * Returns a ptr to the cache on success, NULL on failure.
1895  * Cannot be called within a int, but can be interrupted.
1896  * The @ctor is run when new pages are allocated by the cache.
1897  *
1898  * The flags are
1899  *
1900  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1901  * to catch references to uninitialised memory.
1902  *
1903  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1904  * for buffer overruns.
1905  *
1906  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1907  * cacheline.  This can be beneficial if you're counting cycles as closely
1908  * as davem.
1909  *
1910  * Return: a pointer to the created cache or %NULL in case of error
1911  */
1912 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1913 {
1914 	size_t ralign = BYTES_PER_WORD;
1915 	gfp_t gfp;
1916 	int err;
1917 	unsigned int size = cachep->size;
1918 
1919 #if DEBUG
1920 #if FORCED_DEBUG
1921 	/*
1922 	 * Enable redzoning and last user accounting, except for caches with
1923 	 * large objects, if the increased size would increase the object size
1924 	 * above the next power of two: caches with object sizes just above a
1925 	 * power of two have a significant amount of internal fragmentation.
1926 	 */
1927 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1928 						2 * sizeof(unsigned long long)))
1929 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1930 	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1931 		flags |= SLAB_POISON;
1932 #endif
1933 #endif
1934 
1935 	/*
1936 	 * Check that size is in terms of words.  This is needed to avoid
1937 	 * unaligned accesses for some archs when redzoning is used, and makes
1938 	 * sure any on-slab bufctl's are also correctly aligned.
1939 	 */
1940 	size = ALIGN(size, BYTES_PER_WORD);
1941 
1942 	if (flags & SLAB_RED_ZONE) {
1943 		ralign = REDZONE_ALIGN;
1944 		/* If redzoning, ensure that the second redzone is suitably
1945 		 * aligned, by adjusting the object size accordingly. */
1946 		size = ALIGN(size, REDZONE_ALIGN);
1947 	}
1948 
1949 	/* 3) caller mandated alignment */
1950 	if (ralign < cachep->align) {
1951 		ralign = cachep->align;
1952 	}
1953 	/* disable debug if necessary */
1954 	if (ralign > __alignof__(unsigned long long))
1955 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1956 	/*
1957 	 * 4) Store it.
1958 	 */
1959 	cachep->align = ralign;
1960 	cachep->colour_off = cache_line_size();
1961 	/* Offset must be a multiple of the alignment. */
1962 	if (cachep->colour_off < cachep->align)
1963 		cachep->colour_off = cachep->align;
1964 
1965 	if (slab_is_available())
1966 		gfp = GFP_KERNEL;
1967 	else
1968 		gfp = GFP_NOWAIT;
1969 
1970 #if DEBUG
1971 
1972 	/*
1973 	 * Both debugging options require word-alignment which is calculated
1974 	 * into align above.
1975 	 */
1976 	if (flags & SLAB_RED_ZONE) {
1977 		/* add space for red zone words */
1978 		cachep->obj_offset += sizeof(unsigned long long);
1979 		size += 2 * sizeof(unsigned long long);
1980 	}
1981 	if (flags & SLAB_STORE_USER) {
1982 		/* user store requires one word storage behind the end of
1983 		 * the real object. But if the second red zone needs to be
1984 		 * aligned to 64 bits, we must allow that much space.
1985 		 */
1986 		if (flags & SLAB_RED_ZONE)
1987 			size += REDZONE_ALIGN;
1988 		else
1989 			size += BYTES_PER_WORD;
1990 	}
1991 #endif
1992 
1993 	kasan_cache_create(cachep, &size, &flags);
1994 
1995 	size = ALIGN(size, cachep->align);
1996 	/*
1997 	 * We should restrict the number of objects in a slab to implement
1998 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
1999 	 */
2000 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2001 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2002 
2003 #if DEBUG
2004 	/*
2005 	 * To activate debug pagealloc, off-slab management is necessary
2006 	 * requirement. In early phase of initialization, small sized slab
2007 	 * doesn't get initialized so it would not be possible. So, we need
2008 	 * to check size >= 256. It guarantees that all necessary small
2009 	 * sized slab is initialized in current slab initialization sequence.
2010 	 */
2011 	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2012 		size >= 256 && cachep->object_size > cache_line_size()) {
2013 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2014 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2015 
2016 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2017 				flags |= CFLGS_OFF_SLAB;
2018 				cachep->obj_offset += tmp_size - size;
2019 				size = tmp_size;
2020 				goto done;
2021 			}
2022 		}
2023 	}
2024 #endif
2025 
2026 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2027 		flags |= CFLGS_OBJFREELIST_SLAB;
2028 		goto done;
2029 	}
2030 
2031 	if (set_off_slab_cache(cachep, size, flags)) {
2032 		flags |= CFLGS_OFF_SLAB;
2033 		goto done;
2034 	}
2035 
2036 	if (set_on_slab_cache(cachep, size, flags))
2037 		goto done;
2038 
2039 	return -E2BIG;
2040 
2041 done:
2042 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2043 	cachep->flags = flags;
2044 	cachep->allocflags = __GFP_COMP;
2045 	if (flags & SLAB_CACHE_DMA)
2046 		cachep->allocflags |= GFP_DMA;
2047 	if (flags & SLAB_CACHE_DMA32)
2048 		cachep->allocflags |= GFP_DMA32;
2049 	if (flags & SLAB_RECLAIM_ACCOUNT)
2050 		cachep->allocflags |= __GFP_RECLAIMABLE;
2051 	cachep->size = size;
2052 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2053 
2054 #if DEBUG
2055 	/*
2056 	 * If we're going to use the generic kernel_map_pages()
2057 	 * poisoning, then it's going to smash the contents of
2058 	 * the redzone and userword anyhow, so switch them off.
2059 	 */
2060 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2061 		(cachep->flags & SLAB_POISON) &&
2062 		is_debug_pagealloc_cache(cachep))
2063 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2064 #endif
2065 
2066 	if (OFF_SLAB(cachep)) {
2067 		cachep->freelist_cache =
2068 			kmalloc_slab(cachep->freelist_size, 0u);
2069 	}
2070 
2071 	err = setup_cpu_cache(cachep, gfp);
2072 	if (err) {
2073 		__kmem_cache_release(cachep);
2074 		return err;
2075 	}
2076 
2077 	return 0;
2078 }
2079 
2080 #if DEBUG
2081 static void check_irq_off(void)
2082 {
2083 	BUG_ON(!irqs_disabled());
2084 }
2085 
2086 static void check_irq_on(void)
2087 {
2088 	BUG_ON(irqs_disabled());
2089 }
2090 
2091 static void check_mutex_acquired(void)
2092 {
2093 	BUG_ON(!mutex_is_locked(&slab_mutex));
2094 }
2095 
2096 static void check_spinlock_acquired(struct kmem_cache *cachep)
2097 {
2098 #ifdef CONFIG_SMP
2099 	check_irq_off();
2100 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2101 #endif
2102 }
2103 
2104 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2105 {
2106 #ifdef CONFIG_SMP
2107 	check_irq_off();
2108 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2109 #endif
2110 }
2111 
2112 #else
2113 #define check_irq_off()	do { } while(0)
2114 #define check_irq_on()	do { } while(0)
2115 #define check_mutex_acquired()	do { } while(0)
2116 #define check_spinlock_acquired(x) do { } while(0)
2117 #define check_spinlock_acquired_node(x, y) do { } while(0)
2118 #endif
2119 
2120 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2121 				int node, bool free_all, struct list_head *list)
2122 {
2123 	int tofree;
2124 
2125 	if (!ac || !ac->avail)
2126 		return;
2127 
2128 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2129 	if (tofree > ac->avail)
2130 		tofree = (ac->avail + 1) / 2;
2131 
2132 	free_block(cachep, ac->entry, tofree, node, list);
2133 	ac->avail -= tofree;
2134 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2135 }
2136 
2137 static void do_drain(void *arg)
2138 {
2139 	struct kmem_cache *cachep = arg;
2140 	struct array_cache *ac;
2141 	int node = numa_mem_id();
2142 	struct kmem_cache_node *n;
2143 	LIST_HEAD(list);
2144 
2145 	check_irq_off();
2146 	ac = cpu_cache_get(cachep);
2147 	n = get_node(cachep, node);
2148 	spin_lock(&n->list_lock);
2149 	free_block(cachep, ac->entry, ac->avail, node, &list);
2150 	spin_unlock(&n->list_lock);
2151 	slabs_destroy(cachep, &list);
2152 	ac->avail = 0;
2153 }
2154 
2155 static void drain_cpu_caches(struct kmem_cache *cachep)
2156 {
2157 	struct kmem_cache_node *n;
2158 	int node;
2159 	LIST_HEAD(list);
2160 
2161 	on_each_cpu(do_drain, cachep, 1);
2162 	check_irq_on();
2163 	for_each_kmem_cache_node(cachep, node, n)
2164 		if (n->alien)
2165 			drain_alien_cache(cachep, n->alien);
2166 
2167 	for_each_kmem_cache_node(cachep, node, n) {
2168 		spin_lock_irq(&n->list_lock);
2169 		drain_array_locked(cachep, n->shared, node, true, &list);
2170 		spin_unlock_irq(&n->list_lock);
2171 
2172 		slabs_destroy(cachep, &list);
2173 	}
2174 }
2175 
2176 /*
2177  * Remove slabs from the list of free slabs.
2178  * Specify the number of slabs to drain in tofree.
2179  *
2180  * Returns the actual number of slabs released.
2181  */
2182 static int drain_freelist(struct kmem_cache *cache,
2183 			struct kmem_cache_node *n, int tofree)
2184 {
2185 	struct list_head *p;
2186 	int nr_freed;
2187 	struct page *page;
2188 
2189 	nr_freed = 0;
2190 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2191 
2192 		spin_lock_irq(&n->list_lock);
2193 		p = n->slabs_free.prev;
2194 		if (p == &n->slabs_free) {
2195 			spin_unlock_irq(&n->list_lock);
2196 			goto out;
2197 		}
2198 
2199 		page = list_entry(p, struct page, slab_list);
2200 		list_del(&page->slab_list);
2201 		n->free_slabs--;
2202 		n->total_slabs--;
2203 		/*
2204 		 * Safe to drop the lock. The slab is no longer linked
2205 		 * to the cache.
2206 		 */
2207 		n->free_objects -= cache->num;
2208 		spin_unlock_irq(&n->list_lock);
2209 		slab_destroy(cache, page);
2210 		nr_freed++;
2211 	}
2212 out:
2213 	return nr_freed;
2214 }
2215 
2216 bool __kmem_cache_empty(struct kmem_cache *s)
2217 {
2218 	int node;
2219 	struct kmem_cache_node *n;
2220 
2221 	for_each_kmem_cache_node(s, node, n)
2222 		if (!list_empty(&n->slabs_full) ||
2223 		    !list_empty(&n->slabs_partial))
2224 			return false;
2225 	return true;
2226 }
2227 
2228 int __kmem_cache_shrink(struct kmem_cache *cachep)
2229 {
2230 	int ret = 0;
2231 	int node;
2232 	struct kmem_cache_node *n;
2233 
2234 	drain_cpu_caches(cachep);
2235 
2236 	check_irq_on();
2237 	for_each_kmem_cache_node(cachep, node, n) {
2238 		drain_freelist(cachep, n, INT_MAX);
2239 
2240 		ret += !list_empty(&n->slabs_full) ||
2241 			!list_empty(&n->slabs_partial);
2242 	}
2243 	return (ret ? 1 : 0);
2244 }
2245 
2246 #ifdef CONFIG_MEMCG
2247 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2248 {
2249 	__kmem_cache_shrink(cachep);
2250 }
2251 
2252 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
2253 {
2254 }
2255 #endif
2256 
2257 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2258 {
2259 	return __kmem_cache_shrink(cachep);
2260 }
2261 
2262 void __kmem_cache_release(struct kmem_cache *cachep)
2263 {
2264 	int i;
2265 	struct kmem_cache_node *n;
2266 
2267 	cache_random_seq_destroy(cachep);
2268 
2269 	free_percpu(cachep->cpu_cache);
2270 
2271 	/* NUMA: free the node structures */
2272 	for_each_kmem_cache_node(cachep, i, n) {
2273 		kfree(n->shared);
2274 		free_alien_cache(n->alien);
2275 		kfree(n);
2276 		cachep->node[i] = NULL;
2277 	}
2278 }
2279 
2280 /*
2281  * Get the memory for a slab management obj.
2282  *
2283  * For a slab cache when the slab descriptor is off-slab, the
2284  * slab descriptor can't come from the same cache which is being created,
2285  * Because if it is the case, that means we defer the creation of
2286  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2287  * And we eventually call down to __kmem_cache_create(), which
2288  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2289  * This is a "chicken-and-egg" problem.
2290  *
2291  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2292  * which are all initialized during kmem_cache_init().
2293  */
2294 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2295 				   struct page *page, int colour_off,
2296 				   gfp_t local_flags, int nodeid)
2297 {
2298 	void *freelist;
2299 	void *addr = page_address(page);
2300 
2301 	page->s_mem = addr + colour_off;
2302 	page->active = 0;
2303 
2304 	if (OBJFREELIST_SLAB(cachep))
2305 		freelist = NULL;
2306 	else if (OFF_SLAB(cachep)) {
2307 		/* Slab management obj is off-slab. */
2308 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2309 					      local_flags, nodeid);
2310 		if (!freelist)
2311 			return NULL;
2312 	} else {
2313 		/* We will use last bytes at the slab for freelist */
2314 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2315 				cachep->freelist_size;
2316 	}
2317 
2318 	return freelist;
2319 }
2320 
2321 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2322 {
2323 	return ((freelist_idx_t *)page->freelist)[idx];
2324 }
2325 
2326 static inline void set_free_obj(struct page *page,
2327 					unsigned int idx, freelist_idx_t val)
2328 {
2329 	((freelist_idx_t *)(page->freelist))[idx] = val;
2330 }
2331 
2332 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2333 {
2334 #if DEBUG
2335 	int i;
2336 
2337 	for (i = 0; i < cachep->num; i++) {
2338 		void *objp = index_to_obj(cachep, page, i);
2339 
2340 		if (cachep->flags & SLAB_STORE_USER)
2341 			*dbg_userword(cachep, objp) = NULL;
2342 
2343 		if (cachep->flags & SLAB_RED_ZONE) {
2344 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2345 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2346 		}
2347 		/*
2348 		 * Constructors are not allowed to allocate memory from the same
2349 		 * cache which they are a constructor for.  Otherwise, deadlock.
2350 		 * They must also be threaded.
2351 		 */
2352 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2353 			kasan_unpoison_object_data(cachep,
2354 						   objp + obj_offset(cachep));
2355 			cachep->ctor(objp + obj_offset(cachep));
2356 			kasan_poison_object_data(
2357 				cachep, objp + obj_offset(cachep));
2358 		}
2359 
2360 		if (cachep->flags & SLAB_RED_ZONE) {
2361 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2362 				slab_error(cachep, "constructor overwrote the end of an object");
2363 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2364 				slab_error(cachep, "constructor overwrote the start of an object");
2365 		}
2366 		/* need to poison the objs? */
2367 		if (cachep->flags & SLAB_POISON) {
2368 			poison_obj(cachep, objp, POISON_FREE);
2369 			slab_kernel_map(cachep, objp, 0);
2370 		}
2371 	}
2372 #endif
2373 }
2374 
2375 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2376 /* Hold information during a freelist initialization */
2377 union freelist_init_state {
2378 	struct {
2379 		unsigned int pos;
2380 		unsigned int *list;
2381 		unsigned int count;
2382 	};
2383 	struct rnd_state rnd_state;
2384 };
2385 
2386 /*
2387  * Initialize the state based on the randomization methode available.
2388  * return true if the pre-computed list is available, false otherwize.
2389  */
2390 static bool freelist_state_initialize(union freelist_init_state *state,
2391 				struct kmem_cache *cachep,
2392 				unsigned int count)
2393 {
2394 	bool ret;
2395 	unsigned int rand;
2396 
2397 	/* Use best entropy available to define a random shift */
2398 	rand = get_random_int();
2399 
2400 	/* Use a random state if the pre-computed list is not available */
2401 	if (!cachep->random_seq) {
2402 		prandom_seed_state(&state->rnd_state, rand);
2403 		ret = false;
2404 	} else {
2405 		state->list = cachep->random_seq;
2406 		state->count = count;
2407 		state->pos = rand % count;
2408 		ret = true;
2409 	}
2410 	return ret;
2411 }
2412 
2413 /* Get the next entry on the list and randomize it using a random shift */
2414 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2415 {
2416 	if (state->pos >= state->count)
2417 		state->pos = 0;
2418 	return state->list[state->pos++];
2419 }
2420 
2421 /* Swap two freelist entries */
2422 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2423 {
2424 	swap(((freelist_idx_t *)page->freelist)[a],
2425 		((freelist_idx_t *)page->freelist)[b]);
2426 }
2427 
2428 /*
2429  * Shuffle the freelist initialization state based on pre-computed lists.
2430  * return true if the list was successfully shuffled, false otherwise.
2431  */
2432 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2433 {
2434 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2435 	union freelist_init_state state;
2436 	bool precomputed;
2437 
2438 	if (count < 2)
2439 		return false;
2440 
2441 	precomputed = freelist_state_initialize(&state, cachep, count);
2442 
2443 	/* Take a random entry as the objfreelist */
2444 	if (OBJFREELIST_SLAB(cachep)) {
2445 		if (!precomputed)
2446 			objfreelist = count - 1;
2447 		else
2448 			objfreelist = next_random_slot(&state);
2449 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2450 						obj_offset(cachep);
2451 		count--;
2452 	}
2453 
2454 	/*
2455 	 * On early boot, generate the list dynamically.
2456 	 * Later use a pre-computed list for speed.
2457 	 */
2458 	if (!precomputed) {
2459 		for (i = 0; i < count; i++)
2460 			set_free_obj(page, i, i);
2461 
2462 		/* Fisher-Yates shuffle */
2463 		for (i = count - 1; i > 0; i--) {
2464 			rand = prandom_u32_state(&state.rnd_state);
2465 			rand %= (i + 1);
2466 			swap_free_obj(page, i, rand);
2467 		}
2468 	} else {
2469 		for (i = 0; i < count; i++)
2470 			set_free_obj(page, i, next_random_slot(&state));
2471 	}
2472 
2473 	if (OBJFREELIST_SLAB(cachep))
2474 		set_free_obj(page, cachep->num - 1, objfreelist);
2475 
2476 	return true;
2477 }
2478 #else
2479 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2480 				struct page *page)
2481 {
2482 	return false;
2483 }
2484 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2485 
2486 static void cache_init_objs(struct kmem_cache *cachep,
2487 			    struct page *page)
2488 {
2489 	int i;
2490 	void *objp;
2491 	bool shuffled;
2492 
2493 	cache_init_objs_debug(cachep, page);
2494 
2495 	/* Try to randomize the freelist if enabled */
2496 	shuffled = shuffle_freelist(cachep, page);
2497 
2498 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2499 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2500 						obj_offset(cachep);
2501 	}
2502 
2503 	for (i = 0; i < cachep->num; i++) {
2504 		objp = index_to_obj(cachep, page, i);
2505 		objp = kasan_init_slab_obj(cachep, objp);
2506 
2507 		/* constructor could break poison info */
2508 		if (DEBUG == 0 && cachep->ctor) {
2509 			kasan_unpoison_object_data(cachep, objp);
2510 			cachep->ctor(objp);
2511 			kasan_poison_object_data(cachep, objp);
2512 		}
2513 
2514 		if (!shuffled)
2515 			set_free_obj(page, i, i);
2516 	}
2517 }
2518 
2519 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2520 {
2521 	void *objp;
2522 
2523 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2524 	page->active++;
2525 
2526 	return objp;
2527 }
2528 
2529 static void slab_put_obj(struct kmem_cache *cachep,
2530 			struct page *page, void *objp)
2531 {
2532 	unsigned int objnr = obj_to_index(cachep, page, objp);
2533 #if DEBUG
2534 	unsigned int i;
2535 
2536 	/* Verify double free bug */
2537 	for (i = page->active; i < cachep->num; i++) {
2538 		if (get_free_obj(page, i) == objnr) {
2539 			pr_err("slab: double free detected in cache '%s', objp %px\n",
2540 			       cachep->name, objp);
2541 			BUG();
2542 		}
2543 	}
2544 #endif
2545 	page->active--;
2546 	if (!page->freelist)
2547 		page->freelist = objp + obj_offset(cachep);
2548 
2549 	set_free_obj(page, page->active, objnr);
2550 }
2551 
2552 /*
2553  * Map pages beginning at addr to the given cache and slab. This is required
2554  * for the slab allocator to be able to lookup the cache and slab of a
2555  * virtual address for kfree, ksize, and slab debugging.
2556  */
2557 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2558 			   void *freelist)
2559 {
2560 	page->slab_cache = cache;
2561 	page->freelist = freelist;
2562 }
2563 
2564 /*
2565  * Grow (by 1) the number of slabs within a cache.  This is called by
2566  * kmem_cache_alloc() when there are no active objs left in a cache.
2567  */
2568 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2569 				gfp_t flags, int nodeid)
2570 {
2571 	void *freelist;
2572 	size_t offset;
2573 	gfp_t local_flags;
2574 	int page_node;
2575 	struct kmem_cache_node *n;
2576 	struct page *page;
2577 
2578 	/*
2579 	 * Be lazy and only check for valid flags here,  keeping it out of the
2580 	 * critical path in kmem_cache_alloc().
2581 	 */
2582 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2583 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2584 		flags &= ~GFP_SLAB_BUG_MASK;
2585 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2586 				invalid_mask, &invalid_mask, flags, &flags);
2587 		dump_stack();
2588 	}
2589 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2590 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2591 
2592 	check_irq_off();
2593 	if (gfpflags_allow_blocking(local_flags))
2594 		local_irq_enable();
2595 
2596 	/*
2597 	 * Get mem for the objs.  Attempt to allocate a physical page from
2598 	 * 'nodeid'.
2599 	 */
2600 	page = kmem_getpages(cachep, local_flags, nodeid);
2601 	if (!page)
2602 		goto failed;
2603 
2604 	page_node = page_to_nid(page);
2605 	n = get_node(cachep, page_node);
2606 
2607 	/* Get colour for the slab, and cal the next value. */
2608 	n->colour_next++;
2609 	if (n->colour_next >= cachep->colour)
2610 		n->colour_next = 0;
2611 
2612 	offset = n->colour_next;
2613 	if (offset >= cachep->colour)
2614 		offset = 0;
2615 
2616 	offset *= cachep->colour_off;
2617 
2618 	/*
2619 	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2620 	 * page_address() in the latter returns a non-tagged pointer,
2621 	 * as it should be for slab pages.
2622 	 */
2623 	kasan_poison_slab(page);
2624 
2625 	/* Get slab management. */
2626 	freelist = alloc_slabmgmt(cachep, page, offset,
2627 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2628 	if (OFF_SLAB(cachep) && !freelist)
2629 		goto opps1;
2630 
2631 	slab_map_pages(cachep, page, freelist);
2632 
2633 	cache_init_objs(cachep, page);
2634 
2635 	if (gfpflags_allow_blocking(local_flags))
2636 		local_irq_disable();
2637 
2638 	return page;
2639 
2640 opps1:
2641 	kmem_freepages(cachep, page);
2642 failed:
2643 	if (gfpflags_allow_blocking(local_flags))
2644 		local_irq_disable();
2645 	return NULL;
2646 }
2647 
2648 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2649 {
2650 	struct kmem_cache_node *n;
2651 	void *list = NULL;
2652 
2653 	check_irq_off();
2654 
2655 	if (!page)
2656 		return;
2657 
2658 	INIT_LIST_HEAD(&page->slab_list);
2659 	n = get_node(cachep, page_to_nid(page));
2660 
2661 	spin_lock(&n->list_lock);
2662 	n->total_slabs++;
2663 	if (!page->active) {
2664 		list_add_tail(&page->slab_list, &n->slabs_free);
2665 		n->free_slabs++;
2666 	} else
2667 		fixup_slab_list(cachep, n, page, &list);
2668 
2669 	STATS_INC_GROWN(cachep);
2670 	n->free_objects += cachep->num - page->active;
2671 	spin_unlock(&n->list_lock);
2672 
2673 	fixup_objfreelist_debug(cachep, &list);
2674 }
2675 
2676 #if DEBUG
2677 
2678 /*
2679  * Perform extra freeing checks:
2680  * - detect bad pointers.
2681  * - POISON/RED_ZONE checking
2682  */
2683 static void kfree_debugcheck(const void *objp)
2684 {
2685 	if (!virt_addr_valid(objp)) {
2686 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2687 		       (unsigned long)objp);
2688 		BUG();
2689 	}
2690 }
2691 
2692 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2693 {
2694 	unsigned long long redzone1, redzone2;
2695 
2696 	redzone1 = *dbg_redzone1(cache, obj);
2697 	redzone2 = *dbg_redzone2(cache, obj);
2698 
2699 	/*
2700 	 * Redzone is ok.
2701 	 */
2702 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2703 		return;
2704 
2705 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2706 		slab_error(cache, "double free detected");
2707 	else
2708 		slab_error(cache, "memory outside object was overwritten");
2709 
2710 	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2711 	       obj, redzone1, redzone2);
2712 }
2713 
2714 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2715 				   unsigned long caller)
2716 {
2717 	unsigned int objnr;
2718 	struct page *page;
2719 
2720 	BUG_ON(virt_to_cache(objp) != cachep);
2721 
2722 	objp -= obj_offset(cachep);
2723 	kfree_debugcheck(objp);
2724 	page = virt_to_head_page(objp);
2725 
2726 	if (cachep->flags & SLAB_RED_ZONE) {
2727 		verify_redzone_free(cachep, objp);
2728 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2729 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2730 	}
2731 	if (cachep->flags & SLAB_STORE_USER)
2732 		*dbg_userword(cachep, objp) = (void *)caller;
2733 
2734 	objnr = obj_to_index(cachep, page, objp);
2735 
2736 	BUG_ON(objnr >= cachep->num);
2737 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2738 
2739 	if (cachep->flags & SLAB_POISON) {
2740 		poison_obj(cachep, objp, POISON_FREE);
2741 		slab_kernel_map(cachep, objp, 0);
2742 	}
2743 	return objp;
2744 }
2745 
2746 #else
2747 #define kfree_debugcheck(x) do { } while(0)
2748 #define cache_free_debugcheck(x,objp,z) (objp)
2749 #endif
2750 
2751 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2752 						void **list)
2753 {
2754 #if DEBUG
2755 	void *next = *list;
2756 	void *objp;
2757 
2758 	while (next) {
2759 		objp = next - obj_offset(cachep);
2760 		next = *(void **)next;
2761 		poison_obj(cachep, objp, POISON_FREE);
2762 	}
2763 #endif
2764 }
2765 
2766 static inline void fixup_slab_list(struct kmem_cache *cachep,
2767 				struct kmem_cache_node *n, struct page *page,
2768 				void **list)
2769 {
2770 	/* move slabp to correct slabp list: */
2771 	list_del(&page->slab_list);
2772 	if (page->active == cachep->num) {
2773 		list_add(&page->slab_list, &n->slabs_full);
2774 		if (OBJFREELIST_SLAB(cachep)) {
2775 #if DEBUG
2776 			/* Poisoning will be done without holding the lock */
2777 			if (cachep->flags & SLAB_POISON) {
2778 				void **objp = page->freelist;
2779 
2780 				*objp = *list;
2781 				*list = objp;
2782 			}
2783 #endif
2784 			page->freelist = NULL;
2785 		}
2786 	} else
2787 		list_add(&page->slab_list, &n->slabs_partial);
2788 }
2789 
2790 /* Try to find non-pfmemalloc slab if needed */
2791 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2792 					struct page *page, bool pfmemalloc)
2793 {
2794 	if (!page)
2795 		return NULL;
2796 
2797 	if (pfmemalloc)
2798 		return page;
2799 
2800 	if (!PageSlabPfmemalloc(page))
2801 		return page;
2802 
2803 	/* No need to keep pfmemalloc slab if we have enough free objects */
2804 	if (n->free_objects > n->free_limit) {
2805 		ClearPageSlabPfmemalloc(page);
2806 		return page;
2807 	}
2808 
2809 	/* Move pfmemalloc slab to the end of list to speed up next search */
2810 	list_del(&page->slab_list);
2811 	if (!page->active) {
2812 		list_add_tail(&page->slab_list, &n->slabs_free);
2813 		n->free_slabs++;
2814 	} else
2815 		list_add_tail(&page->slab_list, &n->slabs_partial);
2816 
2817 	list_for_each_entry(page, &n->slabs_partial, slab_list) {
2818 		if (!PageSlabPfmemalloc(page))
2819 			return page;
2820 	}
2821 
2822 	n->free_touched = 1;
2823 	list_for_each_entry(page, &n->slabs_free, slab_list) {
2824 		if (!PageSlabPfmemalloc(page)) {
2825 			n->free_slabs--;
2826 			return page;
2827 		}
2828 	}
2829 
2830 	return NULL;
2831 }
2832 
2833 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2834 {
2835 	struct page *page;
2836 
2837 	assert_spin_locked(&n->list_lock);
2838 	page = list_first_entry_or_null(&n->slabs_partial, struct page,
2839 					slab_list);
2840 	if (!page) {
2841 		n->free_touched = 1;
2842 		page = list_first_entry_or_null(&n->slabs_free, struct page,
2843 						slab_list);
2844 		if (page)
2845 			n->free_slabs--;
2846 	}
2847 
2848 	if (sk_memalloc_socks())
2849 		page = get_valid_first_slab(n, page, pfmemalloc);
2850 
2851 	return page;
2852 }
2853 
2854 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2855 				struct kmem_cache_node *n, gfp_t flags)
2856 {
2857 	struct page *page;
2858 	void *obj;
2859 	void *list = NULL;
2860 
2861 	if (!gfp_pfmemalloc_allowed(flags))
2862 		return NULL;
2863 
2864 	spin_lock(&n->list_lock);
2865 	page = get_first_slab(n, true);
2866 	if (!page) {
2867 		spin_unlock(&n->list_lock);
2868 		return NULL;
2869 	}
2870 
2871 	obj = slab_get_obj(cachep, page);
2872 	n->free_objects--;
2873 
2874 	fixup_slab_list(cachep, n, page, &list);
2875 
2876 	spin_unlock(&n->list_lock);
2877 	fixup_objfreelist_debug(cachep, &list);
2878 
2879 	return obj;
2880 }
2881 
2882 /*
2883  * Slab list should be fixed up by fixup_slab_list() for existing slab
2884  * or cache_grow_end() for new slab
2885  */
2886 static __always_inline int alloc_block(struct kmem_cache *cachep,
2887 		struct array_cache *ac, struct page *page, int batchcount)
2888 {
2889 	/*
2890 	 * There must be at least one object available for
2891 	 * allocation.
2892 	 */
2893 	BUG_ON(page->active >= cachep->num);
2894 
2895 	while (page->active < cachep->num && batchcount--) {
2896 		STATS_INC_ALLOCED(cachep);
2897 		STATS_INC_ACTIVE(cachep);
2898 		STATS_SET_HIGH(cachep);
2899 
2900 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2901 	}
2902 
2903 	return batchcount;
2904 }
2905 
2906 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2907 {
2908 	int batchcount;
2909 	struct kmem_cache_node *n;
2910 	struct array_cache *ac, *shared;
2911 	int node;
2912 	void *list = NULL;
2913 	struct page *page;
2914 
2915 	check_irq_off();
2916 	node = numa_mem_id();
2917 
2918 	ac = cpu_cache_get(cachep);
2919 	batchcount = ac->batchcount;
2920 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2921 		/*
2922 		 * If there was little recent activity on this cache, then
2923 		 * perform only a partial refill.  Otherwise we could generate
2924 		 * refill bouncing.
2925 		 */
2926 		batchcount = BATCHREFILL_LIMIT;
2927 	}
2928 	n = get_node(cachep, node);
2929 
2930 	BUG_ON(ac->avail > 0 || !n);
2931 	shared = READ_ONCE(n->shared);
2932 	if (!n->free_objects && (!shared || !shared->avail))
2933 		goto direct_grow;
2934 
2935 	spin_lock(&n->list_lock);
2936 	shared = READ_ONCE(n->shared);
2937 
2938 	/* See if we can refill from the shared array */
2939 	if (shared && transfer_objects(ac, shared, batchcount)) {
2940 		shared->touched = 1;
2941 		goto alloc_done;
2942 	}
2943 
2944 	while (batchcount > 0) {
2945 		/* Get slab alloc is to come from. */
2946 		page = get_first_slab(n, false);
2947 		if (!page)
2948 			goto must_grow;
2949 
2950 		check_spinlock_acquired(cachep);
2951 
2952 		batchcount = alloc_block(cachep, ac, page, batchcount);
2953 		fixup_slab_list(cachep, n, page, &list);
2954 	}
2955 
2956 must_grow:
2957 	n->free_objects -= ac->avail;
2958 alloc_done:
2959 	spin_unlock(&n->list_lock);
2960 	fixup_objfreelist_debug(cachep, &list);
2961 
2962 direct_grow:
2963 	if (unlikely(!ac->avail)) {
2964 		/* Check if we can use obj in pfmemalloc slab */
2965 		if (sk_memalloc_socks()) {
2966 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2967 
2968 			if (obj)
2969 				return obj;
2970 		}
2971 
2972 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2973 
2974 		/*
2975 		 * cache_grow_begin() can reenable interrupts,
2976 		 * then ac could change.
2977 		 */
2978 		ac = cpu_cache_get(cachep);
2979 		if (!ac->avail && page)
2980 			alloc_block(cachep, ac, page, batchcount);
2981 		cache_grow_end(cachep, page);
2982 
2983 		if (!ac->avail)
2984 			return NULL;
2985 	}
2986 	ac->touched = 1;
2987 
2988 	return ac->entry[--ac->avail];
2989 }
2990 
2991 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2992 						gfp_t flags)
2993 {
2994 	might_sleep_if(gfpflags_allow_blocking(flags));
2995 }
2996 
2997 #if DEBUG
2998 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2999 				gfp_t flags, void *objp, unsigned long caller)
3000 {
3001 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3002 	if (!objp)
3003 		return objp;
3004 	if (cachep->flags & SLAB_POISON) {
3005 		check_poison_obj(cachep, objp);
3006 		slab_kernel_map(cachep, objp, 1);
3007 		poison_obj(cachep, objp, POISON_INUSE);
3008 	}
3009 	if (cachep->flags & SLAB_STORE_USER)
3010 		*dbg_userword(cachep, objp) = (void *)caller;
3011 
3012 	if (cachep->flags & SLAB_RED_ZONE) {
3013 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3014 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3015 			slab_error(cachep, "double free, or memory outside object was overwritten");
3016 			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3017 			       objp, *dbg_redzone1(cachep, objp),
3018 			       *dbg_redzone2(cachep, objp));
3019 		}
3020 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3021 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3022 	}
3023 
3024 	objp += obj_offset(cachep);
3025 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3026 		cachep->ctor(objp);
3027 	if (ARCH_SLAB_MINALIGN &&
3028 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3029 		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3030 		       objp, (int)ARCH_SLAB_MINALIGN);
3031 	}
3032 	return objp;
3033 }
3034 #else
3035 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3036 #endif
3037 
3038 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3039 {
3040 	void *objp;
3041 	struct array_cache *ac;
3042 
3043 	check_irq_off();
3044 
3045 	ac = cpu_cache_get(cachep);
3046 	if (likely(ac->avail)) {
3047 		ac->touched = 1;
3048 		objp = ac->entry[--ac->avail];
3049 
3050 		STATS_INC_ALLOCHIT(cachep);
3051 		goto out;
3052 	}
3053 
3054 	STATS_INC_ALLOCMISS(cachep);
3055 	objp = cache_alloc_refill(cachep, flags);
3056 	/*
3057 	 * the 'ac' may be updated by cache_alloc_refill(),
3058 	 * and kmemleak_erase() requires its correct value.
3059 	 */
3060 	ac = cpu_cache_get(cachep);
3061 
3062 out:
3063 	/*
3064 	 * To avoid a false negative, if an object that is in one of the
3065 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3066 	 * treat the array pointers as a reference to the object.
3067 	 */
3068 	if (objp)
3069 		kmemleak_erase(&ac->entry[ac->avail]);
3070 	return objp;
3071 }
3072 
3073 #ifdef CONFIG_NUMA
3074 /*
3075  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3076  *
3077  * If we are in_interrupt, then process context, including cpusets and
3078  * mempolicy, may not apply and should not be used for allocation policy.
3079  */
3080 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3081 {
3082 	int nid_alloc, nid_here;
3083 
3084 	if (in_interrupt() || (flags & __GFP_THISNODE))
3085 		return NULL;
3086 	nid_alloc = nid_here = numa_mem_id();
3087 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3088 		nid_alloc = cpuset_slab_spread_node();
3089 	else if (current->mempolicy)
3090 		nid_alloc = mempolicy_slab_node();
3091 	if (nid_alloc != nid_here)
3092 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3093 	return NULL;
3094 }
3095 
3096 /*
3097  * Fallback function if there was no memory available and no objects on a
3098  * certain node and fall back is permitted. First we scan all the
3099  * available node for available objects. If that fails then we
3100  * perform an allocation without specifying a node. This allows the page
3101  * allocator to do its reclaim / fallback magic. We then insert the
3102  * slab into the proper nodelist and then allocate from it.
3103  */
3104 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3105 {
3106 	struct zonelist *zonelist;
3107 	struct zoneref *z;
3108 	struct zone *zone;
3109 	enum zone_type high_zoneidx = gfp_zone(flags);
3110 	void *obj = NULL;
3111 	struct page *page;
3112 	int nid;
3113 	unsigned int cpuset_mems_cookie;
3114 
3115 	if (flags & __GFP_THISNODE)
3116 		return NULL;
3117 
3118 retry_cpuset:
3119 	cpuset_mems_cookie = read_mems_allowed_begin();
3120 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3121 
3122 retry:
3123 	/*
3124 	 * Look through allowed nodes for objects available
3125 	 * from existing per node queues.
3126 	 */
3127 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3128 		nid = zone_to_nid(zone);
3129 
3130 		if (cpuset_zone_allowed(zone, flags) &&
3131 			get_node(cache, nid) &&
3132 			get_node(cache, nid)->free_objects) {
3133 				obj = ____cache_alloc_node(cache,
3134 					gfp_exact_node(flags), nid);
3135 				if (obj)
3136 					break;
3137 		}
3138 	}
3139 
3140 	if (!obj) {
3141 		/*
3142 		 * This allocation will be performed within the constraints
3143 		 * of the current cpuset / memory policy requirements.
3144 		 * We may trigger various forms of reclaim on the allowed
3145 		 * set and go into memory reserves if necessary.
3146 		 */
3147 		page = cache_grow_begin(cache, flags, numa_mem_id());
3148 		cache_grow_end(cache, page);
3149 		if (page) {
3150 			nid = page_to_nid(page);
3151 			obj = ____cache_alloc_node(cache,
3152 				gfp_exact_node(flags), nid);
3153 
3154 			/*
3155 			 * Another processor may allocate the objects in
3156 			 * the slab since we are not holding any locks.
3157 			 */
3158 			if (!obj)
3159 				goto retry;
3160 		}
3161 	}
3162 
3163 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3164 		goto retry_cpuset;
3165 	return obj;
3166 }
3167 
3168 /*
3169  * A interface to enable slab creation on nodeid
3170  */
3171 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3172 				int nodeid)
3173 {
3174 	struct page *page;
3175 	struct kmem_cache_node *n;
3176 	void *obj = NULL;
3177 	void *list = NULL;
3178 
3179 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3180 	n = get_node(cachep, nodeid);
3181 	BUG_ON(!n);
3182 
3183 	check_irq_off();
3184 	spin_lock(&n->list_lock);
3185 	page = get_first_slab(n, false);
3186 	if (!page)
3187 		goto must_grow;
3188 
3189 	check_spinlock_acquired_node(cachep, nodeid);
3190 
3191 	STATS_INC_NODEALLOCS(cachep);
3192 	STATS_INC_ACTIVE(cachep);
3193 	STATS_SET_HIGH(cachep);
3194 
3195 	BUG_ON(page->active == cachep->num);
3196 
3197 	obj = slab_get_obj(cachep, page);
3198 	n->free_objects--;
3199 
3200 	fixup_slab_list(cachep, n, page, &list);
3201 
3202 	spin_unlock(&n->list_lock);
3203 	fixup_objfreelist_debug(cachep, &list);
3204 	return obj;
3205 
3206 must_grow:
3207 	spin_unlock(&n->list_lock);
3208 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3209 	if (page) {
3210 		/* This slab isn't counted yet so don't update free_objects */
3211 		obj = slab_get_obj(cachep, page);
3212 	}
3213 	cache_grow_end(cachep, page);
3214 
3215 	return obj ? obj : fallback_alloc(cachep, flags);
3216 }
3217 
3218 static __always_inline void *
3219 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3220 		   unsigned long caller)
3221 {
3222 	unsigned long save_flags;
3223 	void *ptr;
3224 	int slab_node = numa_mem_id();
3225 
3226 	flags &= gfp_allowed_mask;
3227 	cachep = slab_pre_alloc_hook(cachep, flags);
3228 	if (unlikely(!cachep))
3229 		return NULL;
3230 
3231 	cache_alloc_debugcheck_before(cachep, flags);
3232 	local_irq_save(save_flags);
3233 
3234 	if (nodeid == NUMA_NO_NODE)
3235 		nodeid = slab_node;
3236 
3237 	if (unlikely(!get_node(cachep, nodeid))) {
3238 		/* Node not bootstrapped yet */
3239 		ptr = fallback_alloc(cachep, flags);
3240 		goto out;
3241 	}
3242 
3243 	if (nodeid == slab_node) {
3244 		/*
3245 		 * Use the locally cached objects if possible.
3246 		 * However ____cache_alloc does not allow fallback
3247 		 * to other nodes. It may fail while we still have
3248 		 * objects on other nodes available.
3249 		 */
3250 		ptr = ____cache_alloc(cachep, flags);
3251 		if (ptr)
3252 			goto out;
3253 	}
3254 	/* ___cache_alloc_node can fall back to other nodes */
3255 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3256   out:
3257 	local_irq_restore(save_flags);
3258 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3259 
3260 	if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr)
3261 		memset(ptr, 0, cachep->object_size);
3262 
3263 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3264 	return ptr;
3265 }
3266 
3267 static __always_inline void *
3268 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3269 {
3270 	void *objp;
3271 
3272 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3273 		objp = alternate_node_alloc(cache, flags);
3274 		if (objp)
3275 			goto out;
3276 	}
3277 	objp = ____cache_alloc(cache, flags);
3278 
3279 	/*
3280 	 * We may just have run out of memory on the local node.
3281 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3282 	 */
3283 	if (!objp)
3284 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3285 
3286   out:
3287 	return objp;
3288 }
3289 #else
3290 
3291 static __always_inline void *
3292 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3293 {
3294 	return ____cache_alloc(cachep, flags);
3295 }
3296 
3297 #endif /* CONFIG_NUMA */
3298 
3299 static __always_inline void *
3300 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3301 {
3302 	unsigned long save_flags;
3303 	void *objp;
3304 
3305 	flags &= gfp_allowed_mask;
3306 	cachep = slab_pre_alloc_hook(cachep, flags);
3307 	if (unlikely(!cachep))
3308 		return NULL;
3309 
3310 	cache_alloc_debugcheck_before(cachep, flags);
3311 	local_irq_save(save_flags);
3312 	objp = __do_cache_alloc(cachep, flags);
3313 	local_irq_restore(save_flags);
3314 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3315 	prefetchw(objp);
3316 
3317 	if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp)
3318 		memset(objp, 0, cachep->object_size);
3319 
3320 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3321 	return objp;
3322 }
3323 
3324 /*
3325  * Caller needs to acquire correct kmem_cache_node's list_lock
3326  * @list: List of detached free slabs should be freed by caller
3327  */
3328 static void free_block(struct kmem_cache *cachep, void **objpp,
3329 			int nr_objects, int node, struct list_head *list)
3330 {
3331 	int i;
3332 	struct kmem_cache_node *n = get_node(cachep, node);
3333 	struct page *page;
3334 
3335 	n->free_objects += nr_objects;
3336 
3337 	for (i = 0; i < nr_objects; i++) {
3338 		void *objp;
3339 		struct page *page;
3340 
3341 		objp = objpp[i];
3342 
3343 		page = virt_to_head_page(objp);
3344 		list_del(&page->slab_list);
3345 		check_spinlock_acquired_node(cachep, node);
3346 		slab_put_obj(cachep, page, objp);
3347 		STATS_DEC_ACTIVE(cachep);
3348 
3349 		/* fixup slab chains */
3350 		if (page->active == 0) {
3351 			list_add(&page->slab_list, &n->slabs_free);
3352 			n->free_slabs++;
3353 		} else {
3354 			/* Unconditionally move a slab to the end of the
3355 			 * partial list on free - maximum time for the
3356 			 * other objects to be freed, too.
3357 			 */
3358 			list_add_tail(&page->slab_list, &n->slabs_partial);
3359 		}
3360 	}
3361 
3362 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3363 		n->free_objects -= cachep->num;
3364 
3365 		page = list_last_entry(&n->slabs_free, struct page, slab_list);
3366 		list_move(&page->slab_list, list);
3367 		n->free_slabs--;
3368 		n->total_slabs--;
3369 	}
3370 }
3371 
3372 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3373 {
3374 	int batchcount;
3375 	struct kmem_cache_node *n;
3376 	int node = numa_mem_id();
3377 	LIST_HEAD(list);
3378 
3379 	batchcount = ac->batchcount;
3380 
3381 	check_irq_off();
3382 	n = get_node(cachep, node);
3383 	spin_lock(&n->list_lock);
3384 	if (n->shared) {
3385 		struct array_cache *shared_array = n->shared;
3386 		int max = shared_array->limit - shared_array->avail;
3387 		if (max) {
3388 			if (batchcount > max)
3389 				batchcount = max;
3390 			memcpy(&(shared_array->entry[shared_array->avail]),
3391 			       ac->entry, sizeof(void *) * batchcount);
3392 			shared_array->avail += batchcount;
3393 			goto free_done;
3394 		}
3395 	}
3396 
3397 	free_block(cachep, ac->entry, batchcount, node, &list);
3398 free_done:
3399 #if STATS
3400 	{
3401 		int i = 0;
3402 		struct page *page;
3403 
3404 		list_for_each_entry(page, &n->slabs_free, slab_list) {
3405 			BUG_ON(page->active);
3406 
3407 			i++;
3408 		}
3409 		STATS_SET_FREEABLE(cachep, i);
3410 	}
3411 #endif
3412 	spin_unlock(&n->list_lock);
3413 	slabs_destroy(cachep, &list);
3414 	ac->avail -= batchcount;
3415 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3416 }
3417 
3418 /*
3419  * Release an obj back to its cache. If the obj has a constructed state, it must
3420  * be in this state _before_ it is released.  Called with disabled ints.
3421  */
3422 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3423 					 unsigned long caller)
3424 {
3425 	/* Put the object into the quarantine, don't touch it for now. */
3426 	if (kasan_slab_free(cachep, objp, _RET_IP_))
3427 		return;
3428 
3429 	___cache_free(cachep, objp, caller);
3430 }
3431 
3432 void ___cache_free(struct kmem_cache *cachep, void *objp,
3433 		unsigned long caller)
3434 {
3435 	struct array_cache *ac = cpu_cache_get(cachep);
3436 
3437 	check_irq_off();
3438 	if (unlikely(slab_want_init_on_free(cachep)))
3439 		memset(objp, 0, cachep->object_size);
3440 	kmemleak_free_recursive(objp, cachep->flags);
3441 	objp = cache_free_debugcheck(cachep, objp, caller);
3442 
3443 	/*
3444 	 * Skip calling cache_free_alien() when the platform is not numa.
3445 	 * This will avoid cache misses that happen while accessing slabp (which
3446 	 * is per page memory  reference) to get nodeid. Instead use a global
3447 	 * variable to skip the call, which is mostly likely to be present in
3448 	 * the cache.
3449 	 */
3450 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3451 		return;
3452 
3453 	if (ac->avail < ac->limit) {
3454 		STATS_INC_FREEHIT(cachep);
3455 	} else {
3456 		STATS_INC_FREEMISS(cachep);
3457 		cache_flusharray(cachep, ac);
3458 	}
3459 
3460 	if (sk_memalloc_socks()) {
3461 		struct page *page = virt_to_head_page(objp);
3462 
3463 		if (unlikely(PageSlabPfmemalloc(page))) {
3464 			cache_free_pfmemalloc(cachep, page, objp);
3465 			return;
3466 		}
3467 	}
3468 
3469 	ac->entry[ac->avail++] = objp;
3470 }
3471 
3472 /**
3473  * kmem_cache_alloc - Allocate an object
3474  * @cachep: The cache to allocate from.
3475  * @flags: See kmalloc().
3476  *
3477  * Allocate an object from this cache.  The flags are only relevant
3478  * if the cache has no available objects.
3479  *
3480  * Return: pointer to the new object or %NULL in case of error
3481  */
3482 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3483 {
3484 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3485 
3486 	trace_kmem_cache_alloc(_RET_IP_, ret,
3487 			       cachep->object_size, cachep->size, flags);
3488 
3489 	return ret;
3490 }
3491 EXPORT_SYMBOL(kmem_cache_alloc);
3492 
3493 static __always_inline void
3494 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3495 				  size_t size, void **p, unsigned long caller)
3496 {
3497 	size_t i;
3498 
3499 	for (i = 0; i < size; i++)
3500 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3501 }
3502 
3503 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3504 			  void **p)
3505 {
3506 	size_t i;
3507 
3508 	s = slab_pre_alloc_hook(s, flags);
3509 	if (!s)
3510 		return 0;
3511 
3512 	cache_alloc_debugcheck_before(s, flags);
3513 
3514 	local_irq_disable();
3515 	for (i = 0; i < size; i++) {
3516 		void *objp = __do_cache_alloc(s, flags);
3517 
3518 		if (unlikely(!objp))
3519 			goto error;
3520 		p[i] = objp;
3521 	}
3522 	local_irq_enable();
3523 
3524 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3525 
3526 	/* Clear memory outside IRQ disabled section */
3527 	if (unlikely(slab_want_init_on_alloc(flags, s)))
3528 		for (i = 0; i < size; i++)
3529 			memset(p[i], 0, s->object_size);
3530 
3531 	slab_post_alloc_hook(s, flags, size, p);
3532 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3533 	return size;
3534 error:
3535 	local_irq_enable();
3536 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3537 	slab_post_alloc_hook(s, flags, i, p);
3538 	__kmem_cache_free_bulk(s, i, p);
3539 	return 0;
3540 }
3541 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3542 
3543 #ifdef CONFIG_TRACING
3544 void *
3545 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3546 {
3547 	void *ret;
3548 
3549 	ret = slab_alloc(cachep, flags, _RET_IP_);
3550 
3551 	ret = kasan_kmalloc(cachep, ret, size, flags);
3552 	trace_kmalloc(_RET_IP_, ret,
3553 		      size, cachep->size, flags);
3554 	return ret;
3555 }
3556 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3557 #endif
3558 
3559 #ifdef CONFIG_NUMA
3560 /**
3561  * kmem_cache_alloc_node - Allocate an object on the specified node
3562  * @cachep: The cache to allocate from.
3563  * @flags: See kmalloc().
3564  * @nodeid: node number of the target node.
3565  *
3566  * Identical to kmem_cache_alloc but it will allocate memory on the given
3567  * node, which can improve the performance for cpu bound structures.
3568  *
3569  * Fallback to other node is possible if __GFP_THISNODE is not set.
3570  *
3571  * Return: pointer to the new object or %NULL in case of error
3572  */
3573 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3574 {
3575 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3576 
3577 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3578 				    cachep->object_size, cachep->size,
3579 				    flags, nodeid);
3580 
3581 	return ret;
3582 }
3583 EXPORT_SYMBOL(kmem_cache_alloc_node);
3584 
3585 #ifdef CONFIG_TRACING
3586 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3587 				  gfp_t flags,
3588 				  int nodeid,
3589 				  size_t size)
3590 {
3591 	void *ret;
3592 
3593 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3594 
3595 	ret = kasan_kmalloc(cachep, ret, size, flags);
3596 	trace_kmalloc_node(_RET_IP_, ret,
3597 			   size, cachep->size,
3598 			   flags, nodeid);
3599 	return ret;
3600 }
3601 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3602 #endif
3603 
3604 static __always_inline void *
3605 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3606 {
3607 	struct kmem_cache *cachep;
3608 	void *ret;
3609 
3610 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3611 		return NULL;
3612 	cachep = kmalloc_slab(size, flags);
3613 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3614 		return cachep;
3615 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3616 	ret = kasan_kmalloc(cachep, ret, size, flags);
3617 
3618 	return ret;
3619 }
3620 
3621 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3622 {
3623 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3624 }
3625 EXPORT_SYMBOL(__kmalloc_node);
3626 
3627 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3628 		int node, unsigned long caller)
3629 {
3630 	return __do_kmalloc_node(size, flags, node, caller);
3631 }
3632 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3633 #endif /* CONFIG_NUMA */
3634 
3635 /**
3636  * __do_kmalloc - allocate memory
3637  * @size: how many bytes of memory are required.
3638  * @flags: the type of memory to allocate (see kmalloc).
3639  * @caller: function caller for debug tracking of the caller
3640  *
3641  * Return: pointer to the allocated memory or %NULL in case of error
3642  */
3643 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3644 					  unsigned long caller)
3645 {
3646 	struct kmem_cache *cachep;
3647 	void *ret;
3648 
3649 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3650 		return NULL;
3651 	cachep = kmalloc_slab(size, flags);
3652 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3653 		return cachep;
3654 	ret = slab_alloc(cachep, flags, caller);
3655 
3656 	ret = kasan_kmalloc(cachep, ret, size, flags);
3657 	trace_kmalloc(caller, ret,
3658 		      size, cachep->size, flags);
3659 
3660 	return ret;
3661 }
3662 
3663 void *__kmalloc(size_t size, gfp_t flags)
3664 {
3665 	return __do_kmalloc(size, flags, _RET_IP_);
3666 }
3667 EXPORT_SYMBOL(__kmalloc);
3668 
3669 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3670 {
3671 	return __do_kmalloc(size, flags, caller);
3672 }
3673 EXPORT_SYMBOL(__kmalloc_track_caller);
3674 
3675 /**
3676  * kmem_cache_free - Deallocate an object
3677  * @cachep: The cache the allocation was from.
3678  * @objp: The previously allocated object.
3679  *
3680  * Free an object which was previously allocated from this
3681  * cache.
3682  */
3683 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3684 {
3685 	unsigned long flags;
3686 	cachep = cache_from_obj(cachep, objp);
3687 	if (!cachep)
3688 		return;
3689 
3690 	local_irq_save(flags);
3691 	debug_check_no_locks_freed(objp, cachep->object_size);
3692 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3693 		debug_check_no_obj_freed(objp, cachep->object_size);
3694 	__cache_free(cachep, objp, _RET_IP_);
3695 	local_irq_restore(flags);
3696 
3697 	trace_kmem_cache_free(_RET_IP_, objp);
3698 }
3699 EXPORT_SYMBOL(kmem_cache_free);
3700 
3701 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3702 {
3703 	struct kmem_cache *s;
3704 	size_t i;
3705 
3706 	local_irq_disable();
3707 	for (i = 0; i < size; i++) {
3708 		void *objp = p[i];
3709 
3710 		if (!orig_s) /* called via kfree_bulk */
3711 			s = virt_to_cache(objp);
3712 		else
3713 			s = cache_from_obj(orig_s, objp);
3714 		if (!s)
3715 			continue;
3716 
3717 		debug_check_no_locks_freed(objp, s->object_size);
3718 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3719 			debug_check_no_obj_freed(objp, s->object_size);
3720 
3721 		__cache_free(s, objp, _RET_IP_);
3722 	}
3723 	local_irq_enable();
3724 
3725 	/* FIXME: add tracing */
3726 }
3727 EXPORT_SYMBOL(kmem_cache_free_bulk);
3728 
3729 /**
3730  * kfree - free previously allocated memory
3731  * @objp: pointer returned by kmalloc.
3732  *
3733  * If @objp is NULL, no operation is performed.
3734  *
3735  * Don't free memory not originally allocated by kmalloc()
3736  * or you will run into trouble.
3737  */
3738 void kfree(const void *objp)
3739 {
3740 	struct kmem_cache *c;
3741 	unsigned long flags;
3742 
3743 	trace_kfree(_RET_IP_, objp);
3744 
3745 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3746 		return;
3747 	local_irq_save(flags);
3748 	kfree_debugcheck(objp);
3749 	c = virt_to_cache(objp);
3750 	if (!c) {
3751 		local_irq_restore(flags);
3752 		return;
3753 	}
3754 	debug_check_no_locks_freed(objp, c->object_size);
3755 
3756 	debug_check_no_obj_freed(objp, c->object_size);
3757 	__cache_free(c, (void *)objp, _RET_IP_);
3758 	local_irq_restore(flags);
3759 }
3760 EXPORT_SYMBOL(kfree);
3761 
3762 /*
3763  * This initializes kmem_cache_node or resizes various caches for all nodes.
3764  */
3765 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3766 {
3767 	int ret;
3768 	int node;
3769 	struct kmem_cache_node *n;
3770 
3771 	for_each_online_node(node) {
3772 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3773 		if (ret)
3774 			goto fail;
3775 
3776 	}
3777 
3778 	return 0;
3779 
3780 fail:
3781 	if (!cachep->list.next) {
3782 		/* Cache is not active yet. Roll back what we did */
3783 		node--;
3784 		while (node >= 0) {
3785 			n = get_node(cachep, node);
3786 			if (n) {
3787 				kfree(n->shared);
3788 				free_alien_cache(n->alien);
3789 				kfree(n);
3790 				cachep->node[node] = NULL;
3791 			}
3792 			node--;
3793 		}
3794 	}
3795 	return -ENOMEM;
3796 }
3797 
3798 /* Always called with the slab_mutex held */
3799 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3800 				int batchcount, int shared, gfp_t gfp)
3801 {
3802 	struct array_cache __percpu *cpu_cache, *prev;
3803 	int cpu;
3804 
3805 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3806 	if (!cpu_cache)
3807 		return -ENOMEM;
3808 
3809 	prev = cachep->cpu_cache;
3810 	cachep->cpu_cache = cpu_cache;
3811 	/*
3812 	 * Without a previous cpu_cache there's no need to synchronize remote
3813 	 * cpus, so skip the IPIs.
3814 	 */
3815 	if (prev)
3816 		kick_all_cpus_sync();
3817 
3818 	check_irq_on();
3819 	cachep->batchcount = batchcount;
3820 	cachep->limit = limit;
3821 	cachep->shared = shared;
3822 
3823 	if (!prev)
3824 		goto setup_node;
3825 
3826 	for_each_online_cpu(cpu) {
3827 		LIST_HEAD(list);
3828 		int node;
3829 		struct kmem_cache_node *n;
3830 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3831 
3832 		node = cpu_to_mem(cpu);
3833 		n = get_node(cachep, node);
3834 		spin_lock_irq(&n->list_lock);
3835 		free_block(cachep, ac->entry, ac->avail, node, &list);
3836 		spin_unlock_irq(&n->list_lock);
3837 		slabs_destroy(cachep, &list);
3838 	}
3839 	free_percpu(prev);
3840 
3841 setup_node:
3842 	return setup_kmem_cache_nodes(cachep, gfp);
3843 }
3844 
3845 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3846 				int batchcount, int shared, gfp_t gfp)
3847 {
3848 	int ret;
3849 	struct kmem_cache *c;
3850 
3851 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3852 
3853 	if (slab_state < FULL)
3854 		return ret;
3855 
3856 	if ((ret < 0) || !is_root_cache(cachep))
3857 		return ret;
3858 
3859 	lockdep_assert_held(&slab_mutex);
3860 	for_each_memcg_cache(c, cachep) {
3861 		/* return value determined by the root cache only */
3862 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3863 	}
3864 
3865 	return ret;
3866 }
3867 
3868 /* Called with slab_mutex held always */
3869 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3870 {
3871 	int err;
3872 	int limit = 0;
3873 	int shared = 0;
3874 	int batchcount = 0;
3875 
3876 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3877 	if (err)
3878 		goto end;
3879 
3880 	if (!is_root_cache(cachep)) {
3881 		struct kmem_cache *root = memcg_root_cache(cachep);
3882 		limit = root->limit;
3883 		shared = root->shared;
3884 		batchcount = root->batchcount;
3885 	}
3886 
3887 	if (limit && shared && batchcount)
3888 		goto skip_setup;
3889 	/*
3890 	 * The head array serves three purposes:
3891 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3892 	 * - reduce the number of spinlock operations.
3893 	 * - reduce the number of linked list operations on the slab and
3894 	 *   bufctl chains: array operations are cheaper.
3895 	 * The numbers are guessed, we should auto-tune as described by
3896 	 * Bonwick.
3897 	 */
3898 	if (cachep->size > 131072)
3899 		limit = 1;
3900 	else if (cachep->size > PAGE_SIZE)
3901 		limit = 8;
3902 	else if (cachep->size > 1024)
3903 		limit = 24;
3904 	else if (cachep->size > 256)
3905 		limit = 54;
3906 	else
3907 		limit = 120;
3908 
3909 	/*
3910 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3911 	 * allocation behaviour: Most allocs on one cpu, most free operations
3912 	 * on another cpu. For these cases, an efficient object passing between
3913 	 * cpus is necessary. This is provided by a shared array. The array
3914 	 * replaces Bonwick's magazine layer.
3915 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3916 	 * to a larger limit. Thus disabled by default.
3917 	 */
3918 	shared = 0;
3919 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3920 		shared = 8;
3921 
3922 #if DEBUG
3923 	/*
3924 	 * With debugging enabled, large batchcount lead to excessively long
3925 	 * periods with disabled local interrupts. Limit the batchcount
3926 	 */
3927 	if (limit > 32)
3928 		limit = 32;
3929 #endif
3930 	batchcount = (limit + 1) / 2;
3931 skip_setup:
3932 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3933 end:
3934 	if (err)
3935 		pr_err("enable_cpucache failed for %s, error %d\n",
3936 		       cachep->name, -err);
3937 	return err;
3938 }
3939 
3940 /*
3941  * Drain an array if it contains any elements taking the node lock only if
3942  * necessary. Note that the node listlock also protects the array_cache
3943  * if drain_array() is used on the shared array.
3944  */
3945 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3946 			 struct array_cache *ac, int node)
3947 {
3948 	LIST_HEAD(list);
3949 
3950 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3951 	check_mutex_acquired();
3952 
3953 	if (!ac || !ac->avail)
3954 		return;
3955 
3956 	if (ac->touched) {
3957 		ac->touched = 0;
3958 		return;
3959 	}
3960 
3961 	spin_lock_irq(&n->list_lock);
3962 	drain_array_locked(cachep, ac, node, false, &list);
3963 	spin_unlock_irq(&n->list_lock);
3964 
3965 	slabs_destroy(cachep, &list);
3966 }
3967 
3968 /**
3969  * cache_reap - Reclaim memory from caches.
3970  * @w: work descriptor
3971  *
3972  * Called from workqueue/eventd every few seconds.
3973  * Purpose:
3974  * - clear the per-cpu caches for this CPU.
3975  * - return freeable pages to the main free memory pool.
3976  *
3977  * If we cannot acquire the cache chain mutex then just give up - we'll try
3978  * again on the next iteration.
3979  */
3980 static void cache_reap(struct work_struct *w)
3981 {
3982 	struct kmem_cache *searchp;
3983 	struct kmem_cache_node *n;
3984 	int node = numa_mem_id();
3985 	struct delayed_work *work = to_delayed_work(w);
3986 
3987 	if (!mutex_trylock(&slab_mutex))
3988 		/* Give up. Setup the next iteration. */
3989 		goto out;
3990 
3991 	list_for_each_entry(searchp, &slab_caches, list) {
3992 		check_irq_on();
3993 
3994 		/*
3995 		 * We only take the node lock if absolutely necessary and we
3996 		 * have established with reasonable certainty that
3997 		 * we can do some work if the lock was obtained.
3998 		 */
3999 		n = get_node(searchp, node);
4000 
4001 		reap_alien(searchp, n);
4002 
4003 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4004 
4005 		/*
4006 		 * These are racy checks but it does not matter
4007 		 * if we skip one check or scan twice.
4008 		 */
4009 		if (time_after(n->next_reap, jiffies))
4010 			goto next;
4011 
4012 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4013 
4014 		drain_array(searchp, n, n->shared, node);
4015 
4016 		if (n->free_touched)
4017 			n->free_touched = 0;
4018 		else {
4019 			int freed;
4020 
4021 			freed = drain_freelist(searchp, n, (n->free_limit +
4022 				5 * searchp->num - 1) / (5 * searchp->num));
4023 			STATS_ADD_REAPED(searchp, freed);
4024 		}
4025 next:
4026 		cond_resched();
4027 	}
4028 	check_irq_on();
4029 	mutex_unlock(&slab_mutex);
4030 	next_reap_node();
4031 out:
4032 	/* Set up the next iteration */
4033 	schedule_delayed_work_on(smp_processor_id(), work,
4034 				round_jiffies_relative(REAPTIMEOUT_AC));
4035 }
4036 
4037 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4038 {
4039 	unsigned long active_objs, num_objs, active_slabs;
4040 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4041 	unsigned long free_slabs = 0;
4042 	int node;
4043 	struct kmem_cache_node *n;
4044 
4045 	for_each_kmem_cache_node(cachep, node, n) {
4046 		check_irq_on();
4047 		spin_lock_irq(&n->list_lock);
4048 
4049 		total_slabs += n->total_slabs;
4050 		free_slabs += n->free_slabs;
4051 		free_objs += n->free_objects;
4052 
4053 		if (n->shared)
4054 			shared_avail += n->shared->avail;
4055 
4056 		spin_unlock_irq(&n->list_lock);
4057 	}
4058 	num_objs = total_slabs * cachep->num;
4059 	active_slabs = total_slabs - free_slabs;
4060 	active_objs = num_objs - free_objs;
4061 
4062 	sinfo->active_objs = active_objs;
4063 	sinfo->num_objs = num_objs;
4064 	sinfo->active_slabs = active_slabs;
4065 	sinfo->num_slabs = total_slabs;
4066 	sinfo->shared_avail = shared_avail;
4067 	sinfo->limit = cachep->limit;
4068 	sinfo->batchcount = cachep->batchcount;
4069 	sinfo->shared = cachep->shared;
4070 	sinfo->objects_per_slab = cachep->num;
4071 	sinfo->cache_order = cachep->gfporder;
4072 }
4073 
4074 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4075 {
4076 #if STATS
4077 	{			/* node stats */
4078 		unsigned long high = cachep->high_mark;
4079 		unsigned long allocs = cachep->num_allocations;
4080 		unsigned long grown = cachep->grown;
4081 		unsigned long reaped = cachep->reaped;
4082 		unsigned long errors = cachep->errors;
4083 		unsigned long max_freeable = cachep->max_freeable;
4084 		unsigned long node_allocs = cachep->node_allocs;
4085 		unsigned long node_frees = cachep->node_frees;
4086 		unsigned long overflows = cachep->node_overflow;
4087 
4088 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4089 			   allocs, high, grown,
4090 			   reaped, errors, max_freeable, node_allocs,
4091 			   node_frees, overflows);
4092 	}
4093 	/* cpu stats */
4094 	{
4095 		unsigned long allochit = atomic_read(&cachep->allochit);
4096 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4097 		unsigned long freehit = atomic_read(&cachep->freehit);
4098 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4099 
4100 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4101 			   allochit, allocmiss, freehit, freemiss);
4102 	}
4103 #endif
4104 }
4105 
4106 #define MAX_SLABINFO_WRITE 128
4107 /**
4108  * slabinfo_write - Tuning for the slab allocator
4109  * @file: unused
4110  * @buffer: user buffer
4111  * @count: data length
4112  * @ppos: unused
4113  *
4114  * Return: %0 on success, negative error code otherwise.
4115  */
4116 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4117 		       size_t count, loff_t *ppos)
4118 {
4119 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4120 	int limit, batchcount, shared, res;
4121 	struct kmem_cache *cachep;
4122 
4123 	if (count > MAX_SLABINFO_WRITE)
4124 		return -EINVAL;
4125 	if (copy_from_user(&kbuf, buffer, count))
4126 		return -EFAULT;
4127 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4128 
4129 	tmp = strchr(kbuf, ' ');
4130 	if (!tmp)
4131 		return -EINVAL;
4132 	*tmp = '\0';
4133 	tmp++;
4134 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4135 		return -EINVAL;
4136 
4137 	/* Find the cache in the chain of caches. */
4138 	mutex_lock(&slab_mutex);
4139 	res = -EINVAL;
4140 	list_for_each_entry(cachep, &slab_caches, list) {
4141 		if (!strcmp(cachep->name, kbuf)) {
4142 			if (limit < 1 || batchcount < 1 ||
4143 					batchcount > limit || shared < 0) {
4144 				res = 0;
4145 			} else {
4146 				res = do_tune_cpucache(cachep, limit,
4147 						       batchcount, shared,
4148 						       GFP_KERNEL);
4149 			}
4150 			break;
4151 		}
4152 	}
4153 	mutex_unlock(&slab_mutex);
4154 	if (res >= 0)
4155 		res = count;
4156 	return res;
4157 }
4158 
4159 #ifdef CONFIG_HARDENED_USERCOPY
4160 /*
4161  * Rejects incorrectly sized objects and objects that are to be copied
4162  * to/from userspace but do not fall entirely within the containing slab
4163  * cache's usercopy region.
4164  *
4165  * Returns NULL if check passes, otherwise const char * to name of cache
4166  * to indicate an error.
4167  */
4168 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4169 			 bool to_user)
4170 {
4171 	struct kmem_cache *cachep;
4172 	unsigned int objnr;
4173 	unsigned long offset;
4174 
4175 	ptr = kasan_reset_tag(ptr);
4176 
4177 	/* Find and validate object. */
4178 	cachep = page->slab_cache;
4179 	objnr = obj_to_index(cachep, page, (void *)ptr);
4180 	BUG_ON(objnr >= cachep->num);
4181 
4182 	/* Find offset within object. */
4183 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4184 
4185 	/* Allow address range falling entirely within usercopy region. */
4186 	if (offset >= cachep->useroffset &&
4187 	    offset - cachep->useroffset <= cachep->usersize &&
4188 	    n <= cachep->useroffset - offset + cachep->usersize)
4189 		return;
4190 
4191 	/*
4192 	 * If the copy is still within the allocated object, produce
4193 	 * a warning instead of rejecting the copy. This is intended
4194 	 * to be a temporary method to find any missing usercopy
4195 	 * whitelists.
4196 	 */
4197 	if (usercopy_fallback &&
4198 	    offset <= cachep->object_size &&
4199 	    n <= cachep->object_size - offset) {
4200 		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4201 		return;
4202 	}
4203 
4204 	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4205 }
4206 #endif /* CONFIG_HARDENED_USERCOPY */
4207 
4208 /**
4209  * __ksize -- Uninstrumented ksize.
4210  * @objp: pointer to the object
4211  *
4212  * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4213  * safety checks as ksize() with KASAN instrumentation enabled.
4214  *
4215  * Return: size of the actual memory used by @objp in bytes
4216  */
4217 size_t __ksize(const void *objp)
4218 {
4219 	struct kmem_cache *c;
4220 	size_t size;
4221 
4222 	BUG_ON(!objp);
4223 	if (unlikely(objp == ZERO_SIZE_PTR))
4224 		return 0;
4225 
4226 	c = virt_to_cache(objp);
4227 	size = c ? c->object_size : 0;
4228 
4229 	return size;
4230 }
4231 EXPORT_SYMBOL(__ksize);
4232